
A dynamic case-based
planning system for

space application : software
and operation description

i

AUTHOR(S): D.L. Deugo, F. Oppacher

ISSUED BY CONTRACTOR AS REPORT NO:

Industry Canada
Library Queen

SEP 1 6 1998
Industrie Canada

Bibliothèque Queen

AIIMUNICAPONS CANADA

LIBRARY —

This report presents the views of the author(s). Publication
of this report does not constitute DOC approval of the reports
findings or conclusions. This report is available outside the
department by special arrangement.

CLASSIFICATION: Releasable

1

1

1
1
1

1

1
114 Government Gouvernement

of Canada du Canada

Department of Communications

DOC CONTRACTOR REPORT DOC-CR-SP-88-007

DEPARTMENT OF COMMUNICATIONS - OTTAWA - CANADA
SPACE PROGRAM

TITLE: A Dynamic Case-Based Planning System for Space Application: Software and Operation Description

PREPARED BY: Carleton University
School of Computer Science

DEPARTMENT OF SUPPLY AND SERVICES CONTRACT NO: 31098-7-21600

DOC SCIENTIFIC AUTHORITY: Peter Adamovits

DATE: September 1988

TL
É - 11 797 -

DOC-CR-SP--8 D3933
RELEASABLE 1988

D .Aï Illynneiumfic Cmne- moedl IPhiguidumg Syotterm,

eoffitwmrre auluA Olp@TRIttfloira Deoerrretticli'g

B y

Dwight ipeugo
Franz Oppacher

School of Computer Science
Carleton University

Ottawa, Ontario
Canada

Sept 21,198g

1c1 1
-D 'bcI3

I O‘

3

Executive Summary

The Case-Based Planning System project - CBPS for short - started
with this contract, the first phase of the development of the software
system. In phase 1 three major tasks were performed. They were:

1) a survey of the related AI planning techniques,
2) a conceptual design using the survey results and dynamic

memory techniques, and
3) the further development and implementation of the design

in Smalltalk.

This third and final task, proving the validity of the CPBS
concepts and techniques, is summarized in the contained report.

In this report, a system implementation description is provided
to give, along with the code, a complete description of the design. An
Operation Description section presents the functional operation of
the implementation, and provides the user a source for
understanding the planner's operation. We conclude with a
discussion of possible future extensions and enhancements that were
noted during the implementation phase.

This report, along with the initial documentation: Planning
Techniques Survey: Their Applicability to the Mobile Servicing
System, A Proposed Approach for Scheduling Applications (With
Respect to the Mobile Servicing System), A Dynamic Case-Based
Planning System for Space Station Application, and the code
comprises the complete results of the CBPS. What we feel is a robust,
autonomous planner that uses Knowledge-Based reasoning, Case-
Based reasoning, and Dynamic Memory techniques to created an
unique, efficient planner.

1

Tabte of Contents

1 INTRODUCTION 1
2 SYSTEM IMPLEMENTATION DESCRIPTION 2
2.1 Software Description 2
2.2 Overview of the CBPS Operation 4
2.3 Class Descriptions 5
2.3.1 Taslc Class 7
2.3.2 PlanningConstraints Class 9
2.3.2.1 TaskTime Class 12
2.3.2.1.1 StartTime Class 13
2.3.2.1.2 StopTime Class 13
2.3.2.2 Temperature Class 14
2.3.3 PlanningResources Class 1 5
2.3.3.1 RequiredResources Class 17
2.3.3.1.1 PowerResource Class 17
2.3.3.1.2 ReturnResource Class 1 8
2.3.3.1.2.1 PowerReturn Class 19
2.3.4 PlanningFailure Class 1 9
2.3.5 PlanningReading Class 21
2.3.5.1 PowerReading Class 22
2.3.5.2 TemperatureReading Class 22
2.3.6 Plan Class 23
2.3.7 PlannerDisplayObjects Class 28
2.3.7.1 KnowledgeBase Class 30
2.3.7.2 Plan Class 30
2.3.7.3 PlanLibrary Class 3 1
2.3.7.4 PlannerTasks Class 32
2.3.8 Evaluator Class 32
2.3.8.1 TasksBrowser Class 41
2.3.8.1.1 PlanBrowser Class 44
2.3.8.1.1.1 PlansBrowser Class 48
2.3.8.1.1.2 ExecutionBrowser Class 5 1
2.3.9 Planner Class 54
2.3.10 Other Classes 60
2.4 Predefined System Objects 60
2.4.1 PlanningTasks Object 6 1
2.4.2 PlanLibrary Object 61
2.4.3 ThePlan Object 61
2.4.4 LogicBrowser Object 6 1
2.4.5 FreeDrawing (PictureDictionary) Object 6 1
2.5 Summary 62

3 OPERATION DESCRIPTION 63
3.1 Introduction 63
3.2 Environment 64
3.3 Generation, Viewing, or Alteration Planning Tasks 64
3.3.1 Tasks Browser 65
3.4 Generation, Viewing, or Alteration of the Plan Library 66
3.4.1 Plan Library Browser 67
3.5 Generation, Viewing, or Alteration of the Knowledge Base 68
3.5.1 Knowledge Base Browser 69
3.6 Plan Operations 71
3.6.1 Plan Generation 71
3.6.2 Plan Reviewer 72
3.6.3 Plan Execution 72
3.6.4 Plan Evaluation 74
3.6.5 Plan Clearing 75
3.7 Summary 75
4 SYSTEM EXTENSIONS AND ENHANCEMENTS 76
4.1 Introduction 76
4.2 Base Plan Locating 76
4.3 Base Plan, Planning Task Unification 78
4.4 Verification and Replanning 79
4.5 Knowledge Base Rules 80
4.6 Evaluation 81
4.7 Generalization 82
4.8 Hierarchical Tasks 83
4.9 Unexpected Dangers and Novel Opportunities 84
4.10 Summary 85
5 CONCLUSION 86
6 REFERENCES 87

INTRODUCTION 1

INTRODUCTION

The Case-Based Planning System project - CBPS for short - started
with this contract, the first phase of the development of the software
system. In phase 1 three major tasks were performed. They were:

1) a survey of the related AI planning techniques,
2) a conceptual design using the survey results and dynamic

memory techniques, and
3) the further development and implementation of the design

in Smalltalk.

This document summarizes task 3 by providing an overall
discussion and description of the CBPS implementation. Section 2
provides a System Implementation description. It includes a
description of the software, control flow, classes, and objects used
in the system. Section 3 provides a Operation Description for user
operation and control of the planner. All browsers used for data
entry, control procedures, and the operation control are described.
Section 4 provides a discussion of possible future enhancements
and extensions that were noted during the implementation of it.
Section 5 summarizes the report and the project.

SYSTEM IMPLEMENTATION DESCRIPTION 2

2 SYS'TEM IMPLEMENTATION DESCRIPTION

2.1 Software Description

In this section, we discuss the operation, software, class
definitions and their important methods, and the important
predefined system objects used by the CBPS. Its is not the intent to
go into detail on every object's definition and methods, but rather
provide an overall description that along with the actual code can
help a designer better understand the implementation and design.
The reader is expected to have a working knowledge of Smalltalk
and be familiar with the CBPS design. Planning Techniques Survey:
Their Applicability to the Mobile Servicing System, A Proposed
Approach for Scheduling Applications (With Respect to the Mobile
Servicing System), and A Dynamic Case-Based Planning System for
Space Station Application are good references. A good reference for
those unfamiliar with the language is the Smalltalk/V Tutorial and
Programming Handbook (IBM Version) by digitalk inc.

Smalltalk uses the Object-Oriented paradigm, allowing a designer
to model his system in terms that match human thinking and
language, and in terms of objects and actions on objects. It provides
an integrated programming environment; one can create, modify,
execute, and debug software all from within the same environment.
It is an ideal environment for complex problems where fast
experimentation and exploration of ideas, structures, and algorithms
is essential. It proved to be an important part in the success of the
implementation of the CBPS. Its flexible environment was well suited
for our research prototype.

The CBPS is implemented on an IBM AT using the digitalk Inc.
Smalltalk/V Object-Oriented Programming System (OOPS) version
2.0. The IBM AT should be compatible with the following
configuration: a hard disk or 1.2M floppy drive, 640k memory,

1

1

1

SYSTEM IMPLEMENTATION DESCRIPTION 3

monochrome monitor, Hercules monochrome card, DOS 3.0, and a
MicroSoft two button mouse.

The software developed for the project is provided on two disks.
The Operation disk contains six files: go, v.exe, v2ndpart.exec, image,
sources.sml, and change.log. By entering the command 'V at the DOS
prompt, the planner's software can be invoked and executed. The
FileOut disk contains a collection of files that represent individual
source files of various class definitions and methods created by the
implementation. These files are provided for easy porting of the
implementation to existing Smalltalk systems that do not wish to use
the stand alone software provided on the Operation disk but rather
add the new classes and methods to their existing systems. The files
and their contents are described in Table 1 in Section 2.3.

To load the CBPS into an existing Smalltalk image, fileIn the file
Init.st into the image. This will load in all class definitions twice,
contained in the files described in Table I. On the first pass, you will
be asked to declare certain variables as global or undeclared. Please
selected undeclared when presented with the choice. On the second
pass, this will not occur and the classes will load to completion.

Before the CBPS can be used after filingIn the file Init.st, the icons
in Figure 6 in section 2.3.9 must be created. These are the icons
shown in the four boxes in Figure 6, consisting of the TasksIcon, the
PlanIcon, the PlanLibraryIcon, and the KnowledgeBaseIcon. These
are created using the FreeDrawing bit editor. Evaluate the text
'FreeDrawing new open' to open the bit editor. Create the four
icons, roughly one inch by one inch, and save using the names:
TasksIcon, PlanIcon, PlanLibraryIcon, and KnowledgeBaseIcon. These
icons will be retrieved and drawn when the planning environment is
opened, as in Figure 6 in section 2.3.9.

The file update.st contains extra methods that were added to
existing Smalltalk classes, and the declaration of predefined system
objects (see Section 2.4)

SYSTEM IMPLE1VIENTATION DESCRIPTION 4

2.2 Overview of the CBPS Operation

The operation of the CPBS is controlled through an instance of the
Planner object. The object implements a planning environment and
window (see Figure 6 in Section 2.3.9) in which all planning
operation are available. Accessible through the planner window are
the Plan Library, the Knowledge Base, the Planning Tasks , the Plan,
and the functions for operating on them. As seen in Figure 6 in
Section 2.3.9, each one of these objects is displayed in the planner's
window. It can be selected by the user to perform the various
functions. The PlanLibrary consists of a collection of Plan objects
which are used by the planner when locating a plan whose task
objects closely match the current Planning Tasks. The Planning Tasks
consist of a collection of Task objects which represent the current
tasks that are to be planned for. When the user selects the
PlanLibrary object in the planner's window, a Plans Browser is
opened that provides the ability to view, create, or edit the current
plans in the library. The KnowledgeBase provides access to a Logic
Browser which is used to store the Knowledge Base rules used in
replanning. When the user selects the Plan object in the planner's
window, a Tasks Browser is opened that provides the ability to
view, create, or edit the current Planning Tasks. By selecting the
Plan object, the user may access all of the planning functions:
generate, view, execute, evaluate, and clear. When generate is
selected, the planner generates a new plan, building one from the
planning tasks using a plan located in the Plan Library to guide for
the generation process. When view is selected, a Plan Browser is
opened permitting the user to view the generated plan. When
execute is selected, an Execution Browser is opened permitting the
user to simulate the execution of the generated plan. An option is
available to fail tasks in the plan in order to cause a replanning
exercise. When evaluate is selected, the plan's execution is evaluated
and the plan is added, updated, removed, or forgotten from the Plan
Library. The evaluation information is added to an Evaluator object

SYSTEM IMPLEMENTATION DESCRIPTION 5

as the plan is generated and executed for later evaluation. The
evaluation is initiated by selecting the evaluate option.

Each object and browser above has an associated class description
by the same name. The main point here is the Planner object is
always in control. It determines what object the user has selected, it
opens the appropriate Browsers, it controls the planning process, it
stores the current plan object, and it invokes the actions on the plan.

The flow of data through the system is as follows. The user
initially builds up a library of plans using the Plan Library Browser.
The user initially creates the Knowledge Base replanning rules using
the Logic Browser. The user defines his current planning tasks using
the Tasks Browser. The user selects the generated option of the plan
object. This generates a plan using the Plan Library, the planning
tasks, and the Knowledge Base rules for replanning. The new plan
can be viewed by selecting the view option from the plan object
which opens up a Plan Browser. The same process is used to execute
a plan which opens up an Execution Browser for the plan. Finally, the
evaluate option is selected and the appropriate action taken with the
executed plan by the Evaluator object, using the information stored
in it during plan generation and execution. The plan can then be
cleared.

2 .3 Class Descriptions

In this section, each class is describe in detail to give the reader a
better understanding •of the CBPS prototype implementation and
design. For each class we include a discussion on its inheritance, its
instance variables, its methods, and a general description of the
class's operation and important methods.

Smalltalk's object classes and methods are defined using the
Class Hierarchy Browser. The Class Hierarchy Browser is an
interactive browser used for the creation and removal of object

1 SYSTEM IMPLEMENTATION DESCRIPTION 6

definitions and methods in Smalltalk. The Class Hierarchy Browser
consists of three subpanes: the Object subpane which lists the
currently defined objects, the Methods subpane which lists the
currently defined methods for the object, and the Text subpane
which contains the definition or code for the selected object or
object's method. By using the Add SubClass and Add Method menu
options, available in the Object and Method subpanes, the CBPS
classes in the following section were created.

The source code for each class is located in the files identified in
Table 1.

