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Summary

This report describes the results of several tasks that were performed by Dy-
nacon in support of the Daisy flexible spacecraft emulation laboratory at the
University of Toronto. An earlier controller-design investigation was extended
by developing controllers based on reduced-order Daisy dynamics models us-
ing Davison’s Servomechanism Control design technique, and applying these
to Daisy in a program of experiments; previous controllers of this type were
based on full-order dynamics models. Modifications to the Daisy hardware
were carried out, in which about 100 pounds of mass were removed from
the structure (in order to reduce rigid-mode damping), the mass center of
the structure was raised (in order to minimize pendulous vibrations), and
new integrated-circuit accelerometers were adapted for use on the structure
(for use in future controller designs). Finally, the design of Linear Quadratic
Gaussian controllers employing accelerometers as sensors for Daisy was in-
vestigated, through analysis, and modeling and simulation using the Matrix,
control design software package.
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1 Introduction

With large flexible spacecraft about to become a reality, and the design for a permanent
space station being finalized, it is clear that all the subsystems of current spacecraft
must undergo substantial evolution in their design in order to meet the more challenging
specifications of the future. The subsystems to be discussed here are advanced attitude
control systems that must be developed to accommodate large flexible “Third Generation”
spacecraft. Over the past few years Dynacon has, under DOC funding, designed and
fabricated the Daisy laboratory facility to test advanced control concepts appropriate for
such spacecraft. Read, for example, [HUGHES & SINCARSIN, 1983], [HUGHES, 1985]
and [SINCARSIN, 1986]. This report describes work that was done on Daisy facility
improvement, and on investigations of two types of control system design techniques

using the Daisy facility.

To gain an appreciation for the technology development made possible by Daisy, con-
sider as an example the mobile communications satellite shown in Figure 1.1. Beam
performance necessitates a large, offset-fed reflector. Like this satellite, Daisy has rigid
modes, ‘clusters’ of vibration modes, very low vibration frequencies, and very light damp-
ing. For top performance, it is necessary to deal with the following control-structure

interaction problems:

e Attitude control. The bus and the reflector must be made to point in the proper

direction.

e Maintenance of overall geometrical integrity. The reflector and the feedhorn must
be maintained in the proper relative positions, despite structural flexibility in the

towers.

e Maintenance of reflector shape. For some applications it is necessary to control the

shape of the antenna dish to tight tolerances.

All of these problems can be and have been studied experimentally using the Daisy facility.
In this report, further work along these lines is described. The nature of this work is
discussed in §1.4. Prior to proceeding, however, let us first briefly describe the Daisy

facility (structure and computer interface).
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1. Introduction 3

1.1 Requirements for the Daisy Structure

As alluded to above, the main objective of the Daisy facility is to provide a ground-based
laboratory to help develop advanced control systems appropriate for what are sometimes
referred to as “Third Generation” spacecraft. This laboratory was to comprise a flexible
structure to emulate such spacecraft, as well as the nécessary computer hardware and
software to implement advanced control algorithms. In order to achieve this goal, the
Daisy structure had to be capable of mimicking the following characteristics of large

space structures:

e Large dimensions;

e Structural frequencies within the controller passband,;

¢ Vibration mode “clusters”;

e Very light structural damping;

e Tight pointing requirements;

e Configurational integrity must be maintained;

e Shape control may be required;

e Sensors & actuators distributed over the spacecraft;

e Modern (multivariable) control theory must be permitted;
e New types of sensors and actuators are to be developed;
e On-board signal proceSsiné requires microprocessors;

o Opportunity for modal testing techniques to be studied.

The Daisy design illustrated in Figure 1.2 has been shown capable of accommodating

these requirements. In particular, Daisy has

o 3 “rigid” rotational modes,

20 “flexible” (or “elastic”) modes,

o Low frequencies of vibration (w1 = 0.1 Hz),
Very light damping ({; = 0.008),

“Clustered” frequencies.




Figure 1.2: The Daisy Strusture: A Large Flexible Spacecraft Emulator
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1.2 Description of the Daisy Structure

We now proceed to describe the Daisy structure as it was prior to the start of the work
described in this report. While this description appears elsewhere, it is included here again
in order to provide a baseline against which the configuration changes that were performed
during this work (as described in §3) may be compared. In addition, the nomenclature of
Daisy, described here in detail, should provide a useful reference when reading about the

tasks that are described in §§2 and 4.

As depicted in Figure 1.3, Daisy consists of a central rigid hub to which ten counter-

balanced ribs are attached. The ribs in turn are interconnected by spring struts.

1.2.1 The Hub

The four-layer hub comprises a bottom plate, a center plate, a top ring and an inertia
balancing tower. The top ring accommodates the ribs via ten two-dimensional universal
pivots. Motions out-of-cone (perpendicular to the surface of the cone formed by the ribs)
and motionin-cone (parallel to the surface of the cone) are permitted. While the provision

for twist about the rib-tube symmetry axis exists, it is not activated at present.

The center plate acts as the structural backbone for the entire design. It supports
the inertia balancing tower, the top ring with the ribs and struts attached, and bears the
loads from the bottom plate and the three reaction wheels. Finally, the center plate acts

as a platform for the data acquisition (or interface) computer.

A three-dimensional gimbal (+14° about z; and y;, and 360° continuously about z)
connects the center plate to the support stand for Daisy. Since the gimbal pivot, by de-
sign, ideally corresponds to the mass center for Daisy, pendulous gravitational oscillation
modes have been minimized. As a consequence, three rotational rigid modes, with nearly
zero frequency, are produced. Hub rotations and rates are sensed via digital encoders,
which simulate space-like measurements from devices such as gyros. These devices are

incorporated into the gimbal design.

As alluded to above, the bottom pia,te acts as a mounting platform for Daisy’s reaction
wheels. It also acts as a base for the motor-control circuitry and the majority of the
structure’s power supplies. Power is brought onto the structure via cables dangling loosely

down the center of the inertia balancing tower. The DC power supply for the reaction
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1. Introduction

wheels, because of its large size and inertia, is by necessity located off the structure. In
fact, even the reaction wheels are rather massive, so much so that their inertias and those
of the bottom plate have been utilized to make the rigid (hub) inertias and the flexible

inertias (ribs and struts) comparable. Thus a reasonable hub-rib interaction is ensured.

The mass center for Daisy can be adjusted by raising or lowering the bottom plate or
by minor adjustments to the locations of the reaction wheels. Moreover, the ability to
adjust the final location for each reaction wheel permits the removal of unwanted cross-
products of inertia that will arise within the design because of the chosen reaction wheel
configuration and fabrication and assembly tolerances. It is noteworthy that the spin
axis of each wheel is aligned with one of the principal inertia axes for Daisy, denoted

(Zh, Yh, zn). The pivot axes within the gimbal are aligned likewise.

1.2.2 The Ribs

Each rib has its flexibility localized at the rib pivot. Out-of-cone flexibility for each rib is
provided. by two linear helical springs. Each is configured to generate a torsional stiffness

by bending about the longitudinal spring axis (rather than being extended or compressed

“along the axis, as is the normal mode of operation for such springs). These springs are

‘preloaded’ so that they support the rib against the effect of gravity and permit it to
‘loat’ in the rib universal bearings. This minimizes frictional losses, thus achieving a very

low damping in the out-of-cone direction.

In-cone flexibility is provided by ashort rod-spring which acts in torsion to provide
stiffness between the spider of the rib-universal and the rib structure. Again to minimize
the frictional losses in the universal bearings, this rod is preloaded in compression to
‘push’ against both the spider and the rib structure, thus forcing them apart, and ‘ifting’
the in-cone bearings off their races. The result, as before, is a very low damping, but this

time in the in-cone direction.

To achieve the intended low first flexible-mode frequency of 0.1 Hz, the rib inertia
must be large compared to the rib pivof spring stiffness. This is accomplished by adding
a tip mass to the rib and then counterbalancing the rib to guarantee the required inertia
properties. The spring stiffness is determined based on damping requirements. Simply
put, the amount of energy stored by an initial rib displacement must be substantial enough
so that frictional losses cause the resulting rib oscillations to decay at the appropriate rate,
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that is, to provide an effective viscous damping coefficient of 0.8%.

Ultimately, accelerometers are to be mounted on each rib tip to measure both the
in-cone and the out-of-cone rib accelerations. At present, only one rib is so instrumented.
(This unconventional ‘space sensor’ is likely to become more widely used as spacecraft
flexibility becomes the chief limitation to attitude-control-system performance.) In addi-
tion, a pair of bi-directional compressed air thrusters will eventually be included at each
rib tip. These devices will serve a dual role as control actuators and as sources for dis-
turbance inputs. Application of thruster pulses will be possible in both the in-cone and
out-of-cone directions, and in either the positive or the negative sense in each direction.
At present, only one rib possesses a thruster package, the second rib in the clockwise
direction from zp, shown in Figure 1.3. If one numbers the ribs clockwise, starting with

the rib aligned with z;, as number one, then the instrumented and actuated rib is rib #3.

1.2.83 The Struts

As shown in Figure 1.3, spring struts are connected between each rib using rigid mounts.
These act to minimize frictional losses while introducing some weak coupling between the
in-cone and out-of-cone rib motions. The multiplicity of the ribs and struts, and this weak
dynamical coupling gives rise to a clustering of frequencies for the flexible modes. The
strut springs also provide additional sources of flexibility which can be used to alter the
effective spring stiffnesses at the rib-pivot. Furthermore, these springs are preloaded to
provide a membrane-like stiffness in the structure which forms the rib cone. Nominally,
the longitudinal axis of each rib is 30° above the horizontal plane. The locations for the
struts are chosen to meet damping requirements, as losses in these springs are magnified

as they are moved towards the rib tips.

The choice of an even number of ribs permits two axes of symmetry for out-of-cone
motions. Those selected are denoted z;, and y; in Figure 1.3. Obviously, the potential
for the introduction of asymmetries, given the multiplicity of ribs and struts, abounds.
For example, inertia or material asymmetries can easily be accommodated by replacing

or altering an existing rib. In this sense the structure also is reasonably adaptable.

Daisy is a relatively ‘simple’ structure, which by its nature can easily be discretized
for the purposes of analytical modeling. Also, because typical rib and hub amplitudes
are designed to be nominally between 7° and 10°, Daisy is, to a large extent, a ‘linear’
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structure. There are, however, important nonlinear components to the overall system,

the most notable being the rib-tip thrusters.

Another advantage of maintaining small amplitude motions is that slip rings can be
avoided. Instead of introducing these ‘noisy’ frictional elements, sensors and actuator leads
can be permitted to flex through the necessary angles during normal structural vibrations.
Mechanical stops are used to guarantee that normal limits are not exceeded. It should be
emphasized that large angle maneuvers, such as slewing, can be accommodated about the
z), axis. Several complete rotations are possible before sensor and actuator leads become

substantially ‘wound up’.

The support structure upon which Daisy rests is ‘rigid’ in comparison to Daisy itself.
Hence, spurious flexibility effects are not introduced via the support. It should be realized,
however, that since the support must pass through the bottom hub plate, care must be
taken to maintain the z), and y;, hub rotations within design limits (+14°) so as to ensure
that the bottom plate does not contact the support. The support offers no restriction to

motion about z.

1.3 Description of the Computer Interface

Two separate processors are involved in the computer interface used to provide control
to the Daisy structure. The first, the TAURUS Lab, acquires data from the sensors, and
transmits data to the actuators. A DIGITAL Micro PDP 11/73 executes the desired
control stratégy. Within this framework, the TAURUS can be viewed as an interface
computer that bridges the gap between the control algorithm computer and the Daisy

structure (see Figure 1.4).

The interface and control algorithm computer must, of course, communicate with one
another. Three interface possibilities are provided in the present configuration: via a
RS232 serial port, via an IEEE 8-bit parallel bus, or via a specialized 22-bit parallel bus.
Both direct memory and interrupt capabilities are selectable on the two parallel buses.
At present, only the first two types of communication lines have been implemented. Also,
to minimize the number of wires required to accomplish the link between Daisy and the
PDP, the TAURUS is mounted on the center plate of Daisy. There are many more sensor

and actuator wires required than found in one computer bus cable.




¥

Wall

V\llull Universals Y [y " 7
i Hub \\ PIV;/l
R maire <~
oncien " Ej§@<ﬂxb
Flgor /i zh\(-— Support l [\
ACTUATORS SENSORS

|

\

Interface Computer:
TAURUS LAB

(192 digital 170)

A

(64/8 analog 1/0)

Y

Serial Interface /
IEEE 8-bit Parallel Interface /
22-bit Parallel Interface

T

l

Graphtec
Dual x-y
Recorder

|
Y

Control Algorithm Computer:
DIGITAL PDP 11/73 MICRO

Cybernex
Graphics
Terminal

Graphtec
4 channel
Oscillog.

A
Y

A
Y

A
Y

Y

3l Mbyte 800 Kbyte 60 Mbyte
Winchester Floppy Cartridge
Disk Disk Tape

TI 865
Printer

Figure 1.4: Daisy Computer Interface

10




1. Introduction

11

Various display and recording devices are also integrated into the Daisy computer
facility (see Figure 1.4). Some, like the dual z-y plotter and 4-channel oscillograph, can
be used to display sensor and actuator signals directly, or can be driven remotely by the
control algorithm computer. Others, like the 31 Mbyte Winchester hard disk, the dual
409 Kbyte floppy diskettes and 60 Mbyte streaming cartridge tape drive, are dedicated
devices, controllable only by the PDP. A graphics terminal and printer are also important
components in the display and recording category. It is noteworthy that the Z-80 based
TAURUS has a limited intelligence and can be manipulated directly by the terminal, if
so desired. In this regard, the printer also can be used either as a ‘screen dump’ device

from the terminal, or it can be driven directly from the PDP."

While much of the software used to control Daisy has been custom written, certain
commercial ‘packages’ have been acquired to ease this chore. In particular, a real-time
single-user operating system, RT-11, has been purchased, as has the high-level language,
FORTRAN 77. In addition, IEEE drivers have been procured for the PDP. The TAURUS
Lab comes complete with all required software. Moreover, listings and documentation are
available for this software, which facilitates the introduction of custom software into the
TAURUS. Such software can be either ‘downloaded’ via the serial port or incorporated in
the firmware of the computer by using EPROMS.

1.4 Report Outline

The work reported herein consists of three main tasks. These are described in the para-

graphs below, with one paragraph devoted to each task.

The first task, the topic of §2, carries on from earlier controller testing studies. In the
earlier work, a type of controller known as the Servomechanism Controller was designed
for Daisy by the University of Toronto’s- Professor E. J. Davison, and was subsequently
implemented and tested. This design was based on a “full-order” model of Daisy’s dy-
namics, comprising 23 vibration modes (two for each rib, and three for the hub). In the
present work, similar controllers were designed based on “reduced-order” models of Daisy,
in which some of the structure’s open-loop vibration modes were neglected; the resulting
controllers were again implemented and tested. Claims have been made that this design
technique has good robustness properties; this task was carried out in order to test the

robustness of the controller design method to the presence of unmodelled dynamics.
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Section 3 describes a suite of modifications made to elements of the Daisy facility’s

‘hardware, with a goal of improving its emulation of flexible spacecraft. The first of these

involved removing unnecessary components from the structure in order to reduce its mass,
thus reducing the amount of friction present in the main hub gimbals; this friction causes
an undesirable damping of the structure’s “rigid-body” vibration modes, damping that
would not be present in a flexible spacecraft. The second change was to alter the structure
in order to raise its mass center, reducing the gravity-induced “pendulous” restoring
torques acting on the structure’s rigid modes to an almost-undetectable level; again, this
source of stiffness is undesirable in Daisy because it is not present in real spacecraft. The
third change was to procure a set of new accelerometers, and adapt them for mounting
on Daisy’s ribs; each accelerometer consists of a single integrated circuit chip, and is
substantially smaller, lighter and less expensive than the inertial-grade accelerometers
previously used on Daisy, raising the possibility of instrumenting more of Daisy’s ribs

than would otherwise have been affordable.

Work on a new control technique for Daisy is described in §4. The controller of §2 is of
the output feedback type, as was Daisy’s 'original Baseline controller. Here we investigate
the application of the linear Quadratic Gaussian control technique (somefimes known as
Optimal Control) to Daisy; a state observer (Kalman filter) uses measured outputs to
update a model of the structure’s state, which in turn is used to drive a state-feedback
controller. The technique is extended to allow accelerometers to be used as sensors, an
improvement over the more common version of the method in which only position and

rate sensors are permitted. The design of the controller is outlined, and an analysis

~'is presented relating the accelerations sensed along Daisy’s ribs to the structure’s state

vector. The effect of gravity on the accelerometers’ outputs is investigated, and a method
to compensate for it is recommended. In order to test the performance of this type of
controller, simulations of various versions of the controller, as applied to Daisy, were
carried out, ﬁsing the Matrix, control design and simulation software package. In support
of this, a dynamics model of Daisy was developed using Matrix,’s System Build utility,
incorporating a number of known ndnlinearities of the system. This model is a tangible

product of this task that will be of much use in any future Daisy work.




2 TReduced-Order Davison Controllers

2.1 Task Overview

This section outlines, explains and discusses the results from experiments recently per-
formed on the Daisy structure in the area of reduced-order control. These experiments
are a continuation of earlier control-systems studies in which the performance of a partic-
ular type of controller (a “Servomechanism Controller”) was studied. The same control
algorithm is used in the present study, but the internal scalars or “gains” of the con-
troller have been significantly modified. The new values for the gains are derived from
an analysis which uses an incomplete or “reduced-order” model of the Daisy structure
within a performance optimization scheme to select gains. In the previous studies Daisy’s

full-order structural model was used in the gain selection process.

As this study is a continuation of a former one, the reader is referred to [Sincarsin and
Sincarsin, 1988] in which the earlier 1501'tion of this study has been presented. Though
much of the information in the earlier report will be reviewed here, for the sake of brevity,
many of the details will not be repeated. For example, since the controller implementation
only required entering numbers into a computer data file in the present study, this subject
has not been dealt with here, even though the original implementation for the prior study

required a great deal of effort. This effort is discussed in the above reference.

In the next two sections the design of the controller and the experimental strategy

employed are reviewed. The last section discusses the results of the present study.

2.2 Controller Design

The design of the control algorithm used in this study was performed by Dr. E. J.
Davison of Electrical Engineering Consociates. Dr. Davison defines a performance index
that increases in value as the performance of the controller degrades. The evaluation of the
controller gains is then accomplished by minimizing this index. The performance index
itself is evaluated by using parameters from the dynamics model of the Daisy structure

developed by Dynacon Enterprises. This model takes on the standard second-order form,

13



2. Reduced-Order Davison Controllers

Mg+ (D+G)q+Kq=DBu+uy (1)
y =Pq+Q4q (2)
z=Zpq+Zvq+ Z44 (3)

Here M is the system mass matrix, D is the system damping matrix, G is the system
gyricity matrix and K is the system stiffness matrix. The input matrix B operates on the
system input ‘vector’ u, while uy represents disturbance inputs. For the current version

of Daisy,

q= COl{eha Qr1y.ne 7a7‘10} (4:)

where 8}, is the angular displacement of the hub about its pivot, and the e, ¢ = 1,...,10,
contain the out-of-cone and in-cone angular displacements of ribs one through ten, about

each respective rib’s pivot.

The regulated or important outputs y are related to q and ¢ via the position output
matrix P and the rate output matrix @. The sensed or measured outputs z, on the other
hand, are related to q, § and § via the displacement measurement matrix Zp, the velocity

measurement matrix Zy, and the acceleration measurement matrix Z4.

The entries in the different matrices of the dynamics model have changed over time,
as the model has been updated to match changes in the physical structure. The integrity
of these entries has not been strictly tested because of time limitations imposed in earlier
studies. However, the entries are believed to be representative of the structure, as com-
parisons of responses generated by the real structure and computer simulations using the
above matrices have demonstrated a good correlation in the global characteristics (see
§2.2.2 of [Sincarsin and Sincarsin, 1988]).

