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Summary 

This report describes the results of several tasks that were performed by Dy-
nacon in support of the Daisy flexible spacecraft emulation laboratory at the 
University of Toronto. An earlier controller-design investigation was extended 
by developing controllers based on reduced-order Daisy dynamics models us-
ing Davison's Servomechanism Control design technique, and applying these 
to Daisy in a program of experiments; previous controllers of this type were 

based on full-order dynamics models. Modifications to the Daisy hardware 

were carried out, in which about 100 pounds of mass were removed from 
the structure (in order to reduce rigid-mode damping), the mass center of 
the structure was raised (in order to minimize pendulous vibrations), and 
new integrated-circuit accelerometers were adapted for use on the structure 
(for use in future controller designs). Finally, the design of Linear Quadratic 
Gaussian controllers employing accelerometers as sensors for Daisy was in-

vestigated, through analysis, and modeling and simulation using the Matrixx  
control design software package. 
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1 Introduction 

With large flexible spacecraft about to become a reality, and the design for a permanent 
space station being finalized, it is clear that all the subsystems of current spacecraft 
must undergo substantial evolution in their design in order to meet the more challenging 
specifications of the future. The subsystems to bè discussed here are advanced attitude 
control systems that must be developed to accommodate large flexible "Third Generation" 
spacecraft. Over the past few years Dynacon has, under DOC funding, designed and 
fabricated the Daisy laboratory facility to test advanced control concepts appropriate for 
such spacecraft. Read, for example, [HuGHEs 8.2; SINCARSIN, 1983], [HuGHEs, 1985] 
and [SiNcARsiN, 1986]. This report describes work that was done on Daisy facility 
improvement, and on investigations of two types of control system design techniques 
using the Daisy facility. 

To gain an appreciation for the technology development made possible by Daisy, con-
sider as an example the mobile communications satellite shown in Figure 1.1. Beam 
performance necessitates a large, offset-fed reflector. Like this satellite, Daisy has rigid 
modes, 'clusters' of vibration modes, very low vibration frequencies, and very light damp-
ing. For top performance, it is necessary to deal with the following control-structure 
interaction problems: 

• Attitude control. The bus and the reflector must be made to point in the proper 
direction. 

• Maintenance of overall geometrical integrity. The reflector and the feedhorn must 
be maintained in the proper relative positions, despite structural flexibility in the 
towers. 

• Maintenance of reflector shape. For some applications it is necessary to control the 
shape of the antenna dish to tight tolerances. 

All of these problems can be and have been studied experimentally using the Daisy facility. 
In this report, further work along these lines is described. The nature of this work is 
discussed in §1.4. Prior to proceeding, however, let us first briefly describe the Daisy 
facility (structure and computer interface). 

1 
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1.1 Requirements for the Daisy Structure 

As alluded to above, the main objective of the Daisy facility is to provide a ground-based 

laboratory to help develop advanced control systems appropriate for what are sometimes 

referred to as "Third Generation" spacecraft. This laboratory was to comprise a flexible 

structure to emulate such spacecraft, as well as the necessary computer hardware and 

software to implement advanced control algorithms. In order to achieve this goal, the 

Daisy structure had to be capable of mimicking the following characteristics of large 

space structures: 

• Large dimensions; 

• Structural frequencies within the controller passband; 

• Vibration mode "clusters"; 

• Very light structural damping; 

• Tight pointing requirements; 

• Configurational integrity must be maintained; 

• Shape control may be required; 

• Sensors & actuators distributed over the spacecraft; 

• Modern (multivariable) control theory must be permitted; 

• New types of sensors and actuators are to be developed; 

• On-board signal proceÈsing requires microprocessors; 

• Opportunity for modal testing techniques to be studied. 

The Daisy design illustrated in Figure 1.2 has been shown capable of accommodating 
these requirements. In particular, Daisy has 

• 3 "rigid" rotational modes, 

• 20 "flexible" (or "elastic") modes, 

• Low frequencies of vibration (w 1  = 0.1 Hz), 

• Very light damping (Ci  = 0.008), 
• "Clustered" frequencies. 
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1. Introduction 

1.2 Description of the Daisy Structure 

We now proceed to describe the Daisy structure as it was prior to the start of the work 
described in this report. While this description appears elsewhere, it is included here again 
in order to provide a baseline against which the configuration changes that were performed 
during this work (as described in §3) may be compared. In addition, the nomenclature of 
Daisy, described here in detail, should provide a useful reference when reading about the 
tasks that are described in §§2 and 4. 

As depicted in Figure 1.3, Daisy consists of a central rigid hub to which ten counter-
balanced ribs are attached. The ribs in turn are interconnected by spring struts. 

1.2.1 The Hub 

The four-layer hub comprises a bottom plate, a center plate, a top ring and an inertia 
balancing tower. The top ring accommodates the ribs via ten two-dimensional universal 
pivots. Motions out-of-cone (perpendicular to the surface of the cone formed by the ribs) 
and motion in-cone (parallel to the surface of the cone) are permitted. While the provision 
for twist about the rib-tube symmetry axis exists, it is not activated at present. 

The center plate acts as the structural backbone for the entire design. It supports 
the inertia balancing tower, the top ring with the ribs and struts attached, and bears the 
loads from the bottom plate and the three reaction wheels. Finally, the center plate acts 
as a platform for the data acquisition (or interface) computer. 

A three-dimensional gimbal (+14° about xh and yh, and 360 0  continuously about z h  ) 
connects the center plate to the support stand for Daisy. Since the gimbal pivot, by de-
sign, ideally corresponds to the mass center for Daisy, pendulous gravitational oscillation 
modes have been minimized. As a consequence, three rotational rigid modes, with nearly 
zero frequency, are produced. Hub rotations and rates are sensed via digital encoders, 
which simulate space-like measurements from devices such as gyros. These devices are 
incorporated into the gimbal design. 

As alluded to above, the bottom plate acts as a mounting platform for Daisy's reaction 
wheels. It also acts as a base for the motor-control circuitry and the majority of the 
structure's power supplies. Power is brought onto the structure via cables dangling loosely 
down the center of the inertia balancing tower. The DC power supply for the reaction 
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7 1. Introduction 

wheels, because of its large size and inertia, is by necessity located off the structure. In 

fact, even the reaction wheels are rather massive, so much so that their inertias and those 

of the bottom plate have been utilized to make the rigid (hub) inertias and the flexible 
inertias (ribs and struts) comparable. Thus a reasonable hub-rib interaction is ensured. 

The mass center for Daisy can be adjusted by raising or lowering the bottom plate or 

by minor adjustments to the locations of the reaction wheels. Moreover, the ability to 
adjust the final location for each reaction wheel permits the removal of unwanted cross-
products of inertia that will arise within the design because of the chosen reaction wheel 

configuration and fabrication and assembly tolerances. It is noteworthy that the spin 
axis of each wheel is aligned with one of the principal inertia axes for Daisy, denoted 

(xh,yh, zh). The pivot axes within the gimbal are aligned likewise. 

1.2.2 The Ribs 

Each rib has its flexibility localized at the rib pivot. Out-of-cone flexibility for each rib is 
provided by two linear helical springs Each is configured-to generate a torsional stiffness 
by bending about the longitudinal spring axis (rather than being extended or compressed 

along the axis, as is the normal mode of operation for such springs). These springs are 

`preloaded' so that they support the rib against the effect of gravity and permit it to 
'float' in the rib universal bearings. This minimizes frictional losses, thus açhieving a very 

low damping in the out-of-colle direction. 

In-cone flexibility is provided by a -short rod-spring which acts in torsion to provide 

stiffness between the spider of the rib-universal and the rib structure. Again to minimize 

the frictional losses in the universal bearings, this rod is preloaded in compression to 

'push' against both the spider and the rib structure, thus forcing them apart, and 'lifting' 
the in-cone bearings off their races. The result, as before, is a very low damping, but this 
time in the in-cone direction. 

To achieve the intended low first flexible-mode frequency of 0.1 Hz, the rib inertia 
must be large compared to the rib pivot spring stiffness. This is accomplished by adding 

a tip mass to the rib and then counterbalancing the rib to guarantee the required inertia 
properties. The spring stiffness is determined based on damping requirements. Simply 
put, the amount of energy stored by an initial rib displacement must be substantial enough 
so that frictional losses cause the resulting rib oscillations to decay at the appropriate rate, 
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that is, to provide an effective viscous damping coefficient of 0.8%. 

Ultimately, accelerometers are to be mounted on each rib tip to measure both the 

in-cone and the out-of-cone rib accelerations. At present, only one rib is so instrumented. 

(This unconventional 'space sensor' is likely to become more widely used as spacecraft 

flexibility becomes the chief limitation to attitude-control-system performance.) In addi-

tion, a pair of bi-directional compressed air thrusters will eventually be included at each 

rib tip. These devices will serve a dual role as control actuators and as sources for dis-

turbance inputs. Application of thruster pulses will be possible in both the in-cone and 

out-of-cone directions, and in either the positive or the negative sense in each direction. 

At present, only one rib possesses a thruster package, the second rib in the clockwise 

direction from xh, shown in Figure 1.3. If one numbers the ribs clockwise, starting with 

the rib aligned with x h  as number one, then the instrumented and actuated rib is rib #3. 

1.2.3 The Struts 

As shown in Figure 1.3, spring struts are connected between each rib using rigid mounts. 
These act to minimize frictional losses while introducing some weak coupling between the 

in-cone and out-of-cone rib motions. The multiplicity of the ribs and struts, and this weak 

dynamical coupling gives rise to a clustering of frequencies for the flexible modes. The 

strut springs also provide additional sources of flexibility which can be used to alter the 

effective spring stiffnesses at the rib-pivot. Furthermore, these springs are preloaded to 

provide a membrane-like stiffness in the structure which forms the rib cone. Nominally, 

the longitudinal axis of each rib is 30° above the horizontal plane. The locations for the 

struts are chosen to meet damping requirements, as losses in these springs are magnified 

as they are moved towards the rib tips. 

The choice of an even number of ribs permits two axes of symmetry for out-of-cone 

motions. Those selected are denoted sh and yh in Figure 1.3. Obviously, the potential 

for the introduction of asymmetries, given the multiplicity of ribs and struts, abounds. 

For example, inertia or material asymmetries can easily be accommodated by replacing 

or altering an existing rib. In this sense the structure also is reasonably adaptable. 

Daisy is a relatively 'simple' structure, which by its nature can easily be discretized 

for the purposes of analytical modeling. Also, because typical rib and hub amplitudes 

are designed to be nominally between 7 0  and 100 , Daisy is, to a large extent, a 'linear' 
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structure. There are, however, important nonlinear components to the overall system, 
the most notable being the rib-tip thrusters. 

Another advantage of maintaining small amplitude motions is that slip rings can be 
avoided. Instead of introducing these 'noisy' frictional elements, sensors and actuator leads 
can be permitted to flex through the necessary angles during normal structural vibrations. 
Mechanical stops are used to guarantee that normal limits are not exceeded. It should be 
emphasized that large angle maneuvers, such as slewing, can be accommodated about the 
zh axis. Several complete rotations are possible before sensor and actuator leads become 
substantially 'wound up'. 

The support structure upon whia Daisy rests is 'rigid' in comparison to Daisy itself. 
Hence, spurious flexibility effects are not introduced via the support. It should be realized, 
however, that since the support must pass through the bottom hub plate, care must be 
taken to maintain the x h  and yh  hub rotations within design limits (±14°) so as to ensure 
that the bottom plate does not contact the support. The support offers no restriction to 
motion about zh . 

1.3 Description of the Computer Interface 

Two separate processors are involved in the computer interface used to provide control 
to the Daisy structure. The first, the TAURUS Lab, acquires data from the sensors, and 
transmits data to the actuators. A DIGITAL Micro PDP 11/73 executes the desired 
control strategy. Within this framework, the TAURUS can be viewed as an interface 
computer that bridges the gap between the control algorithm computer and the Daisy 
structure (see Figure 1.4). 

The interface and control algorithm computer must, of course, communicate with one 
another. Three interface possibilities are provided in the present configuration: via a 
RS232 serial port, via an IEEE 8-bit parallel bus, or via a specialized 22-bit parallel bus. 
Both direct memory and interrupt capabilities are selectable on the two parallel buses. 
At present, only the first two types of communication lines have been implemented. Also, 
to minimize the number of wires required to accomplish the link between Daisy and the 
PDP, the TAURUS is mounted on the center plate of Daisy. There are many more sensor 
and actuator wires required than found in one computer bus cable. 
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Various display and recording devices are also integrated into the Daisy computer 

facility (see Figure 1.4). Some, like the dual x -y plotter and 4-channel oscillograph, can 

be used to display sensor and actuator signals directly, or can be driven remotely by the 

control algorithm computer. Others, like the 31 Mbyte Winchester hard disk, the dual 

409 Kbyte floppy diskettes and 60 Mbyte streaming cartridge tape drive, are dedicated 

devices, controllable only by the PDP. A graphics terminal and printer are also important 

components in the display and recording category. It is noteworthy that the Z-80 based 

TAURUS has a limited intelligence and can be manipulated directly by the terminal, if 

so desired. In this regard, the printer also can be used either as a 'screen dump' device 

from the terminal, or it can be driven directly from the PDP. 

While much of the software used to control Daisy has been custom written, certain 

commercial 'packages' have been acquired to ease this chore. In particular, a real-time 

single-user operating system, RT-11, has been purchased, as has the high-level language, 

FORTRAN 77. In addition, IEEE drivers have been procured for the PDP. The TAURUS 

Lab comes complete with all required software. Moreover, listings and documentation are 

available for this software, which facilitates the introduction of custom software into the 

TAURUS. Such software can be either 'downloaded' via the serial port or incorporated in 

the firmware of the computer by using EPROMS. 

1.4 Report Outline 

The work reported herein consists of three main tasks. These are described in the para-

graphs below, with one paragraph devoted to each task. 

The first task, the topic of §2, carries on from earlier controller testing studies. In the 

earlier work, a type of controller known as the Servomechanism Controller was designed 

for Daisy by the University of Toronto's Professor E. J. Davison, and was subsequently 

implemented and tested. This design was based on a "full-order" model of Daisy's dy-

namics, comprising 23 vibration modes (two for each rib, and three for the hub). In the 
present work, similar controllers were designed based on "reduced-order" models of Daisy, 

in which some of the structure's open-loop vibration modes were neglected; the resulting 

controllers were again implemented and tested. Claims have been made that this design 

technique has good robustness properties; this task was carried out in order to test the 

robustness of the controller design method to the presence of unmodelled dynamics. 
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Section 3 describes a suite of modifications made to elements of the Daisy facility's 

hardware, with a goal of improving its emulation of flexible spacecraft. The first of these 
involved removing unnecessary components from the structure in order to reduce its mass, 

thus reducing the amount of friction present in the main hub gimbals; this friction causes 

an undesirable damping of the structure's "rigid-body" vibration modes, damping that 

would not be present in a flexible spacecraft. The second change was to alter the structure 

in order to raise its mass center, reducing the gravity-induced "pendulous" restoring 
torques acting on the structure's rigid modes to an almost-undetectable level; again, this 
source of stiffness is undesirable in Daisy because it is not present in real spacecraft. The 

third change was to procure a set of new accelerometers, and adapt them for mounting 

on Daisy's ribs; each accelerometer consists of a single integrated circuit chip, and is 
substantially smaller, lighter and less expensive than the inertial-grade accelerometers 
previously used on Daisy, raising the possibility of instrumenting more of Daisy's ribs 

than would otherwise have been affordable. 

Work on a new control technique for Daisy is described in §4. The controller of §2 is of 

the output feedback type, as was Daisy's original Baseline controller. Here we investigate 
the application of the linear Quadratic Gaussian control technique (sometimes known as 

Optimal Control) to Daisy; a state observer (Kalman filter) uses measured outputs to 

update a model of the structure's state, which in turn is used to drive a state-feedback 

controller. The technique is extended to allow accelerometers to be used as sensors, an 

improvement over the more common version of the method in which only position and 
rate sensors are permitted. The design of the controller is outlined, and an analysis 
is presented relating the accelerations sensed along Daisy's ribs to the structure's state 
vector. The effect of gravity on the accelerometers' outputs is investigated, and a method 
to compensate for it is recommended. In order to test the performance of this type of 

controller, simulations of various versions of the controller, as applied to Daisy, were 

carried out, using the Matrixx  control design and simulation software package. In support 
of this, a dynamics model of Daisy was developed using Matrix x 's System Build utility, 
incorporating a number of known nonlinearities of the system. This model is a tangible 
product of this task that will be of much use in any future Daisy work. 



2 Reduced-Order Davison Controllers 

2.1 Task Overview 

This section outlines, explains and discusses the results from experiments recently per-

formed on the Daisy structure in the area of reduced-order control. These experiments 
are a continuation of earlier control-systems studies in which the performance of a partic-

ular type of controller (a "Servomechanism Controller") was studied. The same control 
algorithm is used in the present study, but the internal scalars or "gains" of the con-

troller have been significantly modified. The new values for the gains are derived from 

an analysis which uses an incomplete or "reduced-order" model of the Daisy structure 

within a performance optimization scheme to select gains. In the previous studies Daisy's 
full-order structural model was used in the gain selection process. 

As this study is a continuation of a former one, the reader is referred to [Sincarsin and 

Sincarsin, 1988] in which the earlier portion of this study has been presented. Though 
much of the information in the earlier report will be reviewed here, for the sake of brevity, 

many of the details will not be repeated. For example, since the controller implementation 

only required entering numbers into a computer data file in the present study, this subject 
has not been dealt with here, even though the original implementation for the prior study 

required a great deal of effort. This effort is discussed in the above reference. 

In the next two sections the design of the controller and the experimental strategy 

employed are reviewed. The last section discusses the results of the present study. 

2.2 Controller Design 

The design of the control algorithm used in this study was performed by Dr. E. J. 

Davison of Electrical Engineering Consociates. Dr. Davison defines a performance index 

that increases in value as the performance of the controller degrades. The evaluation of the 

controller gains is then accomplished by minimizing this index. The performance index 

itself is evaluated by using parameters from the dynamics model of the Daisy structure 

developed by Dynacon Enterprises. This model takes on the standard second-order form, 

13 
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(1) 

Y = Pc1+ Q14 (2) 

z = ZDCI+ ( 3 ) 

Here M is the system mass matrix, D is the system damping matrix, g is the system 

gyridty matrix and K  is the system stiffness matrix. The input matrix B operates on the 

system input 'vector' u, while ud  represents disturbance inputs. For the current version 

of Daisy, 

q = ari, • • • eirlo} 

wh.ere Oh is the angular displacement of the hub about its pivot, and the ari, i = 1, . . , 10 , 

contain the out-of-cone and in-cone angular displacements of ribs one through ten, about 

each respective rib's pivot. 

The regulated or important outputs y are related to q and (à via the position output 

matrix P and the rate output matrix Q. The sensed or measured outputs z, on the other 

hand, are related to q, ei and ei via the.displacement measurement matrix ZD, the velocity 

measurement matrix ZIT, and the acceleration measurement matrix ZA. 

The entries in the different matrices of the dynamics model have changed over time, 

as the model has been updated to match changes in the physical structure. The integrity 

of these entries has not been strictly tested because of time limitations imposed in earlier 

studies. However, the entries are believed to be representative of the structure, as com-

parisons of responses generated by the real structure and computer simulations using the 

above matrices have demonstrated a good correlation in the global characteristics (see 

§2.2.2 of [Sincarsin and Sincarsin, 1988]). 

