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SUMMARY 

The design of the Advanced Autonomous Spacecraft Computer 
(AASC) is divided into Autonomy Design and Structural Design. 
The system test to be performed on the implemented AASC is also 
described. Both Autonomy and Structure are decomposed using 
top-down layered models (for which meta-rules are given), con-
sistent with the Open System Interconnection (OSI) reference 
model that serves as a basis for the communications protocol 
used throughout the AASC. System test methodologies are chosen 
to be consistent with the top-down design and proposed imple-
mentation. 

The layers of autonomy in the AASC range from the Physical 
(lowest) level, Deterministic Control, Module Integrity, Module 
Relationship Integrity, to Intelligence 1 and beyond. Esta-
blished state-of-the-art techniques are s"Pecified for imple-
menting the first four layers, termed Fault Tolerance Manage-
ment (FTM) containing methodologies developed mostly in the 
field of software fault-tolerance, and advanced knowledge en-
gineering techniques are specified at the highest level, called 
On-board Autonomy Management (OAM). 

The OAM is decomposed into functional units which allow 
frame-based and other representations of knowledge, generalized 
inference over a compound knowledge base, the generation of ex-
planations for ground control, and limited knowledge acquisi-
tion. The FTM is decomposed into more traditional software and 
hardware units that perform detection of, isolation of, ana-
lysis of, and recovery from failures at layers from the physi-
cal components up to groupings of software modules. 

The structure of the AASC and its logical environment is 
broken down into the external networks with which it must in-
teract, internal subsystems, module networks, and element net-
works. These structural layers are each analyzed and specified 
as networks under the OSI model. 

System testing will continue through development, consis-
tent with top-down design, implementation, and testing. The 
criteria for testing are presented in terms of the requirements 
for system reliability, flexibility, fault-tolerance, perfor-
mance, autonomy, and conformity to FTC design principles. Pro-
vision of personnel, computer equipment, simulators, debugging 
aids, and test data generators are specified to meet the re-
source requirements of system testing. 

iii  



1. INTRODUCTION 

The purpose of this report is to present a detailed ana-
lysis of the functions and logical structure of the Advanced 
Autonomous Spacecraft Computer (AASC), the Functional Specifi-
cation of which was given in a previous report [GOMI 83]. The 
functional analysis uses a layered model and decomposes func-
tions to a level of detail at which known, clear, 
well-specified algorithms can be used to implement the func-
tions. The rationale and meta-rules for the layered model are 
presented, including comparisons with other layered models. 

The layers of AASC functions are grouped into two major 
capabilities: On-board Autonomy Management (OAM), and 
Fault-Tolerance Management (FTM), because of the natural boun-
dary between the existing bodies of techniques used to imple-
ment functions in the two domains. In order to characterize the 
two domains, examples drawn from the AASC and other systems are 
presented. 

The implementation of a set of functions requires the cre-
ation of a logical and physical structure which may or may not 
be isomorphic to other functional hierarchies. The logical 
structure of the AASC and the reasons for choosing it are pre-
sented. The structural description includes a hierarchy of the 
interconnections of system modules. Each level of decomposition 
of the AASC is described, from the'external network environment 
down to the elementary level within modules. 

The logical structural decomposition of the AASC stops at 
the point where decisions must be made about hardware/software 
tradeoffs. Hence, the output of this report becomes the input 
to the next phase of AASC development: hardware choice and 
software module design. 



2. HIERARCHICAL STRUCTURE OF SYSTEM AUTONOMY 

2.1 Introduction 

With few exceptions the move towards a unified description 
of system autonomy is not yet evident. The benefit of estab-
lishing a form of common language among system developers is 
obvious. The availability of such a language will permit freer 
exchange of the results of research and development which are 
constantly producing output of wider interest that can be in-
corporated into the design of new autonomous systems. The pro-
bability of newly discovered methodologies in system building 
may only be realized if the knowhow is properly categorized and 
documented in a widely visible fashion. Accordingly, the AASC 
project attempts to organize system autonomy in a hierarchical 
framework, and defines its own autonomy using that framework. 

It is obvious that there is a very close relationship 
between the autonomy of a system and its intelligence. A study 
by NASA confirms a linear relationship between the two, as 
shown in Figure 2.1. Intelligence is a necessary ingredient in 
the achievement of system autonomy while the reverse is not ne-
cessarily true. Input signals which affect the output of a ser-
vo system, blood cells attacking foreign organisms, automatic 
transmission adjusting the output speed and torque based on 
several inputs, reflex movements made by a simple chain of neu-
rons in avoiding a physical threat, or a governing council vot-
ing on a specific subject, are some examples in nature and 
among man-made systems of intelligent bodies effecting the act 
of autonomy. The objective here is to establish a scale of sys-
tem autonomy using intelligence imbedded in the system as a 
measure, and to classify autonomous systems according to  their 
demonstrated intelligence. 

The Hierarchy of Autonomy is modelled after the Open Sys-
tems Interconnection (OSI) reference model established in the 
mid 1970s for computer communication by the International Stan-
dardization Organization (ISO). Also affecting the AASC design 
in this regard is the view expressed by E. Dijkstra in 1968 
[DIJK 681 in his definition of "The Operating System", which 
subsequently led to the universal adoption of layered structur-
ing techniques in various subfields of computer and system sci-
ences. Virtually all modern operating systems have been de-
signed hierarchically ever since. Networking, including the OSI 
mentioned above, became viable only after a reasonable layering 
scheme was devised. Computer Graphics is presently being 
re-defined at an international level in terms of various levels 
of abstraction in representation. There is already a move to- 
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wards applying the theory of layering to Artificial Intelli-
gence [ALBU 81]. 

Compared to relatively well-established domains such as 
those discussed above, with a longer history of structuring 
system functions into a hierarchy, the hierarchy of system au-
tonomy originated here is more likely to face revision in the 
foreseeable future. Such was the case with others when they 
were still young. It will be safe to state that the present de-
finition described in Section 2.2 below only reflects the 
best-effort conceptualization of the hierarchy by the designers 
of the AASC. The Hierarchy of System Autonomy is intended to be 
independent from the AASC and expected to survive in various 
forms. It is obvious, however, that a considerable number of 
revisions will be necessary until the concept gains wider 
understanding. The structure shown at this time is the result 
of an extensive study of existing fault-tolerant techniques 
carried out by the authors [GOMI 82a,b]. 

Table 2.1 The Hierarchy of System Autonomy 

This layer performs the 
system's required functions. 

6 
<- 

The AASC adopts the view that faults exist at every level 
of the functional hierarchy - a fault-tree concept depicted, 
for example, in [VESE 81]. It also takes the position that 
fault-tolerance must also exist in a hierarchical fashion - 
i.e., recognition of a fault-handling tree. This latter view is 
often incompatible with the view of some researchers who be- 
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lieve that, upon defining a fault-tree one can always design-in 
fault-tolerance during system development. They seem to con-
clude that a successful and comprehensive description of possi-
ble faults in the system necessarily leads to the definition of 
methods which would allow them to avoid faults beforehand. Such 
an approach is dominant, for example, in the design of on-board 
systems for commercial aircraft. The rejection of this approach 
is based on the heuristic stance the project has adopted 
through its study phases. It believes that the deterministic 
approach taken by those designers is insufficient in dealing 
with many unknown errors that a system will likely encounter in 
a hostile environment of space where, in most cases, on-board 
repairs will be extremely difficult and help will never arrive 
in time. 

In the Hierarchy of System Autonomy, fault-tolerance is 
not localized in certain layers but implied in every layer. Oc-
casionally, expressions such as Fault Tolerance Management 
(FTM), are used to describe an instantiation of certain layers 
of the hierarchy. The reason for the localized identification 
of fault-tolerance is, however, for convenience so that such a 
commonly understood concept as "Software Fault-Tolerance" is 
given an appropriate visibility in the design. The vertical 
distribution of fault-tolerance throughout the design of the 
AASC is never abandoned. 

The following meta-rules are considered valid in regard to 
the Hierarchy of System Autonomy: 

1. An ascending order of intelligence is observed when 
the hierarchy is followed upward. 

2. An autonomy function defined at a given level must be 
capable of correcting a faulty condition detected by 
the next lower level in such a way that the result of 
the fault is transparent to the execution of functions 
at the next higher level. Note, however, that failure 
to accomplish this correction is a failure at this 
given level, and comes under Rule 3. 

3. A function invoked at a given level is responsible for 
reporting failures it cannot recover from by itself, 
to the next higher level. 

4. At a given level in the hierarchy, a protocol can be 
defined to achieve inter-level communications and con-
trol described in 2. and 3. above. 
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5. Similarly, a protocol can be defined for communication 
and control among functions (intra-level) operating 
within a given level. 

2.2 Definition of the Hierarchy of System Autonomy 

2.2.0 The Hierarchy 

Table 2.2 shows the Hierarchy as defined. The layers 1 
through 5, which are described in Sections 2.2.1 through 2.2.5 
below, will be defined and implemented in detail in further 
stages of the project. Figure 2.2 depicts the General Hier-
archy of Fault-Tolerant Functions. 