For controller design, the above dynamics model of their respective responses is con-

verted into a first-order system model of the form,

%X = Ax+ Bu (5)
y = Cx (6)
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where, here,

a=[p %] B=|3] g
c=[P 0] (8)

and
x = col{n, 7} (9)

To obtain (5) and (6) from (1) and (2), one must define

q A Eg (10)

where E is the eigenmatrix for the undamped system. Then, given the normalization

ETME=1 (11)
it follows that
ETKE = Q° (12)
Finally, introducing the definitions
D 2 ETDE (13)
B4 E"B (14)
P £ PE (15)

one arrives at (5) and (6). Of course, it has also been assumed that both G and Q are
zero. In fact, neglecting the former matrix is a reasonable assumption for Daisy, while

the statement of the control problem justifies the dropping of the latter matrix.

It should be noted that a “reduced-order” Daisy model is one that has columns of
E, which are eigenvectors, discarded and A, B, C and x reduced corresponding. These
eigenvectors are associated with particular modes so that the action of reducing these

matrices can also be referred to as discarding modes.

Let us also be specific about the forms of y and u. Here,

y a col{Ohzy Ony, Onzy Qryctr } ‘ (16)
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and
u é COl{gcm,gcyagcz7fC’y7fCZ} (17)

The first three entries in (16) are 8, = col{Ohz, Ony, Or }, while o, and «,, are the out-of-
cone and in-cone angular displacements of Rib 3 (the second rib in the clockwise direction
after the rib aligned with the zj-axis). In (17) the first three entries are control torques,
applied about the zy, y,, and z;, axes, respectively. The last two entries are the forces
which result from firing the compressed-air rib thrusters in the in-cone and out-of-cone
directions. In addition, let us define
e £ col{B13, 037, 035, aly oy (18)
where the superscript (ref) refers to reference values for each variable at the time control
is initiated.
The controller used in this study is digital and thus assumes time discretization of the

above matrices. From the technique described in [Davison, 1987] a controller, called the

Servomechanism Controller, that solves the above system equation takes the form,

u; = u,_p — epKp(e; — ei—p) — epKp(y: — ¥i-n) — erhKre,y, (19)

where the error is

€ =Yt~ Yref (20)
Here, u; is the input to the system at time ¢, y; is the output of the system at time ¢, and
h is the sampling interval (a constant). The gain matrices Kp, Kp and K (proportional,
derivative and integral) are 5 x 5 matrices, which are premultiplied by the gain scale
factors ep > 0, ep > 0 and ¢; > 0. These factors are included to permit tuning of the
controller gain matrices to account for hardware limitations that might arise. Nominally,

they are given the values ep = ¢p = ¢; = 1.

It is the entries of these Kp, Kp, and K; gain matrices that are evaluated using
the performance index minimizing scheme mentioned in the beginning of this section. In
the past, two sets of matrices—corresponding to two different controllers—were studied;

however, only one set was used in an in depth control study. In the present study, three

~ different sets of gain matrices were considered, but, as will be explained in §2.4, only

one was used. The first set was obtained by using a reduced order model with the all
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modes discarded except for modes 1,2,3,4 and 9 as described in §2.4 of [Sincarsin and
Sincarsin,1988]. This set of gain matrices is reproduced in Table 2.1. However, it was
found that this controller became unstable when controller update times of b > 102
sec/update. Since the present hardware is only capable of producing controller updates
of 107! sec, for this set of controller gains, it could not function on Daisy. The next set
is shown in Table 2.2 and is obtained by discarding modes 5, 7, 11, 15, 16, 17, 18, 19, 20,
21, 22 and 23. This set of gain matrices also produced an unstable controller, as will be
explained in §2.4. The last set of gain matrices is shown in Table 2.3. It is obtained by
discarding modes 5, 7, 11, 15, 16, 19 and 21. Simulated responses of the system to a step
input demonstrate stability for a controller based on these gains and processing a 0.1 sec

update time.

2.3 Experimental Strategy

The experimental strategy employed in the study is identical to that of the previous study

~outlined in [Sincarsin and Sincarsin, 1988]. The experimental performance index used in

that study is reused here, as is the input disturbance, which is applied in the same way.
Also the same 108 original experimental runs were performed using the reduced controller.

To clarify, these items are now reviewed in turn.

2.3.1 Performance Index

The experimental performance index used is the mean-root-square value of the system

“error vector”

Cmrs = 71520% oTx/ﬂdt (21)
where e = col{€nz, €hy; €hzy €ry, €rz } and €; = v;—;, . That is, e; is the difference between
the value of the ¢th state variable and its reference value, v;,, with v € {0, a}. So, provided
all the e; are bounded as T' — 00, ém,s remains bounded even if the steady-state errors are
nonzero. Since the steady-state errors are nonzero for the Daisy structure, this bounded
condition could not be met by most existing performance indices, including the one used

to obtain the controller gains. To reiterate, there are two performance indices used in
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Table 2.1:

[ 5.,0255:+006

9.76052+005
1.655324006
~1.71482+004
| ~1.90142+003

1.2818=+006
2.44012+005
4.1382:+005
-4,2871a+003

L—4.7536e+002

Table 2.2:
3.6B97e+06 -5.8278e+04
7.1872e+04  4.2745e+06
4.0017e+0% -4,.5523e+05

~5.7724e401  4.6748e+03
| 1.1892e+03  3.6686e+0)
9.4B39e+05 -1.4951e+04
1.8407e+04  1.0947e+06
{.B068e+03 -1.14398405
-2.2774e+01  1.1748e+03
| 2.9657e+02  1.1887e+0l

Table 2.3:
3.6887e+06  1.328le+04
7.146%9e+04 4.2983e+06

-1.9583e+03 -3.7885e+04
-8.2334e~-01 9.3760e+02
| 1.1885e+03  5.2102e+00
™ 9.4800e+05  3.0326e+03
1.7978e+04  1.1009e+06
-2.9328e+02 -9.6188e+03
-2.2372e+00  2.35936+02
| 2.9643e+02  3.9839e+00

?.40572+003
7.71052+006
4.887%ut004
-5.06142+004
5.91792+002

2.35142+005
1.95312+006
1.2218:+006
~1.26542+t004
1.47952+002

~1.714%921003
-3.56412+003
3,2890:+006
2.55382-019

-8.5950r-017

~-4.28732+002
~8.9102=+002

8.22252+000
-3.2857:-011

5.21232-015

-1.4130e+03
-3.1183e+03

3.2897et+06
-7.4932%e+00
-2.92747e-01

-3.33248+02
-7.7958e+02

8.2245e+05
~1.8733e+00
-7.4366e-02

-2.5376e+04
-1.1209e+04
2.5785et+06
1.1989%9e+03
2.178%9e+01

-6.343%e+03
.8021et+03
.4463e+05
.9972e+02
.4473e+00

'
NN

Reduced Controller #1

8.2177=t005
~-2.69322+005
~1.8861rt+002
1.9519=2+000
~6,46252+003

2.,09352+005
-6.75982+004
«4,7151a+001
4.,87952-001
~1,65232+003

Reduced Controller #2

5.7211e+04
-4.3906e+04
5.9721et+03
-7.2011e+01
-1.3061e+03

.8396e+04
.2344e+04
.9643e2+03
.0275e+01
.6407e+02

[IS ol o ol o

Reduced Controller #3
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-4,4160e+04
9.286%9e+02
-2.5388e+01
~1.3044e+03
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~1.2478e+04
3.2038e+02
~7.2598e+00
~3.636let+02

-1,00842+007
~3,08932+007
~4,89692+007

5,0678:+005
-1.7358a-001

-2,52192+006 |

1.26752+005

4,28852-002

-1.3295e+05 1
-4.2450e+04
~&.683792+05
¢.9159e+03
7.2022e+01 |

-3.8453e+04

-2.3873e+04

-1.9139e+05
1.9794e+03

2.0278e+01

-2.7038e+04 |
-8.20898+03
-4.9905e+04
1.3847e+03
2.5394e+01 |

-8.0701e+03 |

-5.2117e+03
-1,838let+04
4,0729e+02

7.2616e+00
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this study, the performance index used to obtain the control gains and the experimental

performance index.

2.3.2 Input Disturbance

The input disturbance used is a simulated impulse torque applied to the hub about one
of its three axes at the beginning of the “run” (t=0). Torques were not applied to the
single actuated rib as the controller quickly returned it to its reference position before it
could interact with other ribs or the hub. That is, very little of interest occurred, from
a control point of view. A simulated impulse was used since, at the present time, there
is no way to generate a real impulse on Daisy. As demonstrated in §4.2 of [Sincarsin
and Sincarsin, 1988] an impulse disturbance at t=0 in a first order system is identical to
special initial conditions which, in this case, are the initial velocities of the hub about its
axes. Since these could be generated with the hub actuators, initial hub velocities were

used to simulate an impulse torque.

The hub velocities were generate by applying a 20 ft-lb; torque to the previously
quiescent hub for 0.75 seconds to back it away from its reference position zero hub angles
or displacement, and then following it with a 30 ft-lb; torque applied in the opposite
direction for 0.75 seconds leaving the hub with a residual velocity as it crossed the reference
point. The controller is activated when the reference position is crossed (marking t=0)

and the run is started.

2.3.3 Experimental Runs

A total of 108 experiments or ‘runs’ were performed, consisting of 36 different combina-
tions of scale factors, with each combination tested for an initial hub velocity about first
the z-axis, then the y-axis, and finally the z-axis. The actual values of the scale factors
used are ¢, = (0.2,0.3,0.4), ¢ = (0.2,0.3,0.4) and ¢; = (0.2,0.3,0.4,0.5). To help keep
the overall test schedule tractable, all runs have a duration time of only 3 minutes, even
though, for the poorer choices of the controller scale factors, the error index may not
have settled completely by this time. The results from these runs are discussed in the
next section, along with comparisons to the runs generated by the controller using gain

matrices based upon a full-order model.
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2.4 Discussion of Results
2.4.1 General Observations

By inspecting the form of the controller in (2.19), an interesting fact can be identified.
That is, if the controller is used to “station-keep” so that ¥ is constant, as is the case
in the present control studies (which may not be true for other satellite maneuvers such

as “slewing”), the control becomes

uy = us—p, — epKp(e; — ep) — epKp(é — é_p) — erhKre, (22)

or

— Au; = epKpAe, + epKpAé; + ¢/ Kre;_1h (23)

which can be recognized as the form of a PDI (proportional, derivative, integral) controller.
That is, as the sample update time reduces, Au — éfu, Ae — be, and h — 6t. If (2.23)

is integrated with these equalities inserted one finds

t t t t
- / 5ut = GPKP/ 5et + GDKDA 6et + GIK]/O et_&é't (24)
0 0

or

¢
—u= epre-}—eDKDé-}—eIKI/ ebt (25)
0
which is the standard form for a PDI controller.

Even though the Servomechanism Controller is analogous to a PDI controller for the
present study, during experimentation it was found that the Servomechanism Controller
was more susceptible to input noise. This is due to the fact that (2.22) uses the previous
values of the u vector to find its present values. That is, if noise causes an erroneous
sensor reading that is used in evaluating the e vector, it causes an erroneous u; to be
generated. This vector then becomes u;_; which causes the next u; to be calculated
erroneous, and so on. Eventually, the effects of the noise decay away, though the time
constant of this decay is quite large, due to the 0.1 sec update cycle. On the other hand, if
a PDI controller is implemented in the standard form of (2.25), noise in a sensor reading

causes an erroneous u vector for only one cycle. In effect, for a noisy system with large &,

iuh;é /Otu6t=u (26)
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. 2.4.2 The Controllers

In earlier studies (see, [Sincarsin and Sincarsin,1988]) two sets of Kp, Kp and K matrices

developed by Dr. E. J. Davison were considered, those corresponding to

e Full-Order Controller, and
e An Enhanced Full-Order Controller

However, since the latter required severe torques from the hub actuators, only the former

was used in a detailed study of 108 runs.

In the present study, three sets of gain matrices developed by Dr. E.J. Davison are
considered. Those corresponding to
¢ A Reduced-Order Controller #1 with the following modes

retained - 1, 2, 3,4, 9
discarded - 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23

o A Reduced-Order Controller #2 with the following modes

retained - 1, 2, 3, 4, 6, 8,9, 10, 12, 13, 14
discarded - 5, 7, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23

o A Reduced-Order Controller #3 with the following modes

retained - 1, 2, 3, 4, 6, 8, 9, 10, 12, 13, 14, 17, 18, 20, 22, 23
discarded - 5, 7, 11, 15, 16, 19, 21

- Reduced-Order Controller #1 was developed in the previous work; however, due to time

limitations it was never implemented. In fact, this controller requires faster update times

(h < 1072 sec) than is presently possible with the existing Daisy hardware. An attempt
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was made to implement this controller with the 0.1 sec update time currently available,

however, as expected, a stable active controller could not be obtained for any scale factors.

Reduced-Order Controller #2 was developed during the present work to produce a
stable controller at the 0.1 sec update time, discarding as many modes as possible. This
was accomplished by iteratively adding modes until the computer simulations predicted a
stable controller. Unfortunately, when this controller was tested in the real Daisy facility,
no scale factors could be found that would stabilize the controller. This unexpected
result has two possible explanations, either the Daisy model used to develop the control
gains did not accurately represent Daisy, or, more likely, the assumption that the rib
thrusters act as linear actuators is poor. As explained in [Sincarsin and Sincarsin,1988]
the Servomechanism Controller assumes all actuators to be linear. This is true in the case

of the reaction wheels performing hub actuation; however, the thrusters used to actuate

" the ribs are on-off devices. An attempt has been made to generate a variable thrust by

linearly varying the duty cycle of the thrusters during the control update cycle, but, at

best, this is a crude approximation of a linear device. It should also be realized that-

this controller is very near the theoretical limit for the number of modes. capable of being
discarded. That is, if one more mode is discarded the computer simulations indicate the
controller cannot be stabilized. Thus it is not unreasonable that hardware irregularities
in the real structure may cause the controller to be unstable when theory predicts it to
be stable. '

Reduced-Order Controller #3 was developed to correct the problem experienced with
Reduced-Order Controller #2. Five more modes were retained which lead to a stable
controller when implemented on the real Daisy structure. Therefore, Reduced-Order
Controller #3 was investigated further by analyzing the results of the 108 runs previously
described in §2.3.

While the different controliers were under study, an interesting empirical fact became

apparent which should be noted. Namely, there appears to be a correlation between a

stable controller and the asymmetry of some of the gain matrices. In particular, if the

gain matrices previously shown in Tables 2.1, 2.2, and 2.3 are inspected one finds that the
Kp and Kp matrices are identical for the Servomechanism Controller and the symmetry
of the direct feedback gains associated with the rib in these matrices appear to be directly

related to stability. That is, the gain matrices can be considered to be partitioned into

" a number of areas. The upper left 3 X 3 entries correspond to the three hub axis. This
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area has diagonal entries orders of magnitude larger than the off-diagonal terms since hub
motions about the three axes are only weakly coupled through the rib motion. The upper
right 3 x 2 entries and the lower left 2 x 3 entries represent the interaction between
the hub and rib #3 (the only activated rib). The area of current interest is the lower
right 2 x 2 portion of the gain matrices which correspond to the two rib axes. Here
the off-diagonal terms are several orders of magnitude larger than the diagonal terms
since the actuators are thrusters that generate forces at the rib tip perpendicular to the
axis being controlled. That is, to obtain a correcting torque about one rib axis, a force
must be applied in the other perpendicular axis. Therefore, these off-diagonal terms are
the direct feedback gains for the rib. As the rib is almost symmetric, the magnitude
of these two terms can be expected to be approximately the same (although their signs
are different because of the chosen rib reference frames), as is the case for all working
controllers tested to date. However, these off-diagonal terms are quite different in the
two unstable controllers Reduced-Order Controller #1 and #2. Further support for this
apparent gain “symmetry” requirement can be found from experimental observation, in
that the onset of instability seems to start in the rib and propagate to the hub (though
this could be an effect caused by the inertial differences between the two). At present

there is no theoretical analysis that exists to support this empirical result.

2.4.3 Controller #3

As with the Full-Order Controller, Reduced-Order Controller #3 was stable for a range
of scale factors. Table 2.4 shows the behavior of controller #3 for the scale factors used
in the tests as well as those for the full-order controller. Because of the Servomechanism
Controller is analogous to a PDI controller in these test the terms generally used when
describing the PDI coefficients (‘stiffness’, ‘damping’, and ‘integral’ gains) have been iden-
tified, with their corresponding scale factor, to allow further insight into the results. The
behavior of the full-order controller appears immediately under controller #3, in sans
serif (ie nor, lim, uns) only when they differ from controller #3. Here nor indicates a
normal stable behavior while lim indicates that the controller caused limit cycles in the

rib thrusters and uns indicates that the controller was unstable.

From Table 2.4 it can be seen that the two controllers behave similarly in that they
both become unstable, if the damping gain is too low and the integral or stiffness gains

too high. Also both cause thruster limit cycling if the damping gains are too high. In




Table 2.4: Controller Behavior

Run Summary: Stiffness Gain €, = 0.2

Integral Damping Gain (ey)
Gain 0.2 0.3 0.4 0.5
(&) T Y z z Yy z z Y z z Y z
0.2 nor | nor | nor | nor | nor | nor | nor| nor | nor| lim | lim | lim
nor
0.3 nor | im | lim | nor | nor | nor | nor| nor | nor| lim | lim | lim
nor
0.4 uns | uns | uns | nor | nor | nor | nor | nor | nor | lim | im | lim
| nor
Run Summary: Stiffness Gain ¢, = 0.3
Integral Damping Gain (€g)
Gain 0.2 0.3 0.4 0.5
(&) z y z 2 Y z z y z z y z
0.2 lim | lim | im | nor{ nor | nor | nor|{ nor | nor| im | lim | lim
nor
0.3 uns | uns | uns | nor | nor| nor | nor| lim | im | lim | im | lim
nor | nor | nor
0.4 uns | uns | uns | nor | im | im | nor | lim | lim | im | lim | lim
nor | nor | nor
Run Summary: Stiffness Gain €, = 0.4
Integral Damping Gain (€3)
Gain 0.2 0.3 0.4 0.5
(&) z Y z z y z z Y z z y z
0.2 uns | uns | uns | nor | lim | im | nor | lim | im | lim | lim | lim
nor | nor nor | nor
0.3 uns | uns { uns | nor | im | im | nor | im | lim |} lim | im | lim
nor | nor nor | nor
04 uns | uns | uns| im | m | Um | m | bm | im | im | lim | lim
nor | nor | nor

nor — normal run,

lim — limit cycle run,

uns — unstable run

24
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fact, the two controllers behave identically for most of the scale factors; however, several
combinations of scale factor at larger damping and stiffness gains that caused normal
behavior for the Full-Order Controller now causes limit cycles. As explained in [Sincarsin
and Sincarsin,1988], the instabilities caused by reducing the damping gains are, in fact,
predicted by theory; however, the onset of limit cycles for higher damping and stiffness
gains is strictly an effect of the nonlinear nature of the thrusters. In effect, a controller
developed with a reduced-order model appears to be more sensitive to nonlinearity in the

actuators,

The plot of the time variation of the experimental performance error index for a typical
run is shown in Figure 2.1, with similar plots shown in Figures A.l to A.9 of Appendix
A for all the runs completed. Runs denoted as uns (unstable), and for some of the
runs denoted as lim (limit cycle), in Tables 2.4 are not depicted because these runs were
aborted before the system’s erratic behavior damaged Daisy’s structure or electronics.
This explains why some run sets have blank plots in Appendix A, while others are ignored

entirely.

There are two points of interest on these plots, the maximum value obtained and the
final steady state value for the total performance error index. These values are used to
generate the surface plots shown in Figures 2.2 to 2.7. When a final error index, for
the reasons cited above, was unavailable, an arbitrary value of 0.2 rad was assumed for
plotting purposes, as this value is significantly larger than any observed value. When the
maximum error index was not available, a value of 0.3 rad was assumed for the same

reasomn.

Let us now compare the two types of surface plots introduced above, namely, the total
final error index (TFEI) surfaces and the total maximum error index (TMEI) surfaces.
Plots of the TFEI’s show valleys with respect to the damping gain that get deeper as the
stiffness gain is increased. The valley wall created at the lower damping gains is caused
mostly by unstable controllers. For higher damping gains, limit cycles involving the rib
thrusters cause large steady-state errors which, in turn, generate the other valley wall.
There is a striking similarity between these plots and similar plots for the Full-Order
Controller shown in [Sincarsin and Sincarsin,1988], although the Full-Order Controller

has a deeper valley at higher stiffness gains.