For controller design, the above dynamics model of their respective responses is con-

verted into a first-order system model of the form, 

(4) 

(5) 

(6) 

Ax Bu 

y = Cx 
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where, here, 

A = [ 0 1_n2  4)] , [(:.] (7) 

C = [P 0] (8) 

and 
x ( 9 ) 

To obtain (5) and (6) from (1) and (2), one must define 

q Er) (10) 

where E is the eigenmatrix for the undamped system. Then, given the normalization 

ETME = 1 (11) 

ETKE = S-Z 2 (12) 

Finally, introducing the definitions 

t) ETDE (13) 

ETB (14) 

PE (15) 

one arrives at (5) and (6). Of course, it has also been assumed that both g and Q are 
zero. In fact, neglecting the former matrix is a reasonable assumption for Daisy, while 
the statement of the control problem justifies the dropping of the latter matrix. 

It should be noted that a "reduced-order" Daisy model is one that has columns of 
E, which are eigenvectors, discarded and A, B, C and x reduced corresponding. These 
eigenvectors are associated with particular modes so that the action of reducing these 
matrices can also be referred to as discarding modes. 

Let us also be specific about the forms of y and u. Here, 

A n  
Y .= coituh,, vh y , vhz, aryarz} 

it follows that it follows that 

(16) 
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and 
U COlfgcx  gcy  gcz fcy) fay} 

The first three entries in (16) are Oh = C01{0h,,Oh y ,Ohz }, while ary and a, are the out-of-
cone and in-cone angular displacements of Rib 3 (the second rib in the clockwise direction 
after the rib aligned with the xh-axis). In (17) the first three entries are control torques, 
applied about the x h , yh , and zh  axes, respectively. The last two entries are the forces 
which result from firing the compressed-air rib thrusters in the in-cone and out-of-cone 
directions. In addition, let us define 

A yref  = col {0;',e!, Orheyf, arrejaref }rz  

where the superscript (ref) refers to reference values for each variable at the time control 
is initiated. 

The controller used in this study is digital and thus assumes time discretization of the 
above matrices. From the technique described in [Davison, 1987] a controller, called the 
Servoinechanism Controller, that solves the above system equation takes the form, 

Ut = Ilt_h — EpKp(et — et_,) — 6DICD(Sr2 — Srt-h) — 

where the error is 

et = yi — Yref (20) 

Here, u t  is the input to the system at time t, yt  is the output of the system at time t, and 
h is the sampling interval (a constant). The gain matrices Kp, KD and K i  (proportional, 
derivative and integral) are 5 x 5 matrices, which are premultiplied by the gain scale 
factors cp > 0, eD > 0 and el > 0. These factors are included to permit tuning of the 
controller gain matrices to account for hardware limitations that might arise. Nominally, 
they are given the values ep = CD = ei  =1. 

It is the entries of these Kp, KID, and K/ gain matrices that are evaluated using 
the performance index minimizing scheme mentioned in the beginning of this section. In 
the past, two sets of matrices—corresponding to two different controllers—were studied; 
however, only one set was used in an in depth control study. In the present study, three 
different sets of gain matrices were considered, but, as will be explained in §2.4, only 
one was used. The first set was obtained by using a reduced order model with the all 

(17) 

(18) 

(19) 
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modes discarded except for modes 1,2,3,4 and 9 as described in §2.4 of [Sincarsin and 

Sincarsin,1988]. This set of gain matrices is reproduced in Table 2.1. However, it was 
found that this controller became unstable when controller update times of h > 10-2 

 sec/update. Since the present hardware is only capable of producing controller updates 
of 10 sec, for this set of controller gains, it could not function on Daisy. The next set 
is shown in Table 2.2 and is obtained by discarding modes 5, 7, 11, 15, 16, 17, 18, 19, 20, 
21, 22 and 23. This set of gain matrices also produced an unstable controller, as will be 
explained in §2.4. The last set of gain matrices is shown in Table 2.3. It is obtained by 
discarding modes 5, 7, 11, 15, 16, 19 and 21. Simulated responses of the system to a step 
input demonstrate stability for a controller based on these gains and processing a 0.1 sec 
update time. 

2.3 Experimental Strategy 

The experimental strategy employed in the study is identical to that of the previous study 
outlined in [Sincarsin and Sincarsin, 1988]. The experimental performance index used in 
that study is reused here, as is the input disturbance, which is applied in the same way. 
Also the same 108 original experimental runs were performed using the reduced controller. 
To clarify, these items are now reviewed in turn. 

2.3.1 Performance Index 

The experimental performance index used is the mean-root-square value of the system 
"error vector" 

1 T 
en,„ = lim dt 

T—>co 

where e = col{eh„ ehy , eh, , ery , erz } and ei = — -yi. . That is, ei  is the difference between 
the value of the ith state variable and its reference value, -yi., with -y E { 0, cr}. So, provided 
all the ei are bounded as T —› oo , en.,„ remains bounded even if the steady-state errors are 
nonzero. Since the steady-state errors are nonzero for the Daisy structure, this bounded 
condition could not be met by most existing performance indices, including the one used 

to obtain the controller gains. To reiterate, there are two performance indices used in 

(21) 
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Table 2.1: Reduced Controller #1 

5.0255e4006 9.4057e+005 -1.7149e+003 8.2177e+005 -1.0084e+007 
9.7605e+005 2.7105e+006 -3.5641e+003 -2.6532e+005 -3.0893e+007 
1.6553e4006 4.8872e+006 3.2890e+006 -1.8861e+002 -4.8969e+007 

-1.7148e+004 -5.0614e+004 2.5535e-015 1.9519e+000 5.0678e+005 
-1.9014e4003 5.9179e+002 -8.5950e-017 -6.4625e4003 - 1.7358e -001 

•111111 

2.3514e+005 -4.2873e+002 2.0935e+005 -2.5219e+006 
1.9331e+006 -8.9102e+002 -6.7598e+004 -7.7264e+006 
1.2218e+006 8.2225e+005 -4.7151e+001 -1.2248e+007. 
_1,2654e+004 -3.2857e-011 4.8796e-001 1.2675e+005 
1.4795e+002 5.2123e-015 -1.6523e+003 -4.2885e-002_ 

1.2818e+006 
2.4401e+005 
4.1382è+005 

-4.2871e+003 
-4.7536e+002 

Table 2.2: Reduced Controller #2 

3.6897e+06 
7.1872e+04 
4.0017e+03 

-5.7724e+01 
1.1892e+03 

- 5.8278e+04 
4.2745e+06 
-4.5523e+05 
4.6748e+03 
3.6686e+01 

-1.4130e+03 5.7211e+04  -1.32959+051  
-3.1183e+03 -4.3906e+04 -4.3450e+04 
3.2897e+06 6.9791e+03 -6.6879e+05 

-7.4933e+00 -7.2011e+01 6.9159e+03 
-2.9747e-01 -1.3061e+03 7.2022e+01 

9.4839e+05 
1.8407e+04 
J.:86666+03 .  

-2.2774e+01 
2.9657e+02 

-1.4951e+04 
1.0947e+06 

-1.1439e+05 
1.1748e+03 
1.1887e+01 

-3.5324e+02 
-7.7958è+02 
8.2243e+05 

-1.8733e+00 
-7.4366e-02 

1.8396e+04 
-1.2344e+04 
1.9643e+03 

-2.0275e+01 
-3.6407e+02 

-3.8453e+04 
-2.3873e+04 
- 1.9139e+05 
1.9794e+03 
2.0278e+01 

Table 2.3: Reduced Controller #3 

3.6887e+06 
7.1469e+04 
-1.9583e+03 
-8.2334e-01 
1.1885e+03 

9.4800e+05 
1.7978e+04 
-2.9328e+02 
-2.2372e+00 
2.9643e+02 

1.3281e+04 
4.2983e+06 

-3.7885e+04 
9.3760e+02 
5.2102e+00 

3.0326e+03 
1.1009e+06 

-9.6188e+03 
2.3593e+02 
3.9839e+00 

-2.5376e+04 
-1.1209e+04 
2.5785e+06 
1.1989e+03 
2.1789e+01 

-6.3439e+03 
-2.8021e+03 
6.4463e+05 
2.9972e+02 
5.4473e+00 

5.6261e+04 
-4.4160e+04 
9.2869e+02 

-2.5388e+01 
-1.3044e+03 

1.8128e+04 
- 1.2478e+04 
3.2038e+02 

-7.2598e+00 
-3.6361e+02  

-2.7038e+04 
-8.2089e+03 
-4.9905e+04 
1.3847e+03 
2.5394e+01 

-8.0701e+03 
-5.2117e+03 
-1.8381e+04 
4.0729e+02 
7.2616e+00 
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this study, the performance index used to obtain the control gains and the experimental 
performance index. 

2.3.2 Input Disturbance 

The input disturbance used is a simulated impulse torque applied to the hub about one 
of its three axes at the beginning of the "run" (t=0). Torques were not applied to the 
single actuated rib as the controller quickly returned it to its reference position before it 
could interact with other ribs or the hub. That is, very little of interest occurred, from 
a control point of view. A simulated impulse was used since, at the present time, there 
is no way to generate a real impulse on Daisy. As demonstrated in §4.2 of [Sincarsin 
and Sincarsin, 1988] an impulse disturbance at t=0 in a first order system is identical to 
special initial conditions which, in this case, are the initial velocities of the hub about its 
axes. Since these could be generated with the hub actuators, initial hub velocities were 
used to simulate an impulse torque. 

The hub velocities were generate by applying a 20 ft-lbf  torque to the previously 
quiescent hub for 0.75 seconds to back it away from its reference position zero hub angles 
or displacement, and then following it with a 30 ft-lbf  torque applied in the opposite 
direction for 0.75 seconds leaving the hub with a residual velocity as it crossed the reference 
point. The controller is activated when the reference position is crossed (marking t=0) 
and the run is started. 

2.3.3 Experimental Runs 

A total of 108 experiments or 'runs' were performed, consisting of 36 different combina-
tions of scale factors, with each combination tested for an initial hub velocity about first 
the x-axis, then the y-axis, and finally the z-axis. The actual values of the scale factors 
used are cp  = (0.2, 0.3,0.4), q = (0.2,0.3, 0.4) and cd = (0.2, 0.3, 0.4,0.5). To help keep 
the overall test schedule tractable, all runs have a duration time of only 3 minutes, even 
though, for the poorer choices of the controller scale factors, the error index may not 
have settled completely by this time. The results from these runs are discussed in the 
next section, along with comparisons to the runs generated by the controller using gain 
matrices based upon a full-order model. 



(24) 

(25) 
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2.4 Discussion of Results 

2.4.1 General Observations 

By inspecting the form of the controller in (2.19), an interesting fact can be identified. 

That is, if the controller is used to "station-keep" so that yref is constant, as is the case 
in the present control studies (which may not be true for other satellite maneuvers such 
as "slewing"), the control becomes 

ut  =  u t  _h  — EpKp(e t  — et_ h ) — EDKD (et  — e t_h)— EihK iet_ h  

or 
— Alit  = epKpAet 4-  CDKDAèt + C/K/et—hh (23) 

which can be recognized as the form of a PDI (proportional, derivative, integral) controller. 
That is, as the sample update time reduces, Au --> Su, Ae --> Se, and h —› St. If (2.23) 
is integrated with these equalities inserted one finds 

— f

t t t t 
. Sut  = epK p I Set  -I- eD KD  f Set  + elK I  j et_st St 

o o o 0 
Or t 

— u = epKpe+ eDKDèl- eiKi f eSt o 
which is the standard form for a PDI controller. 

Even though the Servomechanism Controller is analogous to a PDI controller for the 

present study, during experimentation it was found that the Servomechanism Controller 

was more susceptible to input noise. This is due to the fact that (2.22) uses the previous 
values of the u vector to find its present values. That is, if noise causes an erroneous 

sensor reading that is used in evaluating the e vector, it causes an erroneous ut  to be 

generated. This vector then becomes ut_h  which causes the next ut  to be calculated 
erroneous, and so on. Eventually, the effects of the noise decay away, though the time 

constant of this decay is quite large, due to the 0.1 sec update cycle. On the other hand, if 

a PDI controller is implemented in the standard form of (2.25), noise in a sensor reading 

causes an erroneous u vector for only one cycle. In effect, for a noisy system with large h, 
t t 

Euh 0 fo  uSt = u 
o 

(22) 

(26) 
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2.4.2 The Controllers 

In earlier studies (see, [Sincarsin and Sincarsin,1988]) two sets of Kp, KD and K 1  matrices 

developed by Dr. E. J. Davison were considered, those corresponding to 

• Full-Order Controller, and 

• An Enhanced Full-Order Controller 

However, since the latter required severe torques from the hub actuators, only the former 

was used in a detailed study of 108 runs. 

In the present study, three sets of gain matrices developed by Dr. E.J. Davison are 

considered. Those corresponding to 

• A Reduced-Order Controller #1 with the following modes 

retained - 1, 2, 3, 4, 9 

discarded - 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 

• A Reduced-Order Controller #2 with the following modes 

retained - 1, 2, 3, 4, 6, 8, 9, 10, 12, 13, 14 

discarded - 5, 7, 11, 15, 16, 17, 18, 19, 20, 21, 22, 23 

• A Reduced-Order Controller #3 with the following modes 

retained - 1, 2, 3, 4, 6, 8, 9, 10, 12, 13, 14, 17, 18, 20, 22, 23 

discarded - 5, 7, 11, 15, 16, 19, 21 

Reduced-Order Controller #1 was developed in the previous work; however, due to time 

limitations it was never implemented. In fact, this controller requires faster update times 

(h < 10 -2  sec) than is presently possible with the existing Daisy hardware. An attempt 
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was made to implement this controller with the 0.1 sec update time currently available, 
however, as expected, a stable active controller could not be obtainèd for any scale factors. 

Reduced-Order Controller #2 was developed during the present work to produce a 
stable controller at the 0.1 sec update time, discarding as many modes as possible. This 
was accomplished by iteratively adding modes until the computer simulations predicted a 

stable controller. Unfortunately, when this controller was tested in the real Daisy facility, 
no scale factors could be found that would stabilize the controller. This unexpected 
result has two possible explanatiOns, either the Daisy model used to develop the control 

gains did not accurately represent Daisy, or, more likely, the assumption that the rib 
thrusters act as linear actuators is poor. As explained in [Sincarsin and Sincarsin,1988] 
the Servomechanism Controller assumes all actuators to be linear. This is true in the case 
of the reaction wheels performing hub actuation; however, the thrusters used to actuate 
the ribs are on-off devices. An attempt has been made to generate a variable thrust by 
linearly varying the duty cycle of thé  thrusters during the control update cycle, but, at 
best, this is a crude approximation of a linear device. It should also be realized that 
this controller is very near the theoretical limit for the number of modes capable of being 
discarded. That is, if one more mode is discarded the computer simulations indicate the 
controller cannot be stabilized. Thus it is not unreasonable that hardware irregularities 

in the real structure may cause the controller to be unstable when theory predicts it to 
be stable. 

Reduced-Order Controller #3 was developed to correct the problem experienced with 
Reduced-Order Controller #2. Five more modes were retained which lead to a stable 
controller when implemented on the real Daisy structure. Therefore, Reduced-Order 
Controller #3 was investigated further by analyzing the results of the 108 runs previously 
described in §2.3. 

While the different controllers were under study, an interesting empirical fact became 
apparent which should be noted. Namely, there appears to be a correlation between a 
stable controller and the asymmetry of some of the gain matrices. In particular, if the 
gain matrices previously shown in Tables 2.1, 2.2, and 2.3 are inspected one finds that the 
Kp and KD matrices are identical for the Servomechanism Controller and the symmetry 
of the direct feedback gains associated with the rib in these matrices appear to be directly 
related to stability. That is, the gain matrices can be considered to be partitioned into 

a number of areas. The upper left 3 x 3 entries correspond to the three hub axis. This 
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area has diagonal entries orders of magnitude larger than the off-diagonal terms since hub 

motions about the three axes are only weakly coupled through the rib motion. The upper 

right 3 x 2 entries and the lower left 2 x 3 entries represent the interaction between 

the hub and rib #3 (the only activated rib). The area of current interest is the lower 

right 2 x 2 portion of the gain matrices which correspond to the two rib axes. Here 

the off-diagonal terms are several orders of magnitude larger than the diagonal terms 

since the actuators are thrusters that generate forces at the rib tip perpendicular to the 

axis being controlled. That is, to obtain a correcting torque about one rib axis, a force 

must be applied in the other perpendicular axis. Therefore, these off-diagonal terms are 

the direct feedback gains for the rib. As the rib is almost symmetric, the magnitude 

of these two terms can be expected to be approximately the same (although their signs 

are different because of the chosen rib reference frames), as is the case for all working 

controllers tested to date. However, these off-diagonal terms are quite different in the 

two unstable controllers Reduced-Order Controller el and #2. Further support for this 

apparent gain "symmetry" requirement can be found from experimental observation, in 

that the onset of instability seems to start in the rib and propagate to the hub (though 

this could be an effect caused by the inertial differences between the two). At present 

there is no theoretical analysis that exists to support this empirical result. 

2.4.3 Controller #3 

As with the Full-Order Controller, Reduced-Order Controller #3 was stable for a range 

of scale factors. Table 2.4 shows the behavior of controller #3 for the scale factors used 

in the tests as well as those for the full-order controller. Because of the Servomechanism 

Controller is analogous to a PDI controller in these test the terms generally used when 

describing the PDI coefficients (`stiffness', 'damping', and 'integral' gains) have been iden-

tified, with their corresponding scale factor, to allow further insight into the results. The 

behavior of the full -order controller appears immediately under controller #3, in sans 

serif (ie nor, lim, uns) only when they differ from controller #3. Here nor indicates a 

normal stable behavior while dim indicates that the controller caused limit cycles in the 

rib thrusters and uns indicates that the controller was unstable. 

From Table 2.4 it can be seen that the two controllers behave similarly in that they 

both become unstable, if the damping gain is too low and the integral or stiffness gains 

too high. Also both cause thruster limit cycling if the damping gains are too high. In 



Table 2.4: Controller Behavior 

Run Summary: Stiffness Gain ep  = 0.2 
Integral Damping Gain (Ed)  

Gain 0.2 0.3 0.4 0.5  
(Ei) x y z x y z x Y z x Y z 
0.2 nor nor nor nor nor nor nor nor nor lim lim lim 

nor 
0.3 nor linz lim nor nor nor nor nor nor lim lim lim 

nor 
0.4 uns uns uns nor nor nor nor nor nor lim lim lim 

nor 

Run Summary: Stiffness Gain cp  = 0.3 
Integral Damping Gain (ed)  

Gain 0.2 0.3 0.4 0.5  
(€i) x y z x y z z y z x Y z 
0.2 /im /im lim nor nor nor nor nor nor lim lim lim 

nor 
0.3 uns uns uns nor nor nor nor lim lim lim lim lim 

nor nor nor 
0.4 uns uns uns nor lim lim nor lim lim lim lim lim 

nor nor nor 

Run Summary: Stiffness Gain cp  = 0.4 
Integral Damping Gain (ed)  

Gain 0.2 0.3 0.4 0.5  
(€i) x Y z x Y z x y z x y z 
0.2 uns uns uns nor lim lim nor lim lim lim lim lim 

nor nor nor nor 
0.3 uns uns uns nor /im dim nor lim lirn lim lim lim 

nor nor nor nor 
0.4 uns uns uns lim lim lim lim lim lim lim lim lim 

nor nor nor 

nor — › normal run, /im lirmt cycle run, uns unstable run 
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fact, the two controllers behave identically for most of the scale factors; however, several 
combinations of scale factor at larger damping and stiffness gains that caused normal 
behavior for the Full-Order Controller now causes limit cycles. As explained in [Sincarsin 
and Sincarsin,1988], the instabilities caused by reducing the damping gains are, in fact, 
predicted by theory; however, the onset of limit cycles for higher damping and stiffness 
gains is strictly an effect of the nonlinear nature of the thrusters. In effect, a controller 
developed with a reduced-order model appears to be more sensitive to nonlinearity in the 
actuators. 

