
1

A proposed approach
for scheduling applications
(with respect to the mobile

servicing system)

TL
797
D3967
1988

PREPARED BY: Carleton University
School of Computer Science

ISSUED BY CONTRACTOR AS REPORT NO:

-Inc--171;i7ç, Canada
Library Queen

SEP 1 6 1998
Industrie Canada

Bibliothèque Queen

Ltne

Il ilk Government Gouvernement
of Canada du Canada

Department of Communications

DOC CONTRACTOR REPORT DOC-CR-SP-88-006
DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA

SPACE PROGRAM

1111131111M11311fflanliaiMil

TITLE: A Proposed Approach For Scheduling Applications (With Respect to the Mobile Servicing System)

AUTHOR(S): D.L. Deugo, F. Oppacher, D. Thomas

1

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 31098-7-21600

DOC SCIENTIFIC AUTHORITY: Peter Adamovits

CLASSIFICATION: Releasable

This report presents the views Of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

DATE: April 1988

a, A Proposed Approach for Scheduling Applications
(With Respect to The Mobile Servicing System) /

April 28, 1988

Prepared By
7

Dwighteugo
Franz Oppacher
Dave Thomas

School of Computer Science
Carleton University

Ottawa Ontario, Canada

Contract Serial No. 31098-7-2160/01-SW
Space Station Project Office
National Research Council

Scientific Authority P.J. Adamovits
Communications Research Centre

71,3`?
-1(-735

1

Executive Summary

Scheduling is an important part of the Mobile Servicing System (MSS). The
MSS must produce efficient plans to allocate tasks and economize on its re-
sources. This report describes the authors' conceptual design of a sched-
uling approach for power management on the MSS. The design includes a
planner to schedule tasks on the MSS that require various amounts of power
and are constrained by items such as time.

The report begins with an introduction to Dynamic Memory theory which the
authors feel is essential to the approach. Next, a synopsis of the approach
is provided identifying its four main components: the PLANNER, the plan
EXECUTOR, the dynamic REPLANNER, and the plan EVALUATOR. Each one of these
components is discussed in detail after the data definitions for the ap-
proach are described. The report concludes with a discussion of the con-
cepts from other documented scheduling systems that were incorporated into
the approach.

Through the use of Dynamic Memory techniques, combined with constraints,
reactive planning, case-based planning, and interactive goal satisfaction,
the authors present an approach that handles resource constraints, feed-
back, and achieves both robustness and some degree of auLonomy through plan
learning.

TABLE OF CONTENTS

1.0 INTRODUCTION

2.0 INTRODUCTION TO DYNAMIC MEMORY 4

3.0 SYNOPSIS OF OUR APPROACH 7

4.0 DATA DEFINITIONS 12
4.1 RESOURCES 12
4.2 TASKS 14
4.3 CONSTRAINTS 16
4.4 PLAN 16
4.5 PLAN LIBRARY 18

5.0 PLANNER 19
5.1 LOCATER 19
5.2 CONSTRUCTER 20

• 5.3 EXPLAINER 22

6.0 EXECUTOR 23
6.1 FAILURE DETECTOR 23

7.0 REPLANNER 25
7.1 NOTETAKER 25

8.0 EVALUATOR 27
8.1 UPDATER 28
8.2 ADAPTER 29

9.0 DESIGN CONCEPTS 30

10.0 SUMMARY 32

11.0 REFERENCES 33

Table of Contents

II

I I

1.0 INTRODUCTION

In the paper "Planning Techniques Survey: Their Applicability to The Mobile

Service System" (Deugo, Oppacher, and Thomas 1988), the Mobile Servicing

System(MSS) problem was outlined, and an approach was proposed to solve it

using dynamic memory techniques (Schank 1982). This paper describes the

conceptual design of that approach producing the MSS planner - an adaptive

dynamic memory planner.

