
THE DESIGN OF AN ADVANCED

?

91 \
C655)
G644
1983

THE DESIGN OF AN ADVANCED

AUTONOMOUS SPACECRAFT COMPUTER

Technical Report No. ESC-82-005/

LI

1 ji.inil: 2 0 1990 I
.

11
Industrie Canada i L_Bibliothèq»e_Oueen I;

m,f
T.LGomid

M. Inwoo
I. McMaster

Eidetic Systems Corporation

March 15, 1983

e0 ,1M11111CATIONS CANADA

NÔVt)(2a 19E13

o'BRARy - BintorielJE

Industry CanaCia'----p
Library 0,,,,en

1
1
1

1
1
1 ISSUEC BY CONTRACTOR AS REPORT NO:

ESC-82-005

Eidetic Systems Corp.
P.O. Box 13340
Kanata, Ontario

PREPARED BY: 1
1

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO:
SERIAL No , 0ST82-00056

DOC SCIENTIFIC AUTHORIfï:

15ST.36001-2-0561

R.A. Millar

1
1
1

1

1

1

CLAS CLASSIFICATION:

This report presents the views of tne author(s). *Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

tOMilleCk-airrnffr

- Unclassified

1

Government Gouvernement
C Canada du Canada

Department oi Communications

DOC CONTRACTOR REPORT DOC -CR -S P 8 3 3 3

DEPARITENT OF COMMUNICATIONS OTTAWA CANADA

--SPACE PROGRAM

TITLE: The Design of an Advanced Autonomous Spacecraft Computer:A.

AUTHOR(S T. Gomi, (Applied Al Systems Inc., Kanata, Ont.)
M. Inwood
I. McMaster

NOV 2ri 193 DATE : March 1983

1.1UURY BIBLIOTIIÈQUE

- 70
-

0 -J
,1 0

CONTENTS

Page

Acronyms

Acknowledgements ii

Summary iii

1. Introduction 1-1

2. Hierarchy of System Autonomy 2-1

2.1 Introduction
, 2.2 Definition of Hierarchy

2.2.1 Layer 1: Physical
2.2.2 Layer 2: Deterministic
2.2.3 Layer 3: Module Integrity
2.2.4 Layer 4: Module Relationship Integrity
2.2.5 Layer 5: Intelligence 1

2.3 Onboard Autonomy Management —
2.3.1 Introduction
2.3.2 Function of the OAM
2.3.3 Structure of the OAM

2.4 Fault-Tolerance Management
2.4.1 Functions
2.4.2 Examples
2.4.3 Examples

3. Structural Hierarchy 3-1

3.1 Introduction
3.2 Definition of Structural Hierarchy
3.3 Structural Hierarchy
3.4 External Linkage
3.5 Subsystem Interconnection

3.5.1 Introduction
3.5.2 Mode of Communication
3.5.3 Traffic Volume
3.5.4 Homogeneity and Dynamism
3.5.5 Application
3.5.6 Type of Network

Note: The underscore () is commonly used
in Computer Science to -Form an, identifier from
a collection of names.

I i

3. Structural Hierarchy (continued) 3-1

3.6 Module Interconnection
3.7 Element Interconnection

3.7.1 Introduction
3.7.2 Serial Backplane
3.7.3 Flexibility

4. System Test 4-1

4.1 Test Concepts
4.2 Methodology
4.3 Test Examples
4.4 Resources

4.4.1 Personnel
4.4.2 Computer Equipment
4.4.3 Simulators
4.4.4 Debugging Aids
4.4.5 Test Data Generators

5. Conclusion 5-1

6. References 6-1

Appendix A-1

I I

ACRONYMS

AASC Advanced Autonomous Spacecraft Computer (AASC)
Ada DoD defined Ada programming language

' AI Artificial Intelligence
AOCS Attitude and Orbit Control System
APSE Ada Programming Support Environment
ASM Autonomous Spacecraft Maintenance
CCN Cross Country Network
CKB Compound Knowledge Base (AASC/OAM/CKB)
CSMA/CD Carrier-sense Multiple-Access with Collision-Detection
EGN Extra Global Network
FA Factory Automation
FTM Fault-Tolerance Manager
FTC Fault-Tolerant Computing
GN Global Network
IEEE Institute of Electrical and Electronic Engineers
IIU Subsystem I/O Interface Unit (AASC/IIU)
ISO International Standardization Organization
KB Knowledge Base
KE Knowledge Engineering
LA Laboratory Automation
LAN Local Area Network
LHN Long Haul Network
MBPS Mega Bits Per Second
MIPS Mega Instructions Per SecOnd
MN Metropolitan Network
MTFF Mean Time to First Failure
NASA National Aeronautics and Space Administration
OA Office Automation
OAM On-Board Autonomy Management (AASC/OAM)
OCS Onboard Consultation System (AASC/OAM/OCS)
OSI Open Systems Interconnection
PCU Subsystem Processor Complex Unit (AASC/PCU)
SSN Solar System Network
ULAN Ultra Local Network
VLAN Very Local Network
VLSI Very Large Scale Integration

ACKNOWLEDGEMENTS

This report is one of a series resulting from studies per-
formed for the Federal Department of Communications, Communica-
tions Research Centre, Shirley Bay, Ottawa, Ontario, Canada
under DSS Contract 0ST82-00056.

The authors would like to acknowledge the assistance of
Ian Cunningham for a contribution on "TRANSPORT Services", con-
tained in an Appendix to this report, and for consultation on
network issues; Dr. John Tsotsos, Department of Computer Sci-
ence, University of Toronto; Dr. Nancy Leveson, University of
California, Irvine; Kurt Joerger, Director of Knowledge Sys-
tems, Tecknowledge Inc., California; Michael Deering, AI Re-
search Laboratory, Fairchild Camera and Instrument Corporation,
California; Robert Hindon, Bolt, Beranek and Newman, Cambridge,
Massachussetts; and Lee Holcomb, of NASA. The authors also ack-
nowledge the support of R.A. Millar, of the Communications Re-
search Centre.

SUMMARY

The design of the Advanced Autonomous Spacecraft Computer
(AASC) is divided into Autonomy Design and Structural Design.
The system test to be performed on the implemented AASC is also
described. Both Autonomy and Structure are decomposed using
top-down layered models (for which meta-rules are given), con-
sistent with the Open System Interconnection (OSI) reference
model that serves as a basis for the communications protocol
used throughout the AASC. System test methodologies are chosen
to be consistent with the top-down design and proposed imple-
mentation.

The layers of autonomy in the AASC range from the Physical
(lowest) level, Deterministic Control, Module Integrity, Module
Relationship Integrity, to Intelligence 1 and beyond. Esta-
blished state-of-the-art techniques are s"Pecified for imple-
menting the first four layers, termed Fault Tolerance Manage-
ment (FTM) containing methodologies developed mostly in the
field of software fault-tolerance, and advanced knowledge en-
gineering techniques are specified at the highest level, called
On-board Autonomy Management (OAM).

The OAM is decomposed into functional units which allow
frame-based and other representations of knowledge, generalized
inference over a compound knowledge base, the generation of ex-
planations for ground control, and limited knowledge acquisi-
tion. The FTM is decomposed into more traditional software and
hardware units that perform detection of, isolation of, ana-
lysis of, and recovery from failures at layers from the physi-
cal components up to groupings of software modules.

The structure of the AASC and its logical environment is
broken down into the external networks with which it must in-
teract, internal subsystems, module networks, and element net-
works. These structural layers are each analyzed and specified
as networks under the OSI model.

System testing will continue through development, consis-
tent with top-down design, implementation, and testing. The
criteria for testing are presented in terms of the requirements
for system reliability, flexibility, fault-tolerance, perfor-
mance, autonomy, and conformity to FTC design principles. Pro-
vision of personnel, computer equipment, simulators, debugging
aids, and test data generators are specified to meet the re-
source requirements of system testing.

iii

1. INTRODUCTION

The purpose of this report is to present a detailed ana-
lysis of the functions and logical structure of the Advanced
Autonomous Spacecraft Computer (AASC), the Functional Specifi-
cation of which was given in a previous report [GOMI 83]. The
functional analysis uses a layered model and decomposes func-
tions to a level of detail at which known, clear,
well-specified algorithms can be used to implement the func-
tions. The rationale and meta-rules for the layered model are
presented, including comparisons with other layered models.

The layers of AASC functions are grouped into two major
capabilities: On-board Autonomy Management (OAM), and
Fault-Tolerance Management (FTM), because of the natural boun-
dary between the existing bodies of techniques used to imple-
ment functions in the two domains. In order to characterize the
two domains, examples drawn from the AASC and other systems are
presented.

The implementation of a set of functions requires the cre-
ation of a logical and physical structure which may or may not
be isomorphic to other functional hierarchies. The logical
structure of the AASC and the reasons for choosing it are pre-
sented. The structural description includes a hierarchy of the
interconnections of system modules. Each level of decomposition
of the AASC is described, from the'external network environment
down to the elementary level within modules.

The logical structural decomposition of the AASC stops at
the point where decisions must be made about hardware/software
tradeoffs. Hence, the output of this report becomes the input
to the next phase of AASC development: hardware choice and
software module design.

2. HIERARCHICAL STRUCTURE OF SYSTEM AUTONOMY

2.1 Introduction

With few exceptions the move towards a unified description
of system autonomy is not yet evident. The benefit of estab-
lishing a form of common language among system developers is
obvious. The availability of such a language will permit freer
exchange of the results of research and development which are
constantly producing output of wider interest that can be in-
corporated into the design of new autonomous systems. The pro-
bability of newly discovered methodologies in system building
may only be realized if the knowhow is properly categorized and
documented in a widely visible fashion. Accordingly, the AASC
project attempts to organize system autonomy in a hierarchical
framework, and defines its own autonomy using that framework.

It is obvious that there is a very close relationship
between the autonomy of a system and its intelligence. A study
by NASA confirms a linear relationship between the two, as
shown in Figure 2.1. Intelligence is a necessary ingredient in
the achievement of system autonomy while the reverse is not ne-
cessarily true. Input signals which affect the output of a ser-
vo system, blood cells attacking foreign organisms, automatic
transmission adjusting the output speed and torque based on
several inputs, reflex movements made by a simple chain of neu-
rons in avoiding a physical threat, or a governing council vot-
ing on a specific subject, are some examples in nature and
among man-made systems of intelligent bodies effecting the act
of autonomy. The objective here is to establish a scale of sys-
tem autonomy using intelligence imbedded in the system as a
measure, and to classify autonomous systems according to their
demonstrated intelligence.