The plot of the time variation of the experimental performance error index for a typical 
run is shown in Figure 2.1, with similar plots shown in Figures A.1 to A.9 of Appendix 
A for all the runs completed. Runs denoted as uns (unstable), and for some of the 
runs denoted as hm (limit cycle), in Tables 2.4 are not depicted because these runs were 
aborted before the system's erratic behavior dama.ged Daisy's structure or electronics. 
This explains why some run sets have blank plots in Appendix A, while others are ignored 
entirely. 

There are two points of interest on these plots, the maximum value obtained and the 
final steady state value for the total performance error index. These values are used to 
generate the surface plots shown in Figures 2.2 to 2.7. When a final error index, for 
the reasons cited above, was unavailable, an arbitrary value of 0.2 rad was assumed for 
plotting purposes, as this value is significantly larger -than any observed value. When the 
maximum error index was not available, a value of 0.3 rad was assumed for the same 
reason. 

Let us now compare the two types of surface plots introduced above, namely, the total 
final error index (TFEI) surfaces and the total maximum error index (TMEI) surfaces. 
Plots of the TFEI's show valleys with respect to the damping gain that get deeper as the 
stiffness gain is increased. The valley wall created at the lower damping gains is caused 
mostly by unstable controllers. For higher damping gains, limit cycles involving the rib 
thrusters cause large steady-state errors which, in tur'n, generate the other valley wall. 
There is a striking similarity between these plots and similar plots for the Full-Order 
Controller shown in [Sincarsin and Sincarsin,1988], although the Full-Order Controller 
has a deeper valley at higher stiffness gains. 

On the other hand, plots of the TMEI's show a different terrain. The wall caused by 
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controller instability at lower damping gains is still present, but with the exception of the 
plot corresponding to ep  = 0.4, the wall previously observed at the higher damping gains 
has vanished. Recall that the runs at the higher damping gains for ep  = 0.4 were not 
actually performed. Thus, the wall represented on the particular plot under discussion 
is artificial and only exists to facilitate the use of a general plotting routine. Intuitively, 
the limit cycling of the rib thrusters, since it is most dominant when the rib is near its 
reference state (ary = 0, a„ = 0), should not significantly affect the TMEI obtained when 
the hub and rib are farthest from their reference states. So, with the exception of the 
unstable controllers, the TMEI values are almost independent of the gains chosen, even 
though their minimum values are found near the middle of the chosen chosen of gains. 
Again these plots have a strong resemblance to those for the Full-Order Controller. 

Therefore, based upon the TFEI and TMEI surface plots the optimal controller gains 
are ep  = 0.3, ed 0.4 and ei  = 0.2. As with the Full-order Controller these values produce 
the lowest TFEI for impulses applied about the yh  and zh  axes (and very nearly the lowest 
TFEI for an impulse applied about the sh-axis). 

To help differentiate between the rigid and flexible contributions to the error index for 
each run, three-dimensional plots similar to those for the TFEI's and TMEI's are provided 
in Appendix A, for the hub's final error index (HFEI), the rib's final error index (RFEI), 
the hub's maximum error index (HMEI) and the rib's maximum error index (RMEI). See, 
in particular, Figures A.10-A.21 in Appendix A. One striking fact about these figures is 
that the plots of the HFEI's and HMEI's are virtually flat and, therefore independent of 
the gains chosen. Hence all the variations in the total error indices appear to be the result 
of variations in the rib error indices. 

2.5 Task Conclusions 

The first utilization of Daisy for an advanced control system using model order reduction 
techniques to develop a Servomechanism Controller has proven successful, with interesting 
results. The resulting controllers are stable over a range of scalar gains, demonstrating 
robustness, although this range is less than expected because of thruster limit cycling. 
Also, instabilities at low damping and high integral scalar gains have been predicted by 
theory and witnessed in experimental results. 

The scalar gains or scale factors that generated the lowest value for the performance 
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index of Reduced-Order Controller #3 are ep  = 0.3, ed  = 0.4 and ci  = 0.2. These scale 

factors differ only slightly from those generating the best performance index values for the 

Full-Order Controller, ep  = 0.4, cd  = 0.4 and ei  = 0.2, thus demonstrating some robustness 

to model order reduction. Indeed, the behavior of the Reduced-Order Controller was very 

similar to that of the Full-Order Controller, with only a slight degradation in performance. 

Although greater reductions in model-order did show anomalous results (i.e. the fact 

that Reduced-Order Controller #2 could not be stabilized), these can be explained by 

hardware limitations. Finally, the sensitivity of the Servomechanism Controller to noise 

for slow control update times could pose a severe practical limitation on the use of this 

controller. 



3 Daisy Hardware Modifications 

3.1 Task Overview 

This section describes modifications performed on the Daisy structure which make the 
experimental facility more closely represent the dynamics of the large flexible spacecraft it 
emulates. As explained in the introduction, the Daisy facility consists of an experimental 
structure, computer hardware, computer interfaces and sundry support equipment. The 

purpose of this facility is to perform advanced control-systems research as it relates to the 
control of large flexible space structures. However, for meaningful results, the Daisy struc-
ture must accurately emulate the dynamics of such a large flexible spacecraft. Although 
such spacecraft do not yet exist, they will likely display dynamic characteristics such as 
lightly damped, "clustered", low frequency oscillations. That is, these space structures 
are expected to have many resonant frequencies near or below the value of 0.1 Hz that 

persist for long periods. By producing such behavior, a structure would appear to be a 

large flexible spacecraft to a control computer, even though it does not physically resem-
ble one. The Daisy structure demonstrates such characteristics in its rib motions (which 
emulate the spacecraft flexibility); however, in its most recent configuration, hub motions 

(which emulate the rigid body motion of the satellite) fall somewhat short of this goal in 
two ways. 

The first undesirable hub characteristic is that it possesses too low frequency pendu-
lous modes. These modes are caused by an offset between the center-of-mass and the 
gimbal center of the structure. Ideally, the center-of-mass and the gimbal center should 
be colocated, as this would eliminate the pendulous modes and allow rigid body rotations 
similar to large flexible spacecraft. It should be noted that, in reality, the center of mass 
must remain slightly below the gimbal center to guarantee a stable configuration in the 
earth's gravity field; however, as the distance between the respective centers decreases, 

so does the frequency of the pendulous modes until "pure" or true zero-frequency rigid 
body rotations are achieved. In the current configuration the two centers are very close, 
the center-of-mass being within 0.125 inches of the gimbal center, but this is sufficient to 
produce undesirable effects. 

The second undesirable hub characteristic is the high damping in its motion. This 
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behavior does not exist in rigid body motions of large flexible spacecraft. The damping is 
caused by friction in the bearings of the gimbal joint which have already been optimized 
for minimum friction. Unless some form of air bearing is used, the only way to reduce the 
present level of friction in the gimbal is by reducing the load on the bearings. 

The structural modifications described herein address these problems, as well as the 
additions of more sensors to Daisy. Daisy's ribs have never been fully instrumented 
because of monetary constraints. The high cost of the chosen rib sensors, inertial grade 
accelerometers, has prevented installation of the twenty such devices required to fully 
observe the emulated flexible modes. That is, each of the ten ribs on the Daisy structure 
has two degrees of freedom which must be observed. At present, only two accelerometers 
are mounted on a single rib so that only two of these twenty degrees of freedom are directly 
measured in any way. Part of the current work is to investigate other cost effective sensors, 
to choose an alternative to the inertial-grade accelerometers, and then to obtain and, if 
time permits, install the aosen sensor on ti,vo ribs. 

How the required modifications were accomplished and their resultant effect on Daisy 
structure will be discussed in what follows. 

3.2 Center of Mass Adjustments 

As the pendulous modes are caused by an offset between the center-of-mass and the 
gimbal center, the simplest way of reducing the natural frequency of these modes is to 
incorporate adjustments that allow the offset to be nulled. In fact, such adjustments 
are already possible using variable-length supports between the middle and the lower 
hub plates. Unfortunately, these supports can only be adjusted when the lower hub 
plate is separated from the middle plate, making their use awkward, time consuming 
and inaccurate. The current offset of 0.125 inches was obtained, through great effort, 
by using these adjustments. To alleviate this problem, the variable-length supports have 
been replaced by turnbuckles that permit quick adjustments without the need to separate 
the bottom hub plate from the middle hub plate. 

With these new components it is possible to virtually eliminate the pendulous modes, 
even after a substantial mass restructuring, such as the one outlined in the next subsection. 
As stated previously, the center-of-mass must remain slightly below the gimbal center to 
ensure a stable configuration in the Earth's gravity field. Before the incorporation of 
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the new turnbuckle-support stands the pendulous mode frequency was 0.035 Hz. At 
present, it is difficult to obtain an accurate estimate of the frequency since the motion 
has so little momentum that gimbal damping prevents the mode from completing a single 
oscillation. In fact, the motion appears to be critically damped and will often come to rest 
at slightly different positions. That is, the corrective torque caused by the center-of-mass 
being vertically misaligned with the gimbal center is not sufficient to overcome the gimbal 
friction, and the hub will remain slightly tilted. 

3.3 Mass Reallocation 

As previously stated, the total mass of the Daisy structure must be decreased in order to 
cause a corresponding reduction in the gimbal damping. To achieve this goal, mass was 
removed from two areas on the structure, even though the removal of this mass required 
the rebalancing of the structure to minimize the pendulous modes. 

In the first instance, the mass associated with superfluous terminal boxes and wiring 
remaining from earlier changes to the Taurus data aquisition system was removed. As 
systems were installed on the structure it was found that, in many cases, it was simpler to 
connect sensors and actuators directly to the Taurus computer rather that to use screw-
lug terminal-strip boxes originally mounted on the structure for that purpose. Thus, these 
boxes were never used, and since they added unnecessary mass to the structure, they were 
removed. 

A second area where "extra" mass could be removed was at the top of the tower 
where a countermass resides. This countermass is composed of four billets of steel that 
counterbalance the structure below the gimbal center. However, in order to reduce the 
weight of these billets, the remaining structural mass had to be moved as far above 
the gimbal center as possible to maintain the present center-of mass position. This was 
accomplished in three ways, by 

• Moving the power amplifiers from the bottom hub plate to above the gimbal center 

e Raising the upper hub ring relative to the middle plate 

• Raising Daisy relative to the gimbal 
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The power amplifiers convert the 10 volt reaction wheel control signal generated by the 

Taurus to the 180 volts required by the wheel motors. These three devices, one for each 

reaction wheel, added considerable weight to the lower tier, where they were originally 

mounted. These amplifiers have been moved and are now mounted on the crossbracing of 

the upper ring, placing them well above the gimbal center. As well, the upper hub ring 

has been raised by placing 6 inch spacers at the bottom of the ring supports that connect 

it to the middle hub plate. 

The hub is presently mounted with bolts to the bottom plate of the gimbal. It was 

found that the hub could be raised 0.74 inches above this plate, by using shims, before its 

motion interfered with the angular encoders mounted on the gimbal, thus directly raising 

the center-of-mass of the structure by this amount. 

After these changes, and those associated with the center-of-mass adjustments, were 

made it was found that 89 lbs of countermass could be removed from the tower leaving a 

total of 40 lbs. 

3.4 Addition of Accelerometers 

There are several possible alternatives to the expensive accelerometers used in the current 

Daisy design. One possibility is to use inclinometers which would measure the rib angles 

based on the change in the gravity component. This, in fact, is the manner in which 

the inertial accelerometers are presently being used. A second possibility is simply to 

use less expensive accelerometers. This is the preferred option since this still represents 

the use of sensors that will probably be used in large flexible spacecraft. Also, if the 

accelerometers are cheap enough, two separate instrumentation packages can be put on 

each rib. This would enable the effects of gravity measured by one accelerometer pair 

to be subtracted from the other and thus produce zero-gravity type measurements; this 

technique is described further in §4.3.4. Of course, the use of cheaper accelerometers 

implies a degradation in performance, usually in sensitivity. However, new mass produced 

solid state accelerometers can measure to tens of pg's at 0 hz, and at very low cost. Some 

general comparisons of the solid state and inertial grade accelerometers are given in Table 

3.1. The data sheets for the solid state accelerometers are included in Appendix B. 
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Table 3.1: Comparison of Accelerometers 

Solid State Inertial  
Cost P-J $170 ';..-2, $4300 
Roll off frequency 0 0 
Sensitive 10.0 pg 1.0 pe 
Nonlinearity ±2.0% ±0.0025% 

The inertial grade accelerometers are purchased as hermetically sealed units with 
power filters and internal electronics, whereas, the solid state accelerometers are pur-
chased as integrated circuit chips avaliable in +1g, +5g and +10g ranges and with no 
support circuitry. Thus these sensors require stable power supplies and amplifiers before 
they can be used. To this end the circuit shown in Figure 3.1 was designed and built to 
accompany the accelerometer chip on the rib. One large advantage of these accelerome-
ters is that the acceleration measured, due to Earth's gravity, when the rib is quiescent, 
can be zeroed (with R1 and R13 in Figure 3.1) before amplification of the signal. This 
permits much higher amplifier gains to be used than would normally be possible, as high 
gains with large offsets would cause the amplifier output to exceed the voltage capabilities-
of the power supply. At present, the gains have been chosen such that the sensors output 
is 20 volts/g. This value was chosen since data acquisition boards can measure over a 
range of ± 10 volts (a difference of 20 volts) and the acceleration due to Earth's gravity 
measured by the out-of-cone rib sensors varies from 1 g (when the rib lies flat) to 0 g 
(when the rib is vertical). 

3.5 Task Conclusions 

The three objectives of the hardware modifications performed on Daisy were — to reduce 
the frequencies of the hub's pendulous modes, — to reduce the gimbal friction by decreas-
ing the hub mass, and — to add new rib sensors. As outlined in the above section, all 
three objectives have been achieved. 
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4 LQG Control Using Acceleration Feedback 

4.1 Task Overview 

The objective of this task is to study the use of linear quadratic gaussian (LQG) control, 
using acceleration sensing, for application to Daisy. The use of controllers designed using 
this technique (sometimes referred to as optimal controllers) is a popular proposed solution 
to the problem of controlling multi-input/multi-output systems. Chapters 3, 4 and 5 of 
[KWAKERNAAK & SIVAN, 1972] provide an excellent review of the theory underlying 
the design of these controllers. 

4.1.1 Baseline Controller 

Other types of controller designs have been tested out on Daisy. The first of these was the 
"Baseline Controller," described by SINCARSIN & SINCARSIN [1985B] and by SINCARSIN 

[198613]. This is a set of three PID controllers, one for each of Daisy's hub rotation 
axes, designed using a pole-placement technique on a rigid-body model of Daisy. This 
corresponds to the sort of controller design used for most 3-axis stabilized satellites to 
date. It has the advantages of being simple to design and implement, and of being robust. 
However, because the structure's flexible modes are not accounted for during the design 
process, control spillover and observation spillover [BALAs, 1978] cause a deterioration 
of performance, and ultimately a loss of stability, as controller bandwidth is increased. 

4.1.2 Davison Controller 

A second method of control that has been used on Daisy is Davison's "robust servomecha-
nism," as described by SINCARSIN & SINCARSIN [1988]. This is also an output-feedback 
PID controller. While the Baseline Controller used hub angles and rates as measure-
ments, and reaction wheels for actuators, Davison's controller additionally uses a pair 
of rib accelerometers for sensing, and rib gas-jet thrusters for actuating. The Baseline 
Controller uses pole-placement to develop non-interacting controllers for each of the hub 
rotation axes; Davison's controller uses a nonlinear parameter optimization technique to 
produce a controller that couples the dynamic equations of the three hub axes. The 
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advantages of this controller are its ease of implementation and its robustness. It has 

the disadvantage of being relatively difficult to design—nonlinear parameter optimization 

requires a good "starting guess," is computationally expensive to perform, and may not 

result in a globally optimum solution. This method is a type of "modern" control (as 

opposed to the Baseline Controller's "classical" control design), as it takes account of the 
multi-input/multi-output nature of the system being controlled. 

4.1.3 Linear-Quadratic-Gaussian (LQG) Controller 

LQG controllers also belong in the ranks of "modern" controllers. They have the advan-

tages of being fairly easy to design—unique solutions exist to the LQG control problem, 
and software to calculate these solutions is readily available—and of being designed to 

produce optimal performance, in a well-defined sense. Their main disadvantage is that 
they can be expensive to implement; a high-order controller requires a large, fast computer 

on which to run, in order to achieve a satisfactory update rate. Also, their robustness is 

questionable. 

LQG controllers have been used successfully in inertial navigation systems. While 

they have been repeatedly proposed for use in flexible spacecraft applications, few (if 

any) of these proposals have proceeded past the paper study level, and into hardware 

implementation. Daisy offers a fine opportunity to carry out hardware tests of this type 

of controller, for several reasons. LQG controller design requires detailed knowledge of a 

structure's dynamic aaracteristics (mass, stiffness, etc.); detailed models of these have 

been generated for Daisy. Also, Daisy was designed to emulate flexible spacecraft—it uses 

thrusters and reaction-wheels as actuators, has both rigid and flexible modes, displays 

"clustering" of flexible modes—so that control results from Daisy will allow conclusions 

to be drawn concerning control of flexible spacecraft. 

4.1.4 Taking Advantage of Accelerometers 

In addition, since Daisy is outfitted with accelerometers as sensors, it allows an advanced 

type of LQG control (a type particularly applicable to space-based radar (SBR) satellites) 

to be tested. Large, flexible spacecraft, with stringent requirements on either required 

pointing accuracy or knowledge of the spacecraft's deformations, can benefit from the use 
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Figure 4.1: Space-fed SBR Spacecraft Configuration 
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of accelerometers as sensors. These are small, light-weight, and consume little power, 

allowing a spacecraft to be outfitted with many sua sensors without incurring much 
penalty. 

Consider a spacecraft such as the space-fed space-based radar, illustrated in Figure 

4.1. Its performance relies on control of the spacecraft's orientation, so that it can project 

its radar beam in the desired direction. It also relies on the spacecraft maintaining its 

shape, so that the space-feed is in the correct position, and the radar array sufficiently 

flat, to minimize distortions of the radar's beam pattern. LQG control is suitable for 
accomplishing both of these objectives at once; furthermore, it can do so in an optimal 

manner, so that no other type of controller could result in better performance. However, 

LQG controllers require a large number of sensors in the structure, in order to yield good 

performance; the marriage of LQG with accelerometers could provide a good control 

solution for SBR-like spacecraft, because acceleronieters' properties would allow a large 

number of sensors on a spacecraft. 

It has been proposed that shape control not be attempted for SBR spacecraft; instead, 

active electronic beam-shaping could be used to compensate for spacecraft pointing and 

shape errors.  This  would require continuously-updated knowledge of the satellite's de-
formed shape, for input to the beam-steering algorithm. The dynamic component of an 

LQG controller, a Kalman filter, uses accelerometer inputs to generate just such an esti-

mate. Thus, the results of this study will be equally applicable to this application, as to 

the LQG controller one. 

It was hoped that this study would culminate in a demonstration of LQG control using 

Daisy. This did not eventuate, because a stabilizing controller could not be designed for 

Daisy in its current configuration. The LQG controllers investigated were very sensitive 

to the nonlinear gravity signal sensed by the current pair of accelerometers, to the point of 

being driven to instability. This problem can be solved by mounting an additional pair of 

accelerometers on the instrumented rib of Daisy, and combining the signals from the two 

pairs of sensors to subtract out the gravity signal. However, the additional accelerometers 

did not arrive in time to be integrated into Daisy, for use in this manner. Even if they had, 

there are concerns that the current Daisy control computer will not be able to provide a 

suitably high update rate, for a full-order LQG controller. 
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4.1.5 Simulations 

In place of runs using the Daisy structure, extensive simulations of the Daisy/LQG-control 
system were carried out, using the Matrixx control design and simulation software pack-
age. The Daisy simulation model included several real-world effects of interest, including 
nonlinearities and gravity in the accelerometer sensors, and sensor quantization effects. 
The results of the simulations show great promise for a successful implementation of LQG 
control on Daisy, once the requisite hardware is in place. 

