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Executive Surmnary 

A problem faced by the Mobile Servicing System (MSS) is the efficient 
scheduling of various operational tasks and the management of resources to 
perform those tasks. 

There are many different Artificial Intelligence (AI) approaches to 
scheduling(planning). In this report, the authors present the generic plan-
ning paradigm and provide a survey of the different AI approaches to plan-
ning. These approaches include: Resolution planning, Hierarchical planning, 
Least-Commitment planning, Constraint Posting planning, Goal Directed plan-
ning, and Case-Based planning. For each approach, the authors describe the 
method, provide an example from the AI literature, discuss its advantages 
and disadvantages, and describe its suitability for scheduling on the MSS. 
A survey of NASA-related scheduling systems and other expert systems de-
signed for scheduling is also included. 

The report concludes with a proposed approach for scheduling tasks and the 
management of resources on the MSS. By using the suitable AI planning ap-
proaches and Dynamic Memory Theory, a robust, dynamic, and efficient plan-
ner is created. This planner bandies resource constraints, feedback, and 
operator input, enabling it to handle the dynamic environment of the MSS. 
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1.0 INTRODUCTION  

This paper provides a survey of the current approaches to planning and dis-

cussions of their appropriateness for the Mobile Servicing System (MSS). 

The MSS is a planning system performing resource management for Space Sta-

tion. The purpose of the survey and discussions are to nid in the investi-

gation of the development of an intelligent planning assistant which can 

handle the dynamics needed to cope with the MSS. 

By doing a review of these approaches, our approach can extend the related 

work on planning in Artificial Intelligence(AI) in various respects. In 

particular, our approach will attempt to handle resource constraints and 

feedback and achieve some robustness through plan learning using dynamic 

memory techniques. A major goal of any planning system is to achieve .some 

degree of autonomy. For example, since robots are not fully accurate and 

may have to operate in a chnnging environment, an autono mous mobile robot 

must rely on feedback. The presence of feedback presupposes an ability of 

dynamic replanning. Feedback tasks often involve tight time and other re-

source constraints and require the need for dynamic memory techniques to 

meet these constraints. 

We begin with the general MSS problem description to give the render a feel 

for the planning problem. Next, we introduce the generic planning paradigm 

by discussing the planning process, the inputs and outputs to the planning 

process, and the related problems of planning in what is known as "The 
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Block World". We continue with a survey of the following planning tech- 

niques: 

1. Resolution Planning 

2. Hierarchical Planning 

3. Least-Commitment Planning 

4. Constraint Posting Planning 

5. Goal Directed / Immediate Execution Planning 

6. Case-Based Planning 

Each section includes a discussion on the following: the planning tech- 

nique's method, examples, its advantages, its disadvantages, and its suit- 

ability to the MSS. 

Next, we discuss current scheduling systems. This survey includes a brief 

description of each scheduling system and a list of preliminary design con-

cepts derived from them. 

We conclude with a recommended approach for the development of an intelli-

gent planning assistant. Our approach requires, in addition to some of the 

planning techniques described, dynamic memory techniques to support the dy-

namics need to cope with the MSS. 
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2.0 THE PROBLEM  

In this section, the MSS problem is outlined. This section is provided to 

familiarize the reader with the MSS problem. In a later section we will 

propose a planning approach to solve the MSS problem after reviewing vari-

ous planning techniques and their suitability for solving it. 

The MSS problem consists of the following components: 

• A Task - This, as the name suggests, is a description of a unit of work 

that has been identified and parceled for the MSS to execute. Each 

task, as well as identifying a list of actions and operations to be 

performed by it, also includes a list of demands for resources such as 

heat and time. 

o Resources - These are physical supplies of resources such as time, 

heat, and power, available to the MSS. The supply of these resources 

can be constant or variable and usually depends on time. 

▪ Constraints - These are operator or planner imposed limitations on the 

supply and demand of resources. 

ie Operator - This person interacts with the MSS to provide it with the 

resource, constraint, task, and planning information it requires or 

makes modification on such data as needed. 
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• CONSTRAINTS 

PLANNING 
RESOURCES 

TASKS 

PLAN 

EXECUTION 

• Plan - An ordered list of tasks to execute. 

• Task Executor - This is a process that attempts to execute a task or 

collection of tasks using a plan. 

• Sensors - These are sensors that monitor and feedback resource supply 

information while the Task Executor is processing the tasks. 

Figure 1 shows a block diagram of the components connected together. 

MONITORING DATA 

SENSORS 

Figure 1. MSS Components 

We now define the MSS problem using these components. The operator, or in-

formation entry and control component(IECC), receives a request to plan how 

and when it can schedule and execute i n' tasks on the MSS. To generate a 

plan, the IECC must identify the demand for resources each task requires 
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and the availability of those resources. From this information and by ap-

plying its own constraints, the IECC develops a plan that will allow the 

tasks to execute. While the tasks are executing, the IECC also monitors the 

MSS to insure the plan is executing successfully; it may not due to an er-

ror in the plan or because of unexpected changes in the supply of resources 

indicated by the sensors. If this occurs, the IECC can perform corrective 

maintenance by altering the plan, stopping the execution of various tasks 

in the plan, or stopping the execution of the plan and starting over. 

The environments of the planning activity and the execution of the plan are 

very dynamic. Each environment has many variables that are likely to change 

through the course of each process. There are initial constraints and 

those that are imposed by the MSS as the plan is executed. The IECC must be 

in full control to insure that all tasks are executed successfully. The 

IECC constantly uses planning information that has been previously stored 

in past planning Sessions and tries to remember the variable information to 

produce the correct plan for the current situation. 

In addition to the environment being dynamic, so too must be the IECC and 

its plans. If a plan is about to fail, the IECC must take some action. 

However, the complexity of the domain makes this maintenance task a formi-

dable one. 

Planning is an easy task in a small domain. However, whnn the number of 

variables in a plan are increased, the number of resources is large and can 

vary, especially with time, and the list of a task's demands for resources 
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is large, then the IECC can have a difficult time in producing correct, ef- 

ficient plans. 

The problem simply put is: how can we automate part of the planning proc-

ess to help the IECC in its task and still leave it in the control loop 

playing an important role in overseeing the planning task? After surveying 

the current approaches to planning, we will propose an approach to answer 

this question. 
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3.0 GENERIC PLANNING  PARADIGM AND THE BLOCK  WORLD 

The ability to plan ahead is an essential aspect of intelligent behavior. 

By being.reminded of past situations, the actions taken in those situ- 

ations, and the consequences of those actions, we can achieve our goals by 

exploiting that information to formulate new plans to anticipate past dan-

gers or problems, or we can use old plans to achieve simflar goals, thereby 

economizing on our resources. 