Planning, better known as scheduling when time is a fadtor in the planning

effort, plays an important part in our life. People, businesses, and the

MSS, must produce efficient plans to allocate and economize on the use of

resources. Traditional methods of planning include:

• PERT - program evaluation and review technique

• CPM - critical path method

• Gantt Charts

• Precedence Diagrams

• Close-Order

• Inventory Control

• Linear Programming

• Transportation/Assignment Methods

These methods do quite well when their domain is well defined, and when the

planning environment is unlikely to change while a plan is executing. So

why do we propose an Artificial Intelligence(AI) solution? When domain

INTRODUCTION

specifications are informal, incomplete, inconsistent, and always changing,

traditional methods start to break down because they cannot handle the var-

iable specifications or the dynamic aspects of the environment. Knowledge-

based or AI planners can handle the uncertainty in creating, executing, and

adapting plans. Therefore, they are better suited to the MSS planning prob-

lem.

AI planning systems have been evolving for the past 20 years. STRIPS(Nilson

1980), a resolution planner, began back in 1969 with its use of Precon-

ditions, Add, and Delete lists to control the world's description. NOAH

(Rich 1983), a hierarchical planner, began in 1975 with its use of par-

tially ordered tasks. MOLGEN(Stefik), a constraint posting planner, began

in 1976 with its use of constraints to guide the planning process. CHEF, a

case-based planner, began in 1986 with its use of past plans to generate

new plans. (Deugo, Oppacher, and Thomas 1988) provided a description of

these different types of planning systems and their suitability to the MSS

planning problem.

In addition to constraint posting (Stefik 1981) and case-based planning

(Kolodner, Simpson, and Sycara-Cyranski 1985) techniques, that we feel are

suitable for the MSS problem, our approach will handle resource constraints

and feedback, and achieve some robustness and autonomy through the use of

dynamic memory techniques. These techniques include: plan reminding, re-

planning,,and plan learning. It is important to note that our approach will

enable the planner to deal with some situations for which there are no

ready-made plans. This is achieved by enabling the planner to locate old

plans with similar structures and adapt them to the current situation. The

INTRODUCTION 2

conceptual design of the MSS plan-

the theory of dynamic memory to fa-

. Next, we provide a synopsis of

planner also evolves over Lime by adding new plans to its memory structure,

and by adapting old plans when planning failures are detected in them.

In this paper, we describe a high-level,

ner. We begin with an introduction to

miliarize the reader with the techniques

our approach, outlining its four components: the PLANNER, the EXECUTOR, the

REPLANNER, and the EVALUATOR. Subsequent sections describe each one of

these components in more detail.

INTRODUCTION 3

2.0 INTRODUCTION TO DYNAMIC MEMORY

Dynamic memory is a flexible open minded system. To get a feel for it an

analogy might be helpful. A library decides on an initial set of categories

that describe the information it is going to store. Within the specific

categories, slots are used to record the titles, authors, and the subjects

of the books. This is not a dynamic memory system. During the use of the

actual library, categories will have to be updated, divided as categories

become overutilized, and new ones created as additional information becomes

available. These changes are of great difficulty and require outside inter-

vention. A dynamic memory system is similar to a constantly updated li-

brary, with constantly changing categories. It changes its internal memory

organization as its knowledge of the subject matter changes. It makes ob-

servations about what it knows, and it changes the memory structures that

catalog what it knows, should the need arise.

Dynamic memory requires a powerful memory representation. The basic compo-

nent of the memory organization are script-like knowledge structures. A

script describes an ordered sequence of events, providing an expectation

list of how related events are to occur. For example, the human script for

brushing your teeth consists of the following actions: turning on the wa-

ter, picking up your tooth brush, putting tooth paste on the tooth brush,

brushing your teeth, rinsing your mouth, putting your tooth brush in a cup,

and finally putting the lid back on the tooth paste. This expectation list

is used every day when one brushes one's teeth, and hardly ever varies.

4 INTRODUCTION TO DYNAMIC MEMORY

Along with the sequence of events, exceptions are added to the script.

These are failures of the script's expectations. In the previous example,

this could be lack of tooth paste in the tube. Exceptions are added to the

basic script to help explain similar failures of the script in the future.