Class File Name

Task task.st
PlanningConstraints planCon.st
Power power.st
TaskTime tasktm.st
StartTime starttm.st
StopTime stoptm.st
Temperature temp.st
PlanningResources planRes.st
RequiredResources reqRes.st
PowerResource powerR.st
ReturnResource returnR.st
PowerReturn pwrRet.st
PlanningFailure planFal.st
PlanningReading planRed.st
PowerReading pwrRed.st
TemperatureReading TemRed.st
Plan plan.st
PlannerDisplay PlnDis.st
KnowledgeBase Kb.st
Plan planIcn.st
PlanLibrary pinLib.st
PlannerTasks pintsk.st
Evaluator eval.st
TaskBrowser TBrw.st
TasksBrowser TskBrw.st
PlanBrowser PlnBrw.st

SYSTEM IMPLEMENTATION DESCRIPTION 7

PlansBrowser PlnsBr.st
ExecutionBrowser ExBrw.st
Planner Planer.st
Updated methods Update.st
Generate the system Init.st

Table 1. Source Files

2.3.1 Task Class

Inheritance:

Super Class: Object.
SubClasses: None.

Instance Variables:

name - A string identifying the name of the task.
description - A string identifying the description of the task.
constraints - A dictionary of constraint objects used to store the

constraints of the task.
resources - A dictionary of resource objects used to store the

resources of the task.
returns - A dictionary of return objects used to store the

returns of the task.

Methods:

addConstraint: - Given a new constraint type object, add the
constraint to the task's constraint dictionary using the name
of the constraint as the index.

addResource: - Given a new resource type object, add the
resource to the task's resource dictionary using the name of
the resource as the index.

SYSTEM IMPLEMENTATION DESCRIPTION 8

addReturn: - Given a new return type object, add the return to
the task's return dictionary using the name of the return as
the index.

constraintLabel - This method returns a menu object, with the
selection list of the menu composed of the names of all of
the the task's constraints found in the constraints dictionary
instance variable.

constraints - This method returns the task's constraint instance
variable object.

description - This method returns the task's description.
initialize: Given a text string, the task object is initialized with •

new dictionary objects in the constraint, resources, and
returns instance variables, a empty description, and the
name instance variable set to the passed text string.

name - This method returns the task's name instance variable
object.

resourceLabel - This method returns a menu object, with the
selection list of the menu composed of the names of all of
the the task's resource objects found in the resources
dictionary instance variable.

resource - This method returns the task's resources instance
variable object.

returnLabel - This method returns a menu object, with the
selection list of the menu composed of the names of all of
the the task's return objects found in the returns dictionary
instance variable.

returns - This method returns the task's returns instance
variable object.

setDescription: - Given a string, this method set the task's
description instance variable to the string.

Discussion:

The Task object definition is central to the design of the CBPS. It
defines and includes information about a single, unique task the CBPS

SYSTEM IMPLEMENTATION DESCRIPTION 9

must plan for. The task information includes: its name, its
description, its constraints, its resources, and its returns. There is an
instance variable for each of these information types and is
identified by the same name. The method initialize: initializes these
instance variables and sets the name of the task to the passed string.

The constraints, resources, and returns instance variables are
initialized to be Dictionary type objects. Each of these Dictionary
objects stores the task's corresponding PlanningConstraints,
PlanningResources, and ReturnResources objects (see definitions). All
constraints, resources and returns objects are indexed in the
corresponding dictionary using their individual names, and for that
reason must be unique.

Other methods allow for the manipulation (e.g. addConstraint:)
and retrieval (e.g. constraints) of the above mentioned instance
variables.

2.3.2 PlanningConstraints Class

Inheritance:

Super Class: Object
SubClasses: Power, TaskTimes, Temperature

Instance Variables

currentValue - Any type of object that represents the current
value of the planning constraint, e.g. integer, time, etc.

name - A string object representing the name of the planning
constraint.

Methods

example - This method returns a text string representing the
expected text input for the planning constraint on a browser.

SYSTEM IMPLEMENTATION DESCRIPTION 10

get - This method returns the currentValue instance variable
object.

getAsText - This method returns the currrentValue instance
variable object as a text string.

name - This method returns the name instance variable object.
name: - Given a text string, this method set the name instance

variable object to the passed string.
set: - Given a value represented as a string, this method sets

the object's currentValue instance variable to the
appropriate type passed on the string and constraint type,
e.g. if the planning constraint was a Temperature object the
current value would be set to an integer.

unifyWith:forPlanner:name - Given a planning constraint and a
name, this method unifies the values in the passed planning
constraint to those of itself.

Description:

• A planning constraint is an item such as power, temperature,
start-time, or stop-time, that is used to constrain a task in a plan. The
PlanningConstraint object is used to organize the currently defined
Constraint type objects in the system, and to supply the common
methods that are available to them. The Constraint type objects
include: the Power, the TaskTime, and the Temperature objects. All
of these objects inherit the instance variables defined for the
PlanningConstraint object. These include: currentValue and name.
The current Value and name instance variables contain, as their
names suggests, the current value of the constraint and its name.
Methods are provided to allow for the manipulation (set:, name:) and
retrieval (get, name) of the instance variables.

It is important that each of the PlanningConstraint subclass
objects have the methods example, verifyAt: and
,unifyWith:forPlanner:name defined, or be willing to use the methods
already defined for the PlanningConstraint object. The example

SYSTEM IMPLEMENTATION DESCRIPTION 11

method returns a string, providing an example of a text entry for the
constraint. The verifyAt: method verifies that the current constraint
is valid at the passed time. The method unifyWith:forPlanner:name
unifies the current constraint with that of a passed similar constraint.

Each of the PlanningConstraint type objects is now discussed.

2.2.2.1 Power Class

Inheritance:

Super Class: PlanningConstraints
SubClass: None

Instance Variables:

None

Methods:

example - This method returns a text string representing the
expected text input for the power constraint on a browser.

verifyAt: - Given a Time object, this method verifies that the
object's current value is within the correct limits at the
passed time.

Discussion:

The Power object defines a constraint that contains an integer
value representing a number of watts.

SYSTEM IMPLEMENTATION DESCRIPTION 1 2

2.3.2.1 TaskTime Class

Inheritance:

Super Class: PlanningConstraints
SubClass: StartTime, StopTime

Instance Variables:

None

Methods:

addTime: - Given a Time object, this method increments its
current value by the passed time amount.

asSeconds - This methods returns a integer value representing
the object's current value as a number of seconds.

example - This method returns a text string representing the
expected text input for the time constraint on a browser.

seconds: - Given an integer number of seconds, this method
sets its currentValue to a Time object representing the
passed number of seconds

verifyAt: - Given a Time object, this method verifies that the
object's current values is within the correct limits at the
passed time.

Discussion:

The TaskTime object is used to organize the currently defined
TaskTime type constraint objects in the system, and to supply the
common methods that are available to them. The TaskTime
constraint objects defines a constraint that contains a Time object
representing a time. Methods are supplied to access the specific Time
object (addTime:, asSeconds, seconds:) that is the current value of the
constraint. There are two types of TaskTime objects, StartTime and

SYSTEM IMPLEMENTATION DESCRIPTION 13

StopTime. Each one supplies its own unifyWith:forPlanner:name
method and relies on the TaskTime Object's verifyAt:.

2.3.2.1.1 StartTime Class

Inheritance:

Super Class: TaskTimes
SubClass: None

Instance Variables:

None

Methods:

unifyWith:forPlanner:name - Given a StartTime object and a
name, this method unifies the values in the passed
StartTime to those of itself.

Discussion:

The StartTime object defines a constraint that contains a Time
object representing a time (e.g. :12:30:01:).

2.3.2.1.2 StopTime Class

Inheritance:

Super Class: TaskTimes
SubClass: None

Instance Variables:

None

SYSTEM IMPLEMENTATION DESCRIPTION 14

Methods:

unifyWith:forPlanner:name - Given a StartTime object and a
name, this method unifies the values in the passed
StartTime to those of itself.

Discussion:

The StopTime object defines a constraint that contains a Time
object representing a time (e.g. :18:45:59:).

2.3.2.2 Temperature Class

Inheritance:

Super Class: PlanningConstraints
SubClass: None

Instance Variables:

None

Methods:

example - This method returns a text string representing the
expected text input for the temperature constraint on a
browser.

verifyAt: - Given a Time object, this method verifies that the
object's current values is within the correct limits at the
passed time.

SYSTEM IMPLEMENTATION DESCRIPTION 15

Discussion:

The Temperature object defines a constraint that contains an
integer value representing a number of degrees Celsius.

2.3.3 PlanningResources Class

Inheritance:

Super Class: Object
SubClasses: RequiredResources, ReturnResources

Instance Variables

currentValue - Any type of object that represents the current
value of the planning resource.

name - A string object representing the name of the planning
resource.

Methods

example - This method returns a text string representing the
expected text input for the planning resource on a browser.

get - This method returns the currentValue instance variable
object.

getAsText - This method returns the currrentValue instance
variable object as a text string.

name - This method returns the name instance variable object.
name: - Given a text string, this method sets the name instance

variable object to the passed string.
set: - Given a value represented as a string, this method sets

the object's currentValue instance variable to the
appropriate type passed on the string and resource type, e.g.

SYSTEM IMPLEMENTATION DESCRIPTION 16

if the planning resource was a PowerResource object the
current value would be set to an integer.

unifyWith:forPlanner:name - Given a planning resource and a
name, this method unifies the values in the passed planning
resource to those of itself.

Description:

Planning resources are items such as power that, like
PlanningConstraint objects, are also used to constrain a task in a plan.
The PlanningResources object is used to organize the currently
defined Resource type objects in the system, and to supply the
common methods that are available to them. These objects include:
the RequiredResources and ReturnResource objects. These objects in
turn organize the Required and the Return resources, currently
defined as the PowerResource and the PowerReturn objects. These
objects inherit the instance variables that are defined for the
PlanningResources object, which consist of currentValue and name.
The current Value and name instance variables contain, as their
names suggest, the current value of the resource and its name.
Methods are provided that allow the manipulation (set:, name:) and
retrieval (get, name) of the instance variables.

It is important that each of the PowerResource and PowerReturn
objects have the methods example, set, and verifyAt: defined, or be
willing to use the methods already defined for the PlanningResources
object. The example method returns a string, providing an example
of a text entry for the resource. The verifyAt: method verifies that
the current resource is valid at the passed time. The set: method sets
the currentValue of the resource to the correct type and value, based
on the string passed to the method and the resource type. For
example, the Power resource sets currentValue to and integer value
based on the fact that a Power resource should be an integer.

SYSTEM IMPLEMENTATION DESCRIPTION 17

The method unifyWith:forPlanner:name unifies the current
resource with that of a passed similar resource.

Each of the PlanningResources type objects is now discussed.

2.3.3.1 RequiredResources Class

Inheritance:

Super Class: PlanningResources
SubClasses: PowerResource

Instance Variables

None.

Methods

None.

Description:

The RequiredResources object is used to organize the currently
defined Required Resource type constraint objects in the system. The
only Required Resource currently defined is the PowerResource
object.

2.3.3.1.1 PowerResource Class

Inheritance:

Super Class: RequiredResources
SubClass: None

SYSTEM IMPLEMENTATION DESCRIPTION 18

Instance Variables:

None

Methods:

example - This method returns a text string representing the
expected text input for the power resource on a browser.

set: - Given an integer resource value, this method sets the
currentValue of the resource to the passed value.

verifyAt: - Given a Time object, this method verifies that the
object's currentValue is within the correct limits at the
passed time.

Discussion:

The PowerResource object defines a resource that contains an
Integer object representing a number of watts (e.g. 20).

2.3.3.1.2 ReturnResource Class

Inheritance:

Super Class: PlanningResource
SubClasses: PowerReturn

Instance Variables

None.

Methods

None.

SYSTEM IMPLEMENTATION DESCRIPTION 19

Description:

The ReturnResource object is used to organize the currently
defined Return Resource type constraint objects in the system. The
only Return Resource current defined is the PowerResource object.

2.3.3.1.2.1 PowerReturn Class

Inheritance:

Super Class: ReturnResource
SubClass: None

Instance Variables:

None

Methods:

example - This method returns a text string representing the
expected text input for the power return on a browser.

set: - Given an integer resource value, this method set the
currentValue of the return to the passed value.

Discussion:

The PowerReturn object defines a return resource that contains
an Integer object representing a number of watts (e.g.20).

2.3.4 PlanningFailure Class

Inheritance:

Super Class: Object
SubClass: None

SYSTEM IMPLEMENTATION DESCRIPTION 20

Instance Variables:

typeOfFailure - A text string representing a combination of the
the failed task's name and failed constraint's name.

description - A text string representing a description of the
failure.

numbeOfFailures - A integer representing the number of times
the failure has occurred.

failedTask - A symbol representing the failed Task's name.
failedConstraint - A symbol representing the failed Constraint's

name.

Methods:

constraint - This method returns the failedConstraint instance
variable object.

description - This method returns the description instance
variable object.

incrementCounter - This method increments the
numberOfFailures instance variable by one.

name - This method return a text string representing the
failure's name.

numberOf - This method returns the numberOfFailures
instance variable object.

resetCounter - This method sets the numberOfFailures instance
variable to zero.

set:task:constraint: - Given the three symbols, this method
initializes the typeOfFailures, failedTask, and
failedConstraint instance variables to the passed values. It
also sets the numberOfFailures instance variable to one and
generates an initial value for the description instance
variable using the failed task and constraint names.

SYSTEM IMPLEMENTATION DESCRIPTION 21

Discussion:

An essential part of a plan is its failure information. An instance
of a PlanningFailure object records an instance of a failure in a plan.
A PlanningFailure records the type of failure, its description, the
failed task, the failed constraint, and the number of failures of this
type. The PlanningFailure object has instance variables for each of
these information types. Methods are provided to manipulate
(set:task:constraint, setDescription, resetCounter) and retrieve
(constraint, task, type, description) the instance variables. The plan's
current failures are stored in an instance variable of plan object (see
description).

2.3.5 PlanningReading Class

Inheritance:

Super Class: Object
SubClass: PowerReading, TemperatureReading

Instance Variables:

None

Methods:

None.