The remainder of this section describes in detail the work carried out under this task. 
§4.2 describes how an LQG controller, incorporating accelerometer measurements, can be 
designed for Daisy. §4.3 presents an analysis of the acceleration sensed at points along 
Daisy's ribs, including gravity and nonlinear kinematic effects, and argues that paired 
accelerometers should be used to sense angular accelerations about each rib pivot axis. 
§4.4 examines the implementation of several controllers for Daisy, and the simulation 
of closed-loop Daisy models using the Matrixx  control design and simulation software 
package. §4.5 discusses the significance of these results, and §4.6 draws conclusions from 
this task's work. Plots relating to the simulations described here are collected in Appendix 
C. 

4.2 LQG Controller Design 

Before showing how an LQG controller can be designed for Daisy, we must first describe 
a sequence of math models for Daisy. 

4.2.1 System Model in Physical Coordinates 

A model for the structure was developed previously in §2.1 of [SiNcARsiN & SINCARSIN, 

1988], and is presented here again: 

(D g)ei = Bu vp B dd 

y Pq + ‘2(i 
z = ZDq+ Zoi+ ZAii+ vm +Zbb 

where 

(1) 

(2) 

(3) 
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the physical coordinate vector, comprising the 3 hub angles and the 20 
rib angles 

= [Ohs,Ohy)Oltz) aril?  ari z  . . . Cern y , arioz ] 

y = the variables whose values are to be regulated to zero, 

z = the measured variables (sensor outputs), 

u = the input vector, 

VD = the noise component of the disturbance input, 

d = the non-stochastic component of the disturbance input, 

vm = the noise component of the measurement error vector, 

b = the non-stochastic component of the measurement error vector. 

For Daisy, q E R23 •  With three reaction wheels and two gas-jet thrusters, u E 
There are three hub angle position encoders and three hub angle rate encoders on Daisy; 
if Tl a  accelerometers are assumed, then z E R6+ 72.. We shall define y presently. 

Work done previously [SiNcARsiN, 1984] allows M,  V , g, K, B, ZD, Zit and ZA to 
be calculated. These all assume that terms that are nonlinear in q may be neglected; the 
effect of relaxing that assumption in the case of ZA is examined in §2.3. 

The terms vD , d, vm  and b are new here. They represent a quite general disturbance 
model. Together, (vD Bdd) represents external torques and forces applied to Daisy by 
any means; (vm Zbb) represents components of the sensor measurements z not modeled 

by the three other, linearized terms in (3). Each will be examined further, later in this 
section. 

4.2.2 Conversion of System Model to Modal Coordinates 

This model is cast into modal coordinates by letting 

q = En 

where 
ETME  =1  

q=  

(4) 

(5) 



(6) 

(7) 

(8) 

(9) 

(10) 
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and 
ETKE = s12  

where 
S12  = diag{w?, i = 1,...,23} 

and wi  is the ith natural vibration frequency of the Daisy structure. Thus, 

Y =  

z = Zp ri + + vm + Zb b 

where 

= ETDE (11) 
e ETÇE (12) 

= ET.8 (13) 

ETvp (14) 

Bd  = ETBd (15) 

î' = PE (16) 
ê = QE (17) 

ZID = ZDE (18) 

-Êv = Zv E (19) 
±A  = ZAE (20) 

Rewriting (8), we see that 

= f3u + 'bp f3dd — ( .7j+ e)ii — fC// (21) 

Thus, we can rewrite (10) as 

Z  = 'È/D 77+'Èvii Z A  (u D f3dd — eyi — fcri) 
— c±v — At — 

..É.Af3dd+ ±Af,D+ ±A.âu+zbb (22) 



(24) 

(25) 

(26) 

(27) 

(28) 

zb] (29) 
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Note that, by using our knowledge of the structure's dynamics (from (21)), we are able 
to write (22) such that z is expressed in terms of modal displacements and rates, ti and 

inputs u, and disturbances d, i)D, b and vm ; angular accelerations no longer appear 
explicitly. 

4.2.3 Conversion of System Model to State -Space Form 

We proceed to cast these second-order equations into first-order form by defining 

x=  (23) 

At this point, we make some assumptions concerning d and b. We assume that b repre-
sents some slowly-varying, quasi-constant bias in the accelerometer sensors. d represents 
some completely unknown external disturbance acting on Daisy. For reasons to be ex-
plained later, we will assume that 

where -y and 8 are white-noise processes of as-yet-unspecified intensities. Furthermore, for 
the purposes of controller design we will assume that the gyricity matrix Ç = 0. This is 
done because Ç varies with u, which in turn will be diosen to vary with ti and thus the 
term 'Ç 71 is nonlinear in i , and our analysis abhors such nonlinearities. If we now define 

0 1  00  
— t3d 0 A = 

- 

B 
B 0 

0 
H [ ê 0 0] 

C [ — ÊA ZVZAV Ê A 

and 

0  000 
 0  000 
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D = ±}j3 
0 - 

'1)1) w1= 
 7 

W 2  V Jf  + :ÈA€,D 

we can write 
Sc=Ax-I-Bu+wi (33) 

z= Cx+DuA-w2 (34) 

y = Hx (35) 

4.2.4 Auto- and Cross-Correlations Among Noise Inputs 

Next, we make assumpgons concerning v it,/ , vD , and 8. Assume that each can be 

diaracterized as white-noise processes, with covariance matrices as follows: 

E{vm(t i)v1,1 (t2) } = Vm  8(t 2  — t1) (36) 

EtvD(ti)vL(t2)} = VD 8(12 — t1) (37) 

.E17(t 1  )7T (t2 )} = (5(t 2  — t 1 ) (38) 

.E-(8(t i )8T (t2 )} = A 8(t 2  — t 1 ) ( 39) 

where 6(t 2  — t 1 ) is the Dirac delta function, and 1 represents an identity matrix of ap-

propriate dimension. The intensity matrices Vm , VD, r and A will be further specified 
presently. Given these definitions, and recalling (14), we see that 

EfVD (t i )i)TD (12 )} = VD 8(t 2  — t1) = ETVDE 8(t2 — t1) (40) 

Further assuming that the cross-correlations between vD , vm, 7 and S are all zero, we 

find that 

(30) 

(31) 

(32) 

O 0  00  
O ETVDE 0 o 
o oro 
O 0 0 A 

Etwl ( i i ) wT(t 2 )}--- 5(t 2  — t 1 ) = V1 8(t 2  — t 1 ) (41) 



(45) 

(46) 
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Recalling (32) and (14), 

Etw2 (t i )wI(t 2)} = Et (vm(t i ) ZA ET vD (ti )) (vIi (t 2) v(t2 )EZ) } 

= Elvm(t i )v1/ (t2) ZA ETvD (t i )v(t2 )EZIA 

vm(ti )vID'(t 2 )EZ1,:i  ZAETvD(ti)v1/ (t2)} 

= (Vm ZAE T VDEZ TA )8(t2 — t1) 

= V28(t2 — t1) (42) 

Finally, 

0 " 
{ Etgri(ti)wt2)} = E ET  vp(ti) 

7(4) 
8(4) , 

r 0 1 
ETVDEZ3; 

= V128( t2 — ti) 

[v (t2 ) + v7D'( t2)Ezlid }  

(43) 

S( t2  — t1 ) 

4.2.5 Application of Optimal Control Theory 

We are now in a position to define an LQG controller for Daisy. The approach taken 

follows that of Chapter 5 in [KWAKERNAAK & SIVAN, 1972]. We define a criterion 

u = E 
f  1  [yT (t)Q iy(t) uT(t)R1 u(t)1 dt} (44) 

ti — to /to 

where 

= QT 0  
= > o 

Here, a measures a "cost" due to the sum-of-squares of the regulated variables y, and 

the control variables u, over the interval [to , t 1 ]. The LQG controller will be designed to 

minimize this criterion. 



(51) 

(52) 

R2 = (54) 
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The LQG controller has two components. The first of these is a Kalman filter (also 

known as a state estimator, or observer). It generates X(t) as an estimate of x(t), where 

Sc(t) is defined by 
Bu K(z (47) 

where 
= CX + Du (48) 

is the observer's best estimate of what the output of Daisy's sensors should be. Therefore, 

= A.X Bu Kz — KCX — KDu 

= (A — KC)*--1- (B — Kl2)u Kz (49) 

This equation can be used to maintain an estimate of Daisy's state by numerically solving 
it for X(t), using Daisy's control computer. The observer gain matrix K is defined below. 

The second component of the LQG controller is the control gain matrix F, also defined 
below. It is used to generate the control inputs for Daisy, via the calculation 

u = —FX (50) 

also to be carried out by Daisy's control computer. 

It can be shown, using the methods of Chapter 5 in [KWAKERNAAK & SIVAN, 1972], 
that if the gain Matrices F and K are selected so that 

F = Ril BTP 

K = PICT  Vi21V-2-1  

where 
ATP + PA + R2 - PBRi-l BTP  =0 (53) 

and where 

[A — V12V 1 C]Q Q [A — Y12YI 1 C] T  

- QCTY;1 CQ [Y1 Yi2Y;1 Y?:2] = 0 (55) 



52 4. LQG Control Using Acceleration Feedback 

the controller defined by (49) and (50) will then minimize the criterion a from (44), in the 

limit as to  —›  —oc and t 1  —› oc, when applied to the plant described by (33)-(35), with 
the Gaussian noise statistics of (41)-(43). To guarantee a unique solution to (53) and 

(55), the system (33)-(35) must be both "stabilizable" and "detectable." It was found, 
during the simulations reported in §4.4, that this was the case for the Daisy configuration 
studied here. 

4.2.6 Remarks on the Control Design Approach Chosen 

Note that the above development follows very closely the "standard" LQG controller 
design methods of KWAKERNAAK & SIVAN [1972]. The main difference is the inclusion 
of the "ZA" acceleration measurement term in (3), which leads to the "Du" feedthrough 
term in (34), which in turn leads to the observer Riccati equation (55) containing a few 

more terms than normal. Also, although we will not present the proof here, it can be 
shown that despite the extra term in (34), the "Separation Principle" of Theorem 5.3 in 
[KWAKEItNAAK & SIVAN, 1972] still holds—that is, the best possible linear regulator, 
in terms of minimizing a from (44), consists of the "optimal observer" (47) cascaded 
with the "optimal state-feedback controller" (51), as in equation (50). No other linear 
controller, applied to oui model of Daisy (33)-(35), can produce a lower value of the cost 
criterion, a. This guarantee of optimality is one of the reasons that LQG control design 

is so attractive. 

Another attraction of the LQG design approach is the ease with which it can be carried 
out. The designer need only provide a linearized model of the system to be controlled, 
and specify the weighting matrices Q i , R1, V1, V2, and V12; readily available computer 
software can transform these inputs into F and K, by solving (51), (52), (53) and (55). 
This contrasts with techniques such as pole placement and nonlinear pararneter searches 
for optimal output feedback controllers, for which the onus is on the designer to decide 
on the desired positions of closed-loop poles, and on stabilizing initial values of feedback 
matrices, respectively. 
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4.2.7 Choice of Weighting and Intensity Matrices 

The manner in which the weighting and intensity matrices were selected for Daisy will 
now be described. The matrices can be specified completely in terms of Qi, Ri, V D) V MI 
r, and â. We will begin with Vm. 

Intensity Matrix Vm 

Vm  represents the stochastic portion of the error model for Daisy's various sensors. 
It can be specified in terms of the random inaccuracies inherent in these sensors. For 
the configuration under consideration here, these comprise three hub angular position 
encoders, three hub incremental angular rate encoders, and two pairs of accelerometers 
on rib #3 (one pair for each rib pivot axis); the concept of using paired accelerometers 
on the rib is discussed in more detail in §4.3. 

The characteristics for all four accelerometers are assumed identical, corresponding 
to those for the pair currently installed on Daisy; these are specified in Appendix A of 
[SmcARsiN, 1986A]. The hub encoders' specifications may be found in [SiNcARsiN 
SINCARSIN, 19854 

The angular position sensors measure position sensors measure over a range of 27r 
radians (1 revolution). They output a-digitized 16-bit signal. We assume that the only 
stochastic error in these outputs is the uncertainty arising from the quantization of the 
position. If we write 

Oh = Ohd + 6P 

where Oh is one of the hub angles (in radians), Oh d  iS its deterministic component, and Sp 

iS its stochastic component, then 

bp = 27r/2" 4.8 x 10' radians (57) 

is the angular position uncertainty due to 16-bit quantization. 

For the accelerometers, let 
= if:A d  bA 

where &I is the accelerometer's output, &I, is the deterministic component of &I, and 
SA is its stochastic component. While there are many possible sources of non-stochastic 

(56) 

(58) 
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errors (bias, misalignment, etc.), we assume that the only stochastic error arises from the 
sensor's threshold/resolution. This is specified to be, at best, one micro-g. In Daisy's 
units, 

5,4 = 10-6  x 32.0878 x 12 

3.85 x 10-4  in/s 2 (59) 

Calculating a similar value for the hub's angular rate sensors is not straightforward. 
These sensors generate a train of pulses at a rate proportional to the sensor's rotation rate. 
The electronics supporting the sensors turn these pulses into a velocity signal by measuring 
the amount of time between consecutive pulses. The slower the hub rotates, the longer 
will be these time-intervals; since updated velocity measurements are generated only when 
the sensor outputs a pulse, the rate at which the velocity measurement is updated varies 
with the hub's rotation rate. 

Thus for these sensors there is no simple analog to the angular position sensors' quan-
tization from which to estimate stochastic errors. Instead, the sensors' main error source 
is a complicated function of the hub's angular position history. Figure 4.2 illustrates this 
effect; it is a plot of measured angular velocity (in radians per second) versus time, for 
one of Daisy's hub sensors, as the hub is moved about. Resolution is seen to decrease 
when the velocity is near zero; the worst-case error appears to be about 10-3  radians/s. 
We will adopt this as our value of 6v : 

Sv=  10-3  radians/s (60) 

where 8v  is to angular velocity as 6.13 iS to angular position. 

We proceed to define Vilf as a diagonal matrix, 

VAI  = diag{ 2  8p , 63, 63, 6?,, 6?7 , 24} 

The diagonal entries estimate the intensities of the "noise" present in the sensor signals. 
The last two signals actually represent the difference between two accelerometer outputs; 
thus the intensity of the noise in the difference signal can be shovvn to be the sum of 
the intensities of the noise in the two component signals (assuming the noise in the two 
accelerometers to be uncorrelated), accounting for the factor of two in the last 2 entries 
of VAf 

(61) 



Me
a
su
r
ed

 A
ng

u
la
r  

Ve
lo
c
it
y  

(r
a
di

an
s
/s

ec
)  

n-, 

1 i . 1 --..-----, 
E ! 

1 1 
I i 

10 20 30 40 50 60 70 80 90 100 

Time (sec) 

Fifure 4.2: Typical Daisy Hub Angular Encoder Measurements 

01 

• 111111 VIII MI WU MI MI OMB MO all 11111 111111 OM UM 11M 



56 4. LQG Control Using Acceleration Feedback 

Weighting Matrix R1  

Next, we define R.1 . The controller, in attempting to minimize a, defined in (44), will 

try to produce a low value of uTRi u. Control signals u will be generated in order to drive 

the regulated variables y to zero, in response to disturbances or an initial non-zero state. 

The greater the value of these disturbances, or initial conditions, the greater will be the 

magnitude of the resulting control effort. 

The weighting matrix R1  can be selected to distribute control effort among the various 

actuators. By weighting one actuator more heavily than the others, it becomes more 
fCexpensive" to use. The resulting controller attempts to avoid using heavily-weighted 

actuators, in favor of lightly-weighted ones. 

Daisy uses reaction-wheels and gas-jet thrusters as actuators. Both of these can 

saturate--they produce an output that approximates the commanded value, as long as 

the commanded value remains below their "saturation level." Above this level, the ac-

tuators' outputs cease to track their inputs. The actuators' inputs should be kept below 

their saturation levels. 

We choose R1  so that the resulting controller will attempt to spare all actuators equally 
from saturation. Let 

= diag{R11 , Ris, R141 R15} 

and choose the R1  so that 

= r (i = 1, ..., 5) (63) 

where ftj is the saturation value of the sensor corresponding to the ith component of u, 
and r is some constant. 

For the three reaction wheels, 

= 17/2 = 1713 = 5.25 x 104  lbm .in2 /52 (64) 

(using Daisy's units of torque), or about 15 N.m. This limit corresponds to the maximum 
current that may be driven through the wheels' motor windings (about 15 amps). For 

the two thrusters, 
= 2715 = 5.3 lbm .in/s2 (65) 

(62) 



(67) 

(68) 

(69) 
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(see §3.2.2 of [SiNcAnsIN & SINCARSIN, 1988]), using Daisy's units of force. This 
limit corresponds to running the thrusters "wide open," at the recommended gas supply 
pressure. 

We arbitrarily choose 

Then 

Therefore, 

R11 = R12 = R13 = 1 
4:e 

r = uR11  2.77 x 109  

(66) 

R14 = R15 = 

= 2.77 x 109/5.3 2 

 9.86 x 107  

so that 
= diag{1, 1, 1, 9.86 x 10 7, 9.86 x 10 7 } 

To justify this procedure, consider a disturbance to Daisy that results in all actuators 
being exercised. As the magnitude of the disturbance is increased, the magnitudes of the 
actuator commands will increase. The controller will perform well, up to the point where 
one of the actuators' inputs exceed its saturation level. If the controller is over-using 
one actuator and sparing the others, the saturation level of the over-used actuator will 
represent the limit on the magnitude of disturbances that the controller can reject. If 
any of the other actuators could be used more, in order to remove some of the load on 
the over-used one, then the magnitude of disturbance that the controller could reject will 
be increased. The R1  matrix that we have chosen should maximize the magnitude of 
disturbances that the controller can reject, by weighting the actuators so that they will 
all tend to saturate simultaneously, as the disturbance level is increased. 

Weighting Matrix Q 1  

We now turn our attention to Qi . In minimizing o- , defined by (44), the controller 
attempts to minimize yTQl y. The value of y (in terms of x) has also yet to be selected. 
The controller will tend to drive the values of the components of y to zero; any component 
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of x not included in y will tend to be ignored by the resulting controller and allowed to 
have a nonzero value. 

By weighting hub angles in Qi , the controller will act to reduce hub pointing errors 
to zero. By weighting rib pivot angles in Qi , it will act to eliminate rib vibrations. The 
former goal is typical for the design of a rigid spacecraft's attitude control system. For a 
flexible spacecraft (such as some of the SBR configurations), both goals are appropriate; 
both attitude and shape control can be achieved simultaneously. Thus, we choose to 
weight all rib and hub angles equally: 

p (70) 

Q1 = aBw • 1 (71) 

where the identity matrix 1 is, in this case, 23 x 23. We choose not to weight angular 
velocities explicitly, and so set 

Q 0 (72) 

Thus, recalling (2), 
y = q (73) 

The regulated variables comprise all of Daisy's physical coordinates. Note that the control 
objective implied here is to maintain Daisy in its "reference shape," with q = 0, corre-
sponding to a pointing. task. The controller could, if desired be re-formulated to address 
other objectives, such as tra.cking or slewing. 

The parameter aBw  recalls the fact that once we have specified the relative values of 
the entries of R1  (and of Qi ) in order to weight the entries of u against each other (and 
similarly for y), we retain the freedom to specify the matrices' absolute values. Further, 
it is known that multiplying any Qi  and R1  both by the same scalar factor will not alter 
the resulting control feedback matrix F; see (51). 