Table 2.2 The Functional Hierarchy of System Autonomy 

Layer Name Description 

6 Intelligence 2 Sophisticated KE technology 
is used to support the int-
elligence of a system. 

5 Intelligence 1 A system has a primitive 
intelligence based on 
Knowledge Engineering (KE). 

4 Module relationship Maintain ability of module 
integrity groupings to carry out major 

system functions. 

3 Module integrity Maintain ability of modules 
to execute without inter- . 
ference from other modules. 

2 Deterministic 
control 

Physical 

0 non autonomous 

Ensure only healthy proc-
essors take part in system. 

Ensure only healthy physi-
cal components continue to 
contribute to processor 
operation 

2-4 
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Of all the modelling methodologies used to describe com-
puter systems, there is one that has emerged as the most gener-
ally applicable, lucid, understandable, and implementable: la-
yering. The principle is that a function may be decomposed into 
an ordered set of N classes of subfunctions called layers. The 
relationships between two layers Li and Li+1 are: 

1. Li provides information and/or services to Li+1 

2. Li+1 does not have access to any information or service 
from layers Ll to Li-1, except by using the services of 
Li. 

The objectives of layering, and the reasons for its suc-
cess in system design are: 

1. It divides the system design task into manageable units 

2. It allows the compartmentalization of data structures 
and processes so that validation and fault-tolerance 
are easier to achieve. 

3. It enables the progressive implementation of the system 
from the most primitive to the most abstract function. 

In the AASC, the relationship between layers, with the em-
phasis on fault-tolerance, is defined as follows: 

1. Li+1 may perform recovery from faults in Li. 

2. Li reports permanent failures to Li+1. 

3. Functions within Li are responsible for detecting the 
failure of other functions in Li with which they inter-
act. 

The main incentive for these meta-rules is 
fault-tolerance. Each layer may be viewed as a manager of the 
lower layer. Within each layer, cooperating functions observe a 
protocol in their relationship that ensures that: 

1. They do not corrupt each other. 

2. They know whether cooperating functions are behaving 
correctly. 

When things go wrong within a layer, that layer is able to 
call on the next layer above for help in recovering. The fol- 
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lowing subsections describe the Hierarchy of System Autonomy in 
further detail. 

2.2.1 Layer 1: Physical 

Physical failures can occur when bits are incorrectly 
stored, fetched, or compared, or otherwise manipulated: signals 
are corrupted; or physical state changes are mistimed. An error 
in this layer can be transient or permanent. If it is transi-
ent, it can be recovered from, usually by retrying the opera-
tion. If it is permanent, it is reported in some way to Layer 
2, so that recovery can be attempted. The functional hierarchy 
of Layer 1 is shown in Figure 2.3. 

2.2.2 Layer 2: Deterministic Control 

The label "determinism" is used here to provide a more 
general classification than the term "processor". While it does 
include processing units, it also includes bus controllers, 
memory controllers, and i/o device controllers, or a functional 
equivalent of these in software, which are all characterized by 
being aggregations of components which execute predictable com-
plex sequences of primitive operations with well-specified tim-
ing characteristics. The job of Layer 2 is to ensure that the 
failure of a deterministic function within the AASC, such as a 
processor, is detected and recovered from without adversely af-
fecting other elements of the system. Figure 2.4 shows the 
functional elements of this layer. 

Layer 2 interacts with Layers 1 and 3 as follows. A per-
manent physical failure (Layer 1) must be recovered  from  by 
this layer. If recovery is not possible, then the physical fai-
lure causes a failure in a deterministic function. A transient 
determinism failure (such as a transient bit error in an inter-
nal processor data transfer) can be recovered from, and the de-
terministic function is restarted. However, a permanent failure 
must be reported to Layer 3 for recovery or to ultimately cause 
a task failure. 

2.2.3 Layer 3: Module Integrity 

The job of Layer 3 is to make sure that each module, here-
in also called "task", is allowed to perform its function cor-
rectly, without being adversely affected by any other task. Its 
functional hierarchy is shown in Figure 2.5. This means that 
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Task A must know when information originating in Task B is cor-
rect. Traditionally, this would imply that Layer 3 must handle 
both failure in B and a failure in the channel (A,B). However, 
Layer 3-need only consider the logical channel (A,B), and a 
logical channel behaves exactly like a task whose functi.on it 
is to accept and deliver messages. Thus we may view all fai-
lures in this layer as task failures. Failures in actual physi-
cal links will be the responsibility of Layer 1. 

A permanent fault in Layer 2, that is, in a deterministic 
function of the AASC (generally a processor) causes Layer 3 to 
try to recover. If this is not possible, a task failure is as-
serted. A task failure can also occur due to design or imple-
mentation faults. In any case, when a task fails, it may be 
permanent or transient. If it is transient, recovery is carried 
out. If it is permanent, this fact is reported to Layer 3, 
where it causes a failure in module relationship integrity. 

2.2.4 Layer 4: Module relationship integrity 

Figure 2.6 shows the hierarchy of functions within Layer 
4. By module relationships we mean the ability of functional 
modules, such as tasks, processes, and logical communication 
channels, to cooperate to provide the functions required of the 
system. As long as this layer is able to provide recovery from 
permanent failure of tasks and channels in Layer 3, the system 
can maintain all functions. If, however, it is impossible to 
recover from such a failure, then degradation of the functional 
capabilities of the system occurs. Degradation may also occur 
without an explicit failure in Layer 3. The layer will check a 
series of assertions about the state of the various AASC func-
tions. For instance, it may check queues of outstanding re-
quests for resources from application programs and find either 
queue size or waiting time above the acceptable thresholds. 

In either case, degradation is checked as to its perman-
ence, and if it is found to be permanent, this fact is reported 
to Layer 5. A permanently degraded state requires goal-directed 
decisions based on knowledge, which is the domain of Layer 5, 
the On-board Autonomy Manager. 

2.2.5 Layer 5:  Intelligence 1. 

The use of domain specific knowledge in achieving system 
autonomy characterizes the fifth layer of the hierarchy. It may 
be called the KE-layer, since the technology used to apply do- 
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main specific knowledge is termed Knowledge Engineering (KE) as 
it is conceived at the present time. It is anticipated that 
this will be the first of many intelligent layers to be built 
within the hierarchy. The implication here is that the capabil-
ities of the first intelligent layer are limited to those sup-
portable by using primitive Artificial Intelligence technology. 
However, the layer distinguishes itself from those conventional 
technologies often used in highly sophisticated computer equip-
ment such as intelligent - peripherals and intelligent memory 
subsystems, because these systems do not characterize them-
selves as knowledge-based systems. 

To qualify as an Intelligence 1 system, a system must pos-
sess the following capabilities  and/or characteristics: 

1. limited natural language processing sufficient to in-
terface a trained human operator; 

2. inference mechanism that is limited in scope but 
reliable; 

3. uniform application of an inference algorithm at all, 
levels of the knowledge stored within a single knowl-
edge representation scheme (generalized inference 
engine); 

4. ability to explain, in limited form, the process of 
inference used on the specific problem for which the 
consultation was made; 

5. support structure to operate and maintain a knowledge 
base; 

6. ability to select suitable knowledge representation 
scheme for the given problem domain; 

7. ability to select the appropriate control mechanism to 
access the represented knowledge; 

8. ability to make limited use of heuristics in the infer-
ence process when necessary; and 

9. possession of primitive knowledge acquisition mechanism 
which operates under strict human control. 

The AASC supports Intelligence 1 in the form of On-board 
Autonomy Management (OAM). The OAM is—described in section 2.3 
below in further detail. Precise definition and implementation 
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of an example of an autonomy management subsystem for on-board 
functions in the form of a consultation system, will be the 
first major milestone in the development of the OAM. The pack-
aging of the subsystem in a form suitable for on-board use will 
be the next. The successful testing of the prototype will com-
plete the development cycle. 

2.3 The Onboard Autonomy Management (OAM) 

2.3.1 Introduction 

The fifth layer of the Hierarchy of System Autonomy will 
be implemented within the AASC as the Onboard Autonomy Manage-
ment (OAM). It will form the highest intelligence on board the 
AASC and will be responsible for the satisfactory operation of 
the entire on-board system. As such, it represents the space-
craft in its relationship to the entire operating environment 
including its dealing with ground control. 

A foundation for accommodating Layer 6 of the autonomy hi-
erarchy (Intelligence 2 layer) in the future is already built 
into the present design-  of the AASC. It exists in the form of 
hooks of various formats distributed throughout the structure 
of the OAM. 

2.3.2 Function of the OAM 

The OAM performs, on board, the following management and 
house-keeping functions: 

1. Reporting to Ground Control. 

The reporting may take place at pre-arranged windows in 
time; upon receiving command from the ground; or when 
the OAM recognizes one of a number of pre-defined con-
ditions that needs to be reported. 

2. Subsystem Monitoring 

The OAM receives distress reports from the Fault Toler-
ance Management (FTM in Section 2.4 below) in accor-
dance with the inter-layer reporting defined in Section 
2.2.0 above, and attempts on-board correction. If it 
fails, it will raise a condition that would require the 
OAM to report to the ground. If it succeeds, the event 
would be transparent to the ground except for the need 
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to make an on-board log entry. 