On the other hand, plots of the TMEI’s show a different terrain. The wall caused by
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controller instability at lower damping gains is still present, but with the exception of the
plot corresponding to €, = 0.4, the wall previously observed at the higher damping gains
has vanished. Recall that the runs at the higher damping gains for €, = 0.4 were not
actually berformed. Thus, the wall represented on the particular plot under discussion
is artificial and only exists to facilitate the use of a general plbtting routine. Intuitively,
the limit cycling of the rib thrusters, since it is most dominant when the rib is near its
reference‘ state (ary = 0, a,, = 0), should not significantly affect the TMEI obtained when
the hub and rib are farthest from their reference states. So, with the exception of the
unstable controllers, the TMEI values are almost independent of the gains chosen, even
though their minimum values are found near the middle of the chosen chosen of gains.

Again these plots have a strong resemblance to those for the Full-Order Controller.

Therefore, based upon the TFEI and TMEI surface plots the optimal controller gains
are €, = 0.3, ¢ = 0.4 and ¢ = 0.2. As with the Full-order Controller these values produce
the lowest TFEI for impulses applied about the y; and z, axes (and very nearly the lowest

TFEI for an impulse applied about the zj-axis).

To help differentiate between the rigid and flexible contributions to the error index for
each run, three-dimensional plots similar to those for the TFEI's and TMEI’s are provided
in Appendix A, for the hub’s final error index (HFEI), the rib’s final error index (RFEI),
the hub’s maximum error index (HMEI) and the rib’s maximum error index (RMEI). See,
in particular, Figures A.10-A.21 in Appendix A. One striking fact about these figures is
that the plots of the HFEI’'s and HMEI’s are virtually flat and, therefore independent of
the gains chosen. Hence all the variations in the total error indices appear to be the result

of variations in the rib error indices.

2.5 Task Conclusions

The first utilization of Daisy for an advanced control system using model order reduction
techniques to develop a Servomechanism Controller has proven successful, with interesting
results. The resulting controllers are stable over a range of scalar gains, demonstrating
robustness, although this range is less than expected because of thruster limit cycling.
Also, instabilities at low damping and high integral scalar gains have been predicted by

theory and witnessed in experimental results.

The scalar gains or scale factors that generated the lowest value for the performance
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index of Reduced-Order Controller #3 are ¢, = 0.3, ¢; = 0.4 and ¢; = 0.2. These scale
factors differ only slightly from those generating the best performance index values for the
Full-Order Controller, €, = 0.4, ¢, = 0.4 and ¢; = 0.2, thus demonstrating some robustness
to model order reduction. Indeed, the behavior of the Reduced-Order Controller was very

similar to that of the Full-Order Controller, with only a slight degradation in performance.

Although greater reductions in model-order did show anomalous results (i.e. the fact
that Reduced-Order Controller #2 could not be stabilized), these can be explained by
hardware limitations. Finally, the sensitivity of the Servomechanism Controller to noise
for slow control update times could pose a severe practical limitation on the use of this

controller.




3 Daisy Hardware Modifications

3.1 Task Overview

This section describes modifications performed on the Daisy structure which make the
experimental facility more closely represent the dynamics of the large flexible spacecraft it
emulates. As explained in the introduction, the Daisy facility consists of an experimental
structure, computer hardware, computer interfaces and sundry support equipment. The
purpose of this facility is to perform advanced control-systems research as it relates to the
control of large flexible space structures. However, for meaningful results, the Daisy struc-
ture must accurately emulate the dynamics of such a large flexible spacecraft. Although
such spacecraft do not yet exist, they will likely display dynamic characteristics such as
lightly damped, “clustered”, low frequency oscillations. That is, these space structures
are expected to have many resonant frequencies near or below the value of 0.1 Hz that
persist for long periods. By producing such behavior, a structure would appear to be a
large flexible spacecraft to a control computer, even though it does not physically resem-
ble one. The Daisy structure demonstrates such characteristics in its rib motions (which
emulate the spacecraft flexibility); however, in its most recent configuration, hub motions
(which emulate the rigid body motion of the satellite) fall somewhat short of this goal in

two ways.

The first undesirable hub characteristic is that it possesses too low frequency pendu-
lous modes. These modes are caused by an offset between the center-of-mass and the
gimbal center of the structure. Ideally, the center-of-mass and the gimbal center should
be colocated, as this would eliminate the pendulous modes and allow rigid body rotations
similar to large flexible spacecraft. It should be noted that, in reality, the center of mass
must remain slightly below the gimbal center to guarantee a stable configuration in the
earth’s gravity field; however, as the distance between the respective centers decreases,
so does the frequency of the penduloﬁs modes until “pure” or true zero-frequency rigid
body rotations are achieved. In the current configuration the two centers are very close,
the center-of-mass being within 0.125 inches of the gimbal center, but this is sufficient to

produce undesirable effects.

The second undesirable hub characteristic is the high damping in its motion. This
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behavior does not exist in rigid body motions of large flexible spacecraft. The damping is
caused by friction in the bearings of the gimbal joint which have already been optimized
for minimum friction. Unless some form of air bearing is used, the only way to reduce the

present level of friction in the gimbal is by reducing the load on the bearings.

The structural modifications described herein address these problems, as well as the
additions of more sensors to Daisy. Daisy’s ribs have never been fully instrumented
because of monetary constraints. The high cost of the chosen rib sensors, inertial grade
accelerometers, has prevented installation of the twenty such devices required to fully
observe the emulated flexible modes. That is, each of the ten ribs on the Daisy structure
has two degrees of freedom which must be observed. At present, only two accelerometers
are mounted on a single rib so that only two of these twenty degrees of freedom are directly
measured in any way. Part of the current work is to investigate other cost effective sensors,
to choose an alternative to the inertial-grade accelerometers, and then to obtain and, if

time permits, install the chosen sensor on two ribs.

How the required modifications were accomplished and their resultant effect on Daisy

structure will be discussed in what: follows.

3.2 Center of Mass Adjustments

As the pendulous modes are caused by an offset between the center-of-mass and the
gimbal center, the simplest way of reducing the natural frequency of these modes is to
incorporate adjustments that allow the offset to be nulled. In fact, such adjustments
are already possible using variable-length supports between the middle and the lower
hub plates. Unfortunately, these supports can only be adjusted when the lower hub
plate is separated from the middle plate, making their use awkward, time consuming
and inaccurate. The current offset of 0.125 inches was obtained, through great effort,
by using these adjustments. To alleviate this problem, the variable-length supports have
been replaced by turnbuckles that permit quick adjustments without the need to separate
the bottom hub plate from the middle hub plate.

With these new components it is possible to virtually eliminate the pendulous modes,
even after a substantial mass restructuring, such as the one outlined in the next subsection.
As stated previously, the center-of-mass must remain slightly below the gimbal center to

ensure a stable configuration in the Earth’s gravity field. Before the incorporation of
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the new turnbuckle-support stands the pendulous mode frequency was 0.035 Hz. At
present, it is difficult to obtain an accurate estimate of the frequency since the motion
has so little momentum that gimbal damping prevents the mode from completing a single
oscillation. In fact, the motion appears to be critically damped and will often come to rest
at slightly different positions. That is, the corrective torque caused by the center-of-mass
being vertically misaligned with the gimbal center is not sufficient to overcome the gimbal

friction, and the hub will remain slightly tilted.

3.3 Mass Reallocation

As previously stated, the total mass of the Daisy structure must be decreased in order to

cause a corresponding reduction in the gimbal damping. To achieve this goal, mass was

removed from two areas on the structure, even though the removal of this mass required

the rebalancing of the structure to minimize the pendulous modes.

In the first instance, the mass associated with superfluous terminal boxes and wiring
remaining from earlier changes to the Taurus data aquisition system was removed. As
systems were installed on the structure it was found that, in many cases, it was simpler to
connect sensors and actuators directly to the Taurus computer rather that to use screw-
lug terminal-strip boxes originally mounted on the structure for that purpose. Thus, these
boxes were never used, and since they added unnecessary mass to the structure, they were

removed.

A second area where “extra” mass could be removed was at the top of the tower
where a countermass resides. This countermass is composed of four billets of steel that
counterbalance the structure below the gimbal center. However, in order to reduce the
weight of these billets, the remaining structural mass had to be moved as far above
the gimbal center as possible to maintain the present center-of mass position. This was

accomplished in three ways, by

e Moving the power amplifiers from the bottom hub plate to above the gimbal center
¢ Raising the upper hub ring relative to the middle plate

o Raising Daisy relative to the gimbal
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The power afnpliﬁers convert the 10 volt reaction wheel control signal generated by the
Taurus to the 180 volts required by the wheel motors. These three devices, one for each
reaction wheel, added considerable weight to the lower tier, where they were originally
mounted. These amplifiers have been moved and are now mounted on the crossbracing of
the upper ring, placing them well above the gimbal center. As well, the upper hub ring
has been raised by placing 6 inch spacers at the bottom of the ring supports that connect
it to the middle hub plate.

The hub is presently mounted with bolts to the bottom plate of the gimbal. It was
found that the hub could be raised 0.74 inches above this plate, by using shims, before its
motion interfered with the angular encoders mounted on the gimbal, thus directly raising

the center-of-mass of the structure by this amount.

After these changes, and those associated with the center-of-mass adjustments, were
made it was found that 89 Ibs of countermass could be removed from the tower leaving a
total of 40 1bs.

3.4 Addition of Accelerometers

There are several possible alternatives to the expensive accelerometers used in the current
Daisy design. One possibility is to use inclinometers which would measure the rib angles
based on the change in the gravity component. This, in \fact, is the manner in which
the inertial accelerometers are presently being used. A second possibility is simply to
use less expensive accelerometers. This is the preferred option since this still represents
the use of sensors that will probably be used in large flexible spacecraft. Also, if the
accelerometers are cheap enough, two separate instrumentation packages can be put on
each rib. This would enable the effects of gravity measured by one accelerometer pair
to be subtracted from the other and thus produce zero-gravity type measurements; this
technique is described further in §4.3.4. Of course, the use of cheaper accelerometers
implies a degradation in performance, usually in sensitivity. However, new mass produced
solid state accelerometers can measure to tens of ug’s at 0 hz, and at very low cost. Some
general comparisons of the solid state and inertial grade accelerometers are given in Table

3.1. The data sheets for the solid state accelerometers are included in Appendix B.
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Table 3.1: Comparison of Accelerometers

Solid State | Inertial
Cost ~ $170 ~ $4300
Roll off frequency 0 0
Sensitive 10.0 pg 1.0 pg
Nonlinearity +2.0% +0.0025%

The inertial grade accelerometers are purchased as hermetically sealed units with
power filters and internal electronics, whereas, the solid state accelerometers are pur-
chased as integrated circuit chips avaliable in +1g, 4+5g and +10g ranges and with no
support circuitry. Thus these sensors require stable power supplies and amplifiers before
they can be used. To this end the circuit shown in Figure 3.1 was designed and built to
accompany the accelerometer chip on the rib. One large advantage of these accelerome-
ters is that the acceleration measured, due to Earth’s gravity, when the rib is quiescent,
can be zeroed (with R1 and R13 in Figure 3.1) before amplification of the signal. This

permits much higher amplifier gains to be used than would normally be possible, as high

gains with large offsets would cause the amplifier output to exceed the voltage capabilities-

of the power supply. At present, the gains have been chosen such that the sensors output
is 20 volts/g. This value was chosen since data acquisition boards can measure over a
range of & 10 volts (a difference of 20 volts) and the acceleration due to Earth’s gravity
measured by the out-of-cone rib sensors varies from 1 g (when the rib lies flat) to 0 g

(when the rib is vertical).

3.5 Task Conclusions

The three objectives of the hardware modifications performed on Daisy were — to reduce
the frequencies of the hub’s pendulous modes, — to reduce the gimbal friction by decreas-
ing the hub mass, and — to add new rib sensors. As outlined in the above section, all

three objectives have been achieved.
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4 LQG Control Using Acceleration Feedback"

4.1 Task Overview

The objective of this task is to study the use of linear quadratic gaussian (LQG) control,
using acceleration sensing, for application to Daisy. The use of controllers designed using
this technique (sometimes referred to as optimal controllers) is a popular proposed solution
to the problem of controlling multi-input/multi-output systems. Chapters 3, 4 and 5 of
[KWAKERNAAK & SIVAN, 1972] provide an excellent review of the theory underlying

the design of these controllers.

4.1.1 Baseline Controller

Other types of controller designs have been tested out on Daisy. The first of these was the
“Baseline Controller,” described by SINCARSIN & SINCARSIN [1985B] and by SINCARSIN
[1986B]. This is a set of three PID controllers, one for each of Daisy’s hub rotation
axes, designed using a pole-placement technique on a rigid-body model of Daisy. This
corresponds to the sort of controller design used for most 3-axis stabilized satellites to
date. It has the advantages of being simple to design and implement, and of being robust.
However, because the structure’s flexible modes are not accounted for during the design
process, control spillover and observation spillover [BALAS, 1978] cause a deterioration

of performance, and ultimately a loss of stability, as controller bandwidth is increased.

4.1.2 Davison Controller

A second method of control that has been used on Daisy is Davison’s “robust servomecha-
nism,” as described by SINCARSIN & SINCARSIN [1988]. This is also an output-feedback
PID controller. While the Baseline Controller used hub angles and rates as measure-
ments, and reaction wheels for actuators, Davison’s controller additionally uses a pair
of rib accelerometers for sensing, and rib gas-jet thrusters for actuating. The Baseline
Controller uses pole-placement to develop non-interacting controllers for each of the hub
rotation axes; Davison’s controller uses a nonlinear parameter optimization technique to

produce a controller that couples the dynamic equations of the three hub axes. The
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advantages of this controller are its ease of implémentation and its robustness. It has
the disadvantage of being relatively difficult to design—nonlinear parameter optimization
requires a good “starting guess,” is computationally expensive to perform, and may not
result in a globally optimum solution. This method is a type of “modern” control (as
opposed to the Baseline Controller’s “classical” control design), as it takes account of the

multi-input /multi-output nature of the system being controlled.

4.1.3 Linear-Quadratic-Gaussian (LQG) Controller

LQG controllers also belong in the ranks of “modern” controllers. They have the advan-
tages of being fairly easy to design—unique solutions exist to the LQG control problem,
and software to calculate these solutions is readily available—and of being designed to
produce optimal performance, in a well-defined sense. Their main disadvantage is that
they can be expensive to implement; a high-order controller requires a large, fast computer
on which to run, in order to achieve a satisfactory update rate. Also, their robustness is

questionable.

LQG controllers have been used successfully in inertial navigation systems. While
they have been repeatedly proposed for use in flexible spacecraft applications, few (if
any) of these proposals have proceeded past the paper study level, and into hardware
implementation. Daisy offers a fine opportunity to carry out hardware tests of this type
of controller, for several reasons. LQG controller design requires detailed knowledge of a
structure’s dynamic characteristics (mass, stiffness, etc.); detailed models of these have
been generated for Daisy. Also, Daisy was designed to emulate flexible spacecraft—it uses
thrusters and reaction-wheels as actuators, has both rigid and flexible modes, displays
“clustering” of flexible modes—so that control results from Daisy will allow conclusions

to be drawn concerning control of flexible spacecraft.

4.1.4 Taking Advantage of Accelerometers

In addition, since Daisy is outfitted with accelerometers as sensors, it allows an advanced
type of LQG control (a type particularly applicable to space-based radar (SBR) satellites)
to be tested. Large, flexible spacecraft, with stringent requirements on either required

pointing accuracy or knowledge of the spacecraft’s deformations, can benefit from the use
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Figure 4.1: Space-fed SBR Spacecraft Configuration
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of accelerometers as sensors. These are small, light-weight, and consume little power,
allowing. a spacecraft to be outfitted with many such sensors without incurring much

penalty.

Consider a spacecraft such as the space-fed space-based radar, illustrated in Figure
4.1. Its performance relies on control of the spacecraft’s orientation, so that it can project
its radar beam in the desired direction. It also relies on the spacecraft maintaining its
shape, so that the space-feed is in the correct position, and the radar array sufficiently

flat, to minimize distortions of the radar’s beam pattern. LQG control is suitable for

“accomplishing both of these objectives at once; furthermore, it can do so in an optimal

manner, so that no other type of controller could result in better performance. However,
LQG controllers require a large number of sensors in the structure, in order to yield good
performance; the marriage of LQG with accelerometers could provide a good control
solution for SBR-like spacecra,ft; because accelerometers’ properties would allow a large

number of sensors on a spacecraft.

It has been proposed that shape control not be attempted for SBR spacecraft; instead,
active electronic beam-shaping could be used to compenéate for spacecraft pointing and
shape errors. This would require continuously-updated knowledge of the satellite’s de-
formed shape, for input to the beam-steering algorithm. The dynamic component of an
LQG controller, a Kalman filter, uses accelerometer inputs to generate just such an esti-
mate. Thus, the results of this study will be equally applicable to this application, as to
the LQG controller one.

Tt was hoped that this study would culminate in a demonstration of LQG control using
Daisy. This did not eventuate, because a stabilizing controller could not be designed for
Daisy in its current configuration. The LQG controllers inve.stigated were very sensitive
to the nonlinear gravity signal sensed by the current pair of accelerometers, to the point of
being driven to instability. This problem can be solved by mounting an additional pair of
accelerometers on the instrumented rib of Ddisy, and combining the signals from the two
pairs of sensors to subtract out the gravity signal. However, the additional accelerometers
did not arrive in time to be integrated into Dai‘sy, for use in this manner. Even if they had,
there are concerns that the current Daisy control computer will not be able to provide a

suitably high update rate, for a full-order LQG controller.
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4.1.5 Simulations

In place of runs using the Daisy structure, extensive simulations of the Daisy/LQG-control
system were carried out, using the Matrixx control design and simulation software pack-
age. The Daisy simulation model included several real-world effects of interest, including
nonlinearities and gravity in the accelerometer sensors, and sensor quantization effects.
The results of the simulations show great promise for a successful implementation of LQG

control on Daisy, once the requisite hardware is in place.

The remainder of this section describes in detail the work carried out under this task.
§4.2 describes how an LQG controller, incorporating accelerometer measurements, can be
designed for Daisy. §4.3 presents an analysis of the acceleration sensed at points along
Daisy’s ribs, including gravity and nonlinear kinematic effects, and argues that paired
accelerometers should be used to sense angular accelerations about each rib pivot axis.
§4.4 examines the implementation of several controllers for Daisy, and the simulation
of closed-loop Daisy models using the Matrixx control design and simulation software
package. §4.5 discusses the significance of these results, and §4.6 draws conclusions from
this task’s work. Plots relating to the simulations described here are collected in Appendix

C.

4.2 LQG Controller Design

Before showing how an LQG controller can be designed for Daisy, we must first describe

a sequence of math models for Daisy.

4.2.1 System Model in Physical Coordinates

A model for the structure was developed previously in §2.1 of [SINCARSIN & SINCARSIN,
1988], and is presented here again:

Mg+ (D+6)q+Kq=Bu+vp+Byd Q)
y=Pq+Qq (2)
z=Zpq+ Zvq+ 244+ vam+Zb (3)

where
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q = the physical coordinate vector, comprising the 3 hub angles and the 20
rib angles
= [Ohas Ohys Ohas Qryys Qry s e v oy Qg s Qg ]
y = the variables whose values are to be regulated to zero,
z = the measured variables (sensor outputs),
u = the input vector,
vp = the noise component of the disturbance input,
d = the non-stochastic component of the disturbance input,
vy = the noise component of the measurement error vector,

b = the non-stochastic component of the measurement error vector.

For Daisy, q € R%. With three reaction wheels and two gas-jet thrusters, u € ®°.
There are three hub angle position encoders and three hub angle rate encoders on Daisy;

if n, accelerometers are assumed, then z € R¥", We shall define y presently.

Work done previously [SINCARSIN, 1984] allows M, D, G, K, B, Zp, Zy and Z4 to
be calculated. These all assume that terms that are nonlinear in q may be neglected; the

effect of relaxing that assumption in the case of Z 4 is examined in §2.3.