The Hierarchy of Autonomy is modelled after the Open Sys-
tems Interconnection (OSI) reference model established in the
mid 1970s for computer communication by the International Stan-
dardization Organization (ISO). Also affecting the AASC design
in this regard is the view expressed by E. Dijkstra in 1968
[DIJK 681 in his definition of "The Operating System", which
subsequently led to the universal adoption of layered structur-
ing techniques in various subfields of computer and system sci-
ences. Virtually all modern operating systems have been de-
signed hierarchically ever since. Networking, including the OSI
mentioned above, became viable only after a reasonable layering
scheme was devised. Computer Graphics is presently being
re-defined at an international level in terms of various levels
of abstraction in representation. There is already a move to-

2-1

u..
Laz

ËE-
«c

`É te
en- ci

LEVEL 5

tEVEL 3

MI UM MI MIIII MI MIMI MI IIIIIIII Mall IBM 211111

LEVEL 9 x
1/D
x OES TASK DÉDUCTION AND

INTERNAI REORGANIZATION

VOYAGER

EARTH
ORBITING
SPACECRAFT • AUTONOMOUSLY FAULT-TOLERANT

• NAVIGATES AUTONOMOUSLY

x e RESPONDS TO IDCTERNAL ENVIRONMENT
CHANGES

• TAKES EVAS IVE ACTION TO PROTECT
FROM EXTERNAL THREATS

1,
x" a PERFORMS SELF-PRESERVING ACTIONS (SAFE-HOLD)

• REWIRES GROUND UPDATES FOR MAINTENANCE ACTIVITIES IEVEL 1

//b STORES AND EXECUTES SEQUENCES
• MAY %HAVE SOME FUNCTIONALLY-REDUNDANT ELEMENTS

4 5 6 • 7 8 9 10
AUTONOMY LEVEL

Figure 2.1 Relationship between autonomy level and on-board intelligence,
presented by L. Holcomb of NASA at the Fault-Tolerant Computing
Workshop, November 1982, Forth Worth, Texas,

Each layer
5 >

4 >

3 >

2 >

1 ->

Each layer
has some
form of
control or
effect on
the next
lower
layer.

provides
<- service to

1 the next
upper
layer.

<-
-

wards applying the theory of layering to Artificial Intelli-
gence [ALBU 81].

Compared to relatively well-established domains such as
those discussed above, with a longer history of structuring
system functions into a hierarchy, the hierarchy of system au-
tonomy originated here is more likely to face revision in the
foreseeable future. Such was the case with others when they
were still young. It will be safe to state that the present de-
finition described in Section 2.2 below only reflects the
best-effort conceptualization of the hierarchy by the designers
of the AASC. The Hierarchy of System Autonomy is intended to be
independent from the AASC and expected to survive in various
forms. It is obvious, however, that a considerable number of
revisions will be necessary until the concept gains wider
understanding. The structure shown at this time is the result
of an extensive study of existing fault-tolerant techniques
carried out by the authors [GOMI 82a,b].

Table 2.1 The Hierarchy of System Autonomy

This layer performs the
system's required functions.

6
<-

The AASC adopts the view that faults exist at every level
of the functional hierarchy - a fault-tree concept depicted,
for example, in [VESE 81]. It also takes the position that
fault-tolerance must also exist in a hierarchical fashion -
i.e., recognition of a fault-handling tree. This latter view is
often incompatible with the view of some researchers who be-

2-2

•

lieve that, upon defining a fault-tree one can always design-in
fault-tolerance during system development. They seem to con-
clude that a successful and comprehensive description of possi-
ble faults in the system necessarily leads to the definition of
methods which would allow them to avoid faults beforehand. Such
an approach is dominant, for example, in the design of on-board
systems for commercial aircraft. The rejection of this approach
is based on the heuristic stance the project has adopted
through its study phases. It believes that the deterministic
approach taken by those designers is insufficient in dealing
with many unknown errors that a system will likely encounter in
a hostile environment of space where, in most cases, on-board
repairs will be extremely difficult and help will never arrive
in time.

In the Hierarchy of System Autonomy, fault-tolerance is
not localized in certain layers but implied in every layer. Oc-
casionally, expressions such as Fault Tolerance Management
(FTM), are used to describe an instantiation of certain layers
of the hierarchy. The reason for the localized identification
of fault-tolerance is, however, for convenience so that such a
commonly understood concept as "Software Fault-Tolerance" is
given an appropriate visibility in the design. The vertical
distribution of fault-tolerance throughout the design of the
AASC is never abandoned.

The following meta-rules are considered valid in regard to
the Hierarchy of System Autonomy:

1. An ascending order of intelligence is observed when
the hierarchy is followed upward.

2. An autonomy function defined at a given level must be
capable of correcting a faulty condition detected by
the next lower level in such a way that the result of
the fault is transparent to the execution of functions
at the next higher level. Note, however, that failure
to accomplish this correction is a failure at this
given level, and comes under Rule 3.

3. A function invoked at a given level is responsible for
reporting failures it cannot recover from by itself,
to the next higher level.

4. At a given level in the hierarchy, a protocol can be
defined to achieve inter-level communications and con-
trol described in 2. and 3. above.

2-3

5. Similarly, a protocol can be defined for communication
and control among functions (intra-level) operating
within a given level.

2.2 Definition of the Hierarchy of System Autonomy

2.2.0 The Hierarchy

Table 2.2 shows the Hierarchy as defined. The layers 1
through 5, which are described in Sections 2.2.1 through 2.2.5
below, will be defined and implemented in detail in further
stages of the project. Figure 2.2 depicts the General Hier-
archy of Fault-Tolerant Functions.

Table 2.2 The Functional Hierarchy of System Autonomy

Layer Name Description

6 Intelligence 2 Sophisticated KE technology
is used to support the int-
elligence of a system.

5 Intelligence 1 A system has a primitive
intelligence based on
Knowledge Engineering (KE).

4 Module relationship Maintain ability of module
integrity groupings to carry out major

system functions.

3 Module integrity Maintain ability of modules
to execute without inter- .
ference from other modules.

2 Deterministic
control

Physical

0 non autonomous

Ensure only healthy proc-
essors take part in system.

Ensure only healthy physi-
cal components continue to
contribute to processor
operation

2-4

■

Analyze
Failure

Determine
Permanence

Assert
Permanent
Layer i Fault

Report
Maintenance

Recover

Recover from Recover from
Transient Permanent
Layer i Faul Layer i Faul

Maintain
Functions
in Layer i.

Detect a
Failure

Isolate
Failure

Figure 2.2 General Hierarchy of Fault-Tolerance Functions at Layer i.

Of all the modelling methodologies used to describe com-
puter systems, there is one that has emerged as the most gener-
ally applicable, lucid, understandable, and implementable: la-
yering. The principle is that a function may be decomposed into
an ordered set of N classes of subfunctions called layers. The
relationships between two layers Li and Li+1 are:

1. Li provides information and/or services to Li+1

2. Li+1 does not have access to any information or service
from layers Ll to Li-1, except by using the services of
Li.

The objectives of layering, and the reasons for its suc-
cess in system design are:

1. It divides the system design task into manageable units

2. It allows the compartmentalization of data structures
and processes so that validation and fault-tolerance
are easier to achieve.

3. It enables the progressive implementation of the system
from the most primitive to the most abstract function.

In the AASC, the relationship between layers, with the em-
phasis on fault-tolerance, is defined as follows:

1. Li+1 may perform recovery from faults in Li.

2. Li reports permanent failures to Li+1.

3. Functions within Li are responsible for detecting the
failure of other functions in Li with which they inter-
act.

The main incentive for these meta-rules is
fault-tolerance. Each layer may be viewed as a manager of the
lower layer. Within each layer, cooperating functions observe a
protocol in their relationship that ensures that:

1. They do not corrupt each other.

2. They know whether cooperating functions are behaving
correctly.

When things go wrong within a layer, that layer is able to
call on the next layer above for help in recovering. The fol-

2-5

lowing subsections describe the Hierarchy of System Autonomy in
further detail.

2.2.1 Layer 1: Physical

Physical failures can occur when bits are incorrectly
stored, fetched, or compared, or otherwise manipulated: signals
are corrupted; or physical state changes are mistimed. An error
in this layer can be transient or permanent. If it is transi-
ent, it can be recovered from, usually by retrying the opera-
tion. If it is permanent, it is reported in some way to Layer
2, so that recovery can be attempted. The functional hierarchy
of Layer 1 is shown in Figure 2.3.

2.2.2 Layer 2: Deterministic Control

The label "determinism" is used here to provide a more
general classification than the term "processor". While it does
include processing units, it also includes bus controllers,
memory controllers, and i/o device controllers, or a functional
equivalent of these in software, which are all characterized by
being aggregations of components which execute predictable com-
plex sequences of primitive operations with well-specified tim-
ing characteristics. The job of Layer 2 is to ensure that the
failure of a deterministic function within the AASC, such as a
processor, is detected and recovered from without adversely af-
fecting other elements of the system. Figure 2.4 shows the
functional elements of this layer.

Layer 2 interacts with Layers 1 and 3 as follows. A per-
manent physical failure (Layer 1) must be recovered from by
this layer. If recovery is not possible, then the physical fai-
lure causes a failure in a deterministic function. A transient
determinism failure (such as a transient bit error in an inter-
nal processor data transfer) can be recovered from, and the de-
terministic function is restarted. However, a permanent failure
must be reported to Layer 3 for recovery or to ultimately cause
a task failure.

2.2.3 Layer 3: Module Integrity

The job of Layer 3 is to make sure that each module, here-
in also called "task", is allowed to perform its function cor-
rectly, without being adversely affected by any other task. Its
functional hierarchy is shown in Figure 2.5. This means that

2-6

Maintain
Physical
Integrity

Retry
Operation

Isolate
Physical
Failure

Analyze
Physical
Failure

Detect
Timing
Error

Detect
Data
Error

Determine
Permanence

Detect
Physical
Failure

Assert
Permanent
Physical
Failure

Isolate
Timing
Error

Isolate
Data
Error

MMUMMMMIMMIMMIIMIMIMMIM

Figure 2.3 Layer 1 Functional Hierarchy

Recover
From
Permanent
Physical Fault

Retry
Processor

isconnect
omponent

Connect
Spare

Recon-
figure
Processor

Restart
Processo

Assert
Permanent
Determin-
ism Failur

m am um am

Maintain
Determinism

Detect
Determinism
Faifure

Isolate
Determinism
Failure

Analyze
Determinism
Failure

Recover Report
Maintenance

Determine
Permanence

Assert
Permanent
Determinism
Failure

Figure 2.4 Layer 2 Function Hierarchy

Detect a
Failure

Isolate
Failure

Analyze
Failure

Recover Report
Mainte-
nance

Detect
Internal
Failure

Detect
Missing
Message

Suspend
Task

Determine
Permanence

Recover
From
Transient
Module Fault

Recover from
Permanent
Determinism
Fault

Maintain
Module
Integrity

Detect
Corrupt-
ed .