When planning, we begin with an initial state, an initial set of proper-

ties, and try to produce a plan that results in a goal state and new sets 

of desired properties. The input data to the planner include: an initial 

state, a desired goal state, a set of possible actions, and a database of 

information about the initial state and all other possible states. The out-

put of the planner is a set of actions that, when executed in the current 

state of the planner, produce the desired goal state and description. 

We now discuss the inputs and—outputs of the planner in more detail. 
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3.1 STATE  

A state is an environment in which actions are executed. Each state defi-

nition includes: a descriptive definition of the state, a list of possible 

actions available for that state, and a list of common actions available to 

all states. 

The state in which the planner is expected to begin operation is called the 

initial state. The state where the planner is expected to end operation is 

called to goal state. All other states are known as intermediate states. 

Execution continues throughout the intermediate states leading to the goal 

state. 

The sample "Block World" considered here consists of two blocks A and B, a 

table, and a robot arm. State descriptions include varions block positions 

such as ON(A,B) - block A is on block B, HOLDING(A) - the robot is holding 

block A , and ONTABLE(B) - block B is on the table. 

3.2 GOALS  

A goal is a. definition of the desired end state.  IL  is not necessarily a 

single state, but rather it is a precise definition of what conditions lead 

to the termination of the planning process. For example, in the block 
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world the goal state may consist of having two blocks stacked one on top of 

another. If there are two different blocks, titis  lends to two possible 

stacking arrangements as well an infinite number of table positioning pos-

sibilities. 

This leads to the conceptualization that goals are unary relations on 

states. We say that a state is a goal state if and only if it satisfies 

these unary relations. For example, the relations ON(A,B) AND ONTABLE(B) 

states we have reached the goal state and can stop processing when block A 

is on block B and block B is on the table. 

3.3 ACTIONS  

Actions consist of primitive or composite actions that can be used to con-

vert the initial state to some other intermediate or goal state. There  cati 

 only be a finite number of primitive actions, but there can be an infinite 

number of composite actions in the set. Actions are also known as events, 

and they are discrete transformations of states in the world of the plan-

ner. 

By using defined sets of actions, we can restrict the planner to produce 

types of plans that can be executed by some form of executor. For example, 

it would be silly to provide a conditional action to check the size of an 

object if the executor does not have the capability. 
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An action description includes: operator descriptions and frame axioms for 

the primitive actions, definitions of composite actions, and constraints 

that must be true of the state in which the action is to be performed. 

Frame axioms are descriptions of the what remains the same during the 

action. For example, the following describes the stacking operation of two 

blocks which is defined as the stacking of block X on block Y. 

Stack(x,y) := 

Precondition --> CLEAR(Y) AND HOLDING(X) 

Action --> ON(X,Y) 

To stack block X on block Y, the precondition states that the block Y must 

not have any block on top of it and the robot arm must be holding block X; 

the action states to the robot must put block X on block Y. We can only ex-

ecute the action if the preconditions are true. 

3.4 PLAN  

A plan is a set of proposed actions to be taken from the initial state. Af-

ter executing the actions in the initial state and subsequent intermediate 

states, the executor will finish in the goal state satisfying the goal con-

ditions. 
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3.5 PROBLEM AREAS  

Now that the planning process and its terms have been identified, we switch 

our attention to areas of planning that create problems for the planning 

process. These problems include: planning direction, unachievability prun-

ing, state alignment,  the frame problem, and real-world problems. 

3.6 PLANNING DIRECTION  

One of most important determinants in the efficiency of the planning proc-

ess is.the planning direction. The problem, simply put, is whether it is 

better to plan forward from an initial state or to plan backwards from a 

goal state. On some occasions it may be better to use a combination of the 

two. To determine the best approach, a planner should examine the number 

of possibilities to be explored in both the forward and backward di-

rections, and it should calculate the branching factor in each direction. 

Once the general direction has been established, a planning process must 

still attempt to get the plan heading in the direction of the solution. 

This will minimize the wasted effort used in planning nwny .from the sol-

ution. One method of achieving this is through goal directed processing. 

The method called "Prove-As-You-Go" (Winslett 1987) adds preconditions to 

all of its operators. These preconditions are used to insure that the per- 
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formed operations are no t in violation of the goal of the action. Another 

method called "prove-ahead" (Winslett 1987), finds all the possible action 

effects ahead of time and acts to prevent the undesirable ones. 

By effectively guiding the planning direction, efficient plans and a re- 

duction in the plan validation phase can both be achieved. 

3.7 UNACHIEVABILITY PRUNING  

One source of computational waste in backward planning is the work done in 

states that are unachievable. For example, the state where block A is on 

block B and block B is on block A. When this state is reached, the planning 

process should be immediately recognized it as being invalid and prune it 

from any further consideration. 

3.8 STATE ALIGNMENT 

In some planning methods, situations are encountered where several condi- 

tions must be satisfied in a single state. When operator description axioms 

are used to satisfy one of these conditions, we end up with a subproblem in 
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which. the operator's preconditions must be met in one state whereas the re- 

maining conditions must be met in the successor state. 

State alignment attempts to avoid reductions of conditions in one state 

while there are still conditions on a successor state to be reduced. By do-

ing this, inconsistent conditions can be identified and eliminated from 

further consideration. Planning efficiency can also be improved when con-

ditions can be collected into a single state and executed in parallel. 

3.9 THE FRAME PROBLEM 

AS operations are performed and transitions are made from one state to an-

other some facts(state descriptions) become true and others false. However, 

nothing is stated about facts that were true beforehand and still are, or 

about facts that were false before and still are. 

The problem of characterizing the components of a state that are not 

changed by an action is called the frame problem(Hayes 81). The problem is 

how to differentiate those items that remain unchanged by an action from 

those that are? One way of doing this is to write frame axioms that de-

scribe the properties that remain unchanged after the execution of an 

action. 
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The number of required frame axioms is typically proportional to the prod-

uct of the number of relations and operators in the planner. In real-world 

problems, the number of frame axioms can grow quite large and complex. 

Further-more, only a few are used in any one state at any time; this means 

one must describe what is usually not happening in addition to what is. 

3.10 REAL-WORLD PROBLEMS 

The bulk of AI research on planning has not centered around what we like to 

call real-world problems. This is a problem in itself. The real world has 

constraints such as cost, speed, and efficiency. Planners that take hours 

to run, require large quantities of memory, cannot cope with fluctuating 

resources supplies, time-varying variables, and inaccuracies of physical 

components, and produce large plans are not usually desired in this world. 

Another problem arises from the fact that most planners start without an 

initial plan. The planner must always attempt to build a new plan from 

scratch using the base environment as a starting point. Real-world plans 

involve using partially existing plans in cooperation with  a  new plan to 

achieve a goal state. It is a rare situation when an actual planning activ-

ity starts from square one. Real-World plan must be: Plans must also be 

dynamic, allowed to change, and not have to start the planning process al-

ways from scratch. 
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4.0 PLANNING SURVEY 

4.1 RESOLUTION PLANNING 

4.1 .1 IVIETFIOD  

Green's method of planning is based on resolution. This method takes as in-

puts: an initial state, a unary relation constant which is called the goal 

relation, a predicate satisfied by the plan's execution, and a database of 

facts about the initial state. These facts include the goal relation and 

the available operators. 