If enough of the same failures occur within the script, the script may be

reorganized to , include the exception as an expectation of the script. This

may in fact be one of the ways how humans learn. As we process new experi-

ences, we encode the events into our own interna], scripts. Through time,

failures are noted, and one's scripts are constantly reorganized. Over

time, scripts become increasingly set in their ordering, and are less

likely to encounter exceptions that cause them to be reordered. However, as

people evolve, their scripts are constantly adapting to suit their environ-

ments.

As stated, scripts are constantly reorganized into increasingly general

scripts. For example, at the top-level of generalization there is a script

for visiting a professional. At the next level there is a more specific

script of going to a doctor. At the most specific level, there is a script

about going to the dentist. Each level of the script abstraction fills in

more specifics about the script. The reason behind this is simple. When one

must plan an activity, one searches for a script to handle that activity.

If no exact script can be found, one tries a more general script, and so on

until a script can be found that can help in performing the activity. By

constantly generalizing the current situation and searching for more and

more generalized scripts, this enables one to always locate a script that

can perform the activity. The script may be wrong, but the new experiences

are incorporated into a new script that can be used in the future.

INTRODUCTION TO DYNAMIC MEMORY 5

Scripts are indexed by the goals they try to achieve, the problems thny

help avoid, and the conditions that characterize a particular aspect of the

given goal type. In the literature the index is called a Thematic Organiza-

tion Point(TOP) (Schank 1982). TOPs help organize scripts into logical

groups, so that goals, plans, themes, and other entities can be tracked and

referenced in the process of understanding. Higher level processes can make

inferences about certain situations by using scripts from other goal types

to help better predict the logical sequencing of events. This is especially

useful when the current scripts indexed by the current goal are of no use.

Dynamic memory techniques involve, then, processes for determining the high

level structures to be used to help process the current situation, for us-

ing the information in those structures to process the new experiences by

recalling related old ones, and for using the new experiences to modify the

cutrent memory structures to achieve a better adaptation in the future.

INTRODUCTION TO DYNAMIC MEMORY 6

PLAN LIBRARY

3.0 SYNOPSIS OF OUR APPROACH

Our approach to the MSS planning problem uses a dynamic memory approach

consisting of the four components: the PLANNER, the plan EXECUTOR, the dy-

namic REPLANNER, and the plan EVALUATOR. Figure 1 shows how these compo-

nents fit together.

NEW TASK REQUESTS

KNOWLEDGE
BASE

A

0

TASKS

RESOURCES
> >

PLANNER

- Locater

- Constructer

- Explainer

<-

EXECUTOR

- Failure
Detector

REPLANNER

- Notetaker

1.

-T

EVALUATOR

- Updater

CONSTRAINTS

SENSORS

- Adapter

Figure 1. MSS Planner Components

SYNOPSIS OF OUR APPROACH 7

1
1

The PLANNER controls the planning process. This process consists of: in-

formation input, past plan locating, and plan construction. Initially the

operator configures the planner with its resource information. This pro-

vides the resources the planner can use over the plan execution period. To

set up the plan construction phase, the operator enters the planning param-

eters which consist of the tasks and constraints. The Locator uses the dy-

namic memory approach to locate a past similar plan. Using the supplied

input information, the Locater searches a library of old plans in an at-

tempt to find a plan that matches the current planning parameters. If a

plan can be found, the plan is passed to the plan EXECUTOR component. If no

plan can be found, the Locater attempts to locate a plan whose achieved

goals are similar to the current goals. This plan is massaged by the

Constructer's domain planning information, planning heuristics, and, if so

desired, operator input to create a new plan to be executed by the plan EX-

ECUTOR component.

This approach enables the planner to continue planning even though it has

no ready-made plan to deal with the current goals. This feature constitutes

an improvement over some current planning techniques.

The Explainer explains to the operator what the plan is and how it was con-

structed. In addition to this, it cari also use past plan exception infor-

mation to describe failure conditions that could arise in the execution of

the plan. This information is also used by the Constructer to help build

better plans, or by the operator to help alter the Constructer's proposed

plan.

SYNOPSIS OF OUR APPROACH 8

The plan EXECUTOR component takes the plan and starts the execution of it.