Message

Detect
False
Message

Inform
Cooper-
ating
Tasks

Log
Failure
Event

Check
Failure
Event

1

Assert
Perman-
ent Task
Failure

Report
to coop-
erating
Tasks

Find
Check-
point

Restart
Task

Try
Alternate
Compon-
ent

Assert
Perman-
ent Task
Failure

Recon-
figure
Task

Restart
task

Figure 2.5 Layer 3 Functional Hierarchy

Task A must know when information originating in Task B is cor-
rect. Traditionally, this would imply that Layer 3 must handle
both failure in B and a failure in the channel (A,B). However,
Layer 3-need only consider the logical channel (A,B), and a
logical channel behaves exactly like a task whose functi.on it
is to accept and deliver messages. Thus we may view all fai-
lures in this layer as task failures. Failures in actual physi-
cal links will be the responsibility of Layer 1.

A permanent fault in Layer 2, that is, in a deterministic
function of the AASC (generally a processor) causes Layer 3 to
try to recover. If this is not possible, a task failure is as-
serted. A task failure can also occur due to design or imple-
mentation faults. In any case, when a task fails, it may be
permanent or transient. If it is transient, recovery is carried
out. If it is permanent, this fact is reported to Layer 3,
where it causes a failure in module relationship integrity.

2.2.4 Layer 4: Module relationship integrity

Figure 2.6 shows the hierarchy of functions within Layer
4. By module relationships we mean the ability of functional
modules, such as tasks, processes, and logical communication
channels, to cooperate to provide the functions required of the
system. As long as this layer is able to provide recovery from
permanent failure of tasks and channels in Layer 3, the system
can maintain all functions. If, however, it is impossible to
recover from such a failure, then degradation of the functional
capabilities of the system occurs. Degradation may also occur
without an explicit failure in Layer 3. The layer will check a
series of assertions about the state of the various AASC func-
tions. For instance, it may check queues of outstanding re-
quests for resources from application programs and find either
queue size or waiting time above the acceptable thresholds.

In either case, degradation is checked as to its perman-
ence, and if it is found to be permanent, this fact is reported
to Layer 5. A permanently degraded state requires goal-directed
decisions based on knowledge, which is the domain of Layer 5,
the On-board Autonomy Manager.

2.2.5 Layer 5: Intelligence 1.

The use of domain specific knowledge in achieving system
autonomy characterizes the fifth layer of the hierarchy. It may
be called the KE-layer, since the technology used to apply do-

2-7

Analyze
Fault '

Isolate
Failure

Determine
Permanence

Log
àegradation

Check
Degradation
Log

Assert
Permanent
Degradation

Try
Alternat
Version

Recover
From
Fault

Report
Maintenance

Recover
From
Transient
Degradation

Recover
From
Permanent
Task_Enju_11_

DeterminI Restart
AASC ' AASC
State Function

Choose
AlternatE
Version

Start
Task

Assert
Permanent
Degrad-
ation

MI MI MI RIM MIII UM MI MI MI IIIIN MI MI

aintain
Module
Relationships

Detect
Degradation

Figure 2.6 Layer 4 Function Hierarchy

main specific knowledge is termed Knowledge Engineering (KE) as
it is conceived at the present time. It is anticipated that
this will be the first of many intelligent layers to be built
within the hierarchy. The implication here is that the capabil-
ities of the first intelligent layer are limited to those sup-
portable by using primitive Artificial Intelligence technology.
However, the layer distinguishes itself from those conventional
technologies often used in highly sophisticated computer equip-
ment such as intelligent - peripherals and intelligent memory
subsystems, because these systems do not characterize them-
selves as knowledge-based systems.

To qualify as an Intelligence 1 system, a system must pos-
sess the following capabilities and/or characteristics:

1. limited natural language processing sufficient to in-
terface a trained human operator;

2. inference mechanism that is limited in scope but
reliable;

3. uniform application of an inference algorithm at all,
levels of the knowledge stored within a single knowl-
edge representation scheme (generalized inference
engine);

4. ability to explain, in limited form, the process of
inference used on the specific problem for which the
consultation was made;

5. support structure to operate and maintain a knowledge
base;

6. ability to select suitable knowledge representation
scheme for the given problem domain;

7. ability to select the appropriate control mechanism to
access the represented knowledge;

8. ability to make limited use of heuristics in the infer-
ence process when necessary; and

9. possession of primitive knowledge acquisition mechanism
which operates under strict human control.

The AASC supports Intelligence 1 in the form of On-board
Autonomy Management (OAM). The OAM is—described in section 2.3
below in further detail. Precise definition and implementation

2-8

of an example of an autonomy management subsystem for on-board
functions in the form of a consultation system, will be the
first major milestone in the development of the OAM. The pack-
aging of the subsystem in a form suitable for on-board use will
be the next. The successful testing of the prototype will com-
plete the development cycle.

2.3 The Onboard Autonomy Management (OAM)

2.3.1 Introduction

The fifth layer of the Hierarchy of System Autonomy will
be implemented within the AASC as the Onboard Autonomy Manage-
ment (OAM). It will form the highest intelligence on board the
AASC and will be responsible for the satisfactory operation of
the entire on-board system. As such, it represents the space-
craft in its relationship to the entire operating environment
including its dealing with ground control.

A foundation for accommodating Layer 6 of the autonomy hi-
erarchy (Intelligence 2 layer) in the future is already built
into the present design- of the AASC. It exists in the form of
hooks of various formats distributed throughout the structure
of the OAM.

2.3.2 Function of the OAM

The OAM performs, on board, the following management and
house-keeping functions:

1. Reporting to Ground Control.

The reporting may take place at pre-arranged windows in
time; upon receiving command from the ground; or when
the OAM recognizes one of a number of pre-defined con-
ditions that needs to be reported.

2. Subsystem Monitoring

The OAM receives distress reports from the Fault Toler-
ance Management (FTM in Section 2.4 below) in accor-
dance with the inter-layer reporting defined in Section
2.2.0 above, and attempts on-board correction. If it
fails, it will raise a condition that would require the
OAM to report to the ground. If it succeeds, the event
would be transparent to the ground except for the need

2-9

to make an on-board log entry.

The OAM also sends out enquiries to subsystems. If the
reply is not satisfactory, a similar declaration, as on
the receipt of distress signals, is made and processed
accordingly. A corollary to this is the voluntary, pas-
sive reception and analysis of outputs of subsystems
collected through software and hardware sensors. Such
sensors will be distributed throughout the spacecraft.
A similar abnormality condition will be declared if the
OAM deduces from other inputs (such as its own opera-
tion log described in 2.3.3.3 below), that an abnormal
condition has occurred.

3. Enquiry Processing

Enquiries will be received by the OAM from various
external sources, such as ground control, orbital relay
station, and other ground and in-orbit stations. It
will disperse information concerning its on-board oper-
ation including its history of operation. Enquiries are
accepted according to a prearranged authorization
scheme.

4. Audit

At any time in its operation, the on-board management
is subject to audit by authorized stations. Upon accep-
tance of authorization, the OAM will establish and ma-
intain a direct communication channel between on-board
facilities (including those implemented in software and
data files) and an auditor. The audit facility will be
implemented as a natural extension of the enquiry fa-
cility described above.

5. Reconfiguration Control

Restructuring of on-board functional modules (software
or hardware) will be needed for various reasons such
as:

- detection of a permanent fault in system

- suspected malfunction of a module

- mission profile change

- changing threat to the wellbeing of the spacecraft

2-10

- change in load distribution

A reconfiguration may be initiated by a command from
ground control, a request from an on-board subsystem,
or as the result of subsystem monitoring by the
on-board management described above. In the case of a
request from a subsystem, a qualification process must
precede the reconfiguration. A special case of
ground-initiated reconfiguration is the updating or re-
loading of on-board software. To have a basic system
loader available on board even in an emergency, por-
tions of the OAM system software will be implemented in
secure memory modules with ample designed-in redundan-
Cy.

6. External Communication

As the OAM represents the entire spacecraft, it manages
general communication between the spacecraft and exter-
nal world. This includes authorization, establishment,
and maintenance of external communications requested by
on-board subsystems. In cases where other on-board com-
munication arrangements are made, for example, the ex-
istance of a dominant on-board communications facility
such as the payload of a communications satellite, the
involvement by the OAM in external communication will
be limited.

2.3.3 The Structure of the OAM

2.3.3.0 Introduction

Figure 2.3 shows the structure of the OAM It is made up of
two sections: the Control Subsystem (OAM/CS) and the Onboard
Consultation System (OAM/OCS). The Control Subsystem authenti-
cates the exchange of information between on-board subsystems
and the external world. It also decides if the on-board expert
system (OCS) should be consulted on specific issues related to
the autonomous control of the spacecraft. It is the nerve cen-
tre of the entire on-board control system, although it will ma-
intain redundant spares in the actual implementation.

The OCS.performs deductions based on Knowledge Engineering
(KE) techniques and returns an answer to the given problem on
which the consultation was made. The OCS is subordinate to the
CS, and hence to ground control. Ground control can also issue
an enquiry to the on-board expert system.

2-11

2-12

CS, and hence to ground control. Ground control can also issue
an enquiry to the on-board expert system.

2.3.3.1 The Control Subsystem

As shown in Figure 2.7, the Control Subsystem consists of
an Autonomy Control module, interface functions between
on-board subsystems and external (ground) stations, and the Ac-
cess Control that links them with the OCS. The Access Control
shares a local data base called CTLDB with the Autonomy Control
to maintain essential system data necessary to run the OAM.

The Control Subsystem performs two roles: interface for
external (ground), on board, and consultation subsystems; and
decision making for on-board autonomy issues. The Access Con-
trol regulates the flow of information among modules using pro-
tocols. For example, the ground cannot access on-board subsys-
tems or the OCS without proper authorization imbedded in a pro-
tocol. An on-board subsystem will not issue an enquiry to the
OCS unless it can use a protocol which is acceptable to the Ac-
cess Control.

Autonomy Control is concerned with making decisions on is-
sues concerning autonomous operation of the spacecraft. Dis-
tress messages passed on to it by Fault Tolerance Management
will be assessed and measured using known control algorithms
stored in the CTLDB. If it does not yield helpful results, a
consultation request will be issued to the OCS. If that proves
unsuccessful (no helpful information obtained), then it will
report the OAM failure to ground control.

Two interface modules, the Subsystem Interface and the
Ground Gateway, act as gateways in the sense in which they are
used in networking; that is, gateways as defined in the OSI
reference model. A gateway allows interchange between different
communication modes at the NETWORK protocol layer. These inter-
faces may internally support higher layers of the reference mo-
del, i.e. TRANSPORT, SESSION, PRESENTATION, and/or APPLICATION
layers.

