
1
1

1

1

1
QA
76.9
S88
S6478
1988 IC

SOFTWARE TOP LEVEL DESIGN DOCUMENT
FOR THE

INTERNETWORK GATEWAY PROJECT
Submitted to: C.R.C.

Ottawa, Ontario

SKL Document #1500-15-010.03.0
Copy #4 05 May 1988

L_
RELEASABLE

DOC-CR-11C-88-007

›eLd C R C

8 1990

\\N 11011411,
•I•

SOFTWARE TOP LEVEL DESIGN DOCUMENT
FOR THE

INTERNETWORK GATEWAY PROJECT
Submitted to: C.R.C.

Ottawa, Ontario

SKL Document #1500-15-010.03.0
Copy #4 05 May 1988

Software Kinetics

GMOS
tic ,

i920

11-1111E MBUO

#1500-15-010.03.0

SOFTWARE TOP LEVEL DESIGN DOCUMENT

FOR THE

INTERNETWORK GATEWAY PROJECT

Contract No. 36001-06-3535/02-ST

05 May 1988

Prepared for:

Communications Research Centre
Ottawa, Ontario

Prepared by:

Software Kinetics Ltd.
65 Iber Road, P.O. Box 680
Stittsvil1e, Ontario Canada

KUA 3G0

SKL Document 11500-15-010.03.0

Software Kinetics

Signature Date

T/42,/ /e9

7

Approvals

Project Engineer:

Project Manager:

Technical Authority:

1

1

1

1
1

#1500-15-010.03.0

Document Approval Sheet

for the

Internetwork Gateway Project

Document No: 1500-15-010.03.0

Document Name: Software Top Level Design Document
for the Internetwork Gateway
Project

strie Can d
Incl u •

A UG U 2012

Intelustr:7

Ao

9aueaen

ur ri

Library - Queaedna

Software Kinetics

#1500-15-010.03.0

Document Revision History

Revis ion Description of Changes Origin Date

01 New Document Issued 22 May 1987

02 Added Software Options 24 August 1987

03 Coding and Integration 05 May 1988
Revisions

Software Kinetics

#1500-15-010.03.0

TABLE OF CONTENTS

1.0 INTRODUCTION 1

2.0 REFERENCED/APPLICABLE DOCUMENTS 2

3.0 DESIGN 3

3.1 Software Architecture 3

3.2 Functional Allocation 6

3.2.1 Primary Boot 6

3.2.2 Secondary Boot 6

3.2.3 IP 10

3.2.4 Exterior Gateway Protocol (EGP) 10

3.2.5 Operator Interface (0I) 11

3.2.6 Statistics (STAT) 11

3.2.7 X.25 Device Driver (XDD) 11

3.2.8 Ethernet Device Driver (EDD) 12

3.2.9 Console Device Driver (CDD) 12

3.2.10 Efficient Real-Time Executive (ERTE) 13

3.3 Memory Allocation 14

3.4 Functional Control and Data Flow 18

3.4.1 Control Flow 18

3.4.2 Data Flow 21

3.4.2.1 Datagram and Route Data 26

3.4.2.2 Traffic Data 27

3.4.2.3 Operator Interface Data 28

, s e
Software Kinetics

37

37

38

38

38

39

40

41

41

42

42

42

45

45

45

46

46

#1500-15-010.03.0

3.5 Global Data 29

3.6 Design 36

3.6.1 Primary Boot TLC 36

3.6.1.1 Inputs

3.6.1.2 Local Data

3.6.1.3 Interrupts

3.6.1.4 Timing and Sequencing

3.6.1.5 Processing

3.6.1.6 Outputs

3.6.2 Secondary Boot TLC

3.6.2.1 Secondary Boot Local Boot

3.6.2.1.1 Inputs

3.6.2.1.2 Local Data

3.6.2.1.3 Interrupts

3.6.2.1.4 Timing and Sequencing 42

3.6.2.1.5 Processing

3.6.2.1.6 Outputs

3.6.2.2 Secondary Boot IGW Net Boot

3.6.2.2.1 Inputs

3.6.2.2.2 Local Data

3.6.2.2.3 Interrupts

3.6.2.2.4 Timing and Sequencing 46

3.6.2.2.5 Processing 47

3.6.2.2.6 Outputs 48

3.6.2.3 Secondary Boot Host Net Boot 48

Software Kinetics

#1500-15-010.03.0

3.6.2.3.1 Inputs 49

3.6.2.3.2 Local Data 49

3.6.2.3.3 Interrupts 49

3.6.2.3.4 Timing and Sequencing 50

3.6.2.3.5 Processing 50

3.6.2.3.6 Outputs 53

3.6.3 IP Protocol TLC 53

3.6.3.1 Inputs 53

3.6.3.2 Local Data 54

3.6.3.3 Interrupts 55

3.6.3.4 Timing and Sequencing 55

3.6.3.5 Processing 55

3.6.3.6 Outputs 57

3.6.4 EGP Protocol TLC 57

3.6.4.1 Inputs 58

3.6.4.2 Local Data 58

3.6.4.3 Interrupts 58

3.6.4.4 Timing and Sequencing 59

3.6.4.5 Processing 59

3.6.4.6 Outputs 60

3.6.5 Operator Interface TLC 60

3.6.5.1 Inputs 60

3.6.5.2 Local Data 61

3.6.5.3 Interrupts 61

Software Kinetics

#1500-15-010.03.0

3.6.5.4 Timing and Sequencing 61

3.6.5.5 Processing 62

3.6.5.6 Outputs 65

3.6.6 Statistics (STAT) TLC 66

3.6.6.1 Inputs 66

3.6.6.2 Local Data 67

3.6.6.3 Interrupts 69

3.6.6.4 Timing and Sequencing 69

3.6.6.5 Processing 69

3.6.6.6 Outputs 70

3.6.7 X.25 Device Driver (XDD) TLC 70

3.6.7.1 Inputs 71

3.6.7.2 Local Data 71

3.6.7.3 Interrupts 72

3.6.7.4 Timing and Sequencing 72

3.6.7.5 Processing 73

3.6.7.6 Outputs 75

3.6.8 Ethernet Device (EDD) TLC 75

3.6.8.1 Inputs 76

3.6.8.2 Local Data 76

3.6.8.3 Interrupts 77

3.6.8.4 Timing and Sequencing 77

3.6.8.5 Processing 78

3.6.8.6 Outputs 81

3.6.9 Console Device Driver (CDD) TLC 81

111;

Software Kinetics

#1500-15-010.03.0

3.6.9.1 Inputs 82

3.6.9.2 Local Data 82

3.6.9.3 Interrupts 83

3.6.9.4 Timing and Sequencing 83

3.6.9.5 Processing 84

3.6.10 Efficient Real-Time Executive (ERTE)
TLC 85

3.6.10.1 Inputs 86

3.6.10.2 Local Data 89

3.6.10.3 Interrupts 92

3.6.10.4 Timing and Sequencing 96

3.6.10.5 Processing 96

3.6.10.6 Outputs 98

100 4.0 GLOSSARY

Software Kinetics

-1-
Software Kinetics

#1500-15-010.03.0

1.0 INTRODUCTION

The Top Level Design (TLD) of the Internetwork Gateway (IGW)

software is presented in this document. The components of the

design are identified and described. Also presented are the

functions allocated to each component, the functional control and

data flow among the components, global data, important local

data, inputs, outputs, interrupts, and processing.

The IGW is a gateway between networks operating under the DARPA

Internet protocols. Specifically, the IGW is a gateway between

X.25 based TCP/IP networks and Ethernet based TCP/IP networks.

The IGW supports the IP,ICMP, EGP, ARP, and X.25 protocols.

#1500-15-010.03.0

2.0 REFERENCED/APPLICABLE DOCUMENTS

1) 1500-15-002.01.0, "Requirements Specification for the
Internetwork Gateway", Software Kinetics Ltd., 1987.

2) "VAX Architecture Handbook", Digital Equipment
Corporation, 1981.

3) Defense Advanced Research Projects Agency, "Internet
Protocol", DARPA Network Working Group Report
RFC-791, USC Information Sciences Institute,
September 1981.

4) Defense Advance Research Projects Agency, "Internet
Control Message Protocol", DARPA Network Working
Group Report RFC-792, USC Information Sciences
Institute, September 1981.

5) Defense Advanced Research Projects Agency, "Exterior
Gateway Protocol Formal Specification", DARPA Network
Working Group Report RFC-904, M/A-COM Linkabit, April
1984.

6) Reltek Inc., "Q-Bus X.calibre FEP COMII-Q
Technical/Users's Guide", Reltek Inc., 1985

7) Plummer, D., "An Ethernet Address Resolution
Protocol", DARPA Network working Group Report
RFC-826, Symbolics, September 1982

-2-
Software Kinetics

3 ■•••■•

#1500-15-010.03.0

3.0 DESIGN

3.1 Software Architecture

The IGW consists of software components that are divided into two

classifications: Boot Software, and Operating Software. The Boot

Software is responsible for loading the Operating Software from

the boot device. The Operating Software is responsible for

performing all the gateway functions of the IGW, including input

and output.

The Boot Software is composed of two Top Level Components

(TLCs). The first TLC is the Primary Boot component which

performs basic initializations of the gateway hardware, and then

loads the second component, the Secondary Boot TLC. The

Secondary Boot TLC is responsible for loading the Operating

Software into the gateway memory, and then starting the Operating

Software.

The Operating Software consists of a set of TLCs each having

certain resiponsibilities to perform with respect to IGW

operation. The operating TLCs are listed as follows:

1) IP - This TLC implements the IP protocol, the
ICMP protocol, and packet filtering.

2) EGP - This TLC implements the EGP Internet protocol.

3) Operator Interface (0I) - The OI TLC presents a
simple command line interface to the IGW operator to
allow the operator to extract information and
statistics and to modify IGW operating parameters.

4) Statistics (STAT) - STAT gathers statistics from the
other TLCs of the IGW. In particular, the STAT TLC
tallies packets to and from IP and X25 addresses,
error packets sent and received, and data bytes

Software Kinetics

nnn •n• 4

#1500-15-010.03.0

transmitted between hosts via IGW.

5) X.25 Device Driver (XDD) - This TLC controls the
operation of the IXIB X.25 interface. The XDD passes
packets to, and receives packets from the IXIB. It
also collects status information from the IXIB and
provides configuration parameters to the IXIB.

6) Ethernet Device Driver (EDD) - The EDD TLC manages
the Ethernet hardware interface for the IGW. The TLC
prepares packets for transmission and invokes the
transmission facility, invokes the receive facility
and collects received packets, and implements the ARP
protocol for Ethernet - Internet address resolution.

7) Console Device Driver (CDD) - This TLC supports the
VAX console device hardware which is used for the
Operator Interface. The TLC supports the use of „
hardcopy or video terminals which support the ASCII
character set.

8) Efficient Real-Time Executive (ERTE) - The ERTE is a
small, real-time, multi-tasking executive which
supports the preceding TLCs. Each of the above TLCs
contains one or more processes whose execution the
ERTE manages. The ERTE implements a combination of
round-robin and priority based scheduling of
processes. This permits processes to reasonably
alternate execution while permitting critical
processes, such as interrupt servers, to obtain
priority service. The ERTE recognizes all interrupts
and dispatches the correct interrupt server. The
ERTE also supplies a message passing facility to
allow processes to communicate with other processes.
ERTE also supplies sleep, wake-up, and time-out
facilities to processes.

,se

Software Kinetics

EGP IF E D X 0 D

OPERATING
SOFTWARE

C D D STAT 01 ERTE

SEGO iDARY
1300T

PRI
BOOT

t

tJ

IGW

• BOOT
SOFTWARE

FIGURE 1
IGW SOFTWARE ARCHITECTURE

0*
£

0
-0

T
O
-S
T
-
0
0
5
T

6 .1nn

#1500-15-010.03.0

3.2 Functional Allocation

In this section the allocations of functions to the TLCs is

presented. Each function is associated with one or more

requirements from the Requirements Specification [1]. The

associated requirements are also listed in this section.

3.2.1 Primary Boot

The Primary Boot TLC is a small portion of code which is stored

in block number 0 on the boot device. It is automatically loaded

from the boot device by VAX system software in read-only memory

(ROM) each time the IGW is booted. This TLC's function is to

find the secondary boot program on the boot device; load it into

memory, and start it executing. The Primary Boot will relocate

itself into high memory. The Primary Boot will load the

Secondary Boot into low memory.

3_2.2 Secondary Boot

The Secondary Boot TLC will read all the operating software and

configuration data and install it into the IGW memory. The

Secondary Boot will also read the IXIB software and download this

to the IXIB hardware. The Secondary Boot will establish all

memory management tables and hardware for the IGW. Finally, the

Secondary Boot will transfer control to the operating software,

at which time, the memory occupied by the Secondary Boot and the

Primary Boot will become available for use by the operating

software.

The Secondary Boot TLC consists of two components: A Local Boot

component and a Net Boot component. The Local Boot resides

Software Kinetics

#1500-15-010.03.0

entirely on the IGW local boot device and it in turn expects all

software and data required for booting the IGW to reside on the

boot device. The Net Boot component resides partly on the IGW

boot device, and partly on a cooperating host on the Ethernet to

which the IGW is attached. The Net Boot permits the IGW to

receive its software and configuration data from the cooperating

host via the Ethernet. Only one of these components resides on

the boot device at one time.

The Net Boot component consists of two distinct elements: The IGW

Net Boot and the Host Net Boot. The IGW Net Boot sends a signal

to the Host Net Boot requesting that the Host Net Boot supply the

IGW with a loadable image. The Host Net Boot, upon receiving the

signal from the IGW Net Boot builds an image of the IGW with all

software and configuration data in place, and then sends this

image to the IGW. The IGW Net Boot loads this image into

memory. Once the image is loaded, the IGW Net Boot transfers

control to the operating software.

The requirements listed in the Requirements Specification [1] in

Section 3.1 paragraphs 2 and 4, and in Section 3.2.2 paragraph 3

apply to the Secondary Boot TLC. The applicable requirements are

shown in Table 1, the Requirements Cross-Reference Table.

