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ABSTRACT 

Using the formalism of coupled-mode theory, au improved description — allowing for a 
lack of axisymmetry in the waveguide — of the resonant transfer of power between modes 
propagating in a few-mode optical fibre is derived, and applied to both an axisymmetric 
LPoi LP02 modal conversion grating and a non-axisymmetric LPoi 4-+ LPii grating. 
The theory of the ve.ctor form-of modes in a periodic, slightly non-axisymmetric structure is 
obtained, and applied to the LPoi 4-4 LPii grating. For the LPoi 4-+ LP02 grating, the 
spectral region of appreciable resonant coupling, as measured by a linewidth, was found to 
be very narrow. The feasibility of exploiting this extreme sensitivity by using the grating as 
an all-optical switch was demonstrated. 

REsuivrÉ 

On dérive une description améliorée du transfert résonant de puissance entre les modes d'une 
fibre optique où quelques modes peuvent se propager. Cette amélioration consiste à tenir 
compte d'une absence de symétrie axiale du guide et est appliquée aux cas d'un réseau de 
conversion modale LPin LP02 (symétrique) et LP01 + 4  LP11 (non-symétrique). On 
obtient la théorie des modes vectoriels d'un milieu périodique à symétrie axiale légèment 
perturbée,  avec laquelle on traite le casdu réseau LPoi LPiz . Pour le réseau Lpoi  4■.) 

LP02 , on trouve que la largeur spectrale de la résonance de couplage est très étroite. On 
démontre ainsi la faisablité d'utiliser cette sensibilité du réseau pour la fabrication d'un 
commutateur tout -optique. 

la  





EXECUTIVE SUMMARY 

The purpose of this work was to better understand the properties of a grating — i.e. 

a periodic, small  variation in refractive index — written in an few-mode, optical fibre, and, 
having understood them, to better exploit the gratings in the design of all-optical devices 

for signal and information processing. (Gratings within fibres are fabricated at the Commu-

nications Research Centre.) 

The important feature of the grating is that it causes a periodic, predictable exchange 

of power to occur between different modes which propagate in the fibre. As the properties of 

the modes are slightly different, it is possible to examine the power in each mode separately. 

Initially, a mathematical description of the power exchanged was obtained. This was in 

terms of scaled quantities, and, specifically, the operational wavelength was converted to 

the familiar V-number. The description improved on previous ones by allowing for the 

possibility that the grating was not rotationally symmetric about the axis of the fibre, which 

is the direction of the modal propagation. 

The utility of the gratings comes about because the fraction of power exchanged is min-

imal, except in narrow spectral bands around specific resonant wavelengths. The separation 

of these wavelengths and the width of the associated resonances in the spectrum are impor-

tant characteristics of the gratings. Analysis showed the theoretical resonances to be very 

narrow — of the order of 0.1 nm. Comparing the spectral responses obtained from computer 

solution of the mathematical model of coupling and experimental observations showed the 

description to be a good approximation of the gratings. The theory predicted that, in form-

ing the grating, the slight changes made to the refractive index are very wealdy anisotropic. 

The relative difference between the variations to the two transverse indeces (i.e those sensed 

by X- or Y-polarized light) is of the order of 0.1%. 

Of interest here, is the use of the grating as an all-optical switch, with its implication 

for optical computing. High power in the fibre causes a slight change to its refractive index; 

this changes the grating's resonant wavelength, moving it sufficiently to distinguish it from 



the original narrow resonant peak. Thus, the power exchange is switched off for the original 
resonant wavelength. The study determined that it was possible to use the LPoi <— L PO2 
grating as a switch, but that this depended critically on the operating conditions. Specifically, 
with it illuminated by the resonant wavelength in the fundamental (L1301) mode, the value of 
V must satisfy 4.23 < V  <5.62. If the light is slightly away from the resonant wavelength, 
the condition is slightly different. As an optical switch, the grating shows a wide variety of 
the switching patterns, depending upon whether the illumination is or is not at the resonant 
wavelength. The conditions for optimal efficiency were found. For example, at resonance, 
optimal effidency corresponds to V = 4.69. The power needed to observe the significant 
switching effects was found to be around 1 KW. 

vi 
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1.0 INTRODUCTION 

This report describes work done while the author was a Visiting Fellow within the Com-

munication Research Centre of the Canadian Government's Department of Communications, 

and under the supervision of Dr Kenneth O. Hill. It was prompted by a desire to better 

understand devices being made within the laboratories, and explore the possibility of other 

devices — most notably an optical switch. 

Ponder two questions related to experimental observations of the LPoi LPii modal 

conversion grating. Why are there four resonant peaks in the curve illustrating the spectral 

variation of the resonant coupling? What theoretical limitation exists on the linewidth of 

these peaks? 

To answer these questions, it was necessary to improve the theory of power coulping 

between the modes propagating in a few-mode optical fibre in which a grating is written, to 
a theory allowing for the possibility that the grating is not axisymmetric about the direction 

of modal propagation. Such a theory was developed within the well-known formalism of 

weakly guiding waveguides and using the equally well-known notion of coupled modes. Also, 

it was necessary to investigate the way the polarization state of a mode evolves in a periodic, 

non-axisymmetric waveguide, where neither the commonly used approximation of linearly 

polarized (LP) modes nor the true modes of an axisymmetric fibre are valid. In fact, the 
polarization of the modes is not well defined. It varies with the periodicity of the waveguide, 

and oscillates between the two different LP modes, which are limiting cases. 

In examining the theoretic linewidth, for reasons of simplicity (two modes propagate 

instead of four), the LPoi 4-> LP02 modal conversion grating was considered. In comparing 

theoretical predictions with experimental results, some discrepencies were seen. To remove 
these, the theory of modal conversion was improved to indude anisotropic gratings in a fibre. 
Given this, results for the LPoi 4-> LPii modal conversion grating were seen to be in fair 
agreement with experiment. 

In Chapter 2 is developed the improved theory of coupling between modes on an axi- 



asymmetric fibre by a periodic grating. In Chapter 3 this theory is applied to the simple, well 

known examples of LI301 LP02 modal conversion gratings and Bragg reflection gratings. 
It contains the theoretic limitation on the linewidth of the peaks in the spectral response 

curve. Chapter 4 indudes the results of modal conversion in the LPoi 4-4 LPii grating. 

The theory of the true modes on a periodic non-axisymmetric fibre is found in Appendix B. 

Consider another question. Given that the resonant spectral linewidth is observed to 

be very narrow, is it possible to use such a modal conversion grating as an optical switch? 

Again, for reasons of simplicity, the LPoi LP02 modal conversion grating was 
considered. Extensive analysis of the mathematical structure of the problem was needed 
before an affirmative answer was possible, and then it was dependent on suitable operating 

conditions for the fibre. Fortunately, these were typical, when a power level of around 
a KWatt destroys the resonant modal conversion. If the grating is operating away from 
resonance, then less power is needed. Indeed, quite complicated switching patterns are 
possible. Sufficient power may cause a resonance where none e3dsted previously; increasing 
the power destroys the new resonance. 

Chapter 5 contains the results of nonlinear switching as it occurs in the LPoi <—> LP02 
modal conversion grating. The relevant mathematical results are presented in Appendices 
D and E. 
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2.0 THEORY OF INTERMODAL POWER COUPLING 

To begin, it is necessary to develop the theory of coupling between modes, as caused by 

a grating in a fibre. The gratings under consideration are, in reality, very small perturbations 

of the refractive index of an otherwise axisymmetric fibre, and so perturbation methods are 

applicable. Most quantities are found by perturbing [e.g. 1: ch18] the corresponding values 

found on the axially invariant fibre. 

One conventional — and by far the most frequently used — approach to the problem 

of modal conversion in a grating in a wealdy guiding optical waveguide, uses the notion of 

coupled modes [e.g. 21. However, in keeping with other problems in which coupled mode 

theory is used, the presentations are invariably confusing, partly (I think) because of poorly 

chosen and defined notation. As in most mathematical arguments, an elegant choice of 

notation renders analysis almost trivial. 

A second point is that, to the best of my knowledge, the formalism pertaining to modal 

conversion vvithin gratings has been restricted to gratings that are axisymmetric and weakly 

guiding. The latter means that LP modes have been used; the former cannot model any 

effects due to the breaking of circular symmetry. It was found necessary to develop an 

improved theory that recognizes both the true vector form of the modes of the grating and 

polarization distinguishing corrections to the weak guidance result. 

A question frequently pondered (but infrequently answered with rigor) in analysis of 

gratings concerns back reflections. Once reflections are induded, multiple refiections be-

come a possibility. Nevertheless, it is straightforward to extend the analysis to indude such 

possibilities. 

The theory of modal conversion by a grating assumes that the grating is a perfectly 

periodic structure. In practice, this is not the case. Indeed, a specific nonperiodicity can be 

included in the design of a grating. A theory describing modal conversion by such quasi-

periodic gratings is presented. 

3 



It is important to note that the problem is developed within the formalism of the theory 
of weak guidance [e.g. 1: ch13]. Corrections to the initial approximation of weak guidance 
are obtained from the initial approximation, as they are shown to be necessary in desciibing 

the observed phenomena. 

The following analysis ignores any losses from the system, i.e. any coupling into the 
continuum of radiation modes. Again, the condition of extremely small perturbation to the 
refractive index in making the grating validates this assumption. 

2.1 COUPLED MODE EQUATIONS 

To see how power is exchanged between modes on a waveguide with a slow z-variation, 

it is first necessary to construct a form of coupled mode system. Suppose that, with the 
summation convention on Latin subscripts but not on Greek ones, the exact travelling electric 
field is written in the form 

1 = an (z)E n (r, 9, z)ei(P.)z (2.1) 
(/3n) 2  grill 

where (/3n ) is the average propagation constant of the mode and shows the way the phase of 
the mode accumulates as it travels along the varying waveguide, an (z) is the slowly varying 
amplitude of this mode, En (r, 0, z)/IlEn 11 is the nth normalized local mode at position z 

along fibre and co-ordinate (r, 0) in the cross-section, and this local mode has propagation 
constant ,8n (z). The power in the ath local mode is given by 

ID«  (z)  = e0c2 P(Pa)  ri 2 e0c2 P f n 12 1 4.- 1  = --- l aa‘z ji  . 
2w 2w 

Also, it is possible to write an apprœdmate expansion for E in terms of the modes of 
the unperturbed fibre. 

e _ pn(z) -Én(r , 0)ei)3nz 
art gill' 

where  n (r, 0) is the nth mode of the unperturbed waveguide with propagation constant 
an , and pn (z) is a slowly varying coefficient. This gives power in the ath mode of the 
unperturbed waveguide to be 

Pa(z) = e°2:2:  IPa(z)1 2 . 

4 

(2.2) 



The solutions for the local modes are readily obtained. Define the matrix D(z) by 

Ea (r, 0, z) . dan (z)E n (r, 0)11EaiiiiiEn  11. 

It is trivially obvious that D(z), so defined, is orthogonal. Thus, from (2.1), (2.2) and (2.3), 

it follows that _1  
Pa(z) = '33 i dna(z)an (z)e i(00-130 )z  

On) 2  
which gives 

1 
acî  (clna(z)4(z) + 4a(z)an(z) + i(On) — 13 a)dna(z)an(z» eiW3n) — Pa)z (2.5a) 

On) 1  
_I 

it ,82, 
1 
 r 

Pa (z) -= Vince(z)4(z) + 24a(z)4(z) + d a(z)an(z) + 2i(($)  — Pa)dna(z)4(z) 
072) 

+ 2i((i3n) — 73a)cena(z)an(z) — ( (3n 

Thus, to see how pa  (z) evolves and power is exchanged between the modes of the unperturbed 
fibre, it suffices to know how the grating influences the evolution of the  a(z) and the 
exchange of power between the pseudo-modes of the grating. This is the essence of coupled 
mode theory. 

2.2 APPROXIMATIONS 

The full, exact solution of the second-order system given at (2.5) is generally not possible. 
Thus, it becomes necessary to obtain some approximations to allow simplification of the 
equations. 

Firstly, the adiabatic approximation shows that for a grating that is truly a perturbation, 
the exchange of power is very slow, so the slowly varying coefficients aa (z) are such that it 
can be assumed ctiai  (z) -_,E- 0. 

Secondly, it is known [e.g. 1] that E satisfies 
a2 ry2 + + k24 .4_ v 2 g(r, 9, zg = —2AV[E.Vg(r, 0, z)] 

' az2  
correct to order A. Here, g (r,  9,  z) is the z-dependent perturbed index on the fibre. It is 
known also that the unperturbed index gives the equation 

[V2 _ er+k2 72 ,3+  —2 - ,  v g(r)]Ècv (r, 0) = —2AV[Ika (r,0).Vg(r)] 

(2.3) 

(2.4) 

4(z) — 

) — 73a) 2dna(z)an(z))ei(on) -Mz (2.5b) 

(2.6) 
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for the ath mode of the unperturbed circular fibre. If this and (2.2) are substituted into 
(2.6), then it follows 

_.1  
p(z) 20apia (z) + Gan  (z)—rpn  (z ) e i(e. 

(2.7) 
73c2v  = — 2Ap (z) (Éa (r, 9), V e n(r , 9).V [g(r, 0, z)  — ÿ(r)]])  e if  n 

ËaI ien 

since the unperturbed modes are orthogonal, i.e. (Èa (r, 0), Ep(r, 0)) vanishes unless a = 

Also, the matrix G(z) is defined by 

G = V2  (È«(r'  0), (g(r, , z) D(r))Ê 7 (r, 0))  
Mil gill (2.8 a7 (z) ) 

These elements are of the order s  (g(r,  ,  9,  z) — (r)). Consideration of the right-hand side 
of (2.7) shows it to be of order AI, and thus it wi ll  be ignored in the following analysis. 

To change from this simply coupled equation for the  p(z)s, to one for the aa (z)s, 
substitute (2.4) and (2.5) into (2.7). Making the above two approximations, one obtains 

((fin)dna(z) — icena(z))  1  
(07.1) 1  

1 —1  i (d" (z)+2i(fin)dina (z) — ) 2 )dna G az(z)d ni(z)) an  ( z )eig.)z 
2 na (fin) 

Further, take advantage of D(z) being an orthogonal matrix, so that the apprœdmate coupled 
amplitude equations are 

(5 
dap(z)cenp(z)

)
\ \ei(f3.)z an an‘zi 

) 2 ) 2  

1 d a p(Z)Celp(Z) 
1 1 

Oa) 2  (I n) 2  
(fin) 1  +2z da  (z)di ( - 2 

Pa) P nle‘z) + 
(fln)2)dap(z)dnp(z)  

(13a)1 On)1 

where ban  is the Krônecker delta. 

dcep(Z)dn i(Z)N „ i(,(3 ) z  
+ G(z)  ) a/1(Z» n  

Pari (l3n) i  
(2.9) 

Now all is readied for the third approximation. Since ,3;  3.-1/2 , a little thought shows 
that the matrix on the left-hand side of (2.9) can be inverted approximately; namely 

.dap(z)ce (z) 1 .dap(z)ce
7P 

(z) 
(6  cry z 719 (8a7 z 1 )* 

Pa) I  (i37) 2 
 (/3a)2  (/37)2 
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(2.10a) 

where further approximations are made by ignoring terms with factors of order ,3j f•.,  A-2 

 in their denonainators. Thus, we obtain the matrix equation — coupled first order linear 
differential equations: 

I 
i( ' 

) z 1. f dap(z)dg p(z) (8
n 

 ) 
da(z)e = —2 2 (ea)  lon)  ii 2 ocry )i102 q) dar(z)d iqr (z)dqp(z)4 p (z) 

I 
_LI;  On»  d (,),/ (,\ _L  (A2 / A  ‘2 )  dap(Z)dnp(Z)  4. G  ( ) dap(z)dni(z)) a  (z ) eipn )z ,  i ..., 1  -ap n -r-npv-/ . v. -.1, v•-•r a / / 1 1 ' PI , ' , 0,0 1 on) 1 i n  

Oct) i Pa) î  On, 2  

aai  (z)e i (13.)z = iMan(z ) an (z)e i( n )z , (2.10b) 

with 
rz ma7e  = —1  IA  dz Ma7(z) e —ia /A  

A 0 
(2.11) 

The variation of da.y (z) with z is also slow, so that the derivative da.y (z) with respect to z is 
small, making this approximation even better. Using this approximate inverse, the left-hand 
side of (2.9) is simplified, and the coupling equation becomes 

with matrix May (z) defined in the obvious way from comparison of the two parts of (2.10). 

It is stressed that this is obtained by retaining terms to dominant order in A. 

2.3 PERIODIC GRATING AND RESONANCE 

Since the grating is periodic with spatial period A, it follows that so is matrix M(z). 