The CTLDB carries several types of data essential to the
operation of the OAM and some of the other on-board subsystems.
There will be a mechanism in the OAM protocol to allow
re-loading of the data base from an external source through the
Ground Gateway and the Access Control so that in-flight reco-
very of the lost data base can be made. The information conta-
ined in the data base is as follows:

I.

Access
Control

Autonomy
Contrai

.CTLDB

- onboard
subsystems

subsystem
interface

-

.1

-1
Ground
Gateway

1
ground and
external

User
Interface

V

Explanation
Subsystem

Knowledge
Acquisition
Subsystem

EMDB

CKB
Compound
Knowledge
Base

Inference
Subsystem

Execution
Monitor F-‹

OAM/Control Subsystem OAM/On-board Consultation System (OCS) •

Figure 2.7 One-board Autonomy Manager (0AM) Block Diagram

- software that describes the OAM protocol

- authorization code files

- the entire OAM software except for the contents of the
CKB (the'CKB re-loading may be performed only when the
other parts of the OAM are functioning properly)

- all reloadable software for other on-board subsystems.

- operation log of the OAM, stored in a hierarchical
fashion, so that the most recent events are recorded in
the greatest detail, while older records are increas-
ingly abstracted.

2.3.3.2 The Compound Knowledge Base (CKB)

The CKB is a collection of knowledge bases (KBs) intercon-
nected to form a distributed knowledge pool on-board the AASC.
Each KB that constitutes CKB represents a domain in on-board
health monitoring, control/monitor signal processing, mission
profile control, emergency procedures, or the structure of the
AASC. The method by which knowledge is represented for each of
these constituent KBs will be chosen to best suit the domain.
However, the frame-based representation will be mainly used be-
cause of its sophistication as a knowledge representation tool,
similarity to known neurophysiological representations
[KENT 81], and the availability of high quality development to-
ols for research and development [TSOT 80, UOFT 82, MYLO 83].
The semantic networks and rule-based representation (production
system) will be also used, as well as other forms of associa-
tive memory and retrieval mechanisms when appropriate.

The CKB may be expanded to eventually contain KBs in the
following problem domains:

- diagnosis of module failure

- prescription of remedies for malfunctions

- failure forecasting

• - dynamic reconfiguration management

- mission profile monitoring/change coordination

- effector monitoring

2-13

- prediction of interaction of spacecraft with external
objects

- action planning

- situation assessment using inference on observed data.

Links will be established among frames within a KB and
those in different KBs to form semantic relationships such as
the causality of a specific event. Such links are used, for ex-
ample, to establish association between an abnormality observed
in a temporal domain and possible causes of the abnormality in
an underlying event domain ESHIB 83]. A practical example would
be linkages between fluctuation observed in the output signal
level of a Spectroscopic Imaging System and known causes in the
underlying event domain that might explain the abnormality.

2.3.3.3 The Execution Monitor, the EMDB, and the Inference Sub-
system

Inputs from users are handed in to the Execution Monitor
via the OCS User Interface. The Monitor then organizes them in
the agenda subsection of the database (EMDB) that records the
session specific execution data concerning the inference pro-
cess. The Execution Monitor will also construct a plan for the
execution and record intermediate results from the process.
Both the plan and intermediate results will be recorded on the
EMDB. The Execution Monitor is also responsible for initiating
the inference process at the outset and guides it or otherwise
controls its execution, as this becomes necessary. The EMDB is
accessible during and after the process to the Explanation Sub-
system (2.3.3.4 below) through the Execution Monitor.

The Inference subsystem performs inference using knowledge
stored in the CKB. Other than when it requires occasional sup-
port from the Execution Monitor, the successive inference
stages are carried out autonomously by the Inference Subsys-
tems. Since the knowledge is represented in any one of several
representation schemes, an appropriate inference mechanism
would have to be chosen automatically by the Inference Subsys-
stem. When association between two concepts takes place, the
inference process automatically performs the transition and
manages necessary context changes. There is provision for achi-
eving a limited parallelism of the inference Processes within
the inference subsystem and the Execution Monitor.

Output from the Inference Subsystem is fed back to the

2-14

User Interface via the Execution Monitor in one of several re-
presentation protocols to be defined for the OCS.

2.3.3.4 The Explanation Subsystem

The objective of the Explanation Subsystem is: (1) to ex-
plain to the user how the OCS reached its conclusion on a given
problem, and (2) to provide to qualified users the insight of
the on-board KBs.

Output from the Explanation Subsystem is given to the re-
questor through the User Interface in one of the OCR interface
protocol formats appropriate to the nature of the enquiry and
the type of knowledge representation involved. As the interme-
diate results of a consultation are stored by the Execution
Monitor in the EMDB, the Explanation Subsystem requests the Ex-
ecution Monitor for the retrieval of this information. The Exe-
cution Monitor enters the state in which it can accept the re-
quest as soon as an inference process on a given problem be-
gins, and stays that way . throughout and after the completion of
the process for a period of time determined by a system parame-
ter.

On the other hand, if a user demands a "dump" of the cur-
rent contents of a KB, the Explanation Subsystem will access
the KB directly, even when the KB is in use. To be able to do
this, however, the Explanation Subsystem must receive from the
user information regarding the identification of the KB and its
sections to be dumped. Alternatively, the user can ask the Exe-
cution Monitor for the identifiers of KBs, if the enquiry is
only concerned with the KBs involved in the inference process
presently underway. This form of dump request may be made to
enhance the understanding of the details of a specific consul-
tation process and also to debug the Inference Subsystem and
the CKB.

2.3.3.5 The Knowledge Acquisition Subsystem

This subsystem will not be implemented in the current AASC
design except for a simple KB update facility. Thus, the
Layer 5 OAM will only have the ability to selectively rewrite
portions of KBs, as needed. In special cases, the entire KB may
be rewritten under remote control. Information given via the
User Interface with appropriate control codes will be passed on
to the Knowledge Acquisition Subsystem. Access control by the
Access Control module of the OAM Control and verification of

2-15

2-16

the authorization by the subsystem are especially stringent to
avoid erroneous rewriting of KBs.

During the KB-updates, the OCS described above locks out
normal accesses and no inference process can take place. The
Explanation Subsystem, however, may still be invoked to permit
the monitoring of the update process.

In the future when the OAM is redefined at Layer 6
(Intelligence 2 Layer), it will, among other things, have the
following add-é-d capabilities:

- knowledge-base consistency check •

- primitive learning based on limited heuristics

Yet later versions (Layers 7 and onwards) will have ad-
vanced learning facilities, and eventual evolutionary opera-
tions, such as automated updating of KBs based on the history
of operation, experienced mission profile changes, and changes
in the environment in which the spacecraft functions at a given
time.

2.3.3.6 The User Interface

The User Interface is functionally the sole interface
between the Control Subsystem of the OAM and the OCS. In imple-
menting the OAM, however, to avoid creating a single point of
failure, care must be taken to provide redundancy.

The User Interface regulates information flow in and out
of the consultation system. The inputs are in the form of: a
request for consultation directed at the Execution Monitor; a
demand for explanation or a dump request directed to the Ex-
plantion Subsystem; and a control input to update a KB using
the Knowledge Acquisition Subsystem. The outputs are: the
inference output•from the Execution Monitor; and a statement of
explanation from the Explanation Subsystem.

A set of standard protocols that is used at this interface
will be defined during implementation. The set will include
several presentation formats and encompasses a few levels of
abstraction in its contents. Proper protocol will be selected
automatically according to the circumstances of the i/o opera-
tion or by request. The User Interface performs a limited for-
matting and translation on data being exchanged. It also ap-
plies a layer of access control to the information flow in ord-
er to enhance the security of the consultation system. For ex-

ample, command sequences to • update the CKB will be
double-checked although they would already have been checked by
the Access Control module of the OAM control subsystem before
entering the OCS. The User Interface also takes added precau-
tionary measures to prevent unauthorized delivery of explana-
tions by the Explanation Subsystem.

2.4 Fault Tolerance Management

Layers 1-4 of the AASC autonomy hierarchy are grouped
under the title "Fault Tolerance Management". There is a recog-
nizable qualitative difference between theories, structures,
and techniques used in Layers 1-4 and those used in Layer 5 and
above. Furthermore, the functions performed by Layers 1-4 have
traditionally been labelled "fault tolerance".

Within each layer of the AASC autonomy hierarchy, the gen-
eral hierarchy shown in Figure 2.2 should hold. In comparing
layers, it is clear that there are three classes of functions
within the layers:

1. Functions whose characteristics are well-known and
standard. These functions will not be described expli-
citly, since their implementation will be straightfor-
ward and probably off-the-shelf.

2. Functions that occur under different labels in several
layers but that are virtually isomorphic in charac-
teristics. These functions will be described generical-
ly, with annotations for individual differences induced
by each layer.

3. Functions whose characteristics are significantly dif-
ferent in each layer. These will be described individu-
ally.

Each function description will include the following
components:

1. Function name.

2. Brief description of the steps used to accomplish the
function, or reference to the algorithm.

3. Data structures required.

2-17

4. Output of the function.

5. If this is a generic function, a series of annotations
for the various instances of the function in specific
layers.

Layer 4: Module Relationship Integrity

Detect Degradation

Techniques

1. Check each resource and service provided by the AASC,
and time-stamp it.

2. If a resource is below its threshold, and has been so
for an unacceptable time, assert function failure.

3. If a service has applications waiting on it for unac-
ceptable time, assert function failure.

4. If a specified service does not exist, assert
function_failure.

5. If possible for the service or resource, issue a test
request. If the test result is not within its speci-
fied threshold, assert function_failure.

Data Structures

1. List of services and resources, with threshold parame-
ters and test request procedures.

Output

1. function failure
- boolein

2. function failure description
-- a record describing the function, failure type, and

quantitative description of the failure.

Isolate Failure

Techniques

2-18

2-19

No action need be taken to accomplish this in Layer 4,
since the functions are independent. The functions to be
maintained are:

Provide resources to applications

-- secondary storage
-- primary storage
-- communications channels
-- computation

Provide services to applications:

-- application process management

Log Degradation

Techniques

1. Create degradation_description.

2. Write degradation description on event_log.

Data Structures

1. degradatiOn description

-- record containing
function name
description of degradation
time

2. event log

-- data base of events
keyed on time, function name

Output

1. degradation description

Check Degradation Log

Techniques

1. Search event log database for degradation descriptions
with same nanie as currently degraded function.

1

2. Determine from this search the parameters of the pat-
tern of degradation for this function, such as:

- frequency, recent and historic
- rate of change of frequgncy
- rate of change of level of degradation.