-7-
Software Kinetics

SD
pa

U
!M

 a
.M

AA
JJ

O
S

OD

MI MI MI NM OM MI BM 11111111 11111111 111111
Table 1: Requirements Cross- Reference Table Page 1 of 2

I REQUIREMENT :1 . , TOP LEVEL COMPONENT I

I Section I Parasraph 11 1 Pri.: Sec. I I I ' , I ' . : Ether: X.25I Cons n
1 • # . 4 • II N/A : POOT: POOTI ERTEI IP: EGPI OH STAT: ROUTE: Drvr 1 Drvr: Drvr:

'
t

I 1 '''' › 11 X I ' • ' . . .
I , ' ' I I

,
I

t
1 ' t

t
1

t
I

1 ' I ' ' I t II I
I 1 ' 1 1 t I

I
I
I

I
I

12.0 • . - 11 X 1 , . , , „ , 1 1 I 1 I 1

13.0 ' . I I ' . . , , • . . , I ' . ' t ' 1 I / I t

:3.1 ' . 1 ,. : , . 1 X 1 X : X 1 X : X : X 1 x 1 "X 1 X. :
' . .7 I t

o 7 1 X 1 X 1 X 1 X 1 X IX 1 X 'I X 1 X 1 X 1 X :
7 , 3 II ; X I : I X I X I : . , . . • , .

1 I 4 1 X1X 1 X : ; 1 ; • . It I 1 t I

/
1

I 1 1 8-7 1 I 1 I I 1 1 : X : X 1 ' I ' 1 1 X 1
. 6 H : ; ' . I I 1 I 1 1 X : , . •

1 ' . 7 .. , . . • , , ' .' ' , I 1 X : 1 X I ' I

1 ' 1 1 1 1 I I • I 1 I t

. ' . ' 1

I I ' I
,
1

,
1 1 1

I I
t I
t n

t
n ' 1 1 8 :

13.2.1.1 I 1 (1.) :1 ' . , , , • I X I , I / 1 1 1 X 1 X : 1

1 ' 1 1 (2.) 1: ' . , , • . : X : X 1 1 ' . : X 1 . •

1 ' . 1 (3.) II ' • 1 ,' : :x 1 : ' • , . • .
,

1 , . 1 (4.) II ,
. ' , ,' 1 X : I I

I
I 1 X : X 1 1

, t 'I X 1 X : 1 1 I 1 t 1 (5.) 11 1 I • . . , , .
:XIX :XI X I ' , . • ,

: .

2 11 1 ' I ' / l' : X 1 1 I / 1 X '1 X I

' 1 ' 1 3 11 I ' , I X I X 1 Ix: ' • :X :XIX:
13.2.1.2 : 1 11 X I • . . • . 1 1 1 I I 1 t

13.2.1.2.1 1 All „ , ' . I I X 1 . , • , 1 I ' , 1 1
13.2.1.2.2 1 All 11 ' . ' . , . : X : n n , , 1 : ,
13.2.1.2.3 I 1 11 ' , , • , . 1 IX 1 : ' . ' • , ,
13.2.1.2.4 I 1 11 : 1

I
I 8 11 / I 1 1 X 1 ' . 1

13.2.1.3 . 1 I.
/ I

,
I 1 ' I 1 X 1 I 1 1 I ' I I ' 1

' I : 2 1 1 1 1 ' I
,
I : X : : X : ' I ' 1 ' 1 1 X 1

' , , • 3 11 ' 1 7 7 1 : X 1 1 1
t
t ' I

13.2.1.4 I 1 '' I I ' I ' 1 I 1 I :x I . ' • • • ' . 1
• ' . •-: . • / I

t 1 1 ' I / 1 1 7 ' I 1 X1X1 1

13.2.2 , • 1 11 X 1 I ' . „ • . ' ' . , ' .
, ';, : X I : 1 X : : ' I X : . I 1 1 1 1 1 1

1 1 3 ,, 1 1 1 X : X : X : 1 1 x: t 1 ' I ' 1 I 1

13.2.3 I 1 . 1
I 1 1 / 1 I I 1 X 1 X : ' I

I 1 ' I ' I

I 2 (1.) :I : ; ' . 1 x: I : X 1 1 . •
I ' , 2 (2.) 1: ' . ' . ' • I X 1 1 1 X : , . , . , ,
: ' ' : 1 X 1 , I 2 (3.) 11 ' , . t 1 t 1 : X 't ' 1

. ' . , • ; X 1 : : X 1 ,

:3.2.4 ' . 1 (1.) :1 ' .
,
.

,
, 1 I 1 X 1 1 ' I : X I '

. ' . 1 (2.) :I , , , • , , : :X :XI : X

1 2 1 . : X : I X 1

13.2.5 1 1 I: ' . I : X : : : X 1 ' . 1 ' .
, i 1 I , ' , 1 : X 1 . , : ' . : X

I 1
I
I : :

3.3 , . : : X t , , ,
,

I 1 7 I
1 I 1. I

1
I 1 1 1

1 t
I

1.

1-1

cD

13.4

:3.4.2

:7.4.2.1

:7.4.2.3
:3.4.2.4

:4.0

1

1

1

1

1

1

%JD

1

1

1
1

1

3

f f
1 1

I
I

t I
1 I

t
I /

I I
I I

11

It
It

I
I I

t I
1 I

I 1
I I

I I
t 1

1 f
1

I 1
I /

I I
P I

1 I
I

I 1
I I

1
I

„

t

I
I

I I
I I

11
I

I 1
t I

I
I I

1:

•

•

X :
X

1•111 MI MI UM MI 111111 MI - MI IMII UM MI BM

Table 1: Requirements Cross-Reference Table Page 2 of 2

1 REQUIREMENT TOP LEVEL COMPONENT ' ,

1 Section : Para9raph 11 1 Pri.1 Sec.1 ' . .
. ' . : 1 : Ether: X.251 Cons:

, ' 4 . 4 11 N/A 1 BOOT: BOOT: ERTEI IF.: EGP: on STATI ROUTE: Drvr : Drvr: Drvr:

. . .

1 t

. , .

. t .

, I 1

1 1 X 1

1 X
1 X 1
1 X :

t

t
1

t I
t I

1 I f

I

1 I
1 I

1

1

1 I

1 t I

I

I f
I I

1 I

I
I t

t 1
1

I I
t I

1 I
I

1 I
1 I

1 I
t 1

1 I t
I I

1 1

I f
1 1

I t

„

f I
I I

1 t

1 I
I

f I
1 I

I
I 1

I I
1 I

I

I f
t I

I I
I

1 1
f 1

I
t

1 1 t
I

#1500-15-010.03.0

3.2.3 IP

The IP TLC is responsible for the implementation of the IF

protocol, the ICMP protocol e and packet filtering. The IP TLC

will accept datagrams from any network interface and forward

them, as permitted by the packet filter facility, to the

interface appropriate for the next hop on the datagram's route.

The IP TLC will also refer to connectivity and reachability

information gathered by the - EGP TLC and it will use the

information for routing datagrams.

The IP TLC will be applied to many requirements defined in the

Requirements Specification [1]. The applicable requirements are

shown in the Requirements Cross-Reference Table, Table 1.

3.2.4 Exterior Gateway Protocol (EGP)

The EGP TLC is responsible for the implementation of the EGP

protocol. The TLC will conununicate with its neighbour "core"

gateways to determine host and network connectivity and

reachability information. The TLC will build a table to contain

the collected information, and this table will be available to

other TLCs as needed.

The requirements to which the EGP TLC will be applied are shown

in Table 1, the Requirements Cross-Reference Table.

- 10 -
Software Kinetics

information and will

stored and processed.

pass it to

Processed

requested.

package are listed in

The requirements addressed by the STAT

Table 1.

TLC when

#1500-15-010.03.0

3.2.5 Operator Interface (01)

The OI TLC presents a simple command line type interface to the

IGW operator. The interface supports commands which: 1) display

IGW link, node, and route information; 2) display IGW traffic

statistics; and 3) modify IGW parameters for the control of

gateway operations.

The Requirements Cross-Reference Table, Table 1, shows the

requirements that the OI TLC will address.

3.2.6 Statistics (STAT)

The STAT TLC is responsible for

calculating traffic statistics.

handling datagrams through the

gathering IGW traffic data and

The IGW TLC's responsible for

gateway will extract traffic

the STAT TLC where it will be

data are transferred to the OI

3.2.7 X.25 Device Driver OUU»

The X.25 Device Driver is the TLC which passes IP packets to the

IXIB for transmission over an X.25 network. The XDD also

receives IF packets from the IXIB. Further, the XDD transfers

status information from the IXIB and loads configuration and

control information (particularly, the Internet-X.25

translation table) to the IXIB. Finally, the XDD will

X.25 traffic data and pass them to the STAT TLC. Table

the requirements that will be covered by the XDD TLC.

address

extract

1 shows

5 , Aiir
nIIIn

Software Kinetics
- 1 1 -

#1500-15-010.03.0

3.2.8 Ethernet Device Driver (EDD)

The IGW Ethernet interface is supported by the Ethernet Device

Driver (EDD) TLC. The EDD supports the transfer of IP packets to

and from the Ethernet hardware iriterface. The EDD also

implements the Address Resolution Protocol (ARP) and the

encapsulation of IP packets in Ethernet packets. Finally, the

EDD tracks the status of the interface and extracts information

for use in reporting traffic statistics. The complete list of

requirements covered by the EDD is presented in Table 1, the

Requirements Cross-Reference Table.

3.2.9 Console Device Driver (CDD)

The CDD TLC controls the hardware interface to the operator's

console device. The CDD will support a general terminal

abstraction which could be either a CRT or a hard-copy terminal.

A keyboard is assumed to be the input device on the terminal.

The CDD will only support ASCII terminals. The CDD TLC will

support full duplex transmissions up to 9600 bits per second and

the XON/XOFF flow control protocol. Table 1 presents the

requirements which will be covered by the CDD TLC.

- 12 -
Software Kinetics

#1500-15-010.03.0

3-2.10 Efficient Real-Time Executive (ERTE)

The ERTE TLC is a small real-time executive, or kernel, which

implements a multi-tasking abstraction. The ERTE controls the

execution of "processes" which are independent tasks that make up

the TLCs presented earlier. The ERTE offers a set of services to

these processes to assist them in their operation. The main

service is a message passing service which processes use to

communicate with one another. Other services include sleeping

for a period of time, waiting for an event (both external

interrupts and internal process events are supported), setting or

clearing a process event, reading the clock, and allocating

memory.

The ERTE will execute its functions as quickly as possible. The

services offered will be as simple as possible to facilitate the

need for quick operation. The ERTE will also make extensive use

of hardware facilities which support context and task switching,

and memory management.

The IGW requirements covered by the ERTE are shown in Table 1,

the Requirements Cross-Reference Table.

e
Software Kinetics

- 13 -

Software Kinetics
- 14 -

#1500 - 15 - 010.03.0

3.3 Memory Allocation

Within the IGW, memory will be allocated as follows (Figure 2):

1) The lowest pages of memory will be used as the System
Control Block (SCB) which contains all the vectors
used for dispatching interrupt and exception service
routines (Reference [2]). The SCB is allocated in
physical memory only.

2) The System Page Table (SPT) (Reference [2]) will
follow the System Control Block in physical memory.
The size of the SPT will be fixed, and will be
allocated enough memory such that the entire portion
of the VAX system virtual address space allocated to
the IGW software will be mapped to physical memory.
The SPT will be allocated physical memory only.

3) Following the SPT in physical memory, the IGW Link
Area (ILA) provides the IGW software with references
to global data items. The ILA occupies the lowest
pages of VAX system virtual address space, a location
all IGW processes can reference. The contents of the
ILA are described in Section 3.5, Global Data.

4) The ERTE TLC software and data areas are loaded
following the ILA. The ERTE is allocated space in
physical memory and the system virtual address space
immediately after the ILA.

5) The IGW processes follow the ERTE. Each process is
allocated physical memory one after the other. Each
process is also allocated space in its own process
virtual address space, beginning at address 0. The
Process Page Table (PPT) for each process follows the
process in physical memory. The PPT is also
allocated space in system virtual address space
following the system virtual address space allocated
to the ERTE (Reference [2]). Finally, each process
is allocated two stacks which are located in physical
memory immediately following the process's PPT memory.
Page Table Space in the system virtual address space
is allocated for these stacks.

6) The global tables referenced by IGW software reside
in physical memory following the IGW processes.
These tables are also allocated space in the system

- 15 -
Software Kinetics

#1500-15-010.03.0

virtual address space following the PPT space
discussed in 5 above.

7) The VAX interrupt stack follows the global tables in
physical memory. The stack also follows the tables
in the system virtual address space.

8) Any physical memory not allocated above becomes free
memory which is used for message passing and dynamic
memory allocation by processes. Each free physical
page is associated with a page in system virtual
address space in the area following the interrupt
stack.

9) The I/O physical address pages are associated with
system virtual address pages in the space immediately
following the free memory virtual address space.

TOP OF RAM
IvIEMORY

FREE MEMORY

INTERRUPT
STACK

TABLES

PROCESS B
ex. PPT AND STACKS

PROCESS A
8. PPT AND STACKS

ERTE

ILA

SPT

S CB

I/O sPACE

U N US ED

I/0

FREE MEMORY

INTERRUPT
STACK

TABLES

PROCESS B
PPT

PROCESS A
PPT

ERTE

ILA

PROCESS
STACKS

PROCESS CODE
AND DATA

0

PROCESS VIRTUAL
MEMORY

(PER PROCESS)

0

PHYSICAL MEMORY

00000000

SYSTEM VIRTUAL
IvIEMORY

#1500- 1 5-0 1 0.0 3. 0

HIGHEST PHYSICAL ADDRESS FFFFFFFF 7FFFFFFF

P 1
SPACE

P
SPACE

FIGURE 2
MEMORY USAGE

- 16 -

1
1

1
1
1
1
1
1

1
1
1
1
1
1
1
1
1

S
Software Kinetics

- 17 -

#1500-15-010.03.0

1
All memory is allocated by pages, where a page is 512 bytes

(Reference [2]). IGW programs and data reside in VAX virtual

memory, which is mapped to physical memory via the VAX memory

management page tables. Some VAX structures, such as the SCB and

SPT, do not reside in virtual memory. These structures are not

considered part of IGW programs and data. Refer to Reference [2]

for a complete description of VAX architecture.