Hence, define 

May(z) ,_ ma7jeij2rz/1t 

so that (2.10b) becomes 

a(z) = imanjan (z)e i(gi)-00)+Pk)z  . (2.12) 

There are two aspects to the solution of (2.12). Far away from any resonance, i.e. when 

(On) - (8a)  +j)  is away from 0 (when it also happens to be large) for all n,a,j, then 
the solution gives only small variations in the aa (z)s. Explicitly, these are 

(e i((f3.) - (f3a)+..rai )z 
-

1)  aa(z) = aa (0) -I- manjan (0) (2.13) 
«fln) — (i3a) + i-2f-) • i, c % 1 a . % • 2/r. \ • 

7 



r 
(/37 )y ) — (13a) = 

.2 
 (2.14) 

Two observations are in order. The magnitude of the manj, depending on the coupling 

matrix G(z), is small . Resonance occurs when the denominator of a terni in the sum on the 
right-hand side of (2.13) vanishes. When it does, a different solution is needed. 

Resonance between two modes, indexed by a, y, exists when there is an integer value j 
such that 

It is worth stressing that there is always self-coupling, which occurs for a = y and j = O. 
Suppose instead that the modes indexed by a, y belong to the same family of modes, i.e. 
they have the same scalar value of e. Then the average propagation constants are almost 
degenerate, i.e. (/9,,,) ,t-ze (/37 ), so that resonance almost occurs for j = O. This is a birefringent 

coupling. On a fibre operating so that modes of two different families of modes propagate, 
we find a jth-order, mode-converting, resonant coupling when the period of the grating is 
tuned so that it approximately satisfies (2.14), for some non-zero value of j. This is a very 
specific condition. 

For the case of such mode conversion with a jth order (j 0) resonance, suppose the 
first family of modes is indexed by a E Ij  and the second family by a E in- . From (2.12), 

the system of coupled equations then becomes, for a E , 
in} 

aa(z)= irn aaoaa (z) i E rnanoan (z)eicon)-(pcmz 
ner 

ii nea 

+ i E ni.../(a,n)an(z)eiw3.) -43a )+J(aln )23-.) z 

nEI(y) 
, 

where it is defined that 

0 , if a, y in same family 
T(a, = if a E E I/ 

—j if E /*/)7 E I// • 

(2.15) 

In (2.15), the first term is the self coupling, the second term is the birefringent coupling, and 
the third term is the mode-converting coupling. The complicated treatment of the sign given 
in J(a,n) in the exponent takes account of whether (/9n ) is greater or less than ($a).  This 
forms a set of coupled, first-order, linear differential equations with periodic coefficients. 
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0+J With the value of A and j fixed, a matrix man  j (a,n)ei(( ) —  () (a, n) ak ) z  is fixed, en 

as detailed at (2.15). Simplification of (2.15) leads to a system with constant complex 
coefficients. Without any loss of generality, we can assume that the values of (/3i)  are 
greater for family / that family //. With C an arbitrary constant to make matters as "nice" 
as possible, defining 

= Oa) — C J(a,1)2ir  

ac› (z) = Aarn ei(eni —(4 )z , 

and noting that J(cr, 7) = J(a,l) — J(7,1), yields the system of matrix equations 

((My 0a)San manJ(a,n))An-y = 0. 

Now y 7 , "lay  are fixed by standard eigenvalue methods. When the matrix on the left-hand 
side is Hermitian — which it is when all modes are propagating forward — theory tells that 
there exists a periodic solution for aa (z) [3]. When the matrix is anti-Hermitian, the solution 
involves exponential functions. Knowing there is a solution, even its form, is a long way from 
actually having the solution; finding it can be a lot more work. 

2.4 REFLECTIONS 

To indude the possibility of reflections in the grating it is straightforward. Reflections 

are modes propagating towards z negative, and these are described by values of (I3a ) < 0. 

Such modes, and values of (3a) , can be induded in expansions (2.1) and (2.2). The local 
transverse modal field is still given by Ea (r,  9 ,  z). However, when (/?a) < 0, then (fla )i 

is imaginary, and account must be taken of this in the evaluations proceeding from (2.10). 

That these extra imaginary numbers appear is not surprising, as there are phase shifts of ir 
at reflections. The resonance condition for a strong conversion to reflection remains (2.13). 

Thus, reflections present no difficulty. 

2.5 AXISYMMETRIC GRATING 

If the grating is axisymmetric, two further simplifications exist. Firstly, the vector 
direction of the modes of the grating remains that of the modes found on the unperturbed 
circular fibre, and the matrix D(z) is the identity matrix. This means that the matrix M(z), 

9 



found at (2.10), is simply 

M,7 ,z, (fla) 2 î G y (z) 
— 2 (/3e) -ay .  

(fia) 2 (/97) 2  
Secondly, the grating is formed of a perturbation which factors as 

45 g(r,  ,  9,  z) — -g(r) = -3,-gr(r)gz (z). 

(2.16) 

On this axisymmetric structure, within the approximation worked here, the radial de-
pendence and vector form of a mode is everywhere identical to those of the unperturbed 
fibre. A little thought about the effect of an axisymmetric perturbation and the angular 
dependence of drcularly polarized electric fields simplies the coupling coefficients. With the 
radial dependence of  a (r, 0) given by Fa(r), the integrals in (2.8) become 

6 , 
G 7 (z) = —g z u z v cdcer v ), (2.17a) à 

together with the definition 

V  100 Ca7(V) — dr rgr(r)Fa(r)F7 (r), Vail VIII 0  (2.17b) 

which are generalized coupling coefficients, involving the radial dependence of the modes and 
induding all  the frequency dependence of the coupling matrix M(z). The extra V appearing 
in (2.17a) disappears when it is inserted in (2.16) because I (MI 

It is worthy of note that the self-coupling term vanishes. The self-coupling term comes 

about from 

ine"  = --1-20a) (Tel (13'1)2 lA A  10 dz Gea(z))  
= 0,  (2.18) 

because we know, from standard perturbation theory [e.g. 1], that the average propagation 
constant is defined by 

- 2 1  /A  6  V2  (f)a) 2  = fla  -1-1- 0 d  z • ilevii2  (È (r, 0), (g(r, 0, z) — D(r))Éa (r, 0)) 

- 2 1 IA  d  6  V2 d  
= + x z 

• 

Éotii2  S (g(r, 0, z) — (r))IÈ a(r, 0)12  

- 2 1  r = )3a  — dz A 0 

10 



gz  ( z ). gi  e i2rj7/A ,  (2.19) 

from the definition of G(z) at (2.8) and noting that the domain C is the portion of the 
cross-section in which g(r, 0, z) j(r). In the conventional approach to coupling in gratings, 
the average value of the propagation constants is not inserted, and the self-coupling term 
remains. Its removal in solving the ensuing coupled equations has the same mathematical 
effect as using the average constant in the first place. 

The other elements in the Fourier decomposition of the coupling matrix follow. If gz (z) 
has the Fourier expansion 

then, from (2.11), (2.16) and (2.17) and recalling how e = J(a, 7), there is the coupling 
matrix 

6 
me7e ----ABa7Ca7(17)9€) (2.20) 

where Bay  = VLVIIe(fia)i(fly)i, which has value 1 when the signs of (13a)  and (ey ) are 
the same and value i when their signs differ. This follows since I (3a)1 V/fiii, to the 
accuracy required here. 

2.6 ANISOTROPY 

Suppose that the grating is formed by a perturbation that is anisotropic. The effect 
is twofold. Firstly, and obviously, it has an influence in the values of (fia)  and the matrix 
D"(z). This is as given by standard theories. 

Secondly, the coupling matrix given at (2.8) is more complex. It is assumed that the axes 
of anisotropy align with the Cartesian axes, so the scalar value g(r, 0, z) — g(r) is replaced by 
a diagonal matrix. (General theory shows how such Cartesian axes can be defined; finding 
them will complicate the form of (r, 0) dependence of grating, if they do not match the 
symmetry axes of the grating.) This means 

Ga7(z) = V2  
11411

(Éa(r, 0), (ge(r,  z) g(r) 
0

0 
gy (r, 0, z) — D(r)) È7 (r, 0)). (2.21) 

where gi (r,  9, z) — e (r) defines the perturbation sensed by j-polarized light. 

1 1 



it follows that 

for use in (2.20). 

3.0 EXAMPLE: NORMAL INTERFACES, UNIFORM PERTURBATION 

3.1 GEOMETRY 

The study of such a grating is motivated by realized structures [e.g. 4, 5]; it is the 
simplest case. The structure, seen in Fig. 1, is of period A and consists of N elements of 
length / < A. These regions have a higher refractive index in the core: z  + 8 instead of 
ii  However, it is only slightly higher so 6 < A, thereby making it possible to treat these 

elements as perturbations of an otherwise axially invariant waveguide, and use the theory 

derived previously. The constant is fixed by 

= —A' 
and all lengths have been normalized by the radius of the fibre. Obviously, for a grating to 
exist, < 1. 

The interfaces separating the elements of the grating are normal to the axis of the 
grating, which is the axis of propagation of modes. Hence, the grating is axisymmetric, so 
we use the simplified results based on (2.16). The radial dependence of the modes, and 
their vector forms are always as on axisymm.etric, unperturbed fibre, and the radial and 
periodic longitudinal perturbations of the refractive index factor independently. Further, 

the perturbation is not only axisymmetric, but constant, in the core. Hence, the coupling 

coefficients given at (2.17b) follow as 

Ca7(17) =  f l  dr rFa(r)F7 (r). 

With the z-variation of the grating given as 

(3.1) 

gZ(Z) Eef-A n 1 ); 
n 2 

, 

 

Ii  , if s E (4C — (x)  = 
I 0 , if x E (C — 

g a  = e 1oar(1--() sin(cer()  
ar (3.2) 
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g(r) 

-_4 

g=g(r) + 8/à 

1' 

A 

(a) fibre seen from the side 

(b) fibre seen in cross-section 

Figure 1: Structure of the LPoi 4-› LP02 modal conversion grating 

The shaded regions represent those of perturbed refractive index, characterized by A + 5; the unperturbed 

index is measured by A. 
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(3.3) 

(3.4a) 

(3.5a) 

(3.5b) 

(3.6) 

(3.7) 

3.2 GRATING FOR LPoi 4-> LP02 MODAL CONVERSION 

This grating is designed to give a first-order resonance between two forward propagat-
ing modes. Denote either the X- or Y-polarized fundamental (or HEii) and HE12 modes 
as modes 1 and 2, respectively. Since these polarizations are degenerate with respect to 

propagation and form, it does not matter which polarization is selected. Further, they are 
axisymmetric, and are the only ones connected by the axisymmetric grating considered. The 
families of LPii and LP21 modes will be ignored. 

Since both modes travel forward, the Ba7  are all 1. Clearly ( 131) > ( /32). Define the 
real values 

1 27r 

M(V) = —
6

Ci2(V)
siner(). 

f2-1 
so that, with C12 coming from (3.1), gi from (3.2), and m121 from (2.20), 

1  
C12(17) - 

11F111 liF011 0 
V 1 

dr rFo(r)Fi(r); 

m121 = (3.4b) 

It follows that m21_1 = m1 21 . Hence, from (2.15) and (2.18), the pertinant set of coupled 
equations is 

(aii(z)\ 0 _me—i7r( ei2r2) ( ai ( z ) 
cz 12 (z)) 0 a2(z)) • 

The solution of this system is easy (see Appendix A). With the boundary conditions 
ai(0) =  1,a2(0)  = 0 imposed, i.e. all the power initially enters the grating in mode 1, it 

follows that 

al(z)i(z) ir 
eirz(cos(pz) — —sni(iiz)) 

iMe  = e-irz -iw(  a2(z) sin(pz) 

where it is defined that 

14,2 (v) m2 (v)+ r2 (v);  

r2 (v)  n(v) =1/(1+ M2(V) ). 

14 



The latter is useful in the expression for power: 

lai(z)1 2  = 1 — risin2 (i/z). (3.8) 

Maximum power exchange occurs if ri = 1, or equivalently if r =  0, exactly the well-known 

conditions. The coupling length, after which the maximum possible fraction of power has 

transfered to mode 2, is ir/2M(V). 

For the step profile fibre [1: ch14], we find that 
21471W2U1U2(X1 — X2)  

C12(V) = V(U? U)X1X2 
where U1, W1 and U2, W2 are the conventional pairs of normalized propagation constants of 

the LPoi and LP02 modes, respectively, and xi = UiJi(Ui)1,10(Ui). This function of 

frequency is illustrated in Fig. 2. The average values of the propagation constants are (refer 

below (2.18)) 
+ 4v2 . — 1lFj112 77, 

correct to order  S and  3,2• Here, ri j is the customary modal effidency and liFj II the customary 

modal normalization [e.g. 1: ch14]. The interpretation of this expression is easy. The 

tilded value is the scalar propagation constant of the LPoi mode, the second term is the 

polarization correction to this, and the final term is average correction due to the presence 

of the grating. 

At times it is desirable to find the period of a grating that would achieve complete modal 

conversion at a nominated wavelength. This comes about by satisfying (2.14), as mentioned 

previously. An easier expression that is approximately satisfied can be found. Instead of 

using the averaged propagation constants, use the scalar approximations to the propagation 

constants. Then we find 
V  • = 2•firr w2 (3.9) 2N/ir

;q - _
V

w2•  
1 2 

This estimate for A ( ) is correct to order A, î . The characteristic behaviour of this solution 

is well defined, and can be seen in Fig. 3. The period decreases as V moves above 3.832, the 

cut-off value of the LP02 mode, attains a minimum at V = 4.448, and thereafter increases 

without limit. Alternately, a given periodidty A of the grating may fail to achieve full modal 

conversion, may achieve conversion at two frequencies, or perhaps only one. 

15 
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Figure 2: Frequency variation of the coupling coefficient 

For the LP01  4-+ LP02  grating, the coupling coefficient, defined by Eq. (3.1), is shown as a function of 

normalized frequency. 
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Figure 3: Frequency variation of scaled scalar period 

For the LPoi 4-n 1202 grating, the scaled scalar period, given in Eq. (3.9), for complete coupling between 

modes is shown as a function of normalized frequency. 



3.3 SPECTRAL RESPONSE — STEP FIBRE 

Consider a step fibre with radius p = 4.198 pm and first higher-mode cut-off wavelength 
at A = 1.286 pm. Consider a grating made of 2000 elements, for which = and .5 = 
4 x 10-6 . These correspond to the magnitudes of parameters in gratings of interest [5]. The 
maximum amount of power that can be exchanged between the LPoi and LI302 modes 
77(V) and the length of grating 7r/2M needed to exchange this maximum power are shown 
in Fig. 4, for periodidty A = 207.3 pm. In both cases, the functions are very sharply spiked 
about the resonant frequendes. Of course, if the grating is not of the correct total length, 
which is frequency dependent, then less than complete transfer of power from the LPoi 
mode is observed. 

Once a grating of nominated periodidty and length is fabricated, the amount of con-
version at a continuum of frequencies is easily established. In Fig. 5 are shown a sampling 
of such response curves, for different periodidties A of the grating. They agree favourably 
with the spectral response curves found experimentally. The fraction of power remaining in 
the LPoi mode is shown: 

1 — 77(V) sin2 (p(V)NA). 

Complete power transfer is not achieved because the length of the grating NA is less than the 
coupling length 'mi. For the periodidties selected and combination of fibre parameters, two 
resonant frequencies exist. Observe that the peak of the conversion decreases with increasing 
distance from V = 4.23 — the location of the peak value of C12(V) (see Fig. 2) — which 
corresponds to the shortest coupling length. Observe that the spectral response is narrower, 
further from V = 4.448. It is useful to quantify how narrow the response is. 

Results were generated also with  5  = 5 x 10-6 . They were virtually identical to those 
presented. 

3.4 RESONANT SPECTRAL LINEWIDTH 

Suppose we have a grating arranged at resonance. Further, suppose that this grating 
has a very narrow linewidth in its response, as frequency varies. It follows that M changes 
very little in the narrow neighbourhood of this resonance. Thus, in this region, set M  M0,  

18 
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Figure 4(b) 
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Figure 4(a) 

Figure 4: Frequency variation of properties of an LPoi 4-+ LP02 grating 

An example of an LPoi 4«-> 111302 grating: A = 203.7 pm, with  5 4 x 10 -6  and ( = I. The fibre has 
p = 4.198 pm and a cutoff wavelength of 1.286 pm. In (a) the efficiency, as given by Eq. (3.7), and in (b) the 

coupling length, as given by Eq. (3.4a), are shown as functions of normalized frequency. Notice the coupling 
length is minute except where the efficiency is large. 
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Figure 5: Frequency variation of output in LP01 mode 

The amount of power remaining in the LPoi mode after passage through 2000 elements of an LP01 LP02 

grating with b = 4 x 10-6  and ( = 1. The fibre has p = 4.198 pm and a cutoff wavelength of 1.286 pm. 