The terms vp, d, vas and b are new here. They represent a quite general disturbance
model. Together, (vp + Byd) represents external torques and forces applied to Daisy by

any means; (vVas + Zpb) represents components of the sensor measurements z not modeled

by the three other, linearized terms in (3). Each will be examined further, later in this

section.

4.2.2 Conversion of System Model to Modal Coordinates

This model is cast into modal coordinates by letting

where
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and

ETKE = K = Q2

where

0? = diag{w?, i =1,...,23}
and w; is the ith natural vibration frequency of the Daisy structure. Thus,
i+ (D + §)iy + K = Bu+ op + Bud
y="Pn+Q4
z=Zpn+ Zviy+ 240+ v + L

where
D = ETDE
G = ETGE
B =EB
p = ETvp
By = ETB,
P = PE
Q = QE
Zp = ZpE
Zy = 2yE
Z,= 2,8

Rewriting (8), we see that
i = Bu+ép+ Byd— (D + )i - Kn
Thus, we can rewrite (10) as
z = Zpn+ Zvi+ 24 ([31—1-!-91) + Bud —(‘f)+§)1‘7—l€n)
(2o EaR)n+ (B - EiD— 20
+ ZAde + ZAf)D + ZABU + Zyb + vpr

- (6)

(7)

— e
[ B L -

[
© 00 3

TN N AN N N AN N N N
Do —
[e) (=]
N e N N N N N N SN N

(21)
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Note that, by using our knowledge of the structure’s dynamics (from (21)), we are able
to write (22) such that z is expressed in terms of modal displacements and rates, 5 and
7, inputs u, and disturbances d, ¥p, b and v,s; angular accelerations # no longer appear

explicitly.

4.2.3 Conversion of System Model to State-Space Form

We proceed to cast these second-order equations into first-order form by defining

n
(23)

x= |7
d
b
At this point, we make some assumptions concerning d and b. We assume that b repre-
sents some slowly-varying, quasi-constant bias in the accelerometer sensors. d represents

some completely unknown external disturbance acting on Daisy. For reasons to be ex-

plained later, we will assume that

d=1 (24)

and

b=§ (25)

where 4 and § are white-noise processes of as-yet-unspecified intensities. Furthermore, for
the purposes of controller design we will assume that the gyricity matrix G = O. This is
done because G varies with u, which in turn will be chosen to vary with 5 and #; thus the

term G is nonlinear in 9, and our analysis abhors such nonlinearities. If we now define

O 1 0 O
|-k -D B, o
A= O O O O (26)
O O O O
0
B
B= |, (27)
@)
H=[P ¢ 0 0] (28)
C=[2D——:;3AIAC }:ZV—-I;ZA'f? zA Zb] (29)
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D=2Z,8 (30)

0

(5

W, = 31

1 y (31)

6
wy =va + Zabp (32)

we can write

X = Ax + Bu +w; (33)
z = Cx + Du + wy (34)
y = Hx (35)

4.2.4 Auto- and Cross-Correlations Among Noise Inputs

Next, we make assumptions concerning vas, vp, ¥ and . Assume that each can be

characterized as white-noise processes, with covariance matrices as follows:

E{VM(tl)Vzﬂ(tz’)} =V §(ta — t1) (36)
E{vp(t)vp(ta)} = Vp 8tz — 1) (37)
E{y(t)7"(t2)} = T §(ts — t1) (38)
E{8(t1)67 (t)} = Ab(ty — 1) (39)

where (¢, — t;) is the Dirac delta function, and 1 represents an identity matrix of ap-
propriate dimension: The intensity matrices Vs, Vp, I' and A will be further specified
presently. Given these definitions, and recalling (14), we see that

E{%D(tl)f{p(tg)} = i)[) 5(t2 - tl) == ETVDE 5(t2 - t1) | (40)

Further assuming that the cross-correlations between vp, v, ¥ and § are all zero, we

find that

§(ty — 1) = Vib(ts — 1) (41)

>OO0OO0O

)
Bwi(t)wi ()} = |
(0]
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Recalling (32) and (14),

E{wy(t1)w] (t2)} = E{(va(t1) + ZAETvp(t)) (vir(t2) + vh(t)EZ})}
= E{vM(tl)v;‘C[(tz) —}- ZAETUD(tl)vg(tz)EZZ{
+ var(t )] (82)EZ% + Z4E vp(t)va(te)}
= (Var + Z4ETVpEZY) 8(t, — 1)

= V8(t2 — t1) (42)
Finally,
A 0
T
Efwitw] ) = B4 |7 20| V(1) + 0] ()P 2]]
6(t1)
0 T
= | v’(’)EZA §(ts — 1)
0
= V136t — 1) (43)

4.2.5 Application of Optimal Control Theory

We are now in a position to define an LQG controller for Daisy. The approach taken

follows that of Chapter 5 in [KWAKERNAAK & SIVAN, 1972]. We define a criterion

{tl _tO/t (O)Quy(t) + u” () Ryu(t)] dt} (44)

where
Q:=Qf >0 (45)
R;=RT>0 (46)

Here, o measures a “cost” due to the sum-of-squares of the regulated variables y, and
the control variables u, over the interval [to, #;]. The LQG controller will be designed to

minimize this criterion.
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The LQG controller has two components. The first of these is a Kalman filter (also

known as a state estimator, or observer). It generates X(t) as an estimate of x(t), where

" X(t) is defined by

%= A% +Bu+K(z — 2) (47)

where

2= Cx+Du (48)
is the observer’s best estimate of what the output of Daisy’s sensors should be. Therefore,

% = A%+ Bu+ Kz — KC% — KDu
= (A -KC)x+ (B—-—KD)u+ Kz (49)

This equation can be used to maintain an estimate of Daisy’s state by numerically solving
it for %(t), using Daisy’s control computer. The observer gain matrix K is defined below.

The second component of the LQG controller is the control gain matrix F, also defined

below. It is used to generate the control inputs for Daisy, via the calculation

u=-Fx (50)

also to be carried out by Daisy’s control computer.

It can be shown, using the methods of Chapter 5 in [KWAKERNAAK & SIVAN, 1972],
that if the gain matrices F' and K are selected so that

F = R;'B’P (51)
K = [Q:C" + V] V3! (52)
where
ATP + PA + R, - PBR;'B’P =0 (53)
R, = HTQ,H (54)
and where

[A-VeviiclQ+qla _ Vipviic]
- QCTV;ICQ + [Vi = Vi V'V = 0 (55)
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the controller defined by (49) and (50) will then minimize the criterion o from (44), in the
limit as tg — —oo and ¢; — oo, when applied to the plant described by (33)-(35), with
the Gaussian noise statistics of (41)-(43). To guarantee a unique solution to (53) and
(55), the system (33)-(35) must be both “stabilizable” and “detectable.” It was found,
during the simulations reported in §4.4, that this was the case for the Daisy configuration
studied here.

4.2.6 Remarks on the Control Design Approach Chosen

Note that the above development follows very closely the “standard” LQG controller
design methods of KWAKERNAAK & SIVAN [1972]. The main difference is the inclusion
of the “Z 44" acceleration measurement term in (3), which leads to the “Du” feedthrough
term in (34), which in turn leads to the observer Riccati equation (55) containing a few
more terms than normal. Also, although we will not present the proof here, it can be
shown that despite the extra term in (34), the “Separation Principle” of Theorem 5.3 in
[KWAKERNAAK & SIVAN, 1972] still holds—that is, the best possible linear regulator,
in terms of minimizing o from (44), consists of the “optimal observer” (47) cascaded
with the “optimal state-feedback controller” (51), as in equation (50). No other linear
controller, applied to our model of Daisy (33)-(35), can produce a lower value of the cost
criterion, . This guarantee of optimality is one of the reasons that LQG control design

is so attractive.

Another attraction of the LQG design approach is the ease with which it can be carried
out. The designer need only provide a linearized model of the system to be controlled,
and specify the weighting matrices Qi, Ry, Vi, V2, and V,; readily available computer
software can transform these inputs into F and K, by solving (51), (52), (53) and (55).
This contrasts with techniques such as pole placement and nonlinear parameter searches
for optimal output feedback controllers, for which the onus is on the designer to decide
on the desired positions of closed-loop poles, and on stabilizing initial values of feedback

maftrices, respectively.
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4.2.7 Choice of Weighting and Intensity Matrices

The manner in which the weighting and intensity matrices were selected for Daisy will
now be described. The matrices can be specified completely in terms of Qq, R4, Vp, Vs,
I, and A. We will begin with V.

Intensity Matrix Vs

Vur represents the stochastic portion of the error model for Daisy’s various sensors.
It can be specified in terms of the random inaccuracies inherent in these sensors. For
the configuration under consideration here, these comprise three hub angular position
encoders, three hub incremental angular rate encoders, and two pairs of accelerometers
on rib #3 (one pair for each rib pivot axis); the concept of using paired accelerometers

on the rib is discussed in more detail in §4.3.

The characteristics for all four accelerometers-are assumed identical, corresponding
to those for the pé.ir currently installed on Daisy; these are specified in Appendix A of
[SINCARSIN, 1986A]. The hub encoders’ specifications may be found in [SINCARSIN &
SINCARSIN, 19854A].

The angular position sensors measure position sensors measure over a range of 2w
radians (1 revolution). They output a-digitized 16-bit signal. We assume that the only
stochastic error in these outputs is the uncertainty arising from the quantization of the

position. If we write

9h :Ghd‘i‘&P (56)

where 0}, is one of the hub angles (in radians), 0y, is its deterministic component, and 6p

is its stochastic component, then

§p = 2m/2'® = 4.8 x 107° radians (57)

is the angular position uncertainty due to 16-bit quantization.
For the accelerometers, let

E&A=fl}Ad+6A (58)

where &4 is the accelerometer’s output, &4, is the deterministic component of &4, and

84 is its stochastic component. While there are many poésible sources of non-stochastic
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errors (bias, misalignment, etc.),'we assume that the only stochastic error arises from the
sensor’s threshold/resolution. This is specified to be, at best, one micro-g. In Daisy’s

units,

64 = 107 x 32.0878 x 12
= 3.85 x 107 in/s? - (59)

Calculating a similar value for the hub’s angular rate sensors is not straightforward.
These sensors generate a train of pulses at a rate proportional to the sensor’s rotation rate.
The electronics supporting the sensors turn these pulses into a velocity signal by measuring
the amount of time between consecutive pulses. The slower the hub rotates, the longer
will be these time-intervals; since updated velocity measurements are generated only when
the sensor outputs a pulse, the rate at which the velocity measurement is updated varies

with the hub’s rotation rate.

Thus for these sensors there is no simple analog to the angular position sensors’ quan-
tization from which to estimate stochastic errors. Instead, the sensors’ main error source
is a complicated function of the hub’s angular position history. Figure 4.2 illustrates this
effect; it is a plot of measured angular velocity (in radians per second) versus time, for
one of Daisy’s hub sensors, as the hub is moved about. Resolution is seen to decrease
when the velocity is near zero; the worst-case error appears to be about 1073 radians/s.

We will adopt this as our value of éy:

§v = 1072 radians/s (60)

where 6y is to angular velocity as §p is to angular position.

We proceed to define Vs as a diagonal matrix,

Vi = diag{8p, 65, 6, 8}, 6, 6, 264, 264} (61)

The diagonal entries estimate the intensities of the “noise” present in the sensor signals.
The last two signals actually represent the difference between two accelerometer outputs;
thus the intensity of the noise in the difference signal can be shown to be the sum of
the intensities of the noise in the two component signals (assuming the noise in the two
accelerometers to be uncorrelated), accounting for the factor of two in the last 2 entries

Of V]\{.
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Weighting Matrix R,

Next, we define Ry. The controller, in attempting to minimize o, defined in (44), will
try to produce a low value of u" R;u. Control signals u will be generated in order to drive
the regulated variables y to zero, in response to disturbances or an initial non-zero state.
The greater the value of these disturbances, or initial conditions, the greater will be the

magnitude of the resulting control effort.

The weighting matrix Ry can be selected to distribute control effort among the various
actuators. By weighting one actuator more heavily than the others, it becomes more
“expensive” to use. The resulting controller attempts to avoid using heavily-weighted

actuators, in favor of lightly-weighted ones.

Daisy uses reaction-wheels and gas-jet thrusters as actuators. Both of these can
saturate—they produce an output that approximates the commanded value, as long as
the commanded value remains below their “saturation level.” Above this level, the ac-
tuators’ outputs cease to track their inputs. The actuators’ inputs should be kept below

their saturation levels.

We choose R, so that the resulting controller will attempt to spare all actuators equally

from saturation. Let :
R, = diag{Ru, Rm, Rls, Rm, Rls} (62)

and choose the Ry; so that

@R =r (i=1,...,5) (63)

‘where %; is the saturation value of the sensor corresponding to the ith component of u,

and r is some constant.

For the three reaction wheels,

Ty = fly = U = 5.25 x 10* Iby.in?/s? (64)

(using Daisy’s units of torque), or about 15 N.m. This limit corresponds to the maximum
current that may be driven through the wheels’ motor windings (about 15 amps). For

the two thrusters,
‘1.—L4 = Usg = 5.3 lbm.in/s2 (65)
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(see §3.2.2 of [SINCARSIN & SINCARSIN, 1988]), using Daisy’s units of force. This
limit corresponds to running the thrusters “wide open,” at the recommended gas supply

pressure.

We arbitrarily choose

Ry = R12 = R13 =1 (66)
Then )
r =Ry = 2.77 x 10° (67)
Therefore,
R14 = R15 = ’P/’(ZZ
= 2.77 x 10°/5.3?
= 9.86 x 107 (68)
so that
R; = diag{l, 1, 1, 9.86 x 107, 9.86 x 107} (69)

To justify this procedure, consider a disturbance to Daisy that results in all actuators
being exercised. As the magnitude of the disturbance is increased, the magnitudes of the
actuator commands will increase. The controller will perform well, up to the point where
one of the actuators’ inputs exceed its saturation level. If the controller is over-using
one actuator and sparing the others, the saturation level of the over-used actuator will
represent the limit on the magnitude of disturbances that the controller can reject. If
any of the other actuators could be used more, in order to remove some of the load on
the over-used one, then the magnitude of disturbance that the controller could reject will
be increased. The R; matrix that we have chosen should maximize the magnitude of
disturbances that the controller can reject, by weighting the actuators so that they will

all tend to saturate simultaneously, as the disturbance level is increased.

Weighting Matrix Q,

We now turn our attention to Q. In minimizing o, defined by (44), the controller
attempts to minimize yTQ,y. The value of y (in terms of x) has also yet to be selected.

The controller will tend to drive the values of the components of y to zero; any component




4. LQG Control Using Acceleration Feedback

58

of x not included in y will tend to be ignored by the resulting controller and allowed to

have a nonzero value.

By weighting hub angles in Qq, the controller will act to reduce hub pointing errors
to zero. By weighting rib pivot angles in Qq, it will act to eliminate rib vibrations. The
former goal is typical for the design of a rigid spacecraft’s attitude control system. For a
flexible spacecraft (such as some of the SBR configurations), both goals are appropriate;
both attitude and shape control can be achieved simultaneously. Thus, we choose to

weight all rib and hub angles equally:
P=1 (70)
Qi =oapw -1 (71)

where the identity matrix 1 is, in this case, 23 x 23. We choose not to weight angular
velocities explicitly, and so set

Q=0 (72)

Thus, recalling (2),
y=q (73)

The regulated variables comprise all of Daisy’s physical coordinates. Note that the control
objective implied here is to maintain Daisy in its “reference shape,” with q = 0, corre-
sponding to a pointing task. The controller could, if desired be re-formulated to address

other objectives, such as tracking or slewing.

The parameter agwy recalls the fact that once we have specified the relative values of
the entries of R; (and of Q;) in order to weight the entries of u against each other (and
similarly for y), we retain the freedom to specify the matrices’ absolute values. Further,
it is known that multiplying any Q; and R; both by the same scalar factor will not alter
the resulting control feedback matrix F; see (51).

However, altering the magnitude of Q; relative to that of R; does alter F. Increasing
the magnitude of Q; relative to R, tends to make control effort relatively less “costly,”
resulting in a higher-bandwidth controller. We have thus included apw, a scalar factor
used to adjust controller bandwidth, in order to provide the final specification of Q; and

R;. The choice of value for apw is discussed below.
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Intensity Matrix Vp

We continue with a discussion of Vp, I" and A. Vp represents the intensity of assumed
noisy torque disturbances acting on Daisy via vp, while I and A represent the intensities
of noise assumed as inputs to the integrators of (24) and (25), resulting in the quasi-

constant state disturbances d, and sensor biases b.

Fictitious assumptions underlie each of these three matrices. Airplanes in flight are
subjected to stochastic disturbances in the form of wind gusts; no similar mechanism is
present for Daisy. Similarly, there is no physical basis for the constant-disturbance model
of (24), or the sensor bias model of (25). These models were adopted as pragmatic aids,

in order to help design robustness into Daisy’s LQG controller.

The Kalman filter of (49) is designed to minimize the RMS value of the observer error

e(t) = &(t) — x(t) (74)

in the limit as £ — oo. This is predicated on the assumption that the control designer

is most interested in:the steady-state performance of the system, and that the stochastic -

processes W, and W, represent the most significant disturbances acting to drive the steady-
state system state vector away from zero. To this end, the observer “optimally blends”

the signals output from Daisy’s various sensors.

We are, however, interested in controlling more than just the steady-state response of
Daisy. The structure’s transient performance is also of significance. Intuitively, the faster
e(t) approaches zero, the more quickly the control signal u, given by (50), will converge
to the signal that would result if the full state were available to be fed back (this signal

would, by design, result in both good transient and good steady-state responses).

The speed at which e(t) approaches zero, also known as the observer speed, is known
to be affected by the relative magnitudes of the V; matrix, (42), and the V; matrix, (41).
In particular, if the magnitude of V; is increased relative to that of V, the observer tends
to “speed up.” V; depends on Vp, I' and A, with the portion of the observer relating to
Daisy’s physical coordinates q being most directly affected by Vp. Given that we cannot
identify any meaningful stochastic disturbance acting on Daisy from which to derive Vp,

then, we will assume for the purposes of controller design that

Vp = Bew * 1(23x23) (75)
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Here, Bpw is a scalar parameter which, if increased, results in a “faster” Kalman filter
design. fBpw acts on the observer much as agw does on the controller F—it is used
to select the bandwidth of the observer. We multiply it by an identity matrix to ob-
tain Vp because, lacking any way to judge the relative speeds required of the different
components of the observer’s state vector %X(¢), we choose to weight them equally. The
physically-motivated V, matrix in (42), however, will indirectly speed up some observer
state components more than others. Note that as fBpw is increased, the value of ¢ in
(44), the steady-state RMS value of our cost criterion, will also increase. Thus, increasing
Bew improves transient performance at the expense of steady-state performance. This is
discussed further in §4.3.2 of [{WAKERNAAK AND SIVAN, 1972].

Intensity Matrices I' and A

One of the most significant errors present in an accelerometer’s measurement is known
to be a bias, a quasi-constant error that drifts as the temperature changes. In addition,
one of the types of disturbances with which Daisy is expected to deal is a “double-pulse,”
consisting of a pair of step inputs of arbitrary magnitude (for example, see Figure 2.2
in [SINCARSIN & SINCARSIN, 1985B]) and of arbitrary duration. If left unmodelled
during controller design, these disturbances would result in a steady-state nonzero mean
estimation error e; see (74). (Note that were we using a time-varying Kalman filter

instead, disturbances of this sort could lead to filter divergence!)

We have modeled these disturbances using the vectors b and d, as in (23). The
dimensions of b and d are as yet unspecified; they are chosen in conjunction with Z,
and By [see (1)—(3)], which distribute the disturbances represented by b and d into the
observations and the state vector. Thus, each element of d is chosen to represent some
physical disturbance acting on Daisy; each element of b represents some independent bias

affecting the outputs of Daisy’s sensors.

The d and b vectors have been modeled as shown by (24) and (25), according to the
method described in the Example 4.3, and by equation (5.186) of §5.5.2 of [KWAKERNAAK
AND SIVAN, 1972]. As noted there, such integrated white noise has a large low-frequency
content, allowing it to track changes in either the state disturbance (e.g., the “double-

pulse” disturbance), or the sensor biases (e.g., due to thermal drift).