However, altering the magnitude of Qi  relative to that of R1  does alter F. Increasing 
the magnitude of Qi  relative to R1  tends to make control effort relatively less "costly," 
res -ulting in a higher-bandwidth controller. We have thus included aBw, a scalar factor 
used to adjust controller bandwidth, in order to provide the .final specification of Q 1  and 
R1 . The choice of value for aBw  is discussed below. 
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Intensity Matrix VD 

We continue with a discussion of VD, r and A. VD represents the intensity of assumed 
noisy torque disturbances acting on Daisy via vp, while r and A represent the intensities 
of noise assumed as inputs to the integrators of (24) and (25), resulting in the quasi-
constant state disturbances d, and sensor biases b. 

Fictitious assumptions underlie each of these three matrices. Airplanes in flight are 
subjected to stochastic disturbances in the form of wind gusts; no similar mechanism is 
present for Daisy. Similarly, there is no physical basis for the constant-disturbance model 
of (24), or the sensor bias model of (25). These models were adopted as pragmatic aids, 
in order to help design robustness into Daisy's LQG controller. 

The Kalman filter of (49) is designed to minimize the RMS value of the observer error 

e(t) = X(t) — x(t) (74) 

in the limit as t co. This is predicated on the assumption that the control designer 
is most interested in the steady-state performance of the system, and that the stochastic 
processes w1  and w2  represent the most significant disturbances acting to drive the steady-
state system state vector away from zero. To this end, the observer "optimally blends" 
the signals output from Daisy's various sensors. 

We are, however, interested in controlling more than just the steady-state response of 
Daisy. The structure's transient performance is also of significance. Intuitively, the faster 
e(t) approaches zero, the more quickly the control signal u, given by (50), will converge 
to the signal that would result if the full state were available to be fed back (this signal 
would, by design, result in both good transient and good steady-state responses). 

The speed at which e(t) approaches zero, also known as the observer speed, is known 
to be affected by the relative magnitudes of the V2 matrix, (42), and the V1  matrix, (41). 
In particular, if the magnitude of V 1  is increased relative to that of V2, the observer tends 
to "speed up." V1  depends on VD, r and A, with the portion of the observer relating to 
Daisy's physical coordinates q being most directly affected by VD. Given that we cannot 
identify any meaningful stochastic disturbance acting on Daisy from which to derive VD, 
then, we will assume for the purposes of controller design that 

VD = 162E7  ' 1(23x23) (75) 
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Here, ,t3Bw is a scalar parameter which, if increased, results in a "faster" Kalman filter 
design. i3Bw acts on the observer much as aBw  does on the controller F—it is used 
to select the bandwidth of the observer. We multiply it by an identity matrix to ob-
tain VD because, lacking any way to judge the relative speeds required of the different 
components of the observer's state vector k(t), we choose to weight them equally. The 
physically-motivated V2 matrix in (42), however, will indirectly speed up some observer 
state components more than others. Note that as 16Bw is increased, the value of cr. in 
(44), the steady-state RMS value of our cost criterion, will also increase. Thus, increasing 
1313W improves transient performance at the expense of steady-state performance. This is 
discussed further in §4.3.2 of [KWAKERNAAK AND SIVAN, 1972]. 

Intensity Matrices r and A 

One of the most significant errors present in an accelerometer's measurement is known 
to be a bias, a quasi-constant error that drifts as the temperature changes. In addition, 
one of the types of disturbances with which Daisy is expected to deal is a "double-pulse," 
consisting of a pair of step inputs of arbitrary magnitude (for example, see Figure 2.2 
in [SiNcABsiN & SINCARSIN, 1985B]) and of arbitrary duration. If left unmodelled 
during controller design, these disturbances would result in a steady-state nonzero mean 
estimation error e; see (74). (Note that were we using a time-varying Kalman filter 
instead, disturbances of this sort could lead to filter divergence!) 

We have modeled these disturbances using the vectors b and d, as in (23). The 
dimensions of b and d are as yet unspecified; they are chosen in conjunction with Zb 

and Ed [see (1)–(3)], which distribute the disturbances represented by b and d into the 
observations and the state vector. Thus, each element of d is chosen to represent some 
physical disturbance acting on Daisy; each element of b represents some independent bias 
affecting the outputs of Daisy's sensors. 

The d and b vectors have been modeled as shown by (24) and (25), according to the 
method described in the Example 4.3, and by equation (5.186) of §5.5.2 of [KWAKERNAAK 

AND SIVAN, 1972]. As noted there, such integrated white noise has a large low-frequency 
content, allowing it to track changes in either the state disturbance (e.g., the "double-
pulse" disturbance), or the sensor biases (e.g., due to thermal drift). 

The noise processes and S underlying our models of d and b are not intended to 
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represent noises actually present on Daisy. They are convenient fictions that allow us to 

compensate for non-stochastic disturbances. We may thus choose statistics of these noises 

to suit ourselves; we choose to set 

r = -yBw 

= 6Bw  • 1 

where the identity matrices are of appropriate dimension. -yBw  and 8Bw  are scalar pa-

rameters that have similar effects to igBw  of (75); increasing their values should result 

in an observer whose speed in estimating d and b increases, but which also displays an 

increase in the value of the steady-state cost cr. 

While the vectors d and b provide a convenient method for dealing with quasi-constant 

disturbances, they do have some disadvantages. High on the list of these is the fact that 

they result in an increase in the order of the observer's state vector x [see (23)]. The 

time required for updating the observer's state estimate is of 0(n2 ), where x E Rn. Thus, 

adding elements indiscriminately to d and b can greatly slow down the resulting real-

time controller. One possible approach to easing this problem is described by FRIEDLAND 

[1983]—estimation of the bias portion of the state can be separated out from the estimator 

for I/ and resulting in some time savings. This was not pursued in this task; however, 

it may be appropriate for future work, if controller update times prove to be too long. 

4.3 Accelerometer Output Analysis 

One of our main concerns in trying to implement LQG control is that the assumptions 

underlying the LQG control design method may be inappropriate in the case of Daisy. 

The method assumes the plant to be linear, yet we know of nonlinearities displayed by 

Daisy. It assumes Gaussian noise statistics; these are not likely to closely model Daisy's 

true disturbance environment. We only hope that the violations to these (and other) 

assumptions are minor, and that the controller that results will be robust enough to 
accommodate them. 

In this section, we examine an assumption inherent in equation (13)—that the outputs 

of the accelerometers mounted on Daisy's ribs are linear function of q, and are not affected 

by q and This is known not to be the case; for example, §3.1.2 of [SiNcARsiN 

SINCARSIN, 1988] showed how the force of gravity acting on the accelerometers adds a 
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significant term, nonlinear in q, to the accelerometer outputs. In order to find exactly 

how the above-mentioned assumption is violated, we present here a nonlinear analysis 

of the apparent acceleration sensed at any point fixed in a reference frame attached to 

one of Daisy's ribs. The results of this analysis were used in the simulations of §4.4, to 

determine the consequences of our violation of the sensor linearity assumption. 

4.3.1 Several Daisy Reference Frames 

The apparent acceleration measured by an accelerometer has two components, gravity 

and inertial acceleration. We will examine the former first. We begin by defining several 

reference frames associated with Daisy. 

Let .F1 be a frame located at Daisy's main hub pivot, and fixed with respect to the 

floor, with zi pointing downwards, and x f  pointing horizontally, aligned with rib #1 (in 

the current installation, xf points roughly west). Let F, be a frame attached to the hub, 

located at the hub pivot, and oriented so that when Daisy is in its nominal configuration, 

.F1 and are coincident. 

Let Fb be a frame attached to Daisy's rib #3, located at the rib's pivot, with x b  

pointing along the rib's long axis, and with zb  and x b  defining a vertical plane when Daisy 

is in its nominal configuration (zb then having a net downward component). Let .Ta  be 

a frame attached to the hub, located at the same rib pivot, and oriented so that when 

Daisy is in its nominal configuration .Ta  and ..Tb  are coincident. 

These frames are illustrated in Figures 4.3 and 4.4. The former shows Daisy in its 

nominal configuration, so that Fc, = ,F b; it illustrates rib #1 as being the rib of interest, 

though, rather than rib #3. The latter illustrates the frames with Daisy in a deformed 

configuration. 

4.3.2 Gravity 

The specific force due to gravity can be expressed as a vector g. When projected onto Ff, 

we write (using the notation described in Appendix B of [HuGHEs, 1986]). 

gf  = ..Tjf = g • col{0,0,1} (78) 
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Fijure 4.3: Rib and Hub Reference Frames, 

with Daisy in its Nominal Configuration 



Figure 4.4: Rib and Hub Reference Frames, 

with Daisy in a deformed 

configuration. 
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a = C ac Tb  (86) 

4. LQG Control Vsing Acceleration Feedback 

where in Daisy's units 
g = 385.05 in/s 2 (79) 

In order to project g onto Fc , we need to know the orientation of .Fc  with respect to Ff . 

Let Cf  be the rotation matrix between the two frames, so that 
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Ccf arises because of rotations of Daisy about its hub axes. Daisy is supported on a 
universal joint, set up in such a way that 

C cf = Cy (Ohy  )CSOhJCZ (ehz (81) 

where Ohs ,  Oh y  and Ohs  are rotations associated with the x, y and z axes of Fc , and where 
Ci(ce) represents a rotation matrix corresponding to a rotation of an angle a, about the 
ith primary axis, i E {x,y,z}. Thus 

cos 0 hy 0 — sin &h  
Cy (0 h y ) = [ 0 1 0 

—sin  Oh CI COS 0  hy  

[1 
0 0 1 

C(O1) = 0 cos Ohs sin Ohs  
0 — sin Ohs  cos Ohs  

[
cos Ohs sin Ohs  0 

C z (Ohz ) = — sin 0 hz cos  Oh  0 
0 0 1 

Using these definitions, then, 

gc =j5. 2  

= 

= ef') g f 
= ccf  gf  

Next, we project g onto Fa . Let Cac  be the rotation matrix between „Ta  and .Fc , so that 



(88) 

(89) 

(90) 

CbaFa (91) 
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Since we are dealing with rib #3, which is located 20% of a full rotation about the z a-axis 

from  x, and is elevated 30° from the horizontal (nominally), 

Caa  = Cy  (30°)C,(72°) (87) 

where 

cos 30° 0 — sin 30° i 
C(30°) =---. [ 0 1 0 

sin 30° 0 cos 30° 

[
cos 72° sin 72° 0 I 

C —z  (72°) = sin 72° cos 72° 0 
0 0 1 

Then, 

ga 
= C aa g, 

= CacCcf gf 

Finally, we project g onto Fb. Let Cba  be the rotation matrix between Fb and .Ta , so that 

This results from rotations of rib #3 about its pivot, which is a two-degree-of-freedom 
universal joint, built so that 

Cba Cz (cerz )Cy (ar ) (92) 

where ar, and cerz  are rotations of the rib about the lia  and zb axes, respectively, and 

COS arz Sin arz  0 
Cz(arz) = — sin crrz  cos arz  0 (93) 

0 0 1 
cos ar9  0 — sin ar y  

Cy (ce ry ) = 0 1 0 (94) 
sin ary  0 cos o r  
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Then 

gb = •t-b • .2 
= Cbaga 

Cba  CacCcfgf 

Thus, gb can be defined completely in terms of Ohz , Oh y , Ohz , ary , and Ofz , the hub pitch, 
roll and yaw angles, and rib out-of-cone and in-cone angles, respectively. 

The apparent acceleration measured by an accelerometer mounted on rib #3 due to 
gravity will be just the negative of this, assuming the rib and hub to be rigid, and the 
hub pivot to be fixed in F.f , and assuming the accelerometer to be aligned with .Fb. Any 
error in aligning the accelerometer would have to be accounted for via further rotation 
matrices. 

4.3.3 Rib Kinematics 

We next turn our attention to inertial accelerations of a point P on rib #3. Let p be the 

vector from the origin of Fb tO P, as illustrated in Figure 4.5. Pb  describes the location 
of P in rib coordinates: 

Pjb • p. (96) 

Following §B.4 of Appendix B of [HuGiiEs, 1986], we shall for the moment denote vector 
time derivatives as seen in Fa  by )• , and those as seen in .Tb by ( )°. Then, it can be 
shown that 

p. • = C4db a  X p. (97) 

where wbc, is the vector angular velocity at which  .Tb  rotates relative to .Ta . It can also be 
shown that 

R .  • = E" x + ce.a x + cea x (tea  x 12) (98 )  

Now, assume that P is attached to rib #3, which we assume to be rigid, so that P is fixed 
with respect to Fb. Then, 

Pb = 0 (99) 
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I 

Figure 4.5: Definitions of g, and •R 



(100) 

(101) 

cab(4<a +w>b<atea)Pb (105) 
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so that 

E.= epb =9 
E" = ei5b = 

Substituting (100) and (101) into (97) and (98), 

=--- c(2,b0, x  p (102) 

and 

= Wba °  X P + (-ova x (wba x P) .... -. _. _. 

= ( ..5:c.oba) x E+ (.._.,)bct X (C±:ba X 2) (103) 

Here, p .  and p• • are the velocity and acceleration of P, as seen by an observer fixed 

in frame Fa , and Coba  is the projection of wî onto .Tb. In matrix notation, 

Pa = CabW )b<aPb (104) 

Next define d to be the vector from the origin of F, to P, and e be the vector from the 

F, are attached to the hub, which is origin of Fc  to the origin of ..Ta . Since -both .7; and 
assumed to be rigid; note that 

(106) éc = èc =  éa. = èa = 

Also, 
(107) 

as is illustrated in Figure 4.5. For the following section of the analysis, we denote vector 
time derivatives as seen in Fc by ()• , and those as seen in Fa  as ( )°. Then, in a manner 

similar to (97), 

d .  = waa  x d 

(108) 
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(using (107)). Now, since both Fa  and Fc  are hub-fixed, 

Wac = Wac = Wac °  = 0  

cj.  • • = (:1C.  )0 = 0 + p.  0 0 (115) 

(116) = gea  =0  

(109) 

Thus, 
(110) 

1 
• = + 

Furthermore, using a vectrix identity and recalling (106), 

= .F.aTèa  = 0 (111) 

Therefore, 
(112) 

Keeping in mind the alteration in the definitions of ( ). and ( )°, and combining (112) 
and (102), we obtain 

d .  = wba  x p (113) 

Also, in a manner similar to (98), 

d —  = d'" 2co.ac  x wac° x + (wa, x d) 

Recalling (109), and using (107), we find that 

= P.° 

(114) 

Using a vectrix identity, along with (106), yields 

,..00 

 

We find, remembering once more the alteration in the definitions of ( ) and ( )°, and 
using (103), that 

= p." = wba° x p. + c±,bc, x (wba x id) 

---- b. x id+ wba x (w.ba  x 12) ( ) (117) 



and 

cs • df (121) 
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Finally, for the remainder of the analysis we denote vector time derivatives as seen in 
,Ff  by ( )• , and those as seen in by ( )°. Then, in a manner similar to (97), using (113) 
and (107), and using the second change in the definitions of ( )• and ( )°, 

d• w_.cf  x d 

COba. X + x(+ 72) (118) 
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Also, in a manner similar to (98), 

d •  • = d°° f X t._Z?cf ° X  + ccdc, x x (2) 

Using the vectrix identities 
,r•T • 

fo = c f 

(119) 

(120) 

where Cif is the projection of d —  onto Ff , and cbcf  is the projection of wcf  onto .Fc , we 

can combine (119) with (113), (117) and (107), recalling one final time the second change 
in the definitions of ( ). and ( )°, to yield 

; • b a) X 72  

+  2 x (Ce a  X R) (.!..cT  tie c f) x (e.  p;) 

(122) 

p, 

 

We employ the vectrix identities 

Pb (123) 

L! ..).ba Wba (124) 
(...0+cf .1 'Wcf (125) 

e = -rcTec (126) 
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1 

to write 

(.e,c;)b a ) x (epb) 

(ewba)  X  M7:wba)  X  (Pb))  

• 2(... er9c cocf ) x ((.5;coba ) x (e.b 'pb)) 

x (eea .!..7:13b) 

• (tecf) x MTa cod) x 

x b Pb  

+ WTb  X C4).Tb x epb 

▪ 2weTfFc x epb) 

F ▪ coTcfy. x T  Fe CLIT  x FT  pb c _ c c f c ,b 

▪ LOcTiFc X (w cTfFc X FcT  ec LOT.f.!..c X Pb)  

= eibb<aPb 

+ (u)b + x  (,Pb) 

+ ...,eTt;lexf(ec + CcbPb) 

▪w eTfF, x ._reTcocxf  (e c  + Cabpb) 

--- .'Z'col, (aPb 

(

+ ..i!b'w1,(a. + 2FcTwcxf ccb PbLeL 

+ .T;Tcû cxf (ec  + cchpb) 

+ ...-,cT to cxfu, cxf  (_e  c  , -1- CabPb) 

(making considerable use of various vectrix identities from Appendix B of [HuGHEs, 
1986]). Premultiplying both sides of (127) by (..j.f  • ) produces 

(127) 



(128) 

(129) 
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▪ (C fb co >ja  2CfccocxfCcb)ceaPb 
• fc (4.;., ,xf cocxfiecxf )( ec n -t- 

Next, we project this onto Fb, the rib-fixed frame: 

al) = C;j6 (a.Pb (t4e6<a  + 2 C bcW cXf C cb) 44) 6(a P 
▪ cbc ( cxf  _Fiecxfwexf )(_ c  e Cchpb) 

4.3.4 Apparent Acceleration 

Equation (129) specifies the vector acceleration of the point P (which is attached to 
one of Daisy's ribs) as seen from the inertial reference frame ..Ff , in terms of its compo-
nents as projected onto the rib-fixed frame  .Tb .  Since our accelerometers are rib-fixed, 
and since they measure acceleration with respect to any inertial frame, (129) specifies 
the non-gravitational component of the acceleration sensed by the accelerometers. The 
gravitational component is the negative of (95); combining the two results in 

ab gb = 4.4' >b<a l (C01,(a  + 2C bc 4  cXf C cb)teb <a P 

Cbc(cxf +wcxfw,xf)(ec 

— CbcCcfgf 

CcbPb) 

(130) 

This is the apparent acceleration sensed by a rib-fixed accelerometer located at point P. 

In (130), the columns ec  and Pb  are constants in time: the location of the rib pivot as 
measured in the hub frame, and the location of the accelerometer as measured in the rib 
frame. However, wb a , (1,ba, Cbc, weir, itecf and Cf are all functions of Daisy's state-vector 
x, from (23). If 

h = C01{0 hx  04, °It z } 

is the set of hub orientation angles, and 

a, -= col{ary , arz  } 

(131) 

(132) 

is the set of rib orientation angles, as used in equations (81) and (92), then 

cob. = col{0, àr y  àrz  } (133) 



i:Oba = C01 { 0 ) dry > ârz} 

W cf COl{éh z ,éhy )éhz } 

tiecf = C01 {Oh x ,f5hy )ijit z } 

(134) 

(135) 

(136) 
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and CI" and Ccf  are functions of Oh and ar , as specified by (81) and (92); for "small" 
values of Oh and ar , these latter two are linear functions of x. However, some of the terms 
in (130) are nonlinear in x. We can thus write a linearized version of (130): 

gb = ‘;')6<ccPb CbcL;' )c(f(ec CcbPb) 

— Cbc Ccfgf 0(11w11 2 ) (137) 

As a check on our calculations, note that (137) is consistent with equation (2.50) of 
[SiNcARsiN, 1984], which also represents the linearized accelerometer measurements (less 
the gravity term). 