+.52 1,12 (0)  (3.10a) 

a constant. Further, if we put s = V — Vr , then we assume the Taylor expansion 

r(s) r(o) + 314 (o) 

to be valid and note that resonance means r(o) =  o. Thus we get from (3.6) and (3.7) that 

no)
M0

) ) 2, 1/(1 + 3-9  (— . (3.10b) 

This approximation can be improved if operation is in a region where M does change sig-

nificantly. Assume that the total length of the grating is r/2/2(0) = r/2M0, which is the 

length for complete power transfer at resonance. The problem can be worked for the spectral 

linewidth at other lengths, but this is more complicated and not done here. The solution 

presented gives the features of interest. 

With (3.10) and from (3.8), it follows that the power in the LPoi mode is approximately 

lal(z; 3 )1 2  = 1 
1 2/r / 

1 + 32.72 sin  •-i n/ 1  -I- 3272), 

after defining 

(3.11) 

7 = le(0)/mo I. 
To find the linewidth, note the numerically determined fact that,  with  the expression (3.11), 
the power is at a half when s'y = 0.7988. Thus, the variation in V to give the FWHM of the 

resonance is defined by 

V — V,.  = s = 2 x 0.79881—mo I. rt(o) 
The value of M0 comes from (3.4a), namely 

MO — 
sin(7()

C12(Vr). 

The value of ri(o) is found as follows. It is known [1: chl4] that 

dW W 
--L(1 + 
dV V x ,g 

so that, to dominant order, from (3.3) the expression 

1 —  = -2 02 — Pi) =  2V2 X2 X1 
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is obtained. To evaluate ri(o), specifically take the values of Wj and Uj corresponding to 

Hence, the linewidth is given by 

IVrim  —1;1 = 1.5983. 
sin(lr()

D(Vr ) 3,2 ir  

with Vgm being the value when intensity is half, and 

(3.12) 

V2 C12(V) 
imu2/1 + a_ril\_w12(i+gri.\ 
"2 ‘i Xi ) 

It follows that is small, because à is very small, except when D(V) is big. The forra 

of D(V) is seen in Fig. 6. For V > 4.8, it is clear that D 1. The resonance in D(V) 
occurs where the group velocities of the LPoi and LP02 modes are equal. Within the 
scalar approximation, this occurs at V = 4.448. Here, the linear Taylor approximation, 
conabined with using the scalar values for the propagation constants, is inadequate, and the 
determination of the linewidth is more difficult. However, the domain needing this correction 
is small, and the problem will not be examined here. 

Instead of V, we can fix a linewidth in terms of wavelength or frequency. If the higher 
mode cut-off  is given by  À, w 0 ,  then the linewidth is given from 

, , 
PtHm — Ar — = Aco 2.405--r, ; VI • frh  

C0 
e 

-
r Ping — (.4.1 = =  Vr  2.405 

The former is valid providing the value of ft is small; the latter defines Pr which will be used 
below. 

3.5 ANISOTROPY 

The spectral response curves generated above do not agree in every detail with the 
experimental results. For exa,mple, the response peaks at lower frequencies are predicted to 

be narrower and the peak values to decrease as the frequency decreases. However, this is 
not observed. 

D(V) = 

(3.13) 
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Figure 6: Frequency variation of linewidth parameter 

For the LPoi 4-> 1,1)02 grating, the linewidth parameter, given below Eq. (3.12), is shown as a function of 

normalized frequency. 



If the grating is anisotropic, then X- and Y-polarized modes will give slightly different 
responses. Suppose that the respective perturbations are given by Sx  = 8 and by = 1 + 
The solution for P-polarized modes can be generated with the formulae above, with Sp 

substituted for S. In Fig. 7 is shown a pair of spectral response curves for an anisotropic 

grating, into which an X- or Y-polarized LPoi mode is launched. In Fig. 8 we see the 
response if light that consists of equal amounts of each polarization is used. In this latter 
example, the spectral linewidth at lower frequencies is "smeared out", when compared with 
the corresponding result in an isotropic fibre (see Fig. 5). Nor does the peak value of the 
conversion decrease with V, as it did for the isotropic case. 

3.6 BRAGG GRATING 

In this case, the fibre supports one mode. It couples to the "same" mode, travelling in 
the opposite direction. Denote the mode propagating forward as mode 1, and that backward 
as mode 2. Their modal fields and related properties are identical, and (/31) = — (192). Thus, 
from (2.14) the resonance condition (/31) = defines a Bragg grating. 

The negative sign on (/92)  means that [Ba7] = ). With the definitions 

(3.14) 

M(V) = —45C12(V)
sin(e()  (3.15a) 

11" 

it follows that 

m121 = = (3.15b) 

from (2.20), (3.2) and the observations above about Bar Since the two modes have the 
same radial variation for the electric field, from (3.1) 

C12(V) = V7i(V) 

where n  _ 1111; 112  fj dr rF2 (r) is the usual modal effidency. Thus, (2.15), (3.14) and (3.15) 
show that to describe a Bragg grating, which is both a first-order resonance and axisymmet-

ric, the set of coupled modes equations is 

al). (z) 0 
a2 (z) ) _imeir(e—i2rz 

( ai ( z ) 
0 )\ cz2(z J ' 
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Figure 7: Frequency variation of output: input X- or Y-polarized 

The amount of power remaining in the LPoi  mode after passage through 2000 elements of an anisotropic 
LPoi  4-) L1)02  grating with E = 0.001, 45 = 4 x 10-6  and = I. The fibre has p = 4.198 pm and a cutoff 
wavelength of 1.286 pm. Input power is polarized along the optical axes, which coincide with the Cartesian 
axes. 
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Figure 8: Frequency variation of output: input 50-50 polarized 

The amount of power remaining in the LPoi mode after passage through 2000 elements of an anisotrpoic 

LP01 LP02  grating with E = 0.001, 6 = 4 x 10-6  and ( = I. The fibre has p = 4.198 pm and a cutoff 
wavelength of 1.286 pm. Input power is polarized at 45 0  to the optical (Cartesian) axes. 



(3.16a) 

(3.16b) 

For the boundary conditions, a little thought is necessary. At z = 0, entering the 

grating, there is unit amplitude in mode 1, i.e. ai(0) = 1, and, at the other end z = NA, 

there is no power entering the grating in mode 2, i.e. a2(NA) = O. Given these, the above 

system of equations has the easy solution (see Appendix A), seen previously [6]: 

al(z) = eirz (cosh(gz) — A sinh(pz)) 
a2 ( z ) = _eir( e—irzi 

 M 
ir — Aft  cosh(pz) e iAr  sinh(pz)), 

where 

A  =  tanh(yNA) ir 
+ ir tanh(ANA) 

1.12 = m2 r2 .  (3.17) 

Recall that interest is primmily with behaviour around resonance, i.e. when r  O.  Under 

this condition it is real. Obviously, as In increases, then eventually  z  becomes imaginary, 

the hyperbolic functions become trigonometric functions and the behaviour of the solution 

changes. 

Recovering the expression for the reflected power leaving the grating gives 

ia2(0)1 2 = 1 tanh(yNA) — r2  tanh(yNA)I 2  
M2 2  r2  tanh2 (pNA) 

sinh2 ( INA) (3.18) 
cosh2 (ANA) — e.• 

This is the effidency of conversion, since unit power was launched as ai(0). As expected, 

the maximum value occurs when r = o, where 

42(0)1 2  = tanh2 (IMINA) < 1. 

Thus, as the number of elements in the grating increases, the effidency of the Bragg reflection 

grating increases. Obviously increasing the value of IMI, i.e. the strength of coupling, given 

at (3.15a), also improves effidency. To achieve 90% efficiency at resonance, it is found [7: 
table4, p2 1 6] that the need is 

1.82 < I MINA  28n(Vr)Nsin(r(), 
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using (3.15a) and approximating A . ire  for resonance. The resonant frequency is made , 
explicit as the argument of 7/. For (5.  ,--, 10-5 , this means N •-•-• 105 . For only 50% efficiency, 
the need is 

0.88 < 2677(Vr)N sin(r(). 
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4.0 EXAMPLE: LPoi 4-4 LPii GRATING 

4.1 CONSTRUCTION AND GEOMETRY 

Consider as an example a grating constructed to convert power in the fundamental 

(L13 01) mode into power in first higher-order (LPii) mode [8]. In this case, the grating is 

not axisymmetric, but rather is as shown in Fig. 9. Hence, the modes of the grating are 
not circularly symmetric, the modes of the unperturbed fibre are inadequate to describe 

the modes of the grating, and the analysis developed above is necessary. Before venturing 

further with the analysis, it is again important to remember that all lengths are scaled with 

the fibre's radius. 

In the construction process, the angle of the blaze e  is prescribed, as is the period of 
the grating A, and the width of the exposed region cr. Also, of course, it is known exactly 

the number of elements N written in the fibre. Thus, other quantities follow. 

It is trivial that the total length L of the grating is 

L = NA.  

Other lengths follow equally easily. The axial lengths of the grating element (perturbed 

region) and the the unperturbed region, respectively, are 

Li = al sin 0 and L  = A — crl sin O. 

The length over which the interface operates is 

tc  = 2/ tan O. 

Thus, the fraction of axial length exposed and half the fraction of axial length devoted to 

the interfaces are, respectively, 

= — = and e =  2 (4.1) A A sin e A A tan 
Of course, for this grating to be meaning-ful, the constraint is that 

to > < Or A sin 9 — > 2 cos 9  < o.  
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(b) fibre seen in cross-section 

Figure 9: Structure of the LPoi 4-n LPil modal conversion grating 

The shaded regions represent those of perturbed refractive index, characterized by à +6; the unperturbed 
index is measured by A. 
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It is useful to explidtly write the equations that define the interfaces where the grating's 

refractive index changes. These give 

1— 2z/te  {, if z E 0,4) 
—1 if z E 4,4) (4.2) s(z)  = —1+ 2(z — /1)// c  : if z E /1,4 + 4) 
1 , if z E /1 + ic , A) 

so that the interface is given by the function s(z) over one period (0, A), and this is easily 

made into a periodic function. 

Finally, the size of the perturbation to the refractive index, used to define the grating, 

is known. The perturbation is anisotropic. The J-polarized light senses the index to change 

from 4(1 -I- 23,g(r)) to 74(1 + 23,g(r) + 28j). For convenience define 

Sx  = 8 and by = 6(1 + E). 

Since the grating is very weak, it follows that < 1. This condition is the requirement 

to allow determination of modal properties using perturbation analysis of an axisymmetric 
waveguide. 

4.2 PRELIMINARY SCALAR OBSERVATIONS 

As with the LPoi 4-> LP02 grating, a scaled scalar resonant period can be evaluated. 

Analogously to (3.9), this is prescribed by 

V 
w2 _ w2 • 

1 2 

This is shown, as a function of frequency, in Fig. 10. 

However, as with the previous problem, the scalar theory is unable to fully describe the 

output of the grating. In particular, experimental observations [8] show four distinct peaks of 

spectral response, not one. Hence, the vector nature of the modes within the LPoi 4-9  L 13 1.1 
grating must be considered. 

4.3 MODES OF CIRCULAR FIBRE 

Start by defining 
y2 = k2 ,9242A.  
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Figure 10: Frequency variation of scaled scalar period 

For the LPoi 4-' LPII grating, the scaled scalar period, as given in §4.2, for complete coupling between 
modes is shown as a function of normalized frequency. 



and LPoi 

In this problem, we are concerned with operating at values of V such that 6 modes prop-

agate in the fibre. On the unperturbed fibre, these are the two polarization states of the 

fundamental mode, which are the LPoi modes, and the odd and even forms of the HEn 

mode, the TE01 mode, and the TMoi mode, which are all LPii modes. Thus, the vector 

modes on the unperturbed fibre are indexed by the convention 

«E3  = Fi(r)(cos 9 — sin Sr) ; É4 = (r)(cos 9 St + sin Sr) (4.3) 

E5= (r)(sin 0 Sc -I- cos Sr') ; É6 = Fi(r)(— sin 9 31 -I- cos 9 Sr). 
Notice that there is a change in the customary convention, by reversing the sign of the TEoi 

mode. When the local modes in the grating are examined, they, too, are enumerated by this 

system so that the index j will be on the mode which corresponds to Éj on the unperturbed 

fibre. The corresponding index is meaningful on the local propagation constants /3.i (z), which 

include the polarization corrections. 

With  13f  and /-3h the scalar propagation constants (as determined by the weak guid-

ance theory) and F0(r) and Fi(r) the modal fields' radial dependences of the LPoi and 
LP II  modes, respectively, on the unperturbed portions of the fibre, the modal propagation 
constants, corrected for polarization effects, are 

73? = = —  Mo  

= 13121  — A2(11 -I- 12) 

73î = T3121 , 

where 
/0 =  1   joe  dr rFo(r)FP(r)g i  (r); 

11411 2  0 

= 1 
iiFlii 

oe  dr rF1(r)F{(r)9 1 (r); 
2 j 

/2 =
1F111 2  0 

1 dr ei2 (r)g i  (r). i  
These are known, at least numerically. Define the scalar modal efficiendes as qf ,r for the 

families of modes, respectively, as the integrals 
fr dr rFg(r) 

11F0 11 2 • 
1 

71/ - 
h 
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(31) 2  =+-À-'5  cv 2 17f  = ;31 

(32) 2  =A + (1+ E)Cv2 17f  

— CV277f - Ah 
(4.4) 

For a drcular step fibre, the actual expressions for all these quantities can be extracted 
from standard references [e.g. 1: ch14]. Namely, with the definitions, 

e(1) 
- - Fie 

for j = 0,1, they follow as 

Fo(r) = 
'ear))  , r < 1 

4!' 
 

jecrr)  , 1 < r Ko  Wo ) 

X0 = U0 jjoiluU0°))  ; 

We(UP + X4j)  
lif  = 112 xij 

Ji(Uir)  
• F1(r) = Ki(Wir)  

JIM) 

K1 (W1 ) 
Tr 

 
J0 (U1)  

X1 = 1  '11 Ji(U1) 
14/(U? + XÎ 1) 

1711 V2(XÎ 1) 

,r <1 
,1<r 

V2 ,2 2  v2(x2 1) 
IlF011 2  = • VIII - 21w2 2U2 W2 2u 0 0 1 

= xo/11F011 2 ; h =xi/1111111 2 ; 12  = — 1 /11F111 2 . 

4.4 PERTURBATION AND LOCAL MODES 

Using perturbation analysis, the properties of the local modes were found very easily 
from those of the modes on the unperturbed fibre. 

In describing the coupling caused by the grating, we are not interested in the local 
propagation constants, but their averages over the period of the grating. These are 

( /(3i) 2 ( /3j) = joA  dz fq(z) 

= (1— e)/3J(s = 1) + (c — 4)I3J(3 = —1) + e i ds o.hs) 
by changing the variable of integration from z to s using (4.2). Previously, it was shown for 
the fundamental modes 

ay = 

Define the constants 

ax  — 28 V2I1F1112 
11.2  ( 1  +  
245 V2 1IF111 2.  

(4.5) 
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, if s > 0 
, if s < 0 

(4.6a) 

(4.8a) 

(4.8b) 

(4.8c) 

(4.8d) 

Jail) 

It is worth noting that sgn(a y) = 1 and that ay  > ax  (both known numerically). Define 

also the functions 
1  

dS n(r) 
Q+(e)=  2 11F111 2  h)(s(z)) 

= g dr rFi2 (r) arccos(s/r) 
irnh- (24-s) 

Q_(z)= 1 dS 11(r) cos 20 
211F111 2  Jp(s(z)) 

dr I. F2 (r)\ — ={11.F fs 
-Q-(-s) 

(4.6b) , if s > 0 
, if s < 0 

after inserting the specific description of D(s(z)). These are combined to give 

(z) = (1 + )Q —(z) :=Q+(z). 
Y 2 2 

The complete set of average propagation constants for the higher-order modes follows: 

(4.7) 

n  031 2  = i3h -F —(1+ rvv2 3,(xi +1)  
à 2 '' 77h 111'1112 

\ -a2 8 — 
A/ 2  = mh + —(1 + r.)072 A  2(Xi — 1) 

A 2 11  h 111'1112 
\  ([35/ 2  = ,811  + —(1 +r.)07 2 à (XI + 1)  

A 2 ' nh IlFi112 
2  

06) = /3h + — (1 + =. )(112 77h + 0 
A 2  

A—sgn(ax )V2 Lx  Irp2 

A-iw sgn(az )V 2 L z  

A Tf2 T  
y rA2 Y 

V2 Ly . 

with the definition, for j = x, y, 

L- = dz (14 + Q(z)I
1 
 — lajl) 

3  A o 

= (C — e)(I4 + 0-1)1 1  — + e ds (1a5 Ql(s)11 
.7,2=2 

= (C exial + - 

+ e (-21ai l + /al  ds  (ta l + Q1(8 )1 4  +14 + (Qi(3)± 11Ï:217h) 2 1 1 )) 

where the upper and lower signs correspond to x and y, respectively. The important finding 
is that there are four distinct values of (fli), instead of the three seen on an unperturbed 
waveguide. Considering these, we observe sgn(ax ) matches sgn(3.794 — V) (known numeri-
cally). Also, it requires some ingenuity, but it is possible to show that L z  > Ly everywhere. 
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This inequality shows how the degeneracy between the even and odd HEn modes is broken, 
i.e. we see that (f35) (83), even in the isotropic case when E = 0. 