Within the IGW, each process or task will be allocated at boot

time all the memory needed for the process' code and static data

areas. The ERTE will provide additional memory dynamically to

processes upon request. The additional memory is allocated from

free memory. There are two ways memory may be allocated. One is

via an explicit request for memory, and the other is by

allocation of message buffers.

Processes requiring additional memory make explicit requests to

the ERTE to supply the required memory. Each process will be

supplied the memory requested from the free memory pool. The

memory is permanently allocated to the process; there is no

function to release memory back to the free memory pool.

Memory can also be obtained from the ERTE through the message

system calls. Each message buffer in the system has a fixed

amount of memory attached to it. Processes have this memory

available to them as long as the message buffer is allocated to

them. Processes lose the memory when they free the message

buffer or send the message buffer to another process. Processes

also obtain memory in message buffers when they receive message

buffers from other processes.

When the number of message buffers is defined, care will be taken

- 18 -
Software Kinetics

#1500-15-010.03.0

to ensure that enough free memory will be available in the system

to supply all the message buffers and have some memory left over

for processes to allocate. Each message buffer will require

enough memory to hold the largest packet allowed by the IGW. A

configuration parameter will be used to specify the maximum

number of message buffers that are available for use. The number

of message buffers defined will be large enough to ensure that

throughput is not affected when the IGW must process many small

packets.

3.4 Functional Control and Data Flow

3.4.1 Control Flow

Control flow among TLCs in the IGW is controlled through the ERTE

TLC (Figure 3). All TLCs (excluding the ERTE and Boot TLCs) are

composed of one or more processes to which control is granted by

the ERTE. These processes then execute until one of three events

occurs:

1) The process issues a "system call" to the ERTE: a
system call is a request for a service offered by the
ERTE;

2) An external interrupt occurs; or,

3) An exception (a fault in hardware or software, such
as Power Failure, Arithmetic Fault, Privileged
Instruction, etc) occurs.

VAX
SYSTEM
STARTUP

ROM

PRIMARY
BOOT- A

sa
p a

uT
N

 a.
r e

m
ljo

s
MI all MI MUM IMM 111111 BM MN MI OM Mil OM IBM 111•11

HARDWARE
IHTERRUPT

FIGURE 3
IGW FLOW OF EXECUTION CONTROL

4:k

CD

1171

U.)

- 20 -
Software Kinetics

#1500-15-010.03.0

Each of these events causes the process execution to be suspended

and the ERTE to begin executing to handle the event. In the case

of a system call, the calling process generates the equivalent of

a software interrupt, which triggers the hardware to suspend

process execution and to transfer control to the ERTE. The ERTE

then examines and processes the request in the system call. The

ERTE then selects the next process to run (which may be the

process which issued the system call) and transfers control to

it.

In the case of an external interrupt or exception, the event also

triggers the hardware to interrupt process execution and to

transfer control to the ERTE TLC. The ERTE then processes the

event, selects the next process to run, and transfers control to

the process. For external interrupts, the ERTE signals that an

internal event corresponding to the interrupt has occurred. Any

processes waiting on the internal event will receive notification

of the event. For exceptions, the ERTE may or may not take

action. The action taken depends on the exception. Serious

exceptions, like power failure detection, cause the IGW to

reboot, while non-fatal exceptions, like Arithmetic Fault, cause

only a console message to be displayed.

In all cases when a process is interrupted, enough state

information is saved by the ERTE to permit the process to resume

executing from exactly the point of interruption. The process

will not require any special code to handle unexpected

interruptions.

Flow of control at boot time differs from that described above.

When a boot is initiated, the VAX system Read-Only Memory (ROM)

receives control first. The ROM routines perform memory tests

- 21 -
Software Kinetics

#1500-l5-010.03.0

and other simple hardware verification checks. It then reads the
first block on the boot device and loads that block into memory

and transfers control to it. The block will contain the Primary

Boot TLC; thus, the Primary Boot TLC will receive control from

the ROM.

As indicated earlier (Section 3.2.1), the Primary Boot TLC

transfers control to the Secondary Boot TLC once the Secondary

Boot has been completely loaded. The Secondary Boot then loads

the operating software and, finally, transfers control to the

ERTE TLC. Once ERTE receives control from the Secondary Boot

TLC, ERTE initializes its process queues, selects the first

process to execute, and transfers control to that process.

3.4.2 Data Flow

Data flow between the TLCs of IGW is accomplished two ways: by

messages, and by global data areas. Messages form the most

common method of transferring data between TLCs. Under the

message passing system, the sender creates the message privately,
and then sends the message to the receiver, who is immediately

able to read and process the message. Global Data areas are used
to store data that must be available to most or all of the TLCs.

Bach TLC exchanges data with one or more TLCs or hardware

interfaces as shown in Figure 4. All exchange is accomplished via
the message passing system with the following exceptions.
Exchanges with Global Tables are accomplished by reading or
writing global data areas containing the global tables, while
exchanges between drivers and I/O hardware are accomplished via
the corresponding I/O interface registers and procedures.

X.25
HARDWARE

DATAGRAMS

Cn

FIGURE 4A
DATAGRAM DATA FLOW

EGP

DATAGRAMS

SD
pa

U
D

I
a1

eA
A1

JO
S

ETHERNET
HARDWARE

ETHERNET
DRIVER

WM MN MI 1•1111 BM MI IIIIIII MI BM MIMI IMO

n.)

SC
ip

U
M

 a
lE

M
1J

O
S

• MIN BM 11113 NM MI MIMI MIR MI MS UM RBI MI MI

Uri

Ln

STAT
STATISTICS REQUESTS

01

X.25 TRAFFIC DATA

ETHERHET TRAFFIC DATA

X.25
DRIVER

EGP TRAFFIC DATA

IP ‘1 ICNIP TRAFFIC DATA

IP

CONSOLE
DRIVER

ETHEFINET
DRIVER

TRAFFIC STATISTICS

EGP

FIGURE 4B
TRAFFIC DATA AND STATISTICS DATA FLOW

TABLE DATA

EGP TABLE DATA

TABLE DATA

IP X.25
DRIVER

GLOBAL
TABLES

X.25 ADDRESS TABLE DATA

IP ROUTE TABLE DATA

TABLE DATA

01 E G P

SD
1I

la
U

L
IN

 a
.T

C
A

IJ
O

S

1

t\..)

111111111111111111•1111 . 11111111MIIIIIIIIIIIIIIII•1111.1111111•1111111111111111111111•111111111111111111111111

FIGURE 4C
TABLE DATA FLOW

£0
.0

1
0

-S
T

-O
O

ST
4

01

IOPERATOR MESSAGES

CONSOLE
DRIVER

INPUT CHARACTERS

OUTPUT CHARACTERS
CONSOLE
HARDWARE

ï OPERATOR INPUT

ERROFI MESSAGES

ERROR MESSAGES ERROR MESSAGES

• ERROR MESSAGES ERROR MESSAGES

STAT IP ETHERNET
DRIVER

E G P X.25
DRIVER

NJ

0
'
W

0
I
0
-g

T
-0

0
ST

FIGURE 4D
CONSOLE DATA FLOW

#1500-15-010.03.0

3.4.2.1 Datagram and Route Data

Datagrams enter the system via either the Ethernet or X.25 I/O

hardware and are collected by the corresponding driver. The

driver then passes the datagram to IP through the message passing

system. IP determines the appropriate action to be taken and, if

a datagram is to be transmitted, IP prepares the datagram and

passes it to the appropriate driver in a message buffer. The

driver then passes the datagram to the corresponding hardware for

transmission via the hardware I/0 interface.

If IP receives an EGP datagram, IP passes the datagram on to EGP

in a message buffer. EGP may generate datagrams of its own,

which it will pass to IP in a message buffer. EGP, based on the

data it receives in datagrams, may update tables containing EGP

routing and neighbour gateway information. Such updates are

accomplished by writing the global data areas that contain the

tables. When EGP does update the tables, it sends a message

buffer to IP to indicate that it has done so.

IP also updates a route table. It uses information from EGP and

other tables (see Section 3.5) to build the IP routing table.

Each time IP receives a message from EGP indicating that EGP has

updated the EGP tables, IP rebuilds the IP routing table. IP

builds its table in the global data area and it also reads other

table data from the global area.

41(
Software Kinetics

- 26 -

#1500 - 15 - 010.03.0

3.4.2.2 Traffic Data

IP, EGP, and the X.25 driver will transmit traffic data to the

STAT TLC. IP tracks the number of packets and the number of

bytes transmitted through IGW in each direction between pairs of

Internet addresses. Periodically, IP will send what it has

accumulated to STAT where the raw data will be reduced and

tabulated. IP sends such data in message buffers.

Similarly, EGP tracks EGP packet types sent and received between

itself and other gateways. Periodically, EGP transfers this data

to STAT in a message buffer.

The X.25 driver also transmits traffic data to STAT in message

buffers. The driver tallies datagrams sent and received to and

from each X.121 address. The driver also collects status and

data from the IXIB board and transfers the information to STAT.

The IXIB data includes calls made and X.25 packets transferred to

and from X.121 addresses.

ICMP traffic data is collected by IP and transferred to STAT in

message buffers. The ICMP data collected is counts of ICMP

message types sent and received. The IF TLC collects this data

because the ICMP protocol is implemented in the IP TLC.

5
Software Kinetics

- 27 -

#1500-15-010.03.0

3.4.2.3 Operator Interface Data

The data collected and reduced by STAT is available for display

on the operator's console. The STAT TLC transfers requested

statistics to the Console Device Driver (CDD) TLC when requested

to do so by the Operator Interface (0I) TLC. The display request

is contained in a message buffer from the OI. The statistics sent

by STAT to the CDD are also sent in message buffers.

The OI also manipulates the route tables in the global data

areas. The OI may modify, add or delete entries, or may simply

read the data for display on the operator's console.

To communicate with the operator, the OI exchanges messages with

the console driver. The OI sends messages containing data or

text to be displayed, and the driver receives messages containing

terminal input data typed at the operator's console. The console

driver sends and receives data to and from the console via the

console hardware interface.

Each of the other TLCrs may also send data (in message buffers)

to the console via the console driver. Such data is expected to

be error messages and will be displayed on the console exactly as

received by the console driver.

- 28 -
Software Kinetics

#1500-15-010.03.0

3-5 Global Data

Each TLC (and each process within each TLC) will have access to

four types of global information. All global information will

reside in System Virtual Address (SVA) space which will be

readable by all processes and TLCs. Some global information will

also be writable by all TLCs, while some information will be

write protected (ie. read-only) to all but the ERTE TLC, using

the protection features of VAX memory management facilities.

The first type of global data is the route tables. These tables

are of fixed size and contain route information required or

produced by IGW processes. There are seven tables which are:

1) Network Table - A table containing information on
directly connected networks.

2) Gateway Table - A table of known gateways to be used
in addition to those acquired by EGP.

3) Neighbour Table - A table of neighbour gateways that
implement EGP.

4) EGP Route Table - A table built by EGP which contains
a list of network numbers and gateway addresses to
use to reach those networks.

5) IP Route Table - A table built by IP to select the
next hop for a datagram along a route.

6) IXIB Address Configuration Table - A table used to
translate IP addresses to X.121 addresses for
datagrams to be sent over the X.25 network.

7) Packet Filter Table - A table containing a list of
packet filter entries which are used to administer IP
packet flow through the Internet Gateway.

The Network Table is read by EGP to determine networks that the

IGW will report to its neighbours. The table will also be read

- 29 -
Software Kinetics

#1500-15-010.03.0

by IP when it produces the IP Route Table. The table is read by

OI to display network interface data on the console. The OI also

writes the table to modify the characteristics of one or more

interfaces (eg. marking the interface up or down).

The Gateway Table contains a list of gateways available to the

IGW, in addition, to those that are acquired by EGP. There is

one entry for each network for which a gateway is indicated.

Each entry has the following fields:

1) Gateway Address: the address of the gateway to route
packets for the network indicated by the Network
Address field;

2) Network Address: the network reached by the gateway
specified by the Gateway Address field;

3) Mask: an address mask used to indicate network class
or to indicate a subnet;

1) Flags: a set of indicators related to the entry,
which specify the status of the entry (ie.
Valid/Invalid, Report on EGP/Don't Report on EGP);

5) Hops: a count, used by EGF, which indicates the
number of gateways that must be crossed to reach the
destination; and,

6) Interface: the number of the interface to use to
start a packet towards the gateway.

The Network Table contains an entry for each network interface in

the gateway. Each entry contains:

1) the Maximum Transmission Unit (MTU, maximum IP packet
size for the connected network);

2) the address of the IGW on the network;

3) the address mask for the network (used to indicate
the network's address class e or to support
subnetting);

- 30 -
Software Kinetics

- 31 -
Software Kinetics

#1500-15-010.03.0

4) a list of ten interfaces which access the network
(the interface is represented by the message queue
number used to send data to the interface's driver,

5) the current interface (the next datagram to the
network will be sent by this interface)

6) interface flags used to indicate the state of the
interface (eg. UP/DOWN, Report on EGP/Don't report
on EGP).

The EGP TLC reads this table when building responses to poll

requests from other EGP gateways. IF reads the table when it

builds the IP Route Table. The OI reads the table to display the

data on the console. The OI also writes the table. The OI can

modify an existing table entry, add a new entry, or delete an

entry. Deletion is accomplished by marking the entry as

Invalid. This avoids the complications of removing an entry

completely from the table. The entry can easily be added back by

marking the entry valid again.

The Neighbour Table is a list of neighbour gateways that

implement EGP that the IGW knows about. Each entry in the table

represents a gateway that is a neighbour to the IGW. At startup

time, the table contains a list of gateways that the IGW should

know about immediately after startup. During operation, the

table contains all neighbours encountered by by EGP, plus the

entries at startup.

A Neighbour Table entry has the following fields:

1) Gateway Address: the address of the neighbour
gateway;

2) Flags: indicators of the state of the entry (ie.
Valid/Invalid, UP/Down/Acquiring); and,

#1500-15-010.03.0

3) Two Time Fields: a pair of time values inserted by
EGP as part of its neighbour reachability procedures.

The Neighbour Table is read by both EGP and OI. EGP uses the

table data as part of its neighbour reachability procedures,

while OI displays the table data on the operators console. Both

EGP and OI update the table. EGP adds new neighbours to the

table, and marks the state of the table entries as they change.

The OI may add new entries, modify existing entries, or delete

entries (deletion is effected by marking the entry Invalid) as

requested by the IGW operator.