By using fill-in-the-blank resolution to derive a plan, the side effect is 

the existence of a correct plan. The passed predicate is used to check ev-

ery answer returned by the process. If the answer satisfies the predicate, 

it is returned as an overall answer to the plan. 

Fill-in-the-blank resolution is the binding of free variables in a 

predicate-calculus sentence to a database sentence that logically implies 

the original sentence. This is achieved by substituting the bindings into 

the original sentence. 
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The key component to this type of planning is the use of symbolic logic, 

both as a tool for programming and for characterizing structures of actions 

or events. Logic operators are used to make the transformation from one 

world-state to another. The primitive operators or complex relations may 

be composed of operators such as "and", "or", "not", "if- then", or "if and 

only if". ' 

4.1.2 EXAMPLES  

The classic example of this type of planner is STRIPS (Nilson 1980). STRIPS 

represents states of the world as conjunctions of first order logic facts. 

Given an initial state and a goal state, STRIPS searches through a space of 

states to generate an ordered set of operators that if executed would 

achieve the goal states. 

STRIPS attempts to solve the frame problem by adding the notion of a pro- 

condition list, an add list, and a delete list. Each item in the list is 

expressed as a first-order formula. This approach provides a means of de-

scribing how the world would change as a result of performing an action. 

This enables the state of the world to be adequately described after the 

action has been performed. It also insures that the correct state of the 

world is obtained before an action is performed. 
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(Sandewall & Ronnquist 1986) use a form of temporal logic for their sys-

tem's action structures. This is based on a temporal ordering of points in 

time. This language allows the planner to say things like "in the resulting 

state after first doing A, then doing B and C in parallel, the proposition 

P will hold". 

(Sandewall & Ronnquist 1986) also introduce the concept of prevail- 

conditions. These are conditions that must hold for the full duration of 

the action. This is a key development in allowing actions to proceed in 

parallel. By defining what conditions must hold for the duration of the 

action structure, actions not affecting those conditions can proceed while 

others must wait for the current action to complete. 

(Georgeff, Lansky and BeSsiere 1985), (McDermott 1985), and (Allen 1981) 

all consider an action or event to be a set of sequences of states and de-

scribe a temporal logic for reasoning about these actions or events. 

(Georgeff, Lansky and Bessiere 1985) in addition, consider various "mental 

entities" such as beliefs, goals, and intentions in its sequences of world 

states. These entities, called processes, can be executed to generate a se-

quence of world states called the behavior of the process. 
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4.1.3 ADVANTAGES  

The only real advantage to Resolution planning is that it will guarantee to 

produce a correct plan if one exists. This is due to the resolution based 

method which makes it possible to prove some strong properties about the 

planner's abilities. 

The examples provide insights into other characteristics planners should 

have. The ability to do parallel actions greatly enhances the efficiency of 

a plan's execution. Any type of planner should attempt to provide this ca-

pability. Including goals, beliefs, intentions, and physical character-

istics, as part of the state description, enhances the world description. 

These enhanced descriptions allow the planner to take more real-world situ-

ations into consideration. It is goals, beliefs, intentions such as "I want 

the block here because is fits better", and physical descriptions such as 

where the block is located, that compose real-world problems. Because en-

hanced descriptions are certainly part of real-world planning problems, us-

ing them to infer and index past solutions and situations will allow 

real-world applications to be considered. 
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4.1.4 DISADVANTAGES  

Resolution planning is generally inefficient. The backtracking involved in 

finding the existence of a correct plan can be an enormous task in large 

systems. Some form of focusing or pruning mechanisms of invalid states is 

needed to improve the efficiency. 

Resolution planning relies on very static situations. Adding new axioms, 

actions, or world facts as the plan proceeds can cause the plan to become 

invalid. It does not handle a dynamic environment with which most real-

world plans must deal. 

The attempt by STRIPS to solve the frame problem creates an increase in the 

amoUnt of initial information that must be provided for the state transi- 

tions. STRIPS requires information for action preconditions, deletion 

lists, and add lists. Therefore, STRIPS spends most of its  time  gathering 

information used for trying to identify these list items, that for the most 

part are not used. STRIPS may be able to work in the block world, but for 

real-world applications the knowledge representation bncomes to large and 

complex. This leaves the application programmer the frustrating task of 

attempting to predict the state of the world before and after nvery opera-

tion in every possible situation. 

Plans by their very nature depend on the meaning of an expression in every 

situation. Unfortunately, in ordinary logic the meaning of an expression 

does not change from situation to situation. Situational logic, where one 
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can refer explicitly to situations or states of the world, tries to fix 

this difficulty. However, it does not solve the problem in all situations. 

Consider a monkey that is presented with two boxes, and is informed that 

one contains a banana and the other a bomb but is not told which. His goal 

is to get the banana, but if he goes near the bomb it will explode. The 

problem should have no solution. However, in situational logic a proof can 

be found. The monkey would consider if it were to go to the box with the 

bomb would it get a banana, and if it could not it would then go to the 

next box. This plan is not executable because it allows the monkey to con-

sider whether a given fact, is banana here at the box with the bomb, is 

true. This of course is not possible because the monkey would explode while 

attempting the maneuver. 

(Manna and Waldinger 1987) attempt to overcome this limitation. They use 

two classes of expressions. The static or situational expressions denote 

particular objects, states, and truth-values. For example, Put(state-1, 

loc-block-a, new-loc-block-a), is a static expression describing the block 

Put operation in state-1. Fluent terms, which do not denote any particular 

object, truth-value, or state, designate such elements without respect to a 

given state. For example, Put( a, a t ), is an expression designating a 

block, truth-value, or state without respect to a given state (where a and 

a t  are themselves fluent terms that designate blocks). States are linked to 

fluent terms through the use of a link operator, for example, s;Put(a, a t ). 

This.permits the execution of an operator for an explicit state "s". 

By not allowing fluent terms do refer to states explicitly, the knowledge 

of the agent will be restricted to the implicit current state. In this way, 
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it can ensure the plans extracted may be executable. This is because it 

will be unable to tell, for example, where the location of a given block-is 

in a future state. 

4.1.5 rViSS SUITABILITY  

Resolution planning is not suitable for our particular problem because of 

many reasons: for each planning task, no matter how similar it was to a 

successful past plan, it must plan from scratch; it must have ail  knowledge 

of the world explicitly declared; the plan cannot be adapted; and there is 

no outside manipulation of the planning process from another source once 

the planning process has started. 

Resolution planning expects exact initial and goal state definitions, and 

it does not allow the world definitions to vary as the planning process 

proceeds. The MSS has to function in a very dynamic world;, new constraints 

are created constantly, and old ones are removed. This would cause a Resol-

ution .the planner to restart the planning process every time the world 

changed and is not an acceptable approach. 