The OAM also sends out enquiries to subsystems. If the 
reply is not satisfactory, a similar declaration, as on 
the receipt of distress signals, is made and processed 
accordingly. A corollary to this is the voluntary, pas-
sive reception and analysis of outputs of subsystems 
collected through software and hardware sensors. Such 
sensors will be distributed throughout the spacecraft. 
A similar abnormality condition will be declared if the 
OAM deduces from other inputs (such as its own opera-
tion log described in 2.3.3.3 below), that an abnormal 
condition has occurred. 

3. Enquiry Processing 

Enquiries will be received by the OAM from various 
external sources, such as ground control, orbital relay 
station, and other ground and in-orbit stations. It 
will disperse information concerning its on-board oper-
ation including its history of operation. Enquiries are 
accepted according to a prearranged authorization 
scheme. 

4. Audit 

At any time in its operation, the on-board management 
is subject to audit by authorized stations. Upon accep-
tance of authorization, the OAM will establish and ma-
intain a direct communication channel between on-board 
facilities (including those implemented in software and 
data files) and an auditor. The audit facility will be 
implemented as a natural extension of the enquiry fa-
cility described above. 

5. Reconfiguration Control 

Restructuring of on-board functional modules (software 
or hardware) will be needed for various reasons such 
as: 

- detection of a permanent fault in system 

- suspected malfunction of a module 

- mission profile change 

- changing threat to the wellbeing of the spacecraft 
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- change in load distribution 

A reconfiguration may be initiated by a command from 
ground control, a request from an on-board subsystem, 
or as the result of subsystem monitoring by the 
on-board management described above. In the case of a 
request from a subsystem, a qualification process must 
precede the reconfiguration. A special case of 
ground-initiated reconfiguration is the updating or re-
loading of on-board software. To have a basic system 
loader available on board even in an emergency, por-
tions of the OAM system software will be implemented in 
secure memory modules with ample designed-in redundan- 
Cy. 

6. External Communication 

As the OAM represents the entire spacecraft, it manages 
general communication between the spacecraft and exter-
nal world. This includes authorization, establishment, 
and maintenance of external communications requested by 
on-board subsystems. In cases where other on-board com-
munication arrangements are made, for example, the ex-
istance of a dominant on-board communications facility 
such as the payload of a communications satellite, the 
involvement by the OAM in external communication will 
be limited. 

2.3.3 The Structure of the OAM 

2.3.3.0 Introduction 

Figure 2.3 shows the structure of the OAM It is made up of 
two sections: the Control Subsystem (OAM/CS) and the Onboard 
Consultation System (OAM/OCS). The Control Subsystem authenti-
cates the exchange of information between on-board subsystems 
and the external world. It also decides if the on-board expert 
system (OCS) should be consulted on specific issues related to 
the autonomous control of the spacecraft. It is the nerve cen-
tre of the entire on-board control system, although it will ma-
intain redundant spares in the actual implementation. 

The OCS.performs deductions based on Knowledge Engineering 
(KE) techniques and returns an answer to the given problem on 
which the consultation was made. The OCS is subordinate to the 
CS, and hence to ground control. Ground control can also issue 
an enquiry to the on-board expert system. 
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CS, and hence to ground control. Ground control can also issue 
an enquiry to the on-board expert system. 

2.3.3.1 The Control Subsystem 

As shown in Figure 2.7, the Control Subsystem consists of 
an Autonomy Control module, interface functions between 
on-board  subsystems and external (ground) stations, and the Ac-
cess Control that links them with the OCS. The Access Control 
shares a local data base called CTLDB with the Autonomy Control 
to maintain essential system data necessary to run the OAM. 

The Control Subsystem performs two roles: interface for 
external (ground), on board, and consultation subsystems; and 
decision making for on-board autonomy issues. The Access Con-
trol regulates the flow of information among modules using pro-
tocols. For example, the ground cannot access on-board subsys-
tems or the OCS without proper authorization imbedded in a pro-
tocol. An on-board subsystem will not issue an enquiry to the 
OCS unless it can use a protocol which is acceptable to the Ac-
cess Control. 

Autonomy Control is concerned with making decisions on is-
sues concerning autonomous operation of the spacecraft. Dis-
tress messages passed on to it by Fault Tolerance Management 
will be assessed and measured using known control algorithms 
stored in the CTLDB. If it does not yield helpful results, a 
consultation request will be issued to the OCS. If that proves 
unsuccessful (no helpful information obtained), then it will 
report  the  OAM failure to ground control. 

Two interface modules, the Subsystem Interface and the 
Ground Gateway, act as gateways in the sense in which they are 
used in networking; that is, gateways as defined in the OSI 
reference model. A gateway allows interchange between different 
communication modes at the NETWORK protocol layer. These inter-
faces may internally support higher layers of the reference mo-
del, i.e. TRANSPORT, SESSION, PRESENTATION, and/or APPLICATION 
layers. 

The CTLDB carries several types of data essential to the 
operation of the OAM and some of the other on-board subsystems. 
There will be a mechanism in the OAM protocol to allow 
re-loading of the data base from an external source through the 
Ground Gateway and the Access Control so that in-flight reco-
very of the lost data base can be made. The information conta-
ined in the data base is as follows: 
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- software that describes the OAM protocol 

- authorization code files 

- the entire OAM software except for the contents of the 
CKB (the'CKB re-loading may be performed only when the 
other parts of the OAM are functioning properly) 

- all reloadable software for other on-board subsystems. 

- operation log of the OAM, stored in a hierarchical 
fashion, so that the most recent events are recorded in 
the greatest detail, while older records are increas-
ingly abstracted. 

2.3.3.2 The Compound Knowledge Base (CKB) 

The CKB is a collection of knowledge bases (KBs) intercon-
nected to form a distributed knowledge pool on-board the AASC. 
Each KB that constitutes CKB represents a domain in on-board 
health monitoring, control/monitor signal processing, mission 
profile control, emergency procedures, or the structure of the 
AASC. The method by which knowledge is represented for each of 
these constituent KBs will be chosen to best suit the domain. 
However, the frame-based representation will be mainly used be-
cause of its sophistication as a knowledge representation tool, 
similarity to known neurophysiological representations 
[KENT 81], and the availability of high quality development to-
ols for research and development [TSOT 80, UOFT 82, MYLO 83]. 
The semantic networks and rule-based representation (production 
system) will be also used, as well as other forms of associa-
tive memory and retrieval mechanisms when appropriate. 

The CKB may be expanded to eventually contain KBs in the 
following problem domains: 

- diagnosis of module failure 

- prescription of remedies for malfunctions 

- failure forecasting 

• - dynamic reconfiguration management 

- mission profile monitoring/change coordination 

- effector monitoring 
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- prediction of interaction of spacecraft with external 
objects 

- action planning 

- situation assessment using inference on observed data. 

Links will be established among frames within a KB and 
those in different KBs to form semantic relationships such as 
the causality of a specific event. Such links are used, for ex-
ample, to establish association between an abnormality observed 
in a temporal domain and possible causes of the abnormality in 
an underlying event domain ESHIB 83]. A practical example would 
be linkages between fluctuation observed in the output signal 
level of a Spectroscopic Imaging System and known causes in the 
underlying event domain that might explain the abnormality. 

2.3.3.3 The Execution Monitor, the EMDB, and the Inference Sub-
system 

Inputs from users are handed in to the Execution Monitor 
via the OCS User Interface. The Monitor then organizes them in 
the agenda subsection of the database (EMDB) that records the 
session specific execution data concerning the inference pro-
cess. The Execution Monitor will also construct a plan for the 
execution and record intermediate results from the process. 
Both the plan and intermediate results will be recorded on the 
EMDB. The Execution Monitor is also responsible for initiating 
the inference process at the outset and guides it or otherwise 
controls its execution, as this becomes necessary. The EMDB is 
accessible during and after the process to the Explanation Sub-
system (2.3.3.4 below) through the Execution Monitor. 

The Inference subsystem performs inference using knowledge 
stored in the CKB. Other than when it requires occasional sup-
port from the Execution Monitor, the successive inference 
stages are carried out autonomously by the Inference Subsys-
tems. Since the knowledge is represented in any one of several 
representation schemes, an appropriate inference mechanism 
would have to be chosen automatically by the Inference Subsys-
stem. When association between two concepts takes place, the 
inference process automatically performs the transition and 
manages necessary context changes. There is provision for achi-
eving a limited parallelism of the inference Processes within 
the inference subsystem and the Execution Monitor. 

Output from the Inference Subsystem is fed back to the 
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User Interface via the Execution Monitor in one of several re-
presentation protocols to be defined for the OCS. 

2.3.3.4 The Explanation Subsystem 

The objective of the Explanation Subsystem is: (1) to ex-
plain to the user how the OCS reached its conclusion on a given 
problem, and (2) to provide to qualified users the insight of 
the on-board KBs. 