The EGP Route Table is a table built by EGP to reflect the

network reachability information accumulated by EGP. The table

is a list of address pairs, the first being a network address and

the second being a gateway address. A given pair indicates that

the given network may be accessed via the given gateway.

OI and IP also refer to this table. OI will display the table on

the operator's console, while IP uses the table when constructing

the IP Route Table. Only EGP modifies the table, depending on

information received from its neighbours.

The IP Route Table is a table built by IP for use in determining

routes. IP collects information from the above tables and

accumulates it in the IP Route Table. Only IP writes to this

table, but OI may read it and display it on the console. IP

recalculates the table whenever it is notified of change in one

of the preceding four tables. The TLC changing one of these

tables is responsible for notifying the IP TLC.

The table entries consist of five fields:

- 32 -
Software Kinetics

#1500-15-010.03.0

1) Flags: indicators of the state and other status
information pertinent to the entry. Flags represent
items such the validity of the entry (on or off
state), whether the indicated network (see below) is
directly connected, and whether EGP calculated the
route or not;

2) Network Reference: this links the route to one of the
IGW network interfaces;

3) Mask: a mask used for extracting address class or
subnet information from an address;

4) Gateway Address: the gateway to route packets to
reach the network in the Network Address field; and,

5) Network Address: the address of the network for which
this table entry indicates a route.

The IXIB Address Configuration Table is used to indicate the

mapping of IP addresses to X.121 address for packets entering an

X.25 network. The X.25 Driver reads this file and loads it into

the IXIB at boot time. The OI also reads this table and displays

it on the console. The OI also adds, deletes, and modifies

entries in the table as indicated by user requests. After

changing the table, the OI signals the X.25 driver who reloads

the table into the IXIB.

Each table entry has four fields:

1) X.121 Address: the X.121 address for the host at the
given IP address;

2) IP Address: the Internet address of the remote host
on the X.25 network;

3) Maximum Packet Size: the maximum size of the X.25
packets to the X.121 destination address; and,

4) Flags: indicators used to control IXIB operations
related to the X.121 addresses (ie. request reverse
charging, accept reverse charging, reject outgoing
calls, reject incoming calls, and remote has IXIB

- 33 -
Software Kinetics

#1500-15-010.03.0

indicators).

Finally, the Packet Filter Table is read by both IP and OI. IP

uses the table data to administer the flow of data through the

Internet Gateway, while OI displays the table data at the

operator console. The table contains list of address pairs and a

mode for each pair. The mode for each pair may be either "allow"

or "restrict". The allowance mode specifies that for a packet

whose source and destination addresses match the table entry in

the Packet Filter Table, the packet is allowed to flow through

the IGW. The restrictive mode specifies that for each packet

matching the table entry in the Packet Filter Table, the packet

is not allowed to flow through the IGW, and is discarded by the

IGW. The packet filter table is loaded at system startup. The

operator may add new entries, modify existing entries, and delete

existing entries in the packet filter table.

An address in the Packet Filter Table may be either a host or

network address. This permits filter entries to specify

net-to-net, net-to-host, or host-to-host restrictions or

permissions. When searching the table, the most specific address

match is used. In this way, a packet which matches a net-to-net

entry and a host-to-host entry will be processed based on the

host-to-host entry. This method allows selective exceptions to

be specified to particular rules. For example, if Net A and Net

B are restricted, it is possible to give Host X on net A and Host

Y on Net B specific permissions over and above the general ban

imposed on Net A and Net B by specifying a table entry for Host X

and Host Y with allowance mode.

Each table filter entry has three fields:

- 34 -
SoftwanaKineks

54 - 35 -

#1500-15-010.03.0

1) IP Address A: the Internet address of a host or
network which together with IP Address B define IP
source and destination addresses.

2) IP Address B: the Internet address of a host or
network which together with IP Address A define IP
source and destination addresses.

3) Mode: specifies whether packets are allowed or
restricted between Address A and Address B.

The second type of global data is the IGW Link Area (ILA). This

area, created at boot time, contains pointers to other structures

and global data. There are pointers to each of the global table,

pointers to the IO pages, and pointers to process control

information. The global table pointers are used by all TLCs to

locate where the global tables have been loaded.

The IO page pointers are pointers to the SVA pages that represent

the IO pages. All TLCs will determine the addresses of IO

devices from these pointers.

Finally, the pointers to the process control information permit

the ERTE to locate all the process related information needed for

scheduling tasks. ERTE will use the process information to

allocate the CPU to IGW processes as described in Section 3.4.

The ERTE TLC will also update the process related data as

required to reflect changes of state and status with the IGW.

The ILA area will be available on a read only basis to all TLCs

except ERTE. Only ERTE may modify the ILA area. This protects

the pointers and process data from accidental destruction by

erroneous processes.

The third type of global data is the IO pages. All the physical

Software Kinetics

- 36 -
Software Kinetics

#1500-15-010.03.0

IO pages will be mapped into SVA space and will, thus, be

accessible to processes. Input/Output processes will be designed

to only access those IO addresses for which they have

responsibility. Other processes will not access the IO pages.

The fourth and last type of global data is free memory. As free

memory is part of SVA space, all processes may access it freely.

Processes will be designed to request free memory from ERTE, and

then to use only that allocated by ERTE.

3.6 Design

3.6.1 Primary Boot TLC

The Primary Boot TLC contains the software required to load a

Secondary Boot Program from disk into the main memory of the

MicroVAX, and to start the execution of the Secondary Boot

Program. The Primary Boot software is to be written in VAX

assembler as compact code and hardware register access are

required.

The software contained in the Primary Boot TLC is to reside on

the first 512 bytes of the boot device (RX-50 diskette). These

first 512 bytes of the diskette are automatically loaded and

executed by system software located on boot ROMs on the

MicroVAX.

- 37 -
Software Kinetics

#1500-15-010.03.0

3.6.1.1 Inputs

The following inputs are required by the Primary Boot TLC:

1) Secondary Boot Program - This input is read from the
7.5K bytes on the boot device immediately following
the Primary Boot Program.

2) Q-BUS I/O Page Address - This input is provided by
the MicroVAX boot ROMs through register R1, and
contains the starting address of the I/O page on the
Q-BUS.

3) Boot Device CSR - This input is provided by the
MicroVAX boot ROMs through register R2, and contains
the Q-BUS address of the control status register for
the boot device.

4) Boot Device Unit Number - This input is provided by
the MicroVAX boot ROMs through register R3, and
contains the unit number of the device that the boot
is occurring from.

5) ROM Based Disk Driver - This input is provided by the
MicroVAX boot ROMs through register R6, and contains
the address of the ROM based driver for the boot
device.

3.6.1.2 Local Data

No local data is defined for the Primary Boot TLC.

#1500-15-010.03.0

3.6.1.3 Intereupts

No interrupts are processed by the Primary Boot TLC.

3.6.1.4 Timing and Sequencing

The only sequencing constraint placed on the Primary Boot TLC is

that it is to be the first software to be executed upon startup

of the IGW.

3.6.1.5 Processing

The Primary Boot Program contained in this TLC can be broken down

into three main tasks.

The first task of the Primary Boot Program is to find the highest

page of memory and to relocate itself there. After this

relocation has been performed execution of the relocated code

begins at the instruction following the relocation instructions.

The second task of the Primary Boot Program is to load the

Secondary Boot Program from the boot device into main memory.

This is accomplished by making use of the ROM based disk driver

that is provided by the MicroVAX for the boot device. If an

error is detected while reading from the boot device, the reading

of the Secondary Boot Program is restarted from the beginning.

The third task of the Primary Boot Program is to begin execution

of the Secondary Boot Program. Before control is passed to the

Secondary Boot Program the following information is loaded into

registers to be read by the Secondary Boot Program:

s ir
Software Kinetics

- 38 -

- 39 -
Software Kinetics

#1500-15-010.03.0

- Boot Device CSR (Register R9)
- Boot Device Type (Register R10)
- Boot Device Unit (Register R10)

If for any reason the secondary boot program returns without

successfully loading and executing the IGW software, the Primary

Boot Program will attempt to reload the Secondary Boot Program

and execute it again.

3.6.1.6 Outputs

The following outputs are produced by the Primary Boot TLC:

1) Secondary Boot Program - This output is written to
the first 7.5K bytes of the MicroVAX main memory,
after the Primary Boot Program has been relocated.

2) Boot Device CSR - This output is provided to the
Secondary Boot Program through register R9, and
contains the Q-BUS address of the control status
register for the boot device.

3) Boot Device Type - This output is provided to the
Secondary Boot Program through the first 8 bits of
register R10 1 and contains a value indicating the
type of device that is being booted from.

4) Boot Device Unit - This Output is provided to the
Secondary Boot Program through the second 8 bits of
register R10, and contains the unit number of the
device that is being booted from.

1

Si - 40 -

#1500-15-010.03.0

3.6.2 Secondary Boot TLC

The Secondary Boot TLC is responsible for reading all of the IGW

software and configuration files into main memory, and for

loading the IXIB software to the IXIB interface. In addition,

the initialization of memory hardware and tables is performed.

After this initialization and loading has been performed, control

is transferred to the IGW ERTE that has been loaded into main

memory.

The Secondary Boot consists of two components: the Local Boot

component which reads software and data from the IGW boot

floppies, and the Net Boot component which reads software and

configuration data from a host on the Ethernet. The Net Boot is

further divided into the following elements:

IGW Net Boot - This component receives an executable
image from the network and installs it.

2) Host Net Boot - This component resides on the host,
builds the executable image, and sends the image to
the IGW.

Software Kinetics

#1500-15-010.03.0

3.6.2.1 Secondary Boot Local Boot

The Local Boot component resides on the IGW boot floppies. It is

loaded by and receives control from the Primary Boot. The Local

Boot reads all software and data from the boot floppies and loads

this software and data into the IGW memory.

3.6.2.1.1 Inputs

The following inputs are required by the Secondary Boot Local

Boot:

1) IGW System Files - This input is read from the floppy
disk drive, and includes the following:

- IGW ERTE
- List of files containing IGW Processes
- IGW Processes which make up the IGW TLCs
- IGW Configuration Files
- IXIB Software

2) Boot Device CSR - This input is provided by the
Primary Boot Program through register R9, and
contains the Q-BUS address of the control status
register for the boot device.

3) Boot Device Type - This input is provided by the
Primary Boot Program through the first 8 bits of
register R10, and contains a value indicating the
type of device that is being booted from.

4) Boot Device Unit - This input is provided by the
Primary Boot Program through the second 8 bits of
register R10, and contains the unit number of the
device that is being booted from.

- 41 -
Software Kinetics

#1500-15-010.03.0

3.6.2.1.2 Local Data

No local data is defined for the Local Boot component of the

Secondary Boot TLC.

3.6.2.1.3 Interrupts

No interrupts are processed by the Local Boot component.

3.6.2.1.4 Timing and Sequencing

The software contained in the Local Boot component is called by

the Primary Boot TLC whenever the IGW is booted and the Local

Boot component resident on the boot device.

3.6.2.1.5 Processing

To allow the Local Boot to load the IGW software and data, it

must first relocate itself from the beginning of memory to the

end of memory, and then set up the memory management hardware and

tables.

Initial memory initialization involves sizing memory, creating

the system vector page, reserving a contiguous area of memory for

the system page table, and reserving an area of memory known as

the link area to store various tables and addresses of tables.

At this point it is required to add entries in the system page

table referencing the link area.

After the memory initialization is performed, the Secondary Boot

Local Boot component loads the IGW ERTE from a file. The disk

accesses required to load ERTE, as with all disk accesses in the

- 42 -
Software Kinetics

#1500-15-010.03.0

Secondary Boot TLC, are accomplished by making use of the

MicroVAX ROM based disk driver. The Local Boot component will

find the location of the file on the disk, and read the first

block of the file to acquire the header for this file. Once this

header is obtained, the text and data portions of the file are

loaded into the IGW memory, and the uninitialized data segment is

cleared. During the loading of ERTE, system page table entries

for ERTE are created as required.

Once the IGW ERTE is loaded in IGW memory, the next step is to to

load the IGW TLC processes from disk to memory. The list of

processes that are to be loaded into main memory is loaded from a

disk file into the link area of memory.

For each process that is required, the Local Boot component

determines the location of the file containing the process

executable file, and loads this file into the IGW memory. This

loading is done sequentially through physical memory, with

process stacks being created along with the processes. As each

process is being loaded, process page table entries are created

for the loaded pages. A2 the process page table grows, system

page table entries are added to reference the pages occupied by

the process page table.

After each process is loaded, the hardware process control block

contained in the process list in the link area is loaded with the

virtual address of the process page table and the length of that

table. The physical address of this hardware process control

block used during context switching is also stored in the process

list at this time.

At this point the IGW software will have been loaded. Next it is

- 43 -
Software Kinetics

#1500-15-010.03.0

necessary to load the IGW configuration information. This

information is read from disk files and loaded into physical

memory after the processes and after the process page tables in

system virtual address space. During this table loading, system

page table entries are added as required. After each table is

loaded, its system virtual address is stored in the link area of

memory to allow other processes to access it.

The system interrupt stack is now allocated. This stack is

allocated immediately following the IGW configuration information

in physical memory.

The remainder of the free physical memory is now mapped into the

system virtual address space by adding appropriate system page

table entries. This memory is free to be allocated by the IGW

operating software.

The next task performed by the Local Boot component is to link

the I/O physical address pages into the top of the system virtual

address space.

The final step before transferring control to the IGW ERTE is to

load the IXIB board. This is done by reading three separate

files containing:

- IXIB software in Motorola S-Record format
- IXIB software configuration information
- IXIB address configuration information

After the information from these files has been written to the

IXIB board, the Secondary Boot Local Boot component transfers

control to the IGW ERTE.

5
Software Kinetics

- 44 -

2

- 45 -
Software Kinetics

#1500-15-010.03.0

3.6.2.1.6 Outputs

The following outputs are produced by the Local Boot:

1) IGW Software - This output is written to the main
memory of the IGW, and contains the software for the
IGW ERTE as well as for all of the TLC processes that
are to be controlled by the IGW ERTE.

IGW Configuration Information - This output is
written to the main memory of the IGW, and contains
configuration information required by the IGW
software.

3) IXIB Software - This output is written to the IXIB
interface, and contains the software required by the
IXIB interface.