Discussion:

A Plan reading is the expected value of a constraint at time t. The
PlanningReading object helps to organize the Plan reading objects.
They calculate for example, the expected power and temperature
readings at time t. The Plan Reading object types currently defined
are PowerReading and TemperatureReading. The only method each
provides is the class method atTime: By sending this method to the

SYSTEM IMPLEMENTATION DESCRIPTION 22

reading class, the expected temperature or power reading at time t
is returned. Each is now described.

2.3.5.1 PowerReading Class

Inheritance:

Super Class: PlanningReadings
SubClass: None

Instance Variables:

None

Class Methods:

atTime: Given a Time object, this method returns an integer
representing the expected power at the passed time.

Discussion:

The expected value reading for a power constraint at time t.

2.3.5.2 TemperatureReading Class

Inheritance:

Super Class: PlanningReadings
SubClass: None

Instance Variables:

None

Class Methods:

atTime: Given a Time object, this method returns an integer
representing the expected temperature at the passed time.

SYSTEM IMPLEMENTATION DESCRIPTION 23

Discussion:

The expected value reading for a temperature constraint at time
t.

2.3.6 Plan Class

Inheritance:

Super Class: Object
SubClass: None

Instance Variables:

name - A text string representing the name of the plan.
description - A text string representing the description of the

plan.
tasks - A dictionary of Task objects indexed by the task's

name.
startTime - A StartTime object representing the start time of

the plan.
stopTime - A StopTime object representing the stop time of the

plan.
successes - An integer representing the number of times the

plan has executed to completion.
failures - A dictionary of PlanningFailure objects indexed by

the failure's name.
planOrder - An OrderedCollection representing the task

execution order of the plan. The task's start times are used
to order the collection.

Methods:

addFailure: - Given a PlanningFailure object, this method adds
the object to the failures instance variable.

SYSTEM IMPLEMENTATION DESCRIPTION 24

addMissingTasks:forPlanner: - Given a dictionary of Task
objects, this methods adds those tasks in the passed
dictionary that are not in its task dictionary to the task
dictionary instance variable.

addTask: Given a Task object, this methods adds the object to
the task dictionary instance variable.

description - This method returns the description instance
- variable object.

failureAtTask:withConstraint: This method looks in the plan's
failures for a failure identified by the passed task and
constraint. If one can be found the method returns the
failure object found in the failures instance variable. If none
is found it returns nil.

findAPlace:with: - Given a Task object, this method adds the
task to the plan in the next available slot that fits the task's
start and stop time and does not cause any conflicts with the
tasks in the existing plan.

getFailures - This method returns the failures instance
variable object.

getStartTime - This method returns the startTime instance
variable object.

getStopTime - This method returns the stopTime instance
variable object.

getTasks This method returns the tasks instance variable
object.

incrSuccesses - This method increments the successes instance
variable by one.

matchRatingFor: - Given a dictionary of tasks, this method
returns a match rating for the tasks in the passed dictionary
and those in the plan's tasks instance variable. The rating is
an OrderedCollection that contains three values: the number
of extra tasks found, the number of missing tasks not found,
and the number of failures of the plan.

moveToTheEnd:with - Given a Task object, this methods adds
the task at the end of the plan's task dictionary instance
variable.

SYSTEM IMPLENIENTATION DESCRIPTION 25

name - This method returns the name instance variable object.
new: - Given a string, this methods initializes the plan to its

initial values and sets its name to the passed string.
numberOfTasks - This method returns an integer representing

the number of tasks in the tasks instance variable.
orderPlan - This method orders the tasks in the plan using the

plan's tasks start time values, and stores the ordered task
collection in the planOrder instance variable.

planOrder - This method returns the planOrder instance
variable object.

removeExtraTasks:forPlanner: - Given a dictionary of tasks, this
methods remove the tasks in the plan's tasks instance
variables that are not in the passed dictionary of tasks.

setDescription: - Given a text string, this method sets the plan's
description instance variable to the passed string.

setFailures: - Given a PlanningFailure object, this method sets
the plan's failures instance variable to the passed failure.

setName: - Given a text string object, this method sets the
plan's name instance variable to the passed string.

setStartTime: - Given a StartTime object, this method sets the
plan's startTime instance variable to the passed startTime.

setStopTime: - Given a StopTime object, this method sets the
plan's stopTime instance variable to the passed stop time.

setSuccesses: - Given an integer object, this method sets the
plan's successes instance variable to the passed integer.

setTasks: - Given a dictionary of Task objects, this method sets
the plan's tasks instance variable to the passed dictionary.

successes - This method returns the plan's successes instance
variable object.

takeNoAction:with: Given a Task object, do nothing but
reporting nothing was done in the browser window.

unifyWith:forPlanner: - Given a dictionary of Task objects,
unify them with the plan's tasks and save the unification in
the plan's tasks

verifyFor:evaluation: This method verifies that all the plan's
task constraints, resources, and returns values are

SYSTEM IMPLEMENTATION DESCRIPTION 26

acceptable at the task's start time. If a failure occurs, the
method invokes the replanning mechanism and attempts to
correct the plan.

Discussion:

A Plan object stores all of the information associated with a plan.
This includes: its name, its description, the tasks associated with the
plan, the order the task should be executed (based on each task's
start time), the failures associated with the plan, its start time, its
stop time, and the number of times the plan has succeeded in
executing. There are instance variables for each of these information
types, and each is identified by the same name.

The plan's failures and tasks instance variables are both
Dictionary type objects. Each dictionary stores either Task or
PlanningFailure objects, using their corresponding names as the
index into the dictionary. The plan's description and name instance
variables store a text description and name of the plan. The
startTime and stopTime instance variables hold time objects,
representing the start and stop times of the plan. The plan's
successes instance variable holds an integer number representing the
number of times the plan has executed. The planOrder instance
variable is an OrderedCollection object that contains the plan's tasks.
It uses their start time as the basis for ordering the collection of
tasks.

The method new: initializes a plan object's instance variables to
an initial configuration; no tasks, no failures, zero successes, no
description, an empty plan order, and a name set to the passed string
supplied to the method. Other methods are provided for the
manipulation (addFailure:, addTask:, setStartTime:, setStopTime:,
setFailures:, setSuccesses::, setTasks:, setDescription, orderPlan) and
retrieval (description, getFailures, getStartTime, getStopTime,
getTasks, name, planOrder) of the instance variables.

SYSTEM IMPLEMENTATION DESCRIPTION 27

After a plan from the plan library has been selected to be the
base plan, the tasks not required in the plan are removed and any
tasks not in the plan that are required are added. The methods
removeExtraTasks:forPlanner: and addExtraTasks:forPlanner: handle
these operations. These methods receives a dictionary of tasks to be
planned for as a method variable. These are known as the planning
tasks. The plan's current tasks dictionary is checked for those tasks
that are missing and those that are extra, and the appropriate actions
are performed on the base plan's Tasks dictionary.

Another important method is matchRatingFor:. This method
receives a dictionary of planning tasks as a method variable. These
tasks are compared with the plan's current tasks in order to return a
match rating (OrderCollection object). The rating identifies the
number of extra tasks, the number of missing tasks, and the number
of failures the plan has experienced in the past. The method's results
are used during plan generation to help determine what plan in
the Plan Library is the best match with the current set of planning
tasks.

Another method, unifyWith:forPlanner, unifies the plan's current
tasks with the planning tasks. After the base plan has been selected
and the extra and missing tasks removed and added, the plan is
ready .to by unified with the planning tasks. The base plan's tasks
and the planning tasks are similar in name because they have be
made identical to begin with. However, their constraints will differ or
perhaps be missing altogether. The purpose of this method is to
install the unification of the plan's tasks and passed planning task's
constraints in the base plan.

The method verifyFor:, verifies that the plan will execute given
its constraints. It uses the expected constraint values as its basis for
determining the validity of the plan. Each of the plan's tasks is
individually verified, which involves verifying each of the task's
constraints and resources. This process is repeated for each task until

SYSTEM IMPLEMENTATION DESCRIPTION 28

all tasks have been verified or a failure occurs. In the event of a
failure, the plan's failure information is indexed using the failing task
and constraint to located a replanning action to take on the failing
task. If no failure action is located, the Knowledge Base is indexed in
a similar manner to locate a replanning action. The replanning action
is then executed on the plan which, in the prototype's case, could be
either the method takeNoAction:with:, moveToTheEnd:with:, or
findAPlace:with. These methods may alter a failed task's location in
the plan. After the action is performed, the method returns True or
False depending on whether any replanning action was actually
done for the failure. If no replanning action was done, plan
verification continues from its current task. It is important that a
Knowledge Base rule or planning failure conclude with an available
replanning action. If new replanning actions are to be concluded, new
replanning actions methods must be created. After any replanning
action, the complete plan is verified again. Currently only two
iterations of replanning are allowed before verification is terminated.
This value can be easily increased in the method verifyFor:. After all
tasks have verified, the plan is ready for execution.

Many methods make reference to a aPlanner. This is the Planner
object. By referencing it, the method can write to the Planner's text
subpane (see the Planner Object definition for further discussion).

2.3.7 PlannerDisplayObjects Class

Inheritance:

Super Class: Object
SubClasses: KnowledgeBase, Plan, PlanLibrary, PlannerTasks

Instance Variables:

form - A form object that stores the bit map of the display
object.

rectangle - A rectangle object that defines the display object's
display area.

SYSTEM IMPLEMENTATION DESCRIPTION 29

clippingBox - A rectangle object that defines the boundary of
the display object.

Methods:

draw - This method draws the display object's form and
rectangle on the screen.

drawRectangle - This method draws the display object's
rectangle on the screen.

getForm - This method returns the form instance variable
object.

getRectangle - This method returns the rectangle instance
variable object.

setForm:setRectangle:clipping: - Given a Form, Rectangle, and
clipping box Rectangle objects, set the corresponding
instance variables to the passed objects.

setRectangle: - Given a Rectangle object, set the rectangle
instance variables to the passed object.

Discussion:

The PlannerDisplayObjects object organizes the graphical display
objects that appear in the CBPS planner pane (see Planner object),
and provides methods that are common to all PlannerDisplayObjects
type objects. These objects include: the KnowledgeBase object, the
Plan object, the PlanLibrary object, and the PlannerTasks object.
Each object has three instance variables: form, rectangle, and clipBox.
The form variable stores the form object of the display object. The
rectangle variable stores the rectangle object of the display object.
The clipBox variables stores the clipping rectangle object of the
display , object.

The method setForm:setRectangle:clip initializes the above three
instance variables to the objects passed to the method. The display
objects are then drawn using the method draw. This method does a
BitBlt operation on the display object's definition form to the form

SYSTEM IMPLEMENTATION DESCRIPTION 30

defined by the form instance variable, using the clipping box and
rectangle instance variables as other parameters for the BitBlt
operation. The only method defined for CBPS Display subclass's
objects is form. This method returns a form which contains the bit
map form of the display object. These forms are drawn using the
form editor and are stored in its Picture Dictionary under the indexes
'KnowledgeBaseIcon', 'PlanIcon', 'TasksIcon', and 'PlanLibraryIcon'.

Other methods are provided to access the instance variables
(getForm, getRectangle, form) and to display a bounding box around
the display object (drawRectangle).

2.3.7.1 KnowledgeBase Class

Inheritance:

Super Class: PlannerDisplayObjects
SubClasses: None

Instance Variables:

None.

Methods:

form - This method returns the form of the display object. It is
retrieved from the FreeDrawing's picture dictionary.

Discussion:

The KnowledgeBase object defines the Knowledge base icon
shown on the CBPS planner form.

2.3.7.2 Plan Class

Inheritance:

Super Class: PlannerDisplayObjects

SYSTEM IMPLEMENTATION DESCRIPTION 31

SubClasses: None

Instance Variables:

None.

Methods:

form - This method returns the form of the display object. It is
retrieved from the FreeDrawing's picture dictionary.

Discussion:

The Plan object defines the Plan icon shown on the CBPS planner
form.

2.3.7.3 PlanLibrary Class

Inheritance:

Super Class: PlannerDisplayObjects
SubClasses: None

Instance Variables:

None.

Methods:

form - This method returns the form of the display object. It is
retrieved from the FreeDrawing's picture dictionary.

Discussion:

The PlanLibrary object defines the PlanLibrary icon shown on
the CBPS planner form.

number of

number of

number of

number of

the

the

the

the

SYSTEM IMPLEMENTATION DESCRIPTION

2.3.7.4 PlannerTasks Class

Inheritance:

Super Class: PlannerDisplayObjects
SubClasses: None

Instance Variables:

None.

Methods:

form - This method returns the form of the display object. It is
retrieved from the FreeDrawing's picture dictionary.

32

Discussion:

The PlannerTasks object defines the PlannerTasks
the CBPS planner form.

2.3.8 Evaluator Class

Inheritance:

icon shown on

Super Class: Object
SubClasses: None

Instance Variables:

missingTasks - An integer number representing
missing tasks in the plan.

extraTasks - An integer number representing
extra tasks in the plan.

newFailure - An integer number representing
new failures found in plan verification.

oldFailure - An integer number representing
previous failures found in plan verification.

- This method increments the

SYSTEM IMPLEMENTATION DESCRIPTION 33

replanningOldFailure - An integer number representing the
number of previous failures found in replanning during
plan execution.

replanningNewFailure - An integer number representing the
number of new failures found in replanning during plan
execution.

numberOfTasks - An integer number representing the number
of tasks in the plan.