Resolution planning is also very knowledge intensive. Actions must specify: 

what preconditions are present before an action can take place, what new 

conditions are to be inserted into the world definition after the action is 

performed, and those conditions to be removed when the action is completed. 
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In ail but small domains, such as the block world, this type of information 

becomes quite complex and unmanageable. 

Once the knowledge has been installed into the planner, under the same con-

ditions the planner will always produce the same plan. If the plan is bad, 

one would like to have it changed, but this planner does not have the fa-

cilities to adapt itself. The MSS must be able to adapt its plans espe-

cially since its environment is constantly changing. 

The MSS uses an operator to interact with the planning process. However, 

Resolution planning does not allow for any intervention by the operator or 

feedback from the sensors once the planning process has begun. This infor-

mation can be of great value for the planner especially when it gets stuck. 

By permitting interaction with the planner, the planner can develop better 

plans by receiving information on the results of the plan. This will help 

avoid similar failure conditions in the future. 
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4.2 H IERARCH ICAL  PLANNING  

4.2.1 METHOD  

In hierarchical planning, some of the minor details of the problem are ini-

tially ignored and consideration is given to only the main issues. Once a 

solution can be found for the main issues, an attempt is made to fill in 

the appropriate details. 

This can be achieved by giving the preconditions an abstract priority 

level. The first pass through the planning process will only consider prec-

onditions at the highest priority level. After a plan lias  been created, 

consideration is given to preconditions at the next lower pilority level. 

The plan is then augmented with those operators the satisfy the precon-

ditions. This process is repeated until a complete plan is generated for 

all the different levels of preconditions. 

Hierarchical planning can also be done using a plan graph. A plan graph is 

a tree that starts with a complete plan at the root node and continually 

subdivides the different components of the plan into subplans nt the inter-

mediate nodes. The base components of the plan are at the leaf nodes. The 

planner starting at either the root or the leafs of the tree builds a plan 

by traversing the tree. The plan consists of the subplans reached at the 
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different levels of the tree. The tree encompasses all possible partial or- 

derings of the plan, decomposing the plan into every possible subplan. 

4.2.2 EXAMPLES  

ABSTRIPS (Nilson 1980) is the classic example of the first type of hierar-

chical planner. The hierarchical level of each precondition is simply indi-

cated by a criticality value associated with each precondition. Small 

numbers indicate a low hierarchical level or small criticality, Large num-

bers indicate a high hierarchical level or large criticality. This is 

called a length-first search because the process explores the entire plan 

at one level of detail before it goes to the next lower-level. 

AND/OR graphs (Homem de Mello and Sanderson 1986) is an example of the 

second type of hierarchical planning. In this system, an and/or graph is 

used to represent the assembly of a product made up of several different 

components. The initial state or leaf nodes, consist of all the components 

disconnected from one another. Intermediate states consist of different 

subassemblies of the components. The goal state or root node, is the com-

plete assembly of the product. The robot can be presented with any combina-

tion of the components and by searching the graph, can decide what the best 

plan is for assembling the components. 
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Graphs of goal interactions can also be used to guide planning (Hayes 

1987). In this case, graphs are used to model the behavior of a human 

machinist. An interaction grnph is created to show the order in which the 

operations(drilling a hole, and milling) are performed on a piece of metal. 

A squaring graph describes the methods of squaring a piece of metal: Each 

graph shows how the operations are to be ordered for the different 

subgoals. The two graphs are then merged to generate a plan for the exe- 

. cution of both subgoals. 

Each graph subdivides the goal, allowing for goal interactions to be iden- 

tified when the merge operation is performed. 

4.2.3 ADVANTAGES  

When solving hard problems, the solution may consist of a very long plan. 

To construct large plans efficiently, it helps to concentrate on the basic 

problem first and to fill in the initially ignored details later. 

By only considering the critical subgoals before the details, it can also 

reduce the search; by ignoring details one efficiently reduces the number 

of subgoals to be accomplished in any given sublevel. This reduces the 

amount of backtracking that has to be done because each subgoal's search 

space is small and therefore requires little backtracking in searching. 
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This contrasts with Resolution planning, which must search the entire world 

space which requires considerably more backtracking. 

By traversing the space of all possible plans, graphs provide the opportu-

nity to select an optimal plan and dynamically adapt planning to changing 

conditions in the environment. This is evident in (Homem de Mello and 

Sanderson 1986). If a robot is presented-with two different parts to as-

semble that it does not normally expect, it is still able to find a plan to 

do the assembly. 

An augmented RTN, described in the Goal Directed Example section (Georgeff 

and Bonollo 1983), is a simple graph inferencing mechanism that aids in 

both the acquisition of knowledge and in its verification. The fact that 

it is graphical in nature provides a very easy conceptual model for humans 

tà understand; one can see the state transition arcs from one state to an-

other, and why the transitions occur. 

Plans and subplans are procedural by nature, and the construction of the 

planner is purely declarative. This permits easy construction with tradi-

tional languages, and is a big advantage for real-world planner implementa-

tions. 

Procedural knowledge is knowledge stored as a sequence of operations to be 

performed. An example would be the knowledge built into a plan to move a 

robot's arm, which consists of "n" ordered executable steps. 
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Declarative knowledge is an explicit knowledge representation that can be 

interpreted as making declarative statements about the world. Such state-

ments typically are stored in symbol structures that are accessed by the 

procedures that use this knowledge. For example, a declarative statement is 

ON(Block-A Block-B), which states Block A is on Block B. 

4.2.4 DISADVANTAGES  

The assignment of priority levels is critical to the success of Hierarchi-

cal planning. A detailed knowledge of these levels in its domain is re-

quired and may vary from situation to situation. When attempting to 

assign a priority one faces two problems: having to access the assignment 

in relation to the priorities assigned to all other preconditions, and of 

trying to anticipate if it will ever change in a new situation. For these 

reasons alone, hierarchical planning is not a good approach because it is 

very hard to manage these priorities in a large systems. 

For hierarchical planning to be applicable, a plan must be specified from 

start to finish, but this is not possible in a dynamic environment. World 

conditions change, and the planning process should not have to start from 

the beginning again and again as the plan's environment changes. Some back-

tracking is indeed eliminated by hierarchical planners but the need to 

start at the beginning every time the environment changes goes beyond the 

usual disadvantage of excessive backtracking. 
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Graphs can be quite effectively used in small problems but become unmanage-

able in large systems. Moreover, since a state in the graph must be created 

for every part of the plan, this approach will not be feasible. • 

Graphs may lead to the construction of many correct plans. However, addi-

tional work must be done to ensure that the planner is using the most effi-

cient one. A hierarchical planner could be always using the worst plan 

which is clearly not advisable in time critical planning applications. 