Output from the Explanation Subsystem is given to the re-
questor through the User Interface in one of the OCR interface 
protocol formats appropriate to the nature of the enquiry and 
the type of knowledge representation involved. As the interme-
diate results of a consultation are stored by the Execution 
Monitor in the EMDB, the Explanation Subsystem requests the Ex-
ecution Monitor for the retrieval of this information. The Exe-
cution Monitor enters the state in which it can accept the re-
quest as soon as an inference process on a given problem be-
gins, and stays that way . throughout and after the completion of 
the process for a period of time determined by a system parame-
ter. 

On the other hand, if a user demands a "dump" of the cur-
rent contents of a KB, the Explanation Subsystem will access 
the KB directly, even when the KB is in use. To be able to do 
this, however, the Explanation Subsystem must receive from the 
user information regarding the identification of the KB and its 
sections to be dumped. Alternatively, the user can ask the Exe-
cution Monitor for the identifiers of KBs, if the enquiry is 
only concerned with the KBs involved in the inference process 
presently underway. This form of dump request may be made to 
enhance the understanding of the details of a specific consul-
tation process and also to debug the Inference Subsystem and 
the CKB. 

2.3.3.5 The Knowledge Acquisition Subsystem 

This subsystem will not be implemented in the current AASC 
design except for a simple KB update facility. Thus, the 
Layer 5 OAM will only have the ability to selectively rewrite 
portions of KBs, as needed. In special cases, the entire KB may 
be rewritten under remote control. Information given via the 
User Interface with appropriate control codes will be passed on 
to the Knowledge Acquisition Subsystem. Access control by the 
Access Control module of the OAM Control and verification of 
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the authorization by the subsystem are especially stringent to 
avoid erroneous rewriting of KBs. 

During the KB-updates, the OCS described above locks out 
normal accesses and no inference process can take place. The 
Explanation Subsystem, however, may still be invoked to permit 
the monitoring of the update process. 

In the future when the OAM is redefined at Layer 6 
(Intelligence 2 Layer), it will, among other things, have the 
following add-é-d capabilities: 

- knowledge-base consistency check • 

- primitive learning based on limited heuristics 

Yet later versions (Layers 7 and onwards) will have ad-
vanced learning facilities, and eventual evolutionary opera-
tions, such as automated updating of KBs based on the history 
of operation, experienced mission profile changes, and changes 
in the environment in which the spacecraft functions at a given 
time. 

2.3.3.6 The User Interface 

The User Interface is functionally the sole interface 
between the Control Subsystem of the OAM and the OCS. In imple-
menting the OAM, however, to avoid creating a single point of 
failure, care must be taken to provide redundancy. 

The User Interface regulates information flow in and out 
of the consultation system. The inputs are in the form of: a 
request for consultation directed at the Execution Monitor; a 
demand for explanation or a dump request directed to the Ex-
plantion Subsystem; and a control input to update a KB using 
the Knowledge Acquisition Subsystem. The outputs are: the 
inference output•from the Execution Monitor; and a statement of 
explanation from the Explanation Subsystem. 

A set of standard protocols that is used at this interface 
will be defined during implementation. The set will include 
several presentation formats and encompasses a few levels of 
abstraction in its contents. Proper protocol will be selected 
automatically according to the circumstances of the i/o opera-
tion or by request. The User Interface performs a limited for-
matting and translation on data being exchanged. It also ap-
plies a layer of access control to the information flow in ord-
er to enhance the security of the consultation system. For ex- 



ample, command sequences to • update the CKB will be 
double-checked although they would already have been checked by 
the Access Control module of the OAM control subsystem before 
entering the OCS. The User Interface also takes added precau-
tionary measures to prevent unauthorized delivery of explana-
tions by the Explanation Subsystem. 

2.4 Fault Tolerance Management 

Layers 1-4 of the AASC autonomy hierarchy are grouped 
under the title "Fault Tolerance Management". There is a recog-
nizable qualitative difference between theories, structures, 
and techniques used in Layers 1-4 and those used in Layer 5 and 
above. Furthermore, the functions performed by Layers 1-4 have 
traditionally been labelled "fault tolerance". 

Within each layer of the AASC autonomy hierarchy, the gen-
eral hierarchy shown in Figure 2.2 should hold. In comparing 
layers, it is clear that there are three classes of functions 
within the layers: 

1. Functions whose characteristics are well-known and 
standard. These functions will not be described expli-
citly, since their implementation will be straightfor-
ward and probably off-the-shelf. 

2. Functions that occur under different labels in several 
layers but that are virtually isomorphic in charac-
teristics. These functions will be described generical-
ly, with annotations for individual differences induced 
by each layer. 

3. Functions whose characteristics are significantly dif-
ferent in each layer. These will be described individu-
ally. 

Each function description will include the following 
components: 

1. Function name. 

2. Brief description of the steps used to accomplish the 
function, or reference to the algorithm. 

3. Data structures required. 
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4. Output of the function. 

5. If this is a generic function, a series of annotations 
for the various instances of the function in specific 
layers. 

Layer 4: Module Relationship Integrity 

Detect Degradation 

Techniques 

1. Check each resource and service provided by the AASC, 
and time-stamp it. 

2. If a resource is below its threshold, and has been so 
for an unacceptable time, assert function failure. 

3. If a service has applications waiting on it for unac-
ceptable time, assert function failure. 

4. If a specified service does not exist, assert 
function_failure. 

5. If possible for the service or resource, issue a test 
request. If the test result is not within its speci-
fied threshold, assert function_failure. 

Data Structures 

1. List of services and resources, with threshold parame-
ters and test request procedures. 

Output 

1. function failure 
- boolein 

2. function failure description 
-- a record  describing the function, failure type, and 

quantitative description of the failure. 

Isolate Failure 

Techniques 
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No action need be taken to accomplish this in Layer 4, 
since the functions are independent. The functions to be 
maintained are: 

Provide resources to applications 

-- secondary storage 
-- primary storage 
-- communications channels 
-- computation 

Provide services to applications: 

-- application process management 

Log Degradation 

Techniques 

1. Create degradation_description. 

2. Write degradation description on event_log. 

Data Structures 

1. degradatiOn description 

-- record containing 
function name 
description of degradation 
time 

2. event log 

-- data base of events 
keyed on time, function name 

Output 

1. degradation description 

Check Degradation Log 

Techniques 

1. Search event log database for degradation descriptions 
with same nanie as currently degraded function. 

1 



2. Determine from this search the parameters of the pat- 
tern of degradation for this function, such as: 

- frequency, recent and historic 
- rate of change of frequgncy 
- rate of change of level of degradation. 

Data Structures 

1. event_log 

-- data base of events 
keyed on time, function_name. 

Outputs 

1. degradation_parameters 

-- record containing 
function name, recent frequency, historic 
frequenc7, frequency aange, level_change7 

Determine AASC State 

Techniques 

1. Examine AASC resource lists, Application service 
queues. 

2. Reinitialize the resource lists and service queues for 
the degraded function. 

Data Structures 

1. Resource lists 

-- list of AASC resources 
primary storage 
secondary storage 
processors 
communications channels 

2. Service queues 

-- queues of applications awaiting service 
or being served. 
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Output 

1. resource list and queue entries for degraded AASC 
function. 

Restart AASC Function 

Techniques 

1. Load tasks required for function. 

2. Update functionconfiguration_table. 

3. Start tasks. 

Data Structures 

1. Task library 

-- library of all tasks required by AASC. 

2. task directory 

-- directory of tasks required for each 
AASC function. 

Output 

2. function configuration table 

-- table of functions currently executing in AASC 

Choose Alternate Version 

Techniques 

1. Check task directory for alternate version of failed 
task.  The version may be specified and implemented in 
the same way as for N-version programming (see Detect 
Internal Failure below). 

2. Check task descriptor of failed task for list of coo-
perating talks. 

3. Update list of cooperating tasks in alternate version. 

Data Structures 
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1. task directory • 

-- directory of tasks required for each AASC function. 

2. task descriptor 
-- list of characteristics, status, etc. 

maintained for each task by operating system, 
including cooperating tasks list. 

3. cooperating_tasks 

-- list of all tasks with which this task 
exchanges messages. 

Start Task 

Techniques 

1. Determine the state of cooperating tasks. 

2. Establish communication channel with cooperating 
tasks. 

3. Begin specified task. 

Data Structures 

1. cooperating_tasks 

-- list of tasks with which this task exchanges mes-
sages. 

Report Maintenance 

Techniques 

1. Create maintenance event descriptor 

2. Write maintenance_event_descriptor on event_log. 

Data Structures 

1. maintenance event descriptor 

-- record containing 
layer name, time, failure 
description, failure_permînence, 
recovery_status 
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2. event_log 

-- data base of events 
keyed on time, layer name or 
function_name. 

Layer 3: Module Integrity 

Detect Internal Failure 

Techniques 

1. Determine assertions to be tested at significant po-
ints in each procedure. If an assertion is false, as-
sert task_failure. 

2. Determine an assertion to be tested at completion of 
each procedure. If the assertion is false, assert 
task failure. 