Methods:

confirm:for: - Given a Plan and dictionary of Plans, this method
performs an evaluation of the plan using the Evaluator's
internal data.

evaluate - This method performs the evaluation of the plan in
the previous method, and returns a symbol which
represents the method (action) to use to complete the
evaluation of the plan. The evaluation is based on its
internal data which was generated as the plan was
generated and executed.

failureCount - This method returns the sum of the newFailure
and oldFailure instance variables.

failurePercentage - This method returns the failureCount
divided by the number of tasks.

forgetPlan:from: This action method disregards the plan at the
users verification.

incrNewFailure - This method
instance variable by one.

incrOldFailure - This method increments
variable by one.

incrReplanningNewFailure
replanningNewFailure instance variable by one.

incrReplanningOldFailure - This method increments the
replanningOldFailure instance variable by one.

initialize - This method initializes all instance variables to zero.

increments the newFailure

the oldFailure instance

SYSTEM IMPLEMENTATION DESCRIPTION 34

newPlan:From: - This action method will add the plan to the
plan library under a new name at the users verification.

forgetPlan:From: - This action method will remove the plan
from the plan library at the users verification.

replanningCount - This method returns the sum of the
replanningNewFailure and replanningOldFailure instance
variables.

setExtra: - Given an integer number, this method sets the
extraTasks instance variable to the passed number.

setMissing: - Given an integer number, this method sets the
missingTasks instance variable to the passed number.

setNumberOfTasks: - Given an integer number, this method
sets the numberOfTasks instance variable to the passed
number.

updatePlan:From: - This action method will update the plan in
the plan library at the users verification.

Discussion:

The Evaluator object records a plan's planning, replanning, and
execution information; this enables it to generate and carry out a
recommendation for the plan. The recommendation could be to
update the plan in the plan library with the new information, add
the plan to the plan library under a new name, remove the plan from
the plan library, or do nothing.

The method initialize initializes all of the object's instance
variables to zero. These instance variables include:

• missingTasks, which represents the number of
tasks that are missing in the base plan and
are in the original task requirements.

SYSTEM IMPLEMENTATION DESCRIPTION 35

• extraTasks, which represents the number of
task that are in the base plan and are not in
the original task requirements.

• numberOfTasks, which represents the number
of tasks in the base plan.

• newFailure, which represents the number of
new failures experienced in plan's execution.

• oldFailure, which represents the number of old
failures experienced in plan's execution.

• replanningNewFailure, which represents the
number of new failures experienced in the
plan's verification.

• replanningOldFailure, which represents the
number of old failures experienced in the
plan's verification.

Methods are provided for initializing the missingTasks,
extraTasks, and numberOfTasks instance variables (setExtra: ,
setMissing:, and setNumberOfTasks:), and for incrementing the
failure counters (incrNewFailure, incrOldFailure,
incrReplanningNewFailure, and incrReplanningOldFailure).

At plan creation, a new Evaluator object is created. As the plan is
created, verified, and executed, the corresponding information is sent
to the Evaluator object. After the plan has execute, the plan is ready
for evaluation; the confirm:for: method is sent to the Evaluation
object to perform this. This method performs an evaluation of itself
using the information that has been previously supplied to it. The
method evaluate actually performs the evaluation and returns the
recommended method to executed. The returned method must be

SYSTEM IMPLEMENTATION DESCRIPTION 36

one of forgetPlan:from:, removePlan:from:, newPlan:from:, or
updatePlan:from:. The evaluation reviews the number of failures, the
types of failure, the number of task, basically all of the instance
variables to decide the correct recommendation.

The recommendation will either remove the plan from the Plan
Library due to excessive repetitive errors (removePlan:From:),
update the plan in the Plan Library due to success or few errors
(updatePlan:From:), add a new plan due to the Plan Library to the
addition of new tasks to the original plan (newPlan:From:), or do
nothing due to the addition of new tasks to the original plan and
excessive errors (forgetPlan:From:). The operator is always prompted
to confirm the recommendation.

2.3.8 TaskBrowser Class

Inheritance:

Super Class: Object
SubClasses: TasksBrowser

Instance Variables:

textDisplay - A text string that holds the text displayed in the
text subpane of the browser.

exampleDisplay - A text string that holds the text displayed in
the example subpane of the browser.

viewingType - A symbol that holds the selected viewing type:
#Description, #Constraints, #Resources, or Returns.

itemSelected - A symbol representing the current description,
constraint, resource, or return picked in the item subpane.

isItemPicked - A boolean representing whether itemSelected
contains a valid value.

taskSelected - A symbol representing the current task selected
for the browser.

SYSTEM IMPLEMENTATION DESCRIPTION 37

isTaskPicked - A boolean representing whether taskSelected
contains a valid value.

Methods:

accept:from: - Given a text string, this method locates the
current itemSelected in the browser and using the
viewingType updates the itemSelected of the viewingType
with the passed string. It is used to accept text from the text
subpane of the browser.

acceptExample:from: Given a text string, this method does
nothing. It is used to accept text from the example subpane
of the browser. No action is the desired action. One does not
want any user action in the Example subpane to change its
contents.

addConstraint - This methods prompts the user for a constraint
name and adds a new planningConstraint object to the
selectedTask's constraint dictionary.

addItem - Using the viewingType, this method adds a new
planningConstraint, planningResource, or returnResources
object to the corresponding dictionary of the selected task.

addResource - This methods prompts the user for a resource
name and adds a new planningResource object to the
selectedTask's resource dictionary.

addReturn - Ths methods prompts the user for a return name
and adds a new ReturnResource object to the selectedTask's
return dictionary.

constraints: - This method returns #(Constraints).
constraints: - This method receives the #Constraints symbol

and updates the item subpane with a list of the current
constraints of the selected task.

deleteConstraint - This methods removes the selected
constraint object stored in the itemSelected instance
variable from the selectedTask's constraints dictionary, and
then updates the appropriate browser subpanes.

SYSTEM IMPLEMENTATION DESCRIPTION 38

deleteItem - This method removes the object stored in
itemSelected from the task's dictionary identified by the
viewingType instance variable.

deleteResource - This methods removes the selected resource
object stored in the itemSelected instance variable from the
selectedTask's resources dictionary, and then updates the
appropriate browser subpanes.

deleteReturn - This methods removes the selected return
object stored in the itemSelected instance variable from the
selectedTask's returns dictionary, and then updates the
appropriate browser subpanes.

description - This method returns the symbol #(Description).
description: - Given the symbol #Description, this method

updates the text subpane with the selectedTask's
description.

example - This method return the exampleDisplay instance
variable object.

itemMenu - This method return the Menu object for the items
subpane.

items - This method return the items to list in the items
subpane of the browser based on the current viewingType
selected.

items: - This method receives the symbol of the selected item
in the item subpane, stores the symbol in the itemSelected
instance variable, sets the isItemPicked instance variable to
true, and updates the appropriated browser subpanes.

openOn: - Given a task, this method opens a TaskBrowser
window for the passed task. The instance variables of the
object are initialized to their default values.

resources - This method returns the symbol (#Resources).
resources: - This method receives the #Resources symbol and

updates the item subpane with a list of the current
resources of the selected task.

returns - This method returns the symbol (#Returns).

SYSTEM IMPLEVIENTATION DESCRIPTION 39

I

returns: - This method receives the #Returns symbol and
updates the item subpane with a list of the current returns
of the selected task.

text - This method returns the textDisplay instance variable
object.

Discussion:

The TaskBrowser object implements a Smalltalk like Browser
facility for viewing and modifying a Task object's components. The
Task Browser, although not actual required by the prototype, can be
used to open a Browser window for a given Task. This is done using
the method openOn: supplied with the TaskBrowser object. The
TaskBrowser object's main purpose is to organize methods and
instance variables used by its four subclass objects: TasksBrowser,
PlanBrowser, PlansBrowser, and ExecutionBrowser. These objects
implement Smalltalk like Browsers for their correspond objects.

Each Browser is described in detail in the following sections.

An example TaskBrowser can be seen in Figure 1. By selecting the
Description subpane (1), the task's description is displayed in the
Text subpane (7). By selecting either the Constraints (2), Resources
(3), or Returns (4) subpane, the corresponding items for that item are
shown in the Item subpane (5). By selection one of those items, the
corresponding value for that item is displayed in the Text subpane
(7), with a sample input for the item shown in the Example subpane
(6). In the example below, the task's Power Constraint value is
displayed. The interaction between the subpanes, the menus, the
menu actions for the subpanes, and the subpane's display data is
managed by the TaskBrowser object. All of the TaskBrowser's
subclass objects must also display selected Task data, and therefore
use the TaskBrowser methods and instance variables for doing so.

Description (1)

Resources

StartTime
StopTime

(3)

Returns (4)

Example: An integer number of Watts.

400
(7)

(5)

(6)

SYSTEM IMPLEMENTATION DESCRIPTION 40

Figure 1. TaskBrowser

Instance variables are used to keep track of when something has
been selected, what has been selected, and what is currently
displayed. The instance variables isTaskPicked and isltemPicked
indicate whether a task have been selected and whether one of its
constraint, resource, or return items has been selected. The instance
variables taskSelected and itemSelected indicate what task and what
constraint, resource, or return item has been selected. The instance
variable viewingType indicates what type of constrain has been
selected,e.g. Constraint, Resource, or Return. The final two instance
variables, textDisplay and example, contain the text displayed in the
TextDisplay and Example subpanes.

As described previously, the openOn: method schedules and
opens the TaskBrowser. The method creates the initial window called
TopPane, and then adds the seven different subpanes to it:
Description, Constraints, Resources, Returns, Items, Example, and
Text. When adding a new subpane, three important variables are
supplied to the subpanes methods: name:, change:, and menu:. The
symbol supplied to the name: method defines what method is sent to
the TaskBrowser to return the data to display in the subpane. The
symbol supplied to the change: method defines what method is sent

SYSTEM IMPLEMENTATION DESCRIPTION 41

to the TaskBrowser when an object has been selected in the subpane.
The symbol supplied to the menu: method defines what method is
sent to the TaskBrowser to retrieve the popup menu for the subpane.
Different types of subpanes return and receive different objects for
display and selection of the subpane. By reviewing the openOn:
method, these related subpane methods can be viewed.

• Other methods (addConstraint, addItem, addResource, addReturn,
deleteConstraint, deleteltem, deleteResource, and deleteReturns) are
sent to the TaskBrowser as a result of a particular subpane's menu
selection. These methods either add a new item to a the specific
subpane or remove a selected item from a subpane.

One of the object's most important methods is accept:from:. This
method receives the text that has been entered in the Text Display
subpane after the save option is selected from the Text Display
menu. Depending on the current item type selected, Description,
Constraint, Resources, or Return, the corresponding selected item is
updated using the passed text string. The string is converted to the
internal type of the item. For example, if the Constraint subpane and
the Temperature item in the Item subpane have been selected and
the save option is chosen, the string in the text pane is converted to
an integer and stored as the value of the Temperature constraint.
The method acceptExample:from: performs the same operation as the
Example subpane, however no action is taken with the passed string.
It is effectively a nil operation, but must be present.

2.3.8.1 TasksBrowser Class

Inheritance:

Super Class: TaskBrowser
SubClasses: PlanBrowser

SYSTEM IMPLEMENTATION DESCRIPTION 42

Instance Variables:

taskDictionary - A dictionary object that contains Task objects
indexed by their names.

Methods:

addNewTask - This methods prompts the user for a task name
and adds a new task object to the taskDictionary.

deleteTask - This methods removes the selected task object
stored in the taskSelected instance variable from the
taskDictionary, and then updates the appropriate browser
subpanes.

openOn: - Given a task, this method opens a TaskBrowser
window for the passed task. The instance variables of the
object are initialized to their default values.

tasks - This method returns an OrderedCollection of the names
of the tasks found in the taskDictionary instance variable.
The tasks are ordered using their start times.

tasks: - Given a task name, this method sets the taskSelected
instance variable to that of the task object in the
taskDictionary using the name as an index, sets isTaskPicked
to true, and updates the appropriate browser subpanes
using the newly selected tasks as its information source.

taskMenu - This method returns a Menu object to be used as
the menu for the tasks subpane of the browser.

Discussion:

The TasksBrowser object is a subclass object of the TaskBrowser.
It behaves much the same as the TaskBrowser but is used to view a
group of Task objects at a single time, not just a single task. Figure 2
provides an example of TasksBrowser. Its appearance is similar to
the TaskBrowser, with the addition of a Task subpane (1). This
subpane lists the names of tasks that are available for viewing. By
selecting a task in the subpane, the user can then select the items he

Description (2)

Resources (4)

Returns (5)

StartTime
StopTime

(8)

Taskl

Example: An integer number of Watts. (7)

400
(8)

Task3

(1)

SYSTEM IMPLEMENTATION DESCRIPTION 43

wishes to view or alter as in the TaskBrowser. The task operations
are not permitted unless a task has been selected. In the example
below, Task2's Power constraint is displayed.

Figure 2. TasksBrowser

A TasksBrowser is opened by using the method openOn:. This
method receives a dictionary of task objects, and opens the Browser
with its eight subpanes: Tasks subpane, Description subpane,
Constraints subpane, Resources subpane, Returns subpane, Item
subpane, Example subpane, and Text subpane. By reviewing the
openOn: method, the subpane's related name: change: and menu:
methods can be viewed. The object's taskDictionary instance variable
stores the passed Task dictionary object for the TasksBrowser.

The method tasksMenu returns the menu for the Tasks subpane.
The available choices are Add and Delete. The methods addNewTask
and deleteATask implement the menu selections. addNewTask
prompts the user for a task name and then adds a new task object
using the supplied name to the task dictionary. The new task is then
available for viewing or modification. deleteATask »removes the

SYSTEM IMPLEMENTATION DESCRIPTION 44

currently selected Task in the Task subpane from the Task
dictionar_y.

2.3.8.1.1 PlanBrawser Class

Inheritance:

Super Class: TasksBrowser
SubClasses: ExecutionBrowser, PlansBrowser

Instance Variables:

currentPlan - This variable contains a Plan object representing
the current plan the browser is working with.

planningType - This variable contains a symbol representing
the current planning type picked: #Description, #StartTime,
#StopTime, #Successes. It indicates if one of these fields is
selected in the browser's planItems subpane.

isPlanningTypePicked - A boolean representing if a planning
type has been selected.

isPlanPicked - A boolean representing if a plan has been
selected for the browser.

failureSelected - A boolean representing if the failure subpane
has been selected in the browser.

isFailurePicked - A boolean representing if a failure item has
been selected in the failureItems subpane of the browser.

failureTypePicked -This variable contains a symbol
representing the current failure type picked:
#FailureConstraint, #FailureCount, #FailureDescription,
#FailureTask, or #FailureType.