Let us pause for a moment to consider the significance of (130). Our intention is to 
design an LQG controller to regulate Daisy's motion via acceleration feedback. This is 
motivated by a desire to determine how this form of controller would work when applied 
to a satellite in space, such as an SBR satellite. The work is being done on Daisy because 
Daisy was designed to emulate the dynamics of flexible satellites; it is believed that 
results obtained using Daisy will be similar to those obtained using actual satellites. 
Equation (130), however, indicates that there is a component of the accelerometers' output 
signals that is due to gravity, an effect that would not be present for an orbiting satellite. 
This component was found by SINCARSIN & SINCARSIN [1988], §3.1.2, to be large; it 
represents a significant difference between the behavior of accelerometers on Daisy and 
those on a space vehicle. With such a difference present, the similarity of results between 
Daisy and a satellite might be called into question. 

All is not lost, though. Let us consider mounting accelerometers at two different 
locations on one of Daisy's ribs, at points P1  and P2, as shown in Figure 4.6. Generalizing 
(130), we write 

4.0 1:c1 Pib + (tea  2CbctocxfCcb)waPib 

Cbc(ccxf + (ecxfwcxf)(ec CcbPib) 

— cbcccf gf (138) 



Figure 4.6: A Pair of Accelerometer 

Mounting Locations 
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where <jib  is the inertial acceleration of point Pi , and pib  is the projection of pi onto b 

If we subtract the accelerations sensed at P2 from that sensed at P1 , we get 

(al b  — gb) — (a2 6  — gb) = [c;), )b`a + (t4a + 2cbccooxfccb)4`. 

C b (WcXf WcXf W,Xf )Ccb] (Plb P2b (139) 

Note that since the gravity term gf  in (130) does not depend on the location of P on the 
rib, subtracting the signals at P2 from those at P1  causes the gravity term to cancel out 
in (139). Thus, the difference signal measured by accelerometers on Daisy will behave 
like the difference signal on a similarly-outfitted spacecraft in orbit. By using pairs of 
accelerometers on Daisy's ribs, the similarity of results between Daisy and flexible satellites 
can be maintained. 

Rigidly connecting together a pair of linear accelerometers at some distance from each 
other forms an angular accelerometer. This is appropriate in our case, as we wish to use 
these sensors to infer Daisy's angular rotations. We strongly recommend using such paired 
accelerometers when attempting a.ccelerometer feedback studies for Daisy. Hopefully, the 
new generation of low-cost, integrated-circuit accelerometers will minimize the cost of 
additional hardware required for this solution. 

The exact cancellation of gravity signals found in (139) assumes the accelerometers 
to be connected rigidly to each other. Daisy's ribs are, of course, not perfectly rigid, 
although they were designed with minimum flexibility in mind. Rib flexibility may pose 
a problem for the implementation of this approach; flexible deformations will allow some 
gravity signal to "leak" back into (139). 

Similarly, errors in aligning  the pairs of accelerometers to each other could result in a 
less-than-perfect cancellation of gravity terms in (139). These errors are sure to occur at 
some tolerance level. They are potentially more serious than the rib-flexibility errors, as 
they result in a secular bias term appearing in (139) (that is, a non-zero difference signal, 
even when Daisy is at rest). Kalman filters can be quite sensitive to such biases; it is in 
anticipation of this sort of effect that provision has been made to include the vector b in 
the Daisy state vector, x; see (23). 

Note that (139) does not simply measure either eh, or Ci 26 ; the terms involving e, were 
cancelled out along with those involving gravity. The resulting accelerometer-sensing 
matrix Z A from (3) must take this into account; it will be somewhat different from that 



(141) 

(142) 
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described by equation (2.50) of [SiNcAnsiN, 1984]. 

It may be possible to use  inclinomet  ers  in place of the accelerometers at P2. These 
are sensors that measure the direction of the apparent acceleration vector. However, they 
do not measure that vector's magnitude, which would have to be assumed; this would 
tend to allow some gravity signal to "leak into" (139). Even more seriously, these sensors 
tend to have fairly long time-constants (on the order of one second) and poor resolution. 
The former would allow even more gravity signal to avoid cancellation, while the latter 
would increase the noise injected into the Kalman filter, thus either slowing it down or 
else causing the state estimation accuracy to decrease. Nor are these sensors inexpensive. 
As a result, we recommend against their use for this application. 

The LQG design of §4.2 assumes that acceleration measurements are a linear function 
of where q is Daisy's physical coordinate vector, in (3). The linear terms in (139) are 

+ cbcd)axfi(pi,—p2,) 

The nonlinear terms are of the order of w>b<aw(p i , — p2b ). We shall proceed to estimate 
relative values for these. 

Daisy's flexible vibration frequencies are clustered around 0.1 Hz, or about 0.6 rad/s. 
If oscillations are kept within the "nearly linear" range, rib vibration amplitudes will be 
less than 10 degrees, or about 0.15 radians. If a rib's vibration is described as 

x = xo ei" (140) 

with xo  = 0.15 and w = 0.6, then 

= jwx0 e3 wt 

 = —co2 x 0 e-i't  

Then, at this vibration amplitude, 

iixii = 0 . 15  

iidIi = 0 . 09  
= 0.054 

at the same time, 

(143) 
(144) 

(145) 

P2 I1 0.0071 (146) 
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Here, à corresponds to Ci.,L and ci,,xf , while  th 2  corresponds to the we' f̀ tecxf , wi,(aw >b<  and  
terms. The former are linear in Daisy's state vector x, while the latter are nonlinear. A 
comparison of (145) and (144) shows that at this amplitude, the nonlinear contribution to 
accelerometer outputs is about one order of magnitude less than the linear contribution. 
This is a worst-case ratio; the difference would be greater at lower vibration amplitudes. 

Is this level of nonlinearity acceptable to the Kalman filter? Unfortunately, there is 
no simple analytical way to find an answer to this question. Kalman filters are known 
to be sensitive to such unmodelled effects, frequently to the point of driving unstable 
the closed-loop system. Implementation of an LQG controller would provide a definitive 
answer; however, that must be postponed until the required additional accelerometers 
have be installed. In lieu of such an implementation, a series of simulations was carried 
out to investigate this type of controller's performance, in the face of these nonlinearities. 
The following section reports on these simulations. 

4.4 Controller Implementation Si Simulation 

4.4.1 Matrixx  

We had hoped that this task would culminate in the application of an LQG controller to 
Daisy. The purpose of doing this is to infer how this type of controller would perform 
when applied to a large flexible spacecraft, relying on Daisy's ability to emulate such a 
spacecraft. However, as discussed in §2.3, Daisy's current configuration of accelerometers 
does not emulate those on space vehicles due to the effects of gravity. The emulation could 
be improved by installing additional accelerometers, a task that has yet to be completed. 
As a result, the implementation of a controller on Daisy was not carried out. 

In lieu of a hardware implementation, a series of simulations was carried out, of models 
of various controllers connected to a model of Daisy. These simulations allowed several 
areas of concern, regarding the use of accelerometers as sensors for LQG control, to be in-
vestigated. They also provided an opportunity to tune the controller's design parameters, 
in order to bring controller response characteristics (overshoot, settling time, etc.) within 
reasonable ranges; this will save effort when the controller is eventually implemented in 
hardware. 

The main concern addressed by the simulations was that the nonlinearities (with 
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respect to the state vector) present in the accelerometer outputs might lead to an erosion 
in stability of the closed-loop system. Another concern was that the accelerometer signal 
generated by oscillations of the ribs might prove so faint, when compared with those 
sensors' resolution limits, that they would be of little benefit in helping to regulate Daisy's 
motion. Yet another was that the necessity of implementing the controller as a discrete-
time system would cause controller performance to deteriorate. 

In order to address these concerns, the simulation had to be able to cope with a 
system of Daisy's order, be able to include the effects of accelerometer nonlinearities 
and resolution limits, and be able to perform discrete-time simulations. We found that 
a software package currently in use as part of the Daisy facility, "Matrix x ," was able 
to carry out the necessary simulations. In addition, it could be used to carry out the 
numerical design of controllers based on the analysis of §4.2, as well as to generate plots 
summarizing the results of simulations. For these reasons, we chose to use Matrixx  for 
the controller implementation and simulation portion of this task. For more information 
on this software, refer to [INTEGRATED SYSTEMS, 1986A]. 

4.4.2 "System Build" Daisy Model 

In order to simulate the Daisy plant, and to carry out the controller design calculations, 
Matrix), required input data, in particular the matrices k,  V , e and B  from (8), I) from 
(9), :ÈD , 'Èv  and :ÈA from (10), E from (4), and ZA from (3). These were generated 
using the most recent version of a piece of extant software, developed to model Daisy's 
dynamics based on (an updated version of) the analysis presented in §2 of [SiNcARsiN, 
1984]. The latter software runs on one of Dynacon's Apollo workstations, while Matrix x 

 runs on one of the University of Toronto Aerospace Institute's Apollos; this commonality 
facilitated data transfer between the two. 

One of the unique features of Matrix x  is its "System Build" facility, an interactive, 
graphical, mouse-driven environment wherein the dynamics of a system may be described 
by drawing a block diagram of the system. Once the diagram is complete, an equivalent 
realization of the diagram can be generated by the program; this in turn can be used 
to carry out a simulation of the system, in response to user-specified inputs. Although 
somewhat time-consuming to learn and cumbersome to use (especially for multivariable 
systems), once mastered this facility provides the flexibility to quickly re-design and re-test 
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a system. In particular, System Build provides a simple method for modeling a number 
of types of nonlinearities. This flexibility was put to good use in our case. 

Figure 4.7 illustrates the sort of block diagrams generated by System Build, in this 
case one describing Daisy's plant. Part (a) shows an image of the diagram as it appears 
on the computer screen, while part (b) interprets this in terms of more-standard block 
diagram conventions. The "measurement quantization" blocks represent nonlinearities, 
corresponding to the digital nature of the outputs from the position and velocity sensors; 
these blocks are System Build "primitives." The "accelerometer superblock" represents 
a separate block diagram, modeling the dynamics of the accelerometer sensors, according 
to (130). 

For reference, the "superblock" diagrams generated for use in this task are collected 
in Appendix C, §C.1. They will not be explained further here, except when particular 
features are relevant to the results of simulations. The reader is referred to [INTEGRATED 
SYSTEMS, 1986B] for information regarding the interpretation of these. 

The Daisy model illustrated in Figure 4.7 comprises the linear model of (8)—(10), with 
a few nonlinearities added. Equation (130) is implemented in its full nonlinear form in 
the "accelerometers" superblock, for a pair of accelerometers on rib #3, located at 

Pi  = col{68, 0, —3} inches 

p2, = col{ —27, 0, —6.5} inches 

that is, roughly at the two opposing tips of the rib. In addition, the three types of sensor 
output are passed through "quantization" filters, using the values of 8p, Sv, and 8A, from 
(57), (60) and (59). The five inputs to the system correspond to u from (1); all components 
of z from (3) are included in the 18 outputs, along with several other quantities that were 
to be monitored during simulations (in Matrixx , a variable must be made an output in a 
block diagram, if its time history is to be recorded during a simulation). 

4.4.3 Baseline Controller Runs 

Prior to attempting simulations of an LQG controller, a number of simulation runs were 
performed with the intentions of validating the Daisy model of Figure 4.7, and of providing 
a basis for comparison with LQG results. These were carried out by connecting our Daisy 
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model with a model representing the "Baseline Controller" described in [SiNcARsiN 
SINCARSIN, 198513]. 

The baseline controller consists of three decoupled PID controllers, each connecting 
the angle sensor and angular rate sensor for one hub axis to its associated reaction wheel. 
The results of applying it to Daisy are presented in [SiNcARsiN, 1986B], as Figures 3.4 
and 3.5. We attempted to reproduce the results of that Figure 3.5(a), by connecting a 
(discrete-time, 10 Hz update rate) System Build model of the baseline controller to our 
Daisy model, and simulating this system's response to the same input as was used in the 
report referred to. The relevant figure from that report is compared with our simulation 
results in Figure 4.8. The overshoot of the two plots are quite similar; however, the 
settling time of the simulated system is quite a bit longer than that for the real system. 
No explanation for this has been determined. A more formal validation of the simulation 
model should be carried out in the future, to investigate the cause of this discrepancy. 

In order to achieve agreement between simulation and experimental results, the simula-
tion employed a "double-pulse" input as described on p. 11 of [SiNcARsiN & SINCARSIN, 

198613], a positive torque about the x-axis of the hub for 5 seconds, followed by a negative 
one for a further 5 seconds. Note that the magnitude of the pulses in the report referred 
to appear to be incorrect by a factor of 10; magnitudes of +2.6 and —4.5 (ft-lbf) were 
used in the simulation, rather than +.26 and —.45. The former, when expressed in Daisy's 
units,' are +12050 and —20860 lbm-in 2 /s2 , and are plotted in Figure 4.9. 

Several other plots associated with this simulation run are included in Appendix C, 
§C.2. A notable result is that, while the hub rotation angle error damps out relatively 
quickly, the vibrations of rib #3 are rather persistent. This corresponds to the fact that 
the baseline controller is not designed to control rib motion, except insofar as it couples 
to the hub's motion. 

4.4.4 LQ Controller Runs 

A second set of simulations was carried out in order to help select a value for the parameter 
aBw , from (71). This parameter is used to set the bandwidth of the state-feedback control 

'For future reference, the matrices in (1)—(3) assume that Daisy's reaction wheel commands are mea-
sured in (Ibm-in2 /s2 ), that the thruster commands are in lbm-in/s2 , and that the hub sensors measure 
radians and radians/s. 
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gain matrix F indicated in (51), and directly affects the overshoot and settling time of 
Daisy's response to control inputs such as that of Figure 4.9. We decided to select aBw  
such that the LQG controller's Oh, response would approximate that resulting from the 
baseline controller, when subjected to the double-pulse input described above. A series 
of F matrices was generated, each based on a different value of aBw • Each was used to 
simulate the response that Daisy would exhibit if the entire state vector were fed back via 
F (so-called "LQ" control). The Oh x  response for each was plotted, and compared with 
the plots for the baseline controller (Figure 4.8). At a value of 

aBw = 1 x 10 11 (149) 

this LQ controller produced • results comparable to those of the baseline controller, as 
illustrated in Figure 4.10. In particular, in both runs the overshoot (after t = 0) was 
about 0.025 radians in Note that the update rate assumed for this discrete-time 
controller was 10 Hz. 

This LQ controller represents a limiting case of LQG control—it represents the re-
sponse of an LQG controller using an "infinitely fast" observer. Several plots resulting 
from the simulation of this controller are collected in Appendix C, §C.3; one in partic-
ular is presented in Figure 4.11, showing the LQ controller's rib #3 out-of-cone angular 
displacement, as compared with that for the baseline controller. Both plots use the same 
scales. The LQ controller produces dramatically better control of the ribs than does 
the baseline controller, as well as somewhat better hub control (as evidenced by Figure 
4.10). A sufficiently well-designed LQG controller will, we hope, approach this level of 
performance. 

4.4.5 LQG Controller with Disturbance Estimation 

A number of different LQG controllers were designed, in order to investigate the effects 
on performance due to dilTerent disturbance models (i.e., different definitions of Bd and 
Zb from (1) and (3), and varying values of aBw, -yBw, and 8Bw from (75)–(77)). Noting 
that by design the Daisy simulation model had no bias terms in its accelerometer models, 
these controllers were designed assuming b in (3) to be a null vector (i.e., b c e0). 

The best-performing of the LQG controllers studied assumed that the state disturbance 
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vector d E R3  (see (1)), and that 
sd  = [130x3] (150) 

that is, that the three elements of d correspond to torques about the hub's 3 principal 
axes. Indeed, when the reaction wheels are used to generate torque-pulse disturbances, 
they have precisely this form. The observer bandwidth parameters were chosen to have 
the values 

(8Bw  was not used, as b was a null vector). A discrete-time version of the controller was 
used for simulations, assuming a controller update rate of 10 Hz. 

Figure 4:12 illustrates the 19h.T  response of this controller to the same "double-pulse" 
torque input used for previous controller tests, as compared with equivalent responses 
from both the baseline and LQ controllers. Figure 4.13 provides a similar comparison of 
ary  responses. Equivalent plots are drawn using the same scales. Not only does the LQG 
controller perform far better than thé baseline one, it also slightly out-performs the LQ 
controller! 

The explanation for this surprising result is that the LQG controller was designed 
assuming a d-vector matching the reaction-wheel double-pulse disturbances, while the 
LQ controller examined earlier assumed a null d-vector. Thus, the two results are not 
completely comparable; had the LQ controller been based on a plant model including the 
d-vector in its state, then the resulting F matrix would have fed back d, cancelling out 
the double-pulse input torque, and producing a much-improved response. However, while 
it seemed "fair" to allow the LQ controller to feed back Daisy's rib and hub angles and 
rates directly (because these could, in principle, be measured using sensors), it seemed 
"unfair" to feed d back directly, as a real controller would never be able to measure this 
directly. Thus,- the LQ controller was left with no modeling of the disturbances, while 
the LQG controller was allowed to estimate the disturbance magnitudes. With a superior 
disturbance model, the LQG controller had the better performance. 

A large number of variables were tracked during simulations using this controller. The 
resulting plots are collected in Appendix C, §C.4. We shall return to examine these results 
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in more detail, later in this section. First, though, two other controller designs will be 
examined. 

4.4.6 LQG Controller Without Disturbance or Bias Estimation 

The first LQG controller examined assumed the b vector to be null, and the d vector to 
be non-null. A second controller was designed, assuming both b and d to be null vectors; 
simulations using this controller can be used to give us an idea of how sensitive this type 
of LQG controller is to unmodelled effects. The same value of ei3w was used as for the 
previous controller; in fact, the only difference between this controller and the previous 
one was the lack of disturbance estimation in this one. 

Figure 4.14 illustrates the hub and rib responses for this controller, to the same dis-
turbances as were used previously. Figure 4.15 compares these responses to those for 
the previous LQG controller (the former scaled to match the latter's scaling). The new 
controller exhibits severe overshoot, and degraded settling time. This deterioration in 
performance must be attributed to the lack-  of disturbance estimation in the new con-
troller. 

In order to interpret this result, consider equation (47), the observer state equation, 
for the new controller. Assume that initially tracks x (the true state) closely. As a 
disturbance is applied to Daisy, x will change, introducing a difference between z and  
(i.e., between the sensor outputs, and what the observer "thinks" the sensors should be 
outputting). Our original LQG controller correctly attributes this change in z to a change 
in d, and revises the estimate of d accordingly. The new controller, however, doesn't know 
about d; hence, it must attribute (erroneously) the change in z to changes in q and 4. 

This analysis is supported by Figure 4.16; for the original LQG controller, the estimates 
of d and q (their components corresponding to  Oh x  are shown here) track the actual 
values quite closely, while for the new controller (without disturbance estimation) the 
application of the disturbance input causes extremely large errors to be introduced into 
the estimates of the rib angles. This error in the state estimate is fed back through 
F, resulting in an inappropriate control response being generated. Note that this error 
does eventually die out; while the lack of disturbance modeling has caused the observer's 
transient performance to deteriorate, it should still show good steady-state performance 
(assuming no unmodelled steady-state errors to be present). 
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4. LQG Control Using Acceleration Feedback 

A number of plots of other aspects of this controller's response to the simulated distur-
bance have been collected together in Appendix C, §C.6. They are directly comparable 
with the similar plots generated for the first LQG controller, described earlier. Before 
passing on to the next case studied, we note that the disturbances assumed when de-
signing this LQG controller match those used when designing the earlier LQ one; the F 
matrices used by the two controllers are identical. 