3. On processor interrupt, assert task_failure. 

4. Bracket each procedure with pre- and post-conditions. 
If either condition is false, assert taskjailure. 

5. N-version programming: Two or more specifications and 
implementations of the same function are executed. 
Their outputs are compared. If they do not agree with-
in specified tolerance, assert task failure. If there 
are two versions, the task failure-description must 
name both tasks and indicate-that on-é-  or both have fa-
iled. If there are three or more versions, and a ma-
jority agree within tolerance, the 
task failure description names the minority task(s). 
The ii-oting 6ri outputs may be accomplished in at least 
two ways: 

1. distributed voting 

2. an independent comparator task. 

In both cases, voting is done by message exchange. 

Data structures 

Dependent on 'procedure. 



Output 

1. task failure 
- bUolean 

2. task failure description 
- record  naiing task, procedure, 

assertion label,  other parameters. 

Detect Missing Message 

Techniques 

1. Check flow control field on message. If it is not suc-
cessor pre-V-ious flow control field, assert 
task failure for channel task.-This is-a standard fea-
ture-of the network layer of the communications proto-
col to be used in the AASC. (See networking section.) 

Detect Corrupted Message 

Techniques 

1. Compute check sequence on message and compare with 
sender's check sequence. 

If not equal, assert task failure for channel task. 
This is a standard feature ol the link layer of the 
communications protocol. (See networking section.) 

Detect False Message 

Techniques 

1. Acknowledge the message. If the sender sends an error 
message in response to the acknowledgement, then the 
message was false. 

Data structures 

1. Error message 
message  indicating previous acknowledgement was 

redundant. 

Suspend Task 
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Techniques 

1. Raise an exception in the task. This causes invocation 
of an exception handler and suspends execution of the 
task. 

Inform Cooperating Tasks 

Techniques 

1. For each task on cooperating tasks list, send a mes-
sage terminating cooperatiUn. This is done by the 
exception-handler for the task. 

Data Structures 

1. cooperating_tasks 

-- list of all tasks with which this task ' 
exchanges messages 

Output 

1. termination message 

-- message containing 
flow control information for last 
message received and processed, and 
termination indicator. 

Find Checkpoint 

Techniques 

1. Search task history for most recent checkpoint entry 
for this taik. If found, assert checkpoint found, oth-
erwise negate checkpoint_found. 

Data Structures 

1. task history 

-- data base of checkpoint entries 
keyed on task name, time 

2. checkpointentry 

-- record containing task_name, time, 
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taskçontext_description 

3. task_context description 

-- the format of this item is dependent on 
the task and known to the task. 
It contains all data items 
needed to restore the task to its state 
at the time of the checkpoint, except 
for messages sent to other tasks after 
the checkpoint time. 

Output 

1. checkpoint_found 

boolean 

I I 

I. 

Report to Cooperating Tasks 

Techniques 

This function will be carried out in the 
exception-handler for the failed task. It is similar to 
Inform Cooperating Tasks, except that the message sent is 
an initiateçooperation message. 

Reconfigure Task 

Techniques 

1. Examine processor configuration table to determine 
which processors  are - available. - 

2. Assign a free processor to the task. The processor may 
be a GDP, IP, NPU, or other deterministic unit. This 
re-assignment may be done by hardware or by the oper-
ating system nucleus. 

3. Update the processor configuration table entry for the 
processor assigned. - 

Layer 2: Deterministic Control 

Detect Determinism Failure 
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Techniques 

1. Redundancyi Run the processors simultaneously in 
lock-step, with a comparator function on processor 
outputs. When outputs disagree, generate a signal. If 
redundancy is triple, then generate a signal indicat-
ing the faulty processor. 

2. The hardware will execute a transition to an "error 
detected" state. 

Data Structures 

1. faulty_processor 

boolean, associated with each processor. 

Isolate Determinism Failure 

Techniques 

With the deterministic component in an error detected 
state, and the fault detected indicator for th --  failed 
processor asserted, —  the component is disabled from pro-
duce output, hence is isolated from the rest of the sys-
tem. 

Layer 1: Physical 

The functions at this level are almost invariably carried 
out by hardware. 



3. STRUCTURAL HIERARCHY 

3.1 Introduction 

The structural essence of a computer system is generalized 
as a network. Modern computers cannot function properly without 
some form of linkage between themselves, or between themselves 
and other functional nodes of a system. Computer networking is 
a rapidly maturing discipline. Most issues which used to be a 
major impediment a few years ago have been solved or are being 
solved. Today, networks of various size, form, and characteris-
tics are either readily available or may be built out of high 
performance building blocks. 

Almost two decades of experience in the active use of 
computer-based communication systems has resulted in various 
levels of standardization. Amongst them, the Open Systems In-
terconnection (OSI) reference model serves the role of standard 
bearer. The layered structure of the model has amply demon-
strated its adaptability to the reality of machine to machine 
and machine to human communication. An excursion in concepts 
supported by this experience is the creation of a meta-layer 
structure of networks. As described in Section 3.3 below, there 
are several networks of different geographic coverage that span 
any conceivable spread of human activity. The know-how of prop-
er use of computer communication is rapidly becoming the syno-
nym for finding one's place in this hierarchy. 

Because one can depend on the OSI and as the OSI is a gen-
eralized scheme of interconnection, the size of the network has 
a decreasing impact on the design of the interconnection scheme 
for a specific application. In fact, in many cases, the same 
set of software and hardware modules may be used to arrange in-
terconnections using networks of several different sizes. The 
recursive nature of the network control structure (e.g., the 
same interconnection modules may be used on networks of differ-
ent sizes) will not only simplify the network usage but will 
result in a drastic increase in flexibility and reliability of 
the building blocks. The trend is being expanded to provide 
flexibility to other aspects of the protocol, such as speed, 
error detection schemes, access methods, data size, and in some 
cases, network topology. We are progressing towards the day of 
building networks to really suit the application, and not vice 
versa, while maintaining strict adherence to global standards. 

Interpreted in fault-tolerant computing, this will only 
increase our chance to implement in reality, discoveries made 
in theoretical fields, particularly those achieved in the area 
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of software fault-tolerance. A drastically increased reliabili-
ty of network building blocks due to their implementation in 
VLSI, is also helping the cause. 

Sections 3.2 and 3.3 below summarize observations made on 
the state of the art in networking standardization. Sections 
3.4 through 3.7 cover the way the AASC will implement intercon-
nections. 

3.2 Definition of Structural Hierarchy 

Section 2 described the detailed funtional decomposition 
of the autonomy of the AASC. In implementing this complex of 
functions, it is necessary to fit this decomposition to the 
constraints imposed by the following: 

1. Spatial location 

2. Timing 

3. Availability of algorithms 

4. Historical division of structure. 

Nevertheless, it is possible to induce a layering hierar-
chy of structures in the AASC and its environment. 

The structural layering is based, because of constraints 1 
and 4 above, on the physical size of the structures involved. 
The divisions between layers are not clear-cut but certain 
meta-rules can be defined. 

1. A layer Li consists of a set of nodes and a' set of 
links (channels) connecting nodes; in other words, a 
network. 

2. A node in layer Li is a network in layer  Li-1. 

Conversely, a network in layer Li is a node in layer 
Li+1. 

3. The protocol for communication is independent of i; 
that is, uniform across all layers. 

The advantages of layering have been stated in Section 2. 
The advantages of the above meta-rules for the structural la- 
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yers are: 

1. Economy of design effort 

2. Minimization of inter-layer conversion 

3. Simplicity, which implies reliability and greater po-
tential for enhancement. 

3.3 Structural Hierarchy 

For each layer of the hierarchy, we will give the physical 
size-range and characterize the node types and link types. The 
hierarchy as applied to ground-based networks is shown in Fig- 
ure 3.1a. 

The nodes will be single spacecraft and a gateway on an 
Extra Global Network. The links will be established by radio 
beams. 

Extra Global Network (EGN)(10**2-10**6km) 

The nodes will be single spacecraft or a spacecraft in 
earth orbit, and a gateway on a Global Network. The links will 
be supported by. radio beams. 

Global Network (GN)(40,000km): 

The nodes are gateways on networks of all sizes smaller 
than GN. The links are radio-frequency, microwave, wire, or 
coaxial cable. The AASC may interact with a global network in 
order to communicate with ground conttol or with another orbit-
ing satellite that is obscured by the earth. 

Cross-Country Network (CCN) (150-6000km): 

The nodes are smaller networks as described below. The 
links are the same as for GN. The AASC may interact with CCN 
when it supports national communications functions. 

Long-Haul Network (L1IN)(100-500km): 

Nodes are smaller networks and links are the same as for 
CCN. The AASC may participate in a LHN as part of a group of 
spacecraft engaged in a coordinated function within the given 
distance range, for example, the rendezvous of a satellite with 
a shuttle. 
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Metropolitan Network (MN) (10-150km): 

Nodes are LANs or smaller. The links are the same as for 
LHN, plus laser and infra-red. The AASC may consist of a metro-
politan network if it is used during construction of a space 
station structure in the given size range. 

Local Area Network (LAN) (50m-10km): 

The nodes are processor clusters and the links are wire, 
optical fibres, infra-red, laser, or coaxial. The AASC must be 
able to be configured as a LAN, since spacecraft size could 
well be in this range. 