If the Failure Detector experiences a failure condition(lack of resource),

that was unforeseeable at the Lime of plan construction and nrose during

the plan's execution, the exception is noted by the Notetaker, and the dy-

namic REPLANNER component is activated. This component will attempt to re-

order the plan, remove failing goals, or ask the operator for assistance in

order to keep the EXECUTOR's plan execution continuing. After all, when a

plan fails one does not want to stop the execution since resources have

been allocated and are ready to use. The information about what replanning

was done is noted by the Notetaker for later use by the EVALUATOR compo-

nent. The dynamic REPLANNER component is another important improvement

that distinguishes our planner from other planners described in the litera-

ture. It prevents minor faults from stopping plan execution, and causes

only moderate modifications of the plan. The REPLANNER uses the planning

technique known as goal planning or reactive planning to keep a plan exe-

cuting. It also indexes into old plans to see if any replanning information

is available for use in the current situation.

After the plan has executed, the plan and the information provided by the

Notetaker, i.e. exceptions and replanning descriptions, are given to the

EVALUATOR component. If the plan was an old plan that executed success-

fully, this information is added to the plan in the plan library to provide

added support information for the plan. If the plan was nnwly nrantnd and

it executed successfully, the plan is added to the plan library along with

the goals it satisfied. If the plan failed, the exceptions and replanning

information are recorded in the plan along with why Lha goal, or goals,

failed. All of these transactions are handled by the Updater. Tf the plan

SYNOPSIS OF OUR APPROACH 9

has had a bad track record, it may also be altered by the Updater using the

Notetaker information to make it a 'better plan' in the future. An updated

plan is 'better' than the original plan becanse either tasks with a proven

history of failure have benn removed from it or it includes Notetaker in-

formation which can be used in future planning sessions. Failure and suc-

cess information are valuable in determining the best plan for the current

situation. The operator is also part of this activity: he/she helps to

verify the reasoning of the Updater, and ensures the sanity of updates for

the plan library.

The EVALUATOR component helps the planner acquire new plans and knowledgn

by learning from itself. This is achieved by adding new, successfully exe-

cuted plans constructed by the Constructer, and by altering old plans due

to planning failures. By recording the failures, the EVALUATOR also learns

to fix and adapt plans to new environments over time.

The PLANNER, REPLANNER, and EVALUATOR components make use of dynamic memory

techniques: to generate a plan, to alter a plan due to a failnrn, to store

new plans, and to update old ones. By using dynamic memory techniques, the

goal of providing the MSS with some degree of autonomy is achieved. The MSS

can work in a dynamic environment and be ready to meet a wide range of

changes it may face. We believe that applying dynamic memory techniques to

the task of planning, as outlined above, will enable us to achieve a ro-

• bust, dynamic, and efficient planner for the MSS, and it will take us into

the next generation of planning tools.

SYNOPSIS OF OUR APPROACH 10

In the following sections, we shall discuss the data definitIons of the

planner and each planner component in grea ter detail.

SYNOPSIS OF OUR APPROACH il

4.0 DATA DEF IN ITIONS

The inputs to PLANNER consist of: the plan resources, the tasks to be

planned, and the constraints on the tasks. The output of the PLANNER is

plan which is inter executed by the EXECUTOR and updated or ndded to the

plan library. It is, for the most part, the operator job of entering this

information into the system, unless this process is automated. We now dis-

cuss each part.

4.1 RESOURCES

Resources to the MSS take the form of some sort of supplies. These supplies

can take the form of:

• Electricity

• Oxygen

• Light

. In general, they can take the form of any type of physical supply. The main

fact about these supplies is that they vary over time. Also, to make things

DATA DEFINITIONS 12

a bit more realistic, in some cases the consumption of a resource can in-

crease or decrease the supply of another. For example, by using a mechan-

ical device, the supply of electricity decreases bec-ause the device uses it

for its power. However, the supply of heat rises because the use of elec-

tricity in the device gives off heat. This kind of information must be kept

track of by the planner, and will be discussed when we describe the compo-

sition of a task.

With this in mind, we now describe how a resource is defined. A resource is

defined to be a function which can either vary over time or be constant.