4.4.7 Two-Accelerometer LQG Controller 

An attempt was made to adapt the control theory of §4.2 to Daisy's present configu-
ration—i.e., to the case where only one pair of accelerometers is available to measure 
rib motion, rather than the desirable (but currently unavailable) two pairs. Equation 
(130) describes the apparent acceleration at a point on one of Daisy's ribs. Barring 
sensor errors, it describes the output of an accelerometer mounted at that point. The 
gravity term includes rotation matrices as factors, which in turn are nonlinear functions 
of Daisy's state-vector elements. This term could be expanded to include sub-terms that 
are constant, linear, quadratic, etc., in the state-vector components. The linear terms 
are acceptable to our control theory, and our dealings with the disturbance vector d 
have shown us how to deal with constants (i.e., incorporate them into the state of the 
estimator). If the constant and linear terms are the dominant ones, our control theory 
should be able to handle the minor perturbations of the higher-order terms. 

This controller was designed using the Z A matrix for Daisy's current set of accelerom-
eters. In addition, the observation bias matrix Zb from (3) was aosen to model a constant 
bias in each accelerometer—that is, b E R2 , and 

95 

[ 06x2 ] (153) Zb = 
12 x2 1 2 x2 

The same values of agyv , i0Bw and -yB w were used as for our first LQG controllers, and 

8sw = 10 5 (154) 

was used. 

Simulation results for this controller are shown in Figure 4.17, compared with similar 
results from our first LQG controller. Note that the Ohx  results are virtually identical. 
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The rib displacements, ary , are also very similar, until about t = 60 seconds. At this 

point, the rib oscillations cease diminishing and begin to grow. Figure 4.18 indicates that 
both the disturbance and the hub state were very closely estimated; the estimate of the 
rib state diverges, however, as does the estimate of the gravity bias. Additional response 
plots are collected in Appendix C, §C.5. 

We interpret the results of this simulation to indicate that the nonlinearities in (130), 
that we plan to remove by using a second pair of accelerometers, are severe enough 

to destabilize our Kalman filter. The gravity component of the nonlinearities seems to 
be the most likely culprit, due to its relatively great magnitude. This result was also 
obtained for similar controllers, designed using various other values of the  13Bw, 'YBw and 

4w parameters. We conclude that accelerometer-based LQG control of Daisy using the 

present single pair of accelerometers appears to be difficult (if not impossible) to achieve, 
and should not be pursued further. Instead, such controllers should be based on the 
two-accelerometer-pair configuration. 

4.4.8 Response of LQG Controller to Additional Disturbances 

Finally, a pair of simulations was carried out using our first (and best) LQG controller, 
using double-pulse torque disturbances about the Ohy  and Ohz  hub axes (unlike the earlier 
simulation, with a disturbance about Ohs ). The results were very similar to the earlier 

ones; for completeness' sake, they are collected in Appendix C, §§C.7 and C.8. 

4.4.9 Analysis of Simulated Accelerometer Outputs 

At this point, we will examine some of the other results of the first simulation of our 
first LQG controller. To begin with, consider the plots relating to the accelerometer mea-
surements. Figure 4.19 presents the raw signals from the four accelerometers (y and z rib 
axes, outboard (1) and inboard (2) tip). As is expected, the y-axis measurements oscillate 
about zero, while the z-axis ones oscillate about g cos 30°, where g is the acceleration due 
to gravity (because the rib's nominal orientation is rotated 30° upwards, about its z-axis). 
The inboard and outboard sensed accelerations are very similar to each other. 

The accelerometer signals comprise: (i) a linear component (as modeled by Z A in 

(3)); (ii) a nonlinear kinematic component; (iii) a nonlinear gravity component; and (iv) 
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a "quantization noise" component. Several of our plots allow us to study these components 
separate (to an extent) from each other. Figure 4.20, for example, examines the sum of the 
last 3 of these components (determined by subtracting '±AfEl from the total accelerometer 
signals) for the y and z outboard accelerometers. Since our linear theory accounts only for 
the first component, these plots represent the unmodelled nonlinearities that destabilized 
the above-mentioned one-accelerometer-pair LQG controller. 

For our first LQG controller, we fed back the difference between accelerometer sig-
nals. These different signals are illustrated in Figure 4.21. Note that their magnitude 
of oscillation is about one-fifth that of the oscillations in Figure 4.19; they represent the 
sum of the first component of the total signal, part of the second, and the fourth. Since 
g -L- 386 in/s2 , the fed-back signal is about .005/386, or about 0.001 g. This is not far 
above the sensors' resolution limit of 10 6  g, a fact that helps explain the large quantity of 
"noise" apparent in these plots. 

Also depicted in Figure 4.21 are plots of the sum of the quantization noise, and the 
component of the kinematic nonlinearity not annihilated by the differencing operation. 
This signal's magnitude is two orders of magnitude below that of the upper set of plots in 
that figure, indicating that the former's component of the accelerometers' signals is very 
minor. 

This allows us to conclude that the plots of Figure 4.20 are dominated by the nonlinear 
gravity component. However, the upper plots of Figure 4.21 (which must be dominated 
by the linear component) show oscillations of only one-fifth the magnitude of those of 
Figure 4.20. Thus, the acceleration output signals are dominated by their gravitational 
component. This component is nonlinear, and is not modeled in our Kalman filter design; 
while it might be possible to model it (using an extended Kalman filter), we do not wish 
to do so, as it is irrelevant to our goal of deducing controlled spacecraft behavior. It is no 
wonder that the one-accelerometer-pair LQG controller was unstable, in the face of such 
an unmodelled disturbance! 

4.4.10 Analysis of State Estimation Accuracy 

We now turn our attention to another aspect of the response of our first LQG controller: 
to wit, the state estimation accuracy. The state estimator (49) filters the observations 
z, and generates 5'c as an estimate to Daisy's state x (23). If the estimate were to be 

102 
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perfectly accurate (i.e., if X and x were exactly equal), the LQG feedback signal (50) 
would be the same as that for the corresponding state feedback (LQ) controller, with its 
attendant robustness and optimality properties. However, sensor inaccuracies and other 
unmodelled effects cause X to be somewhat different from x; the LQG design process 
attempts to produce an observer that will minimize this difference. Thus, the effectiveness 
of the observer can be guaged by examining the differences between '31 and x. 

Figures 4.22 and 4.23 examine plots of these differences for our first LQG controller. 
The former looks at differences between the true and estimated hub angles, Oh.T,  Oh y  and 
Ohz . The latter examines differences between the true and estimated pivot angles for rib 
#3, as well as between the disturbance torque actually applied and the estimate of it 
(which we might call CI, based on (23)). 

The steady-state hub angle estimation error has a roughly zero mean for all three 
angles, and is mostly within a ±10 -4  (radian) band (about ±0.34 arc-minutes), about 
what we expected from the known accuracy of the hub angle encoders (57). There is a 
spike of magnitude 5 x 10 (radians) in the Oshx —0h  signal, associated with one of the 
steps in the disturbance input. . 

The rib angle estimation errors also seem to have zero mean, but have a distinct 
dynamic component (about 13 seconds period, lightly damped) in addition to a noisy 
component; the errors are in the 10 -4  to 4 x 10-4  (radian) range. We speculate that the 
dynamic component of the error is caused by the residual nonlinearities in the accelerom-
eter difference signal (139), deduced earlier to be of relatively low magnitudes. 

The state estimator does a remarkably good job of tracking the applied disturbance, 
as evidenced by .Figure 4.23. Tracking a step change takes only about 1 second, with 
very little overshoot (perhaps 8%), and a rapid settling. The estimate is relatively noisy. 
The noise appears to evolve throUgh three phases: first, error spikes of varying magnitude 
and duration, with zero mean; second, a phase where the mean oscillates slowly, at low 
amplitude, while the error spikes' magnitude, frequency and duration seem  to  stabilize; 
and third, a phase where the error spikes' magnitude and duration seem fixed, but where 
their frequency slowly diminishes. 

These plots indicate the observer to be quite robust against fairly severe disturbances, 
in this case where provisions were made to model disturbances. Other runs were performed 
that examined the effects of varying Pi3w , -ymiT and 8Bw of (75)-(77). We shall not present 
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plots here from these simulations, but merely state the result that as the values of these 
parameters were decreased, the overshoot and settling time of the observer estimation 

errors increased. LQG theory predicts that the intensity of the noise in the error signals 

should have decreased for these cases; however, we did not check for this effect. 

4.4.11 Analysis of Control Effort 

Finally, we will examine one last aspect of our simulations: the control command, u, 

generated by the controllers. The cost criterion  o  defined in (44) upon which our controller 

design is based trades off the RMS value of y against that of u. We have previously 

compared responses relating to y, between the LQG controller and the baseline controller; 

see Figures 4.12 and 4.13. Figure 4.24 compares the responses of the first element of u 

(the Oh.T  reaction wheel feedback command) for these two controllers, when subjected to 
our Ohs  double-pulse torque disturbance. 

The LQG controller appears to use approximately the same amount of control effort 

as does the baseline controller, although the character of the two signals is somewhat 

different. The LQG result exhibits more overshoot than does the baseline one; also, its 

noise is spikier, and its envelope dies down a little more rapidly than is the case for the 
baseline controller. 

Comparing Figures 4.24 with 4.12 and 4.13, then, we draw the conclusion that for 

about the same amount of control effort, our first LQG controller regulates Daisy's ori-
entation and shape quite a bit better than does the baseline controller. This tends to 

corroborate the claim that the LQG controller will generate the lowest possible value .of 
o-  —while the elliu term is similar for both controllers, the LQG controller appears to 
result in a much lower value of yTQly than does the baseline controller. 

Plots for the other four elements of u, for the LQG controller, may be found in 
Appendix C, §C.4. The corresponding plots for the baseline controller are not included; 
they were identically-zero traces, as the baseline controller did not exercise those actuators 

in response to the 61 1,x  torque input. 
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4.5 Discussion of Results 

The main results of this task are: the analytical extension of LQG theory to allow the 
incorporation of accelerometers, of §4.2; the analysis of the apparent acceleration at points 
on Daisy's ribs, of §4.3; and, the incorporation of the two analyses into a nonlinear Daisy 
simulator, and the design and simulation of the closed-loop performance of a number of 
controllers for Daisy, of §4.4. 

4.5.1 LQG Theory Extension 

The development of a Kalman filter for a flexible structure using accelerometers is not 
new; for example, see [BREAKWELL & CHAMBERS, 1983] and [FLoYD, 1983]. The 
present work, however is based on our (unpublished) work that demonstrates the resulting 
controller to be truly optimal; we are unaware of any previous demonstration of this. Also, 
the development used for the VA/ (61) and R1  (62) matrices are of interest. 

4.5.2 Analysis of Apparent Accelerations 

The acceleration analysis of §4.3 is an intermediate result, used to obtain the model and 
simulations of §4.4. Its main limitations are its assumptions that Daisy's ribs and hub 
are perfectly rigid, and that the accelerometers are aligned perfectly with the rib frame of 
reference. The former is likely a safe assumption, as Daisy was designed to be as rigid as 
possible. However, future Daisy configurations (e.g., resulting from replacing the current 
ribs with more-flexible ones) may require this assumption to be reviewed, and further 
analysis to be performed. The second assumption is not a good one; alignment errors are 
inevitable, and should be dealt with. Fortunately, the required extension to the analysis 
is a simple one. 

The analysis of §4.3 also resulted in leading us to the conclusion that pairs of ac-
celerometers should be used to instrument each rib pivot axis. This is no light matter; 
the accelerometers currently used on Daisy cost thousands of dollars each, so this result 
has serious cost implications. However, newer-technology integrated-circuit accelerome-
ters are available at a much lower cost. They should be investigated further for use in this 
context; the main consideration is the nature and magnitude of the measurement errors 
they commit, the effects of which can be investigated using the modeling and simulation 
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tools described in §4.4 (information regarding the errors in IC accelerometers was not 
available in time to incorporate into this study). 

4.5.3 Daisy Model and Controller Simulations 

The Matrix„ model described in §4.4 is a valuable product of this task. This model will 
be useful in any carry-on work based on the present study; it would also be of much 
use to anybody studying Daisy's behavior. The model is easily adaptable, and Matrix, c 's 
System Build utility provides the means to model many otherwise-troublesome aspects of 
Daisy (for example, friction damping in joints, baalash in gearboxes, sensor hysteresis, 
etc.). The model has powerful interfaces to control design, analysis, simulation, plotting 
and data storage and retrieval facilities (via which links to other computers, such as the 
Daisy control computer, can be effected). In summary, this model of Daisy may, serendip-
itiously, be the most useful legacy of this task. Future work could be usefully extended 
to model sensor and actuator dynamics more accurately, and joint friction (rather than 
the currently-assumed linear damping). 

The simulations of the baseline Controller showed some discrepancies with results ob-
tained using Daisy. If the model of Daisy is to be used much for further work, the sources 
of these discrepancies should be identified and the differences resolved. Hopefully, some-
thing short of full-blown system identification will suffice for this. The model should be 
validated by comparison of simulated responses to Daisy's true responses. 

The main result of LQG simulations is that a carefully-designed LQG controller should 
be able to provide better performance than does the baseline controller. This implies 
that the Kalman filter part of the controller performed well, a fact that was verified 
directly in one simulation run. This result verifies that accelerometers can be made to 
drive a Kalman filter, to estimate the state of a flexible structure, a conclusion that has 
important implications for sensing of the state of flexible spacecraft, such as space-based 
radar satellites. 

The Kalman filter portion of the controller was shown to be very sensitive to constant 
sensor biases and disturbances. The main result of these was a lack of robustness in 
the controller, leading to poor transient performance. Robustness could be recaptured, 
however, by modeling these disturbances and biases when designing the Kalman filter. 

109 
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Simulations verified the destabilizing effects of the nonlinear gravity component of the 

accelerometer signals, by attempting to use just the current (unpaired) accelerometers to 

drive an LQG controller. While it is probably possible to design a stabilizing controller 

using no additional hardware, this would not contribute to the goal of this study. The 

controller design, and its responses, would be driven by the effects of gravity, and hence 

would have little relevance to the goal of inferring spacecraft controller performance. 

Of course, such an effort would have relevance to the control of non-orbiting structures 

(aircraft and robots, for example), but this is beyond the scope of this study. 

A concern related to the implementation of LQG control is that updating the ob-
server state can be time-consuming, leading to low- update rates, which can cause a high-
bandwidth controller to become unstable. This is a particular concern for Daisy, due to 

its large number (forty-six) of state variables. Estimation of disturbances and biases only 

exacerbates this problem. 

The simulations carried out assumed a controller update rate of 10 Hz. The computers 
currently available to implement the controller would likely be unable to update any faster 

than 1 Hz, for the order-49 LQG controller. Simulations (not presented here) suggest that 

control performance will deteriorate substantially at such a low rate. This is a problem 

that must be addressed prior to implementing this controller for Daisy. 

Several approaches may be taken to solving this problem. Order reduction could 
be carried out on the LQG controllers. Faster computers could be used, to improve 
update rates (Daisy's control computer is about to be replaced with a much faster one). 

Approaches such as separated-bias estimation [FRIEDLAND, 1983] also offer some relief, 
if disturbance and bias estimation is being done. All of these approaches can be tested 
for their effectiveness, using the Matrix„ Daisy model, via simulations; this could be done 
to choose which approach to pursue with Daisy. 

The simulations verify the effectiveness of modifying Daisy to incorporate additional 
accelerometers, allowing one pair per rib pivot axis. However, the effect of sensor misalign-
ment on this approach is potentially severe. This can and should be studied via further 

simulations, as the required modifications to the Daisy model are relatively minor. 

This study establishes that accelerometers can be successfully employed in LQG de-

sign for flexible structures. However, an interesting question is raised as a result: to 
what extent, if any, does inclusion of accelerometers improve the performance of such 
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controllers? The Matrix model developed here provides us with the tools to readily in-
vestigate this question, if we wish. The answer would help establish the desirability of 

including accelerometers as sensors on flexible spacecraft. 

4.6 Task Conclusions 

The results obtained during this task indicate that LQG controllers employing accelerom-
eters as sensors can provide substantial improvements in Daisy's closed-loop performance, 
when compared with the Baseline Controller. This conclusion has been verified via sim-
ulations that incorporate several significant "real-world" effects, including nonlinearities 
and sensor quantization. Both rib and hub transient and steady-state performance im-

provements have been found, using an LQG controller with an assumed update rate of 

10 Hz. This controller employs an augmented state vector, allowing disturbance estima-
tion. Both state and disturbance estimation accuracy are excellent. Without disturbance 
estimation, robustness a.gainst disturbances is found to be extremely poor. 

Analysis of Daisy's kinematics leads to the conclusion that a major source of nonlin-
ear effects (gravity signals from the accelerometers) can be cancelled out by using two 

accelerometers per Daisy rib pivot axis, rather than the current one-per-axis. Indeed, 

controller designs employing the current one-accelerometer-per-axis sensor configuration 
are found to be destablized by the presence of these nonlinearities. Controllers designed 
to use two accelerometers per axis show no effects of such destabilization. These gravity-
induced nonlinearities are of about the same magnitude as the ribs' inertial accelerations, 
for the test disturbances used. 

Kinematic nonlinearities, on the other hand, seem to produce only negligible effects. 

A hoped-for hardware implementation of the controller was not realized, due to the 
need for the above-mentioned additional accelerometers. Once the necessary modifications 
to the facility are made, however, prospects appear excellent for a successful implementa-

tion of this type of controller. However, there is some concern that Daisy's current control 
computer may not be powerful enough to provide a suitable controller update rate. Daisy 

is currently being outfitted with a more powerful control computer, which may alleviate 

this concern. Controller reduction methods may also be of use here. 

A tangible result of this work that should not be overlooked is the Matrix model of 
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Daisy that was generated. Due to the powerful capabilities of this software package, this 
model will be of great use not only in support of extensions of the present task, but also 
to all future users of the Daisy facility. 

The main item of future work arising from this task is the implementation and testing 
of this (now well-understood) type of controller for Daisy. This will necessitate addressing 
the problem of the controller update rate; §4.5 outlines approaches that could be taken 
here. Improvements of the Matrix„ Daisy model should also be carried out, in order to 
increase the accuracy (and hence the usefulness) of simulations performed in support of 
controller design. 

As a minimum, the model should be updated to reflect the recent modifications made 
to the Daisy structure, as described in §3. After this, sensor and actuator model improve-
ments are needed the most, particularly models of accelerometer misalignment. An error 
model for the new integrated-circuit accelerometers (whose installation is described in §3) 
should be developed, if these are to be used as sensors for LQG controllers. 

Finally, it would be desirable to validate the Matrix), Daisy model, by comparing the 
predicted behaviour of Daisy with the structure's actual behaviour, as determined by 
a program of experiments. Open-loop performance could be used for initial validation 
tests, prior to controller design and implementation; discrepancies would provide a basis 
for tracing and correcting deficiencies in the model. Preliminary controller design would 
be carried out based on this version of the model, and the resulting controller used in 
closed-loop validation tests. Final controller design, implementation and testing would 
follow any changes made to the model as a result of these tests. 
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Silicon cap Sensors 

SOLID-STATE 

SILICON 
CCELEROMETERS• 

HIGH PERFORMANCE AT LOW COST 
There's a revolution taking place in the measurement of accelera-

tion, shock, and vibration—and our new piezoresistive accelerome-
ters are leading the way. 

The combined accuracy, DC response, wide bandwidth, damping, 
overrange protection, low mass, small size, light weight, and low cost 
of these sensors make them a natural choice for a wide variety of 
applications, including: 

144 

• Air bag deployment 
• Active suspension 
• Braking systems 

111111111111111111111" 

lfiEEfl
11111111111111-  

30zo" 

1111M111111111 Arm nollumt uni „,‘itinu tun mum! ma Inum 
Ranging from below ± lg to greater than 
±500g, both standard or custom prod-
ucts are available. IC Sensors special-
izes In producing custom designs. 

• Computer disk drives 
• Vibration monitoring 
• Military arming & fuzing 

Mass Silicon cap 

The 3-layer micromachined silicon 
sandwich incorporates a tiny, but pro-
tected, suspended mass. Batch fabrica-
tion assures uniformity, low cost, and 
built-in reliability. 