Very Local Area Network (VLAN) (1-50m): 

The nodes are processor clusters or single processors. The 
links are wire or coaxial or optic fibre. Individual AASC sub-
systems, for instance an antenna control system, fall into this 
category. 

Ultra Local Area Network (ULAN)(10cm-lm): 

The nodes are processors or processor complexes or deter-
ministic devices. An individual physical backplane within the 
AASC falls into this category. The links are wires. 

Module Network "(MDN)(10**-1mm - 10cm): 

The nodes are tasks executing in processors or microscopic 
connections within electronic components. The links are hence 
logical channels between tasks, though it is possible to define 
the physical basis upon which such logical channels execute. 
All AASC functions will be supported by modules and networks of 
communicating modules. 

3.4 External Links 

The AASC achieves external communication through the con-
trol of the Ground Gateway of the OAM. The actual exchange of 
signals is, however, achieved through the on-board communica-
tion subsystem. The link will be established through directed 
radio-beams. The technology to combine the OSI with the packet-
ized radio system is already available. By adopting a gateway 
scheme which supports the OSI structure, the AASC will become a 
node of a global network scheme. This simplifies the exchange 
of information between the AASC and other stations anywhere in 
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the global netwôrking scheme of the external link of the AASC. 
The slight deviation from the concept implied in the Packetized 
Telemetry developed by NASA [NASA 82] is due to the awareness 
of the importance of this global incompatibility. 

The high bandwidth link will be sufficient to satisfy all 
on-board needs and most ground needs, particularly if on-board 
data reductions are considered. 

3.5 Subsystems Interconnection 

3.5.1 Introduction 

The most dominant communications within the AASC are those 
between on-board subsystems. On-board subsystems are those 
spacecraft modules with clearly defined independent fuhctions. 
Examples of a subsystem are: attitude control subsystem, ther-
mal control subsystem, antenna orientation control, power man-
agement control. They typically consist of hardware and embed-
ded software. 

3.5.2 Mode of Communication 

Figure 3.1b shows a typical on-board inter-subsystem com-
munication. Such communication is characterized by a relatively 
high level of abstraction at which stations (subsystems) ex-
change messages. In terms of the OSI reference model, middle to 
upper level protocols become of importance here. Procotol la-
yers TRANSPORT, SESSION, PRESENTATION, and sometimes APPLICA-
TION, will have to be implemented to support the subsystem 
inter-connection on-board the AASC. In contrast, lower layers 
such as the LINK and the PHYSICAL layers will be almost invisi-
ble ,as such layers will be treated at module level. 

3.5.3 Traffic Volume 

The majority of messages exchanged will be short and rela-
tively abstract (preprocessed) in nature, except in some local-
ized areas. In and around image - processing subsystems and other 
high data-rate systems, bandwidth requirement will have to be 
higher. To cope with this imbalance, VLANs should be used to 
absorb locally heavy traffic. Subsystems which require higher 
bandwidth are encouraged to process high volume data locally 
and exchange only the results of the data reduction using 
inter-subsystem linkages. 

By limiting the level of abstraction at which exchange 
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takes place between subsystems, high traffic management becomes 
simpler. The lack of the need to transmit high volume raw data 
across the spaceship (except in emergencies such as auditing of 
the on-board vision system from the ground) will contribute to 
improved reliability of subsystem level communication. 

3.5.4 Homogeneity and Dynamism 

There will be a wide variation in physical size, shape, 
and function among subsystems (e.g. an AOCS and a power regula-
tor will be drastically different from each other in these at-
tributes). For this reason, the on-board network becomes 
non-homogeneous. Since the subsystems will be exchanging mes-
sages of relatively short size, the mode of operation will look 
much like conventional multi-tasking models seen in single pro-
cessors, except in this case, the operation is expanded to the 
entire network. The implied level of dynamism in the network, 
therefore, will be high in spite of the lower over-all traffic 
need. This "multitasking" mode of operation is obvious as vir-
tually all subsystems will be operating concurrently most of 
the time. In a situation like this, the server-oriented model-
ling proposed by the Liberty Net project [KING 82] fits nicely, 
as seen in Figure 3.2. There will be workstations (subsystems) 
of various sorts conceptualized in functional terms on board. 
Such workstations are, indeed, servers (e.g., power-regulation 
servers, on-board communication control servers, on-board file 
servers). These will be intermixed with logistic servers such 
as message authentication servers, file update servers, ground 
traffic monitor, error-log servers. Personification fits well 
in this type of modelling. 

3.5.5 Application 

In future spacecraft, on-board data handling will become 
increasingly sophisticated. Activities seen in offices, facto-
ries, and laboratories on the ground will be gradually seen in 
orbit. The implication is that whatever technology we are de-
veloping now in Factory Automation (FA), Office Automation 
(OA), and Laboratory Automation (LA) will eventually find its 
way into space. 

The dynamic server concept is ideal for all these applica-
tions, as it operates at a higher level, independent of the 
underlying topology. A hypothetical wired laboratory is shown 
in Figure 3.3. Ultimately, this is an example of the realiza-
tion of several concepts similar to those contemplated by the 
communication industry today. "Messages" in these cases are de-
fined as "anything that can be digitized". Thus, a "message" 
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may be as complex as a frame of high precision color graphics 
with a voice comment. 

3.5.6 Type of Network 

3.5.6.1 Topology 

In most cases, no "store and forward" processing will be 
needed in networking within the AASC as the topology is rela-
tively fixed and, hence, routing will not be a major issue. 
Freedom to choose a suitable topology (bus, multiple bus, ring, 
star, or any combination of these) according to application 
need is guaranteed, thanks to the layering scheme of the OSI. 
On-board networks will be formed to fit the application, and 
not vice versa. In applications where the network reliability 
is stressed, effort to avoid singularity (such as seen in a 
single bus-type network) in the system will be made. 

3.5.6.2 Size of Network 

MN, LAN, and VLAN, as defined in Section 3.3 above, are 
considered as effective means of inter-subsystem communication. 
This hierarchy of networks will permit the exchange of messages 
between on-board stations as far apart as several kilometers or 
those as close as ten centimeters. 

3.5.6.3 Procotols 

The OSI reference model will be strictly followed. The 
TRANSPORT layer will be implemented in Classes 0, 1 and 4. The 
PRESENTATION and APPLICATION layers will be defined and imple-
mented whenever needed, according to individual applications. 
The TRANSPORT layer will absorb all idiosyncracies that will 
exist at the lower three layers, as shown in Figure 3.4. The 
figure demonstrates that various network types may be intercon-
nected without affecting layers above the NETWORK layer. 

3.5.6.4 Speed and Bandwidth 

Bandwidth requirements will be generally low except where 
equipment with high data rate (e.g image processing systems) 
are involved, where high bandwidth channels will be implement-
ed. In many cases, baseband transmissions supporting simpler 
message exchanges seem adequate. However, considering the need 
for providing direct access between on-board subsystems, and 
ground control, a broadband network will be considered for im-
plementation as the trunk inter-subsystem link, at least for 
the portion of the AASC, where such needs are obvious. Adher- 
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ence to the standards, even for the lower OSI layers, will be 
followed. 

3.5.6.6 Internetworking 

The OSI reference model supports internetworking at the 
NETWORK layer. Since a mixture of topology, access method, and 
bandwidth are expected within the over-all AASC, and also the 
use of gateways as the main method of external communication, 
extensive internetworking will be used. Standard internetwork-
ing schemes supported by the international networking community 
will be implemented. 

3.5.6.6 Construction 

The subsystem interconnection will be supported mostly us-
ing commercially available components. Components for layers 1 
and 2 (the PHYSICAL and LINK layers), are now available commer-
cially. Also, those for layers 3,4, and 5 (NETWORK, TRANSPORT 
and SESSION layers, respectively) are expected to be available 
in a short while. Mainly for reliability reasons, these 
off-the-shelf components will be used in preference to private-
ly developed modules. The resulting immediate cost saving will 
be noticeable. Of most importance, however, the long range be-
nefits from complying with the world standard in terms of ea-
sier maintenance and training, wider product availability, gre-
ater expertise-base to tap on, steadily increasing realibility, 
and drastically reducing the cost of components, should be re-
cognized. If our language is different from that of the majori-
ty of the community, we will not be able to benefit from their 
experience. The opportunity will.be far more important than be-
nefits that would be realized by trimming the standard private-
ly for our own needs. 

3.6 Module Interconnection 

Within the AASC, several modules cooperate to accomplish a 
given function or service for the application processes which 
perform the mission-oriented functions of the spacecraft. The 
term "module" can refer to a single task or a package of tasks, 
and is synonymous with the word "process". 

The fact that several modules cooperate implies that there 
is a logical link between modules, in that the modules must ex-
change information. Hence, a set of cooperating modules can be 
viewed as a network. When the modules are in the different pro-
cessor complexes, the network is a conventional one, in the 
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sense that there are physical links joining the processor com-
plexes, and hence joining the modules. However, when the mo-
dules are within a processor complex, the physical links are 
transparent, being the internal circuitry of the processor com-
plex. Hence, the links joining modules within a processor com-
plex are strictly logical as far as system design goes. 