Methods:

accept:from: - Given a text string, this method updates the
selected planItem information type of the selectedPlan with
the passed string.

SYSTEM IMPLEMENTATION DESCRIPTION 45

deleteAFailure - This methods removes the selected failure
object stored in the failureSelected instance variable from
the failures dictionary of the selectedPlan, and then updates
the appropriate browser subpanes.

failure - This method returns a list of the names of the
selectedPlan's current failure objects.

failure: - Given a failure name, this method sets the
failureSelected instance variable to that of the failure object
in the selected plan's failure dictionary using the name as an
index, sets isFailurePicked to true, and updates the
appropriate browser subpanes using the newly selected
failure as its information source.

failureConstraint: - Given the #failureConstraint: symbol, this
method updates the text subpane with the failure constraint
for the selectedFailure.

failureCount: - Given the #failureCount: symbol, this method
updates the text subpane with the failure count for the
selectedFailure.

failureDescription: - Given the #failureDescription: symbol, this
method updates the text subpane with the failure
description for the selectedFailure.

failureItems - This method returns the symbol
#(failureDescription: failureTask: failureConstraint:
failureCount: failureType:).

failureItems: Given a symbol as a result of selecting an item
from the failureItems subpane, this method performs the
method identified by the passed symbol.

failureMenu - This method returns a Menu object to be used as
the menu for the failures subpane of the browser.

failureTask: - Given the #failureTask: symbol, this method
updates the text subpane with the failure task for the
selectedFailure.

failureType: - Given the #failureType: symbol, this method
updates the text subpane with the failure type for the
selectedFailure.

SYSTEM IMPLEMENTATION DESCRIPTION 46

openOn: - Given a plan, this method opens a PlanBrowser
window for the passed plan. The instance variables of the
object are initialized to their default values.

planDescription: - Given the symbol #planDescription:, this
method displays the selectedPlan's description in the text
subpane and updates the appropriate browser subpanes.

planItems - This method returns the symbol #(planDescription:
startTime: stopTime: success:).
planItems: Given a symbol as a result of selecting an item from

the planItems subpane, this method performs the method
identified by the passed symbol.

startTime: - Given the symbol #startTime:, this method
displays the selectedPlan's start time in the text subpane
and updates the appropriate browser subpanes.

stopTime: - Given the symbol #stopTime:, this method displays
the selectedPlan's stop time in the text subpane and updates
the appropriate browser subpanes.

success: - Given the symbol #success:, this method displays the
selectedPlan's success count in the text subpane and updates
the appropriate browser subpanes.

tasks: Given the #Tasks: symbol, the user has selected the
tasks subpane, rely on the super class to perform the correct
operations and reset the fact the planningType information
is no longer the focus of the browser.

Discussion:

A Plan object is composed of a group of plan related data,
including: StartTime, StopTime, Description, Success counter, and
Failures, and a dictionary of Tasks. The PlanBrowser object is a
subclass object of the TasksBrowser. It behaves much the same as
the TaskBrowser but is used to view a plan's data including its tasks.
Figure 3 provides an example of PlanBrowser. Its appearance is
similar to the TasksBrowser, with the addition of PlanItem (1),
Failure (2), and FailureItems (3) subpanes. The PlanItem subpane

era
Fallu roi
Failure2 (2)

FailureDescription

FailureTask:

FailureConstraint:

FailureType: (3)

FailureCount:

Task1
Task2 (4)
Task3

Description (5)

Constraints (6)

Resources (7)

(8) Returns

StartTime:

StopTime:

Successes:

(1)

StartTime

StopTime

Power

(g)

Example: A text string

A plan to subject mice to low gravity condition.

(11)

(10)

SYSTEM IMPLEMENTATION DESCRIPTION 47

lists the Plan's data items (Description, StartTime, StopTime, and
Success counter) which are available for viewing. By selecting one of
these items, the user can view or alter it as in the TasksBrowser. The
Failure subpane lists the names of Plan's failures that are available
for viewing. By selecting a failure, the user can then select the failure
items he wishes to view or alter. The FailureItem subpane lists the
Plan's Failure items (Description, Task, Constraint, Type, and Count)
which are available for. viewing. By selecting an item, it is displayed
in the Text subpane permitting the user to view or alter it. The
remaining subpanes are identical to the TasksBrowser subpanes and
behave in a similar manner.

In the example below, the Plans description is selected and
displayed.

Figure 3. PlanBrowser

A •PlanBrowser is opened by using the method openOn:. This
method opens the Browser on the Plan with its eleven subpanes:
PlanItems subpane, Failure subpane, FailureItem subpane, Tasks
subpane, Description subpane, Constraints subpane, Resources
subpane, Returns subpane, Item subpane, Example subpane, and Text

SYSTEM IMPLEMENTATION DESCRIPTION 48

subpane. By reviewing the openOn: method, the subpane's related
name: change: and menu: methods can be viewed. The object's
currentPlan instance variable stores the passed Plan object for the
PlanBrowser which is used later to determine the updating
procedures.

Additional instance variables are used to keep track of when
something has been selected and what has been selected. The
instance variables isFailureSelected and failureSelected indicate
whether a plan failure has been selected and what plan failure was
selected. The instance variable failureTypePicked indicates which
one of the plan's failure items has been selected. The instance
variable planningType indicate what plan item has been selected.

The method accept:from: is enhanced to be able to update the
plan's data when a menu save option is selected; this is based on
what failure, task, or plan items are currently selected. This is done
by checking the current planning item selected and if none is the
accept:from: method of the TasksBrowser is used.

The method failureMenu returns the menu for the Failure
subpane. The available choice is Delete. The method deleteAFailure
implements this selection. deleteAFailure removes the currently
selected Failure in the Failure subpane from the Plan's Failure
dictionary.

2.3.8.1.1.1

Inheritance:

PlansBrowser Class

Super Class: PlanBrowser
SubClasses: None

Instance Variables:

planDictionary - A dictionary object that contains Plan objects
indexed by their names.

SYSTEM IMPLEMENTATION DESCRIPTION 49

Methods:

addNewPlan - This methods prompts the user for a Plan name
and adds a new Plan object to the PlanDictionary.

deletePlan - This methods removes the selected plan object
stored in the planSelected instance variable from the
planDictionary, and then updates the appropriate browser
subpanes.

openOn: - Given a dictionary of plan objects, this method opens
a PlansBrowser window for the passed plans. The instance
variables of the object are initialized to their default values.

plans - This method returns an OrderedCollection of the names
of the plans found in the planDictionary instance variable.
The plans are ordered using their start times.

plans: - Given a plan name, this method sets the planSelected
instance variable to that of the plan object in the
planDictionary using the name as an index, sets isPlanPicked
to true, and updates the appropriate browser subpanes
using the newly selected plan as its information source.

planMenu - This method returns a Menu object to be used as
the menu for the plans subpane of the browser.

Discussion:

The PlansBrowser object is a subclass object of the PlanBrowser.
It behaves much the same as the PlanBrowser but is used to view a
collection of Plan objects at a single time, not just a single Plan.
Figure 4 provides an example of PlansBrowser. Its appearance is
similar to the PlanBrowser, with the addition of a Plan subpane (1).
This subpane lists the names of plans that are available for viewing.
By selecting a plan in the subpane, the user can then select the items
he wishes to view or alter as in the PlanBrowser. These operations
are not permitted unless a plan has been selected.

In the example, the plan description for Planl has been selected
and is displayed.

SYSTEM IMPLEMENTATION DESCRIPTION 50

Plans Browser:
Planl Failure1

 Failure2 (3) Task1 StartTime
Plan2 Task2 (5)

(1) StopTime
Plan3 FailureDescription Task3

 Power
' s '4. 'esedOtige FailureTask: (4) Description (6)

 StartTime: FailureConstraint: Constraints (7)
(1 0)

StopTime: (2) FailureType: ROSOUrCeS (8)

Successes: FailureCount: Returns (9)

Example: A text string
(11)

A plan to subject mice to low gravity condition.

(1 2)

Figure 4. PlansBrowser

A PlansBrowser is opened by using the method openOn:. This
method receives a dictionary of plan objects and opens the Browser
with its twelve subpanes: Plan subpane, PlanItems subpane, Failure
subpane, FailureItem subpane, Tasks subpane, Description subpane,
Constraints subpane, Resources subpane, Returns subpane, Item
subpane, Example subpane, and Text subpane. By reviewing the
openOn: method, the subpane's related name: change: and menu:
methods can be viewed. The object's planDictionary instance variable
stores the passed Plan dictionary object for the PlansBrowser.

The method plansMenu returns the menu for the Plans subpane.
The available choices are Add and Delete. The methods addNewPlan
and deleteAPlan implement these selections. addNewPlan prompts
the user for a Plan name and then adds a new plan object using the
supplied name to the plan dictionary. This new Plan is then available
for viewing or modification. deleteAPlan removes the currently
selected Plan in the Plans subpane from the Plan dictionary.

to execute in the

Planner object who

1 SYSTEM IMPLEMENTATION DESCRIPTION 51

2.3.8.1.1.2

Inheritance:

ExecutionBrowser Class

Super Class: PlanBrowser
SubClasses: None

Instance Variables:

remainingTasksToExectute - An Ordered Collection of Task
objects, representing the remaining tasks
browser.

currentPlanner - This variable holds the
initiated the open of the browser.

currentTask - A task object representing
executing.

evaluation - An evaluation object used for
information for later plan evaluation.

Methods:

the current task

storing execution

currentTaskExecuting - This method orders the remaining tasks
to execute and returns the task object that is the next task
to execute.

executionMenu - This method returns a Menu object to be used
as the menu for the taskExecuting subpane of the browser.

exit - This method performs no action - it executes an exit
menu selection.

failTask - This method takes the currentTask, prompts the user
for a failed constraint and constraint type, and initiates a
replanning session for the currentTask.

goToNextTask - This method sets the currentTask to the next
task in the remainingTasksToExecute instance variable and
updates the appropriate browser subpanes.

openOn:for:evaluation - Given a plan, Planner, and Evaluator
object, this method opens a ExecutionBrowser window for

SYSTEM IMPLEMENTATION DESCRIPTION 52

the passed plan using the Planner for information display
and adding execution information to the Evaluator object.
The instance variables of the object are initialized to their
default values.

taskExecuting: Given a symbol, this methods updates the
currentTaskExecuting subpane of the browser with the
name of the currentTask.

Discussion:

The ExecutionBrowser object is a subclass object of the
PlanBrowser. It behaves much the same as the PlanBrowser, but is
used to simulate the failure and execution of the tasks in the plan the
ExecutionBrowser is opened on. Figure 5 provides an example of
ExecutionBrowser. Its appearance is similar to the PlanBrowser, with
the addition of a CurrentTask subpane (10). This subpane displays
the current task in the plan that can be executed or failed. This is
done by opening the menu for the subpane and selecting either the
Next or Fail option. All other subpanes operate as in the PlanBrowser.

In the example below the plan's plan description has been
selected and is displayed.

SYSTEM IMPLEMENTATION DESCRIPTION 53

Execution Browser
Failure1

PlanDescription: Failure2 (2) Task1 StartTime
Task2 (4)

StartTime: StopTime
FailureDescription Task3

StopTime: Power
FailureTask: Description (5)

Successes:
FailureConstraint: Constraints (6) (9)

(1) FailureType: Resources (7)

FailureCount: (3) Returns (8) Task2 (1 0)

Example: A text string (11)

A plan to subject mice to low gravity condition.

(1 2)

Figure 5. ExecutionBrowser

A ExecutionBrowser is opened by using the method openOn:. This
method receives a plan object and opens the Browser with its
thirteen subpanes: Plan subpane, PlanItems subpane, Failure
subpane, FailureItem subpane, Tasks subpane, Description subpane,
Constraints subpane, Resources subpane, Returns subpane, Item
subpane, CurrentTask, Example subpane, and Text subpane. By
reviewing the openOn: method, the subpane's related name: change:
and menu: methods can be viewed. The object's currentPlan instance
variable stores the passed Plan object for the ExecutionBrowser. The
object's remainingTasksToExecute instance variable stores the Plan's
collection of tasks that are left to execute. The object's currentTask
instance variable stores the Plan's current executing task.

The method executionMenu returns the menu for the
CurrentTask subpane. The available choices are Next and Fail. The
methods goToNextTask and failTask implement these selections.
goToNextTask sets the currentTask instance variable to the next task
in remainingTasksToExecute instance variable collection. That task
is also removed from the remainingTasksToExecute instance variable
collection. The new current task is displayed in the CurrentTask
subpane. The previous task is considered to of executed successfully

SYSTEM IMPLEMENTATION DESCRIPTION 54

when this action is done. To fail a task, the Fail option is chosen.
failTask prompts the user for the constraint type (Constraint,
Resource, or Return) and the constraint item (e.g. Power, StartTime,
etc), and invokes the replanning mechanism using the failed task and
user entered failed constraint. The replanning actions are noted in
the Planner Text subpane (5). After replanning, the
remainingTasksToExecute in the replanned plan are reordered and
then made available for execution or failing. After all tasks have
been executed, the text "Execution Finished" is displayed in the
CurrentTask subpane. The plan is ready for execution.

2.3.9 Planner Class

Inheritance:

Super Class: Object
SubClasses: None

Instance Variables:

plannerTextPane - A TextPane object storing the TextPane
object of the window.

taskLibrary - A Dictionary object containing tasks indexed by
their names.

boundingBox - A rectangle representing the dimensions of the
window.

planLibrary - An instance variable storing the PlanLibrary
display object for the window.

evaluation - An instance variable storing the Evaluator object
for the window.

knowledgeBase - An instance variable storing the
KnowledgeBase display object for the window.

plan - An instance variable storing the Plan display object for
the window.

explanationText - A text string that holds the text information
for the text subpane of the window.

SYSTEM IMPLEMENTATION DESCRIPTION 55

transcriptCounter - An integer that represents the entry
number in the text subpane of the window.