4.2.5 MSS SUITABILITY  

Hierarchical planning is planning at progressively greater levels of de-

tail. This is not the type of planning we are attempting for the MSS. We 

know what the individual tasks are, and we just want to find out a way of 

completing all tasks with a given set of constraints. There is one master 

task which is the plan itself and a list of subtasks which must be 

achieved. These subtasks do not need to be broken down any further since 

they are already in an executable state. For this reason, and because of 

its inability to cope with environmental changes, Hierarchical planning is 

of little use to the MSS. 
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4.3 LEAST-COMM1TMENT  PLANNING  

4.3.1 METHOD  

Instead of considering  ail the permutations of an operator sequence, a 

least-commitment strategy chooses the order in which operators are per-

formed. It tries to discover which operators are necessary for a plan to 

meet its goals, as well as any required orderings among them. 

The planning process first decides what has to be done, regardless of the 

order, on the basis of the stated goals that are to be achieved by the 

planner. This part is typically a form of hierarchical planning. The plan-

ner begins by constructing an abstract skeleton of a plan and then, in 

successive steps, fills in more and more detail. By using hierarchies, 

goals are partitioned into subgoals for the refinement of the operators to 

meet the subgoals. Nothing is stated about the order in which the operators 

must be applied to meet the overall goals. 

A second process then takes the operators required to meet the goals and 

orders them, if necessary, using their preconditions and constraints. The 

key point here is that a least-commitment  platiner  does not boLher ordering 

operators when this is of no concern to the planning process. • 
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An example of this is planning to make breakfast. The goal of breakfast is 

to have toast, tea, and cereal. The operators required in this plan are 

Make(toast), Make(tea), Get(milk), and Get(cereal). To have breakfast,  ail  

four operations need to be done but not in any particular order. Therefore, 

the planner does not need to account for ordering, it must only find and 

execute the operators. However, there are cases where ordering is impor-

tant. For example, in a four course meal one want to be sure the first 

course comes before the second, and so on, but the ordering within the 

courses may be independent of the ordering of the food for that course. 

4.3.2 EXAMPLES  

The prime example of this type of planning is NOAH (Cohen and Feigenbaum 

1982), (Rich 1983). NOAH develops a plan from a procedural net. From a 

single node representing a goal or task to achieve, a hierarchy of nodes 

are created that represent a partially ordered set of tasks to achieve that 

goal. Similarly, each one of those subtasks has a partially ordered set of 

subtasks to achieve that subtask, etc. All tasks are linked together (by 

attaching subtasks to their parent task) to form a procedural net. 

Thus, the original task is replaced by several layers of more detailed 

tasks located in its plan library. This hierarchy of tasks ends with imme-

diately attainable tasks, executable by the plan's operators. 
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Interaction problems between operators are continually examined and cor-

rected in the plan as they arise. This allows NOAH to solve interaction 

problems constructively; they are not ordered until a problem is detected 

and are ordered to prevent the problem. 

4.3.3 ADVANTAGES  

NOAH-like planners, by following the least commitment strategy, achieve 

more flexibility while doing less backtracking. By searching their plan li-

brary, plans for subtasks can be located and executed with little ordering 

conflict. Also, by having a plan built from partial plans, permutations of 

all possible operator sequences do not have to be considered for developing 

a plan. 

By being partially a Hierarchical planner, Least-Commitment planners also 

benefit from that method's advantages. 

4.3.4 DISADVANTAGES  

Relying on plans that are in the plan library can be a problem in some 

cases. If the library does not contain the appropriate plan or subplan, the 
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planner is stuck since it cannot build a plan from scratch nor revise ex- 

isting plans. 

The process of recognizing interacting subproblems can become costly when 

the subplans go to extremely deep levels. If simple plans are used that are 

only four or five levels deep, this problem is of little concern. However, 

in deep subplans the complexity and time required to check all interactions 

of operations becomes a heavy strain on the system. Again, once the plan-

ning process has started this type of method can not deal with a changing 

environment. It requires the world to be in a stable condition. Plans are 

created from start to finish and are not permitted to be altered. 

4.3.5 MSS SUITABILITY  

Least-Commitment planners are not suitable for the MSS project for at least 

two reasons: they disregard the ordering of the tasks, and they are unable 

to continue planning if a ready-made plan does not exist in their plan li-

brary. 

The MSS has deadlines or power resources limits that must be met, and a 

plan must be efficient enough to execute in the time - or with the re- 

sources - available. In such cases, the ordering of subtasks is crucial to 

PLANNING SURVEY 32 



the effectiveness of the plan. Least-Commitment planners use a partial or- 

dering and cannot detect conflicts in such situations. 

If a Least-Commitment planner cannot find a plan in its library of ready- 

made plans, it cannot do anything else but give up. The MSS planner must 

always be able to achieve a plan and not have to give up because of lack of 

information. 

4.4 CONSTRAINT POSTING PLANNING  

4.4.1 METHOD  

The previous least-commitment strategy can also be extended. In NOAH it was 

the order of operators we were concerned with, however, other decisions are 

faced by more complicated planning systems. In most planning systems, ob-

jects as well as operators are central to the planning process. 

Constraint posting is a technique that allows decisions about objects to be 

deferred for as long as possible, even though these decisions may interact 

with one another. Constraints are relationships among plan variables. Using 

constraints, solutions to nearly independent subproblems can be found. For 

example, suppose you must elect two people, one for president and one for 
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treasurer. You do not want to consider  ail possible pairs of people, in-

stead you want to break the problem into two nearly independent subprob-

lems. The subproblems are not really independent since the two people must 

be able to work together. Let X be the president, Y be the treasurer, and 

the following constraints added to the requirements: COMPATIBLE(X,Y), and 

NOTEQUAL(X,Y). With these, the planning process can proceed as if working 

on two separate problems: finding a president, and finding a treasurer. 

Checks are done later to see if the proposed component solutions meet the 

constraints. 

Constraints help refine general plans, that have many different solutions, 

to a few plans that have specific solutions. By using constraints, the 
_— 

planning activity can be more focused and able to continue planning where 

it might have otherwise had to stop. For example, if a vital piece of in-

formation is missing or not in support of the planning activity, such as 

the planner having only ten units of type X and it needs twenty, a con-

straint can be imposed, such as it will later receive ten more units of X, 

that will enable the planner to continue under the new constraint condi-

tion. 
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4.4.2 EXAMPLES  

MOLGEN (Stefik 1981) is perhaps the best known planner using this tech-

nique. It uses three types of operations on constraints: constraint formu-

lation, constraint propagation, and cons traint satisfaction. 

Constraint formulation is the adding of new constraints as the planning 

process proceeds, causing the problem to become more tightly specified. 

Constraint propagation is the creation of new constraints from old con-

straints. When constraints are propagated, they bring together the require-

ments from separate parts of the problem, allowing a least-commitment 

strategy of deferring decisions for as long as possible. 