The indeterminate nature of the link between two modules 
must be made transparent, since one of the techniques used to 
attain reliability is the ability to execute modules in any of 
several processor complexes. 

Fortunately, the OSI model chosen for networking at all 
layers allows exactly this kind of transparency. 

We define communication between two modules at the Tran-
sport layer of the OSI reference model, shown in the Appendix. 
This provides all the services required for inter-module 
communication: 

- connection establishment 

- full duplex 

- flow control 

- unbounded size data units 

- connection termination. 

The possible links between modules are established when 
the modules are designed. That is, for each module there is a 
list of cooperating modules defined, and a possible channel 
between the module and each possible cooperating module. A 
channel is a module itself, and its functions are: 

1. accept a request from a module to 
- establish a connection with the other module 
- send a message 
- send a message if the channel is not full 
- receive a message 
- receive a message if the channel is not empty 
- terminate connection. 

2. Perform flow control checks. 

3. For connection establishment, determine if the other 
module is in this processor complex or another. If it 
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is in this complex, create a Network and Link module 
between the requesting module and the destination mo-
dule. The link module can be implemented, for in-
stance, as an Ada port. 

If the destination module is in another complex, es-
tablish a connection with the Transport layer in the 
destination processor complex via the LAN Network, 
Link, and Physical layers. 

In either case, record the routing method so that fu-
ture Send and Receive requests will use the correct 
route. 

4. For Send, Receive, and Terminate requests, use the 
intra-processor or inter-processor Network and Link 
levels as established above. 

Connection establishment requires the specification of the 
receiver's logical address defined within the AASC. 

The Transport level will be coded with class 4 service. 
That is, it must recover from resets or disconnects and re-
transmit lost data: Other error detection and recovery is done 
at the link level, using a cyclical redundancy check sequence. 

3.7 Element interconnection 

3.7.1 Introduction 

The term "element" is used here to describe functional un-
its within the AASC that are smaller in dimension than modules 
described in Section 3.6 above. While elements can be either 
software or hardware, the issue of interconnection software 
elements of this dimension, are well covered by the discipline 
of software engineering. Hence only the interconnection of 
hardware elements within the AASC is discussed. 

3.7.2 Serial Backplanes 

As shown in Figure 3.5, the size of the network is ex-
tremely small. It fits the description of Ultra Local Area Net-
work, or ULAN, described in Section 3.3 above. Typically, the 
entire length of such network is less than a few meters. Since 
this arrangement neatly replaces the traditional backplane that 
held hardware components in a cage-like arrangement, the incre-
ased flexibility and the associated ease of construction is ob- 

I. 
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vious. Another aspect of the network is its high speed, as it 
replaces the transmission media which were running at or around 
the execution cycles of conventional processors and memory un-
its. The network will probably be run at a speed between 5 and 
30 MBPS. Lower speeds may be possible in some cases, as the 
level of intelligence supported by each element is steadily 
getting higher, and hence the likelihood of exchanging "mes-
sages" in place of blocks of raw data is high. By replacing the 
arrangement of separate address, data and control lines common 
in conventional backplanes, functions of all these channels 
must be implemented within a protocol of packetized network. 
This is not a problem as most existing protocol schemes, in-
cluding the OSI, already have this provision in their defini-
tion. Addressing is achieved by the destination address field 
in the protocol frame, with the added flexibility of being able 
to specify the source address. Similarly, the data field of a 
packet replaces the data lines, with the added flexibility 
which variable length data fields can provide. The functions of 
the control lines are simply supported by control codes that 
fit in the data field of the packet, only with a far greater 
selection of control possibilities than those which the normal 
dozen or so control lines can support. The replacement of sev-
eral dozen copper strips by a pair of flexible wires implies a 
greater fault-tolerance, as improved decoupling between ele-
ments and less exposure to the environment are achieved. 

3.7.3 Flexibility 

In addition to the remarkable flexibility stressed above - 
in packetized data handling, the flexibility achieved in other 
domains is obvious. For instance, the cable can be twisted at 
will, allowing a more functionally-oriented arrangment of com-
ponents within a package. 

The packet exchange is completely asynchronous, as opposed 
to the relatively strict timing requirements still existing in 
so-called asynchronous backplane buses. Elements are completely 
independent in their physical position on the bus. The types of 
transmission media that can be used with the scheme is also 
left to the choice of the system designer. Some of the VLSI 
controllers available for this use would permit the choice of 
coaxial cables of various specifications, twisted wires, or 
even naked wires. Noise hazards from EMR (electro-magnetic ra-
diation) would be no worse than the conventional backplane, 
while the greater ease with which the channels can be shielded 
is a welcome option, as this will, in addition to protecting 
the environment from EMR, increase the fault-tolerance of the 
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network against external noise. 

Flexibility is also seen in the software controlled param-
eters of such networks supported by VLSI controllers. Not only 
are the size of packet, addressing field, data field, and the 
transmission speed programmable, but parameters such as the 
lengths of the preamble sequence, and CRC code are also con-
trollable by the software. They can also be programmed to cho-
ose the location of buffers, the size, and the number of pack-
ets being received or transmitted. This flexibility may be used 
to organize buffers and control blocks in such a way as to in-
crease the fault-tolerance of data structures. 



4. SYSTEM TEST PLAN 

4.1 Test Concepts 

System testing is seen in the same context as system de-
velopment. The initial view will be one of functional testing - 
a functional operation will be viewed as a "black box" with a 
set of inputs and outputs which will be tested against its op-
erational requirements [HOWD 80]. As testing proceeds through 
the layers of functional decomposition, each succeeding opera-
tion will become the next "black box", while the structure of 
the layer preceding it will now become visible. Functional 
testing is defined as having an infinite number of tests which, 
if applied, will find the total number of errors in the system. 
Structural testing, conversely, has a finite number of tests 
which will only find a limited number of errors. Testing of the 
system, therefore, will attempt to provide a balance between 
functional testing and structural testing. 

A survey of the literature has revealed that the most 
critical stages of system development, as far as error occur-
rence is concerned, are those of specification and design. The 
errors occurring at these levels are the most difficult to de-
tect, costly to correct, and critical in effect. It is pro-
posed, therefore, that considerable effort should be made to 
reduce and trace such errors. The use of a specification 
language is of great importance in this attempt. A language 
such as Ada, used for specification purposes, is in itself di-
agnostic, as it provides a means of identifying design errors 
at a very high level by prototyping the system. 

A detailed checklist shall be created from the functional 
specification. This shall be achieved through hierarchical de-
composition of the specifications. A hierarchical tree shall be 
created independently of the functional decomposition done for 
design purposes. Comparison between the two decompositions will 
form a test of both processes, since it must be remembered that 
the testing process, itself, is as prone to errors as that of 
system development. 

4.2 Methodology 

- System testing shall begin at the outset of development 
and continue throughout. 

- Testing shall be conducted in a top-down, structured fash- 
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ion. 

- Functional elements, as defined by the requirements, shall 
be viewed as a "black box". 

- Provision must be made for the injection of test data into 
the system and extraction and recording of the system's 
operational status, if this is not provided under normal 
operating conditions. 

4.3 Test Requirements 

The purpose of testing is to ascertain that the system 
conforms to the requirements. The system shall be tested until 
these requirements are met. 

System Reliability 

The system test shall ascertain that: 

a) the MTFF will be 10**9 hours 
b) the system failure rate will be approximately 10**9 fa-

ilures per hour • 
C) the availability of the system will be (1 - 1°**9) 
d) the error rate of the system will be 1 incorrect symbol 

in 10**9. 

Flexibility 

The system test shall ascertain that: 

a) the system will be able to serve an abitrary set of ap-
plications on each mission. 

b) the system will be able to adapt in flight to changes 
in mission profile. 

C) the system will be able to upgrade or enhance system 
components and relationships. 

d) the system configuration will be modifiable to cover 
component failures during a mission and has the ability 
to cope with non-homogenous load distribution. 

Fault-Tolerance 

The system test shall ascertain that the system has: 

- distributed fault detection. 
- cooperative fault diagnosis. 
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- node/link fault discrimination. 
- message/state conflict detection. 
- physical isolation 
- logical isolation 
- backward recovery 
- forward recovery 
- physical reconfiguration 
- logical reconfiguration 

Performance 

The system test shall ascertain that: 

a) the minimum throughput of a network linkage between two 
clusters will be 10 MBAS, or as defined by the require-
ments for image or voice processing. The communication 
channel must meet the access requirements for a combi-
nation of applications. 

b) the through-put of the processor complex unit responsi-
ble for the logic and arithmetic operations will be 
sufficient for all appropriate applications, i.e. a 
minimum of 1.0 MIPS when properly configured and meas-
ured in terms of a 16-bit instruction set or equiva-
lent. 

c) the processor unit shall have at least 0.25 MIPS of 
throughput when executing a mix of basic floating point 
operations. 

d) memory transfer rate between the processor in the clus-
ter and on-unit memory array shall be more than 5.0 me-
gabytes per second. The data transfer rate between the 
unit and off-unit memory (secondary memory) shall 
exceed 2.0 megabytes per second. 

e) the operating system for the processor unit shall pro-
vide a multitasking environment which is transparent to 
any multitasking scheme, and which will support basic 
multitasking functions with less than 25% overhead. The 
maximum time requirement for context switching shall be 
less than 50 microseconds. 