3.6.2.2 Secondary Boot IGW Net Boot

The IGW Net Boot component resides on the IGW boot floppies and

is loaded and executed by the Primary Boot. The IGW Net Boot

reads all software and data from the boot floppies and loads this

software and data into the IGW memory.

3.6.2.2.1 Inputs

The following inputs are required by the Secondary Boot IGW Net

Boot:

1) IGW Executable Image - This input is an executable
image of the IGW software and configuration data
which can be directly loaded into the IGW memory and
executed.

2) IXIB Executable Image - This input is the image of
the IXIB software which is downloaded to the IXIB
hardware.

- 46 -
Software Kinetics

#1500-15-010.03.0

3.6.2.2.2 Local Data

The following local data is defined for the IGW Net Boot

component of the Secondary Boot:

1) Ethernet Device Register Addresses - The device
registed addresses for the Ethernet interface
hardware will be known by the IGW Local Boot
component.

2) Host Network Addresses - The Internet and Ethernet
addresses of the host which will supply the required
software and configuration data will be known by the
IGW Net Boot component.

3.6.2.2.3 Interrupts

No interrupts are processed by the IGW Net Boot component.

3.6.2.2.4 Timing and Sequencing

The software contained in the IGW Net Boot component is called by

the Primary Boot TLC whenever the IGW is booted with the IGW Net

Boot component resident on the boot device.

#1500-15-010.03.0

3.6.2.2.5 Processing

To allow the IGW Net Boot to load the IGW software and data it

must first size memory and relocate itself from the beginning of

memory to the end of memory.

After the memory initialization is performed, the Secondary Boot

IGW Net Boot sends a message to the Host Net Load component on

the host which is supplying the executable images and data. This

message indicates the size of memory on the IGW and requests an

image of the IGW software to be sent.

The IGW Net Boot component then waits for the image to be sent,

and stores the image in the IGW memory. After the image is sent,

the IGW Net Boot component then sends a message to the host

requesting the IXIB software image be sent. As this information

is received, the IGW Net Boot component downloads the information

to the IXIB board.

Once the software and configuration data is loaded, the IGW Net

Boot receives a final message indicating that loading is

completed. This message also supplies the values of the internal

registers that the Host Net Boot program is able to determine.

The IGW Net Boot sets the registers to the supplied values and

calculates the values of other required registers. The IGW Net

Boot then transfers control to the operating software.

- 47 -
Software Kinetics

#1500-15-010.03.0

3.6.2.2.6 Outputs

The following outputs are produced by the IGW Net Boot:

1) IGW Software - This output is written to the main
memory of the IGW, and contains the software for the
IGW ERTE as well as for all of the TLC processes that
are to be controlled by the IGW ERTE.

2) IGW Configuration Information - This output is
written to the main memory of the IGW, and contains
configuration information required by the IGW
software.

3) IXIB Software - This output is written to the IXIB
interface, and contains the software required by the
IXIB interface.

3.6.2.3 Secondary Boot Host Net Boot

The Host Net Boot component resides on the host which is

cooperating with the IGW net boot process. The Host Net Boot

runs continuously as a network server process which listens for

boot requests from the IGW Net Boot component, and then sends the

IGW and IXIB software and configuration data to the IGW. The

Host Net Boot reads all software and data from a known directory

on disk which contains a copy of all the files that would be

present on the IGW boot floppies read by the Local Boot

component.

- 48 -
Software Kinetics

#1500-15-010.03.0

3.6.2.3.1 Inputs

The following inputs are required by the Secondary Boot Host Net

Boot:

1) IGW System Files - This input is read from a host
disk directory and includes the following:

- IGW ERTE
- List of files containing IGW Processes
- IGW Processes which make up the IGW TLCs
- IGW Configuration Files
- IXIB Software
- IXIB Configuration Files

2) Request Messages - This input is received from the
IGW and consists of messages requesting load images
be downloaded to the IGW.

3.6.2.3.2 Local Data

No local data is defined for the Host Net Boot component of the

Secondary Boot TLC.

3.6.2.3.3 Interrupts

No interrupts are processed by the Host Net Boot component.

II
Software Kinetics

- 49 -

#1500-15-010.03.0

3.6.2.3.4 Timing and Sequencing

The software contained in the Host Net Boot component runs

continuously as a server process on the host system.

3.6.2.3.5 Processing

The Host Net Boot waits for a message from the IGW requesting

that the IGW be loaded. This message contains the size of memory

on the IGW.

To allow the Host Net Boot to load the IGW software and data it

must first create an area of local memory the size of the IGW

memory to be used as an area to build the IGW software and data

image. In the paragraphs below, references to loading software

or data refer to this local memory.

To prepare an image of the IGW system, the Host Net Load

component loads the system vector page, reserves a contiguous

area of memory for the system page table, and reserves an area of

memory known as the link area to store various tables and

addresses of tables. At this point it is required to add entries

in the system page table referencing the link area.

Alter the memory initialization is performed, the Secondary Boot

Host Net Boot component loads the IGW ERTE from a file. This

disk access, as with all disk accesses in the Host Net Boot is

accomplished by making use of the standard UNIX file access

routines. The Host Net Boot component will open the file on the

disk, and read the first block of the file to acquire the header

for this file. Once this header is obtained, the text and data

portions of the file are loaded into the IGW memory, and the

- 50 -
Software Kinetics

1

1
1

1

1
1

1
1
1
1
1

1

1 Software Kinetics
- 51 -

#1500-15-010.03.0

uninitialized data segment is cleared. During the loading of

ERTE, system page table entries for ERTE are created as

required.

Once the IGW ERTE is loaded in the local IGW memory image, the

next step is to to load the IGW TLC processes from disk to

memory. The list of processes that are to be loaded into memory

is loaded from a disk file into the link area of memory.

For each process that is required, the Host Net Boot component

determines the location of the file containing the process

executable file, and loads this file into the IGW memory image.

This loading is done sequentially through memory, with process

stacks being created along with the processes. As each process

is being loaded, process page table entries are created for the

loaded pages. As the process page table grows, system page table

entries are added to reference the pages occupied by the process

page table.

After each process is loaded, the hardware process control block

contained in the process list in the link area is loaded with the

virtual address of the process page table and the length of that

table. The physical address of this hardware process control

block used during context switching is also stored in the process

list at this time.

At this point the IGW software will have been completely loaded.

Next it is necessary to load the IGW configuration information.

This information is read from disk files and loaded into physical

memory after the processes and after the process page tables in

system virtual address space. During this table loading, system

page table entries are added as required. After each table is

1

1

1

1
1
1
1
1
1

1
1

1 - 52 -
Software Kinetics

#1500-15-010.03.0

1
loaded, its system virtual address is stored in the link area of

memory to allow other processes to access it.

The system interrupt stack is now allocated. This stack is

allocated immediately following the IGW configuration information

in physical memory.

The remainder of the free physical memory is now mapped into the

system virtual address space by adding appropriate system page

table entries. This memory is free to be allocated by the IGW

operating software.

The next task performed by the Host Net Boot component is to link

the I/O physical address pages into the top of the system virtual

address space.

The final step is to send the completed image of the IGW system

to the IGW. The image is sent via Ethernet one page (512 bytes)

at a time.

The Host Net Boot component then waits for the IGW Net Boot

component to request the IXIB software and configuration data.

The Host Net Boot reads the file containing the

IXIB software in Motorola S-Record format.

After the information from this file has been sent to the IGW,

the Secondary Boot Host Net Boot component sends an end of boot

message to the IGW. This message contains the values of all IGW

internal registers that the Host Net Boot component can

determine. The message signals that downloading has been

completed.

#1500-15-010.03.0

3.6.2.3.6 Outputs

The following outputs are produced by the Host Net Boot:

1) IGW Executable Image - This output is sent to the IGW
over the Ethernet.

2) IXIB Executable Image - This output is sent to the
IGW over the Ethernet.

3.6.3 IP Protocol TLC

The IP TLC is responsible for the implementation of the IP

protocol, the ICMP protocol, and packet filtering. The TLC

accepts datagrams received by one of the network hardware

interfaces and processes the datagram according to IP and ICMP

protocol specifications [3,4], and according to packet filtering

specifications outlined in section 3.6.3.5.

3.6.3.1 Inputs

The inputs to IP are as follows:

1) Datagrams: these are received in message buffers
transmitted to the IP TLC from one of the interface
driver TLCs or from the EGP TLC.

2) Global Table Data: the IP TLC reads table data to
determine where to route a datagram, to determine
legality of the route, to select a network interface
for datagram transmission, and to build the IP route
table.

3) Tables Updated Message: a message buffer from EGP
indicating that EGP global tables have changed and
that IP should recalculate its route table.

Software Kinetics
- 53 -

- 54 -
Software Kinetics

#1500-15-010.03.0

3.6_3.2 Local Data

The IF TLC maintains a hash table for entries in the IP Route

Table. Every time IP builds the IP Route Table, it creates a

hash table based on the network address class of each route table

entry. Three hash lists are maintained, one for each of the

classes A, B, and C. The hash lists are indexed by the low order

eight bits of the network address with collisions handled by

linking' entries together into a linked list. IP uses the hash

table to look up routes quickly.

IP also accumulates traffic data locally. IP examines each

non-erroneous packet and stores the source and destination

address and packet size in a table. When the table is full, or

every five minutes, whichever occurs first, IP sends the table to

the STAT TLC for data reduction and begins filling the table

again. IP also counts erroneous datagrams. A count of the

number of datagrams that have invalid headers is maintained.

This count is sent to the STAT TLC whenever the traffic data

table is sent to the STAT TLC.

Additionally, IP collects data about ICMP packets. IP fills a

table that specifies, for each ICMP datagram sent or received,

the IP address, the ICMP type, the ICMP code, and a sent/received

indicator. This table is also sent to the STAT TLC when full or

at five minute intervals.

- 55 -

#1500-15-010.03.0

3.6.3.3 Interrupts

IP does not process any interrupts.

3.6.3.4 Timing and Sequencing

The IP TLC will run as a process under the IGW. The ERTE TLC

will schedule the IP TLC for running based on the ERTE scheduling

algorithm (described in Section 3.6.10). The IP TLC will be

assigned a relatively high priority; only the network interface

device drivers (XDD and EDD TLCs) will have higher priority.

This will ensure that datagrams to be forwarded are done so

promptly.

3.6.3.5 Processing

IP operates in a continual loqp, reading message buffers from its

message queue and processing the message buffer. The message

buffer will contain an Internet IP datagram, or a table update

message from EGP. If the message buffer contains a datagram, the

IP TLC will process the datagram in accordance with IP and ICMP

protocol specifications [3,4], and in accordance with packet

filtering specifications. If the message buffer contains a table

update message from EGP, then this message buffer instructs IP to

recalculate the IP Route Table because EGP route data used in the

IP table has changed. IP will then rebuild the IP Route Table

and rebuild its hash tables.

The packet filtering specifications are defined in two parts.

First, IP implements fixed packet filtering to prevent the flow

of IF packets from one host through the IGW to another host on

the same network. Secondly, IP implements variable packet

Software Kinetics

#1500-15-010.03.0

filtering using a Packet Filtering Table to control the flow of

IP packets from a source host or network through the IGW to a

destination host or network. At system startup the Packet Filter

Table is set to define allowed or restricted IP packet flow

between IP address pairs.

When processing a datagram, IP will forward a datagram (on a

message buffer) according to the IP protocol. If the datagram

requires the generation of an ICMP datagram, then this datagram

is created and sent to the appropriate destination. If the

datagram received is an ICMP datagram, then it is processed

according to the ICMP protocol. EGP datagrams received from a

network interface are forwarded to the EGP TLC.

If a datagram must be fragmented, then each fragment is placed in

a separate message buffer and each message buffer is forwarded to

the destination interface driver. If insufficient message

buffers are available for fragmentation, fragmentation will not

occur and the datagram will be discarded.

In addition to datagram processing and route table construction,

the IP TLC accumulates traffic statistics on datagrams it

processes. The TLC stores data showing source and destination

and size of IP datagrams received and forwarded. The TLC also

stores the address, type, and code of ICMP datagrams sent or

received. Lastly, IP counts the number datagrams with errors

that invalidate the datagram. Section 3.6.3.2 above provides

additional details.

- 56 -
Software Kinetics

#1500-15-010.03.0

3.6.3.6 Outputs

IP produces the following outputs:

1) IP Route Table in the global data area;

2) Datagrams in message buffers to one of the network
interface drivers for transmission on a network
interface;

3) EGP datagrams in message buffers to the EGP TLC; and,

4) Traffic data, also in message buffers, to the STAT
TLC.

3.6.4 EGP Protocol TLC

The EGP TLC implements the EGP protocol on IGW. The IP TLC

receives EGP datagrams from other EGP gateways via the network

interfaces and forwards them to EGP. EGP then processes these

datagrams according to the EGP protocol specification [5].

Additionally, the EGP TLC generates datagrams which it passes to

IP for transmission to other EGP gateways. The EGP TLC also

collects traffic data on numbers and types of EGP packets sent

and received.

Software Kinetics
- 57 -

#1500-15-010.03.0

3.6.4.1 Inputs

The EGP TLC has two types of inputs:

1) EGP Datagrams: these inputs arrive in message buffers
from the IP TLC; and,

2) Global Tables: the EGP reads data from the network,
gateway, and neighbour tables in the global tables
data area.

3.6.4.2 Local Data

The EGP TLC gathers EGP traffic data in a local table. The table

contains the Internet address, Autonomous System Number, EGP

Type, EGP Code, and a sent or received indicator. An entry is

added to the table for each EGP datagram sent or received by the

EGP TLC. When the table is filled, EGP sends it to the STAT TLC,

and then begins filling a new table.

3.6.4.3 Interrupts

No interrupts are processed by the EGP TLC.

- 58 -
Software Kinetics

#1500-15-010.03.0

3.6.4.4 Timing and Sequencing

The EGP TLC will be run whenever there are received EGP datagrams

to be processed. The EGP TLC will also be run on a fixed

schedule according to the EGP protocol to send reachability

datagrams to other gateways.

The EGP TLC is allocated run time by the ERTE TLC based on a

priority and round-robin scheduling system (Section 3.6.10). The

EGP will be given priority less than the device driver TLCs and

the IP TLC, but greater than the OI and STAT TLCs. Thus, EGP

will run ahead of the OI and STAT TLCs but after all drivers and

the IP TLC.