The propagation of dominance relations (Wellman 1987) among classes of can- 

didate plans is central to the planning framework of Wellman's system. By 

integrating a dominance prover into the plan search process, the tradi-

tional Constraint Posting planning method is generalized to permit par-

tially satisfiable goals. Plan classes are generated by posting constraints 

at various levels of abstractions, then classified within a plan lattice 

that manages inheritance of properties and dominance characteristics. 

Constraint satisfaction is the operation of finding values for the con- 

straint variables so the set of constraints can be satisfied for a plan. 

PLANNING SURVEY 35 



As well as dominance relationships, constraints can take the form of re-

sources (Muscettola and Smith 1987) such as time, supplies, and equipment. 

In this paper, a probabilistic approach is presented to resourcn allocation 

and plan evaluation. 

4.4.3 ADVANTAGES  

The major advantage of constraint posting planning is its ability to antic-

ipate interference between subproblems and to eliminate the interfering 

solutions as planning proceeds. 

In addition, it shares the advantages of Least-Commitment planning. As 

constraints are introduced, the possible solution set is reduced, allowing 

for only viable solution paths to be checked and ruling out the rest. Con-

straints allow the solution set to be partitioned into different subprob-

lems. Thus, the planner rarely commits itself to a decision it must undo 

later. This makes this method an efficient approach to guiding the plan to 

its correct solution. 

Finally, this method is built on top of the hierarchical approach and gains 

all of its advantages. 
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4.4.4 DISADVANTAG IES  

Constraint posting is a knowledge intensive style of problem solving. It 

requires knowledge about how and when to generate a constraint and when to 

propagate it. One way of overcoming this disadvantage is to allow con-

straints to be specified only at the introduction of the planning process. 

But with this method, the dynamic flavor of constraints is lost. Another 

method would only allow the introduction of new constraints but not their 

propagations. This allows for the dynamic nature of an outside environ-

ment, while making the internal operation of the planner static. 

4.4.5 MSS SUITABILITY 

Constraint planning can play a major role in helping to solve the MSS prob-

lem. The following constraint types augment the MSS specific information 

available to the planner to help restrict the search space: 

▪ Goal constraints - Provide details of why an action is in the plan, 

thereby, removing the need to deal with many apparent interactions and 

search alternatives. 

• Object and Resource  cons  traints - Provide the ability to recognize con- 

flicting or concurrent use of shared objects and resources. 
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• Consumable Resource constraints - Restrict search and heuristically 

weight search alternatives to prefer low consumable resource use. 

• Time constraints - Provide the ability to specify windows for goals or 

actions, and the ability to deal with external timed events. These con-

straints can also be used to restrict the search to solutions that can 

meet the given time specifications. 

• Priority Constraints - Provide preferences to guide search. 

4.5 GOAL DIRECTED / IMMEDIATE EXECUTION PLANNING  

4.5.1 METHOD  

As described previously, planning problems are posed with unique initial 

and final world states. In Goal Directed planning the problem is only spec-

ified by a goal. The planner does not commit to any specific course of 

events, but rather specifies appropriate reactions for anticipated situ-

ations. Another way to view this is that one large plan represents a sol-

ution to every other possible plan. Which part of the universal plan is to 

be executed depends on the current environment the plan is executing in. 
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Accordingly, this type of planning is called 'immediate execution plan-

ning'. 

There is no commitment to any sequence of events, and the plan contains 

little sequence of any kind. Instead, the planner partitions the set of 

possible situations on the basis of the reaction each situation requires. 

The behavior of an agent executing the plan depends on which situation has 

arisen at execution time. This permits appropriate behavior even in un-

predictable environments. It will execute what it thinks is correct for 

the given situation. Since it does not depend on past history, variable 

situations do not affect the current plan. A synthesizer of such plans de-

termines the behavior by deciding under what conditions a feedback function 

should be invoked to achieve some change in the condition of the world. The 

feedback function retrieves information about the world so the planner can 

determine a response. It is of little use to retrieve information when the 

world has not changed. 

This type of planning does not build and execute a complete plan, but 

rather interleaves the planning and execution of the plan. By anticipating 

every possible situation in a domain and prescribing an action for every 

initial state, the action is usually optimal. 
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4.5.2 EXAMPLES  

Universal Plans (Schoppers 1987) is one example of an attempt to compactly 

represent every possible plan of the block world's "stack" operation, exe-

cutable by a robot arm. The planner creates a decision tree for every pos-

sible . world state that block A and B can be in and provides actions for 

each one of those states. Preconditions are used in the decision tree to 

help establish the current world's state. An action is taken by the planner 

when the world state matches the preconditions of a world state in the de-

cision tree. The action is taken as an intermediate step in the completion 

of the goal of stacking two blocks. Execution of the partial plan provides 

for a new world state. The result of the subsequent execution of the par-

tial plans should lead to the completion of the Universal Plan's goal of 

the "stack" operation. 

Procedural Expert Systems (Georgeff and Bonollo 1983) use the concept of a 

recursive transition network (RTN) to guide and control the planner. An RTN 

is a network of nodes connected by arcs. An arc can be traversed from one 

node to another only if the predicate labeling the arc evaluates to true. 

Nodes correspond to the world states, and arcs correspond to preconditions 

and actions. All possible paths in an RTN node are explored, beginning at 

the initial arc and ending with the final arc. The arc predicates are any 

computable function and cnn include goal predicates used for the guidance 

of the planning process. 
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1 4  3 AD,ANTAGEs  

1 

By having a reactive planner, plans do not have to rely exclusively on what 

has happened in the past. This is an important feature when working in a 

dynamic environment, where world state descriptions can vary from the start 

to the finish of the execution of the plan. What is important is the goal 

of the plan, not the particulars taken to solve it. Replanning, due to 

changes in the parameters of the world, can be an expensive operation. A 

complete execution of a plan may never be completed in a dynamic environ-

ment. The early commitment problem is side-stepped by the interleaving of 

plan refinement and execution. 

This method relies on its environment for information about the world after 

the execution of an action. Other planners must explicitly identify the 

changes in the environment using postconditions. In the real-world, actions 

do not always affect the world as they should or are expected to. There- 

fore, this type of interaction is hard to describe be means of 

postconditions used by other planners, but is easily handled by goal di-

rected planning. 
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1 
il 

4.5.4 DISADVANTAGES  

One disadvantage of this method is that the execution of an incomplete plan 

may make the goal permanently unachievable. The planner may bring about a 

world state that it can not get out of, like painting itself into a corner. 

The fact that it does not consider what it has done in the past leads to 

this fault. A true planner must consider where it was, where it is going, 

and what in the past is similar to its current situation. By using all of 

this information, the planner can make consistent plans from situation to 

situation. 

Universal type plans should be limited to very small problem spaces. This 

is due to the amount of world states that can occur for any one problem, 

and the amount of information required for each state. In spite of its sim-

plicity, a typical block world example has in excess of 400 possible world 

states. This makes this type of planner impractical for real-world spaces 

which are generally much larger. 