= NSORS 
1701 McCarthy Blvd., Milpitas, CA 95035 

FAX: (408) 434-6687 Telex: 350066 Phone: (408) 432-1800 



Resistively sensitive supports (4) 
(with piezoresistors) 

Suspended mass 

Bond pads (5) 
Si cap 

Si mass plate 

SI base plate 

Si cap 
Piezoresistor 
(each  skie of mass) 

Si frame 

Si mass 
Si base plate 

Conceptual View of a Silicon Double-
Cantilever Accelerometer 
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Cutaway of an Accelerometer Die 

Cross-section of an Acceleroner nie 



3021-P 

• 4ccelerellon 

—4-1— 030 

3021-R 

• Az co lo r At Io n 

ACCELEROMETER 
EOUIVALENT CIRCUIT 

OUTPUT 1 n 1 
SUPPLY r•I 

OUTPUT 1 ,  

SU P P L n 

SuPPO 

4 

1 

I ICS ENS 0 R S Accelerometer Model 3021 
PRELIMINARY 146 

I OEM Accelerometer 
Miniature Size 
Low Cost 

Imn•••nnn 

Features  
DC Response 
Wide Bandwidth 
High Sensitivity 
Built-In Damping 
Low Mass 
Built-In Overrange Stops 
Solid State Reliability 
Piezoresistive 
Ease of Mounting 

'Typical Applications  
• Automotive Suspension Control 

I • Auto motive  Braking Control 
• Machine Tool Monitoring 
• Industrial Vibration Monitoring 

I . Computer Peripherals 
• Modal Analysis 

Security Systems Motion Detection 
Aerospace Flight Navigation 

• Robotic Motion Control 
Medical Patient Activity Monitoring 
Appliance Control 

'Standard Ranges 
± 5G 
+ 10G 
± 20G 
± 50G 
± 100 G 

in a family of general pur-
pose, solid-state, piezoresistive accelerometers and is packaged 
on a ceramic substrate and is intended for use where small size, 
excellent performance, and low cost are required. 

The accelerometer consists of a micromachined silicon mass 
suspended by multiple beams to an outside frame. Piezoresistors 
located in the beams change their resistance as the motion of the 
suspended mass changes the strain in the beams. Silicon caps on 
the top and the bottom of the device are added to provide over-
range stops and increased durability. As a result of this unique 
three-layer silicon structure, accelerometers with a very low 
profile and low mass can be batch fabricated at a very low cost. 
An added feature is the built-in damping, which allows a wide 
useable bandwidth to be achieved. The damping factor is con-
trolled to within ± 10% over the entire operating temperature 
range. 

The device is available in acceleration ranges from ± 5 G to ± 
100 G. Device performance characteristics and packaging can be 
easily tailored to meet the requirements of specific applications. 

Connections/Dimensions  

2 P 

ALL  DIMENSIONS  IN INCHES 

I .  

I .  

1 : 

Ie •  
• Military Arming and Fuzing 

Description  
The Model 3021 is the first 

2 ryP 
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I Model 3021 
Performance Specifications 
Supply Current = 1.5 mA & Ambient Temperature = 25°C (Unless otherwise specified) 

RANGE  
PARAMETER ±5G ±10G ±20G ±50G ±100G  
Frequency Response (-5%) 0-350 Hz 0-500 Hz 0-700 Hz 0-1050 Hz 0-1600 Hz  
Mounted Resonant Frequency (±15%) 600 Hz 850 Hz 1200 Hz 1800 Hz 2750 Hz 

ALL RANGES 
PARAMETER MIN TYP MAX UNITS NOTES  
Full Scale Output Span 30 50 mV 1  
Zero Acceleration Output 1 ±mV 2  
Damping Factor .707 3  
Non-Linearity and Hysteresis 1 ±%Span 4  
Transverse Sensitivity 3 5 ±°/oS pa n  
Input & Output Resistance 4500 6000  
Temperature Coefficient - Span 2.0 ±°/0S pa n 2,5  
Temperature Coefficient - Zero 1.0 — ±%Span 2,5  

Temperature Coefficient - Resistance 0.22 ±% 1 0 0, 5  
Supply Current 1.5 2.0 m A 2  
Supply Voltage 5.0 12.0 VIDO 2  
Output Noise 1.0 11,V p-p  
Output Load Resistance 2 mn 6  
Acceleration Limits (Any Direction) 20X Rated 
Operating Temperature -40°C to +125 °C  
Storage Temperature -55°C to +150 °C  
Weight (Excluding Cable) 1.2 Grams 

Notes  
1. From zero to positive acceleration value. 
2. With external resistors added to reduce zero and span temperature coefficients and 

to reduce zero acceleration output. The values for these resistors are supplied with 
each unit. Compensation requirements differ for constant current and constant voltage 
excitation. Consult factory. 

3. Damping factor is controlled to within ±10% over entire temperature range. 
Alternate damping ratios are available on a special order basis. 

4. Best Fit Straight Line linearity. 
5. Temperature range: 0-50°C in reference to 25 °C. 
6. Prevents increase of TC-Span due to output loading. 
7. Various electrical connections are available: R = ribbon cable, P = pins, N = none. 

Ordering Information  

3021 - 010 - R 

-r_ Electrical Connection (R,P,N - see Note 7) 
Acceleration Range 

 Model 

Represented By 
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Milpitas, California 95035  Fax (408) 434-6687 Telex 350066 Phone (408) 432-1800 

M3021 R0-8709  Printed in USA 
ICSENSORS 1701 McCa rthy Blvd. 

IC Sensors products are warranted against defects in material and workraansb, lor 12 months from data of shipment. Products not 
subjected to misuse will be repaired or replaced. THE FOREGOING IS IN LIEU OF ALL OTHER EXPRESSED OR IMPLIED WARRANTIES. IC 
Sensors reserves the fight to make changes to any product herein and assumes no Liability arising out of the application of any product 

or circuit described or referenced herein. 



=-- IMO 

Frame /  Flexure \• - Mass , 

Bond 
Pad 

%ewer 7  

Silicon Base Plate 

Frame Flexure 
....... 

Technical Note TN-008 

Silicon Accelerometers 
id 

Introduction 
Batch-fabricated silicon accelerometers open up a wide variety 
of applications because of small size, low mass, and low cost. 
The unique features of the devices include the ability to pre-
cisely control mass, spring thickness, damping, and overforce 
stops without the need to individually hand-assemble the accel-
erometers. One of a series of accelerometers from IC Sensors, 
the Model 3021, is shown above. 

Integrated Accelerometer Designs 
The integrated, batch-fabricated accelerometer is the product of 
evolutionary silicon sensor development efforts. The first re-
ported silicon accelerometer was made by Roylance in 1976. 
This device was simply a silicon spring with a silicon mass 
attached to it. The device featured diffused piezoresistors to al-
low batch fabrication of the device. Acceleration causes the 
mass to move with respect to the frame, creating stress in the 
piezoresistor, which changes its resistor value. A conceptual 
model of this early device is shown in Figure 1. This accele-
rometer was configurable as a half bridge with only one of the 
two resistors being sensitive to stress. 

..../Piezoresistor 

Figure 1 
Simple Cantilever Beam Accelerometer 

The device has evolved from these early beginnings to the 
structure, developed by IC Sensors, shown in Figure 2. Here 
the device still features the silicon mass and integrated piezore-
sistors but inste,ad of only a half bridge, the device now incor-
porates a full bridge design. Further, the device has been up-
graded from a single cantilever to a double cantilever structure. 
This substantially reduces off-axis sensitivity. Further im-
provements, including ion-implanted resistors and a unique 

process sequence, result in precisely positioned and matched 
piezoresistors. Thus, optimum stress concentration is 
achieved. 

The resultant electrical structure is a Wheatstone bridge where 
two resistors increase with downward acceleration and two de-
crease with the same force. This is shown schematically in 
Figure 3. One advantage of the piezoresistive bridge is that the 
device can measure true DC response, unlike several other 
types of accelerometers; this enables measurements of slow 
transients and low frequency vibration. Further, the device can 
be directly connected to other electronic equipment without 
concern for electrical loading of the output or possible damage 
due to static discharge. 

A key feature of the IC Sensors piezoresistive bridge accele-
rometer is that it can be easily adapted to precision trimming 
for temperature, gain and offset correction, just as the more 
conventional piezoresistive pressure sensors are. The three 
layer sandwich used by IC Sensors and shown in Figure 2 also 
provides mechanical stops to prevent damage to the device in 
handling and shipping. 

Figure 2 
Double Cantilever Silicon Accelerometer 

with Overforce Protection 

Comparison With Existing Technologies 
There are presently three main types of accelerometers which 
offer reasonably small size. These are the capacitive, piezoe-
lectric, and piezoresistive types. In each of these classes, there 
are both integrated and non-integrated structures. The integrated 
units are ones which lend themselves to batch-fabrication on 
silicon or other substrates. The three general classes are com-
pared in Table 1. 

This table is representative of the vade-offs in selecting a de-
vice, although there are exceptions to this list depending on ac-
celeration range and application. The strengths of the integrated 
silicon accelerometer using piezoresistive transduction are 
highlighted in the table. While size is usually a key advantage 
for the piezoelectrics, the piezoresistive device, for high 
100g) acceleration ranges, can be just as small, or smaller, 
with built-in damping, with the ability to shunt calibrate, and 
with the low impedance output. 

Because the device is responsive down to DC, the piezoresis- 
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Table 1 
Comparison of Sensing Technologies 

Capacitive Piezoelectric Piezoresistive 

tive accelerometer can be used to show orientation of the 
mounting structure (i.e. for use in inclinometry). As shown in 
Figure 4, the structure can be rotated through 180 0  and shows 
plus and minus one g acceleration due to the earth's gravity. 
The added advantage of this, as noted in Table 1, is that the 
calibration of the device can be verified by rotating the device 
through 3600 , recording the high and low readings, taldng the 
difference, and dividing by 2 to give the sensitivity. Unlike 
the piezoelectric device, the piezoresistive device responds to 
both slow and fast changes in acceleration. 

Signal ( - ) I 1 Signal (+) 

Damping in Silicon Accelerometers 
The silicon accelerometer is a nearly ideal mechanical struc-
ture. Because the loss factors in the silicon accelerometer are 
so low, the inherent damping of the device is also low. As a 
result, the accelerometer can have significant gain at resonance. 
Typical undamped gains of 30 to 200 have been reported at res-
onance. The gain of the Model 3021 accelerometer with damp-
ing factors of 31, 0.707, and 0.05 is shown in Figure 5. High-
er damping factors result in lower gain at resonance. 

The key problem with undamped units is that the device must 
be able to withstand the high gain at resonance, and, further, 
the electronics which interfaces with the device must also be 
able to filter out this resonance and any harmonic distortion 

Orientation 
Figure 4 

Effect of Rotation on the Accelerometer Output 

due to cross-products of the resonance and the signal. This is a 
technologically difficult problem and as a result, controlling 
the magnitude of this resonance in the structure is critical. 

IC Sensors controls the damping factor of the accelerometers 
to provide devices with critical or near critical damping. This 
prevents over-force damage and further reduces the possibility 
that the device will hit the mechanical overstop due to high 
amplitude gain at resonance. The design of the accelerometer is 
such that damping factors can be specified during wafer fabrica-
tion and lower damping is achievable, although it is recom-
mended that the minimum damping be limited to result in a 
gain of 10 at resonance. This results in the top curve shown in 
Figure 5. These under-damped devices are substantially more 
prone to output saturation and distortion than are the critically 
damped accelerometers. 

Off- axis Sensitivity 
All accelerometers are sensitive to forces other than in the 
principle sensing direction. Three fundamental reasons exist for 
this non-ideal sensitivity. The first is that the accelerometer, 
even if ideal, is still sensitive to angular errors when mounted 
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Impedance 
Electrical Loading Effects 
Size 
Temperature Range 
Linearity Error 
DC Response 
AC Response 
Damping Available 
Sensitivity 
Zero Shifts due to shock 
Turn-over or Shunt Calibration 
Electronics Required 
Cost - 
Cross-axis Sensitivity 
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No 
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Effect of Damping on Frequency Response 

in a system. The second is t,hat the center of mass and the cen-
ter of bending are not co-planar in all axes. The final limita-
tion is in the matching of the piezoresistors. 

With respect to mounting angle sensitivity, the effects can be 
quite dramatic. For a 1° error, the sensitivity is only degraded 
by 0.02%; for a 5° error, the effect will be a 0.4% gain error. If 
the device is mis-mounted by 8°, then the accelerometer will 
register a loss in gain of 1% in the principle axis and will have 
a net increase in sensitivity in the direction of mounting to 
1%. This means that over the length of the Model 3021, 
which is 15.4 mm, the surface must be flat to better than 1.8 
mm. Note that for shorter devices or if the device has a post to 
allow bolting down, it is sometimes difficult to assure flat-
ness; the flat ceramic substrate used in the Model 3021 thereby 
helps in minimizing the off-axis sensitivity. Nonetheless, care 
must be used when the accelerometer is mounted in a system. 

The more fundamental problem is one of having the center of 
mass and the center of bending non-coplanar. This is shown in 
Figure 6. In the conventional force direction, the beams bend 
vertically and the center of mass moves downward. If an accel-
eration is applied from the left to the right, then the mass will 
tend to rotate about the center of mass and one spring will 
shorten and torque upward while the other will lengthen as it is 
torqued downward. If the center of mass were in the plane of 
the flexures, then an off-axis acceleration would result in pure 
shortening of one flexure and pure lengthening of the second. 
The difference in bending moments in these two cases results 
in a minimal signal when the piezoresistors are well matched. 

Figure 6 
Vertical and Horizontal Loading of the Accelerometer 

The third area which contributes off-axis sensitivity is in resis-
tor placement and matching. Ideally, two resistors increase and 
two resistors decrease by the same amount with applied accel-
eration; slight mis-alignments will produce one or more resis-
tors which are less sensitive than the others, and, therefore, 
torquing of the mass, as will happen due to off-axis loadik, 0  
will produce a smaller change in those resistors than will be 
produced by the corresponding resistors on the opposite side of 
the mass. Note that these effects are set by the efficiency of the 
stress collection and not by the resistor matching. The piezore-
sistive bridge can be perfectly balanced at zero g's and can 
show significant off-axis sensitivity. Processing tolerances be-
come the dominant issue in setting off-axis limits. 

It should also be noted that the off-axis sensitivities can be 
minimized by careful mounting of the devices; Figure 7 shows 
a typical nulling curve. The procedure to provide this null is 
time consuming and if the device can be used without resorting 
to nulling, then it is recommended that technique not be at-
tempted. 

Accelerometer Mounting Considerations 
The accelerometer measures motion of a surface. Consequent-
ly, coupling between the accelerometer and the surface is criti-
cal to assure a high fidelity signal. The.accelerometer is a sim-
ple spring/mass system. The insertion of a weak coupling 
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Figure 7 

Off-Axis Sensitivity Vs Mounting Uncertainty 

media, such as an RTV, results in a secondary spring/mass 
system related to the mass of the total package and the elastic 
nature of the coupling agent. This effect is shown in Figure 8. 
The 3000 Series accelerometers are housed in a silicon casing 
with the mass representing less than 12% of the total housing 
weighL For the Model 3021 device, the casing is mounted on 
a ceramic substrate and the mass of the housing is then further 
increased by a factor of 7. Thus the total mass of the package 
is 60 times the seismic mass and thus a spring interface which 
is 60 times stiffer than the accelerometer spring will have the 
same resonance. Further, this parasitic spring may be relative-
ly low-loss and result in a high Q, low damping subsystem. 
As a result, the very low overall mass of the 3000 Series ac-
celerometers direcdy reduces the constraint on mounting. 

Because of these factors, care in mounting should be exercised. 
It is recommended that a hard epoxy be used to mount the ac-
celerometer to the surface under study. Thick glues should gen-
erally be avoided as the coupling spring increases linearly with 
layer thickness. Cyanoacrylate base cements (instant bonding) 
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Mounting Examples for Accelerometers 

offer excellent adhesion while minimizing the thickness of the 
111 glue. 

Prior to application of the sensor to the surface, both surfaces 
should be degreased. Acetone or TCA are suggested cleaning I solvents. Both surfaces should be allowed to dry and then a 
drop of adhesive should be applied to the mounting surface. 
The sensor substrate should be pressed against the surface; 

I pressing lightly with fingers on the top cap normally provides 
adequate force. 

To remove the sensor after the application is complete, it is 
suggested that a bead of acetone be run around the substrate, al-
lowed to soak for 5 to 15 minutes and then torque should be 
applied using a crescent wrench or similar tool to apply rota-
tion to the lower edges of the ceramic case. Do not torque by I attaching to the black cap. 

As a temporary mounting approach, the device can be auached 

I using RTV. While such a technique is not generally recom-
mended both because of the mounting resonance and because of 
the mounting angle uncertainty, the approach may be viable 
for critically damped accelerometers having the low mass of 

1  onance should be in the 100 to 300 Hz range, below the seis-
the 3021. For a 1/4 inch thick layer of RTV, the effective res-

mic resonance and within the useful range of the accelerometer. 
A thin layer of RTV (<0.06 mm) should result in a resonance 

I in the 10 to 30 kHz range. Thus, as can be seen by this exam-
ple, careful selection of mounting materials and thicknesses is 
critical for proper operation of even an extremely light accele-
rometer such as the Model 3021. 

UNDER NO CIRCUMSTANCES SHOULD AN ACCELEROME I ER 
BE STRUCK TO FREE IT NOR SHOULD THE DEVICE BE PRIED 
UP. BOTH APPROACHES CAN DAMAGE THE UNIT. 

Cable Considerations 
The forces exerted on this series of accelerometers due to cable 
whip and torque can be significant. Unlike the more conven-
tional accelerometers which are relatively heavy and attached to 
the measiument surface with mounting studs, an advantage of 
these ultra-light accelerometers is that they can be epoxy 
mounted and demounted by torquing the device. The cable can 
provide one source of torque. Further, the sensor / cable sys-
tem can e ffectively dampen or alter the movement of the struc-
ture under test. For this reason, it is re,commended that the 
cable selected for the accelerometers be extremely flexible, es-
peciall y in the direction of sensing. 

Model 3021 

It is recommended that the cable be taped down in the vicinity 
of the accelerometer but that the area nearest the sensor for the 
first few centimeters be allowed to be free and not glued or 
taped down. This approach will tend to reduce coupling and 
torque problems but will still allow relative ease of mounting 
and use. Care should be taken not to clamp or cement the 
cable near the accelerometer as this will tend to localize stress 
in the cable and may lead to breakage of the cable near the sen-
sor. Examples of mounting are shown in Figure 9. 
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C.2 Run #1: Baseline Controller 
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C.3 Run #2: LQ Controller, eyBw  ..= 10 11 
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C.4 Run #3: LQG Controller with Disturbance Estimation, 
x-Axis Disturbance, a,Bw  = 10 11 ,  oBw  = 105 , 7Bw = 106 
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C.5 Run #4: LQG Controller Using One Accelerometer Pair, 
with Disturbance and Bias Estimation, x-Axis 

Disturbance, o'Bw = 1 0 11 , 01314/ = 10 5 , 1/13w = 106 , (5.13w =105 
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C.6 Run #5: LQG Controller with no Disturbance or Bias 
Estimation, x-Axis Disturbance, ûsw  = 10 11 ,  02147  = 105 
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C.7 Run #6: LQG Controller with Disturbance Estimation, 
y-Axis Disturbance, CeBW = 1011 1 0_13W = 106 1 713W = 106 
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C.8 Run #7: LQG Controller with Disturbance Estimation, 
z-Axis Disturbance, aBw = 1 011 , OBW = 105  eyBw = 106 
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