Data Structures

1. event_log

-- data base of events
keyed on time, function_name.

Outputs

1. degradation_parameters

-- record containing
function name, recent frequency, historic
frequenc7, frequency aange, level_change7

Determine AASC State

Techniques

1. Examine AASC resource lists, Application service
queues.

2. Reinitialize the resource lists and service queues for
the degraded function.

Data Structures

1. Resource lists

-- list of AASC resources
primary storage
secondary storage
processors
communications channels

2. Service queues

-- queues of applications awaiting service
or being served.

2-20

Output

1. resource list and queue entries for degraded AASC
function.

Restart AASC Function

Techniques

1. Load tasks required for function.

2. Update functionconfiguration_table.

3. Start tasks.

Data Structures

1. Task library

-- library of all tasks required by AASC.

2. task directory

-- directory of tasks required for each
AASC function.

Output

2. function configuration table

-- table of functions currently executing in AASC

Choose Alternate Version

Techniques

1. Check task directory for alternate version of failed
task. The version may be specified and implemented in
the same way as for N-version programming (see Detect
Internal Failure below).

2. Check task descriptor of failed task for list of coo-
perating talks.

3. Update list of cooperating tasks in alternate version.

Data Structures

2-21

1. task directory •

-- directory of tasks required for each AASC function.

2. task descriptor
-- list of characteristics, status, etc.

maintained for each task by operating system,
including cooperating tasks list.

3. cooperating_tasks

-- list of all tasks with which this task
exchanges messages.

Start Task

Techniques

1. Determine the state of cooperating tasks.

2. Establish communication channel with cooperating
tasks.

3. Begin specified task.

Data Structures

1. cooperating_tasks

-- list of tasks with which this task exchanges mes-
sages.

Report Maintenance

Techniques

1. Create maintenance event descriptor

2. Write maintenance_event_descriptor on event_log.

Data Structures

1. maintenance event descriptor

-- record containing
layer name, time, failure
description, failure_permînence,
recovery_status

2-22

I

1
1

1

1

2-23

2. event_log

-- data base of events
keyed on time, layer name or
function_name.

Layer 3: Module Integrity

Detect Internal Failure

Techniques

1. Determine assertions to be tested at significant po-
ints in each procedure. If an assertion is false, as-
sert task_failure.

2. Determine an assertion to be tested at completion of
each procedure. If the assertion is false, assert
task failure.

3. On processor interrupt, assert task_failure.

4. Bracket each procedure with pre- and post-conditions.
If either condition is false, assert taskjailure.

5. N-version programming: Two or more specifications and
implementations of the same function are executed.
Their outputs are compared. If they do not agree with-
in specified tolerance, assert task failure. If there
are two versions, the task failure-description must
name both tasks and indicate-that on-é- or both have fa-
iled. If there are three or more versions, and a ma-
jority agree within tolerance, the
task failure description names the minority task(s).
The ii-oting 6ri outputs may be accomplished in at least
two ways:

1. distributed voting

2. an independent comparator task.

In both cases, voting is done by message exchange.

Data structures

Dependent on 'procedure.

Output

1. task failure
- bUolean

2. task failure description
- record naiing task, procedure,

assertion label, other parameters.

Detect Missing Message

Techniques

1. Check flow control field on message. If it is not suc-
cessor pre-V-ious flow control field, assert
task failure for channel task.-This is-a standard fea-
ture-of the network layer of the communications proto-
col to be used in the AASC. (See networking section.)

Detect Corrupted Message

Techniques

1. Compute check sequence on message and compare with
sender's check sequence.

If not equal, assert task failure for channel task.
This is a standard feature ol the link layer of the
communications protocol. (See networking section.)

Detect False Message

Techniques

1. Acknowledge the message. If the sender sends an error
message in response to the acknowledgement, then the
message was false.

Data structures

1. Error message
message indicating previous acknowledgement was

redundant.

Suspend Task

2-24

Techniques

1. Raise an exception in the task. This causes invocation
of an exception handler and suspends execution of the
task.

Inform Cooperating Tasks

Techniques

1. For each task on cooperating tasks list, send a mes-
sage terminating cooperatiUn. This is done by the
exception-handler for the task.

Data Structures

1. cooperating_tasks

-- list of all tasks with which this task '
exchanges messages

Output

1. termination message

-- message containing
flow control information for last
message received and processed, and
termination indicator.

Find Checkpoint

Techniques

1. Search task history for most recent checkpoint entry
for this taik. If found, assert checkpoint found, oth-
erwise negate checkpoint_found.

Data Structures

1. task history

-- data base of checkpoint entries
keyed on task name, time

2. checkpointentry

-- record containing task_name, time,

2-25

taskçontext_description

3. task_context description

-- the format of this item is dependent on
the task and known to the task.
It contains all data items
needed to restore the task to its state
at the time of the checkpoint, except
for messages sent to other tasks after
the checkpoint time.

Output

1. checkpoint_found

boolean

I I

I.

Report to Cooperating Tasks

Techniques

This function will be carried out in the
exception-handler for the failed task. It is similar to
Inform Cooperating Tasks, except that the message sent is
an initiateçooperation message.

Reconfigure Task

Techniques

1. Examine processor configuration table to determine
which processors are - available. -

2. Assign a free processor to the task. The processor may
be a GDP, IP, NPU, or other deterministic unit. This
re-assignment may be done by hardware or by the oper-
ating system nucleus.

3. Update the processor configuration table entry for the
processor assigned. -

Layer 2: Deterministic Control

Detect Determinism Failure

2-26

Techniques

1. Redundancyi Run the processors simultaneously in
lock-step, with a comparator function on processor
outputs. When outputs disagree, generate a signal. If
redundancy is triple, then generate a signal indicat-
ing the faulty processor.

2. The hardware will execute a transition to an "error
detected" state.

Data Structures

1. faulty_processor

boolean, associated with each processor.

Isolate Determinism Failure

Techniques

With the deterministic component in an error detected
state, and the fault detected indicator for th -- failed
processor asserted, — the component is disabled from pro-
duce output, hence is isolated from the rest of the sys-
tem.

Layer 1: Physical

The functions at this level are almost invariably carried
out by hardware.

3. STRUCTURAL HIERARCHY

3.1 Introduction

The structural essence of a computer system is generalized
as a network. Modern computers cannot function properly without
some form of linkage between themselves, or between themselves
and other functional nodes of a system. Computer networking is
a rapidly maturing discipline. Most issues which used to be a
major impediment a few years ago have been solved or are being
solved. Today, networks of various size, form, and characteris-
tics are either readily available or may be built out of high
performance building blocks.

Almost two decades of experience in the active use of
computer-based communication systems has resulted in various
levels of standardization. Amongst them, the Open Systems In-
terconnection (OSI) reference model serves the role of standard
bearer. The layered structure of the model has amply demon-
strated its adaptability to the reality of machine to machine
and machine to human communication. An excursion in concepts
supported by this experience is the creation of a meta-layer
structure of networks. As described in Section 3.3 below, there
are several networks of different geographic coverage that span
any conceivable spread of human activity. The know-how of prop-
er use of computer communication is rapidly becoming the syno-
nym for finding one's place in this hierarchy.

Because one can depend on the OSI and as the OSI is a gen-
eralized scheme of interconnection, the size of the network has
a decreasing impact on the design of the interconnection scheme
for a specific application. In fact, in many cases, the same
set of software and hardware modules may be used to arrange in-
terconnections using networks of several different sizes. The
recursive nature of the network control structure (e.g., the
same interconnection modules may be used on networks of differ-
ent sizes) will not only simplify the network usage but will
result in a drastic increase in flexibility and reliability of
the building blocks. The trend is being expanded to provide
flexibility to other aspects of the protocol, such as speed,
error detection schemes, access methods, data size, and in some
cases, network topology. We are progressing towards the day of
building networks to really suit the application, and not vice
versa, while maintaining strict adherence to global standards.

Interpreted in fault-tolerant computing, this will only
increase our chance to implement in reality, discoveries made
in theoretical fields, particularly those achieved in the area

3-1

of software fault-tolerance. A drastically increased reliabili-
ty of network building blocks due to their implementation in
VLSI, is also helping the cause.

Sections 3.2 and 3.3 below summarize observations made on
the state of the art in networking standardization. Sections
3.4 through 3.7 cover the way the AASC will implement intercon-
nections.

3.2 Definition of Structural Hierarchy

Section 2 described the detailed funtional decomposition
of the autonomy of the AASC. In implementing this complex of
functions, it is necessary to fit this decomposition to the
constraints imposed by the following:

1. Spatial location

2. Timing

3. Availability of algorithms

4. Historical division of structure.

Nevertheless, it is possible to induce a layering hierar-
chy of structures in the AASC and its environment.

The structural layering is based, because of constraints 1
and 4 above, on the physical size of the structures involved.
The divisions between layers are not clear-cut but certain
meta-rules can be defined.

1. A layer Li consists of a set of nodes and a' set of
links (channels) connecting nodes; in other words, a
network.

2. A node in layer Li is a network in layer Li-1.

Conversely, a network in layer Li is a node in layer
Li+1.

3. The protocol for communication is independent of i;
that is, uniform across all layers.

The advantages of layering have been stated in Section 2.
The advantages of the above meta-rules for the structural la-

3-2

yers are:

1. Economy of design effort

2. Minimization of inter-layer conversion

3. Simplicity, which implies reliability and greater po-
tential for enhancement.

3.3 Structural Hierarchy

For each layer of the hierarchy, we will give the physical
size-range and characterize the node types and link types. The
hierarchy as applied to ground-based networks is shown in Fig-
ure 3.1a.

The nodes will be single spacecraft and a gateway on an
Extra Global Network. The links will be established by radio
beams.

Extra Global Network (EGN)(10**2-10**6km)

The nodes will be single spacecraft or a spacecraft in
earth orbit, and a gateway on a Global Network. The links will
be supported by. radio beams.

Global Network (GN)(40,000km):

The nodes are gateways on networks of all sizes smaller
than GN. The links are radio-frequency, microwave, wire, or
coaxial cable. The AASC may interact with a global network in
order to communicate with ground conttol or with another orbit-
ing satellite that is obscured by the earth.

Cross-Country Network (CCN) (150-6000km):

The nodes are smaller networks as described below. The
links are the same as for GN. The AASC may interact with CCN
when it supports national communications functions.

Long-Haul Network (L1IN)(100-500km):

Nodes are smaller networks and links are the same as for
CCN. The AASC may participate in a LHN as part of a group of
spacecraft engaged in a coordinated function within the given
distance range, for example, the rendezvous of a satellite with
a shuttle.