3.6.4.5 Processing

The processing performed by the EGP TLC conforms to the

procedures required by the EGP protocol. The TLC executes an

endless loop of waiting for incoming EGP datagrams, then

processing the datagram and generating responses as required.

The TLC also generates EGP datagrams to its neighbours based on

timers, as specified by the EGP protocol. The timers are set by

the EGP TLC.

The EGP TLC also collects EGP traffic data, an operation not part

of the EGP protocol. For each EGP datagram sent or received, the

EGP TLC stores data giving the sender or recipient address, the

type of EGP datagram, and the Autonomous System of the EGP

datagram. The data is transmitted to the STAZ TLC every five

minutes where data reduction is performed.

s ir
Software Kinetics

- 59 -

3

#1500-15-010.03.0

3.6.4.6 Outputs

the EGP generates the following outputs:

1) EGP datagrams: these are passed to the IP TLC in
message buffers for transmission onto a network;

2) EGP Route Table: this table is built in the global
area according to the EGP protocol (the global data
area is used to permit other processes to examine the
table); and,

EGP Traffic Data: this data is transmitted to the
STAT TLC in a message buffer.

3.6.5 Operator Interface TLC

The Operator Interface TLC serves as an interface to the IGW

operator. The Operator Interface will allow the operator to

display various tables maintained by the IGW. The OI also allows

the operator to modify some of the tables. In addition, the

Operator Interface also provides the operator with the ability to

retrieve traffic statistics generated by the STAT TLC.

3.6.5.1 Inputs

The following inputs are required by the Operator Interface TLC:

1) Operator Commands - This input is provided by the
Console Device Driver, and contains commands by the
IGW operator.

2) IGW Tables - This input is provided from the global
data storage area, and contains the following tables:

- Network Interface Table
- Gateway Table
- EGP neighbour Table
- EGP Network Reachability Table
- IP Routing Table

- 60 -
Software Kinetics

#1500-15-010.03.0

- IXIB Address Configuration Table
- Packet Filter Table

3.6.5.2 Local Data

No data is defined to be local in the Operator Interface TLC.

3.6.5.3 Interrupts

No interrupts are defined for the Operator Interface TLC.

3.6.5.4 Timing and Sequencing

The Operator Interface TLC is run whenever no other processes can

be run and a command is available to be processed or a time

scheduled event has occurred which requires OI action. The input

command is made available to this TLC by the Console Device

Driver TLC.

Time scheduled events are commands which are run at specified

intervals. The length of interval is specified by the operator

using an operator command.

Software Kinetics
- 61 -

#1500-15-010.03.0

3.6.5.5 Processing

Commands are presented to the Operator Interface TLC by the

Console Device Driver TLC. The following commands are supported

by the Operator Interface TLC:

1) Statistics commands:

a) Display Statistics commands:
- Display ICMP statistics
- Display X.25 statistics
- Display EGP statistics
- Display all the above statistics

b) Reset Statistics Commands:
- Reset ICMP statistics
- Reset X.25 statistics
- Reset Ethernet statistics
- Reset EGP statistics
- Reset all the above statistics

c) Set Interval Command
- Set regular statistics display interval

2) Software Table and Parameter Commands:
a) Display Commands:

- Display network interfaces
- Display gateways
- Display neighbours
- Display EGP routes
- Display IP routes
- Display X.121 address mapping table
- Display packet filter table entries

b) Addition Commands
- Add gateway table entries
- Add neighbour table entries
- Add X.121 address configuration table entries
- Add packet filter table entries

c) Deletion Commands
- Delete gateway table entries
- Delete neighbour table entries
- Delete X.121 address configuration table entries
- Delete packet filter table entries

se
Software Kinetics

- 62 -

#1500-15-010.03.0

d) Modification Commands:
- Modify network interface table entries
- Modify gateway table entries
- Modify neighbour table entries
- Modify X.121 address configuration
table entries

- Modify packet filter table entries

The purpose and usage of these commands is described in detail in

the IGW User's Guide.

The Display Statistics Commands are used to retrieve traffic

statistics information from the STAT TLC. The operator may

specify an individual traffic statistics item or all of the

generated traffic statistics. The issuing of a Display

Statistics Command to the Operator Interface TLC will cause a

request to be sent to the STAT TLC which will process the request

and send the requested information to the Console Device Driver

TLC to be displayed on the operator's console.

The Set Interval Command permits the operator to specify an

optional timer value which specifies a time interval for the

statistics to be displayed automatically on a regular basis.

Specifying a value of zero for the timer sets the timer to a
default value of 12 hours. Twelve hours is also the maximum

interval that can be specified.

The Reset Statistics Commands are used to reset statistics

information in the STAT TLC. As with the Display Statistics

Commands, an individual statistics item may be reset or all of
the statistics items may be reset. Once the Operator Interface
TLC determines which statistics are to be reset, it sends the
appropriate requests to the STAT TLC to perform the resetting of
the statistics.

Software Kinetics
- 63 -

#1500-15-010.03.0

The Display Software Table Commands are used to display various

tables maintained by the IGW. When a request to display this

information is received from the Console Device Driver TLC, the

requested information is obtained from a global data storage

area, formated, and sent to the Console Device Driver TLC for
display on the operator's console.

It is possible to delete entries from certain tables maintained
by the IGW. The applicable tables for entry deletion are:

- Gateway Table
- neighbour Table
- X.121 Address Configuration Table
- Packet Filter Table

When a request is received to delete an entry from one of these
tables, the entry is not actually removed from the table, but is
marked as being deleted so that it may be reused to hold new

entries at a later time if desired.

Entries may be added to certain of the tables maintained by the
IGW. The entries that this addition applies to are as follows:

- Gateway Table
- Neighbour Table
- X.121 Address Configuration Table
- Packet Filter Table

To add an entry the operator will be asked for the new entry, and
the new entry will be added to the specified table in the global
data storage area, unless such an addition exceeds the table
size, in which case the addition is refused and a message
indicating that the table is full is displayed on the operator
console.

Software Kinetics
- 64 -

#1 500- 15- 01 0. 03. 0

With certain IGW tables it is possible to modify existing entries

within those tables. The tables that the table modification

facility apply to are:

- Network Interface Table
- Gateway Table
- Neighbour Table
- X.121 Address Configuration Table
- Packet Filter Table

Modification of a table entry consists of replacing an existing

table entry with a new one. To modify an existing table entry,

the operator will be asked to specify which entry of the table is

to be modified, along with the contents of the entry that it is

to be replaced by. Only certain information contained in a table

entry may be modified depending on the table that is being

modified.

3.6.5.6 Outputs

The following outputs are produced by the Operator Interface TLC:

1) STAT Commands - This output is sent in memory buffers
to the STAT TLC, and contains requests for traffic
statistics to be sent to the operator's console.

2) Tables - This output involves the modification of
various IGW tables and parameters that are kept in
the IGW global data storage area.

3) Console Output - This output is sent in memory
buffers to the Console Device Driver TLC, and
contains output that is to be displayed on the
operator's console.

IF
Software Kinetics

- 65 -

#1500-15-010.03.0

3.6.6 Statistics (STAT) TLC

The STAT TLC is responsible for gathering traffic data from other

IGW TLCs and reducing the data into tables suitable for display

on the operator's console. The operations of this TLC include

accumulating totals of packet counts and packet sizes, sorting

statistical data, and arranging the data into tables.

3.6.6.1 Inputs

The STAT TLC receives the following inputs:

1) X.25 Traffic Data: this data is received in message
buffers from the X.25 Device Driver, and contains the
number of X.25 packets sent and received to and from
each X.25 host or gateway.

2) IP Traffic Data: this data consists of a list which
identifies the source and destination internet
addresses and the size in bytes of each datagram
passing through the IP TLC.

3) ICMP Traffic Data: this data consists of a list which
indicates the source or destination address, type,
and code of each ICMP datagram processed (sent or
received) by the IP TLC.

EGP Traffic Data: this data is a list of packets
generated and received by the EGP TLC. The list
entries indicate, for each EGP datagram sent or
received, the source or destination address, the
type, and the direction (sent or received) of the
datagram.

5) OI Requests: this data. ±s a request for statistics
from the OI TLC. The request will indicate that the
STAT TLC should:

1. send X.25, IP, ICMP, EGP, or all (all the
preceding) statistics to the OI; or,

2. clear the statistics and begin recalculating new
statistics.

s e
Software Kinetics

- 66 -

#1500-15-010.03.0

3-6.6.2 Local Data

The STAT TLC maintains a set of tables containing the current

statistics for each type of traffic (X.25, IP, ICMP, and EGP).

The tables are as follows:

1) Name: X.25 Statistics Table

Purpose: To maintain activity information to and
from X.25 hosts and gateways.

Content: One entry for each X.25 host or gateway,
sorted by X.121 address. Each entry
contains:

- X.121 address
- number X.25 packets transmitted to the
host

- number of bytes transmitted to the host
- number of X.25 packets received from the
host

- number of bytes received from the host
- the number of X.25 calls to the host
- the number of X.25 calls from the host

2) Name: IF Statistics Table

Purpose: To monitor activity between pairs of
Internet Hosts which pass data through the
IGW.

Content: The table will have one entry for each pair
of Internet hosts. The table will be
sorted by the lesser of the two addresses
of each pair. Each entry will contain:

- the lesser of the two Internet addresses
(Al)

- the greater of the two addresses (A2)
- the number of datagrams from Al to A2
- the number of bytes from Al to A2
- the number of datagrams from A2 to Al
- the number of bytes from A2 to Al

- 67 -
Software Kinetics

Name:

Purpose:

Content:

4

#1500-15-010.03.0

3) Name:

Purpose:

Content:

ICMP Statistics Table

To track ICMP activity involving the IGW

The table will contain one entry for each
Internet address to or from which an ICMP
datagram was sent or received. The table
is sorted by Internet address. Each entry
contains:

- the Internet address of the participating
host or gateway

- the number of ICMP packets received for
each of the eleven ICMP message types
defined in RFC-792 [4].

- the number of ICMP datagrams transmitted
for each of the eleven ICMP message types

EGP Statistics Table

To monitor EGP traffic to and from the IGW

There is one entry for each EGP gateway
that interacts with the IGW, sorted by
gateway address. Each entry consists of:

- Internet address of the interacting EGP
gateway

- the number of EGP datagrams sent to the
IGW from the gateway for each of the five
EGP program types defined in RFC-904 [5].

- the number of EGP datagrams sent by the
IGW to the EGP gateway for each of the
five EGP datagram types

Each of the above tables will have a maximum number of entries.

If the table is filled, then when a new entry is to be added, the
least active entry in the table will be removed and replaced by a
new entry. If this occurs, then when STAT is requested to

display the statistics from the affected table, the STAT process
will append a message indicating that the statistics are

Software Kinetics - 68 -

#1500-15-010.03.0

incomplete to the table display.

3.6.6.3 Interrupts

The STAT TLC services no interrupts.

3.6.6.4 Timing and Sequencing

Whenever the STAT TLC has traffic data or OI requests to process,

the TLC will be marked as runnable and allocated CPU time by the

ERTE. The STAT TLC is allocated CPU time on a priority basis.

The STAT TLC is given a priority lower than all other processes

except the OI. The ERTE will give the STAT TLC CPU time only when

all higher priority processes are unable to run because they are

waiting on events.

3.6.6.5 Processing

The STAT TLC operates in an endless loop of waiting for traffic

data or OI requests, and processing the data or requests. When

traffic data is received, the STAT TLC processes the incoming

traffic data tables sequentially, adding new data or modifying

data in STAT's local tables, depending on the received data.

When STAT receives an OI request to display statistics, STAT

converts the requested table (or possibly all tables) into an

ASCII format suitable for display on the operator's console, and

puts the table into as many message buffers as required and sends

them to the console driver for display on the console.

If the OI requests that statistics be cleared, then the STAT TLC

will discard all statistical data currently in its tables and

Software Kinetics
- 69 -

#1500-15-010.03.0

will begin to accumulate new traffic statistics.

The STAT TLC will use a short queue to accept incoming traffic

data messages. If this queue fills and the STAT routine can not

get enough time to process drain the queue (which may occur if

the gateway is very busy processing datagrams) then other

processes will be prevented from adding to the STAT input queue.

The sending process will then drop the traffic data message and

instead send a message to the operator console indicating that

traffic data was lost. This ensures that the IGW does not waste

time processing statistics when the IGW is busy with its gateway

functions.

3.6.6.6 Outputs

The STAT TLC generates the following outputs:

1) Statistics: STAT produces statistics in ASCII
formatted tables which are sent to the Console Device
Driver in message buffers.

2) Error Messages: STAT will also generate error
messages which it will send to the Console Device
Driver in message buffers.

3.6.7 X.25 Device Driver (XDD) TLC

The X.25 Device Driver TLC consists of a device driver
responsible for the control of the interface between the IGW
Q-BUS and the IXIB. This TLC provides the IGW with the ability

to communicate with the IXIB. The communication involves the

transmission and reception of packets to be sent over an X.25
network, as well as control and status information.

There is one instance of this driver for each IXIB interface in

Software Kinetics
- 70 -

1) Name:

Purpose:

2) Name:

Purpose:

#1500-15-010.03.0

the IGW. Each operates identically, but independently of the

other.

3.6.7.1 Inputs

The following inputs are received by the X.25 Device Driver TLC:

1) X.25 Input Packet - This input is read from the IXIB (
 and contains IP and logging packets.

2) IGW Input Packet - This Input packet is obtained from
other TLCs residing on the IGW via IGW messages, and
contains packets to be transmitted by the IXIB, as
well as various control packets.

3) IXIB Address Configuration Table - This input is
obtained from a global storage area and contains the
X.25/IP address configuration table required by the
IXIB.

3.6.7.2 Local Data

The following data is local to the X.25 Device Driver TLC:

Contents:

Contents:

IXIB Software Control

Used to maintain software information
pertaining to the IXIB.

Structure containing device software
information for an individual IXIB.

IXIB Traffic Statistics

Used to maintain statistics to allow the
analysis of X.25 traffic flow on the IGW.