Methods:

acceptExplain:From: - As a result of selecting the save option
from the text subpane this method is invoked. It does
nothing.

addExplanation: - Given a text string, this method adds the
string to the explanationText instance variable and displays
the text in the text subpane of the window.

appendToExplanation: - Given a text string, this method adds
the string to the explanationText instance variable.

clearPlan - This method sets the ThePlan global variable to nil.
drawConnectionsOn: - Given a form, this methods draws the

links between the display objects on the form.
drawEnvironment: - Given a bounding rectangle, this method

draws the window's display objects in the window and
draws the links.

editPlanningTasks - This method opens a TaskBrowser on the
planning tasks defined in the global PlanningTasks
dictionary variable.

editPlans - This method opens a PlansBrowser on the plans
defined in the global PlanLibrary dictionary variable.

environmentChange: - Given a Point object, this method decides
what display object has been selected in the window, pops
up the menu for the display object, and performs the
choice.

environmentMenu - This method returns a Menu object for
when the user selects the background menu for the window.

evaluatePlan - This method performs the evaluation of the
plan developed by the planner.

executePlan - This method opens an Execution Browser for the
plan developed by the planner.

SYSTEM IMPLEMENTATION DESCRIPTION 56

exit - This method does nothing. It is executed when the exit
option is taken on any window menu.

explain - This method returns the explanationText instance
variable object.

generate - This method initializes and stores a new Evaluator
object for the window, takes the PlanningTasks and locates
a Plan in the PlanLibrary that closely matches the
PlanningTasks, adds the missing task and removes the extra
ones, unifies the PlanningTasks with the tasks of the located
plan, verifies the plan, and gets the plan ready for execution.
The generated plan is stored in the ThePlan global variable.

initKnowledgeBase:on: - Given a Point and a Form object, this
method draws the KnowledgeBase icon at the specified
location on the passed form.

initPlan:on: - Given a Point and a Form object, this method
draws the Plan icon at the specified location on the passed
form.

initPlanLibrary:on: - Given a Point and a Form object, this
method draws the PlanLibrary icon at the specified location
on the passed form.

initTaskLibrary:on: - Given a Point and a Form object, this
method draws the TaskLibrary icon at the specified location
on the passed form.

knowledgeBaseMenu - This method returns a Menu object for
the menu to use when the KnowledgeBase icon is selected in
the window.

open - This method opens an Planner window. The instance
variables of the object are initialized to their default values.

openKB - This method opens a LogicBrowser.
planLibraryMenu - This method returns a Menu object for the

menu to use when the PlanLibrary icon is selected in the
window.

planMenu - This method returns a Menu object for the menu to
use when the Plan icon is selected in the window.

object, this method
to the new rectangle

Given a new Rectangle object, this

TaskLibrary icon to the

a Menu object for the
icon is selected in the

SYSTEM IMPLEMENTATION DESCRIPTION 57

reframe: - Given a new Rectangle object, this method handles
the reframing of the Planner window to the new rectangle
location.

reframeKnowledgeBase: - Given
method handles the reframing
the new rectangle location.

reframePlan: - Given a new Rectangle
handles the reframing of the Plan icon
location.

reframePlanLibrary:
method handles the reframing of the PlanLibrary icon to the
new rectangle location.

reframeTaskLibrary: - Given a new Rectangle object, this

a new Rectangle object, this
of the KnowledgeBase icon to

method handles the reframing of the
new rectangle location.

taskLibraryMenu - This method returns
menu to use when the TaskLibrary
window.

viewPlan - This method opens an
developed by the planner.

Plan Browser for the plan

Discussio -n:

The Planner object defines a CBPS environment window in which
all planning activities can be accessed. These activities include
generating and modifying the tasks to be planned for, the plans in
the library, and the action rules in the Knowledge Base, and the
generation, viewing, executing, and evaluation of the plan.

The method open opens and schedule the Planner and its two
subpanes: Environment subpane (1,2,3,4) and Explanation subpane
(5). The Environment subpane displays the Planner display objects;
each which may be selected to present a menu of available actions
for the object. The Explanation subpane implements a text transcript
subpane that the Planner uses to display ongoing planning

Plan
Library(1)

Knowledge
Base(3)

Plan
Tasks(2)

CBPS
Planner(4)

Transcript: (5)
[1] Using Plan1

ace

SYSTEM IMPLEMENTATION DESCRIPTION 58

information results. Figure 6 provides an example of the CBPS
window.

Figure 6. CBPS Window

The method drawEnvironment generates the display for the
Environment subpane. This method displays the four Planner
display objects (PlanLibrary, KnowledgeBase, Plan, and TaskLibrary)
by sending the methods initPlanLibrary, initKnowledgeBase, initPlan,
and initTaskLibrary to itself, with the locations in the Environment
subpane where they should be displayed. Each one of these methods
draws the graphic object in the display. The method
drawConnectionsOn: displays the lines that connect the Display
objects. The instance variables taskLibrary, planLibrary,
knowledgeBase, and plan, are used to store the instances of the
Planner display objects, reference by other methods that relay on
the location of the displayed object.

The method explain generates the text display for the Explanation
subpane. The physical text displayed is stored in the instance
variable explanationText, which is initialized in the open method. The

SYSTEM IMPLEMENTATION DESCRIPTION 59

method addExplanation: appends a text string to the explanationText
instance variable and updates the Explanation subpane to display the
text. Each update starts a new line in the explanationText and is
preceded with a [n], where n is an incrementing integer number. This
number is stored in the instance variable transcriptCounter, which is
incremented after each update by the addExplanation: method.

A key method for the Environment subpane is
environmentChange:. This methods receives the point that has been
selected in the Environment subpane with the left mouse button. The
method decides what Planner display object has been selected and
pops up the menu associated with it. These menus are returned by
the methods taskLibraryMenu, planLibraryMenu, planMenu, and
knowledgeBaseMenu. The choices in each menu correspond to actual
Planner methods. Therefore, the actual choice can be, and is, sent to
the Planner object using the instruction self perform: choice. The
methods for the KnowledgeBase display object are openKb and exit.
The methods for the PlanLibrary display object are editPlans and
exit. The methods for the TaskLibrary display object are
editPlanningTasks and exit. The methods for the Plan display object
are generate, viewPlan, clearPlan, executePlan, evaluatePlan, and
exit. The common exit method does nothing. The method op enKb
opens the KnowledgeBase Browser for action rule access. The method
editPlans opens the Plan's Browser for Plan Library access. The
method editPlanningTasks opens the Tasks Browser for planning
Tasks access. The other planning methods are discussed in the
following text.

The method generate, using the current planning tasks found in
the PlanningTasks system object and the library of plans found in
the PlanLibrary system object, generates a plan to execute. The new
plan is stored in the ThePlan system object. It first locates a plan in
the Plan Library that best matches the current planning tasks. The
missing tasks in the plan are added and the extra ones removed. The
plan tasks and planning tasks are unified, ordered, and verified, as
described by the Plan object, and made ready for execution.

SYSTEM IMPLEMENTATION DESCRIPTION 60

The method viewPlan opens a Plan Browser for access to the
generated plan. The method clearPlan sets the ThePlan object to nil.
The method executePlan opens an Execution Browser on the
generated plan for simulated execution of it.

When ever a new plan is generated (using the generate method),
a new instance of an Evaluator object is created and stored in the
evaluation instance variable. Throughout the Planner, the Evaluator
object is sent methods (see Evaluator object definition) to record
planning, execution, and replanning information. After the plan has
executed, the method evaluatePlan performs the plan evaluation
using the Evaluator object.

2.3.10 Other Classes

Other classes provided by source files supplied on the Smalltalk
Tutorial Disk were used. Filing in the source on the file Fredrwng.st
added all class descriptions required for form editing. A description
of the classes can be found in the file Fredrwng.doc on the same disk.
Filing in the source on the file prolog.st adds all class descriptions
required for the Logic Browser. A description of the classes can be
found in the file prolog.doc on the Tutorial disk.

2.4 Predefined System Objects

Predefined system objects are instances of particular objects that
are predefined and used by the CBPS. These objects or used directly
by the CBPS, in the case of the PlanningTasks and PlanLibrary
objects, or used to generate other objects used by the CBPS, as in the
case of the LogicBrowser object which is used to store the action
rules. The following is a short description of each of these types of
objects.

SYSTEM IMPLEMENTATION DESCRIPTION 61

2.4.1 PlanningTasks Object

The PlanningTasks object is defined as a dictionary object. It
stores the planning tasks of the CBPS planner. The TasksBrowser is
opened on the PlanningTasks in the CBPS planner to add and remove
the various Task information.

2.4.2 PlanLibrary Object

The PlanLibrary object is defined as a dictionary object. It stores
the current library of plans that are used by the CBPS planner to
determine a plan that meets the current input task requirements.
The PlansBrowser is opened on the PlanLibrary in the CBPS planner
to add and remove the various Plan information.

2.4.3 ThePlan Object

The ThePlan object is defined as a Plan object. Its stores the
current Plan to executed by the CBPS planner.

2.4.4 LogicBrowser Object

The LogicBrowser is used to store the Knowledge Base action
rules for the planner. A basic description of the LogicBrowser can be
found on the Smalltalk Tutorial disk (Prolog.doc). The important class
description in the LogicBrowser is the PlannerExceptionRules. These
are prolog clauses that return a replanning action based on a failed
task and constraint. These are used in replanning to determine the
appropriate action to take with a failure. Please refer to the
KnowledgeBase section in the Users Guide for a detailed description.

2.4.5 FreeDrawing (PictureDictionary) Object

The FreeDrawing object implements a form editor for Smalltalk.
A basic description of the FreeDrawing object can be found on the
Smalltalk Tutorial disk (FreeDrawing.doc). It is used to generate four
form icons: the KnowledgBaseIcon, the PlanIcon, the PlanLibraryIcon,

SYSTEM IMPLEMENTATION DESCRIPTION 62

and the TasksIcon. They are stored in the FreeDrawing's class
instance variable PietureDictionary. The dictionary stores each icon's
form , and is referenced by the icon's text name. These icons are
retrieved and displayed in the Planner.

2.5 Summary

The design is compact and centered around three objects: a plan, -
a task, and a failure. To understand the design, one must first
understand the operations and behaviors of these object. The control
flow centers around the Smalltalk windowing paradigm. By
understanding it, one will get a better feeling for the control flow of
the implementation. The main control point is the Planner object
window. To view methods that used the described methods, one can
use the senders menu choice of the Class Hierarchy Browser's
Methods subpane. The next section provides some insights into the
design flow by describing the CBPS operation in the form of a
Operation Description.

By using this section, along with the design documents and the
code itself, one is provided a complete information package to
understand the concepts of the CBPS and its design.

OPERATION DESCRIPTION 63

3 OPERATION DESCRIPTION

3.1 Introduction

• The purpose of the section is to describe the operation • of the
planning system from a operations point of view. The reader is
assumed to be familiar with Section 2 and the design and
implementation of the CBPS before reading this section.

Preparation for planning, and planning itself, involve several
activities:

1. A list of planning tasks must be entered to
identify what tasks the planner is planning for.

2. One must develop a library of plans that will be
used as past cases for plan generation.

3. A Knowledge Base of replanning rules must be
developed in order for the planner to do
replanning during plan verification and
execution replanning.

4. Finally, a plan can be generated, view, executed,
evaluated, and cleared with the above
information.

This section describes the user interface, user interaction, and
operation of the CBPS to perform the previously outlined operations.
The main control point of the CBPS is the Planner Window. This
window permits access to various CBPS browsers (Tasks, Plan,
PlanLibrary, Know led geB ase, and Execution) and the planning
operations (generations, execution, and evaluation). We begin with

OPERATION DESCRIPTION 64

the operation of the planner window, and lead the reader through
the process of planning, showing how and when the above activities
are performed.

3.2 Environment

To begin a planning session one must open an CBPS window. To do
this the expression Planner new open must be evaluated in the
Smalltalk System Transcript window. This is done by highlighting the
expression and selecting the dolt option from the System Transcript
menu. After evaluating the expression, a CBPS window, as in Figure 6
in Section 2.3.9, is opened.

The CBPS window has two subpanes, an Explanation Transcript
subpane (5) and an Environment subpane (1,2,3,4). As planning
operations are performed, the Explanation Transcript subpane will be
updated with text planning information. Each reference begins with
a new number. This subpane is implemented as a Smalltalk text
subpane and behaves as such. The Environment subpane displays
four objects: a Tasks object, a Plan Library object, a Knowledge Base
object, and a Plan object. By moving the cursor to the object and
pressing the left mouse button, the corresponding menu for that
object is produced. All of these menus have an exit selection, which
when selected will result in the menu being closed but nothing else.
All other menu options perform an action. The following sections
describe the resulting actions of selecting the other menu options,
and why and when -they should be selected.

3.3 Generation, Viewing, or Alteration Planning Tasks

When one wishes to create, view, or alter the planning tasks , the
Tasks Display object should be selected in the planner window and
the Edit Task option chosen. This will open a Tasks Browser for the
currently defined tasks. This browser allows for the creation,
viewing, or alteration of planning tasks. The task definitions are
global and are only removed when deleted using the Tasks Browser.

OPERATION DESCRIPTION 65

This mean the CBPS window can be closed and later reopened, with
the latest task definitions still available. The TasksBrowser section
describes how tasks and a task's attributes are added and deleted
from the planning tasks.

3.3.1 Tasks Browser

An example of the Tasks Browser can be seen in figure 2.
Subpane (1) displays a list of the currently defined tasks. To add a
new task, select the popup the menu for the subpane and choose the
Add Task option. One is then prompted for a task name. Enter a text
string making sure the name is unique. Duplicate task names are not
allowed. The new task is displayed in the currently defined task list
To delete a Task, select the task, select the name subpane (1), popup
the menu for the subpane, and select the Delete Task option. The
task will be removed from the currently available task list.

To select a task for further viewing, select the task name in the
subpane (1). The selected task is known as the currently selected
task and all other operation are now performed on it.