The job of identifying every possible world state is a problem in itself 

especially when state descriptions and preconditions contain many different 

variables. 
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4.5.5 PART 8.5 - MSS SUITABILITY  

This type of reactive planner can be of use when the MSS plan is executing. 

If the plan fails for some reason, lack of resources, this type of planning 

can be used to suggest ways that the plan can continue executing The MSS 

is a two part planner, with a planning and execution stage. The planning 

phase uses predictions about resource allocation, which may not always be 

correct. Therefore, in the execution phase it is essential to have a re-

planner that can dynamically react to situations that cause the current 

plan to fail. Relying on reactive planning and a replanning capabilities 

saves time that would otherwise be wasted generating a new plan from 

scratch, and may enable the planner to salvage the partial plan by making 

use of the currently available resources and information. 

4.6 CASE-BASED PLANNING 

4.6.1 METHOD  

Planners such as STRIPS and NOAH try to create every plan without using, 

and benefiting from, any past experiences in solving a problem that is sim-

ilar to the current needs. Case-Based planning attempts to reuse existing 

PLANNING SURVEY 43 



plans, either directly from a plan library if the current situation is sim-

ilar to a pervious situation, or by altering past plans to meet the current 

situation. 

Most of human planning uses this model. Over time we encode our plans into 

memory and try to fit them to our current environment. It is rare that one 

experiences a situation that one has not already encountered or that does 

not resemble a past experience. However, occasionally a new situation is 

encountered and one must use other methods of planning. After the new plan 

is generated, one has a plan that can be used over and over in similar 

situations in the future. 

One component of Case-Based planning is the plan library. As the name sug-

gests, this is a library of proven plans that have been used in the past. 

Eacil plan contains a ordered sequence of actions to perform and a list of 

goals that the plan satisfies. Because the planner must be able to reuse 

old plans and store new ones, it must be able to understand and explain why 

a plan has succeeded or failed in a given situation. This information is 

used in the future to make a. better plan. The source of failure information 

is also used as an index to  the plan. This means that the planner must 

have a powerful memory organization as well as a strong model of causality 

of the domain in which it operates. 

Another component of Case-Based planning is the plan retriever. Given the 

currently defined goals a plan must achieve, the plan retriever looks into 

the plan library and attempts to locate a plan that satisfies those goals. 

If it can not find one, it will then attempt to find one that is similar to 
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the current situation. In the Example section, we describe a planner 

called PLEXUS (Alterman 1986). It provides an approach to identify similar 

plans to the current situation. 

After a plan has been found, it is passed to the plan modification compo-

nent. This component will alter the plan, if required, to match the current 

situation. This component uses domain information to help modify the plan. 

For example, if a retrieved plan satisfies a goal not required by the cur-

rent plan and the goal is achieved by some  action in the plan, that action 

can be removed from the plan without causing any harm to the completion of 

the plan's other goals. 

Next, the plan is passed to the execution component of the planner. After 

a plan has been executed, the results are used to decide what to do with 

the plan. If the plan succeeded, the plan is added to the plan library to-

gether with the goals it satisfied. If it failed, the plan is analyzed to 

detect the failure component of the plan. The failure information is added 

to the existing plan in the library so it can be used to avoid the same 

problem again in the future. 

4.6.2 EXAMPLES  

A good example of this type of planning is CHEF (Hammond 1986). CHEF is a 

Case-Based planner which creates and learns new plans in the domain of 
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Szechwan cooking. CHEF also attempts to do a little more than the standard 

Case-Based planner. It tries to anticipate planning problems by noticing 

features in the current input that have previously contributed to planning 

problems. It also attempts to do plan repair when a plan has failed. In ad-

dition to noting exceptions, it tries to fix them and store the newly de-

bugged plan. 

PLEXUS (Alterman 1986) goes into more detail about how plans different from 

the current situation are matched and corrected for use in the current 

planning situation. 

PLEXUS identifies four ways that plans can differ from a situation. The 

first way is-when a failing precondition differs from the current situ-

ation. In this case, PLEXUS tries to generalize the precondition to see if 

it  can fitid an alternative precondition it can use. The second way is when 

the failing outcome(goal) differs. In this case, the desired outcome of 

the current situation differs from the outcome of the stored plan. The 

planner then attempts to modify the plan so the failing condition will not 

occur. The third way is when a goal differs. Incremental abstraction or 

specialization is done in an attempt to change the goal. The final way 

plans can differ is when situations are out of order. The planner can ei-

ther, on the basis of domain knowledge, reorder some steps, or remove them 

completely from the plan. 

Planning with Abstractions (Tenenberg 1986) describes how abstraction hier- 

arches of domain specific information can be used to help-adapt old plans 

to new ones. The planner determines if an old plan can be appropriately 
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altered to fit a new plan by adapting the situation, goal, or object within 

the new plan, using the abstraction hierarchies. 

WOK (Hammond 1983) demonstrates the use of goals as the main index to old 

plans. It suggests an organization and indexing strategy that allows the 

retrieval and use of plans that are composed of sets of goals rather than 

just individual goal situations. 

An important, yet frequently studied, part of Case-Based planning is a 

method of locating a plan in a very large search space. POISE (Carver, 

Lesser, and McCue 1984) implements a search focusing mechanism that checks 

the syntactic 'and semantic validity of a possible plan. It also uses a 

heuristic focus-of-control by providing a context mechanism. This allows 

interpretations which were considered unlikely if newly discovered informa-

tion validates them. 

4.6.3 ADVANTAGES  

The biggest advantage of the method of Case-Based planning is not having to 

start the planning process from scratch. By using existing plans, a very 

efficient planning architecture can be developed. One wants a planner that 

can learn and reuse complex plans, rather than a planner that must always 

start from scratch to achieve a plan for the same set of goals. 
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This type of planner can also use the information of a failed plan to an-

ticipate and avoid similar failures in future sessions. The anticipate-and-

avoidance mechanism is one advantage other planners do not provide, and is 

vital to the success of a planner. 

The planner also has the ability to produce many different types of plans. 

By using different criteria of similarity, many past plans may be applica-

ble to the current situation. This provides a diverse choice of plans. 

4.6.4 DISADVANTAGES  

The biggest problem of Case-Based planning is identifying a. plan that is 

similar to the current situation. The search can not be too tight, other-

wise no plan will be located. If, on the other hand, the search is too 

loose, plans that are irrelevant to the current situation will be found. 

The problem is to use the correct blend of searching strategies. 

If the plan library is large, better search techniques will be needed to 

focus in on the correct plans. In particular, one does not want to spend a 

long time searching for a plan that does not exist. 

Another problem occurs when no plan can be located in the plan library. If 

no plan exists, the planner must produce a new plan by one of the methods 
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that uses primitive actions to plan from scratch. If this interface is not 

provided, the planner will be doomed to fail in an automatic mode. 