A table containing the following
information for each X.25 host known by
the gateway:

- Number of input packets

- 71 -
Software Kinetics

#1500-15-010.03.0

- Number of input bytes
- Number of output packets
- Number of output bytes
- Number of incoming calls
- Number of outgoing calls

3.6.7.3 Interrupts

Two interrupts are serviced by this TLC. One is used to process

input commands from the IXIB and the other to process output

commands from the IXIB. The IXIB produces a priority 4 (ipl 14)

interrupt when the IXIB writes a command to the Mailbox command

register of the IXIB. The IXIB produces a priority 4 (ipl 14)

interrupt when the IXIB reads a command from the Mailbox command

register of the IXIB.

3.6.7.4 Timing and Sequencing

The software residing in the X.25 Device Driver TLC is designated

as runnable whenever a packet is available to be read from or

written to the IXIB. Once designated as runnable, the ERTE TLC

will run the X.25 Device Driver on a priority basis. The X.25

Device Driver TLC is lower in priority than the Ethernet Device

Driver TLC, but higher in priority than all other TLCs. Within

the X.25 Device Driver TLC the processes are given priority as
follows (in decreasing order):

- XDD Packet Input
- XDD Packet Output
- XDD Supervisor Functions

5 e
Software Kinetics

- 72 -

#1500-15-010.03.0

3.6.7.5 Processing

The X.25 Device Driver TLC is composed of three separate

processes: an input process, an output process, and a supervisor

process. The XDD supervisor process is responsible for

communications to other software residing on the IGW, while the

XDD input and output processes communicate with the IXIB.

The communication between the XDD supervisor process, and the XDD

input and output processes is accomplished by the use of message

buffers. To send a packet from the XDD supervisor process to the

XDD output process, the XDD supervisor process places the output
packet in a message buffer which it sends to the XDD output

process. The XDD input process sends received packets to the

supervisor in a message buffer, and the XDD supervisor then
determines the appropriate action for the received packets.

Other IGW software desiring to communicate with the XDD TLC also

makes use of message buffers. To send information to the XDD

TLC, message buffers are sent to the XDD supervisor. Any message

that is successfully sent to the supervisor is guaranteed to be

processed, and sent to the IXIB if required. Information sent to
the X.25 Device Driver TLC consists of either full IP packets or

full command packets, however these packets may be broken down

into smaller pieces by the driver before actual transmission to
the IXIB.

The XDD passes information to other IGW processes by sending
message buffers to these processes. Such messages contain either

full IP packets or full logging packets.

The transmission of a packet from the X.25 Device Driver TLC to

Software Kinetics
- 73 -

#1500-15-010.03.0

the IXIB is accomplished by the XDD output process making use of

the IXIB FIFO and Mailbox. Data transmission is initiated by

dividing the packet to be transmitted to the IXIB into a command

portion and a data portion. The data portion is loaded into the

IXIB FIFO, and then the IXIB Mailbox is loaded with the command

portion. Once the IXIB reads the command written by the XDD

output process, the X.25 output process is free to send another

packet to the IXIB. For further information concerning the IXIB

Mailbox and FIFO as well as other IXIB hardware related details,

consult Reference [6].

The reception of a packet from the IXIB by the X.25 Device Driver

TLC is accomplished by the XDD input process making use of the

IXIB FIFO and Mailbox. Data reception is initiated by the

receipt of a receive interrupt. Upon receipt of this interrupt

the XDD input process reads a command from the IXIB Mailbox.

After decoding the command, any data required by this command is

extracted from the IXIB FIFO.

X.25 traffic data collection is performed on regular five minute

intervals. This procedure involves requesting the IXIB to

provide the IGW with a copy of its traffic per X.121 address

information. When this information has been obtained, it is sent

in a message buffer to the STAT TLC.

- 74 -
Software Kinetics

#1500-15-010.03.0

3.6.7.6 Outputs

The following outputs are produced by the X.25 Device Driver TLC:

1) X.25 Output Packet - This output is written to the
IXIB, and contains IP packets to be transmitted by
the IXIB as well as various control packets.

2) IGW Datagram - This output is sent in message buffers
to the IP TLC, and contains IP datagrams.

3) Logging Messages - This output, obtained from
information produced by the IXIB, contains IXIB
logging and error information and is sent to the
Console Device Driver for display on the operator's
console.

4) X.25 Traffic Data - This output is obtained from a
table generated by this TLC, and contains totals of
X.25 packets and bytes that have been transmitted and
received by the IXIB. This output is sent to the,
STAT TLC in message buffers.

3.6.8 Ethernet Device Driver (EDD) TLC

The Ethernet Device Driver TLC consists of a device driver

responsible for the management of the Digital Equipment DEQNA

Ethernet interface. This TLC provides the IGW processor with the

ability to communicate with the DEQNA interface. This

communication involves the transmission and reception of Ethernet

packets, as well as control and status information. This device

driver implements the ARP protocol [7].

There is one instance of this driver for each Ethernet interface

in the IGW. Each operates identically, but independently of the

- 75 -
Software Kinetics

#1500-15-010.03.0

other.

3.6.8.1 Inputs

The following inputs are required by the Ethernet Device Driver

TLC:

1) Ethernet Input Packet - This Input is read from the
control registers and DMA area of the DEQNA, and
contains IP and logging packets.

2) IGW Input Packet - This Input packet is obtained from
messages sent from other software residing on the
IGW, and contains packets to be transmitted by the
DEQNA, as well as various control packets.

3.6.8.2 Local Data

The following data is local to the Ethernet Device Driver TLC:

1) Name: Ethernet Software Control

Purpose: Used to maintain software information
pertaining to the DEQNA.

Contents: Structure containing device software
information for an individual DEQNA board.

2) Name: ARP Address Mapping Table

Purpose: Used to map between IP and Ethernet
addresses.

Contents: Table containing the following information
for mapping between IP and Ethernet:

- IP address
- Ethernet address
- Time entry last referenced

- 76 -
Software Kinetics

#1500-15-010.03.0

- Last packet for incomplete entry
- Flags

3) Name: Ethernet Traffic Data Table

Purpose: Used to maintain statistics to allow the
analysis of Ethernet traffic flow on the
IGW.

Contents: A table containing the following
information for received packets:

- Remote Ethernet Address
- Direction of packet (input/output)
- Number of bytes in packet

3.6.8.3 Interrupts

The DEQNA will produce a priority 4 (ipl 14) interrupt on the

host bus when the DEQNA transmits or receives an Ethernet

packet.

3.6.8.4 Timing and Sequencing

The software residing in the Ethernet Device Driver TLC is

designated as runnable whenever a packet is available to be read

from or written to the DEQNA. Once designated as runnable, the

ERTE TLC will run the Ethernet Device Driver on a priority

basis. The Ethernet Device Driver TLC is higher in priority than

all other TLCs. Within the Ethernet Device Driver TLC the

processes are given priority as follows (in decreasing order):

- 77 -
Software Kinetics

#1500-15-010.03.0

- Ethernet Input
- Ethernet Output
- Ethernet Supervisor Functions

3.6.8.5 Processing

The Ethernet Device Driver TLC is composed of two separate

processes: an interrupt handling process, and a supervisor

process.

The EDD supervisor process is responsible for communications to

other software residing on the IGW and Ethernet packet

processing, while the EDD interrupt handling process communicates

with the EDD supervisor process and the DEQNA board.

The communication between the EDD supervisor process, and the EDD

interrupt handling process is accomplished by the use of the IGW

message passing facility. To send a packet from the EDD

supervisor process to the EDD interrupt handling process, the EDD

supervisor process places the output packet in a message buffer

queue which it sends to the EDD interrupt handling process. The

EDD supervisor process also receives message buffers containing

input packets sent from the EDD interrupt handling process.

Other IGW software 'desiring to communicate with the Ethernet

Device Driver TLC also makes use of message buffers. Information

for the Ethernet Device Driver TLC is placed in message buffers

- 78 -
Software Kinetics

#1500-15-010.03.0

and sent to the EDD supervisor. Any packet that is successfully

sent is guaranteed to be processed, and sent to the DEQNA if

required. Information sent to the Ethernet Device Driver TLC

consists of either IP packets or command packets.

The EDD transmits information to the other TLCs by placing the

information in a message buffer and then sending that message to

the TLC.

To transmit a packet from the Ethernet Device Driver TLC to the

DEQNA interface, the EDD supervisor process first extracts the

packet to be processed from the incoming message buffer. If the

packet is a command packet it is processed appropriately. If the

packet is to be an IP packet to be sent over the Ethernet, the

EDD supervisor process will determine the correct Ethernet

address to send to by performing a table lookup in the ARP

address mapping table.

If an address translation entry exists the IP packet is

encapsulated into an Ethernet packet and sent in a message buffer

to the EDD interrupt handling process. The EDD interrupt

handling process is then responsible for the transmission of the

packet to the DEQNA interface.

If no entry corresponding to the IP address is found in the ARP

- 79 -
Software Kinetics

1

1

1

1
1

1

Software Kinetics
- 80 -

#1500-15-010.03.0

1
address mapping table, then the correct Ethernet address is

determined according to the ARP protocol. If no Ethernet address

can be determined via ARP, the packet is dropped.

The reception of a packet from the DEQNA interface by the

Ethernet Device Driver TLC is accomplished by the EDD interrupt

handling process reading the packet from the DEQNA interface.

This packet is then placed in a message buffer and sent to the

EDD supervisor process. The EDD supervisor process will

determine if the packet is an IP, ARP, or an other protocol type

packet. If the packet is not of an IP or ARP protocol type the

packet is discarded.

If the input packet is found to be an ARP packet, it is processed

appropriately. The ARP table is updated, ARP replies sent, and

stored packets sent as required.

If the input packet is found to be an IF packet, the IP portion

of the Ethernet packet is extracted and placed in a message

buffer and sent to the IP TLC.

When a packet is transmitted or received information from the

packet is added to the Ethernet Traffic Data Table. When this

table becomes full it is sent to the STAT TLC, and a new table is

created. The entries stored in this table are described in

#1500 - 15-010.03.0

section 3.6.8.2 of this document.

3.6.8.6 Outputs

The following outputs are produced by the Ethernet Device Driver

TLC:

1) Ethernet Output Packet - This output is written to
the DEQNA control registers, and a DMA area. It
contains packets to be transmitted by the DEQNA, as
well as control information.

2) IGW Datagram - This output is placed in a message
buffer and sent to the IP TLC, and contains IP
datagrams.

3) Ethernet Traffic Data - This output is sent in
message buffers to the STAT TLC, and contains a list
of traffic statistics information for incoming and
outgoing Ethernet Traffic.

3.6.9 Console Device Driver (CDD) TLC

The Console Device Driver TLC is a device driver responsible for

the control of the interface between the IGW and the console

device hardware. This TLC provides the IGW with the ability to

communicate with the console interface hardware. The

communication involves the transmission and reception of

characters to and from the console, as well as control and status

information.

Software Kinetics
- 81 -

1) Name:

Purpose:

#1500-15-010.03.0

3.6.9.1 Inputs

The following inputs are received by the Console Device Driver

TLC:

1) Console Input Character - This input is read from the
Console Device, and consists of characters typed at
the operator's console.

2) IGW Input Message - This input message is sent to the
CDD from other TLCs residing on the IGW, and contains
character strings to be transmitted by the Console
Device to the operator's console.

3.6.9.2 Local Data

The following data is local to the Console Device Driver TLC:

Console Device Software Control

Used to maintain software information
pertaining to the Console Device.

Contents: Structure containing device software
information for an individual Console
Device.

Software Kinetics
- 82 -

#1500-15-010.03.0

3.6.9.3 Interrupts

Two interrupts are serviced by this TLC. One is used to process

input characters from the Console Device and the other to process

output characters to the Console Device. The Console Device

produces a receive interrupt when the Console Device writes a

character into the input data register of the Console Device.

The Console Device produces a transmit interrupt when the Console

Device completes the transmission of a character from the output

data register of the Console Device.

3.6.9.4 Timing and Sequencing

The software residing in the Console Device Driver TLC is run

whenever a character is available to be read from Console Device

or there are characters or messages available to be transmitted

by the Console Device. The ERTE TLC will run the Console Device

Driver on a priority basis. The Console Device Driver TLC is

lower in priority than the Ethernet Device Driver TLC, X.25

Device Driver TLC, and IP TLC, but higher in priority than all

other TLCs. Within the Console Device Driver TLC the processes

are given priority as follows (in decreasing order):

- CDD Character Input
- CDD Character Output
- CDD Supervisor Functions

Sir
Software Kinetics - 83 -

#1500-15-010.03.0

3.6.9-5 Processing

The Console Device Driver TLC is composed of three separate

processes: an input process, an output process, and a supervisor

process. The CDD supervisor process is responsible for

communications to other software residing on the IGW, while the

CDD input and output processes communicate with the Console

Device and the supervisor process.

The communication between the CDD supervisor process, and the CDD

input and output processes is accomplished by the use of message

buffers. To send a character stream from the CDD supervisor

process to the CDD output process, the CDD supervisor process

places the output stream in a message buffer which it sends to

the CDD output process. The CDD output process then extracts

each character from the stream and transmits it to the operators

console. If the character to be transmitted is an ASCII Line

Feed character, then the CDD output process will insert a single

ASCII Carriage Return character in front of it.

The CDD input process collects received characters a message

buffer. When the input process receives an ASCII Carriage Return

character, the process will send the message buffer to the CDD

supervisor who will then forward it to the OI TLC. The input

process will begin collecting newly received characters in a new

- 84 -
Software Kinetics

1
1

1

1

1
1

1

1

1 Software Kinetics
- 85 -

#1500-15-010.03.0

1
message buffer.

Other IGW software desiring to communicate with the CDD TLC also

makes use of message buffers. To send information to the CDD

TLC, message buffers are sent to the CDD supervisor. Any message

that is successfully sent to the supervisor is guaranteed to be

processed, and sent to the Console Device. Information sent to

the Console Device Driver TLC consists of message buffers

containing character streams to be displayed on the operator's

console. Such stream are transmitted verbatim, except for the

ASCII Line Feed character. This character signals the end of a

line r so the CDD inserts a Carriage Return character in front of

the Line Feed character.

3.6.10 Efficient Real -Time Executive mum TLC

The ERTE TLC is responsible for controlling the execution of all

processes that make up all the other TLCs of the IGW system. The

ERTE TLC also offers a set of facilities to the processes it

controls which permit the processes to communicate with one

another, wait for events, declare events, suspend execution for a

period of time, and give up the CPU so that other processes may

use the CPU.