By selecting the Description subpane, subpane (3), the description
for the current task is displayed in the Text subpane, subpane (8). To
change the description, change the text in the Text subpane, which
behave like a Smalltalk Text subpane, and select the save option
from the Text subpane menu. This will update the current Task's
description.

To display the current task's constraints, resources, or return
resources, select either subpane (3), (4), or (5). Subpane (6) will list
the currently defined items for the constraints, resources, or return
resources. By selecting one of the items in subpane (6), the
corresponding value of that item is displayed in the Text subpane.
To update the value, perform the same operation as in updating the
task's description. Subpane (7) displays an example of what type of
entry is expected in the Text subpane for the currently selected item.

OPERATION DESCRIPTION 66

To add a constraint, a resource, or a return resource, first select
the item type (either subpane (3) (4) or (5)). Next, popup the menu
for subpane (6) and select the Add Item option. A list of available
entries for the item type is present, choose the constraint, resource,
or return resource item type desired. Finally, enter the item name
when prompted. The name should not be a duplicate of other item
names. The item is now available for selecting in the subpane (6) and
updating in the Text subpane.

To delete an item, select the item name in subpane (6), popup the
menu for the subpane, and select the Delete Item option. The item
will be removed from the current task's constraints, resources, or
return resources list.

To close the Taslc Browser, popup the Window menu and select
the close option. The tasks currently defined are the ones that the
CBPS will plan for during plan generation.

3.4 Generation, Viewing, or Alteration of the Plan Library

Before any planning can be done, a library of Plans must be
generated to be used as cases for plan generation. Also, periodically
the plan library should be maintained to insure its integrity. This
involves identifying cases that are similar and generalizing them into
a single case covering two or more situations. It could also include
identifying cases that are no longer applicable and removing them.
The Plans Library Browser section describes how plans and plan
attributes are added and deleted from the library.

To create, view, or alter the plans in the Plan Library, the Plan
Library Display object should be selected and the Edit Library •

option chosen. This will open a Plans Browser for the currently
defined library plans. The plan definitions are global and are only
removed when deleted using the Plans Browser. This means the CBPS

OPERATION DESCRIPTION 67

window can be closed and later reopened, and the latest plan
definitions will still be available.

3. 4 .1 Plan Library Browser

An example of the Plans Browser can be seen in figure 4.
Subpane (1) displays a list of the currently defined plans. To add a
new plan, popup the menu for the subpane and select the Add Plan
option. One will then be prompted for a plan name. Enter a text
string making sure the name is unique. Duplicate plan names are not
allowed. The new plan is displayed in the currently available plan
list. To delete a plan, select the plan name from subpane (1), popup
the menu for the subpane, and select the Delete Plan option. The
plan will be removed from the currently available plan list.

To select a plan for further viewing, select the plan name in the
subpane (1). The selected plan is known as the currently selected
plan and all other operation are performed on it.

By selecting Description, StartTime, StopTime or Success from
subpane (2), the corresponding value for the item is displayed in the
Text subpane, subpane (12). To change the value of the item, change
the text in the Text subpane and select the save option from the
Text subpane menu. This subpane behaves like a Smalltalk Text
subpane. This will update the current plan's selected information.

Subpane (3) displays the failures defined for the current plan. To
select a failure, select one of the failure names in the subpane. To
view the failure's description, task, constraint, type, or success count,
select one of these items from subpane (4). The corresponding value
for the failure item is displayed in the Text subpane, subpane (12).
You are not permitted to alter any of these items. Changing the text
in the Text subpane and selecting the save option from the Text
subpane menu has no effect.

OPERATION DESCRIPTION 68

One is permitted to delete a failure. To do this, select the failure
name from subpane (3), popup the menu for the subpane, and select
the Delete Failure option. The failure will be removed from the
currently available plan failure list.

The remaining subpanes appear as, and are, a Tasks Browser.
Subpane (5) displays the current plan's task. Tasks can be added and
deleted in. a similar manner to the Tasks Browser. By selecting a task,
and the Description, Constraints, Resources, or Return Resources
subpane, the corresponding item is displayed in subpane (10). By
selecting an item in subpane (10) the corresponding value is
displaied in the Text subpane. The addition, deletion and update of
the selected item is handled as in the Tasks Browser.

To close the Plans Browser, popup the Window menu and select
the close option. The plans currently defined are the ones that the
CBPS will use during plan generation.

3.5 Generation, Viewing, or Alteration of the Knowledge
Base

When the user wishes to create, view, or alter the Knowledge
Base rules, the Knowledge Base Display object should be selected and
the Edit KB option chosen. This will open a Logic Browser for the
currently defined action rules. The action rule definitions are global
and are only removed when deleted using the Logic Browser. This
means the CBPS window can be closed and later reopened, and the
latest action rule definitions will still be available. The Knowledge
Base Browser section describes how action rules are added and
deleted.

Action rules are used to decide what methods should be executed
in the event of a task's constraint failing during the plan's execution
or verification. By reviewing the design and implementation
documents, the exact use and operation of these objects is described.

1

1

OPERATION DESCRIPTION 69

3.5.1 Knowledge Base Browser

An example of the Logic Browser can be seen in Figure 7. It is
used to create the action rules used in determining the replanning
action when a plan fails. Subpane (1) provides a list of the available
rule sets. Depending on the Smalltalk image, there could be several
different sets. The one of interest to the CBPS is the
PlannerExceptionRules set. Selecting this item from the subpane
will display action: in subpane (2). By selecting the action: item in
this subpane, the current action rules are displayed in subpane (3).
In our example, the PlannerExceptionRules action rules are
displayed.

Logic Brovvser

PLannerExceptionRules auLion:
OtherSroallTalkRules

(1) (2)

action(taskKey, constraintKey, plan,
action, var, 'Rule1') :-

is(taskKey, 'StartTime).
(3)

action(taskKey, constraintKey, plan,
action, var, 'Rule2') :-

is(taskKey, 'StopTime).

Figure 7. Logic Browser

Subpane (3) is a text display of the action rules. It permits the
creation, modification, and deletion of the action rules. By selecting
the popup menu for subpane (3) and selecting the save option, the
action rules in the subpane are saved as the current action rules.

The action rules are composed of prolog predicates of the form:

OPERATION DESCRIPTION 70

action (taskKey, constraintKey, plan, action, var, ruleId)

prolog expressions

I t

The action rules must start with action as the class name.
Incoming variables include the taskKey, the constraintKey, and the
plan. The taskKey is the string name of the task that failed during
planning. The constraintKey is the string name of the constraint that
failure during planning. The plan variable contains the current plan
object. Return variables include action , var, and ruleID. var is an
output parameter that can be supplied with any value. ruleId should
be unified with the rule identifier for the rule, action should be
unified with the method's symbol name that is executed for
replanning - this is the action of the rule.

The action names that can be used to unify with the action
variable included: #findAPlace:with:, #takeNoAction:with:, and
#moveToTheEnd:with:. These methods are called with the var
instance variable of the action rule as the first parameter at the
method. The #findAPlace:with: method locates the next available
slot in the plan where the failed task's constraints will be satisfied.
The #takeNoAction:with: methods does no replanning. The method
#moveToTheEnd:with: moves the failed task to the end of the
plan. A further description is located in the System Implementation
description.

For a description of Smalltalk's prolog implementation, consult
the Prolog.doc file on the Smalltalk tutorial disk.

OPERATION DESCRIPTION 71

3 . 6 Plan Operations

The first three display objects (Task Display Object, Task Library
Display Object, and the Knowledge Base Display Object) provide the
capability for the user to generate the initial information for
planning; the tasks, action rules, and library of plans are now
available for planning. The next planning activities are Plan
Generation, new Plan Review, Plan Execution, Plan Evaluation, and
Plan Clearing. By selecting the Plan Display object, a menu is
provided allowing one to select anyone of these activities. The
following sections describe that actions taken as a result of making
the different menu selections.

3.6.1 Plan Generation

By selecting the Generate option from the Plan Display Object's
menu selection, the plan generation process is invoked. This option
takes the tasks that were entered in the Tasks Browser, locates a
base Plan in the Plans Browser, modifies it to meet the current task
requirements, verifies the plan, and does any replanning required to
verify the plan.

While the generation process is proceeding, Plan generation
information is displayed in subpane (2) of the CBPS window. This
information includes: what plan was selected from the Plan library to
be the base plan, the number of task added to the plan to meet the
current task requirements, the number of unrequired tasks removed
from the plan, the number of failures the plan has had, what tasks
verified in the plan, what tasks failed verification, what failure
information was used in replanning, what Action rules were used in
the replanning, and whether or not the plan is ready for execution.
This information is for the users benefit, and can be used as a source
of information to help modify planning tasks or plans in the library
for future or current planning.

OPERATION DESCRIPTION 72

The verification process will only
twice. If it fails again, the user must
information and decide what action(s)
planning tasks or the chosen base pla
generated and verified the next step i
plan.

3.6.2 Plan Reviewer

After the plan has been generated, it can be reviewed by
selecting the View option from the Plan Display Object's menu
selection. This option opens a Plan Browser for the generated Plan.
The browser, seen in Figure 3, operates in a similar manner as the
Plans Browser, used to view the plans in the Plan Library. The only
difference is the first subpane is missing. In the Plans Browser, this
subpane was used to select the plan to consider for manipulation or
viewing. The Plan Browser is opened for a specific plan, therefor this
subpane is not required.

The main purpose of the Browser is to view the generated plan.
Although the plan can be altered as in the Plans Browser, this is not
advisable. The current version of the plan has been verified and is
ready for execution. The Plan will not be reverified if changes are
made, it can only be executed.

After the plan has be reviewed, it is ready for execution. Note,
the plan can be executed even though it has not been reviewed.

3.6.3 Plan Execution

After the plan has been generated, it can be executed by
selecting the Execute option from the Plan Display Object's menu
selection. This option opens a Execution Browser for the generated
Plan. The browser operates in a similar manner as the Plan
Browser, u sed to view the recently generated plan. The only
difference is the addition of a new subpane (10), shown in Figure 5.

attempt to verify the plan
review the plan generation
should be taken with the

n. After the plan has been
s to review the constructed

OPERATION DESCRIPTION 73

The new subpane is used to simulate the execution of the plan.
The subpane displays the current task of the plan that is ready for
execution. By selecting the popup menu for the subpane, the choices
Next and Fail are made available. By choosing the Ne xt option, the
current task is assumed to of executed successfully, and the next task
in the plan is made ready to executed. The next task's name is now
displayed in the subpane. By choosing the Fail option, the current
task is assumed to have failed. One is then presented with a list of
the task failures types (Constraints, Resources, and Returns). Select
the failure type one desires. After this, one is presented a list of
the current items for that failure type. For example, in the
Constraint type case these selections could be StartTime, StopTime,
Temperature, etc. Select on of the failure items. After this, replanning
is done using the failed task and entered failed constraint as the
failure information.

Replanning consists of the same activities encounter in plan
generation when the plan experiences as failure in plan verification.
Replanning information is also displayed in the Transcript subpane
of the CBPS window as in plan generation. After the plan has been
replanned and reverified, the task execution subpane displays the
next task in the plan to execute, and the Plan Browser displays the
new plan. Most likely the order of the remaining planning tasks will
have changed. When replanning, only the tasks not executed,
including the failed task, are replanned. The tasks that have already
executed are considered to be alright. The tasks in the Task
subpane display the order in which the tasks are to be executed. Due
to replanning, this order may change. As in plan generation, only
two passes of plan reverification are done. If the plan cannot be
verified after two attempts, replanning finishes and one must
decide, using the planning information, what operations are
required to be done on the planning tasks or the base plan used.

After all tasks have been executed, the message Plan Ready For
Evaluation will be displayed in the CBPS Transcript window and

OPER ATION DESCRIPTION 74

Execution Completed is displayed in the Current Task subpane.
The plan is now ready for evaluation.

The main purpose of this Browser is to execute the generated
plan. Although the plan can be altered as in the Plan Browser, this
is not advisable. The current version of the plan has been verified
and is ready for execution. The Plan will not be reverified if changes
are made, it will only executed from its current execution point.

3.6.4 Plan Evaluation

After the plan has been executed successfully (all task
executed), it can be evaluated by selecting the Evaluate option from
the Plan Display Object's menu selection. This option decides what
should be done with the new plan

When ever the plan generation mechanism is invoked, the
evaluation information is cleared. New information is added during
plan generation, execution, failure, and replanning. This information
is then used to determine what is to be done with the executed plan.
The for possible actions taken with a plan are:

1) Add the plan under a new name to the Plan
Library.

2) Update the Plan Library's plan the current plan is
based on with its execution information.

3) Remove the Plan Library's plan the current plan is
based on due to excessive errors.

4) Take no action with the plan

The exact logic for the design can be altered or viewed in the
method evaluate defined for the Evaluator object. To fully
understand the context of the logic, review the Evaluator object in
the System Implementation description.

OPERATION DESCRIPTION 75

3.6.5 Plan Clearing

After the plan has been evaluated, a new planning session can be
started. The previously created plan should be erased before starting
a new session. This is done by selecting the Clear option from the
Plan Display Object's menu selection. This option clears the plan and
initializes the system for a new planning session.

3.7 Summary

This section has provided a discussion of how to operate the CBPS.
It along with the previous section provide the user with an
understanding of the design and operation of the CBPS. Each section
is designed to compliment the other to provide a useful description
of the CBPS.

SYSTEM EXTENSIONS AND ENHANCEMENTS 76

4 SYSTEM EXTENSIONS AND ENHANCEMENTS

4.1 Introduction

In this section we outline selected areas of the CBPS that could
be extended and enhanced, or new areas that could be added to
increase the overall power, performance, and efficiency of the
planner. The implementation exercise helped to identify these areas
by locating sections that where more complicated than expected, and
ones that need to be user or application configureable, e.g. the
evaluation action rules. Other areas where identified by reviewing
the operation of the Planner and locating situations that CBPS could
handle better if modifications to the CBPSs control flow where made.

The following sections briefly describe each of the identified
areas, and provides suggestions or alternatives that could be
included with the CBPS to increase the effectiveness of it.