Define the two angles O x (s) and O(s) such that 
1 

Oj(s) = arctan(Qi/ai). (4.9) 

The local vector direction of the electric field can be easily written, as is given in Appendix 
B. Observe from (4.6), (4.7) and (4.9) that, while (ki(s = 1) = 0, i.e. the angles vanish where 
there is no perturbation, in the uniformly perturbed region 

= —1) = ±-1 arctan( -Iirnh ). 2 2a. 

This only vanishes when the anisotropy vanishes. It is useful at this juncture to list some 
expressions containing ckx  and Oy. 

,M11 

sin 0j(s) = 

cos (Ms) = 

sin 20j(s) = 

cos 20j(s) = 

—sgn(aj)Qj(s)  

+Q(s)1(1a1 + Q1( 3 )1 1  + 

(1a1 + Q1( 3 )1 1  +1cej1) 1  
+ (4(3 )1 1 • 

—sgn(aj)Qi(s) 

+ Q1( 3 )1 1  • 
lail  

+ e3 )1 1.  

Further, using (4.9), we can find the derivative of 0j(s): 

\ j(3 )  q(s) 2Iai2  Qi2 (s)i 

(4.10a) 

(4.10b) 

(4.10c) 

(4.10d) 

(4.11) 

Q.(3 ) =( 1  + ='Q+( 3 ) 2 2 
Examination of (4.6) and (4.7) shows that ejj(S) is symmetric. To complete these results, 
we write, for s > 0, 

e2+(s) 1 f dl 
11F111 2 r er)  1 — 82  

1 11 _  2 ;  cir " Ff(r). 
1 — 82  

(4.12) 
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These definitions contain integrable singularities in the integrands. For numerical purposes 

it is preferable to reformulate them as 

—2 J1 — s + 2 f 1  dr  .7.\( d (rff(i_.) 
ems )  =  11F1112  v  1 + 3 11F111 2  is  

= —2 \il  — s  +  2  /1dr 
jr — s(s + f)F?(r) + 2r(r -1- s)F1(r)F1(r)  

IlF1112 1 + s 11F111 2  I8 V r + s s + r 
r2 _ 23 2 

e2—‘31  = 11 F111 2  
, , 1 — 3 2 1 dr \F—Ti d  (F12 (r) . ) 2(1 — 232)  

\il -1- s 11F111 2  L dr - r \57—F r 
2(1 — 2s2 )  \/1  — s  

2 /1  dr \ r — s( + r2s + rs2  2s3 )F? 2r(r  sxr2 _ 282)Fill 

11F111 2 r + r2( 8  + 7.) • 

From (4.12), there is one further result that will prove useful: n j(s = ±1) = O. 

4.5 COUPLING MATRICES 

Now that the modal properties of the grating are determined, we turn our attention to 

the matrices which couple the modes together. Evaluating the symmetric matrix G, defined 
at (2.9), is straightforward. Note from (4.3) that, for all a, 1lÉa 11 2  = 2r11F7 11 2 , where -y is 
the appropriate value. 

First, examine the coupling between the different polarization states of the fundamental 
mode, i.e. modes 1 and 2. By defining  g(s) as 

111). 11 2 1 +s Pi 11 2  V 1 + s 

gi(s) = 
1 ï dS F(r) . 

 244112  h›( 8(z)) - 

—  1 
11 2  

dr rFo (r)arccos(s/r) 71-114112 8  
1 

= i(iif + 41( 3 )), (4.13) 

which also defines the antisymmetric function qf(s). A little thought qickly reveals that 

, \ 6  v2 i \ G110) = —, 910 ) ; G22( 3 ) A = (1 + )-8 V 2gi(s). A 
A similar amount of thought shows that G12 = O. 

Now move to the coupling coefficients connecting the fundamental and higher-order 
modes. Examination of the cross-section of the perturbed fibre shows that domain V(s(z)) 
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G33(s) = G44(s) = 

•••n•• 

G55(s) = G66(s) = 

is symmetric about the X-axis. Thus, when mixed with the P-polarized fundamental mode, a 
higher order mode only produces an non-zero element for G if the P-component of the higher 

order mode has a scalar field that has an angulax varuiation that is symmetric about the 
X-axis. Hence, from examination of (4.3), it follows that G15 n = = G16 and G23 =  O  = G24. 

Thus, we see why the pairs of higher-order modes were denoted as the X-pair and the Y-pair 
— they couple only to the respective state of polarization of the fundamental mode. Further, 
defining  93( 8 ) by 

1  
93(s) = 271IFoll 11 1'111 

(8(4) d S P0(r)F1(r) cos 0 

= 7P (s), 

where 

(4.14) 

F(s) = 
1 11 

liF0ii Flii 
dr F0(r)Fi(r)\/r 2  — s2 , (4.15) 

ii Isi 
which is a symmetric function that requires numerical evaluation (Fi(r), Fo(r) involve Bessel 
functions.), we get 

G 13(s) = G 14(3) = V2  93(s) ; G25(3) = G26(s) = (1 + E):3,-8 172  93(s) 

In considering the coupling between the various forms of the higher order modes, i.e. 
modes 3, 4, 5, and 6, a little more thought shows that, by defining gV )  (s), for j x, y, to 
be 

g2(e)  (3) = + 12-1- )Q+(s) Q—( 3 )) 

it follows from (4.6) that 

(4.16) 

A 1,2 1 f dS (r)(cos 2  0 + (1 + sin2  0) 
A 2irF1 2  JD(s(z)) 

2 (X) —V g2  A 
—45  V2 1 dS er)(sin2  + (1 + E) cos 2  0) 
I. 27rliFill 2  ID(s(z)) 
45 1,2 (Y) = 
A
- v g2  . 

Finally, we are concerned with the overlap integral between the various higher-order modes. 
Once again, we find the separation of the modes into the X-pair and Y-pair: G35 = 0 = G36 
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9
(i) (3) = (4.17) 

and G45 = 0 = G46. By defining  

where  Q(s) was defined at (4.6) and (4.7), it follows that 

G34(s)  = 241'111 2  i 
b.  v2 1 f

v(s(z)) 
dS er)(cos 2  0 — (1 + E) sin2  0) 

!V2 (X) 

G56(s)  
\ u2 1  

2r11F1 
f
p(s(z)) 

dS er)(— sin2  0 + (1 + E) cos2  0) = 11 2  J  

=--8  V 2g(Y) (s) A  4 

Thus, it is now possible to write the matrix G(s): 

91(3 ) 
0 (1 1- 2E)gi(s) 

93( 3 ) ê 
 G(s)  = 
2 

 g3(s) 
0 (1 1- 272 )93(s) 
0 (1 + E.)93(s) 

93( 3 ) 93( 3 ) 

(X) (X) 
 9.(4X)(s) 

94 
(X) 

92 (s)  
0 0 
0 0  

0 
(1 +E)g3(s) 

0 
0 

(Y) 
92 (s) 
94Y)  ( 3 ) 

0 n 
(1 +E)g3(s) 

0 
0 

(Y) 94 ( s ) 
(Y) g2 ( s) / 

From (B.18) and since the normalization of the modes is invariant along the grating, it 

follows that the matrix D, defined at (2.3), is 

1 0 0 0 
01 0 0 0 
0 0 cos Or sin, 0 

( 

0 0 — sin Or  cos q5x 0 
0 0 0 
0 0 0 0 — sir 

0 cos 
D = 0 — sin Or  cos q5x 0 

0 0 0 0 COS Oy 
0 0 0 0 - sin (ky  

0 
0 

sinClOy  
cos Oy 

This matrix (and consequently all its derivatives) also decouples the two groups of modes 

— 1E1, E3, Ed and {E2, E5, E6}. This leads, in the ensuing analysis, to treating the two 

groups of modes separately. 

For derivatives of the matrix D, instead of variation with z, consider variation with s, 

and use the chain rule to relate them. By convention, while the dashes denote differentiation 
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with respect to z, dots will be used to show differentiaition with respect to .s. Thus, frorn 
(4.2), can be obtained the identity 

r(z) = 

where f (z) is any function of z. 

Now we simplify the derivatives of matrix D. Firstly, we find for the X-family 

—2 0 0 0 
D12 (x) = f 0 — sin Ox  cos 

e 
Ox . 

0 — cos 02  — sin ck x  

For the Y-family, simply replace x with y, and take the transpose. In either case, 

It —2 0 0 0 ) 
Da (z)Da  (x) = —0a(s) (0 0 — 1 tc 0 +1 0 

with  f  denoting matrix transpose. Continuing, 

Da (z)De (x) = 
;((s)  ( IÔ 201 g  1) + s-°a(s)  ( g0 -F( 1 —001 ) ).  

Thus, all the coupling matrices are listed. 

Examination of (2.9) shows a further useful matrix to be 

2 91 g3(cos + sin Oa ) g3(cos Oa  — sin Oa ) 
Da  GDa  = —V g3 ( cos Oa  + sin Oa ) 92 + 94 sin 20a 94 cos 20a  

\ g cos  — sin Oa ) 94 cos 20a g2 — g4 sin 20a  

defined for either the X- or Y-family of modes. 

4.6 FOURIER COEFFICIENTS 

Recall resonant, mode-converting coupling occurs as described by (2.16). Note that the 
grating of interest is a 1st order resonance. We can now explidtly write down the matrices 
associated with this coupling. Of course, for simplidty, the coupling equations for the X-
family and the Y-family will be dealt with separately, as they decouple. (This was shown 
above.) We will proceed in the case of the X-family. For the Y-family, replace subscripts 
1, 3, 4, x and superscript X with 2, 5, 6, y, and Y, respectively, to get the analogous results 
to those obtained below. 
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(4.22a) 

(4.22b) 

The general expression for the Fourier components, given at (2.11), as it applies to the 

grating, is 

mer e ( e —ie2r e—ie21r(C-4-e))ma7 ( .9  = 1 ) ( e—i€27r( e—if27re)ma7 ( s  = _ 1 ) 
7 27r e ' 27r e 

4e-ier(C+e) 1 1  ds May (s) cos eir(se (), 
-1 

(4.18) 

where s = 1 indicates the value on the unperturbed fibre, s = -1 indicates the value on 

the portion of the grating perturbed uniformly over the cross-section, and the variable of 

itegration has been changed from z to s using (4.2). Obviously, for e = 0, take the limit, 

and obtain 

may() = (C - e)Ma -y(s = -1) + (1 - - fflicry (s = 1) + e ds May  (s) . (4.19) 

Now the Fourier coefficients are ready to be worked explidtly. 

Finding them is easy, once the elements of M(z) are written down explidlty. The matrix 
of interest for the right-hand side of (2.10) is 

1,8o  1 -  mii(z)= 2  U7D-1791(s(z 
+ 

(/31) ) 
„ i6172 1   M13(z) = M31(z) g3(s(z))(cos O x  + sin Ox 0.21a) 
 2 A (,81 )103 )i 

w2  1   m14(z) = m „(s(z))(cos _ sin  e(z) = 2 3, 01)434)-12.— 
oxI4.21b) 

(4.20) 

1/81/2  1 (X) , 32 _ 732 2  
m33 (z)=_ÎT --w(g2  (3(z))+410 (3(z)) sin 20x ) -I- 4(/33)  3  sin Ox 

+ 
- (P3) 2 4 2 1 2 
(3) + 

7
e x(5(z)))  

18V2  1 (X) M44(z)= (---_5(g2 
-o2 

(s(z)) — dX)  (s(z)) sin 20x ) -I- Oz  

+ 73î - 04)2 4 2 1  2 
(/34) + )(4(s(z)))  

M34(z) = 73' 24  1 ( SV2 11 1   g4(X)(3(z)) 
COS 20x+ 

2 A (P3)204)2 203 
• 20 

2  4) 2  
-4 ïb x ( s ( z )) 404)2i  ,,z(s(z))) 

q03) 12‘ 04) 1 4(83) 2  
(4.23a) 
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1 (6172 1 (X) (s(z))  cos20z -1- sin 20x M43(z) = 
2  \ (/33)44) 1 2 ($3) 2  (flel) 2  

4 - .4()33)  • x+ Ox(s(z))+ z 10 (3(z))) 
4()33) 1 (P4) 1 4(134)I 

To dominant order, it is dear that all the (/3a)  in the denominators can be replaced by 
\/-2-3./V. 

(4.23b) 

From (4.12), (4.19) and (4.20), it follows that 

1 E, 6172 1 8v2  f1 
M110 = i —Ft — ((( — e) .—/-171 + q---,--,-,-L 1 d3 (77f  +q/(3))+ (e? - (/31)2)) 

= 0,  

since  q1(s) is antisymmetric, and recalling (/31) as found at (4.4a). 

Note from (4.5), (4.8a) and (4.8b) that 734 — -,c, = ___„2.5 v2 as  , and thus 

1 A 8172  (x) 
A 0 

± — 1 dz (—g 
4 
 (z) sin 2.0z  (z) + (T34 — a3)  sin2  Ox (z)) A  

_,_ 45V2  1 /A , (1, —sgn(az )Qz  2 1 taxi 1)) z= = -- a ',ex + az  (1 A A CI 7 14 -I-  Qffl 7 2 14 + Cg 2  ) 
SV2 1 A 02 ,02 

= T -71:-Esgn(az ) x  jo  dz ( ' 1 
 1 

lax ' -I- ' 1 ) 
(4 + (a1 2 14 +Qîlî 

using (4.10c), (4.10d), and (4.17). Also, observe from (4.16), that 

1 
 j

A  dz 5V2  (i) (z) = 
6(1 + 1 

dz Q+(z)= 
8(1 pV2 

 C.  0 g2 rà xi à 
Recall from (4.8a) and (4.8b) that 

(4.24) 

([33)2 - = 6 ( ( 1 + 1)  V2 qh —6v2 sgn(ax)-1  j'A  dz (14 + Q(z)j
1  — lotz 1). 4 4 rA A 0 

Thus, the first three terms in (4.22) cancel each other out. The approximation for (3,,) 

means that the final term becomes one, instead of two parts. Thud, from (4.11), (4.19) and 
(4.22), it follows that 

1 412:1  /1 4 $(.3)  e ds , 9 ,-‘9/ ‘19 n1440 = m330 = 2 417 —1 geils)1" 
Alt a2 j 1 1  " ds QUsX, ,2 , ‘ , 2  ).(4.25) = 

i 
vz 4 v o - + vxmi ( Qx (s ) +  =7_42uh. ) 2 1 2 
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Considming M34 (z), a simplification is immediate. From (4.5), (4.10c), (4.10d) and 

(4.17), 

8172 ) (X —I—g4  cos 20x  + .•(/3-1 — 31) sin 20x  

SV2  1 E lax ' + 1 28V2  -sgn(cxx )(1 )Qx  -)46 x ax = 0, 
à r 2 g Qîli 2 rà 

so that M34, M43 only contain the derivatives of the angle Ox . These vanish at s = ±1. 

Hence, from (4.19) and (4.24), it follows 

1 _4ef1 , 1 « 
— m430 = m340 = 2  -Tr " 

( 33)(/34)2 
 , x 

-2e f27-A 
= - ;bx (- 1 ) + dc(Ox(1 ) — 

=L2e or  (_1) 

= —

i4 arctan( =Irnh ), (4.26) 
ec 2ax  

since ibx (±1) = 0 = ç5x (1). Hence, it is clear that the coupling between modes 3 and 4 

vanishes only in the case when the perturbation is isotropic. 

Turning now to m131, it foLlows from (4.18), with k = 3,4, 

772 1k1 = ee -i7r(e+C ) ds Mik(s) cos( 7r(( + es)) 

= ee-iirg+0 [ 1  ds (ma ( s) cos(irces + ()) + mik(- s)) cos(7,(e., - J1  
because, from (4.14), (4.15) and (4.21), it follows that Mik(±1) = O. Also, it follows from 

Fourier theory that m1k(-1) = miki , the complex conjugate. Further simplification comes 
from (4.14): 

Ai 1 3(8) = 817 1 P (s).\/-2-  (cos Ox (s) ± sin Ox (s)) 
4 2A-7r 

= — 
617  1 P + el + la' sgn(ax)Qx  

24  + et(14 +  QI  + laz1)' 
where (4.10a) and (4.10b) give the trigonometric functions. Finally, this means that 

av 
m131 =  —i11"(e+C) 11  ds P(8) X 1 

4
1. 271-3.2 0 

N/i ((cos Ox ± sin Ox(s)) cos(r(es ()) + (cos ckx( ± sin O( -s))  cos(r(es - 0)04.27) 
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From (4.24) to (4.27), the coefficients for the Y-family are obtained by the replacement 
detailed previously. 

m220 = O. 
A 1  t 2 1

d 1 1  — f s 2 (.$) 2}0 — Jo Y (1(4 + Q? + m{ / (3)1 2  iq + (Q y(3) + ElP ) 2 1 2  ) • 

,„,* 8(1 + E ) IT  --iireo 11  à p(3)x 7712{:}1= —2{:}(-1) — 2 .7rA i e 0 
((cos Oy ± sin çby (s)) cos(r(es -I- ()) -I- (cos Oy(-3) ± sin Oy(-3)) COS(r(eS — ())) • 

i2 
m560 = —77/650 =  

4.7 COUPLING EQUATIONS AND SOLUTIONS 

Thus, after all the effort, the coupling equations describing modal conversion within the 

LP01 4-+ LPii are obtained. For the X-family, they are 

(

aj. (x) 0 
cii3 (s)) = i (rni31 
a14 (x) m141 

m131 m141) (lx 
m330 m340 a3 

— m340 m440 a4 x 

where miai and ma70 are given at the appropriate one of (4.25), (4.26) and (4.27). Interest 

is in the case when the X-polarized fundamental mode initially carries all the power; equiv-

alently, the boundary conditions are ai(0) = 1 and a3(0) = 0 = a4(0). For the Y-family, i.e. 

modes 2, 5, and 6, with all initial power in the Y-polarized fundamental mode, the obvious 

replacements give a similar set of equations. 