3-3

PDN

VLAN
LAN : Local Area Network

VLAN: Very Local Area Network

ULAN: Ultra Local Area Network

GN : Global Network

CCN: Cross-Country Network

LHN7.. Long Haul Network

MN : Metropolitan Network

Ili IIIIIII OM MI 11M 1111111 MI WWI 1111111 111111 ,

-11--\ ..___/.... ---
GN

f 4 1 e l

K
/

4 \ \GN

Adelee . M

I ...-•-•<, ,

MN
LAN

»

LAN .

ape >----- LAN
MN

Ÿ L rt N1—j
ULAN

LAN

LAN
VLAN

Figure 3.1a The Hierarchy of Networking as applied to Ground-
based Systems.

I

Metropolitan Network (MN) (10-150km):

Nodes are LANs or smaller. The links are the same as for
LHN, plus laser and infra-red. The AASC may consist of a metro-
politan network if it is used during construction of a space
station structure in the given size range.

Local Area Network (LAN) (50m-10km):

The nodes are processor clusters and the links are wire,
optical fibres, infra-red, laser, or coaxial. The AASC must be
able to be configured as a LAN, since spacecraft size could
well be in this range.

Very Local Area Network (VLAN) (1-50m):

The nodes are processor clusters or single processors. The
links are wire or coaxial or optic fibre. Individual AASC sub-
systems, for instance an antenna control system, fall into this
category.

Ultra Local Area Network (ULAN)(10cm-lm):

The nodes are processors or processor complexes or deter-
ministic devices. An individual physical backplane within the
AASC falls into this category. The links are wires.

Module Network "(MDN)(10**-1mm - 10cm):

The nodes are tasks executing in processors or microscopic
connections within electronic components. The links are hence
logical channels between tasks, though it is possible to define
the physical basis upon which such logical channels execute.
All AASC functions will be supported by modules and networks of
communicating modules.

3.4 External Links

The AASC achieves external communication through the con-
trol of the Ground Gateway of the OAM. The actual exchange of
signals is, however, achieved through the on-board communica-
tion subsystem. The link will be established through directed
radio-beams. The technology to combine the OSI with the packet-
ized radio system is already available. By adopting a gateway
scheme which supports the OSI structure, the AASC will become a
node of a global network scheme. This simplifies the exchange
of information between the AASC and other stations anywhere in

3-4

the global netwôrking scheme of the external link of the AASC.
The slight deviation from the concept implied in the Packetized
Telemetry developed by NASA [NASA 82] is due to the awareness
of the importance of this global incompatibility.

The high bandwidth link will be sufficient to satisfy all
on-board needs and most ground needs, particularly if on-board
data reductions are considered.

3.5 Subsystems Interconnection

3.5.1 Introduction

The most dominant communications within the AASC are those
between on-board subsystems. On-board subsystems are those
spacecraft modules with clearly defined independent fuhctions.
Examples of a subsystem are: attitude control subsystem, ther-
mal control subsystem, antenna orientation control, power man-
agement control. They typically consist of hardware and embed-
ded software.

3.5.2 Mode of Communication

Figure 3.1b shows a typical on-board inter-subsystem com-
munication. Such communication is characterized by a relatively
high level of abstraction at which stations (subsystems) ex-
change messages. In terms of the OSI reference model, middle to
upper level protocols become of importance here. Procotol la-
yers TRANSPORT, SESSION, PRESENTATION, and sometimes APPLICA-
TION, will have to be implemented to support the subsystem
inter-connection on-board the AASC. In contrast, lower layers
such as the LINK and the PHYSICAL layers will be almost invisi-
ble ,as such layers will be treated at module level.

3.5.3 Traffic Volume

The majority of messages exchanged will be short and rela-
tively abstract (preprocessed) in nature, except in some local-
ized areas. In and around image - processing subsystems and other
high data-rate systems, bandwidth requirement will have to be
higher. To cope with this imbalance, VLANs should be used to
absorb locally heavy traffic. Subsystems which require higher
bandwidth are encouraged to process high volume data locally
and exchange only the results of the data reduction using
inter-subsystem linkages.

By limiting the level of abstraction at which exchange

3-5

[

I _ I
VLAN

1

,to

Subsystem

1
Sub-
system

LAN

subsystem interconnect on

Subsystem 2

—7
/ VLAN

)

Sub-
system 4

-- multiple media
-- multiple node access
-- non-homogeneous
-- software implemented

control hierarchy

Subsystem 5

Figure 3.1b Typical On-board Inter-Subsystem Communication

-- network scale multitasking
-- non-homogeneous
-- servers of all sorts
-- capability-based access to

servers

Figure 3.2 The Dynamic Server, Model

takes place between subsystems, high traffic management becomes
simpler. The lack of the need to transmit high volume raw data
across the spaceship (except in emergencies such as auditing of
the on-board vision system from the ground) will contribute to
improved reliability of subsystem level communication.

3.5.4 Homogeneity and Dynamism

There will be a wide variation in physical size, shape,
and function among subsystems (e.g. an AOCS and a power regula-
tor will be drastically different from each other in these at-
tributes). For this reason, the on-board network becomes
non-homogeneous. Since the subsystems will be exchanging mes-
sages of relatively short size, the mode of operation will look
much like conventional multi-tasking models seen in single pro-
cessors, except in this case, the operation is expanded to the
entire network. The implied level of dynamism in the network,
therefore, will be high in spite of the lower over-all traffic
need. This "multitasking" mode of operation is obvious as vir-
tually all subsystems will be operating concurrently most of
the time. In a situation like this, the server-oriented model-
ling proposed by the Liberty Net project [KING 82] fits nicely,
as seen in Figure 3.2. There will be workstations (subsystems)
of various sorts conceptualized in functional terms on board.
Such workstations are, indeed, servers (e.g., power-regulation
servers, on-board communication control servers, on-board file
servers). These will be intermixed with logistic servers such
as message authentication servers, file update servers, ground
traffic monitor, error-log servers. Personification fits well
in this type of modelling.

3.5.5 Application

In future spacecraft, on-board data handling will become
increasingly sophisticated. Activities seen in offices, facto-
ries, and laboratories on the ground will be gradually seen in
orbit. The implication is that whatever technology we are de-
veloping now in Factory Automation (FA), Office Automation
(OA), and Laboratory Automation (LA) will eventually find its
way into space.

The dynamic server concept is ideal for all these applica-
tions, as it operates at a higher level, independent of the
underlying topology. A hypothetical wired laboratory is shown
in Figure 3.3. Ultimately, this is an example of the realiza-
tion of several concepts similar to those contemplated by the
communication industry today. "Messages" in these cases are de-
fined as "anything that can be digitized". Thus, a "message"

3-6

c=I
71—f.

I —0

work stetiouS

0 Li]

•
l'eut9

IQ j•lie
ee.Avee

eci—d sums »tie

canoies. e4nter p
Ej PeCeete _

OM UM MI MI MIMI 11.11 Me WM MI MI MI

eectre
D\

I eilbcoltrrt

Figure 3.3 An Example of a Wired Laboratory

may be as complex as a frame of high precision color graphics
with a voice comment.

3.5.6 Type of Network

3.5.6.1 Topology

In most cases, no "store and forward" processing will be
needed in networking within the AASC as the topology is rela-
tively fixed and, hence, routing will not be a major issue.
Freedom to choose a suitable topology (bus, multiple bus, ring,
star, or any combination of these) according to application
need is guaranteed, thanks to the layering scheme of the OSI.
On-board networks will be formed to fit the application, and
not vice versa. In applications where the network reliability
is stressed, effort to avoid singularity (such as seen in a
single bus-type network) in the system will be made.

3.5.6.2 Size of Network

MN, LAN, and VLAN, as defined in Section 3.3 above, are
considered as effective means of inter-subsystem communication.
This hierarchy of networks will permit the exchange of messages
between on-board stations as far apart as several kilometers or
those as close as ten centimeters.

3.5.6.3 Procotols

The OSI reference model will be strictly followed. The
TRANSPORT layer will be implemented in Classes 0, 1 and 4. The
PRESENTATION and APPLICATION layers will be defined and imple-
mented whenever needed, according to individual applications.
The TRANSPORT layer will absorb all idiosyncracies that will
exist at the lower three layers, as shown in Figure 3.4. The
figure demonstrates that various network types may be intercon-
nected without affecting layers above the NETWORK layer.

3.5.6.4 Speed and Bandwidth

Bandwidth requirements will be generally low except where
equipment with high data rate (e.g image processing systems)
are involved, where high bandwidth channels will be implement-
ed. In many cases, baseband transmissions supporting simpler
message exchanges seem adequate. However, considering the need
for providing direct access between on-board subsystems, and
ground control, a broadband network will be considered for im-
plementation as the trunk inter-subsystem link, at least for
the portion of the AASC, where such needs are obvious. Adher-

3-7

Transport Protocol

System A
Application Protocol .

(-7
\ I

high
bandwidth
4AN

X.25 packet local area
network network

BIM n 111MIIMINIMMIIMMIMIIMIIIIMIMIMIfflIIMMIMIMMIMII

Figure 3.4 TRANSPORT level absorbs lower level idiosyncracies

ence to the standards, even for the lower OSI layers, will be
followed.

3.5.6.6 Internetworking

The OSI reference model supports internetworking at the
NETWORK layer. Since a mixture of topology, access method, and
bandwidth are expected within the over-all AASC, and also the
use of gateways as the main method of external communication,
extensive internetworking will be used. Standard internetwork-
ing schemes supported by the international networking community
will be implemented.

3.5.6.6 Construction

The subsystem interconnection will be supported mostly us-
ing commercially available components. Components for layers 1
and 2 (the PHYSICAL and LINK layers), are now available commer-
cially. Also, those for layers 3,4, and 5 (NETWORK, TRANSPORT
and SESSION layers, respectively) are expected to be available
in a short while. Mainly for reliability reasons, these
off-the-shelf components will be used in preference to private-
ly developed modules. The resulting immediate cost saving will
be noticeable. Of most importance, however, the long range be-
nefits from complying with the world standard in terms of ea-
sier maintenance and training, wider product availability, gre-
ater expertise-base to tap on, steadily increasing realibility,
and drastically reducing the cost of components, should be re-
cognized. If our language is different from that of the majori-
ty of the community, we will not be able to benefit from their
experience. The opportunity will.be far more important than be-
nefits that would be realized by trimming the standard private-
ly for our own needs.

3.6 Module Interconnection

Within the AASC, several modules cooperate to accomplish a
given function or service for the application processes which
perform the mission-oriented functions of the spacecraft. The
term "module" can refer to a single task or a package of tasks,
and is synonymous with the word "process".