The noise processes 4 and é underlying our models of d and b are not intended to
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represent noises actually present on Daisy. They are convenient fictions that allow us to
compensate for non-stochastic disturbances. We may thus choose statistics of these noises

to suit ourselves; we choose to set

I'=9w-1 (76)
A= bpy-1 (77)

where the identity matrices are of appropriate dimension. ypw and dpw are scalar pa-
rameters that have similar effects to Bgw of (75); increasing their values should result
in an observer whose speed in estimating d and b increases, but which also displays an

increase in the value of the steady-state cost o.

While the vectors d and b provide a convenient method for dealing with quasi-constant
disturbances, they do have some disadvantages. High on the list of these is the fact that
they result in an increase in the order of the observer’s state vector x [see (23)]. The
time required for updating the observer’s state estimate is of O(n?), where x € ®". Thus,
adding elements indiscriminately to d and b can greatly slow down the resulting real-
time controller. One possible approach to easing this problem is described by FRIEDLAND
[1983]—estimation of the bias portion of the state can be separated out from the estimator
for 7 and 1), resulting in some time savings. This was not pursued in this task; however,

it may be appropriate for future work, if controller update times prove to be too long.

4.3 Accelerometer Output Analysis

One of our main concerns in trying to implement LQG control is that the assumptions
underlying the LQG control design method may be inappropriate in the case of Daisy.
The method assumes the plant to be linear, yet we know of nonlinearities displayed by
Daisy. It assumes Gaussian noise statistics; these are not likely to closely model Daisy’s
true disturbance environment. We only hope that the violations to these (and other)
assumptions are minor, and that the controller that results will be robust enough to

accommodate them.

In this section, we examine an assumption inherent in equation (13)—that the outputs
of the accelerometers mounted on Daisy’s ribs are linear function of q, and are not affected
by q and ¢. This is known not to be the case; for example, §3.1.2 of [SINCARSIN &
SINCARSIN, 1988] showed how the force of gravity acting on the accelerometers adds a
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significant term, nonlinear in q, to the accelerometer outputs. In order to find exactly
how the above-mentioned assumption is violated, we present here a nonlinear analysis
of the apparent acceleration sensed at any point fixed in a reference frame attached to
one of Daisy’s ribs. The results of this analysis were used in the simulations of §4.4, to

determine the consequences of our violation of the sensor linearity assumption.

4.3.1 Several Daisy Reference Frames

The apparent acceleration measured by an accelerometer has two components, gravity
and inertial acceleration. We will examine the former first. We begin by defining several

reference frames associated with Daisy.

Let F; be a frame located at Daisy’s main hub pivot, and fixed with respect to the
floor, with z; pointing downwards, and 2 pointing horizontally, aligned with rib #1 (in
the current installation, z; points roughly west). Let F. be a frame attached to the hub,
located at the hub pivot, and oriented so that when Daisy is in its nominal configuration,
F; and F, are coincident. '

Let F, be a frame attached to Daisy’s rib #3, located at the rib’s pivot, with z;
pointing along the rib’s long axis, and with z and z; defining a vertical plane when Daisy
is in its nominal configuration (2, then having a net downward component). Let F, be
a frame attached to the hub, located at the same rib pivot, and oriented so that when

Daisy is in its nominal configuration F, and F, are coincident.

These frames are illustrated in Figures 4.3 and 4.4. The former shows Dalsy in its
nominal configuration, so that F, = Fy; it illustrates rib #1 as being the rib of interest,
though, rather than rib #3. The latter illustrates the frames with Daisy in a deformed

configuration.

4.3.2 Gravity

The speciﬁc force due to gravity can be expressed as a vector g. When projected onto F7,

we write (using the notation described in Appendix B of [HUGHES, 1986]).

8r= 'ff'g =g- COI{0,0,].} (78)
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Figure 4.3: Rib and Hub Reference Frames,

with Daisy in its Nominal Configuration
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Figure 4.4: Rib and Hub Reference Frames,
with Daisy in a deforme

configuration.
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where in Daisy’s units

g = 385.05 in/s?

(79)

In order to project g onto F., we need to know the orientation of F, with respect to Fy.

Let C.; be the rotation matrix between the two frames, so that

j_-:c:Ccfj_-:j

(80)

C.s arises because of rotations of Daisy about its hub axes. Daisy is supported on a

universal joint, set up in such a way that

Ces = Cy(0n,)Cr(01,)C.(0n,)

(81)

where 05, 0, and 0, are rotations associated with the z, y and z axes of F;, and where

Ci(a) represents a rotation matrix corresponding to a rotation of an angle o, about the

ith primary axis, i € {z,y,2}. Thus

Cy (ghy ) =

Cfl"(ehx) =

Cz (ohz ) =

.

Using these definitions, then,

cosbp, 0 —sinbp,

0 1 0

—sinfp, 0 cosbp,

1 0 0

0 cosfp, sinby,

[ cosf), sinf,,

—sinf,, cosf,

0 0

|0 —sind,, cosby, |

0
0
1

(85)

Next, we project g onto F,. Let C,. be the rotation matrix between .7-'; and F, so that

}_':a:Cacﬁb

(86)
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Since we are dealing with rib #3, which is located 20% of a full rotation about the z.-axis

from g, and is elevated 30° from the horizontal (nominally),

C.c = C,(30°)C,(72°) (87)
where
[cos30° 0 —sin30°]
C,(30°) = 0 1 0 (88)
[ sin30° 0 cos30° |
[ cosT2°  sinT2° 0]
C.(72°) = [ —sin72° cosT2° 0 (89)
| 0 0 1]
Then,
8. = Fag
= Cacgc
= CucCesgy (90)

Finally, we project g onto Fb. Let Ci, be the rotation matrix between Fy and F,, so that

-7_-:17 = Cbafa (91)

This results from rotations of rib #3 about its pivot, which is a two-degree-of-freedom

universal joint, built so that

Cre = Cz(arz)cy(ary) (92)

where ,, and o, are rotations of the rib about the y, and 2, axes, respectively, and

[ cosca,, sina, O]

C.(ar,) = | —sina,, cosey, 0 (93)
|0 0 1]
[cosa,, 0 —siney, |

Cylar,)=] 0 1 0 (94)
| sine;, 0 cosay, |
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Then-

& =Fs-g
= Cbaga
= CpaCacCor8y (95)

Thus, gy can be defined completely in terms of 0, Oy, O1,, r,, and 0,,, the hub pitch,

roll and yaw angles, and rib out-of-cone and in-cone angles, respectively.

The apparent acceleration measured by an accelerometer mounted on rib #3 due to
gravity will be just the negative of this, assuming the rib and hub to be rigid, and the
hub pivot to be fixed in Fy, and assuming the accelerometer to be aligned with F,. Any
error in aligning the accelerometer would have to be accounted for via further rotation

matrices.

4.3.3 Rib Kinematics

We next turn our attention to inertial accelerations of a point P on rib #3. Let p be the

vector from the origin of F, to P, as illustrated in Figure 4.5. p, describes the location

of P in rib coordinates:

p=Fp (96)

Following §B.4 of Appendix B of [HuGHIES, 1986], we shall for the moment denote vector
time derivatives as seen in F, by (), and those as seen in F, by ( )°. Then, it can be
shown that

P =p twaeXp (97)

where Wha 18 the vector angular velocity at which F, rotates relative to F,. It can also be
shown that
P =7+ 2w X P° 4 Whe X P+ Wha X (Wha X p) (98)

Now, assume that P is attached to rib #3, which we assume to be rigid, so that P is fixed
with respect to F;. Then,

Ppp=p,=0 (99)
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so that
P =Fips=0 (100)
P =Fp =0 (101)

Substituting (100) and (101) into (97) and (98),

P =W X P (102)
and
P = Wi’ X Pt wie X (Wha X P)
\ = (ngba) X _P'*'ﬁ)ba. X (L_‘fba. X B) ‘ (103)

Here, p* and p** are the velocity and acceleration of P, as seen by an observer fixed

in frame F,, and wy, is the projection of w), onto F;. In matrix notation,
P = Capwi,Py (104)
Ba = Cup(Wiy + wiewia)Ps (105)

Next, define d to be the vector from the origin of . to P, and e be the vector from the

origin of F, to the 01_‘igin of F,. Since both F, and F. are attached to the hub, which is

assumed to be rigid; note that

Co= 8=, =8, =0 (106)

Also,
d=e+p (107)

as is illustrated in Figure 4.5. For the following section of the analysis, we denote vector

_time derivatives as seen in F, by () , and those as seen in F, as ( )°. Then, in a manner

similar to (97),

+
=Pt Wee XP+ € +Wae X e (108)
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(using (107)). Now, since both F, and F, are hub-fixed,

U_-fac - U_-fac. = ‘-’_-"a.co :9 (109)

Thus,
d=p+e (110)
Furthermore, using a vectrix identity and recalling (106),

_§° — j_:"uTéa _—__Q (111)

Therefore,
d=p (112)

Keeping in mind the alteration in the definitions of ()" and ( )°, and combining (112)
and (102), we obtain
fi,‘ = Wpa X P (113)

Also, in a manner similar to (98),

_‘?“=£l°o+20_-3acxgo+0_-3ac°Xg’i“vgucx(‘vgucxg) (114)

Recalling (109), and using (107), we find that
_(?.. =doo :-?oo +£00 (115)
Using a vectrix identity, along with (106), yields
e =Faé, =0 (116)

— .

We find, remembering once more the alteration in the definitions of ()" and ()°, and
using (103), that

= Jijcbba) X P+ W X (Wha X p) (117)
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Finally, for the remainder of the analysis we denote vector time derivatives as seen in
F; by ()", and those as seen in F, by ( )°. Then, in a manner similar to (97), using (113)
and (107), and using the second change in the definitions of ()" and ()°,

= Whe X P+ wes X (e+p) (118)
Also, in a manner similar to (98),
&7 = ey )t wes® X d by X (0o X ) (119)
Using the vectrix identities
and
d'"=Fid, (121)

where Eif is the projection of g " onto Fy, and w,; is the projection of wey~ onto Fo, we

can combine (119) with (113), (117) and (107), recalling one final time the second change

in the definitions of ()" and ( )°, to yield

#13, = (JE%‘ ) %
+ 2wey X (C_tfba X E) + (EZ“:’cI) x (_?'I'E)

+ Wey X (C_Lfcf X (_P:-I-_}?)) (122)

We employ the vectrix identities
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to write
Frdy = (Fwa) x (Fips)

 (Frwie) x (FFwn) x (FTp))
+ 2(F; wer) X ((Ffwia) X (Fi py))
+ (Fraes) x (Fre. + Fip)
+ (Fower) x (Frwer) x (Foeo+ Fy py))

= "'-’Z;fb X ff Po
o7 x (7 x Emn)
+ 2wl F. X (wf,”a@, X -ﬁgpb)
t oy Fe X Foec + gy Fe X Fypy
+ wZ}.?_‘"c X (wf}fc X .’/Efec +wg}.7_‘:c X ﬂpb>

= fg‘c‘bl:(apb
v (i + 2y ) x (£Hutm)
+ Efd’i‘f(ec + Cps)
+ Wi Fe x FrwXi(e. + Capy)

= ﬂ WhoPb
(it + 2770 Ca ) wip
+ FraX (e + Caps)
+ Frwiwli(ec + Caps) (127)

(making considerable use of various vectrix identities from Appendix B of [HUGHES,
1986]). Premultiplying both sides of (127) by (F-) produces

d; = Cpuwy,
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+ (Crwpy + 2Cswe; Cop)wp, P
+ Cfr:(“";(f + w:fw:f)(ec + CebPs) (128)

Next, we project this onto F, the rib-fixed frame:

dy = X ps + (W + 20w Cop)w,Ps
+ Cro(wey + wjwy)(es + Cerpy) (129)

4.3.4 Apparent Acceleration

Equation (129) specifies the vector acceleration of the point P (which is attached to
one of Daisy’s ribs) as seen from the inertial reference frame Fy, in terms of its compo-
nents as projected onto the rib-fixed frame F,. Since our accelerometers are rib-fixed,
and since they measure acceleration with respect to any inertial frame, (129) specifies
the non-gravitational component of the acceleration sensed by the accelerometers. The

gravitational component is the negative of (95); combining the two results in

dy — g = WPy + (W5 + 2C4w Cap)wi,Ps
+ Cbc(d):f + w:fw:f)(ec + chpb)
— CucCorgy (130)

This is the apparent acceleration sensed by a rib-fixed accelerometer located at point P.

In (130), the columns e, and p; are constants in time: the location of the rib pivot as
measured in the hub frame, and the location of the accelerometer as measured in the rib
frame. However, wpa, Wpa, Cie, wey, Wy and Gy are all functions of Daisy’s state-vector
x, from (23). If

01 = col{bh,,0h,, 61, } (131)

is the set of hub orientation angles, and

a, = col{a,,,ar, } (132)

is the set of rib orientation angles, as used in equations (81) and (92), then

wye = col{0, &,,, é,, (133)
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Whe = col{0, &, &, } (134)
Wey = Col{éhx,éhy,éhz} (135)
d"cf = COl{éhx,éhy,éhz} (136)

and C;, and C,s are functions of 8, and e, as specified by (81) and (92); for “small”
values of 8, and e, these latter two are linear functions of x. However, some of the terms

in (130) are nonlinear in x. We can thus write a linearized version of (130):

ab — & = sz(apb + Cbc‘-b();(f(ec + chpb)
— Cu.Cosgs + O([w?) - (137)

As a check on our calculations, note that (137) is consistent with equation (2.50) of
[SINCARSIN, 1984], which also represents the linearized accelerometer measurements (less

the gravity term).

Let us pause for a moment to consider the significance of (130). Our intention is to
design an LQG controller to regulate Daisy’s motion via acceleration feedback. This is
motivated by a desire to determine how this form of controller would work when applied
to a satellite in space, such as an SBR satellite. The work is being done on Daisy because
Daisy was designed to emulate the dynamics of flexible satellites; it is believed that
results obtained using Daisy will be similar to those obtained using actual satellites,
Equation (130), however, indicates that there is a component of the accelerometers’ output
signals that is due to gravity, an effect that would not be present for an orbiting satellite.
This component was found by SINCARSIN & SINCARSIN [1988], §3.1.2, to be large; it

represents a significant difference between the behavior of accelerometers on Daisy and’

those on a space vehicle. With such a difference present, the similarity of results between

Daisy and a satellite might be called into question.

All is not lost, though. Let us consider mounting accelerometers at two different
locations on one of Daisy’s ribs, at points P, and P,, as shown in Figure 4.6. Generalizing
(130), we write

di, — & = O ps, + (W + 2C.w Cep)wp, Piy
+ Coo(wyy + wiywis)(ec + Cavpiy)
- CbcCcfgf : (138)
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where El,-b is the inertial acceleration of point F;, and p;, is the projection of p; onto Fy.

If we subtract the accelerations sensed at P, from that sensed at P, we get

(alb - gb) - (a2b - gb) = [‘b?a. + (wg(a + 2Cb0w§fCCb)wl>>(a
+ Cho@ +wXwX)Cal (Pr, —P2,)  (139)

Note that since the gravity term g; in (130) does not depend on the location of P on the
rib, subtracting the signals at P, from those at P, causes the gravity term to cancel out
in (139). Thus, the difference signal measured by accelerometers on Daisy will behave
like the difference signal on a similarly-outfitted spacecraft in orbit. By using pairs of
accelerometers on Daisy’s ribs, the similarity of results between Daisy and flexible satellites

can be maintained.

Rigidly connecting together a pair of linear accelerometers at some distance from each
other forms an angular accelerometer. This is appropriate in our case, as we wish to use
these sensors to infer Daisy’s angular rotations. We strongly recommend using such paired
accelerometers when attempting accelerometer feedback studies for Daisy. Hopefully, the
new generation of low-cost, integrated-circuit accelerometers will minimize the cost of

additional hardware required for this solution.

The exact cancellation of gravity signals found in (139) assumes the accelerometers
to be connected rigidly to each other. Daisy’s ribs are, of course, not perfectly rigid,
although they were designed with minimum flexibility in mind. Rib flexibility may pose
a problem for the implementation of this approach; flexible deformations will allow some

gravity signal to “leak” back into (139).

Similarly, errors in aligning the pairs of accelerometers to each other could result in a
less-than-perfect cancellation of gravity terms in (139). These errors are sure to occur at
some tolerance level. They are potentially more serious than the rib-flexibility errors, as
they result in a secular bias term appearing in (139) (that is, a non-zero difference signal,
even when Daisy is at rest). Kalman filters can be quite sensitive to such biases; it is in
anticipation of this sort of effect that provision has been made to include the vector b in

the Daisy state vector, x; see (23).

Note that (139) does not simply measure either d, , Or &25; the terms involving e, were
cancelled out along with those involving gravity. The resulting accelerometer-sensing

matrix Z 4 from (3) must take this into account; it will be somewhat different from that
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described by equation (2.50) of [SINCARSIN, 1984].

It may be possible to use inclinometers in place of the accelerometers at P;. These
are sensors that measure the direction of the apparent acceleration vector. However, they
do not measure that vector’s magnitude, which would have to be assumed; this would
tend to allow some gravity signal to “leak into” (139). Even more seriously, these sensors
tend to have fairly long time-constants (on the order of one second) and poor resolution.
The former would allow even more gravity signal to avoid cancellation, while the latter
would increase the noise injected into the Kalman filter, thus either slowing it down or
else causing the state estimation accuracy to decrease. Nor are these sensors inexpensive.

As a result, we recommend against their use for this application.

The LQG design of §4.2 assumes that acceleration measurements are a linear function

of 4, where q is Daisy’s physical coordinate vector, in (3). The linear terms in (139) are
[Lblfa + Cbcd’:f] (plb - p2b)

The nonlinear terms are of the order of wy,w (pP1, — P2,). We shall proceed to estimate

relative values for these.

Daisy’s flexible vibration frequencies are clustered around 0.1 Hz, or about 0.6 rad/s.
If oscillations are kept within the “nearly linear” range, rib vibration amplitudes will be

less than 10 degrees, or about 0.15 radians. If a rib’s vibration is described as

T = zoet (140)
with ¢ = 0.15 and w = 0.6, then
& = jwzoe’ (141)
& = —wlzoelt (142)
Then, at this vibration amplitude,
llz]| = 0.15 (143)
llZ]| = 0.09 (144)
|Z|l = 0.054 (145)
at the same time,
[|42]} = 0.0071 (146)
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Here, & corresponds to wp, and w;, while & corresponds to the wjw);, wiwp,, and wiiwl;
terms. The former are linear in Daisy’s state vector x, while the latter are nonlinear. A
comparison of (145) and (144) shows that at this amplitude, the nonlinear contribution to
accelerometer outputs is about one order of magnitude less than the linear contribution.

This is a worst-case ratio; the difference would be greater at lower vibration amplitudes.

Is this level of nonlinearity acceptable to the Kalman filter? Unfortunately, there is
no simple analytical way to find an answer to this question. Kalman filters are known
to be sensitive to such unmodelled effects, frequently to the point of driving unstable
the closed-loop system. Implementation of an LQG controller would provide a definitive
answer; however, that must be postponed until the required additional accelerometers
have be installed. In lieu of such an implementation, a series of simulations was carried
out to investigate this type of controller’s performance, in the face of these nonlinearities.

The following section reports on these simulations. -

4.4 Controller Implementation & Simulation

4.4.1 Matrixy

 We had hoped that this task would culminate in the application of an LQG controller to

Daisy. The purpose of doing this is to infer how this type of controller would perform
when applied to a large flexible spacecraft, relying on Daisy’s ability to emulate such a
spacecraft. However, as discussed in §2.3, Daisy’s current configuration of accelerometers
does not emulate those on space vehicles due to the effects of gravity. The emulation could
be improved by installing additional accelerometers, a task that has yet to be completed.

As a result, the implementation of a controller on Daisy was not carried out.

In lieu of a bardwax‘e implementation, a series of simulations was carried out, of models
of various controllers connected to a model of Daisy. These simulations allowed several
areas of concern, regarding the use of accelerometers as sensors for LQG control, to be in-
vestigated. They also provided an opportunity to tune the controller’s design parameters,
in order to bring controller response characteristics (overshoot, settling time, etc.) within
reasonable ranges; this will save effort when the controller is eventually implemented in

hardware.