Both families give a system of three coupled, first-order, linear, ordinary differential 
equations. Its solution is discussed in Appendix C. 

4.8 RESULTS 

The refractive index of silica was assumed to be 1.46. Gratings were considered to be 
of N = 1000 elements in length, each element being at an angle O = 0.0401 radians = 2.30° 
to the axis of the fibre. The periodidty was A = 590 pm, and the width of the elements was 
a- = 12 pm [8]. 

Two cases were examined. Firstly, the fibre was presumed to have a radius of p = 
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4.380 pm and a profile height of A = 2.190 x 10-3 . This corresponds to a higher-mode cut-

off wavelength of 1.106 pm. The accompanying results are seen in Fig. 11, where resonance is 

around V = 3.25. Secondly, the fibre was given a radius of p = 4.576 pm and a profile height 

of A = 2.500 x 10-3 . This corresponds to a higher-mode cut-off wavelength of 1.235 pm. 

The accompanying results are seen in Fig. 12, where resonance is around V = 3.60. These 

combinations of parameters approximate those of actual fibres used. 

In general, as the resonant frequency increases, the peaks corresponding to the four 

modes within the grating become narrower, and closer together. The important feature is 

that there are four peaks, neither one nor three. This shows the need to consider the vector 

form of the modes (scalar theory predicts one peak) and to work with the modes of the 
grating instead of those of the fibre (the fibre's modes produce three peaks). 

In all cases, it is assumed that 45 = 9 x 10-6 , which corresponds to the elements of 
the grating having a refractive index 1.3 x 10-5  higher than that of the unperturbed core. 

Results were generated with smaller values of 8, and the general form of the results was the 

same, although the spacing between peaks was slightly altered (as expected). However, the 
size of the resonances was smaller. Typically, for 45 = 5 x 10-6 , as much as 50% of power 

remained in the LPN mode at resonance. For the Y-polarized light, the pealcs were not as 

distinct, i.e. not as useful for highlighting the behaviour of the grating's output. 

In each case, four values of anisotropy were used: E x 104  = 0, 1,5, 10. The inclusion 

of anisotropy produced four clear peaks, arranged more in keeping with experimental obser-

vations [8]. Some comments are in order. (i) The anisotropy had a much stronger effect on 
the X-polarized input, than on the Y-polarized input. This follows as a consequence of the 

magnitude of az  being significantly less than that of ay . (ii) Although the results shown are 
for positive values of E, the curves obtained for negative values of E are identical. This is 

because the strongest influence of E is as a square. (iii) It is remarkable how little anisotropy 

is needed to change the arrangement of the peaks. For a grating with = 9 x 10-6 , written 
in silica, a value of E = ±5 x 10-4  gives a difference between the refractive index seen by 

X- and Y-polarized light of a mere 6.7 x 10-9 . 

When the parameters of the fibre were altered so that the grating's resonance corre- 
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sponded to operation near V = 3.794, where az  = 0, peculiar results were found. This is 
expected. As discussed previously, the vector form of the modes is ambiguously defined at 
that value. 

Recall, as shown in Fig. 10, two groups of resonant frequendes may exist, not just one. 
As Vresonant --> 3.03, the resonant pea.ks on either side in V = 3.03 get broader, their tails 
start to interfere with each other, and eventually the two groups of four pea,ks become some 
other pattern. In Fig. 13 this is shown. With the grating's parameters as given above, in 
Fig. 13(a) the fibre was presumed to have a radius of p = 4.30 pm and a profile height of 
à = 2.10 x  iø,  which corresponds to a higher-mode cut-off wavelength of 1.063 pm, and 
in Fig. 13(b) the fibre was presumed to have a radius of p = 4.05 pm and a profile height 
of à = 1.85 x 10-3 , which corresponds to a higher-mode cut-off wavelength of 0.940 pm. 
Consistently seen results are that the peaks become broader as V gets doser to 3.03, and 
that the group at the lower frequency has a lower value for the power converted at resonance. 
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5.0 NONLINEAR SWITCHING IN LI)01 4-> LP02 GRATINGS 

The L1301 4-> L1302 mode converting grating in an optical fibre switches power between 

the LPoi and LP02 modes which progagate within the fibre [5]. As was shown above, this 

mode conversion is very frequency dependent, i.e. it has a very narrow spectral response. 

Any nonlinear effect, caused by intense power being launched in either the LPoi or the 

LP 02 mode, will destroy the sensitive resonance condition. The question arises, how does the 
grating perform in switching train of pulses? Such a structure would be the fibre equivalent 
of the planar device proposed by Trillo et al [9]. 

Jensen [10] first proposed and studied a nonlinear coherent coupler, made of similar 
waveguides. Trillo and Wabnitz [11] simplified his equations, and extended the work to 
dissimilar fibres. These form the mathematical analogue of coupling between dissimilar 

modes within a waveguide. The equations have been extensively examined [e.g. 12, 13, 14]. 
Various other improvements on the work of Ref. 10 have followed [e.g. 15, 16, 17], each 
correcting for some element within the approximations. 

Two modes within a nonlinear waveguide will interfere to form a weak, periodic grating 
that causes coupling between the modes. This grating is independent of any externally 
written grating designed for mode conversion. Garth and Pask [18] examined the nonlinear 

coupling between the four forms of LPii modes present in a fibre. Silberberg and Stegeman 
[19] analysed two modes coupling within a single planar waveguide as the limit of two guides 

whose separation vanished. 

The first step in understanding the switching of pulses in an LPoi ÷-+ LP02 grating is 

to understand the switching of the normal modes. To do this, make use of two approximate 
theories: (i) the theory of modal conversion in gratings, and (ii) the theory of nonlinear 
propagation of modes in fibre. 

Concerning the second point, realize that the problem studied has a very weak nonlin-
earity in a relatively short grating. Hence, it is assumed that the transverse variation of the 
modal field varies but little from the initial form fixed by the theory of weak guidance (cf. 

50 



Correction in [15]). This is a common approximation for the analysis of nonlinear fibres. 

It is also assumed that the exchange of power between modes along the waveguide is 
slow, even in this nonlinear régime. This allows the use of the standard analysis of coupled 
Diode theory for a grating. There are also the assumptions of weak-guidance and that the 
grating is a small perturbation of an otherwise invariant fibre. 

5.1 STRUCTURE 

The grating is written in a fibre of radius p and refractive index given by no, in its 
cladding, and n0 (1 + A), where A < 1, in its core. Define, as a normalization of the 
operating frequency w (wavelength A), 

v2 dk2p22A 

where k = -- 4*. Henceforth, unless otherwise indicated, all lengths are implicitly assumed 
to be scaled by p. 

The structure of the LPoi 4-+ LP02 grating was detailed above (see Fig. 1). It is defined 
bY an increase of magnitude 5 < à to the refractive index in the core. The regions of higher 
index are a fraction 0 < C < 1 of the whole of the repeated unit defining the grating; the 
Periodidty of this repeated unit is A. Thus, the unperturbed refractive index is changed to 
the perturbed one given by 

no2  (1 + 2à(1 + —àgz (z))g(r)) (5.1) 

where gz (z) is a A-periodic function whose Fourier series is 

gz (z) = gieij27z/A . 

In particular, for the grating described herein, 

(5.2a) 

go =  C  ; g±1 = -- e
±iwoin(r() 

r • (5.2b) 

Note that both the fibre and this grating are axisymmetric about the axis of modal propa-
gation. 
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The nonlinearity will be assumed due to the Kerr effect; uniform over the entire infinite 
cross-section of the fibre; very weak; and isotropic. The local refractive index is given by 

n2 2.nertil 

where I is the local intensity and nt the local refractive index. The problem will be formu-
lated in terms of electric fields E. Thus, it is more convenient to work with the susceptibility 
tensor xiiki, which can be related to nr. 

Supported by the grating are the Um and LP02 modes, denoted as modes 1 and 2, 

though not necessarily respectively. Initially launched into mode a is power pa Pcb where Po 
is a normalizing, reference power. 

5.2 MODES 

The two modes present in the grating are either X- or Y-polarized, but both have the 
same state, namely  f.  Write their electric field vectors as 

1 
ea = fi-2 Aa (z)[Fa (r)ei(13« z—we) c.c.*]. 

with c.c.* meaning add complex conjugate of terms explidtly listed. Here ..4,,(z) is some 
amplitude constant, which varies along the grating, and fia  is the propagation constant, as 
found by the theory of weak guidance and subsequently corrected for polarization effects [1: 
ch 14]. Note that modes are linearly polarized. 

Normalize the radial variation of the modal fields by defining 
1 , 'Pa (r) = Fa(r).  

iiFotii 
The total electric field travelling in the fibre is given approximately by the z-varying sum of 
modes 

= 2 
rp 

1 (cool%  ) 2  1 
[ 

1 
Fj (r)ai (z)e i(ei z—w e) c.c.1 (5.3) C 

c2e0 

with the summation convention implied over a Latin index (but not over a Greek index). 
Constants are chosen for convenient power normalization and give the power in mode a to 
be 

Pa — c2E(18a  27rp2  2pw0 1°°  dr rleal 2  = P0laa(z)i 2 - 
° 
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 _0_ 
3 

r 
e2 —w0; wj, —w0I(J)0)1E(4012Ewoe—iw0i 

2 2 _ 1-P! 3  e • 
e2 (  — ‘00; (-Jo) —w0,w0)1&0 1 2e, 

2 02 7, 
at2=  

(5.6) 

Compared with the previous analysis, here ac,(z) has absorbed an extra phase factor of 
ei((i3o)—Pa)z. 

5.3 NONLINEAR POLARIZATION 

The electric field can be written in its spectral form: 

1 00 
 Ews(lwl— wO)e 2 —00 \ i 

/ Ew = (.74r4eP-111p%) 2  -filicii( z )4(r) eifliz  , if w > 0 
E* w i ,ifw<0. 

Clearly, & is needed only at w = coo • Observe from (5.3) that 

'&01 2  = we° 1 fr . (r)frk(r)aj(z)4  
719c2e0  ( 3j/31c)

i
7  j  

.  we° ( 1
1 
 fri(r)lai(z)I 2  + lfr2(r)la2(z)1 2 + irPc260 /3 /32 

1 i frl(r)P2(r)(ai(z)4(z)e i(el— '32)z  + ai(z)a2(z)e i02-00/5.5) 
(/31 n32)I 

(5.4a) 

(5.4b) 

The nonlinear polarization follows apprœdmately [27] as 

= 
L00 

00
Pw 6(1w1 — wO)e —iwt  2 — 

p f aeox(—w;c00,—wo,w)1E,01 2E, 
P * 

, if w > 0 
, if  w  <  O , 

Where x = X1111 because there is Kleinmann symmetry in an isotropic medium, and only 
one polarization component of the electric field is present in the fibre. Hence, it follows that 

assuming that x is real. Define as a shorthand 

(3 ) XO = X1111( —w0;w01 —‘001w0) = —3 nonice0, 

which relates the susceptibility to n.r. 
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The final term in (5.5) shows that the nonlinear contribution to the refractive index is 
equivalent to a (27r/ (131 — /32))-periodic grating, caused by the nonlinear interference of the 
two modes via the Kerr effect. What is this grating's magnitude? It is useful to define 

1 , PO 3XOPO  SNL = —zno ni 
24 ir p 2  — 4ir p 2n8ceo' 

which is a measure of the change wraught by the nonlinearity on the refractive index. Its 
interpretation is immediate. If a beam of uniform power Po illuminates the fibre's core, a 
perturbation to the refractive index of size biuno is caused. Thus, from (5.5) and (5.6), it 
follows that 

P2 82 p 1/3 1 . . 
-ciat2-ici = -sra,21  (eiek)1 F,(r )Fk mai (z)4(z)ei(si-f3k)ze, (5.7) 

noting w3 . V2 c2 /p2q2à. As f3a  ,-, VI, the induced grating has a magnitude of order 

SNLi. 

5.4 FROM MAXWELL EQUATION TO COUPLING EQUATION 

The modes on the unperturbed fibre satisfy 

[V2 _ ig + k24 + V 2D ( r )]Ect = 0 ,  

where V2  is the Laplacean, restricted to operation on the cross-section only. The electric 
field in the grating satisfies an approximation, derived from the Maxwell equations in a 
nonlinear medium: 

a2 6 ,2 a2 p [172 + + k2d + /72(1 4. ( z ))-e rg = r_______ (5.8) Oz2 ‘ A ' c2  at2 co ' 

where Z is the nonlinear polarization in the medium. This gives an effective shape function E0 

in the perturbed, nonlinear grating of 

6 N‘ f P
2 2 p  gNL (r,z)= (1+ --fiz iz)) -wi\   - 72-c2 at2 • 

Thus, from (5.3) and (5.8), the customary coupling equations [e.g. 1: ch27] are found 
to be 

V 2 6 ,2  82 1,  
j-2icifa (z) = 1 i (fra (r),((1+ —gz (z))D(r) — '---1---,c2  -- —  

Pdpa ° v‘, at2 eo  

(5.9) 
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which is the analogous result to that found previously for an axisymmetric grating in a 

linear medium. The integrals in the right-hand side of (5.9) involve the local change of the 

refractive index from its unperturbed value. They can be greatly simplified. 

Define 

Ga7  =  

Using (5.2a), it follows that 

V 2 s 
1 1 (fra(r), (( 1  + —A .gz(z))Y(r) — -g(r))frn(r))an(z)e i(13n —i3a )e.  

13n fla 
45V2- 

 =—
Al

VGangian (z)e i63,1 -13a+i linz 
(5.10) 

where the approximation [3a  ,,-•.:', V/ /i also was made. Further, make this approximation 

and substitute (5.7) to find 

1 82 7,   ,‘ 
na  (r), n.--F  

c2  at2 eo fitt '31
(F 

 
vils.v2  - - - - = 2 

((i'),, Fj(r)Fk(r)F,2 (r))aj(z)4(z)a n (z)e i(ei — ek+en — ea)z  . (5.11) V 3, 

NEAR RESONANCE 

As previously established for the linear grating, on the nonlinear grating, resonance 

occurs when the co-efficient of z in the arguments of the exponentials (5.9), (5.10) and (5.11) 

is very small. This means that the period of the grating is such that 

2ir P<+  

where ,3< = min( /31, /32) and /3> = max(31, /32). Hence, it is easy to pick out the strong 

coupling effects: intermodal- and self-coupling, as in linear régime, and the nonlinear interac-

tion. Near such a resonance /31 and /32 are not nearly equal. (If they were, then birefringent-

coupling would be present and the nonlinear interaction would be more difficult to analyze.) 

The argument of the exponential in (5.11) vanishes, if j = a, k = n or n = a, k =  j.  One 
ruust be careful in counting these cases: (a, 1, 1, a), (a, 2, 2, a), (1, 1, a, a), (2, 2, a, a). One 

5.5 
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of them is a repeat. From (5.9), (5.10) and (5.11), it follows that 

(5V2- .„.,„ 0 = 2ictgAz) —v (..7.1isoai(z) G12g±1a2( z)e21tlîz) 

45NLV  + glial(z)1 2a1(z) 2J1o2(z)I 2o1(z)) 
ViAî 

0 = 2i4(z) —V(G22.g0a2(z) G219Tiai(x)e —i21'3iz) 
Al 

6NLV + (121a2(z)I 2a2(z) 2Jla1(z)1 2a2(z)), 
N/i3,2  

with the definitions 
1 2ir 3 r= 

 

= (fr1(r)2 F2(r)2) 

I a = (fra (r),P1 (r) 3 ). 
The choice ± depends upon whether = ,8> or )32 = f(3>, respectively. 