• Resource = F(t)

• Resource = c

The resource functions are used by the planner to help predict the supply

of the resource at time t. The functions do not have to consider how the

consumption of another resource will alter its current supply. As stated

before, the increase in a resource's supply due to another resource con-

sumption will be part of the information that is specified in the task's

definition.

DATA DEFINITIONS 13

4.2 TASKS

A task is a unit activity . planned for by the planner. The task itself can-

not be further decomposed; it is executable by the EXECUTOR. The MSS plan-

ner schedules tasks, it does not plan for an individual task's execution.

The task's information aids the planner to efficiently position it among

the other tasks in the plan.

The information is entered by the operator using a form-based approach. A

task form with data slots identifying the task, its constraints, its re-

quirements, and the supply of different resources it increases, is provided

for the operator to fill in. A different form must be filled in for each

task the planner has to consider for incorporation into a plan.

Thus, a task is identified by the following components:

• Task Name - The name of the task.

• Activity - This is what the task is to do. For example, running exper-

iment X.

• Constraints - These are constraints that constrain the task. For exam-

ple, it must complete its activity by 0800 hours.

• Resource Requirements - These are the resource requirements of the

task. For example, experiment X uses 5 watts of electricity.

DATA DEFINITIONS 14

• Resource Supplies - Thnse are the resources the task's execution gives

produces for the system. For example, running experiment X raises the

temperature 5 degrees.

Therefore, a task has the following structure:

(task-name-slot

activity -s lot

constraint-l-slot

constraint-2- slot

It

constraint-n-slot

resource-required-l-slot

resource-required-2- slot

resource-required-n-slot

resource-supplied-l-slot

resource-supplied-2- slot

It

resource-supplied-n- slot)

DATA DEFINITIONS 15

4.3 CONSTRAINTS

Constraint are identical to those described for a task, except that they

constrain the plan. For example, a plan constraint could be that the plan

must start execution before 0800 hours and finish execution by 0900 hours.

The operator supplies this information to the planner by entering the data

on a plan Constraint form. This form identifies all possible constraints

for which the operator can constrain the plan.

4.4 PLAN

A plan is an ordered sequence of tasks, produced by the PLANNER using the

initial planning information, for execution by the EXECUTOR. It contains

extra slots to identify extra plan information. Also, each task lias two

new slots added to it. The new slots are called the start-time-slot and

finish-time-slot, and are used by the EXECUTOR to identiCy when each task

starts and finishes execution.

In addition to these new task slots, plan information slots are created as

follows:

• Plan Name - A plan-name slot is created to naine the plan.

DATA DEFINITIONS 16

• Plan Success - A success-slot, that is initially zero, is added to the

plan and represents a count of the number of times the plan has exe-

cuted successfully without haying to be replanned by the Replanner.

• Plan Failure - Failure slots are added to include information about how

the plan failed and what was done to correct it.

Therefore, a plan has the following structure:

(plan-name- s lot

success-slot

failure-l-slot

failure-2-slot

tt

failure-n- s lot

task-l-slot

task-2-slot

tt

tt

task-n- s lot)

DATA DEFINITIONS 17

4.5 PLAN LIBRARY

The plan library, as the name suggests, is a library of past plans that

have either been created by the operator and entered into the library, or

have been created by the system and added to the library. They are stored

sequentially and are indexed by the powerful search mechanisms of the -

Constructer component of the PLANNER.

The library will be memory resident for the initial implementation. It

should be converted to a database management system(DBMS) when issues such

as size, access, and information updating become important.

DATA DEFINITIONS 18

5.0 PLANNER

The PLANNER develops a plan for the execution of the operator entered

tasks. It uses past plans, stored in the plan library, in its attempt to

locate or build a new plan. The PLANNER consists of three components: the

Locater, the Constructer, and the Explalner, which will now be discussed in

detail.