The main concern addressed by the simulations was that the nonlinearities (with
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respect to the state vector) present in the accelerometer outputs might lead to an erosion
in stability of the closed-loop system. Another concern was that the a,ccelerometer. signal
generated by oscillations of the ribs might prove s0 faint, when compared with those
sensors’ resolution limits, that they would be of little benefit in helping to regulate Daisy’s
motion. Yet another was that the necessity of implementing the controller as a discrete-

time system would cause controller performance to deteriorate.

In order to address these concerns, the simulation had to be able to cope with a
system of Daisy’s order, be able to include the effects of accelerometer nonlinearities
and resolution limits, and be able to perform discrete-time simulations. We found that

> was able

a software package currently in use as part of the Daisy facility, “Matrix,,’
to carry out the necessary simulations. In addition, it could be used to carry out the
numerical design of controllers based on the analysis of §4.2, as well as to generate plots
summarizing the results of simulations. For these reasons, we chose to use Matrix, for
the controller implementation and simulation portion of this task. For more information

on this software, refer to [INTEGRATED SYSTEMS, 19864].

4.4.2 “System Build” Daisy Model

In order to simulate the Daisy plant, and to cé,rry out the controller design calculations,
Matrix, required input data, in particular the matrices K, D, G and B from (8), P from
(9), Zp, 2y and Z4 from (10), E from (4), and Z4 from (3). These were generated
using the most recent version of a piece of extant software, developed to model Daisy’s
dynamics based on (an updated version of) the analysis presented in §2 of [SINCARSIN,

1984]. The latter software runs on one of Dynacon’s Apollo workstations, while Matrix,

runs on one of the University of Toronto Aerospace Institute’s Apollos; this commonality

facilitated data transfer between the two.

One of the unique features of Matrixy is its “System Build” facility, an interactive,
graphical, mouse-driven environment wherein the dynamics of a system may be described
by drawing a block diagram of the system. Once the diagram is complete, an equivalent
realization of the diagram can be generated by the program; this in turn can be used
to carry out a simulation of the system, in response to user-specified inputs. Although
somewhat time-consuming to learn and cumbersome to use (especially for multivariable

systems), once mastered this facility provides the flexibility to quickly re-design and re-test
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a system. In particular, System Build provides a simple method for modeling a number

of types of nonlinearities. This flexibility was put to good use in our case.

Figure 4.7 illustrates the sort of block diagrams generated by System Build, in this
case one describing Daisy’s plant. Part (a) shows an image of the diagram as it appears
on the computer screen, while part (b) interprets this in terms of more-standard block
diagram conventions. The “measurement quantization” blocks represent nonlinearities,
corresponding to the digital nature of the outputs from the position and velocity sensors;
these blocks are System Build “primitives.” The “accelerometer superblock” represents
a separate block diagram, modeling the dynamics of the accelerometer sensors, according
to (130).

For reference, the “superblock” diagrams generated for use in this task are collected
in Appendix C, §C.1. They will not be explained further here, except when particular
features are relevant to the results of simulations. The reader is referred to [INTEGRATED

SYSTEMS, 1986B] for information regarding the interpretation of these.

The Daisy model illustrated in Figure 4.7 comprises the linear model of (8)—(10), with
a few nonlinearities added. Equation (130) is implemented in its full nonlinear form in

the “accelerometers” superblock, for a pair of accelerometers on rib #3, located at

p1, = col{68,0,—-3} inches (147)
col{—27,0,—6.5}  inches (148)

P2,

that is, roughly at the two opposing tips of the rib. In addition, the three types of sensor
output are passed through “quantization” filters, using the values of ép, dy, and §4, from
(57), (60) and (59). The five inputs to the system correspond to u from (1); all components
of z from (3) are included in the 18 outputs, along with several other quantities that were
to be monitored during simulations (in Matrix,, a variable must be made an output in a

block diagram, if its time history is to be recorded during a simulation).

4.4.3 Baseline Controller Runs

Prior to attempting simulations of an LQG controller, a number of simulation runs were
performed with the intentions of validating the Daisy model of Figure 4.7, and of providing

a basis for comparison with LQG results. These were carried out by connecting our Daisy
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model with a model representing the “Baseline Controller” described in [SINCARSIN &
SINCARSIN, 1985B].

The baseline controller consists of three decoupled PID controllers, each connecting
the angle sensor and angular rate sensor for one hub axis to its associated reaction wheel.
The results of applying it to Daisy are presented in [SINCARSIN, 1986B], as Figures 3.4
and 3.5. We attempted to reproduce the results of that Figure 3.5(a), by connecting a
(discrete-time, 10 Hz update rate) System Build model of the baseline controller to our
Daisy model, and simulating this system’s response to the same input as was used in the
report. referred to. The relevant figure from that report is compared with our simulation
results in Figure 4.8. The overshoot of the two plots are quite similar; however, the
settling time of the simulated system is quite a bit longer than that for the real system.
No explanation for this has been determined. A more formal validation of the simulation

model should be carried out in the future, to investigate the cause of this discrepancy.

In order to achieve agreement between simulation and experimental results, the simula-
tion employed a “double-pulse” input as described on p. 11 of [SINCARSIN & SINCARSIN,
1986B], a positive torque about the z-axis of the hub for 5 seconds, followed by a negative
one for a further 5 seconds. Note that the magnitude of the pulses in the report referred
to appear to be incorrect by a factor of 10; magnitudes of +2.6 and —4.5 (ft-1bf) were
used in the simulation, rather than +.26 and —.45. The former, when expressed in Daisy’s
units,’ are +12050 and —20860 Ibm-in?/s?, and are plotted in Figure 4.9.

Several other plots associated with this simulation run are included in Appendix C,
§C.2. A notable result is that, while the hub rotation angle error damps out relatively
quickly, the vibrations of rib #3 are rather persistent. This corresponds to the fact that
the baseline controller is not designed to control rib motion, except insofar as it couples

to the hub’s motion.

4.4.4 LQ Controller Runs

A second set of simulations was carried out in order to help select a value for the parameter

apw, from (71). This parameter is used to set the bandwidth of the state-feedback control

!For future reference, the matrices in (1)~(3) assume that Daisy’s reaction wheel commands are mea-
sured in (Ibm-in?/s?), that the thruster commands are in lbm-in/s?, and that the hub sensors measure
radians and radians/s.
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gain matrix F indicated in (51), and directly affects the overshoot and settling time of
Daisy’s response to control inputs such as that of Figure 4.9. We decided to select agw
such that the LQG controller’s 6, response would approximate that resulting from the
baseline controller, when subjected to the double-pulse input described above. A series
of F matrices was generated, each based on a different value of agy. Each was used to
simulate the response that Daisy would exhibit if the entire state vector were fed back via
F (so-called “LQ” control). The ), response for each was plotted, and compared with
the plots for the baseline controller (Figure 4.8). At a value of

agw =1 X 1011 (149)

this LQ controller produced results comparable to those of the baseline controller, as
illustrated in Figure 4.10. In particular, in both runs the overshoot (after ¢ = 0) was
about 0.025 radians in 6;,. Note that the update rate assumed for this discrete-time

controller was 10 Hz.

This LQ controller represents a limiting case of LQG control—it represents the re-
sponse of an LQG controller using an “infinitely fast” observer. Several plots resulting
from the simulation of this controller are collected in Appendix C, §C.3; one in partic-
ular is presented in Figure 4.11, showing the LQ controller’s rib #3 out-of-cone angular
displacement, as compared with that for the baseline controller. Both plots use the same
scales. The LQ controller produces dramatically better control of the ribs than does
the baseline controller, as well as somewhat better hub control (as evidenced by Figure
4.10). A sufficiently well-designed LQG controller will, we hope, approach this level of

performance.

4.4.5 LQG Controller with Disturbance Estimation

A number of different LQG controllers were designed, in order to investigate the effects
on performance due to different disturbance models (i.e., different definitions of B; and
Z; from (1) and (3), and varying values of agw, Y8w, and §pw from (75)—(77)). Noting
that by design the Daisy simulation model had no bias terms in its accelerometer models,

these controllers were designed assuming b in (3) to be a null vector (i.e., b € R?).

The best-performing of the LQG controllers studied assumed that the state disturbance
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vector d € R2 (see (1)), and that

Ba=[15°] (150)

that is, that the three elements of d correspond to torques about the hub’s 3 principal
axes. Indeed, when the reaction wheels are used to generate torque-pulse disturbances,
they have precisely this form. The observer bandwidth parameters were chosen to have
the values

Bew = 10° (151)
vew = 10° (152)

(6pw was not used, as b was a null vector). A discrete-time version of the controller was

used for simulations, assuming a controller update rate of 10 Hz.

Figure 4.12 illustrates the 0, response of this controller to the same “double-pulse”
torque input used for previous controller tests, as compared with equivalent responses
from both the baseline and LQ controllers. Figure 4.13 provides a similar comparison of
ay, responses. Equivalent plots are drawn using the same scales. Not only does the LQG
controller perform far better than the baseline one, it also slightly out-performs the LQ

controller!

The explanation for this surprising result is that the LQG controller was designed
assuming a d-vector matching the reaction-wheel double-pulse disturbances, while the
LQ controller examined earlier assumed a null d-vector. Thus, the two results are not
completely comparable; had the LQ controller been based on a plant model including the
d-vector in its state, then the resulting F matrix would have fed back d, cancelling out
the double-pulse input torque, and producing a much-improved response. However, while
it seemed “fair” to allow the L@ controller to feed back Daisy’s rib and hub angles and
rates directly (because these could, in principle, be measured using sensors), it seemed
“unfair” to feed d back directly, as a real controller would never be able to measure this
directly. Thus, the LQ controller was left with no modeling of the disturbances, while
the LQG controller was allowed to estimate the disturbance magnitudes. With a superior

disturbance model, the LQG controller had the better performance.

A large number of variables were tracked during simulations using this controller. The

resulting plots are collected in Appendix C, §C.4. We shall return to examine these results
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in more detail, later in this section. First, though, two other controller designs will be

examined.

4.4.6 LQG Controller Without Disturbance or Bias Estimation

The first LQG controller examined assumed the b vector to be null, and the d vector to
be non-null. A second controller was designed, assuming both b and d to be null vectors;
simulations using this controller can be used to give us an idea of how sensitive this type
of LQG controller is to unmodelled effects. The same value of Bgw was used as for the

previous controller; in fact, the only difference between this controller and the previous

‘-one was the lack of disturbance estimation in this one.

Figure 4.14 illustrates the hub and rib responses for this controller, to the same dis-
turbances as were used previously. Figure 4.15 compares these responses to those for
the previous LQG controller (the former scaled to match the latter’s scaling). The new
controller exhibits severe overshoot, and degraded settling time. This deterioration in
performance must be attributed to the lack of disturbance estimation in the new con-

troller.

In order to interpret this result, consider equation (47), the observer state equation,
for the new controller. Assume that X initially tracks x (the true state) closely. As a
disturbance is applied to Daisy, x will change, introducing a difference between z and %
(i.e., between the sensor outputs, and what the observer “thinks” the sensors should be
outputting). Our original LQG controller correctly attributes this change in z to a change
in d, and revises the estimate of d accordingly. The new controller, however, doesn’t know

about d; hence, it must attribute (erroneously) the change in z to changes in q and g.

This analysis is supported by Figure 4.16; for the original LQG controller, the estimates
of d and q (their components corresponding to 6, are shown here) track the actual
values quite closely, while for the new controller (without disturbance estimation) the
a,pplicé.tion of the disturbance input causes extremely large errors to be introduced into
the estimates of the rib angles. This error in the state estimate is fed back through
F, resulting in an inappropriate control response being generated. Note that this error
does eventually die out; while the lack of disturbance modeling has caused the observer’s
transient performance to deteriorate, it should still show good steady-state performance

(assuming no unmodelled steady-state errors to be present).
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A number of plots of other aspects of this controller’s response to the simulated distur-
bance have been collected together in Appendix C, §C.6. They are directly comparable
with the similar plots generated for the first LQG controller, described earlier. Before
passing on to the next case studied, we note that the disturbances assumed when de-
signing this LQG controller match those used when designing the earlier LQ one; the F

matrices used by the two controllers are identical.

4.4.7 Two-Accelerometer LQG Controller

An attempt was made to adapt the control theory of §4.2 to Daisy’s present configu-
ration—i.e., to the case where only one pair of accelerometers is available to measure
rib motion, rather than the desirable (but currently unavailable) two pairs. Equation
(130) describes the apparent acceleration at a point on one of Daisy’s ribs. Barring
sensor errors, it describes the output of an accelerometer mounted at that point. The
gravity term includes rotation matrices as factors, which in turn are nonlinear functions
of Daisy’s state-vector elements. This term could be expanded to include sub-terms that
are constant, linear, quadratic, etc., in the state-vector components. The linear terms
are acceptable to our control theory, and our dealings with the disturbance vector d
have shown us how to deal with constants (i.e., incorporate them into the state of the
estimator). If the constant and linear terms are the dominant ones, our control theory

should be able to handle the minor perturbations of the higher-order terms.

This controller was designed using the £ 4 matrix for Daisy’s current set of accelerom-
eters. In addition, the observation bias matrix Z; from (3) was chosen to model a constant

bias in each accelerometer—that is, b € %2, and

Zo = [06“] (153)

Loxo
The same values of agw, Bew and vBw were used as for our first LQG controllers, and
Spw = 10° (154)

was used.

Simulation results for this controller are shown in Figure 4.17, compared with similar

results from our first LQG controller. Note that the 8, results are virtually identical.
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*

The rib displacements, a;,, are also very similar, until about ¢ = 60 seconds. At this
point, the rib oscillations cease diminishing and begin to grow. I'igure 4.18 indicates that
both the disturbance and the hub state were very closely estimated; the estimate of the
rib state diverges, however, as does the estimate of the gravity bias. Additional response

plots are collected in Appendix C, §C.5.

We interpret the results of this simulation to indicate that the nonlinearities in (130),
that we plan to remove by using a second pair of accelerometers, are severe enough
to destabilize our Kalman filter. The gravity component of the nonlinearities seems to
be the most likely culprit, due to its relatively great magnitude. This result was also
obtained for similar controllers, designed using various other values of the Spw, 7w and
dpw parameters. We conclude that accelerometer-based LQG control of Daisy using the

present single pair of accelerometers appears to be difficult (if not impossible) to achieve,

-and should not be pursued further. Instead, such controllers should be based on the

two-accelerometer-pair configuration.

4.4.8 Response of LQG Controller to Additional Disturbances.

Finally, a pair of simulations was carried out using our first (and best) LQG controller,
using double-pulse torque disturbances about the ), and 65, hub axes (unlike the earlier
simulation, with a disturbance about 8, ). The results were very similar to the earlier

ones; for completeness’ sake, they ave collected in Appendix C, §§C.7 and C.8.

4.4.9 Analysis of Simulated Accelerometer Outputs

At this point, we will examine some of the other results of the first simulation of our
first LQG controller. To begin with, consider the plots relating to the accelerometer mea-
surements. Figure 4.19 presents the raw signals from the four accelerometers (y and 2 rib
axes, outboard (1) and inboard (2) tip). As is expected, the y-axis measurements oscillate
about zero, while the z-axis ones oscillate about g cos 30°, where g is the acceleration due
to gravity (because the rib’s nominal orientation is rotated 30° upwards, about its z-axis).

The inboard and outboard sensed accelerations are very similar to each other.

The accelerometer signals comprise; (i) a linear component (as modeled by Z,4 in

(3)); (ii) a nonlinear kinematic component; (iii) a nonlinear gravity component; and (iv)
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a “quantization noise” component. Several of our plots allow us to study these components
separate (to an extent) from each other. Figure 4.20, for example, examines the sum of the
last 3 of these components (determined by subtracting Z 44 from the total accelerometer
signals) for the y and z outboard accelerometers. Since our linear theory accounts only for
the first component, these plots represent the unmodelled nonlinearities that destabilized

the above-mentioned one-accelerometer-pair LQG controller.

For our first LQG controller, we fed back the difference between accelerometer sig-
nals. These different signals are illustrated in Figure 4.21. Note that their magnitude
of oscillation is about one-fifth that of the oscillations in Figure 4.19; they represent the
sum of the first component of the total signal, part of the second, and the fourth. Since
g = 386 in/s?, the fed-back signal is about .005/386, or about 0.001 g. This is not far
above the sensors’ resolution limit of 10° g, a fact that helps explain the large quantity of

“noise” apparent in these plots.

Also depicted in Figure 4.21 are plots of the sum of the quantization noise, and the
component of the kinematic nonlinearity not annihilated by the differencing operation.
This signal’s magnitude is two orders of magnitude below that of the upper set of plots in
that figure, indicating that the former’s component of the accelerometers’ signals is very

minor.

This allows us to conclude that the plots of Figure 4.20 are dominated by the nonlinear
gravity component. However, the upper plots of Figure 4.21 (which must be dominated
by the linear component) show oscillations of only one-fifth the magnitude of those of
Figure 4.20. Thus, the acceleration output signals are dominated by their gravitational
component. This component is nonlinear, and is not modeled in our Kalman filter design;
while it might be possible to model it (using an extended Kalman filter), we do not wish
to do so, as it is irrelevant to our goal of deducing controlled spacecraft behavior. It is no
wonder that the one-accelerometer-pair LQG controller was unstable, in the face of such

an unmodelled disturbance!

4.4.10 Analysis of State Estimation Accuracy

We now turn our attention to another aspect of the response of our first LQG controller:
to wit, the state estimation accuracy. The state estimator (49) filters the observations

z, and generates X as an estimate to Daisy’s state x (23). If the estimate were to be
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perfectly accurate (i.e., if % and x were exactly equal), the LQG feedback signal (50)
would be the same as that for the corresponding state feedback (LQ) controller, with its
attendant robustness and optimality properties. However, sensor inaccuracies and other
unmodelled effects cause X to be somewhat different from x; the LQG design process
attempts to produce an observer that will minimize this difference. Thus, the effectiveness

of the observer can be guaged by examining the differences between % and x.

Figures 4.22 and 4.23 examine plots of these differences for our first LQG controller.
The former looks at differences between the true and estimated hub angles, 0,,, 85, and
01.. The latter examines differences between the true and estimated pivot angles for rib
#3, as well as between the disturbance torque actually applied and the estimate of it
(which we might call d, based on (23)).

The steady-state hub angle estimation error has a roughly zero mean for all three
angles, and is mostly within a 10~ (radian) band (about +0.34 arc-minutes), about
what we expected from the known accuracy of the hub angle encoders (57). There is a
spike of magnitude 5 x 10~* (radians) in the 8, — 6, signal, associated with one of the

steps in the disturbance input. .

The rib angle estimation errors also seem to have zero mean, but have a distinct
dynamic component (about 13 seconds period, lightly damped) in addition to a noisy
component; the errors are in the 107 to 4 x 10™* (radian) range. We speculate that the
dynamic component of the error is caused by the residual nonlinearities in the accelerom-

eter difference signal (139), deduced earlier to be of relatively low magnitudes.

The state estimator does a remarkably good job of tracking the applied disturbance,
as evidenced by Figure 4.23. Tracking a step change takes only about 1 second, with
very little overshoot (perhaps 8%), and a rapid settling. The estimate is relatively noisy.
The noise appears to evolve through three phases: first, error spikes of varying magnitude
and duration, with zero mean; second, a phase where the mean oscillates slowly, at low
amplitude, while the error spikes’ magnitude, frequency and duration seem to stabilize;
and third, a phase where the error spikes’ magnitude and duration seem fixed, but where

their frequency slowly diminishes.