4.2 Base Plan Locating

The task of locating the plan in the Plan library that most closely
resembles the planning tasks is handled by the Planner object's
generate method. This method initially generates a rating for every
plan in the Plan Library in relation to the planning tasks. The rating
consists of the number of extra tasks , missing tasks, and the number
of failures the plan has had. The plan with the best rating is used as
the base plan. The concept best currently means the one with the
least number of missing tasks, extra tasks, and task failures, or the
one that has the least missing and extra tasks.

The method of rating plans in the Plan Library, and the above
simple plan selection rule proved sufficient for the CBPS prototype,
but may not be able handle every possible context (situation) or be

SYSTEM EXTENSIONS AND ENHANCEMENTS 77

efficient enough when the Plan Library grows in size. An example of
a situation the rating method does not handle is as follows:

The Library plan has more extra tasks, less
missing tasks, and no failures, in relation to the base
plan that was chosen. In some cases, the fact that it
has less missing tasks than the base plan may make it
a better plan ,because less tasks have to be added to
it. However, the fact that it has more extra tasks than
the base plan chosen may make it a worse plan to
use. It is a difficult problem to decide exactly when
one plan should be used over another, even when it
may have more extra tasks, missing tasks, and
failures.

This problem points to one obvious extension. Items other than
the number of extra task, missing tasks, and failures can be
considered when rating and choosing a base plan. Other features such
as Start and Stop times, the Constraints, and the Resources can be
considered. To an extreme, any comparable plan attribute can be
considered.

It is our opinion that you will not be able to devise an
algorithm that covers the selection of the best plan from the Plan
Library in every case. This is a extremely heuristic activity. For this
reason, using an Knowledge Based system to decide the best plan
using all of a plan's attributes in relationship to the currently
selected best plan, is a good method.

To reduce the initial search space of the Plan library, the Plan
library could also be divided into areas of related plans, e.g. based on
size, task type, or hierarchy. The base plan locating function could
begin in one of the most likely areas and choose between those
plans using the current planning tasks as an index. If no suitable

SYSTEM EXTENSIONS AND ENHANCEMENTS 78

1

1

plan is located, the search could be expanded to other possible areas
of the Plan Library.

4.3 Base Plan, Planning Task Unification

The task of unifying the selected base plan with the planning
tasks is handled by the Plan object's unifyVVith:forPlanner method.
This method takes each task in the base plan and unifies it with the
corresponding planning task. There is a one-to-one correspondence
between the tasks because the base plan has added the extra tasks
and removed the missing tasks before the unification process was
invoked. The actual unification process involves the unification of
the tasks attributes. These attributes include the task's constraints,
resources, and returns.

There are two different types of unification: simple and complex.
Simple unification occurs:

1) When a base plan's task has a constraint,
resource, or return defined and the planning
task does not.

2) When a planing task has a constraint, resource,
or return defined and the base plan's task
does not.

3) Both the planning task and base plan task
have the constraint, resource, or return
defined and they are equal in all respects.

In each of these cases, the constraint, resources, or return, is left
in tacked and installed in the base plan's task (as in case 2), or just
left alone (as in case 1 and 3).

Complex unification occurs when both the planning task and base
plan's task have the constraint, resource, or return, defined, and they

SYSTEM EXTENSIONS AND ENHANCEMENTS 79

are not equal. In this case, each constraint, resource, or return object
uses the method unifyWith:forPlanner:name to decide whether the
planning task's or base plan's task constraint, resource, or return
should be used in the base plan's task.

Currently, each one of these methods does a comparison of the
two attributes and decides which one to use. For example, if two
Temperature Constraints are being unified, it selects the maximum
temperature value between the two and uses it in the base plan
task's Temperature Constraint value. This rule is appropriate for
most tasks, however some tasks would benefit from picking the
minimum temperature

To handle this problem, a set of different unification algorithms
could be created. Not only dependent on the type of attribute but
also on the task id. In the task attributes definition, it could declared
what types of unification rules are appropriate for the particular
attributes. Now instead of using the standard unification methods for
the type, it could select what is best for that particular task's id and
attribute.

4.4 Verification and Replanning

The verification process involves verifying that each task's
constraints and resources meet with the expected predication about
their values at execution time. In the event of a failure to meet the
expectation or when an executing task fails, the replanning process is
invoked. This process looks first to the plan's failure information to
see if it can locate a similar problem in the past. If it can, it then
retrieves the planning action used to resolve the problem and
executed it. If no similar failure can be found, the Knowledge Base
rules are consulted for a planning action. The planning action is
retrieved, executed, and the plan is verified again from the start. An
enhancement to improve efficiency of this is to only verify the plan
from the last task altered by the replanning action, not frorn the
beginning. This is an obvious reduction.

SYSTEM EXTENSIONS AND ENHANCEMENTS 80

When a task is executing and replanning is done, the replanning
information is stored within the task in the plan. If the task
experiences another failure, currently the replanning mechanism is
invoked again and the process repeated. If the task failed again for
the same reason, the previous replanning action was obviously
wrong, it should be removed as a valid option when the plan's task
fails again. This is currently not done and the addition would
enhance the accuracy of the stored failure information for a task in
the plan.

An option not currently available is to allow the user to select the
replanning action to take in the event of a failure. The user could be
shown the suggested action and a list of other available actions, and
then allowed to choose the one to use. This would give the user
greater input in the replanning process, and his choices would also
be recorded and later retrieved when similar problems occur in the
future. Thus enhancing the quality and accuracy of the Plan's task
knowledge.

4.5 Knowledge Base Rules

The Knowledge Base Rules proved to be an excellent method of
encoding what replanning actions are to be taken when various tasks
and constraints fail -ed. The decision of what action to take depends on
what the failed task and constraint is. The current plan is also
available to help decide what action to take, however no supplied
methods for accessing it are provide. A user, having an
understanding of Prolog and the Plan object, could access this
information. However, for ease of use a library of Prolog expressions
to access this data could be provide to aid the Knowledge Base
programmer. This would permit the Knowledge Base rules to review
the tasks before and after the failed task, and to review the task's
attributes in order to decide what actions are to be done.

SYSTEM EXTENSIONS AND ENHANCEMENTS 81

The replanning actions are actual method names defined for the
plan object. The currently available actions are #takeNoAction:with,
#findAPlace:with, and #moveToTheEnd. For a description of them
consult the Users Manual section under Logic Browser. New action
methods could be created to enhance the range of available
replanning actions. For example, a new one could be added that
moves the task to the start of the plan, or one that moves the task
after or before a specific task. These additions would help the
replanning actions be more flexible, and provide a greater range of
options for replanning.

4.6 Evaluation

An Evaluator object is created before the base plan is created,
and information added to it as the plan executes. This information
includes the number of extra and missing tasks, the number of
failures found in verify the initial plan, the number of failures found
in the execution of the plan, the types of failures, the number of
failures the plan had in the past, and the number of tasks in the plan.
When the plan is evaluated, this information is considered and the
appropriate action taken with the plan (forget it, add it to the Plan
Library, update the base plan in the Plan Library, or remove the
base plan from the Plan Library). The evaluation is performed by the
Evaluator Object's evaluate method.

The evaluation of Evaluator object could be enhanced to consider
other variables, rather than the set defined above. These would come
from a set of defined variables that are derived as essential to the
evaluation of an executed plan. It could be advantageous to have a
small expert system decide what is to be done with plan. The
current method is set up much like an inference engine already, and
this addition would set up the evaluation the way it turned out in
the implementation.

SYSTEM EXTENSIONS AND ENHANCEMENTS 82

4.7 Generalization

Generalization is the process of taking a group of statements, for
example plans, and forming a single statement that inherits the
concepts and properties found in the group of statements. The
process of generalizing similar plans found in the PlanLibrary into a
single plan can be done in two ways:

• By performing the generalization operation
periodically, the number of plans in the
Library can be reduced. Also the plans that are
in the Library are more complete - the
knowledge used to generate the plan comes
from many different sources (plan) not just a
single one.

• By having general plans index more specific
plans, searching time for the base plan can be
reduced. General plans are used to find an
initial plan, once found the specific plans it
index can be checked and used if they are
better suited to the current -set of tasks (goals).
If the specific plans are not suitable the
generalized plan can be used.

The generalization process can be performed in three ways:

1) Incremental - As a new plan is added to the
library it is checked to see if it could be
generalized into another existing plan. If not,
a new plan generalization is created.

2) Collective - Periodically the plans are
reviewed , both new and generalized, to
generate a new set of generalized plans.

SYSTEM EXTENSIONS AND ENHANCEMENTS 83

3) Combination - Both previous methods are
combined.

The generalization process could also be performed on the
Knowledge Base rules in a similar manner to remove duplicates and
improve the overall quality of the rules.

4 . 8 Hierarchical Tasks

In our design, tasks are defined as executable units that can not
be further decomposed. This proved to be sufficient to produce a
planner that can handle the dynamics of planning and replanning in
a changing environment. Plans where manipulated using the tasks
they contain and the different attributes of the tasks. The tasks are
considered the goals the plan is attempting to achieve. When a
task's attributes are satisfied, the task's goal is meet. When the
plan's task goals are meet, the plan has succeeded. To be able to
further reason about the plan and its tasks and to further decompose
the task's goal or goals, a hierarchical approach to task definition
could be used.

A hierarchical approach to task definition allows a task to be
decomposed into subtasks. These subtasks can be further
decomposed into sub-subtasks, an so-on. By doing this, the task's
goal can be also decomposed into subgoals. To meet the task's goal,
the subtasks used to compose the task can be varied depending on
the current executing environment of the plan. This makes plan
execution extremely dynamic, the choice of subtask to execute
depends on the best subtask to execute given the current situation.
This would enable the planner to avoid unexpected dangers and
make use of novel opportunities. This is described in detail in the
next section.

SYSTEM EXTENSIONS AND ENHANCEMENTS 84

4.9 Unexpected Dangers and Novel Opportunities

The ability for a planner to avoid unexpected danger and exploit
novel opportunities would be an important advancement for any
planning system. The key ability of such a planner is to be able to
recognize what features about its current execution environment are
significant and use them to its advantage. To be be able to determine
significance, it must first be noted, but you can not notice all
features. The question then is how to recognize significance?

The answer to this question begins with relating the
environment's features to the goals that are currently active or ones
that will be active in the future. These relations could be that the
feature is expected or unexpected. We must determine what impact
the features have on the goals and the plan. To do this, the plan and
the tasks within the plan should be hierarchical by nature. The
reason for this is two fold. First, during planning creation a task
can be composed to execute differently depending on expectations
about the environment. For example, if a task's temperature is in a
particular range it should execute slowly, if it is cooler it can execute
quickly. Secondly, by decomposing a plan and tasks into subplans
and tasks the current environment features (goals) can be matched
against those of future tasks during execution. If a match is found,
this unexpected opportunity could be exploited by satisfying one of
the future task's goals or subgoals immediately. The method for
recognizing them as opportunities is as follows:

1) Notice that certain situation features
facilitate the persuit of some goal.

Find the goal for which these features
are an opportunity and understand
why.

I.

SYSTEM EXTENSIONS AND ENHANCEMENTS 85

3) Decide if the opportunity is important
enough to pursue.

As well as waiting for expected or unexpected goals to occur
during execution, a planner can be looking ahead in an attempt to
make current execution choices based on its current environment
that, in addition to meeting its current goals, also lead the planner in
a direction that will enhance its chances of successfully executing its
other tasks in the future. Goals are strongly activated if they are
currently perused, or if a simple feature indicating some relation
has been found. It is particularly important to arouse competing or
conflicting goals. Once strongly aroused, a goal gains more processing
power to determine is subtle features. This is the ability to avoid
foreseeable dangers.

4.10 Summary

This section helps show what planning power is possible by
building on top of the existing CBPS base. It is from the powerful
implementation of the base that makes this possible. The main
discovery is the requirement of hierarchical plans to be able to
further enhance the reasoning power, making opportunism possible.

CONCLUSION 86

5 _caNcuusION

The CBPS implementation has demonstrated that using a
combination of case-based and dynamic memory techniques can
provide an excellent method of handling planning in a dynamic
environment. As can be seen from the implementation, our planner
is concerned with many of the different areas of case-based
reasoning. We retrieve past cases based on the number and type of
tasks in the current situation they match, and use the number of
times a plan succeeds in similar situations. We use a knowledge base
of rules to aid in the plan transformation of a past plan to the current
situation. We use past planning information and current planning op-
erations to explain the planning task. We do dynamic replanning us-
ing the same knowledge base to keep the plan executing. We note all
of this information and encode it into a past plan or new plan, en-
abling plan cases to be better utilized on the next planning iteration.
The feedback loop enables plans and new plan learning to evolve
with the environment over time.

By using dynamic memory and case-based reasoning techniques,
combined with knowledge based techniques for replanning, we have
presented a design that handles resource constraints, feedback, and
achieves both robustness and some degree of autonomy through plan
learning. Although not essential to any part, the operator can guide
the overall planning process and control the acquisition of new plans
and rules for replanning. With the current design and the future
enhancements, we feel we are approaching a realistic, efficient
planner.

REFERENCES 8_7

6 REFERENCES

Deugo, D. L., Oppacher, F., Thomas, D., Planning Techniques Survey:
Their Applicability to the Mobile Servicing System, TR/SCS, Carleton
University, Ottawa, 1988.

Deugo, D. L., Oppacher, F., Thomas, D., A Proposed Approach for
Scheduling Applications (With Respect to the Mobile Servicing
System), TR/SCS, Carleton University, Ottawa, 1988.

Oppacher, F., Deugo, D. L., A Dynamic Case-Based Planning System for
Space Station Application, Proceedings of the Fourth Conference on
Artificial Intelligence for Space Applications, 1988.

DATE DUE

11E6c1111 ii

TL DEUGO, DWIGHT
797 --A dynamic case-based
D3933 planning system for
+988 space application : soft-

ware and operation des-
cription

NAME OF BORROWER
NOM DE L'EMPRUNTEUR DATE

ing

i! TL
1 1 797
p D3933

1988

aimum