5.1 LOCATER

The Locater takes all of the tasks' activity-slot identifiers and tries to

locate a past plan that includes only those tasks. If such a plan can be

located in the plan library, the plan is passed to the Constructer. If no

plan can be found, it tries to look for a past plan that lias more tasks

than those of the current requirements, but at least includes the proposed

tasks. If such a plan can be found, it is passed to the Constructer with

those tasks in excess of the current requirements mnrked. If still no plan

can be found, the Locater will look for a past plan that contains the maxi-

mum subset of tasks currently required. This plan is passed to the Locater

with the tasks missing from the plan identified. When multiple plans can be

located, the one with the best success rate, calculated by subtracting the

PLANNER 19

plants success-slot from the number of plan failures it has had, is rn-

turned.

5.2 CONSTRUCTER

The Constructer first checks to see if the plan contains only the required

tasks. If it has more, those tasks are simply removed. If it has less, the

Constructer rules stored in the Knowledge Base are accessed to decide what

action to take. The index to a rule is based on both the task's activity

and constraints. Specific rules, that have both a task and a constraint as

rule identifiers, are considered first. They are called specific rules be-

cause they use both the task's activity and constraint to identify the

rule. If none of these rules are found, more general rules are accessed

that may only rely on the task or the constraint, but not both. The follow-

ing are two examples of such rules:

Specific Rule

If

task = Experimentl AND

constraint = start-time

Then

action -;-= remove task from plan

PLANNER 20

I i

General Rule

IF

task = Experiment' AND

constraint = ?

THEN

action --> move task to end of plan

The first rule states: if Experimentl has a start time constraint then re-

move it from the plan. This specific type of rule would be tried first. If

it fails, the second more general rule would be used. It states: if the

Task is Experiment' then move the task to the end of the plan. The rule

does not state what the constraints are. Possible rules for a task could

be: to append it to the end of the plan, to put it at the front of the

plan, to put it after a specific task in the plan, or to find the first

available position that satisfies its constraints.

Using the resource function information, the plan is verified to ensure

that all task and plan constraints are met. If a constraint fails, a rule

for the constraint failure and task is i • dexed which provides the. appropri-

ate action to be taken with the plan. Possible actions could take the form

of: removing the task, delaying the task until the resource is available,

or asking the operator for help. These constraint rules depend on the type

of constraints and tasks handled. Once the plan is constructed, it can be

PLANNER 21

verified or altered by the operator if desired, and then passed to the ex-

ecutor.

5.3 EXPLAINER

The Explainer component describes what actions were taken to create the

plan. It identifies what and why past plans were chosen, the problems and

successes the past plan had, what actions were done in creating the current

plan from the past plan, and what constraint problems were found and solved

for the plan. The Explainer can be turned on during plan generation to al-

low the operator to view the creation process of the plan. Alternatively,

the operator can ask individual questions at the end of the planning phase.

The Explainer shows the logic of the planner's actions to the operator, and

provides the operator with past planning information that may help hm bet-

ter adapt the current plan to suit the current situation.

This component plays an important part in the success of the MSS planner.

Frequently, knowledge based systems hide the internal logic used by their

components. Users of these systems are not permitted to see the internal

operations and become frustrated and doubtful of the system. By having the

Explainer, the MSS planner provides an interface to its logic. The

Explainer helps users better understand the planner's decisions, acquiring

the support and acceptance it deserves. This feature can also identify

where the planner's logic is wrong, helping in the maintenance of it.

PLANNER 22

6.0 EXECUTOR

The EXECUTOR, using the planning information, executes the plan. It sequen-

tially takes each task in the plan and performs that task's activity. The

task finishes when that task activity ends or when the the task's finish

time is reached. Information about the execution of the plan is stored by

the Notetaker. At plan completion, the plan and its execution information

are passed to the EVALUATOR.

For implementation purposes, the plan will execute in discrete time slices.

At each time slice,the operator can view the current state of the plan, the

task executing, and the resource information. He can also vary the resource

information in this period to cause a resource failure of the task, forcing

the replanning mechanism.

6.1 FAILURE DETECTOR

As a task is executing, the Failure Detector monitors the resource sensors

to ensure that none of a task's constraints are being violated. If nt any

time a task constraint js violated, the violation is noted by the

Notetaker, the plan execution is stopped, and control is passed to the RE-

EXECUTOR 23

PLANNER. The REPLANNER will produce an adaPted plan and return the plan to

the EXECUTOR to restart execution from the point of interruption.