These plots indicate the observer to be quite robust against fairly severe disturbances,
in this case where provisions were made to model disturbances. Other runs were performed

that examined the effects of varying Bsw, vew and §pw of (75)—(77). We shall not present




0005 00015 [~
o604 - .00012
= = .00003
[
& .ope3 | 5 C
8 r ® .00006 -
x N " L 1
% .0002 5 o003 ek b bl 1L
‘21 E < i )
1] - Lﬂ [~
T o001 - ! f 4 3 or | 1 L B
T F T ¥
= - ] 2, - 00003 .
i' o IJ l % I N: : r —1
g : ( | | I 2 -
2 X 2 - 00005 i
© o -
5 ~.0001 | 1 T f - L l
= o £ - 00009 T .
-.0002 - -.00012 - 1
“‘0903'111 S | - 1 1 2 L . | Jt 2 1 1 1) () VI I FER ) PR | ".00015 L1 Lt 14 I | -] I L1 3 111 1 i1 1 1. L1 11t
-0 0 20 40 60 80 100 120 149 180 130 200 -20 g 200 49 60 89 100 120 140 160 180 208
Time (sec) Time (sec)
Run #3:LQG Controller; beta bu=IES; gamma_bu=1E6 Run #3:L0G Controller; beta bu=1ES; gamma_bu=1E6
60015
00012 [ -
3 -00008 [ Figure 4.22: Simulated Estimation Errors for the
] .
T . oeoos Three Daisy Hub Angle Estimates, for
N e Al LQG Control With Disturbance
=2 !
£ ~ .
o - Estimation
2 )
T L
2, - 0003 ! i
;‘ i
2, -, 00008
p |
2 -
* -.00003 |-
-.00012 -
_'00015 13 1 S | 11 1 1 1 1 18t 1.1 1 Lt 1 LI 111 it I 1.1

Time (sec)
Run #3:LQG Controller; beta bu=1ES; gamma_bu=1ES

70T




. 0064 15000
r o
: I :
,0003 - 10000 - h
R '00023 . W gl 3 SOEJEJ:
3 U -
2 o001 N P | : i NN}
g s r ; N Bl
g C ;h H{ ‘ M '\, S 0or ¥ I T
g 0 o I ! lm[\i’[ E :
= C o t
P LAY
1 I~ o
-.0001 | P :
o E L f g f
2 C , = -10000 |
1-.0002 | y = 4 .
2 » ﬂ \[‘ h f -15000
-.0003 3 o
IR EAL o
-.0004 | ' -20008 [ o
_'Ooos_xly PRI L1 o1 e AR PRI R B S B PER SR BN A B B A L1t _25000—111 1 ity PO B R S PR Lt PN B S B AN A ST ')
-20 0 20 40 60 80 100 120 140 160 180 200 -20 0 20 40 60 80 100 120 140 160 180 200
Time (sec) Time (sec)
Run #3:LQG Controller; beta_bu=1ES; gamma_bu=1E6 Run #3:10QG Controller; beta bu=1ES; gamma_bu=1E6
.0003
o002 |- : Jl Figure 4.23: Simulated Estimation Errors for
" f a Rib Angle and X-Axis Disturbance
1
2 ot . ’ ; Estimates, for LQG Control with
g .
g' - l !\ Disturbance Estimation
=
.r'; 0 l !
5 I J ‘1
ml
.nl
=
o 00t { Ui
2
-.0002 - I

-.0003
-2 0 20 40 68 88 100 120 140 160 180 200

Time (sec)
Run #3:L0G Controller; beta_bw=1ES; gamma_bw=1E6

60T



4. LQG Control Using Acceleration Feedback

106

plots here from these simulations, but merely state the result that as the values of these
parameters were decreased, the overshoot and settling time of the observer estimation
errors increased. LQG theory predicts that the intensity of the noise in the error signals

should have decreased for these cases; however, we did not check for this effect.

4.4.11 Analysis of Control Effort

Finally, we will examine one last aspect of our simulations: the control command, u,
generated by the controllers. The cost criterion o defined in (44) upon which our controller
design is based trades off the RMS value of y against that of u. We have previously

compared responses relating to y, between the LQG controller and the baseline controller;

- see Figures 4.12 and 4.13. Figure 4.24 compares the responses of the first element of u

(the 85, reaction wheel feedback command) for these two controllers, when subjected to

our 8, double-pulse torque disturbance.

The LQG controller appears to use approximately the same amount of control effort
as does the baseline controller, although the character of the two signals is somewhat
different. The LQG result exhibits more overshoot than does the baseline one; also, its
noise is spikier, and its envelope dies down a little more rapidly than is the case for the

ba_seline controller.

Comparing Figures 4.24 with 4.12 and 4.13, then, we draw the conclusion that for
about the same amount of control effort, our first LQG controller regulates Daisy’s ori-
entation and shape quite a bit better than does the baseline controller. This tends to
corroborate the claim that the LQG controller will generate the lowest possible value ‘of
o —while the u’ Ryu term is similar for both controllers, the LQG controller appears to

result in a much lower value of y7Q;y than does the baseline controller.

Plots for the other four elements of u, for the LQG controller, may be found in
Appendix C, §C.4. The corresponding plots for the baseline controller are not included;
they were identically-zero traces, as the baseline controller did not exercise those actuators

in response to the 85, torque input.




X-axis reaction-uheel control command

X-axis reaction-wheel control command

12000 [

5000

6000

3000

AN A AA Bl

il

-3000

-6000

-9000

-12000

-15000

-18000

| S - | Ll 1 T | 111 k I 11t 1 1 1t ) 1t 1 11 ! B |

-21000
-20 0 20 40 60 80 100 120 140 160 180 200

Time (sec)
Run #1: Baseline Controller with Measurement Quantization

20000

15000

TTTTfTITT11

10000

TTT1T

iy
—
—

el
!

....,._
——

0 k\()ﬂwﬂw‘}t

-5000

TTTT

TT 110

-10000

-15000

~-20000

~25000

-30000

TTTTJ VI T T I IgjirIT

-35000 ——+—— e e L e D
=20 0 20 40 60 80 100 120 140 160 180 200
Time (sec)
Run #3: LQG Controller; beta_bw=1ES; gamma_bu=1E6

Figure 4.24: Comparison of Simulated X-Axis Reaction Wheel
Feedback Control Commands for Baseline Control (top)
and LQG Control With Disturbance Estimation (bottom)



108

4. LQG Control Using Acceleration Feedback

4.5 Discussion of Results

The main results of this task are: the analytical extension of LQG theory to allow the

incorporation of accelerometers, of §4.2; the analysis of the apparent acceleration at points
on Daisy’s ribs, of §4.3; and, the incorporation of the two analyses into a nonlinear Daisy
simulator, and the design and simulation of the closed-loop performance of a number of

controllers for Daisy, of §4.4.

4.5.1 LQG Theory Extension

The development of a Kalman filter for a flexible structure using accelerometers is not
new; for example, see [BREAKWELL & CHAMBERS, 1983] and [FLOYD, 1983]. The
present work, however is based on our (unpublished) work that demonstrates the resulting
controller to be truly optimal; we aré unaware of any previous demonstration of this. Also,

the development used for the V, (61) and R, (62). matrices are of interest.

4.5.2 Analysis of Apparent Accelerations

The acceleration analysis of §4.3 is an intermediate result, used to obtain the model and
simulations of §4.4. Its main limitations are its assumptions that Daisy’s ribs and hub
are perfectly rigid, and that the accelerometers are aligned perfectly with the rib frame of
reference. The former is likely a safe assumption, as Daisy was designed to be as rigid as
possible. However, future Daisy configurations (e.g., resulting from replacing the current
ribs with more-flexible ones) may require this assumption to be reviewed, and further

analysis to be performed. The second assumption is not a good one; alignment errors are

inevitable, and should be dealt with. Fortunately, the required extension to the analysis -

is a simple one.

The -analysis of §4.3 also resulted in leading us to the conclusion that pairs of ac-

- celerometers should be used to instrument each rib pivot axis. This is no light matter;

the accelerometers currently used on Daisy cost thousands of dollars each, so this result
has serious cost implications. However, newer-technology integrated-circuit accelerome-
ters are available at-a much lower cost. They should be investigated further for use in this
context; the main consideration is the nature and magnitude of the measurement errors

they commit, the effects of which can be investigated using the modeling and simulation
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tools described in §4.4 (information regarding the errors in IC accelerometers was not

available in time to incorporate into this study).

4.5.3 Daisy Model and Controller Simulations

The Matrix, model described in §4.4 is a valuable product of this task. This model will
be useful in any carry-on work based on the present study; it would also be of much
use to anybody studying Daisy’s behavior. The model is easily adaptable, and Matrix,’s
System Build utility provides the means to model many otherwise-troublesome aspecté of
Daisy (for example, friction damping in joints, backlash in gearboxes, sensor hysteresis,
etc.). The model has powerful interfaces to control design, analysis, simulation, plotting
and data storage and retrieval facilities (via which links to other computers, such as the
Daisy control computer, can be effected). In summary, this model of Daisy may, serendip-
itiously, be the most useful legacy of this task. Future work could be usefully extended
to model sensor and actuator dynamics more accurately, and joint friction (rather than

the currently-assumed linear damping).

The simulations of the baseline controller showed some discrepancies with results ob-
tained using Daisy. If the model of Daisy is to be used much for further work, the sources
of these discrepancies should be identified and the differences resolved. Hopefully, some-
thing short of full-blown system identification will suffice for this. The model should be

validated by comparison of simulated responses to Daisy’s true responses.

The main result of LQG simulations is that a carefully-designed LQG controller should
be able to provide better performance than does the baseline controller. This implies
that the Kalman filter part of the controller performed well, a fact that was verified
directly in one simulation run. This result verifies that accelerometers can be made to
drive a Kalman filter, to estimate the state of a flexible structure, a conclusion that has
important implications for sensing of the state of flexible spacecraft, such as space-based

radar satellites,

The Kalman filter portion of the controller was shown to be very sensitive to constant
sensor biases and disturbances. The main result of these was a lack of robustness in
the controller, leading to poor transient performance. Robustness could be recaptured,

however, by modeling these disturbances and biases when designing the Kalman filter.
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Simulations verified the destabilizing effects of the nonlinear gravity component of the

accelerometer signals, by attempting to use just the current (unpaired) accelerometers to

drive an LQG controller. While it is probably possible to design a stabilizing controller
using no additional hardware, this would not contribute to the goal of this study. The
controller design, and its responses, would be driven by the effects of gravity, and hence
would have little relevance to the goal of inferring spacecraft controller performance.
Of course, such an effort would have relevance to the control of non-orbiting structures

(aircraft and robots, for example), but this is beyond the scope of this study.

A concern related to the implementation of LQG control is that updating the ob-
server state can be time-consuming, leading to low update rates, which can cause a high-
bandwidth controller to become unstable. This is a particular concern for Daisy, due to
its large number (forty-six) of state variables. Estimation of disturbances and biases only

exacerbates this problem.

The simulations carried out assumed a controller update rate of 10 Hz. The computers
currently available to implement the controller would likely be unable to update any faster
than 1 Hz, for the order-49 LQG controller. Simulations (not presented here) suggest that
control performance will deteriorate substantially at such a low rate. This is a problem

that must be addressed prior to implementing this controller for Daisy.

Several approaches may be taken to solving this problem. Order reduction could
be carried out on the LQG controllers. Faster computers could be used, to improve
update rates (Daisy’s control computer is about to be replaced with a much faster one).
Approaches such as separated-bias estimation [FRIEDLAND, 1983] also offer some relief,
if disturbance and bias estimation is being done. All of these approaches can be tested
for their effectiveness, using the Matrix, Daisy model, via simulations; this could be done

to choose which approach to pursue with Daisy.

The simulations verify the effectiveness of modifying Daisy to incorporate additional

accelerometers, allowing one pair per rib pivot axis. However, the effect of sensor misalign-

ment on this approach is potentially severe. This can and should be studied via further .

simulations, as the required modifications to the Daisy model are relatively minor.

This study establishes that accelerometers can be successfully employed in LQG de-
sign for flexible structures. However, an interesting question is raised as a result: to

what extent, if any, does inclusion of accelerometers improve the performance of such
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controllers? The Matrix, model developed here provides us with the tools to readily in-
vestigate this question, if we wish. The answer would help establish the desirability of

including accelerometers as sensors on flexible spacecraft.

4.6 Task Conclusions

The results obtained during this task indicate that LQG controllers employing accelerom-
eters as sensors can provide substantial improvements in Daisy’s closed-loop performance,
when compared with the Baseline Controller. This conclusion has been verified via sim-
ulations that incorporate several significant “real-world” effects, including nonlinearities
and sensor quantization. Both rib and hub transient and steady-state performance im-
provements have been found, using an LQG controller with an assumed update rate of
10 Hz. This controller employs an augmented state vector, allowing disturbance estima-
tion. Both state and disturbance estimation accuracy are excellent. Without disturbance

estimation, robustness against disturbances is found to be extremely poor.

Analysis of Daisy’s kinematics leads to the conclusion that a major source of nonlin-
ear effects (gravity signals from the accelerometers) can be cancelled out by using two

accelerometers per Daisy rib pivot axis, rather than the current one-per-axis. Indeed,

“controller designs employing the current one-accelerometer-per-axis sensor configuration

are found to be destablized by the presence of these nonlinearities. Controllers designed
to use two accelerometers per axis show no effects of such destabilization. These gravity-
induced nonlinearities are of about the same magnitude as the ribs’ inertial accelerations,

for the test disturbances used.
Kinematic nonlinearities, on the other hand, seem to produce only negligible effects.

A hoped-for hardware implementation of the controller was not realized, due to the
need for the above-mentioned additional accelerometers. Once the necessary modifications
to the facility are made, however, prospects appear excellent for a successful implementa-
tion of this type of controller. However, there is some concern that Daisy’s current control
computer may not be powerful enough to provide a suitable controller update rate. Daisy
is currently being outfitted with a more powerful control computer, which may alleviate

this concern. Controller reduction methods may also be of use here.

A tangible result of this work that should not be overlooked is the Matrix, model of
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Daisy that was generated. Due to the powerful capabilities of this software package, this
model will be of great use not only in support of extensions of the present task, but also

to all future users of the Daisy facility.

The main item of future work arising from this task is the implementation and testing
of this (now well-understood) type of controller for Daisy. This will necessitate addressing
the problem of the controller update rate; §4.5 outlines approaches that could be taken
here. Improvements of the Matrix, Daisy model should also be carried out, in order to
increase the accuracy (and hence the usefulness) of simulations performed in support of

controller design.

As a minimum, the model should be updated to reflect the recent modifications made
to the Daisy structure, as described in §3. After this, sensor and actuator model improve-
ments are needed the most, particularly models of accelerometer misalignment. An error
model for the new integrated-circuit accelerometers (whose installation is described in §3)

should be developed, if these are to be used as sensors for LQG controllers.

Finally, it would be desirable to validate the Matrix, Daisy model, by comparing the
predicted behaviour of Daisy with the structure’s actual behaviour, as determined by
a program of experiments. Open-loop performance could be used for initial validation
tests, prior to controller design and implementation; discrepancies would provide a basis
for tracing and correcting deficiencies in the model. Preliminary controller design would
be carried out based on this version of the model, and the resulting controller used in
closed-loop validation tests. Final controller design, implementation and testing would

follow any changes made to the model as a result of these tests.
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A Error Index Plots
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Figure A.1.b: FOR STIFFNESS GRIN=0.2 AND INTEGRAL GAIN=0.2
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Figure A.20: MAX.
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{ers are leading the way,

applications, including:

« Air bag deployment
« Active suspension
* Braking systems

Ranging from below * 1g to greater than
=+ §500g, both standard or custom prod-
ucts are available. IC Sensors special-
izes in producing custom designs.

SOLID-STATE

~ SILICON
ACCELEROMETERS

HIGH PERFORMANCE AT LOW COST

There’s a revolution taking place in the measurement of accelera-
tion, shock, and vibration—and our new piezoresistive accelerome-

The combined accuracy, DC response, wide bandwidth, damping,
overrange protection, low mass, small size, light weight, and low cost
of these sensors make them a natural choice for a wide variety of

« Computer disk drives
* Vibration monitoring
« Military arming & fuzing

Silicon cap Sensors

Mass Silicon cap

The 3-layer micromachined silicon
sandwich incorporates a tiny, but pro-
tected, suspended mass. Batch fabrica-
tlon assures uniformity, low cost, and
built-in reliability.

EESFENSORS

1701 McCarthy Bivd., Milpitas, CA 95035

FAX: (408) 434-6687 Telex: 350066 Phone: (408) 432-1800
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i ICSENsoRs Accelerometer Model 3021

t PRELIMINARY ok

OEM Accelerometer
Miniature Size

Low Cost
T S R e e e S e e R VY|

Features
DC Response
Wide Bandwidth

High Sensitivity :
Built-In Damping D_M

The Model 3021 is the first In a family of general pur-
Low Mass pose, solid-state, piezoresistive accelerometers and is packaged
Built-In Overrange Stops on a ceramic substrate and is intended for use where small size,
Solid State Rehablllty excellent performance, and low cost are required.

Piezoresistive The accelerometer consists of a micromachined silicon mass

Ease of Mountmg suspended by multiple beams to an outside frame. Piezoresistors
located in the beams change their resistance as the motion of the
suspended mass changes the strain in the beams. Silicon caps on
% g the top and the bottom of the device are added to provide over-
Typical Applications range stops and increased durability. As a result of this unique
« Automotive Suspens|on Control three-layer silicon structure, accelerometers with a very low
profile and low mass can be batch fabricated at a very low cost.

Automotive Braklng Control An added feature is the built-in damping, which allows a wide

Machine Tool Monitoring useable bandwidth to be achieved. The damping factor is con-

Industrial Vibration Monitoring trolled to within + 10% over the entire operating temperature
range.

Modal Analy5|s The device is available in acceleration ranges from + 5 G to +

Secunty Systems Motion Detection 100 G. Device performance characteristics and packaging can be

Aerospace Fllght Nawga'non easily tailored to meet the requirements of specific applications.

Robotic Motion Control nnections/Dimension
Medical Patient Activity Monitoring . — 5 — St
Appliance Control l T s
Military Arming and Fuzing L 1 T A outeuT

T e |
Standard Ranges P “;Bgfsztzzf/ﬂﬂ
= 5G 020 TYP Il ¢ LS : SUPPLY i
+ 10°G Som e e il :
+ 20G 3021-P 3021-R 2 o A
+ 550G .Acc...f.'.on ’Accol?mnon
+ 100 G e [

v 5

ALL DIMENSIONS IN INCHES

4
l
I
l
l
&
l
. Computer Peripherals
l
l
1
B
i
i
Y



Model 3021 :
Performance Specifications |

Supply Current = 1.5 mA & Ambient Temperature = 25°C (Unless otherwise specified) 147
RANGE
PARAMETER +5G | £10G +20G +50G |+100G
Frequency Response (-5%) 0-350 Hz|0-500 Hz |0-700 Hz |0-1050 Hz]0-1600 Hz
Mounted Resonant Frequency (+15%) 600 Hz | 850 Hz 1200 Hz 1800 Hz | 2750 Hz
’ ALL RANGES
PARAMETER MIN TYP MAX | UNITS |NOTES
Full Scale Output Span 30 50 mV 1
Zero_Acceleration_Output 1 +mV 2
Damping Factor .707 3
INon-Linearity and Hysteresis 1 +%Span 4
Transverse Sensitivity 3 5 +%Span
Input & Output Resistance 4500 6000 Q
Temperature Coefficient - Span 2.0 +%Span 2.5
Temperature Coefficient - Zero 1.0 +%Span 2,5
Temperature Coefficient - Resistance 0.22 +%/°C 5
Supply Current 1.5 2.0 mA 2
Supply Voltage 5.0 12.0 vDC 2
Output Noise 1.0 uwV p-p
Output Load Resistance 2 MQ 6
Acceleration Limits (Any Direction) 20X Rated
Operating Temperalure -40°C to +125 °C
Storage Temperature -55°C to +150 °C
Weight (Excluding Cable) 1.2 Grams
Notes

1. From zero to positive acceleration value.

2. With external resistors added to reduce zero and span temperature coefficients and
to reduce zero acceleration output. The values for these resistors are supplied with
each unit. Compensation requirements differ for constant current and constant voltage
excitation. Gonsult factory. .

3. Damping factor is controlled to within £10% over entire temperature range.
Alternate damping ratios are available on a special order basis.

4. Best Fit Straight Line linearity.

5. Temperature range: 0-50°C in reference to 25 °C.

6. Prevents increase of TC-Span due to output loading.

7. Various electrical connections are available: R = ribbon cable, P = pins, N = none.

Ordering Information Repr n B

3021 - 010 - R

T I T~ Electrical Connection (R,P,N - see Note 7)
Acceleration Range
Model

IC Sensors products are warranted against defects in material and wérkmmshb %r 12 months from data of shipmant. Products not
subjected to misuse will be repaired or replaced. THE FOREGOING IS IN LIEU OF At OTHER EXPRESSED OR IMPLIED WARRANTIES. IC
Sensors reserves the fight to make changes to any product hereln and assumes no Habijlity arising out of the application of any product
or circuit described or referenced herein.