Thus, near resonance, the mode coupling is desaibed by the following equations: 

. d rr‘ 0 = i--ai(z) icti C(z) Ke—i(ei2a2i z ) D1 al(x)1 2ai(x) 2B1a2(x)1 2 a1(x); dx  
(5.12) 

0 = i dx  cia2(x) C2a2(x) KeiCe —
i21" ai(z) D2Ia2(x)1 2a2(x) 2Blai(x)1 2a2(z), 

where the longitudinal length is scaled as x = xAl. There are the definitions, using (5.2b), 

6V  r, 
Ca = ; K = 6 — e±i1r(  sin r( 

A2 Ir VG12 

with 0  < K,  which is real. These parameters are exactly those found in solving the problem 
of power switching in a linear grating. Also, there are the definitions 

D  = = 
SNL V T  . SNL V 

a \Tr' 

These show the strength of nonlinear coupling via the parameter 6NL, which depends on the 
referential power Po and n .r. 

System (5.12) is precisely that obtained elsewhere [e.g. 9, 11]. Extensive analysis has 

been applied to the case when D1 = D2 [e.g. 12, 13], but very little to the case when 
D1 D2, despite claims to the contrary. The solution of (5.12) is generally found and 
discussed in terms of the Stokes parameters. 
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5.6 CONSTANT AMPLITUDE SOLUTION 

One solution to (5.12) is a curiosity: the power in the two modes is constant through 
the grating, i.e. there is no power coupled between them. 

To find this solution, put 
aa(z) = pa1/2ei°a(e) , 

and find, from the real-imaginary decomposition of (5.12), that 

011(4 = cos(—Z + 02 — 01) + 2BP2 
P1 

0 = sin(—Z" + — 01(x) + 02(s)) 

e2(x) = C2 K cos( -  — 21's  — 02 + 01) + D2P2 2BP1- 
P2 

Prom the middle equation, the requirement 

follows. When combined with the first equation, this gives the solution for 01(x), and, thus, 

for 02(x): 
01(x) =  o  + (C1 + K + DWI 2Bp2)x 

P1 

\1131 DiPi 2Bp2 — 21')x 
P1 

where 00  is an arbitrary constant initial phase. The third equation ,  then gives a consistency 
condition which reduces to 

— C2 — 21' D1 — 
 2B P1 — + D2 2B  P2. 

P1 K P2 

This must be satisfied by the respective powers in the two modes. Given the power in one 

naode, the necessary power in the other for a constant power solution, is foiind by solving 
this. For a specified total power p = pi + p2 in tsizo modes, the division of power bewteen 
the two modes is found by solving for either power. 

If a constant power solution exists (Finding a defining equation doesn't guarantee it 
has a solution), the initial power and phases of the two modes are such that the nonlinear 
interference exactly couteracts the linear grating. There is no power coupled between modes 
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1 and 2. If a constant power solution exists, which it will not always do, it has important 
implications for the possibility of switching. 

5.7 GENERAL SOLUTION 

To solve the system (5.12), put 

ai(z) = Aj( x ) ei(M 2)+C1x) 

and define e(x) = o2 (x) - - + (21' + C2 - Ci)z; 

-y = 21' + C2 - Cl; 
1 d+ = —(D1 + D2 - 4B) = —1, V(/' + - 4J); 
2 4v2 
1 SNL 1  (/ d— = i(D1 — D2) = 4 \72-V .-1 - I 2 ) . 

Note that perfect resonance in the linear coupler corresponds to -y = O. Thus, from (5.12), 

the coupled equations for real variables are 
1 
2

4411 (x) = K./Ai(x)A2(x) sin (1)(x) (5.13a) 
1 —
2 

A'2 (x) = K Ai(x)A2(x) sin 4e(x) (5.13b) 

(x)= d+(A2(x) — Ai(x)) — d—(A1(x) A2(x)) 

K (Al(x) A2(x))  cos 4(s) + 1 
Al(x)A2(x) 

The initial conditions are A1(0) = pi and A2(0) = P2. 

(5.13c) 

The first invariant is immediate: 

A(x)+A(x)=OAi(x) A2(x)  =p  

which is constant. From the initial conditions, this is p = pi + p2 •  It has an easy physical 
interpretation: the conservation of energy. The second invariant is harder to find, but follows 
as 

41.< . ‘41 Ai(x)A2(x) cos 4. (x) — 2d +  Ai(x)A2(x) + (Pd— — 7)(A1(x) A2(x)) = 

which is constant. From the initial conditions this, too, can be fixed, but it does not have 
an easy physical interpretation. However, it does provide a means of getting an equation for 
the power propagating in one mode. 

58 



From (5.13a) and (5.13b), it follows that 

1 . 1 —Ai(x) = A' (x) = I( V Ai(x)A2(x) sin e(x) 

(A11(x)) 2  = (A/2(x)) 2  = 4K2 A1(x)A2(x) — ( 2K) 2A1(x)A2(x)cos2  (I)(x) (5.14) 

Recall Ai(x) = p — A2(x), and use the second invariant to eliminate cos 4(x). This way one 

obtains a nonlinear ordinary differential equation for either Al(x) or A2(x). 

For the switching of modes, the interesting initial conditions are all  the power in one 

mode and none in the other. Therefore, with no loss of generality, launch all the power in 

Inode 1, and solve for power in each mode, a distance L along the grating. It is easier to 
solve for A2(x), and recover Ai(x) = p — A2(x). (The accepted wisdom of the literature is 
to solve for u(x) = Al(x) — A2(x).) From these initial conditions, the second invariant is 
C =--- p(pd_ — -y), which yields 

—2K Ai(x)A2(x) cos (I)(x) = (7 — Pd— — pd+ -I- d+A2(x))A2(x). 

Now the light-hand side of (5.14) involves a quartic polynomial in A2(x): 

(Al2 (x)) 2  = 4K 2  (p — A2(x))A2(x) — (7 — P(d+ + d—) + d+A2(x))2  A(x). (5.15) 

This can be solved either numerica lly or in terms of the Jacobi elliptic functions [7: ch16,17]. 

Make the substitutions 

1 t = 2K x ; y(t) = 
P 

and define the cubic polynomial Q(e) to be 

Q(e) =1— (1+ (qopr — 5) 2 )e + 2(qopr — ry)e2  — q/323 , 

where 

(5.16) 

0 < qo= id+i = 5NL  Ir  Ili + /2 - 4JI  (5.17a) — 2K 8 8 sin irC 1G121 
7 A r 2r + C2 - cl.  5 = sgn(d+)2. = Wisinze

gn(d+)  V 
(5.17b)

iG12i 
d_ 2111 — 2J1  

 d+ III + /2 - 4Ji. 
(5.17c) 
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These definitions give r, 5 ,and  qo to be independent of the launched power p; they are 
functions only of waveguide and grating parameters. Observe that the much studied case 
corresponds to d_ = 0 or, equivalently, r = 1 and 5 Conventionally [e.g.10], Po has been 
chosen so that SNL gives a value such that go = 2. However, this would produce a value of 
Po dependent on V; this would be unsuitable for the purpose of this study. 

From (5.15) and (5.16), it follows that 

Yi (t) 2  = — YQ(Y) t = j e(t)  de 1  . 
 \leQ(e) 

(5.18) 

The prescribed initial condition y(0) = 0 was used. From physical considerations the max-
imum permissable value of y(t) is 1. Before proceeding, examine the zeroes of Q(e), with 
0 < e < 1. These are defined in Appendix D. There exists a value eo(qop; r, < 1 which 
is the least positive root of  Q(C).  This value Co is the maximum value attained by y(t); 

equivalently, the maximum value attained by A2(x) is pno. 

The form of the solution to (5.18) depends upon the number of roots to  Q(C). Appendix 
E lists details of the solution for different numbers of roots, which, for a given parameter pair 
(r, 7y) may depend on initial value p. In all cases, at least some power in mode 1 transfers 
to mode 2. Except for a few singular cases, the solution is oscillatory, i.e. this power 
is periodically exchanged between modes 1 and 2 during passage through grating. The 
amplitude of the oscillation is pip and the period is 4K(/), which is the complete elliptic 
integral of the first ldnd [7: ch16] and / is defined at the appropriate place in Appendix E. 

5.8 QUALITATIVE RESULTS OF LINEARLY TUNED GRATING 

Initially, to highlight the features of the solution, consider the case of the linearly tuned 
grating, i.e. a grating whose period and operating wavelength are such that y = 0 = 5. The 
possible options for the zeroes of Q(e) are obtained in Appendix D, and illustrated in Fig. 
27. The associated detailed solutions are described in Appendix E. 

For r>  1.125 or r < 0, there is one zero for all values of input power p. The solution is 
given in form (E.6). The amplitude of the power exchanged between modes 1 and 2 decreases 
continuously as p increases, and the period of this oscillation increases. 
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For r = 1.125, there is one zero and the solution is like (E.6), except when p = qo 
For p < -20 as p increases, the period of the oscillation increases towards infinity and go ' 
the amplitude of the power exchanged between modes 1 and 2 decreases towards b. At 
P = -Id'  there is a triply degenerate root and the solution is as in (E.2), which gives Ai (x), go 
Power in mode 1, decaying with distance, towards value b. For p > le , again there is 
°Illy one zero, and have an exchange of power of declining amplitude and lessening period 
aS  p increases. 

For the case 1.125 > r > 1, the number of zeroes changes as p changes. There is one 
Toot and the solution is given by (E.6) for p < Pa/ •  The amplitude of the power exchanged go 
between modes 1 and 2 decreases as p increases and the coupling length increases towards 
infinity. At p = L-12 '  the solution is given by (E.3), as there is doubly degenerate root. The qo  
Power in mode 1 decays with increasing distance towards value p(1 —770). For p>  MD-

' 
 again go  

there is an oscillatory solution, given by (E.5), except at the unique value of p where (E.2) 
aPplies. The amplitude of the oscillation decreases. The amplitude of oscillation changes 
discontinuously by prij at p = wp. 

For the case 0 < r < 1, the number of zeroes changes. For 0  < p < 11212- '  the oscillatory go  
solution is given by (E.6). The period of the oscillation increases with p, and, unless r = 1, 
the amplitude of the oscillation decreases. At p = YID- '  the solution is given by (E.2). The go  
Power in mode 1 monotonically approaches p9o(r, 0). For p>  MD- '  the oscillatory solution is go  
given by (E.5), for which the period and amplitude decrease as p increases. The amplitude 
of the power exchanged alters discontinuously as p passes through the special value  qo 

Physically, there is not a discontinuity in the power switched between modes. A practical 
grating has a length that is fixed, though the operating frequency varies. The coupling length 
a.t which the discontinuity is seen is infinite. Thus, as the power increases towards te , the 
grating's length is a decreasing fraction of the coupling length. Less than complete coupling 
iS  observed. As power continues to increase beyond 1-1212- '  the coupling length decreases and go  
an  increasing fraction of the maximum possible coupling is observed. Consequently, the 
discontinuity is "smeared out". 
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5.9 PARAMETERS OF FIBRE 

For silica 
no = 1.46 ; ni = 2.73 X 10-20  m2 /W 

the latter being the result for bulk material. Assume the value for a fibre is not very different. 
For the fibre of interest 

p = 4.2 pm ; A = 3.2 x 10-3 . 

We wish to operate at V E (4, 6.5), i.e. wavelength in (550nm, 750nm). For the fabricated 
gratings 

1 
= 

which produces a resonant coupling length around 210 pm. An error of less than 0.1 pm in 
the periodidty of the grating yields a detuning parameter 151 typically less than 6. 

For a step fibre, the modal parameters are obtained from the results of weak-guidance 
[1: ch14]. The propagation constants are given by 

i32 = 7q2 A  X«  
t'a IIF«11 2  

where  13a(V) is the value found from numerical solution of problem posed by weak guidance, 
and 

xa= Uot.11(Ua)/J0(Ua) ; = V2  — 14/ ; = — k 2 nP. 

The modal fields give the following integrals: 

liFail2= 1   11  dr reU ar) + 1 dr rKg(W r) — V2X  
JeUa ) n(w,k ) a  — 2Ugin 

1 1  /1 2 CI, 
Gaa = Fa ll 2  JeUa) 0 dr rJo(U ar) = 14/ -I- -2-x  ) 11  

1 1 1 
dr rJo(Uir)Jo(U2r) = V2 (11 — W?) X2 

2U1U2W1W2 , 
G12 = / 11F111 11F211 JO(U1)J0(U2) X1 ) 

1 1 
d 

1 4  
r rJo(Uar) + 1  r°  dr rK o4(Wa r)) la — 

iiFall4
(
Je(Ua) 

1 
0 Ke(W a ) 1 

1 1 1 
dr r J — eUir)4(U2r) 

ilF111 2  liF2ii 2( Ja(U1)JP(U2) -I.° 
1 00 

f dr rICP(Wirgd(W2r)) + 
Ke(W1)4(W2) .11  

; .5=4 x 10-6 , 
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Figure 14: Frequency variation of competition parameter q0(V) 

For nonlinear switching in an LP01  4-b LP02 grating, a normalized form of the competition parameter, 

defined by Eq. (5.17a), is shown as a function of normalized frequency. 
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Figure 15: Frequency variation of mismatch parameter r(V) 

For nonlinear switching in an LP02  4-,  LP02  grating, a normalized form of the modal mismatch parameter, 

defined by Eq. (5.17c), is shown as a function of normalized frequency. 



The latter two expressions require numerical evaluation, which is not difficult. Now it is 
Possible to get qo and r. How these vary with V is seen in in Figs. 14 and 15. Of interest is 
that d+  changes sign at V = 4.05 and r = 1 at V = 5.03. 

5.10 NONLINEAR SWITCHING OF LINEARLY TUNED GRATING 

For 5 = 0, the relevant value of it is immediate. One finds the power to achieve switching: 

PPo = POwD(F)  8 ,9287/0 sinfr() 1G121 8 
q0(17) = ni + — 4 .1 1 9  

1G121  wiD(-8 r) 3.2 x 104  Watts, 
+ /2 — 4.1 1 9  

using the parameters above. This is shown in Fig. 16. The associated fractional jump in 
switched power e j(îr (V)) is shown in Fig. 17. For V about 5, the critical power is around 
1 .6 KW. This is less than the critical power needed for switching in a fibre without a grating. 
Such a finding is consistent with the finding of Ref. 9. 

Observe that the variation with V is very different between switching from the LP(01 
into the LP02 mode and switching from the LP02 into the LPill mode. For power 
initially in the L1301 mode, switching occurs only if 4.23 < V < 5.62, and ej  is a maximum 
at V = 4.69. For power initially in the LP02 mode, switching occurs if V > 4.74. The 
value of e, is approximately constant for V > 5.5. 

5 .11 DETUNING PARAMETER 

For linear tuning, the resonant period of the grating Ar  is related to the operating 
wavelength by (refer (3.9)) 

Ar(V) = 27 /(fl> — e< + àî (c> — 
'or the accuracy worked here, it suffices to use 

Ar (V) = 21irV/Ai(W? — Wi), 

which is the scalar approximation for the period of a tuned grating, as obtained previously. 
There are two ways to detune the grating. 
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Figure 16: Frequency variation of power required for switching 

For the LPoi 1-3 LP02 grating described in §5.9, the power required to achieve switching, i.e. lowest input 

power at which the power exchanged between LP01  and LP02  modes changes discontinuously, is shown 

as a function of normalized frequency. 



Figure 17: Frequency variation of fractional efficiency of switch 

For the L1301 •-n LF02 grating described in §5.9, the size of the discontinuity in the coupled power — as a 

fraction of input power — is shown as a function of normalized frequency. 



Firstly, detune the grating by fixing the operating wavelength and changing the grating's 
period. With A = Ar  ± Ae , where Ae  is small, it follows 

2r 211- 2r 
A Ar  

‘ 3 2r 3 2r , 
A = 2  (f3< /3>  + -) + - C>  

Thus, it follows that 

(5.19) 

= ¥ Aesgn(4)8 
V3 1012(V)1 

using the scalar approximation for Ar (V) and the values for the fibre's parameters given 
above. 

Secondly, detune the grating by fixing its period, and changing the operating frequency 
from the resonant value Vr t 0 Vr ± Ve with Ve  < Vr . This is the more useful procedure. 
Previously, it was shown that 

7(Vr ±v /07 \ 1 
ri = E 2 U2  (W9 + 2-2,1 Txr2 U2 

v2 (1 ' - 2 vr (1+ 2 ))" X2 X1 

The value of VG12(V) changes very slowly; it is assumed constant for the small change in 
V. Hence, 

3,2 Ir 1 ±Ve  (w2 ii  _i_ ,(21, 2 / 1R )) iv  = sgn(d+) , , xî j — Wi 0. -I- 2 2  
ô V2sinr(VIG12121iAV2  ' —2 " Xi 

3, Ir  141 ( 1 + 21 ) —WI? (1 + 25- ) 

= ±Vesgu(d+)  6 4 sin r( Vr31012(14-)1 
(5.20) 

el + 2-14) — Vt/(1 + 2g)  
= ±Vegn(d+)628.3   

Vr3 IG12(Va 
where the values of Wa  and Lia are those pertinant to Vr . For slight frequency detuning, 

observe that (V — Vr)/Vr  = (u) — wr)/wr . = (1r-1)11r. 