EXECUTOR 24

7.0 REPLANNER

The REPLANNER first checks to see whether a given failure has been detected

before. This is done by looking in the past plan on which the current plan

is based. If it had failed in a similar manner before, the replanning in-

formation stored in the past plan is used to adapt the current plan, and

the newly adapted plan is passed back to the EXECUTOR to commence exe-

cution. If there is no replanning information, the REPLANNER consults its

replanning knowledge base. It uses the task and failing constraint to index

• o a replanning rule to adapt the current plan. These rules are a subset

of the rules used by the Cons tructer and have the same form. They may con-

sist of deleting the task, delaying it, repositioning the task, stopping

the plan's execution altogether, or asking the operator for help. The

actions taken by the REPLANNER are recorded by the Notetaker before the

adapted plan is passed back to the EXECUTOR.

7.1 NOTETAKER

The Notetaker is responsible for recording all information about the exe-

cution of a plan. This includes its success and failure information- In the

case of failures, the Notetaker records the failure causes and any replan-

REPLANNER 25

ning information. This could include information about successful replan-

ning episodes, recording past past plans or replanning rules used.

Thus, the Notetaker fills in the following information slots:

• Success-slot - Initially true. If a plan fails, it is set to false and

the following slots are filled in as required.

9 Number of failures - Initially zero, incremented by one for each fail-

ure.

• Failure-slot - Initially empty. One slot is created and filled in per

failure type. The slot is composed of the task executing, the failure

cause, the past replanning information used, and the Knowledge Base

rules used.

REPLANNER 26

8.0 EVALUATOR

The EVALUATOR receives the plan and the Notetaker information about the

plan, and must decide what actions should be taken with the plan. It has .

several options depending on the plan type and the success or failure in- •

formation. These options include:

• Success of Old Plan - If the plan was an old one, the success-slot of

that plan is incremented to add strength to the value of that plan.

• Success of New Plan - If the plan is a . new one and it executed suc-

cessfully, it will be added to the plan library with its success-slot

set to one.

• Failure of New Plan - If the plan had a mincir failure(for example, one

task out of fifty was delayed), the plan may be added to the library

with a failure-slot filled in. If the failure has occurred often, the

plan is discarded as being invalid.

Failure of Old Plan - If a plan task failed, llie failure information is

added to a. new failure-slot for that existing plan task in the plan li-

brary. If the failure already exists in a task's fallure.-slot, the

failure-slot-count field is incremented.

EVALUATOR 27

A task's failure-slot has four fields: the failure-type, the failure-cause,

the replan-type, and the failure-count. These fields identify what the

task failure is, what was done about it, and how many times it has oc-

curred.

8.1 UPDATER

The Updater has the job of updating or adding a new plan or plan informa-

tion to the plan library. Its algorithm is based on the four possible types

of updates that were identified by the EVALUATOR. Updates can be monitored

and, if it is desired to maintain close control over the reasonableness of

the evolving plan library, modified by the operator.

Just as the Constructer massages the retrieved plan's constraints and tasks

to make them fit the current situation, so too does the EVALUATOR. It mas-

sages the failure conditions so that they are adapted and appropriate for

the current plan and its situation.

EVALUATOR 28

8.2 ADAPTER

The Adapter takes a plan that has experienced many failures and reorganizes

it. By using the plan task failure information, the Adapter makes a better

plan for use in the future. The Adapter makes use of the replanning infor-

mation in the failure-slots to determine whether to remove a task from the

plan, delay the task in the plan, reorder the task, or remove the plan from

the library. The Adapter will be activated when plan failures have reached

a preset threshold limit. The operator can keep a watchful eye to ensure

the correct functioning of the Adapter.