1
1

1
1

1
1
1

1
1
1
1
1

Purpose:

Parameters:

2) Name:

Purpose:

Parameters:

3) Name:

Purpose:

1
1 Software Kinetics

- 86 -

#1500-15-010.03.0

1
3.6.10.1 Inputs

The inputs to the ERTE are supplied to the ERTE by processes

requesting ERTE functions. The calling process uses an ERTE

system call to pass information to the ERTE. The system call

places the system call parameters into process general registers,

and then executes an instruction which generates a VAX

exception. This results in a vectored transfer to the ERTE which

determines the system call and parameters from the process

registers, and performs the function indicated by those

parameters. The following lists the system calls available and

the ERTE input parameters associated with them:

1) Name:

A request to the ERTE to allow other
processes awaiting access to the CPU to
be allowed to run

- Suspend request code

Sleep

A request to the ERTE to have the
process inactive for a period of time

- Sleep request code

- Time to sleep

Wait On Event

To instruct the ERTE to suspend the
process execution until the indicated
event has occurred.

Suspend

6) Name:

Purpose:

#1500-15-010.03.0

Parameters: - Wait Event request code
- Event number to wait for

4) Name: Wait With Time-out

Purpose: To instruct ERTE to suspend process
execution until either the indicated
event occurs, or the time-out period
expires

Parameters: - Wait With Time-Out request code
- Event to wait for
- Time-out period

5) Name: Wait For One Of

Purpose: To instruct ERTE to suspend process
execution until one of the events in a
given list of events occurs, or until
the given time-out period expires

Parameters: - Wait For One Of request code
- Pointer to a list of event codes
- Time-out period

Message Get

To instruct the ERTE to allocate a free
message buffer to the requesting
process.

Parameters: - Message Get request cod
- Pointer to process space where the
ERTE will put the message header.

7) Name: Message Discard

Purpose: To tell the ERTE to return the indicated
message to the free message list.

Parameters: - Message Discard request code
- Pointer to the message header of the
message to be discarded

- 87 -
Software Kinetics

- 88 -

#1500-15-010.03.0

8) Name: Open Message Queue

Purpose: To instruct the ERTE to allocate a queue
for incoming messages to the process

Parameters: - Open Message Queue request code
- Identifier of message queue to be

opened
- Maximum number of messages in the
queue

9) Name: Message Send

Purpose: To send a message to another process

Parameters: - Message Send request code
- Pointer to message header of message
to be sent

- Queue identifier of message queue the
message should be placed on

10) Name: Message Receive

Purpose: To receive a message from a message queue

Parameters: - Message Receive request code
- Identifier of queue to get message

from

11) Name: Queue Status

Purpose: To get the status of the indicated
message queue

Parameters: - Queue Status request code
- Queue identifier of queue for which

status is desired

12) Name: Get Time

Purpose: To request the ERTE supply its current
time value to the requesting process

Software Kinetics

- 89 -

#1500-15-010.03.0

Parameters: - Get Time request code

13) Name: Set Priority Level

Purpose: To request ERTE to alter the priority
level the process is running at (used to
prevent interrupts at inappropriate
moments)

Parameters: - Set Priority Level request code
- Priority level to set process to

3.6.10.2 Local Data

The following local data is maintained by the ERTE:

1) Name: Free Message List

Purpose: A list of message headers for unallocated
message buffers. (A message header
contains data pertinent to the allocation
and manipulation of message buffers,
including a pointer to the buffer itself.)

Content: Each entry in the list contains:

- Length: the length of valid data
- From: the task id of the sending

process
- Queue: the queue identifier the

message is to be delivered to
- Address: pointer to the message buffer
- Offset: process definable field,

usually an offset of special
significance into the message
buffer

- Next: a pointer to the next message
on the message queue

- This
message: a pointer to this message

header; used when message
headers are returned to the
ERTE from a process to find

Software Kinetics

2

#1500-15-010.03.0

the header quickly in the list
of all message headers

- On Queue: a pointer to the queue the
message header is currently on

Name: Message Queue List

Purpose: A list of queues which processes can use
to receive incoming messages

Content: Each entry in the list consist of:

- Process: identifier of the process
receiving messages via this
queue

- Size: the maximum number of messages
allowed on the queue at one
time

- Count: number of messages currently on
the queue

- First: pointer to the first message on
the queue

- Last: pointer to the last message on
the queue

3) Name: Process Header List

Purpose: To maintain a list of process information
needed to permit processes to be suspended
and restarted correctly

Content: The list contains an entry for each process
in the system. Each entry contains:

- Id: process identifier
- Name: the name of the process
- Flags: status flags representing

the state of the process
- Priority: scheduling priority of the

process
- Events: the events, if any, the

process is waiting on,
maximum of 8

- Next: pointer to next process on
the run queue

- Time Left: the time remaining before
this process can run again

s 4(
Software Kinetics

- 90 -

#1500-15-010.03.0

- Message
Count: number of messages allocated

to this process
- PCB
Address: physical address of hardware

Process Control Block (PCB)
for process

- PCB: the hardware Process Control Block
for the process; the PCB contains:

- Stack pointers: one for each of
four VAX modes (only Kernel mode
and User mode stacks are used in
IGW)

- Process Registers: copies of
process general registers are
kept here (Program Counter is
register 15)

- Process Status Longword: a copy
of the Processor Status Longword
register for the process [2]

- Program Base Register: points to
start of program page table for
PO address space [2]

- Program Length Register: points
to start of page table for P1
address space [2]

- Control Base Register: points to
start of page table for P1
address space [2]

- Control Length Register: length
of P1 page table [2]

4) Name: Run Queue

Purpose: List of processes ready and wanting to run,
in order of priority

Content: - First: pointer to first process on the
run queue

- 91 -
Software Kinetics

#1500-15-010.03.0

3.6.10.3 Interrupts

All interrupts and exceptions are initially vectored to the ERTE

TLC. The ERTE TLC examines the type of the exception or

interrupt and selects an action based on the type. For

interrupts, the ERTE will set an event corresponding to

interrupt. The setting of this event will cause the process

responsible for servicing the interrupting device to become

runnable (if it is waiting for the event). The ERTE will then

schedule the process to run based on its priority. The

interrupts the ERTE will recognize are:

1) Console Receive,

2) Console Transmit,

3) Ethernet Receive/Transmit (one for each Ethernet
interface),

4) IXIB Receive (one for each IXIB interface), and

5) IXIB Transmit (one for each IXIB interface).

The ERTE handles a Clock Tick interrupt within the ERTE alone.

This is done to ensure that clock interrupts take as short a time

as possible. The interrupt service routine in ERTE increments

the IGW time counter maintained by ERTE, and then decrements the

Time Left field of each process waiting for a time-out or

sleeping.

Software Kinetics - 92 -

150 0-1 5- 010. 03. 0

The ERTE also implements a watchdog timer. At every Clock Tick

interrupt the ERTE increments a counter. This counter is cleared

every time the ERTE selects a process to run. If no process can

be run in five minutes, then the system must be in trouble and

the ERTE will initiate a reboot sequence. The ERTE determines

that the five minute interval has passed when the counter it is

incrementing reaches a large number representing five minutes

worth of clock ticks.

All other interrupts should not occur. If one does occur, a

message will be displayed on the console and the interrupt will

be ignored.

The ERTE TLC will also process one exception condition. The

Change Mode to Kernel (CHMK) exception occurs when a process

executes a CHMK instruction. Processes use this instruction in

system calls to deliberately create an exception which will cause

the ERTE to service the call. After processing the call, the

ERTE will select the next process to run and will run it.

All other exceptions should not be generated. If one is

generated, then the ERTE will display a message on the console

indicating the exception that occurred. The ERTE will then

either ignore the exception (returning control to the interrupted

process), or will reboot the IGW, depending on the seriousness of

- 93 -
Software Kinetics

#1500-15-010.03.0

the exception. Table 1 lists all unexpected exceptions and the

IGW response to them.

Software Kinetics - 94 -

Software Kinetics
- 95 -

#1500-15-010.03.0

Table 2: Unexpected Exception Responses

Exception Response

Machine Check Reboot
Kernel Stack Not Valid Reboot
Power Fail Reboot
Privileged Instruction Reboot
Customer Reserved Instruction Reboot
Reserved Operand Reboot
Reserved Addressing Mode Reboot
Access Control Violation Reboot
Translation Not Valid Reboot
Trace Pending Reboot
Breakpoint Instruction Reboot
Compatibility Reboot
Arithmetic Ignore
Change Mode To Execute Ignore
Change Mode To Supervisor Ignore
Change Mode to User Ignore

- 96 -
Software Kinetics

#1500-15-010.03.0

3.6.10.4 Timing and Sequencing

The ERTE is the first TLC to be executed after booting is

completed. The ERTE is then responsible for determining the

sequencing for the remaining TLCs. The ERTE regains control only

when an interrupt occurs or a process makes a system call where

upon it executes only long enough to process the interrupt or

system call and to schedule the next process to run.

3.6.10.5 Processing

The ERTE is first invoked by the Secondary Boot TLC, at which

point it sets up and initializes its internal structures, selects

the first process to run, and then runs it. Thereafter, the ERTE

only executes after an interrupt or an exception occurs. When

one of these events does occur, the ERTE determines the response

to the event, executes the response, selects the next process to

run, and runs it.

The ERTE responses to interrupts and exceptions is given above in

Section 3.6.10.3. To service system calls, the ERTE determines

the request in the call as described in Section 3.6.10.1 above,

extracts the parameters, and performs the service. The services

offered by ERTE are:

4

- 97 -

#1500-15-010.03.0

1) Suspend: the requesting process gives up the
processor to other processes of higher or equal
priority which are ready to run.

2) Sleep: the requesting process is held inactive for a
requested period of time.

3) Wait On Event: the requesting process will be held
inactive until the requested event is set.

Wait With Time-out: the requesting process is held
inactive until the requested event occurs or the
requested time-out period expires, whichever comes
first.

5) Wait For One Of: the requesting process is held
inactive until one of the requested events occurs or
the requested time-out period expires, whichever
comes first.

6) Message Get: a message buffer is allocated to the
requesting process and a message header for the
buffer is copied into the process space for the
requesting process.

7) Message Discard: a message buffer allocated to a
process is returned to the free message pool, and the
message header for that buffer is removed from the
process.

8) Open Message Queue: a message queue is assigned to
the process and the queue is given the requested
maximum size and queue identifier.

9) 'Message Send: the requested message header is
unallocated from the requesting,process and placed on
the requested message queue, thus sending the message
buffer from the requesting process to the process who
has the indicated message queue open.

10) Message Receive: the first message header is removed
from the requested message queue and copied to the
requested process, thus allocating the message buffer
to the requesting process.

11) Queue Status: the status of the requested queue is
determined and returned to the requesting process.

Software Kinetics

#1500-15-010.03.0

12) Get Time: the current ERTE time value is returned to
the requesting process.

13) Set Priority Level: the ERTE sets the processing
priority level to prevent interrupts of lower than
the requested priority.

3.6.10.6 Outputs

The ERTE TLC generates a single output for each system call

supported by the TLC. The output is placed into the requesting

process's register 0 (RO) when the ERTE completes the system call

processing. In general, the output indicates the success or

failure of the system call. The following lists the complete set

of return values by system call:

1) Suspend: a success code is returned.

2) Sleep: a success code is returned.

3) Wait On Event: a success code is returned, unless the
event is invalid when a failure code is returned.

4) Wait With Time-out: a failure code is returned if the
requested event is invalid; otherwise, a success code
is returned if the event occurred or a time-out code
if the time-out occurred.

5) Wait For One Of: the event number of the first event
is returned, or a time-out value if the time-out
occurred.

6) Message Get: returns a success code if the message
was allocated or an error code if no message could be
allocated.

7) Message Discard: returns a success code.

8) Open Message Queue: returns a success code if the
open succeeds, a busy code if the queue is already

Software Kinetics
- 98 -

#1500-15-010.03.0

open, or an error code if the queue could not be
opened.

9) Message Send: returns a success code if the send
succeeds an already queued code if the message is
already on a queue, an invalid queue code if the
queue is not opened (or a queue full code if the
queue is full.

10) Message Receive: returns a success code if the
received worked, a queue empty code if the queue was
empty, and an invalid queue code if the queue was not
opened.

11) Queue Status: returns a code indicating if the queue
is open or not, and if open, the number of messages
on the queue.

12) Get Time: returns ERTE time value.

13) Set Priority Level: returns the previous priority
level.

- 99 -
Software Kinetics

Software Kinetics
- 100 -

#1500-15-010.03.0

4.0 GLOSSARY

- ARP - Address Resolution Protocol
ASCII - American Standard Code for Information Interchange
CDD - Console Device Driver
CHMK - Change Mode to Kernel (VAX instruction)
CPU - Central Processing Unit
CRC - Communications Research Centre
CRT - Cathode Ray Tube (a video terminal)
CSR - Control/Status Register (in input output

control register)
DARPA - Defense Advanced Research Projects Agency
DEQNA - Digital Equipment Corporation's Ethernet

interface for Q-Bus
DMA - Direct Memory Access
EDD - Ethernet Device Driver
EGP - Exterior Gateway Protocol
ERTE - Efficient Real Time Executive
FIFO - First In First Out (a queue)
ICMP - Internet Control Message Protocol
IGW - Internet Gateway
ILA - IGW Link Area (an area of IGW memory)
IP - Internet Protocol
IXIB - Intelligent X.25 Interface Board
MTU - Maximum Transmission Unit
OI - Operator Interface
PCB - Process Control Block
PPT - Process Page Table
ROM - Read-Only Memory
SCB - System Control Block
SPT - System Page Table
STAT - Statistics processing component of the IGW

software
SVA - System Virtual Address
TCP - Transmission control Protocol

• TLC - Top Level Component
TLD - Top Level Design
XDD - X.25 Device Driver
XON/XOFF - Flow control on a serial line

1

1

(1

1
1
1

CRC LIBRARY/131131.10111EQUE CRC
QA76.9.888 S6478 1988 •

INDUSTRY CANADA / INDUSTRIE CANADA r
II 1 1 11 MI MI 1111 II 1 208854 1

QA
i 76.9
' S88
! i S6478

1988