The variation of ;),* with V, via the two forms 5, and iA, is seen in Fig. 18. 

3,2 1 TAar A =sgn(d+)  
N/isinr( VIG121 AlA? 

1 3.2 1 (141 — W) 2  
= ¥ Aesgn(d+) 

41Îsinr( 1/3 1G12(V)1 
(Iv? 1,17

)

2 
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Figure 18: Frequency variation of detuning pararneters 

For nonlinear switching in an LPoi  4-* LI)02  grating, normalized forms of the detuning parameter's sensitivity 
is shown as a function of normalized frequency. 
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5.12 NONLINEAR SWITCHING OF DETUNED GRATING 

The same qualitative findings apply to the detuned grating as to the tuned grating. The 

amount of power exchanged between the guides may change discontinuously as the launched 

power increases. To see if this happens, study Fig. 28. By finding the value of y relevant to 

the pair (r, 5 ) , as fixed by (D.2), one finds the power to achieve switching: 

ppo  POwD(P)  8P2 8no sine«) G12  _  
q0(V) = ni 1.11 -1- 12 — 4,11 wD(P) 

= 1G121  
111+12  — 4.11

wD(p) 3.2 x 104 Watts, 

using the parameters above. 

Compared with the case of 5 =  O,  the detuned grating offers the possibilty of a lower 

value of the switching power. Selecting the value of y(V) to maodmize ej  fixes wD(p). The 
value of 5 ca.n be varied to keep p fixed, while the value of r(V) is varied to increase the value 
of  q0(V) and thus decrease pPo. Within the range of operation shown, this can reduce the 
required power by about a half. Suppose the optimal value of y, notably 1, is selected, and 
power is launched in the LI3 01 mode. For 5 =  O,  this value of y corresponds to V = 4.69 and 
q0(4.69) = 26.9. Since 03(5.53) = 53.8, then the value of pPo, when operating at V = 5.53 
and y = î, is half that needed when operating at 5 = 0 and V = 4.69. As r(5.53) = 1.11, to 

retain p, = î it follows that 5 = 0.736. To obtain this value of 5 by detuning, choose either 

Ae  = 3.29 x 10-3  or Ve  = 2.65 x 10-4 . 
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6.0 CONCLUSION 

A comprehensive mathematical description of the phenomena of mode conversion by a 
grating written in an optical fibre was presented. It improved upon previous theories by 

taking cognition of the possibility that the grating may not be axisymmetric. This couples 
modes in more complicated combinations than previously considered, and means that true 

modes, and not LP modes, have to be used. 

The theory took two parts: the exchange of power between modes; the exact form of 
the higher-order modes, a form which changes during passage through a non-axisymmetric 

grating. The latter produced a curious result: while a mode seen on an axisymmetric fibre 
approaches the limiting form of one of the well-known LPi1 modes, which particular form 

changes during transit through the grating and may, indeed, be frequency dependent. 

The former allowed quite good modelling of the measurable output of actual gratings — 
both LP01 4-> LP02 and LPen 4-4 LPH .  . The theory predicted that, in forming the grating, 
the slight changes made to the refractive index are very weakly anisotropic. The relative 
difference between the variations to the two transverse indeces (i.e those sensed by X- or 
Y-polarized light) is of the order of 0.1%. Also, an analysis was able to bound the theoretic 

linewidth as seen in the spectral response curve. This bound was less than that observed 
experimentally, and, under typical design, sets a limit of a FWHM of apprœdmately ÎA on 
the response peak in the V-spectrum. 

The feasibility of using the LP01 4-4 LP(j2 grating as an all-optical switch was demon-
strated. Although its properties were found to be quite frequency dependent, quite general 

mathematical results allowed their determination. For example, with power initially in the 
LI3 01 mode at the resonant wavelength, switching occurs only if 4.23 < V < 5.62. The 
maximum fractional jump in switched power that can be achieved, under any operating 

Conditions, is 9/16. The power needed to operate such a switch was shown to be reduced 
by operating the switch away from the wavelength corresponding to resonance in the linear 
régime, in either the LPH or L1302 mode. The theory showed that the behaviour of the 
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switch depends on the choice of initial mode. 

Of course, work rema.ins to be done. In particular, to better illustrate the operation of 
nonlinear switching in an LPoi 4-4 L1302 grating, spectral response curves akin to Fig. 5 
could be generated for various levels of input power. 
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APPENDIX A 

Two Coupled Linear Differential Equations 

A.1 PERIODIC SOLUTION 

Consider the system defining functions of a real variable x 

( aalexe )) ) = m* i2rx 

with r real. 

mei2rx\ ( ai(x)'\ 
0 a2(x) ' 

With the definition 
112 = im12 r2, 

the solution can be written as 

ai(x) = eir z(B cos(px) C sin(yx)) 
= eirz(  B — iC 

eier B iC e_ipx)  
2 2 

T Br  -  iC cr+ iB  a2(x) = e --"( 3/1 cos(fis) sin(yx)) 

e —irx( (B — ic)(r +  c it.= (B + ic)(r -  
2M 2M 

where B and C are constants, determined by the boundary conditions imposed. For all 'MI 
and r, these solutions are strictly periodic. 

Of particular interest are the boundary conditions ai(0) = 1 and a2(0) = 0, which gives 

-ir B = 1 ; u = —; 

cr + iM* Br - = o ; = 

This gives the familiar result 

lai(x)1 2  = 1 
1 r2  sin2 (px). 

1 + 
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A.2 EXPONENTIAL SOLUTION 

Consider the system defining functions of a real variable x 

(

ail(x) ) = i (_Ar eo—i2rx ai2 (x) 

with r real. 

mei2rx ) ( al  ( x ) \ 
0 a2 (x) ) ' 

With the definition 
2 i he' 2 r2 ii = I le'l I — ) 

the solution can be written as 

ai (x) = eirz  (B cosh(yx) + C sinh(yx)) 
_ eirx ( B  +2  C epx + B —2  C e —gx)  

a2(r) =" iBrm+ C/2 cosh(yx) + iCrm+  Bij  sinh(px)) 

= —e—irx ( (ir  + m)(B + c) ep. + (ir - ii)(B - c) e-p. ),  
2M 2M 

where B and C are constants, determined by the boundary conditions imposed. For i ri  < 
Iiiii, these solutions are exponential in form. When Irl > Iml, then y becomes imaginary, 

and these solutions are strictly periodic. 

Consider the case when I ri  < I MI.  Of particular interest are the boundary conditions 

= 1 and a2(L) = 0, which give 

B  = 1  ; C  = (y tanh(pL) + in 
y + ir tanh(g)) ' 

'rids gives the result that 

r2  
1a2(0)1 2  = sinh2 (114/(cosh 2 (pL) ir,-/l i)- 
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APPENDIX B 

Modes in Periodically, Axi-Asymmetrically Perturbed Fibre 

For completeness, we first enumerate the relevant properties of the straight circular 

fibre, and then develop the z-dependent properties of the modes by perturbation methods 

[e.g. 1]. Attention is restricted to the first six modes of the waveguide, but other modes 

can be examined by analogous methods. These six are the two polarization states of the 

fundamental mode which correspond to the LPoi mode; and the odd and even HE21 mode, 

the TEoi mode, and the TMoi mode, which all correspond to the LPii mode. 

Position within the cross-section of the fibre is given by polar coordinates (r, 0). The 

refractive index profile of the axisymmetric fibre is given by 

n2 (r) = nP(1 23:g(r)), 

where no is the constant refractive index of the cladding and A is the customary profile 

height parameter. Working with wealdy guiding fibres means A < 1. The periodic axi-

asymmetric feature of the refractive index is described by the A-periodic function gi(r, 0, z) 
so that the shape function becomes 

g(r, 0, z) = D(r) — gi(r,  , 0, z) 

where the perturbation is weak, i.e.  S < 

As a notational device, a tilde over a modal property will indicate it app lies to the local 

scalar modes of the waveguide. A bar over a quantity indicates it applies to the axially 

invariant waveguide. The normalized frequency is defined as 

y2 k2 p2 3,,  

where k is the free-space wavenumber and p is the core radius. Henceforth, all length 

quantities will be scaled by p, unless otherwise explidtly stated. 
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B.1 INDEXING MODES 

The VC modes on the unperturbed fibre will be enumerated by the system 

Él = FO(r) Ic ; É2 = FO(r) 

E3  = Fi(r)(cos — sin 9 Sr) ;  E4=  Fi(r)(cos 9 31 -I- sin 'Sr) (B.1) 

-E5  = Fi(r)(sin 9 + cos j›) ;  E6  = Fi(r)(— sin 9 Sc + cos 9 Sr) 

so that «Éi  is the X-polarized fundamental mode; È2 is the Y-polarized fundamental mode; 

É3 is the even HE21 mode;  E4  the TM01 mode; É6 the odd HE21 mode; and É6 the TEoi 

Mode. Notice there is a change in the customary convention [e.g. 1: p304], by reversing the 

sign of the TE01 mode. When the local modes in the grating are examined, they, too, will 

be enumerated by this system so that the index j will be on the mode which corresponds 

to Èj on the straight circular fibre. The corresponding index will be meaningful on the 

Propagation constants 0j, which indude the polarization corrections. 

Working with scalar modes on this same waveguide, there are the fundamental or LP01 

tilode, indexed by f, and two forms — an odd and an even — of the LPil mode, which 

will be indexed separately by subscripts o, e or together by h. The odd-even symmetry is 

determined from the symmetry axes defined by the perturbation, and is usually obvious 

from inspection. It will be assumed that it is. (If it is not, then the separation of the two 

families described below will not happen, but the analysis can proceed [e.g. 1: pp289,633f].) 

Certainly the perturbation motivating this study — the LPoi 4-n LP 11 grating — has obvious 

sYmmetry. So do the much examined e lliptical perturbations of cirçular cores. 

MODES OF STRAIGHT CIRCULAR FIBRE 

For the straight, circular fibre, the vector form of the six modes was given at (B.1) 

above. 

The polarization corrections to the propagation constants follow [e.g. 1: p304] as 

,Df = A = - AA) 
A = = #12, - A(I1 -12) 

= fig _ A2( 11 +12)  

•aî =  Ph 

13 .2 

(B.2) 
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(B.4) 

(B.5) 

where i3f and /3h are the scalar propagation constants of the LPoi and LPil modes, 

respectively, as determined by the weak guidance theory, Fi(r) and Fo(r) are the radial 

dependence of the LPii and LPoi scalar modes, respectively, with liFill 2  = go dr r11(r), 
and 

/0 = 1 I dr rFo(r)FP(r)gi  (r); IlFoll2  0 

= 1  r dr rl1(r)F1(r)gi  (r); 
liF111 2  0 

/2 - 1  joe  dr (r)• liF111 2  
These are known, at least numerically. 

B.3 PERTURBED SOLUTIONS FOR LOCAL MODES 

Using perturbation analysis [e.g. 1: p376], the properties of the local modes can be 

found very easily from those of the modes on the unperturbed fibre. The sub-domain D(z) 
of the infinite cross-section of the fibre is that portion in which gi(r, 0, z) 0 at position z. 
The scalar propagation constants 73j, with j =  f,  e, o, follow as 

8 V  
/-3] = «ej2 - dS gi(r,  , 0, 

A p(z)  
6  Tf2 t 6  Tr2 = -r v -r q j k z j , (B.3) 

with the definitions 

1  iv(z)  dS gi(r, 0, z), 
qi(z)  = 

1  
= 

dz L (z) dS gi(r, 0, z)t-lj 

1 dS .1-1)? —1 dz gi(r, z), ejil 2 / A 0 

The value of these definitions is that the average of qi (z), over the peuod A, vanishes. 

Similarly, there exist perturbation methods to generate corrections to the scalar modal 

fields. In particular, use of Green functions [e.g. 21, 22] gives a workable solution. However, 

these corrections will not be relevant in the ensuing analysis and so the details of such 

corrections will not be pursued here. 
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B.4 DETAILS: FUNDAMENTAL MODES 

Explicitly, from (B.3), (B.4) and (B.5), for the scalar fundamental mode it follows that 

4̂(s(z)) = /-3î :1V2 (4f qf(z)), 

liF10112  J.000 dr ra(r)-Fri.  .1022.  de gi(r, 0,z) 

1 cc 4f — dr rFP(r)-1—.  - dz 27r  d9 gi(r z)
• liF011 2  0 27rA 0 0  

The two vector forms of the scalar fundamental mode continue to be the X- and Y- 

polarized HE21 modes throughout the z-variation. 

As mentioned above, the scalar field will indude a perturbation correction term that 

does not contribute to any further details, and will be ignored. Why? The usual formalism 

[1: p2 88] gives the vector correction to /3 from the scalar modal field by 

2A _ ag  j32( z ) ../42( z  
1 2  
 <  e — > 

f 1 ap ap 
for the P-polarized fundamental mode. Since the perturbation corrections to  &  are of order 

A, their contribution to the vector correction of is at least an order of magnitude smaller 

than the correction found without them. This is why corrections to tk are ignored. 

Thus, the vector correction to the fundamental scalar propagation constant, anywhere 

in the z-varying fibre, is exactly the vector correction to the fundamental scalar propagation 

Constant on the unperturbed fibre. At position z along the grating, the local values of 01(z) 
and /32(z) follow: 

ez) = /322 (z) = af2  + —6  V 2ef + 2 
,v(z)— 0(8)4- 0(3, 2 ). (B.7) 

à 

The first term in this expression is the scalar approximation of the unperturbed axisymmetric 
fibre; the second is the average correction to this scalar value over a period A; the third is 
the  effect of the local axi-asymmetry; the fourth term is the polarization correction to the 

Propagation constant. 

(B.6) 

with 
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Fi(r) sin 9 ,  = 

(02 

(0 2 

B.5 DETAILS: HIGHER-ORDER MODES 

For the even and odd modes, substitution of 17, = Ii(r) cos  9 and 

respectively, into (B.3), (B.4) and (B.5) produces 

*(z) = 73121 + kv2 (4, + qe(z)) 

qe(z)  = —ee ir 11 ii112 J oz) dS gi(r,  9,  z)11(r) cos 2  

1 ï 
dS 11(r) cos 2  10A  

11Fiii2A 
dz gi(r,  9,  z), 

7   

-/j(z.) = + -1v2 (o + go (z)) 
1 

go(z) = --e. + 
Fill2

jp(z)dS gi(r, 0 , z).F1(r) sin2  0 

1  
e. = dz FI2 (r) sin2  0 gi(r , 0 , z). 

rilF1112  A L dS  . 0

A 

 

Also define the average, local, higher-order scalar propagation constant as 

T3/21(z) = (z)+ »z» =- 73.121+ 3,-(5  it2 (e0 + ee + qe(z)+ go(z)) 

V 2 (qe (z)+ qo(z)), 

thus defining ;ja , which is the average of 1-3h(z) over one period. 

(B.8) 

(B.9) 

(B.10) 

It is necessary to find the vector form of the local higher-order modes, as well as the 
vector corrections to the propagation constants. 

As with the modes on an axially symmetric fibre, we find that the scalar local modes of 
the grating form the vector local modes by combining in pairs f e (r, 0) X,  0 (r,  0) Sr} and 
.F1),,(r,  , 0) Sc,.F/),(r, 0)  ÿ}.  These are called the X- and Y-set, respectively, thus indicating the 
axis of symmetry. A subscript  x,  y indicates to which set something is relevant. With 
ar(z),ay (z) the coefficients, respectively, of the x- and y-components in these sets, the 
standard formalism [e.g. 1: chl3] gives the pair of equations 

&fie} ag a?), e l ag  
— ;q:})az(z)h-bh11 2  = —23,(ax (  ax° , ib{ : } ex ) + ay ( ax̀°) (B.11a) 

afin ag / 19.ç3{:}  ,73 0  Lg)) (B.n.b) - /-3{:})ay(zehl1 2  = -23, (ax( ol'{:}ax )+ aY\ ay { e }  ay 
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(B.13a) 

(B.13b) 

ax = 

ay = 

(B.14a) 

(B.14b) 

with the upper and lower choices being for the X- and Y-set, respectively. Advantage was 

taken of the fact that Ph ii = eeil = ed. A little thought shows that other corrections 

to 0, due to corrections to 0 of order A and 1, would be second order small. Hence, they 

are neglected. Hence, the reason for not evaluating corrections to the scalar modal field for 

higher-order modes. 

From (B.11), it follows that the vector corrections to fl(z) and the vector directions of 

the  modal fields, as specified by az (z), a y (z), are found as a solution to a matrix eigenvalue 

problem. Namely, 

2 7à2 
N1111 2 (13  2_,"e) 

 (aaxy iz/) .= 

(_(g2ke,tp{:}e)-ELQ(z)„A2v25/3.21 

( 54yn,fi:}â)  

80 ( e  } - e, 

(-Fx.2--,01:1 y) 
/ 8.0{.} - Pi\ _, f —Q(z)11Ficil 2 V2 6/à 2 } 
\ —a--Ye— '`q:}a/ m 1  

(az (z) 
X  

(B.12) 

where we define, from (B.9) and (B.8), 

73,2  ( -/é — ,a29)  
Q(z)   — 2V2 5 A 

= ' ""r (4e — eo + qe(z) — qo(z)) 
1  

2 11F111 2  ip ( e ) 

= dS gi(r , 0 , z) 11(r) cos 20 

Thus, can be obtained the vector corrections to the propagation constants. 