Another part of its task will be to look for several plans thnt can be gen-

eralized into one abstract plan. This generalized plan contains all of the

• information of the other plans but is condensed into a single plan. The

other plans can be removed from the library to reduce the actual number of

plans it contains. This improves the search efficiency because of the re-

duced number of plans without reducing the planning knowledge in the li-

brary. This also helps prevent the library from filling up with many

similar plans and provides plans that can be used in many different situ-

ations. In the future, this process could also be done on the Knowledge

Base rules used by the Constructer and Repinnner, keeping redundant rules

from cluttering the Knowledge Base.

EVALUATOR 29

9.0 DESIGN CONCEPTS

Our design has tried to keep many of the design concepts outlined by (J.

Liebowits and P Lightfoot) in mind. That paper presented many design con-

cepts used by NASA and others that were determined as useful and valuable

in their experiences with planning systems involving scheduling. The fol-

lowing is an outline of those concepts we have tried to use in our design:

1. Provide for operator interaction in the planning and ongoing processes.

2. Use a modular design.

.3. Output can be easily viewed as a sequence of events in time.

4. Frames are helpful for describing, adding, and updating information.

5. Must be able to easily handle replanning.

6. Use what-if scenarios by using constraints in the system.

7. A constraint monitor is needed to let the operator sne what is happen-

ing.

8. Use a best-fit search in locating information.

DESIGN CONCEPTS 30

By using these concepts, we will keep this planner's design from experienc-

ing some of the difficulties other planners of the same type have already

experienced and overcome using them.

We feel that plans, tasks, and constraints can best be represented using

the object-oriented paradigm. It is logical to think of them as objects

with many available supported actions. We perceive the world around us as

made up of objects, and our brains arrange information into chucks. By us-

-ing objects in a programming language we can tap into an existing pattern

of thought. For this reason and because of its excellent visual interface,

we will use Smalltalk as our implementation vehicle. Smalltalk's windowing

and menu selection capabilities provide a natural interface for operator

interaction and planner information display. It also provides a good de-

velopment environment for prototyping.

DESIGN CONCEPTS 31

10.0 SUMMARY

Through the use of Dynamic memory techniques, combined with constraints,

reactive planning, and interactive goal satisfaction used for replanning,

we have presented a design that handles resource constraints, feedback, and

achieves both robustness and some degree of autonomy through plan learning.

The operator is an important part of planning and has also been included

into the design. Although not essential to any part, the operator can

guide the overall planning process and control the acquisition of new plans

and rules for replanning.

We have provided a preliminary high-level design of the MSS planner. The

implementation document describes the planner's prototype implementation.

This document identifies: what the constraints are, how each component is

achieved, and provides a good example of the planner's design in operation.

Included in the report is a description of the interestjng implementation

aspects of the prototyped planner.

SUMMARY 32

11 .0 REFERENCES

1. Deugo, D. L., Oppacher, F., Thomas, D., Planning Techniques Survey:
Their Applicability to the Mobile Servicing System, 1988.

2. Kolodner, J. L., Simpson, R. L., and Sycara-Cyranski K. L., A Process
Model of Case-Based Reasoning in Problem Solving, pages 284-290,IJCAI
1985.

3. Liebowitz, J., and Lightfoot, P., Expert Scheduling Systems: Survey and
Preliminary Design Concepts, pages 261-283, Applied Artificial Intelli-
gence, V 1, 1987.

4. Nilson, Nils J., Principles of Artificial Intelligence, pages 275-360,
Palo Alto, California Tioga Press, 1980.

5. -- Rich, Elaine., Artificial Intelligence, pages 247-294, Mcgraw-Hill Book
Company, 1983.

6. Schank, R. C., Dynamic Memory: A Theory of Reminding and Learning in
Computers and People, Cambridge University Press, 1982.

7. Stefik, M., Planning with Constraints(MOLGEN: Par -U.), pages 111-140,
Artificial Intelligence, V 16, # 2, May 1981.

REFERENCES 33

1

TL
797
D39 67
1988

DATE DUE

DigE

• cACCICCAc

MI 1
93699

TL
DOUG°, eIG oach HT

/97
--A pxoposed appx

f.ox

D396/ scheduliug
applications

198B (with xespect to
the
ystemmo-

bile servicihs s') sche- '
es-

1

1