ICSENSORS 1701 McCarthy Bivd.  Milpitas, Californla 95035 Fax (408) 434-6687 Telex 350066 Phone (408) 432-1800

M3021R0-8709 _ Printed in USA
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Introduction

Batch-fabricated silicon accelerometers open up a wide variety
of applications because of small size, low mass, and low cost.
The unique features of the devices include the ability to pre-
cisely control mass, spring thickness, damping, and overforce
stops without the need to individually hand-assemble the accel-
erometers. One of a series of accelerometers from IC Sensors,
the Model 3021, is shown above.

Integrated Accelerometer Designs

The integrated, batch-fabricated accelerometer is the product of
evolutionary silicon sensor development efforts. The first re-
ported silicon accelerometer was made by Roylance in 1976.
This device was simply a silicon spring with a silicon mass
attached to it. The device featured diffused piezoresistors to al-
low batch fabrication of the device. Acceleration causes the
mass to move with respect to the frame, creating stress in the
piezoresistor, which changes its resistor value. A conceptual
model of this early device is shown in Figure 1. This accele-
rometer was configurable as a half bridge with only one of the
two resistors being sensitive to stress.

—~Piezoresistor

Flexure

Figure 1
Simple Cantilever Beam Accelerometer

The device has evolved from these early beginnings to the
structure, developed by IC Sensors, shown in Figure 2. Here
the device still features the silicon mass and integrated piezore-
sistors but instead of only a half bridge, the device now incor-
porates a full bridge design. Further, the device has been up-
graded from a single cantilever to a double cantilever structure.
This substantially reduces off-axis sensitivity. Further im-
provements, including ion-implanted resistors and a unique

process sequence, result in precisely positioned and matched
piezoresistors. Thus, optimum stress concentration is
achieved.

The resultant electrical structure is a Wheatstone bridge where
two resistors increase with downward acceleration and two de-
crease with the same force. This is shown schematically in
Figure 3. One advantage of the piezoresistive bridge is that the
device can measure true DC response, unlike several other
types of accelerometers; this enables measurements of slow
transients and low frequency vibration. Further, the device can
be directly connected to other electronic equipment without
concern for electrical loading of the output or possible damage
due to static discharge.

A key feature of the IC Sensors' piezoresistive bridge accele-
rometer is that it can be easily adapted to precision trimming
for temperature, gain and offset correction, just as the more
conventional piezoresistive pressure sensors are. The three
layer sandwich used by IC Sensors and shown in Figure 2 also
provides mechanical stops to prevent damage to the device in
handling and shipping.

Bond |-

Silicon Base Plate

Figure 2

Double Cantilever Silicon Accelerometer
with Overforce Protection

Comparison With Existing Technologies

There are presently three main types of accelerometers which
offer reasonably small size. These are the capacitive, piezoe-
lectric, and piezoresistive types. In each of these classes, there
are both integrated and non-integrated structures. The integrated
units are ones which lend themselves to batch-fabrication on
silicon or other substrates. The three general classes are com-
pared in Table 1.

This table is representative of the trade-offs in selecting a de-
vice, although there are exceptions to this list depending on ac-
celeration range and application. The strengths of the integrated
silicon accelerometer using piezoresistive transduction are
highlighted in the table. While size is usually a key advantage
for the piezoelectrics, the piezoresistive device, for high (2
100g) acceleration ranges, can be just as small, or smaller,
with built-in damping, with the ability to shunt calibrate, and
with the low impedance output.

Because the device is responsive down to DC, the piezoresis-




l tive accelerometer can be used to show orientation of the
mounting structure (i.e. for use in inclinometry). As shown in
Figure 4, the structure can be rotated through 180° and shows

l plus and minus one g acceleration due to the earth's gravity,
The added advantage of this, as noted in Table 1, is that the
calibration of the device can be verified by rotating the device
through 360°, recording the high and low readings, taking the
difference, and dividing by 2 to give the sensitivity. Unlike
the piezoelectric device, the piezoresistive device responds to
both slow and fast changes in acceleration.

+V,

Xitation

Increase with
l Acceleration 4

Signal (-) Signal (+)

Figure 3

Wheatstone Bridge
Configuration for
the Model 3021

Accelerometer

Decrease with
Acceleration

- Vexitation

Damping in Silicon Accelerometers

I The silicon accelerometer is a nearly ideal mechanical struc-
ture. Because the loss factors in the silicon accelerometer are
so low, the inherent damping of the device is also low. As a
result, the accelerometer can have significant gain at resonance.
Typical undamped gains of 30 to 200 have been reported at res-
onance. The gain of the Model 3021 accelerometer with damp-
ing factors of 31, 0.707, and 0.05 is shown in Figure 5. High-
I er damping factors result in lower gain at resonance.

The key problem with undamped units is that the device must
be able to withstand the high gain at resonance, and, further,
the electronics which interfaces with the device must also be
able to filter out this resonance and any harmonic distortion

+10

Qutput |
(mV)

Orientation
Figure 4

Effect of Rotation on the Accelerometer Qutput

due to cross-products of the resonance and the signal. This is a
technologically difficult problem and as a result, controlling
the magnitude of this resonance in the structure is critical.

IC Sensors controls the damping factor of the accelerometers
to provide devices with critical or near critical damping. This
prevents over-force damage and further reduces the possibility
that the device will hit the mechanical overstop due to high
amplitude gain at resonance. The design of the accelerometer is
such that damping factors can be specified during wafer fabrica-
tion and lower damping is achievable, although it is recom-
mended that the minimum damping be limited to result in a
gain of 10 at resonance. This results in the top curve shown in
Figure 5. These under-damped devices are substantially more
prone to output saturation and distortion than are the critically
damped accelerometers. »

Off-axis Sensitivity

All accelerometers are sensitive to forces other than in the
principle sensing direction. Three fundamental reasons exist for
this non-ideal sensitivity. The first is that the accelerometer,
even if ideal, is still sensitive to angular errors when mounted

I Table 1
Comparison of Sensing Technologies
Capacitive Piezoelectric Piezoresistive

I Impedance High High Low
Electrical Loading Effects Very High High Low
Size Large Small Moderate

l Temperature Range Very wide Wide Moderate
Linearity Error High Medium Low
DC Response Yes No Yes
AC Response Wide Wide Less Wide

l Damping Available Yes No Yes
Sensitivity High Moderate Moderate
Zero Shifts due to shock No Yes No

I Turn-over or Shunt Calibration Yes No Yes
Electronics Required ‘ Yes Yes No

’ Cost High High Low

l Cross-axis Sensitivity Primarily dependent on mechanical

design, not transduction
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in a system. The second is that the center of mass and the cen-
ter of bending are not co-planar in all axes. The final limita-
tion is in the matching of the piezoresistors.

With respect to mounting angle sensitivity, the effects can be
quite dramatic. For a 1° error, the sensitivity is only degraded

. by 0.02%; for a 5° error, the effect will be a 0.4% gain error. If

the device is mis-mounted by 8°, then the accelerometer will
register a loss in gain of 1% in the principle axis and will have
a net increase in sensitivity in the direction of mounting to
1%. This means that over the length of the Model 3021,
which is 15.4 mm, the surface must be flat to better than 1.8
mm. Note that for shorter devices or if the device has a post to
allow bolting down, it is sometimes difficult to assure flat-
ness; the flat ceramic substrate used in the Model 3021 thereby
helps in minimizing the off-axis sensitivity. Nonetheless, care
must be used when the accelerometer is mounted in a-system.

The more fundamental problem is one of having the center of
mass and the center of bending non-coplanar., This is shown in
Figure 6. In the conventional force direction, the beams bend
vertically and the center of mass moves downward. If an accel-
eration is applied from the left to the right, then the mass will
tend to rotate about the center of mass and one spring will
shorten and torque upward while the other will lengthen as it is
torqued downward. If the center of mass were in the plane of
the flexures, then an off-axis acceleration would result in pure
shortening of one flexure and pure lengthening of the second.
The difference in bending moments in these two cases results
in a minimal signal when the piezoresistors are well matched.

---------

Figure 6
Vertical and Horizonta! Loading of the Accelerometer

The third area which contributes off-axis sensitivity is in resis-
tor placement and matching. Ideally, two resistors increase and
two resistors decrease by the same amount with applied accel-
eration; slight mis-alighments will produce one or more resis-
tors which are less sensitive than the others, and, therefore.
torquing of the mass, as will happen due to off-axis loadiﬂéo‘
will produce a smaller change in those resistors than will be
produced by the corresponding resistors on the opposite side of
the mass. Note that these effects are set by the efficiency of the
stress collection and not by the resistor matching. The piezore-
sistive bridge can be perfectly balanced at zero g's and can
show significant off-axis sensitivity. Processing tolerances be-
come the dominant issue in setting off-axis limits.

It should also be noted that the off-axis sensitivities can be -
minimized by careful mounting of the devices; Figure 7 shows
a typical nulling curve. The procedure to provide this null is
time consuming and if the device can be used without resorting
to nulling, then it is recommended that technique not be at-
tempted.

Accelerometer Mounting Considerations

The accelerometer measures motion of a surface. Consequent-’
ly, coupling between the accelerometer and the surface is criti-
cal to assure a high fidelity signal. The.accelerometer is a sim-
ple spring/mass system. The insertion of a weak coupling

=

1
Oft-Axis %
Error g 4 | ¥

(%) |
| S— - ]

00

0.001 F
0 2 4 6 8 10
Mounting Angle
Figure 7
Off-Axis Sensitivity Vs Mounting Uncertainty

media, such as an RTV, results in a secondary spring/mass
system related to the mass of the total package and the elastic
nature of the coupling agent. This effect is shown in Figure 8.
The 3000 Series accelerometers are housed in a silicon casing
with the mass representing less than 12% of the total housing
weight. For the Model 3021 device, the casing is mounted on
a ceramic substrate and the mass of the housing is then further
increased by a factor of 7. Thus the total mass of the package
is 60 times the seismic mass and thus a spring interface which
is 60 times stiffer than the accelerometer spring will have the
same resonance, Further, this parasitic spring may be relative-
ly low-loss and result in a high Q, low damping subsystem.
As a result, the very low overall mass of the 3000 Series ac-
celerometers directly reduces the constraint on mounting,

Because of these factors, care in mounting should be exercised.
1t is recommended that a hard epoxy be used to mount the ac-
celerometer to the surface under study. Thick glues should gen-
erally be avoided as the coupling spring increases linearly with
layer thickness. Cyanoacrylate base cements (instant bonding)
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Effect of Secondary Spring-Mass Mounting
Resonance on Composite Frequency Response

offer excellent adhesion while minimizing the thickness of the

| l glue.
|

Prior to application of the sensor to the surface, both surfaces
should be degreased. Acetone or TCA are suggested cleaning

I solvents. Both surfaces should be allowed to dry and then a
drop of adhesive should be applied to the mounting surface.
The sensor substrate should be pressed against the surface;
pressing lightly with fingers on the top cap normally provides
adequate force.

To remove the sensor after the application is complete, it is

suggested that a bead of acetone be run around the substrate, al-

lowed to soak for S to 15 minutes and then torque should be

applied using a crescent wrench or similar tool to apply rota-

tion to the lower edges of the ceramic case. Do not torque by
lanaching to the black cap.

As a temporary mounting approach, the device can be attached
using RTV. While such a technique is not generally recom-
mended both because of the mounting resonance and because of
the mounting angle uncertainty, the approach may be viable
for critically damped accelerometers having the low mass of
the 3021. For a 1/4 inch thick layer of RTV, the effective res-
onance should be in the 100 to 300 Hz range, below the seis-
mic resonance and within the useful range of the accelerometer.
A thin layer of RTV (<0.06 mm) should result in a resonance
in the 10 to 30 kHz range. Thus, as can be seen by this exam-
ple, careful selection of mounting materials and thicknesses is
critical for proper operation of even an extremely light accele-
rometer such as the Model 3021.

UNDER NO CIRCUMSTANCES SHOULD AN ACCELEROMETER
BE STRUCK TO FREE IT NOR SHOULD THE DEVICE BE PRIED
UP. BOTH APPROACHES CAN DAMAGE THE UNIT.

Cable Considerations

The forces exerted on this series of accelerometers due to cable
whip and torque can be significant. Unlike the more conven-
tional accelerometers which are relatively heavy and attached to
the measurement surface with mounting studs, an advantage of
these ultra-light accelerometers is that they can be epoxy
mounted and demounted by torquing the device. The cable can
provide one source of torque. Further, the sensor / cable sys-
tem can effectively dampen or alter the movement of the struc-
ture under test. For this reason, it is recommended that the
cable selected for the accelerometers be extremely flexible, es-
pecially in the direction of sensing.

Model 3021

Cable

Adhesive
¥

Structure

Model 3021
Cable Adhesive
'l
Moving | Fixed Structure
Structure

Figure 9
Mounting Examples for Accelerometers

It is recommended that the cable be taped down in the vicinity
of the accelerometer but that the area nearest the sensor for the
first few centimeters be allowed to be free and not glued or
taped down. This approach will tend to reduce coupling and
torque problems but will still allow relative ease of mounting
and use. Care should be taken not to clamp or cement the
cable near the accelerometer as this will tend to localize stress
in the cable and may lead to breakage of the cable near the sen-
sor. Examples of mounting are shown in Figure 9.

IC S ducts are st defects in
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out of the application or use of any product or circuit d d herein.
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FESENSORS Accelerometer Final Test Data 3021-005-P *

NnhHh WO -

fmnnmn

A

8060

\ nl
Iq|| 3021-005-P
il

ICS

PACKAGE PINQUTS

- SUPPLY
- SUPPLY
+ SUPPLY
+ QUTPUT
- QUTPUT

PART# B8~ X033 |n
DEVICE OFFSET with 5 Volt drive __ [\ __mV
MEASURED SENSITIVITY 12- mviG

BRIDGE RESISTANCE 3240

TESTED BY _J-J). DATE 31144[59

8060 2

+ Acceleration

[ -

3021 (Side View)

i 4
~——0 +OUTPUT
; +SUPPLY
; ~QUTPUT
} -SUPPLY
1 _suppLY

! ACCELEROMETER |
! EQUIVALENT CIRCUIT !

............................

reversed on the preliminary data sheet.

NOTE: PACKAGE PINOUTS FOR THE MODEL 3021
DEVICES DIFFER FROM THE PRELIMINARY 3021 DATA
SHEET'S PINOUT CONVENTION. Pins 1 and 2 are

Doc. # 025-72-04D
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FESENSORS Accelerometer Final Test Data

3021-005-pP *
153
B 8060
l + Acceleration
I | 3021-005-P | !
|| I 8060 r | I R
2021 (Side View)
ics
i 4
—o +QUTPUT
1 ) 3 +SUPPLY
PACKAGE PINOUTS .
1 = -SUPPLY § i
2 = -SUPPLY ; OUTPUT
3 = +SUPPLY ;
4 = +OUTPUT :
5 = -QUTPUT !
- ; -SUPPLY
i1 _suppLY

! ACCELEROMETER |
{ EQUIVALENT CIRCUIT !

PART#_(74 —XO21((p

DEVICE OFFSET with 5 Volt drive __ 1S mV
MEASURED SENSITIVITY £.9 mviG
BRIDGE RESISTANCE 3/4 @

TESTED BY _J J. DATE_2/1/89

NOTE: PACKAGE PINOUTS FOR THE MODEL 3021
DEVICES DIFFER FROM THE PRELIMINARY 3021 DATA
SHEET'S PINOUT CONVENTION. Pins 1 and 2 are
reversed on the preliminary data sheet.

Doc. # 025-72-04D
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} FCSENSORS Accelerometer Final Test Data 3021-005-P *

+ Acceleration
||y 3021-005-P !
iy, 8060 : [ | S —
3021 (Side View)
IcS
i 4
: —o +OUTPUT
1 o 4 ; 2 ssuPPLY
PACKAGE PINOUTS :
1 = -SUPPLY |
2 = -SUPPLY : -OUTPUT
3 = +SUPPLY :
4 = 4+ OUTPUT :
5 = -OUTPUT :
' ~SUPPLY
~SUPPLY

{ ACCELEROMETER |
! EQUIVALENT CIRCUIT |

PART# A/ ¢ -Xey2(
DEVICE OFFSET with 5 Voltdrive __A~(o___mV

MEASURED SENSITIVITY 1.3  mviG
BRIDGE RESISTANCE SO _é Q

TESTEDBY ). - DATE Y/24:/3%

NOTE: PACKAGE PINOUTS FOR THE MODEL 3021
DEVICES DIFFER FROM THE PRELIMINARY 3021 DATA
SHEET'S PINOUT CONVENTION. Pins 1 and 2 are
reversed on the preliminary data sheet.

Doc. # 025-72-04D
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3021-005-P *

ICS

D)

1 2 3 4
PACKAGE PINOUTS
1 = -SUPPLY
2 = -SUPPLY :
3 = +SUPPLY :
4 = +OUTPUT :
5 = -OUTPUT :
! ACCELEROMETER |
: EQUIVALENT CIRCUIT :
PART# ) G -A0Y.2(~
DEVICE OFFSET with 5 Volt drive _/C- # mV
MEASURED SENSITIVITY -3 G
BRIDGE RESISTANCE 324 a
TESTEDBY % J- DATE (/20:/8.6

NOTE: PACKAGE PINOUTS FOR THE MODEL 3021
DEVICES DIFFER FROM THE PRELIMINARY 3021 DATA
SHEET'S PINOUT CONVENTION. Pins 1 and 2 are
reversed on the preliminary data sheet.

Doc. # 025-72-04D
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3021 (Sicfe View)
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3021-005-P *

' + Acceleration
||“|| 3021-005-P f
Hlffy, 8060 ﬁl ' r—m—
3021 (Side View)
Ics
aANeNeNe ; »
i : +QUTPUT
1 5 3 4 +SUPPLY
PACKAGE PINOUTS '
1 = -SUPPLY
2 = -SUPPLY OUTPUT
3 = +SUPPLY
4 = +OUTPUT
5 = -OUTPUT
~SUPPLY
; : -SUPPLY
| ACCELEROMETER |
t EQUIVALENT CIRCUIT ¢
PART# [-1l ~ACY 2 ("
DEVICE OFFSET with 5 Volt drive_~/t (> __mV
MEASURED SENSITIVITY 7l mviG
BRIDGE RESISTANCE SS54 0

o AR
TESTEDBY_) .} DATE _%/20/8 4

NOTE: PACKAGE PINOUTS FOR THE MODEL 3021
DEVICES DIFFER FROM THE PRELIMINARY 3021 DATA
SHEET'S PINOUT CONVENTION. Pins 1 and 2 are
reversed on the preliminary data sheet.

Doc. # 025-72-04D
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3021-005-P *
8060
l ' + Acceleration
[}y 3021-005-P ! |
' Ny, 8060 . | r——
. 3021 (Side View)

' ICS
" m H U m 4
| o +QUTPUT
‘ 1 2 3 4 5 3 +SUPPLY
PACKAGE PINOUTS ~
l 1 = -SUPPLY : -
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C.1 Matrixy Block Diagrams
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C.2 Run #1: Baseline Controller
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Run #1: DBaseline Controlier with Measurement Quantization
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C.3 Run #2: LQ Controller, agy = 10!
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C.4 Run #3: LQG Controller with Disturbance Estimation,
z-Axis Disturbance, agy = 10!, Bpw = 10°, ypw = 108
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C.5 Run #4: LQG Controller Using One Accelerometer Pair,
with Disturbance and Bias Estimation, z-Axis
Disturbance, dXpw = 1011, ,BBW = 105, YBW = 106, (5BW = 105
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C.6 Run #5: LQG Controller with no Disturbance or Bias
Estimation, z-Axis Disturbance, agwy = 101, By = 10°
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C.7 Run #6: LQG Controller with Disturbance Estimation,
y-Axis Disturbance, OBw = 1011, ,BBW = 105, YBW = 106
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C.8 Run #7: LQG Controller with Disturbance Estimation,
z-Axis Disturbance, agy = 101!, Bgw = 10°, v = 10°
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