The fact that several modules cooperate implies that there
is a logical link between modules, in that the modules must ex-
change information. Hence, a set of cooperating modules can be
viewed as a network. When the modules are in the different pro-
cessor complexes, the network is a conventional one, in the

3-8

sense that there are physical links joining the processor com-
plexes, and hence joining the modules. However, when the mo-
dules are within a processor complex, the physical links are
transparent, being the internal circuitry of the processor com-
plex. Hence, the links joining modules within a processor com-
plex are strictly logical as far as system design goes.

The indeterminate nature of the link between two modules
must be made transparent, since one of the techniques used to
attain reliability is the ability to execute modules in any of
several processor complexes.

Fortunately, the OSI model chosen for networking at all
layers allows exactly this kind of transparency.

We define communication between two modules at the Tran-
sport layer of the OSI reference model, shown in the Appendix.
This provides all the services required for inter-module
communication:

- connection establishment

- full duplex

- flow control

- unbounded size data units

- connection termination.

The possible links between modules are established when
the modules are designed. That is, for each module there is a
list of cooperating modules defined, and a possible channel
between the module and each possible cooperating module. A
channel is a module itself, and its functions are:

1. accept a request from a module to
- establish a connection with the other module
- send a message
- send a message if the channel is not full
- receive a message
- receive a message if the channel is not empty
- terminate connection.

2. Perform flow control checks.

3. For connection establishment, determine if the other
module is in this processor complex or another. If it

3-9

is in this complex, create a Network and Link module
between the requesting module and the destination mo-
dule. The link module can be implemented, for in-
stance, as an Ada port.

If the destination module is in another complex, es-
tablish a connection with the Transport layer in the
destination processor complex via the LAN Network,
Link, and Physical layers.

In either case, record the routing method so that fu-
ture Send and Receive requests will use the correct
route.

4. For Send, Receive, and Terminate requests, use the
intra-processor or inter-processor Network and Link
levels as established above.

Connection establishment requires the specification of the
receiver's logical address defined within the AASC.

The Transport level will be coded with class 4 service.
That is, it must recover from resets or disconnects and re-
transmit lost data: Other error detection and recovery is done
at the link level, using a cyclical redundancy check sequence.

3.7 Element interconnection

3.7.1 Introduction

The term "element" is used here to describe functional un-
its within the AASC that are smaller in dimension than modules
described in Section 3.6 above. While elements can be either
software or hardware, the issue of interconnection software
elements of this dimension, are well covered by the discipline
of software engineering. Hence only the interconnection of
hardware elements within the AASC is discussed.

3.7.2 Serial Backplanes

As shown in Figure 3.5, the size of the network is ex-
tremely small. It fits the description of Ultra Local Area Net-
work, or ULAN, described in Section 3.3 above. Typically, the
entire length of such network is less than a few meters. Since
this arrangement neatly replaces the traditional backplane that
held hardware components in a cage-like arrangement, the incre-
ased flexibility and the associated ease of construction is ob-

I.

3-10

Flue'

codrel JA6fIDj eta-

Figure 3.5 A Hypothetical Application of the Serial Backplane Concept

vious. Another aspect of the network is its high speed, as it
replaces the transmission media which were running at or around
the execution cycles of conventional processors and memory un-
its. The network will probably be run at a speed between 5 and
30 MBPS. Lower speeds may be possible in some cases, as the
level of intelligence supported by each element is steadily
getting higher, and hence the likelihood of exchanging "mes-
sages" in place of blocks of raw data is high. By replacing the
arrangement of separate address, data and control lines common
in conventional backplanes, functions of all these channels
must be implemented within a protocol of packetized network.
This is not a problem as most existing protocol schemes, in-
cluding the OSI, already have this provision in their defini-
tion. Addressing is achieved by the destination address field
in the protocol frame, with the added flexibility of being able
to specify the source address. Similarly, the data field of a
packet replaces the data lines, with the added flexibility
which variable length data fields can provide. The functions of
the control lines are simply supported by control codes that
fit in the data field of the packet, only with a far greater
selection of control possibilities than those which the normal
dozen or so control lines can support. The replacement of sev-
eral dozen copper strips by a pair of flexible wires implies a
greater fault-tolerance, as improved decoupling between ele-
ments and less exposure to the environment are achieved.

3.7.3 Flexibility

In addition to the remarkable flexibility stressed above -
in packetized data handling, the flexibility achieved in other
domains is obvious. For instance, the cable can be twisted at
will, allowing a more functionally-oriented arrangment of com-
ponents within a package.

The packet exchange is completely asynchronous, as opposed
to the relatively strict timing requirements still existing in
so-called asynchronous backplane buses. Elements are completely
independent in their physical position on the bus. The types of
transmission media that can be used with the scheme is also
left to the choice of the system designer. Some of the VLSI
controllers available for this use would permit the choice of
coaxial cables of various specifications, twisted wires, or
even naked wires. Noise hazards from EMR (electro-magnetic ra-
diation) would be no worse than the conventional backplane,
while the greater ease with which the channels can be shielded
is a welcome option, as this will, in addition to protecting
the environment from EMR, increase the fault-tolerance of the

3-11

network against external noise.

Flexibility is also seen in the software controlled param-
eters of such networks supported by VLSI controllers. Not only
are the size of packet, addressing field, data field, and the
transmission speed programmable, but parameters such as the
lengths of the preamble sequence, and CRC code are also con-
trollable by the software. They can also be programmed to cho-
ose the location of buffers, the size, and the number of pack-
ets being received or transmitted. This flexibility may be used
to organize buffers and control blocks in such a way as to in-
crease the fault-tolerance of data structures.

4. SYSTEM TEST PLAN

4.1 Test Concepts

System testing is seen in the same context as system de-
velopment. The initial view will be one of functional testing -
a functional operation will be viewed as a "black box" with a
set of inputs and outputs which will be tested against its op-
erational requirements [HOWD 80]. As testing proceeds through
the layers of functional decomposition, each succeeding opera-
tion will become the next "black box", while the structure of
the layer preceding it will now become visible. Functional
testing is defined as having an infinite number of tests which,
if applied, will find the total number of errors in the system.
Structural testing, conversely, has a finite number of tests
which will only find a limited number of errors. Testing of the
system, therefore, will attempt to provide a balance between
functional testing and structural testing.

A survey of the literature has revealed that the most
critical stages of system development, as far as error occur-
rence is concerned, are those of specification and design. The
errors occurring at these levels are the most difficult to de-
tect, costly to correct, and critical in effect. It is pro-
posed, therefore, that considerable effort should be made to
reduce and trace such errors. The use of a specification
language is of great importance in this attempt. A language
such as Ada, used for specification purposes, is in itself di-
agnostic, as it provides a means of identifying design errors
at a very high level by prototyping the system.

A detailed checklist shall be created from the functional
specification. This shall be achieved through hierarchical de-
composition of the specifications. A hierarchical tree shall be
created independently of the functional decomposition done for
design purposes. Comparison between the two decompositions will
form a test of both processes, since it must be remembered that
the testing process, itself, is as prone to errors as that of
system development.

4.2 Methodology

- System testing shall begin at the outset of development
and continue throughout.

- Testing shall be conducted in a top-down, structured fash-

4-1

ion.

- Functional elements, as defined by the requirements, shall
be viewed as a "black box".

- Provision must be made for the injection of test data into
the system and extraction and recording of the system's
operational status, if this is not provided under normal
operating conditions.

4.3 Test Requirements

The purpose of testing is to ascertain that the system
conforms to the requirements. The system shall be tested until
these requirements are met.

System Reliability

The system test shall ascertain that:

a) the MTFF will be 10**9 hours
b) the system failure rate will be approximately 10**9 fa-

ilures per hour •
C) the availability of the system will be (1 - 1°**9)
d) the error rate of the system will be 1 incorrect symbol

in 10**9.

Flexibility

The system test shall ascertain that:

a) the system will be able to serve an abitrary set of ap-
plications on each mission.

b) the system will be able to adapt in flight to changes
in mission profile.

C) the system will be able to upgrade or enhance system
components and relationships.

d) the system configuration will be modifiable to cover
component failures during a mission and has the ability
to cope with non-homogenous load distribution.

Fault-Tolerance

The system test shall ascertain that the system has:

- distributed fault detection.
- cooperative fault diagnosis.

4-2

- node/link fault discrimination.
- message/state conflict detection.
- physical isolation
- logical isolation
- backward recovery
- forward recovery
- physical reconfiguration
- logical reconfiguration

Performance

The system test shall ascertain that:

a) the minimum throughput of a network linkage between two
clusters will be 10 MBAS, or as defined by the require-
ments for image or voice processing. The communication
channel must meet the access requirements for a combi-
nation of applications.

b) the through-put of the processor complex unit responsi-
ble for the logic and arithmetic operations will be
sufficient for all appropriate applications, i.e. a
minimum of 1.0 MIPS when properly configured and meas-
ured in terms of a 16-bit instruction set or equiva-
lent.

c) the processor unit shall have at least 0.25 MIPS of
throughput when executing a mix of basic floating point
operations.

d) memory transfer rate between the processor in the clus-
ter and on-unit memory array shall be more than 5.0 me-
gabytes per second. The data transfer rate between the
unit and off-unit memory (secondary memory) shall
exceed 2.0 megabytes per second.

e) the operating system for the processor unit shall pro-
vide a multitasking environment which is transparent to
any multitasking scheme, and which will support basic
multitasking functions with less than 25% overhead. The
maximum time requirement for context switching shall be
less than 50 microseconds.

Autonomy Requirements

The system test shall ascertain that:

a) the On-board Autonomy Manager shall maintain the

4-3

well-being of the the on-board operation of the space-
craft, including the proper handling of minor faults.
The solving of severe on-board faults shall be attempt-
ed in cooperation with ground control.

b) the OAM shall establish communication asynchronously
with the ground under the following conditions:-

- when ground control wishes to query or monitor any
aspects of on-board operation

- when ground control attempts to take over any or all
of the on-board management

- the OAM decides that a significant on-board event re-
quires reporting

Sufficient archiving storage shall be maintained
on-board to accommodate the keeping of information sub-
ject to ground audit for whatever period of time is de-
termined for each mission. This storage will be organ-
ized in a hierarchical manner to allow on-board archiv-
ing to occur in diminishing frequency and quantity with
respect to time.

c) The design of the OAM will enable:

- the later incorporation of an explanation subsystem.
- the later incorporation of the functions of "knowl-

edge acquisition" or "learning"
- the maintenance of a reasonable architectural dis-

tinction between the knowledge base and the inference
mechanism

- backtracking to be performed on the "global data
base" or "scratch-pad"

- a mechanism to deal with "fuzzy situations" to be at-
tached.

Conformity to the FTC Rules

The system test shall ascertain that conformity to the FTC
Rules is maintained at all levels.