Autonomy Requirements 

The system test shall ascertain that: 

a) the On-board Autonomy Manager shall maintain the 
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well-being of the the on-board operation of the space-
craft, including the proper handling of minor faults. 
The solving of severe on-board faults shall be attempt-
ed in cooperation with ground control. 

b) the OAM shall establish communication asynchronously 
with the ground under the following conditions:- 

- when ground control wishes to query or monitor any 
aspects of on-board operation 

- when ground control attempts to take over any or all 
of the on-board management 

- the OAM decides that a significant on-board event re-
quires reporting 

Sufficient archiving storage shall be maintained 
on-board to accommodate the keeping of information sub-
ject to ground audit for whatever period of time is de-
termined for each mission. This storage will be organ-
ized in a hierarchical manner to allow on-board archiv-
ing to occur in diminishing frequency and quantity with 
respect to time. 

c) The design of the OAM will enable: 

- the later incorporation of an explanation subsystem. 
- the later incorporation of the functions of "knowl-

edge acquisition" or "learning" 
- the maintenance of a reasonable architectural dis-

tinction between the knowledge base and the inference 
mechanism 

- backtracking to be performed on the "global data 
base" or "scratch-pad" 

- a mechanism to deal with "fuzzy situations" to be at-
tached. 

Conformity to the FTC Rules 

The system test shall ascertain that conformity to the FTC 
Rules is maintained at all levels. 

Networking Principles and Standards 
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4.4 Resources 

4.4.1 Personnel 

The process of testing the AASC should be conducted by 
person(s) independent of the design team. This element of inde-
pendence will, of itself, provide a means of testing the de-
sign. Any differences between interpretations of the require-
ments will point to errors of conception, omission, or ambigui-
ty of specification. 

4.4.2 Computer Equipment 

These features are seen as a necessary part of the envi-
ronment in which the AASC is to be tested: 

- integration: requiring common internal program repre-
sentation, uniform inter-tool interfaces, and achieva-
bility of tools from other tools. 

- open-endedness: the ability to provide the user with 
mechanisms for new tool definitions. 

- granularity of tools: every tool corresponds to a spec-
ific simple function. 

- inter-activeness: based on a simple, powerful command 
language, a uniform user interface, user-oriented in-
teraction devices. 

- multi-user support: a project data base, personal 
work-stations, an inter-user communication facility. 

- host environment: supported by a dedicated machine dif-
ferent from that on which the produced system will run. 
This would include object code generators, source 
language program optimizers, target language linker and 
loader. The specific distribution of tools between host 
and target environment should be considered in conjunc-
tion with the development plan. (A example of an suit-
able environment is shown in Figure 4.1.) 

4.4.3 Simulators 

It is proposed to minimize the use of software simulation 
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of hardware components, since the verification of the behaviour 
of a program in a highly simulated environment is not adequate 
when performance is concerned [DEGA 81]. The use of Ada as a 
development language provides for the use of software packages 
as a means of simulating the design as it is created, while al-
lowing validation to take place concurrently. 

4.4.4 Debugging Aids 

In order to achieve the interactive analysis and testing 
of the system concurrent with its development, the following 
aids are required: 

- a structured syntax directed editor: this allows early 
detection of syntactic errors, in addition to standard 
facilities. 

- tools for static analysis: granular tools, which allow 
verification of specific semantic aspects; such as 
type-checker, symbol table builder, scoper, variable 
set-use analyzer, aliasing checker, interface checker, 
static source level linker, without the Insertion of 
test data. 

These tools can be integrated into more powerful test-
ing tools and can also be used to single out and define 
test data. 

- tools for dynamic analysis: these allow programs to be 
run using specific input data and are based on an ab-
stract syntax interpretive execution tool. The follow-
ing facilities should be provided by the interpreter: 
breakpoint insertion and management, single-step execu-
tion, in-line statement evaluation, state inspection, 
assertion evaluation, control over the execution re-
sumption after a break, and program modification. 

A symbolic execution capability (obtained from extend-
ing a conventional interpreter) takes symbolic input 
expressions which describe all possible input data and, 
through the resulting program execution, determine the 
admissible input data partitions based on program se-
mantics. The output values of this execution are des-
cribed in terms of the input values, and show more ea-
sily the adherence of the program to the requirements 
by semantic analysis of the program behaviour. The re-
sults of the symbolic execution can also be used to 
generate standard input test data. 



Mutation analysis, an interesting new approach to test-
ing, is cited in a study as achieving great success in 
the discovery of software errors and is claimed as be-
ing a major advance in the area of software testing 
[BUDD 78]. It has, however, only been implemented for 
use with FORTRAN, with extensions currently underway 
for COBOL and C Language, and its adaptation for use 
with other languages, such as Ada, would be costly at 
this time. 

4.4.5 Test Data Generators 

It will be necessary to provide a suitable program suite 
to generate sets of test data. 



5. Conclusion 

A generalized hierarchy of system autonomy has been devel-
oped, based on a layered model, from the physical layer to an 
intelligent, knowledge-based layer. This hierarchy has been ap-
plied to the design of the Advanced Autonomous Spacecraft Com-
puter (AASC), by projecting the constraints and requirements of 
the AASC onto the layered model. 

A generalized hierarchy of distributed system structure 
has been developed, also based on a layered model, in the di-
mension of network size, and this model has been applied to the 
AASC and its operating environment to produce a structural sys-
tem design. 

Finally, a top-down system test strategy, test criteria, 
and specification of testing resource requirements has been 
presented. 
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APPENDIX 

TRANSPORT Service and Protocols 

Figure A.1 shows the relationship of the TRANSPORT Services and 
Protocol with the OSI reference model. 

TRANSPORT Services 

- connection establishment 

- full duplex (normal and expedited) 

- flow control (normal and expedited) 

- expedited data (a separately flow-controlled path in 
each direction that permits small units of data to be 
sent). This is shown in Figure A.2. 

- normal data: allows an unbounded sized data unit to be 
sent. 

- termination is via "clear" i.e. data may be lost (SES-
SION has a "close" which ensures no data is lost). 

- sequencing. 

TRANSPORT Protocol Class Strategy 

- Where the NETWORK service provides the services required 
by the use of TRANSPORT and the quality of the NETWORK 
layer service is adequate to meet the needs of the ap-
plication, then a TRANSPORT protocol may be selected 
that has minimum functionality (i.e. it propogates up-
ward the NETWORK service). 

- Where the service or quality is not adequate then a 
close of TRANSPORT protocol is selected to enhance the 
NETWORK services and quality. 

TRANSPORT Protocol Classes 

Class 0: 
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Figure A.1 TRANSPORT Service and Protocols  
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Figure A.2 Expedited Data Path  

Figure A.3 Multiplexing of Data Between the NETWORK 
and TRANSPORT Layers. 



Service - provides full duplex normal data 
- no expedited 
- clear 

Functions - none, all services are propagated up from the NET-
WORK layer. 

Class 1: 

Service - provides full service 

Function - propagates all services up from the NETWORK la- 
- yers. 
- if there is a reset or disconnect of the NETWORK 

layer connection, TRANSPORT will initiate another 
NETWORK layer connection: determine what data was 
lost (re-synchronize) and re-transmit missing da-
ta. 

Class 2: 

Service - full service 

Function - multiplexes a number of transport connections on 
to a single NETWORK layer connection. This saves 
money where many long duration, low volume con-
tains must be maintained on a time charged NETWORK 
connection 

- failures are not recoverable 
- segmentation. 

Class 3: 

Service - full service 

Function - multiplexing as in Class 2 
- failures are recoverable 
- segmentation. 

Class 4: 

Service - full service 
Function - same as Class 3 

- error detection 
- error recovery 
- sequencing 
- segmentation 
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Notes 

1. Multiplexing requires that the TRANSPORT entities send 
protocol data units to control the flow on each connection 
to ensure that flow control applied to one connection does 
not affect the flow on others, as shown in Figure A.3. If 
there is no multiplexing, then the transport entity can 
provide flow control by using the flow control of the NET-
WORK layer. 

2. Error recovery in Classes 1 and 3 relies on errors being 
detected in the NETWORK layer. Class 4, however, does its 
own error detection. 

3. Class 4 assumes a minimal NETWORK layer service, i.e. da- 
tagrams. 

4. Class 1 relies on an "ACK" provided by the NETWORK layer. 
Classes 3 and 4 send their "ACKs" as protocol data units. 



J 
 

• 
3 v v 
3 v v 
3 v v v 

Table A.1 Summary of TRANSPORT Functions 

Class FC Mpx Seq. Seg. Error Det. Error Rec. Explicit Ack. 

A-4 



LOWE- MARTIN  No. 1137 

GOMI, T. 
--The design of an advanced autonomou 
spacecraft computer: technical repor 

DATE  DUE 
DATE DE RETOUR 