Finally, the planner has the problem of trying to decide whether it is 

worth while to alter an existing plan, or should it use one of the 

planning-from-scratch methods. Additionally, after the plan is altered, ex-

ecuted, and is ready to be stored in a library, how does the planner know 

the alteration has been successful? These decisions must be made correctly 

to support plan learning. 

4.6.5 IVISS SUITABILITY  

This is the most suitable of the existing types of planners for the MSS 

problem. The ability to use old plans is central'to any dynamic planning 

approach. Indexing old plans, using their goals, and using the problems 

they helped to avoid, can provide one with complex plans without going 

through the complex plan development process. We can also use old plans to 

develop new plans when a ready-made one is not available. By locating old 

plans that are similar to the new situation, we can use the differences to 

develop the new plans. The MSS is not an application that needs to reason 

about planning tasks because the tasks are well defined. However, it must 

reason about how to order these tasks, and this is where references to past 

plans and their ordering of tasks can be of great value. 
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5.0 CURRENT SCHEDULING SYSTEMS 

The following is a survey of NASA-related  and other expert systems designed 

for scheduling. The - systems' names and short descriptions are provided. A 

more detailed discussion can be found in (Liebowitz and Lightfoot 1987). 

Development of the systems were done by NASA, Universities, and private in-

dustries. 

1. DEVISOR - An expert system designed for the scheduling of deep-space 

missions. 

2. KNEECAP - A planning aid for constraint-based crew activity scheduling. 

3. PLAN-1T - An expert system for schedule planning. 

4. EMPRESS - Stands for Expert Mission Planning and Replanning Scheduling 

System. Aids in constructing and maintaining particular mission sched-

ules. 

5. CAPS - Stands for Crew Activity Planning System. Is an expert system 

that is a planning generator at  the Johnston Space Center. 

6. IEPS - Stands for Interactive Experimenter Planning System. Is a gener-

alized expert system scheduling tool to aid satillite experimenters in 

their request generation. 
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7. RPMS - Stands for Resource Planning and Management System. Assist users 

with general planning and scheduling tasks. 

8. EXEPS - Is an expert system for timelining electrical power system ac- 

tivity blocks. 

9. BATTLE - Allocates weapons to targets for battle management purposes. 

10. ISA - Stands for Intelligent Scheduling System. Is an expert system to 

schedule orders for manufacturing and delivery. 

11. KNOBS - Performs mission planning. 

12. ISIS - Is an expert system to schedule manufacturing steps in job 

shops. 

13. NUDGE - Is a framed based expert system used in scheduling. 

Our preliminary design approach (Deugo, Oppacher, and Thomas 1988) draws on 

the best design concepts and lessons learned from these previous systems. 

By using them, we can gain from their experiences and avoid their failures. 

These concepts are identified in the preliminary design approach paper. 
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6.0 OUR PROPOSED APPROACH 

Planning is an important part of a person's day to day activities. A plan 

can be both informal or formal by nature. It is used to meet a person's 

goals using the resources he has around him. Businesses run their oper-

ations arranging, coordinating, and planning resource allocations to 

achieve an objective. We see then that the MSS problem is one tbat is being 

encountered over and over again in the world, and is not one that is only 

specific to the MSS. All of these plans must use resources such as time, 

labor, capital, machinery, and information, attempting  • o maximize the ef-

ficiency with which they are consumed. 

Typical schedulers, not based on AI techniques, have a proven record of ob-

taining optimum solutions when the supply and demands of resources can be 

specifically identified. However, when the environment is only informally 

specified, and when the specifications are possibly incomplete, inconsist-

ent, and variable, AI techniques may lead to a big improvement over tradi-

tional schedulers because they provide a more adaptive planning mechanism. 

Our approach to the MSS planning problem consists of four components: the 

plan identifier, the plan executor, the dynamic replanner, and the plan 

evaluator. 

The plan identifier component uses a dynamic memory approach to generate a 

plan. First, the user provides the list of tasks and constraints to set up 
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the plan identification phase. Using this information, the planner indexes 

into a library of old plans, indexed by their goals and failures, and at-

tempts to find a plan that matches the current situation. If a plan can be 

found, that plan is passed to the plan execution component. If no plan can 

be found, the planner will attempt to find one that is similar to the cur-

rent situation. The criteria for partial or similar matching is outlined in 

the planner design document (Deugo, Oppacher, and Thomas 1988). This plan 

is massaged by, the component's domain plan information, planning 

heuristics, and operator input, if so desired, to create a new plan used by 

the plan execution component. 

This approach enables the planner to continue planning even though the 

planner has no ready-made plan to deal with the current situation. This 

feature make the planner an advancement over the current planners that must 

always start planning from scratch, or are only looking for plans that ex-

actly match the current situation. 

The plan execution component takes the plan and starts the execution of it. 

If the plan experiences a failure condition(eg. lack of resource), the ex-

ception is noted and the dynamic replanning component is activated. This 

component will attempt to reorder the plan, remove failing tasks, stop exe-

cution, or ask the operator for assistance in order to keep the plan's exe-

cution continuing. When a plan fails, one does not want to stop the 

execution because resources have been allocated and are ready to use. The 

dynamic replanning component is another important advancement in planning, 

•since it prevents minor faults from stopping plan execution but causes only 

a slight replanning of the plan. The replanning component uses the plan- 
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ning technique known as goal planning or reactive planning to knep a plan 

executing. 

After the plan has executed, the plan, its exceptions, and its replanning 

descriptions are given to the plan evaluator. If the plan was an old plan 

that executed successfully, this information is added to the plan in the 

plan library to give added support information to it. If the plan was a 

newly created one and it executed successfully, the plan is added to the 

plan library along with the goals it satisfied. If the plan failed, the 

exceptions along with why the goals failed are noted. If the plan has a bad 

track record it may be altered using the replaning information to make it a 

better plan. The user is part of this activity and helps verify the rea-

soning of the planner and to ensure the sanity of the plan library updates. 

This component helps the planner acquire new plans and knowledge by learn-

ing from itself, both in creating new plans and from its planning failures. 

It also learns to fix plans and adapt to new environments over time. 

All the components make use of dynamic memory; to generate a plan, to exe-

cute and alter a plan, and to store and update new and old plans. By using 

dynamic memory, the goal of providing the MSS with some degree of autonomy 

is achieved. The MSS can work in a dynamic environment and be ready to meet 

the changes it will face. To achieve a robust, dynamic, and efficient 

planner for the MSS, we feel capabilities of handling resource constraints, 

feedback, and operator input, that use dynamic memory idanning techniques 

are critical. 
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Following this document is the preliminary MSS design document. This docu-

ment provides an in-depth look at the approach that has been outlined here. 

It includes an MSS planner synopsis, description, and outline of the design 

that will be used for the implementation phase of the MSS. 
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