Networking Principles and Standards

4-4

4.4 Resources

4.4.1 Personnel

The process of testing the AASC should be conducted by
person(s) independent of the design team. This element of inde-
pendence will, of itself, provide a means of testing the de-
sign. Any differences between interpretations of the require-
ments will point to errors of conception, omission, or ambigui-
ty of specification.

4.4.2 Computer Equipment

These features are seen as a necessary part of the envi-
ronment in which the AASC is to be tested:

- integration: requiring common internal program repre-
sentation, uniform inter-tool interfaces, and achieva-
bility of tools from other tools.

- open-endedness: the ability to provide the user with
mechanisms for new tool definitions.

- granularity of tools: every tool corresponds to a spec-
ific simple function.

- inter-activeness: based on a simple, powerful command
language, a uniform user interface, user-oriented in-
teraction devices.

- multi-user support: a project data base, personal
work-stations, an inter-user communication facility.

- host environment: supported by a dedicated machine dif-
ferent from that on which the produced system will run.
This would include object code generators, source
language program optimizers, target language linker and
loader. The specific distribution of tools between host
and target environment should be considered in conjunc-
tion with the development plan. (A example of an suit-
able environment is shown in Figure 4.1.)

4.4.3 Simulators

It is proposed to minimize the use of software simulation

4-5

System
86/330X

JD\
AASC
cons oie

I •

8

NIU

IIU

I. A

/\®

/0\

OBDH : onboard
data
handling

OBAM : onboard
autonomy .
management

AASC Test Bed

Li

GW (Satellite Gateway)

Uj GW (Ground Gateway)

NIU IH NIU

11/45A

A & SL
console t.

1 Ada
Wtatio iAPX 286 MC68000 VAX-11

'PCU:
(OBDHI

PCU
(OBAM)

LSI-11/
23 [7] 11/45B

Figure 4.1 An Example of a System Test
Environment

4-6

of hardware components, since the verification of the behaviour
of a program in a highly simulated environment is not adequate
when performance is concerned [DEGA 81]. The use of Ada as a
development language provides for the use of software packages
as a means of simulating the design as it is created, while al-
lowing validation to take place concurrently.

4.4.4 Debugging Aids

In order to achieve the interactive analysis and testing
of the system concurrent with its development, the following
aids are required:

- a structured syntax directed editor: this allows early
detection of syntactic errors, in addition to standard
facilities.

- tools for static analysis: granular tools, which allow
verification of specific semantic aspects; such as
type-checker, symbol table builder, scoper, variable
set-use analyzer, aliasing checker, interface checker,
static source level linker, without the Insertion of
test data.

These tools can be integrated into more powerful test-
ing tools and can also be used to single out and define
test data.

- tools for dynamic analysis: these allow programs to be
run using specific input data and are based on an ab-
stract syntax interpretive execution tool. The follow-
ing facilities should be provided by the interpreter:
breakpoint insertion and management, single-step execu-
tion, in-line statement evaluation, state inspection,
assertion evaluation, control over the execution re-
sumption after a break, and program modification.

A symbolic execution capability (obtained from extend-
ing a conventional interpreter) takes symbolic input
expressions which describe all possible input data and,
through the resulting program execution, determine the
admissible input data partitions based on program se-
mantics. The output values of this execution are des-
cribed in terms of the input values, and show more ea-
sily the adherence of the program to the requirements
by semantic analysis of the program behaviour. The re-
sults of the symbolic execution can also be used to
generate standard input test data.

Mutation analysis, an interesting new approach to test-
ing, is cited in a study as achieving great success in
the discovery of software errors and is claimed as be-
ing a major advance in the area of software testing
[BUDD 78]. It has, however, only been implemented for
use with FORTRAN, with extensions currently underway
for COBOL and C Language, and its adaptation for use
with other languages, such as Ada, would be costly at
this time.

4.4.5 Test Data Generators

It will be necessary to provide a suitable program suite
to generate sets of test data.

5. Conclusion

A generalized hierarchy of system autonomy has been devel-
oped, based on a layered model, from the physical layer to an
intelligent, knowledge-based layer. This hierarchy has been ap-
plied to the design of the Advanced Autonomous Spacecraft Com-
puter (AASC), by projecting the constraints and requirements of
the AASC onto the layered model.

A generalized hierarchy of distributed system structure
has been developed, also based on a layered model, in the di-
mension of network size, and this model has been applied to the
AASC and its operating environment to produce a structural sys-
tem design.

Finally, a top-down system test strategy, test criteria,
and specification of testing resource requirements has been
presented.

REFERENCES

ALBU 81 Albus, James S., "Brains, Behaviour and Robotics",
BYTE Books, McGraw-Hill, Peterborough, N.H., 1981.

BUDD 78 Budd, T.A. R.J. Lipton, F.G. Sayward and R. . DeMillo,
"The Design of a Prototype Mutation System for Pro-
gram Testing", AFIPS Conf. Proc., Vol.47, 1978 NCC,
pp.623-627.

DEGA 81 Degano, P. and G. Levi, "Software Development and
Testing in an Integrated Programming Environment"
from "Computer Program Testing", SOGESTA 1981, eds.
Chandrasekaran and Radicchi, North-Holland Pub. Co.

DIJK 65 Dijkstra, E., "The Structure of THE multiprogramming
system", Comm. ACM 11, 5 pp.341-46, May 1968.

GOMI 82a Garni,. T. and M. Inwood, "FTBBC - The Fault-Tolerant
Building Block Computer", Eidetic Systems Corpora-
tion, 1982.

GOMI 82b Gomi, T. and M. Inwood, "A Fault-Tolerant On-Board
Computer System for Spacecraft Applications", Eidetic
Systems Corp., 1982.

GOMI 83

HOWD 80

KENT 81

KING 82

Gomi, T., M. Inwood, I.McMaster and I.Cunningham, "A
Functional Specification for the Advanced Autonomous
Spacecraft Computer", Eidetic Systems Corp., 1983.

Howden, "Functional Program Testing", IEEE
Trans. Software Engineering, Vol. SE-6, No. 2, March
1980, pp.162-169.

Kent, E., "Brains of Man and Machines", BYTE Books,
McGraw-Hill, 1981.

King, K.J., P.A. Lee, and F.Maryanski, "An Architec-
ture for Local Network Servers", COMPCON 82, Sep-
tember 1982.

MYLO 83 J. Mylopolous, T. Shibahara, and J. Tsotsos, Dept. of
Computer Science, University of Toronto, 1982

NASA 82 NASA/ESA Working Group for Space Data Systems Stan-
dardization (NEWG), "Joint NASA/ESA Packet Telemetry
Guideline", January, 1982.

6-1

T. Shibahara, Dept. of Computer Science, University
of Toronto, "CAA: Computer Diagnosis of Cardia Rhythm
Disorders from ECCs", Ph.D Thesis.

SHIB 83

TSOT 80 J. Tsotsos, Dept. of Computer Science, University of
Toronto and Div. of Cardiology, Toronto General Hos-
pital, "Temporal Event Recognition: An Application to
Left Ventricular Performance"

UOFT 82 Dept. of Computer Science, University of Toronto,
"PSN/1 User u s Manual: "Above all - DON'T PANIC",
April 1982.

VESE 81 Vesely, W.E. et al, "Fault Tree Handbook", Systems
and Reliability Research Office of Nuclear Regulatory
Research, U.S. Nuclear Regulatory Commission, Wash-
ington, D.C., January 1981.

APPENDIX

TRANSPORT Service and Protocols

Figure A.1 shows the relationship of the TRANSPORT Services and
Protocol with the OSI reference model.

TRANSPORT Services

- connection establishment

- full duplex (normal and expedited)

- flow control (normal and expedited)

- expedited data (a separately flow-controlled path in
each direction that permits small units of data to be
sent). This is shown in Figure A.2.

- normal data: allows an unbounded sized data unit to be
sent.

- termination is via "clear" i.e. data may be lost (SES-
SION has a "close" which ensures no data is lost).

- sequencing.

TRANSPORT Protocol Class Strategy

- Where the NETWORK service provides the services required
by the use of TRANSPORT and the quality of the NETWORK
layer service is adequate to meet the needs of the ap-
plication, then a TRANSPORT protocol may be selected
that has minimum functionality (i.e. it propogates up-
ward the NETWORK service).

- Where the service or quality is not adequate then a
close of TRANSPORT protocol is selected to enhance the
NETWORK services and quality.

TRANSPORT Protocol Classes

Class 0:

A-1

End System
A

End System

MI Ma MI BIM MOM MI MS MI Ili URI II•11 OM IMIII

Application Protocol

—3+

Transport Protocol

I
El

Transport
Services t
Transport i
Utility

Network 1

1 I
Physical r----]

f

Link

Figure A.1 TRANSPORT Service and Protocols

main data path
(normal)

expedited
path.

Figure A.2 Expedited Data Path

Figure A.3 Multiplexing of Data Between the NETWORK
and TRANSPORT Layers.

Service - provides full duplex normal data
- no expedited
- clear

Functions - none, all services are propagated up from the NET-
WORK layer.

Class 1:

Service - provides full service

Function - propagates all services up from the NETWORK la-
- yers.
- if there is a reset or disconnect of the NETWORK

layer connection, TRANSPORT will initiate another
NETWORK layer connection: determine what data was
lost (re-synchronize) and re-transmit missing da-
ta.

Class 2:

Service - full service

Function - multiplexes a number of transport connections on
to a single NETWORK layer connection. This saves
money where many long duration, low volume con-
tains must be maintained on a time charged NETWORK
connection

- failures are not recoverable
- segmentation.

Class 3:

Service - full service

Function - multiplexing as in Class 2
- failures are recoverable
- segmentation.

Class 4:

Service - full service
Function - same as Class 3

- error detection
- error recovery
- sequencing
- segmentation

A-2

Notes

1. Multiplexing requires that the TRANSPORT entities send
protocol data units to control the flow on each connection
to ensure that flow control applied to one connection does
not affect the flow on others, as shown in Figure A.3. If
there is no multiplexing, then the transport entity can
provide flow control by using the flow control of the NET-
WORK layer.

2. Error recovery in Classes 1 and 3 relies on errors being
detected in the NETWORK layer. Class 4, however, does its
own error detection.

3. Class 4 assumes a minimal NETWORK layer service, i.e. da-
tagrams.

4. Class 1 relies on an "ACK" provided by the NETWORK layer.
Classes 3 and 4 send their "ACKs" as protocol data units.

J

•
3 v v
3 v v
3 v v v

Table A.1 Summary of TRANSPORT Functions

Class FC Mpx Seq. Seg. Error Det. Error Rec. Explicit Ack.

A-4

LOWE- MARTIN No. 1137

GOMI, T.
--The design of an advanced autonomou
spacecraft computer: technical repor

DATE DUE
DATE DE RETOUR