The matrices on the right-hand side of (B.12) for the X and Y-sets, are, respectively, 

1 ( —12 — 3/1 —312 — II. 
-4" —312 —  11  —12 — 311 — 2e1V 2 Q(z)) 

and 
1 (12 — I 1 — 2 Me  ; V 2  Q (z) 12 — /1 i  12 — /1 /2 —1.1) • 

ease of subsequent analysis, define the obvious constants 

rA2  (-3/2 — /1) r 3,2  N/2-  (6)34 — 6,83)  
245 V2 — 26 Aelf 

rA2 
('

i — /2) (-05)  
25 V2  = 26 33-v • 

POr 
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where  8/3j  is the polarization correction to the propagation constant. The third expressions 

in (B.14) show a physical interpretation for aj, as the difference in the propagation constants, 

corrected for first order polarization effects, of the two modes of the J-set. 

The local polarization corrections to the propagation constants follow by solving (B.12) 
for the eigenvalues. 

2 (/3 34 } ) 2(#3 }  — Te) 
A A 

26 26 2 = -/2  _3I  - 7--w V 2  Q (z) sgn(ax )la Q 2 (z)11. 

21: }  — ) 2()9 ±} — -e) 
A — A 

26 ,) 26 2 = /2 - -irA2 V"Q(z) —71.3,2 V sgn(ay)la Q2 (z)11. 

The sign on the radicals is fixed by ensuring continuity of the vector direction of the modes if 

Q(z) changes sign, which, in general, it may do. The implications of this choice is discussed 

below. 

Notice from (B.8) and (B.13a) that 
71(z\ 26 v2ni1. z\ 71+  kv2(4.,  + 4.0)  + v2.ii. (qe(z)  + 9,0(z))  

) li-A2 2 `°e ‘ (B.15) 
= V2  (qe (z) go(z)). 

The vector corrections to the modal propagation constants are now fully determined: 

6 1  03(z) = + —2 (qe(z) 40(z)) — — 12) 

— A—V2 -1-sgn(ax)(14 Q 2 (z)(l lc/xi); rph 2 

4(z) = + ,SIV 2  (*(z) + go(z)) — A2(.fi. + /2) 
4. 3,  26 v2

5  
_1.s..«,n( 

)1 _ 
ax)(Ice Q2(z,i1 iazi); 7r,à 2 2  

[g(z) ;(3 :  + V2  (qe(z) + q0(z)) — — 12) 

— A 18--V21sgn(a )(1a2  Q2 (z)il — lay1); rA2 2 Y Y 

ez) = 4- -3,-8  V2  -12L(qe (z) q0(z)) + 0 

+ A-28  V 2  —1  sgn(ce )(Ice2  + (22 (z)i — iceyi). /rP2 2 Y Y  

(B.16a) 

(B.16b) 

(B.16c) 

(B.16d) 
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Written in this form, they show that the first correction term, common to all four, is the 

local variation of the scalar propagation constant; the second term is exactly the same as the 

correction to the scalar propagation constant of the corresponding mode on the unperturbed 

waveguide; the third term is the local correction due to the asymmetric perturbation. 

The local vector modes from solving (B.12) for the eigenvectors. 

E±(z) = constant ± (axe (±sgn(az)I4 — Q)/-ko  j›) , for X-set 
constant± (ay .iko I  + (±sgn(cxy)lci — frj)t-ke  Sr') , for Y-set 

where the constants come from arbitrarily prescribed normalization conditions. Define the 

two  angles çbz (z) and  ky(Z) by 

1 Q (z) 07 (z) = arctan( —Q(z) ) — arctan(—). (B.17) 
2 sgn(ay  ) I cx., Q 2 (z) + ay ay 

Both of these are in By suitably choosing the normalization conditions, the local 

vector modes can be rewritten: 

E3 (z) cos(oz (z) — fi )/-be (r, 0)  1  + Nfi sin(0 z (z) — 7-4 )1-k 0 (r , 0) Sr 

▪ cos (iS z  È3 + sin Ox E4; 

E4(z) = sin(0 (z) — e (r , 0) Sc cos(Ox (z) — „(r, 0) 

• — sin Ox  E3 + cos O x  E4; 

E5(z) = N/2"  COS(0y(Z) 1-rî )t-ko(r,  , 0)  1  + sin(0y (z) + 7+.1 ).171),(r , 0) Sr 

• COS (by È5 + sin Oy E6; 

E6(z) = sin(0y(z) + 72-i ) irb o (r,  , 0) Sc cos(cky (z) 72-4-)17b ,  9) 5'  

• — sin Oy È5 + cos (by E6. 

Thus, the evolution of the vector form of the modes on the z-varying perturbed waveguide 

can be written concisely in terms of a rotation matrix Dt(z). 

(B.18a) 

cos(0/(z) sin(Ot(z) ( 1-k{:} 51 ) 
" — sin(01(z) 7i) cos(Ot(z) 1,3{:} S' 

(B.18b) 

with the upper or lower choice being for the X- or Y-set, respectively, and where j,k,L are 

3 ,4,s or 5,6,y, respectively. The angle very concisely shows which particular form of LPii 
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mode is more like the nominated mode of the grating at position z, as can be seen from Fig. 
19. 

B.6 SIGN OF aj AND LPii MODES 

What is new in the analysis? It follows the standard procedure [23]. The results worthy 
of comment are the consequences of the choice of sign, as mentioned, and the description of 
the vector direction of the local modes in terms of rotation matrices. 

The higher-order modes of a significantly axi-asymmetric waveguide are the four familiar 
forms of the LPii mode: :rk e  (r, 0) k, 0) Sr , , 0) X, and ./),,(r, 0) Sr . The modes of an 
axisymmetric waveguide are equally familiar, and are obtained from these by simple rotations 
and a dilation through 

1 -1 ) 
(43 

\ E4 

1 1 ) 
(

6
4.5 ) =N7i ( 
E 

1/2-  

Uke (r, 0) 
tko(r, 0) Sr 

.iko(r, 0) X 

.ibe (r, 0) Se- • 

At (B.18), it is apparent that the local modes on the perturbed waveguide are somewhere 
between these two extremes. 

For very little asymmetry, i.e. Q(z) very small, it follows from (B.17) that (by, Ox —+ 0, 

and the modes are, indeed the same as those of the unperturbed axisymmetric waveguide. As 
the amount of axi-asymmetry increases or the parameter aj becomes small, the way the two 
sets approach the LPii modes differs. This can be seen best by taking the limiting forms 
of (B.17) as Q(z) becomes large or aj becomes small. This gives (bi —4 —sgn(Q)sgn(aj). 

The sign of Q(z) indicates whether the imposition of the asymmetry has made the even or 
the odd scalar mode the "faster" mode, i.e. when Q(z) > 0, the even mode has the higher 
propagation constant. Thus, within each set of modes, the mode, which has the the higher 
propagation constant on the unperturbed waveguide, becomes more like the even LPii 

mode. 

The behaviour, during passage through a period of the perturbation, is described in 
detail for the X-set. There are four possibilities. Consider firstly Q(z) > O. If ax  > 0, 
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LPii: odd X 

1:7 À o* 

0: I  
-J 

LPii: even X 

4,eN 

- -1101- 
Pii: even X 

we e  

110- 
LPii: odd X 

e>  
; AS 

LPii: odd X 

(a) Graphical representation of the relationship between the first group of true (VC) higher-order modes and 

the LPii modes — identified by direction of polarization and symmetry property about the X-axis — of 

an dxisymmetric fibre. 

» » 4 c 4 
y a) 
II,' 4 / >  

te A  2:7 .-I , 1 05  a, tà: ' /":  
é) 

,

. 

 6 , 

(b) Direction of "rotation", i.e. form of transformation, of the true modes to LPii modes, when 0 < 0j , as 
defined by Eq. (B.17). 

(c) Direction of "rotation", i.e. form of transformation, of the true modes to LPii modes, when 0 > 0i, as 
defined by Eq. (B.17). 

Figure 19: Modal rotation and limiting forms 

87 



mode 3, which corresponds to the even HE21 mode, becomes like the Y-polarized odd LPii 

mode, and mode 4, which corresponds to the TMoi mode, becomes like the X-polarized 

even mode. However, if az  < 0, mode 3 becomes like the X-polarized even LI3 11 mode, 

and mode 4 becomes like the Y-polarized odd mode. Now consider Q(z)  <O.  With az  > 0, 
mode 3 becomes like the X-polarized even LPii mode, and mode 4 the Y-polarized odd 
mode; whereas, if az  < 0, mode 3 becomes like the Y-polarized odd LPii mode, and 

mode 4 the X-polarized even mode. This is illustrated in Fig. 19. This apparently strange 
swapping of modal behaviour has an explanation. When az  > 0, the even HE21 mode on the 

axisymmetric waveguide has a higher propagation constant than the TMoi mode, and thus 

mode 3 becomes more like the LPii mode with the higher propagation constant, which, 
for Q(z) > 0, is the even mode, and mode 4 becornes like that with the lower propagation 
constant, namely the odd mode. For az  < 0, the behaviour switches because the T1n101 
mode has the higher value of /3. 

The same number of cases occurs for the Y-family, but they are not described in detail. 
They also are illustrated in Fig. 19. 

If we recall from (B.13) that Q(z) measures the local difference 73e (z) — -e0(z), then it 
follows that Q (z) lir (with a similar expression involving ay). This is the A-parameter 

4 - 3 

defined elsewhere [1: p288], wherein the limit of an LPil mode was shown to apply as this 

gets large, which is equivalent to ai getting small or Q(z) getting big. However, that the 

choice of LPii mode approached is dependent on the sign of Q(z)/ai was not remarked in 

Ref. 1. It is discussed in Ref. 24. 

What happens at ai = 0? Recall from (B.14) that this means that two propagation 

constants, as evaluated by first-order corrections to the weak guidance approximation, are 
equal for the two modes of the J-set. In the neighbourhood of ai = 0, taking more terms in 
the polarization corrections to  13j  and evaluating the electric fields beyond the weak guidance 

approximation, may show continuous, though very rapid, change of behaviour as the value 

of V (and hence ai(V)) changes. However, there would still remain a value of V (namely 

such that ai(V) = 0) where the vector direction of the modes was ambiguous [25: p293]. At 
this special value of V, the L13 11 modes are equally valid as a description of the modes of 
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(,31) 2  = (P2 ) 2  = + v2ef — (B.19) 

(B.21a) 

(B.21b) 

the axisymmetric fibre as the VC modes. 

8.7 AVERAGE PROPAGATION CONSTANTS 

Since the perturbation is assumed to evolve slowly along the waveguide, i.e.  A»  1, and 

A, the adiabatic approximation can be used. This means that the modes vary slowly 

and that the total phase of the mode accumulates approximately in some average fashion [1: 

P4071] . Define the average propagation constant over the period of the grating by 

1 IA = x 0  dz [3i(z). 

Since it is trivial that, correct to the order of the accuracy worked above, (flj) 2  = Pp, we 

can work with the average value of the square of the propagation constants. 

Recall  how the functions qi(z) were defined so that their averages vanish over a period. 

Prom (B.7) it is almost immediate that 

th 

The second correction term is, of course, the polarization correction to the propagation 

constant of an unperturbed fibre. The interpretation of the first correction term is equally 

transparent. It shows the net result of the perturbation, either lowering or raising the average 

scalar propagation, as the average effective guidance parameter rises or falls. 

In evaluating the vector average (i9j),  for j = 3, ... 6, from (B.16), recall that the average 

'value of q,(z) q o(z) vanishes. It is apparent that the average value of the polarization 

correction to the scalar propagation constants contains a term that is exactly the vector 

correction of the corresponding mode on the unperturbed waveguide. The other term exists 

°Illy on the non axisymmetric fibre, i.e. when Q(z) # 0. Thus, with the definition 

1 jA 
L(x) = — dz (Ix 2  Q2(414 — 1x1), (B.20) 

A 0 

e complete set of average propagation constants for the higher-order modes follows: 

(133)2 = — — 12) — sgn(axg(lazi); 

(/34) 2 A2(11 + 12) + A il-sgn(axg(iaxi); 
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(135) 2  = 34-11 — 12) — sgn(cey)L(ceyi); (B .21c) 

(136) 2  = Tei + O + 3, 77D-5  s8n(ay)L(layi). (B.21d) 

with i3G, given at (B.10) and which includes a correction cognisant of the average guidance 

parameter of the grating. The average value of the polarization correction to the scalar 

propagation constants contains a term that is exactly the polarization correction of the 

corresponding propagation constant on the unperturbed waveguide. The final term in these 

expressions is due only to the presence of the non-axisymmetric z-variation, i.e. that Q(z) # 

O. For 5 2 , it is the same order of magnitude as other corrections to 73h. 

An important finding is that there are four distinct values of ( i3j), instead of three. 

The degeneracy between the odd and even HE21 modes has been broken. As functions 

of frequency, it follows that the ([3j) are discontinuous at any point where the relevant aj 

vanishes. This is a consequence of the discontinuity in the way the two modes oscillate 

between the two different LPii modes. Next, an example of this peculiar behaviour is 

presented: the LPoi LPii grating. 

B.8 EXAMPLE: LOCAL MODES OF L13 01 <—> LPii GRATING 

The form of the perturbation can best be appreciated from Fig. 9, and is described in 

detail at §4.1. 

Recall the definition for s(z) given by (4.2). This allows us to write 

gi(r, 0, z) = H(1 — r)H(r cos — 1 + 2 'I)H(r cos 0 + 1 2z Cl), 
 (B.22) 

where H(x) is the Heaviside step function, and so make some progress in evaluating the 

integrals in (B.4) and (B.3). 

To determine the solution for a grating written in an arbitrary fibre, the integrals below 

(B.2) are needed, and can be found numerically, if not analytically. These give immediately 

a3, and ay, from (B.14). 
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and t 11 t  4e = so = qh ":"=7  sh• 
t 11 • = 7111 f (B.23) 

qf(z) = 

2e(z) = 

Proceeding, define the familiar scalar modal efficiendes .77f, 77h for the LP,:n and LPH 

families of modes, respectively, as the integrals 

fc dS •71j(r, 0) 

where j =  f, h and C indicates the domain of integration is the core of the fibre. With a 

little ingenuity, from (B.5) it is possible to show 

The equality ce = co has a profound consequence. Recalling that the average of qi(z) over 

one period vanishes, from (B.4) and (B.5) it follows that the average scalar propagation 

Constants of the odd and even scalar modes are identical. This means that for part of the 

grating > ;Jo  and for part T30  > Tàe . It is this that ensures the "average" higher-order 

triodes in the grating are not LPii modes, and that, as detailed above, the higher-order 

modes approach, in turn, the forms of two different LPii modes during transit through the 

grating. 

—4f +71f Ilps2bi 11 2 es dr r  farrccosW q(r,9) , if ° > 3 (z) —1  

so that changing the angular variable of integration in the second case and noting the sym-

nietry about the Y-axis of 17) 2  gives 

{ —4f + 7r11 k%11 2  fsl dr rn (r) arccos( ;1.) , if 1 > s(z) > 0 

—ef + 17f 1-* 2 ./2 8 di'  rFP(r) arccos() , if 0 > s(z) ? —1 

ir;- 

di'  rn(r)(arccos(e) + sV1 — e ) + li1112 fs1 , if 1 > s(z) > 0 

— eh + qh li1112 A 

{ — eh  
dr rF?(r)(arccos( -;-4) — s.V1 — .74 )  , if 0 > s(z) —1 

—4h + 7#-1-,11 2- fsl di'  rn(r)(arccos( e-) — S \il — e-) , if 1 > s(z) > 0 
go(z) = 

+ eh  + q h up- fl, dr rF?(r)(arccos() + 3 1/1 — 4 )  , if 0 > s(z) > —1 . 

This fixes Q(z) as 
1  /1 2 s2 

Q (z) = s(z) 2 
Isl

dr r (r)\/1— 

With the perturbation defining the grating, in general the functions qj(z) follow as 

qi(z) 

=

—Cf  + 11 112 f dr r foarcws( e )  d0 .r11(r,0) , if 1 > s(z) > 0 02,si 

91 



As expected, this gives Q = 0 if z E (lc , Li) U (fi .  + 4,A), which is where the cross-section 

of the grating is axisymmetric. Also, it is antisymmetric in the parameter s, so will change 

sign during transit of the grating. It is easy to get az  and ay , given at (B.14), Oz  and 0y , 
given at (B.17), and, from (B.20), 

1 
L(x) = da  (1x 2  Q2 (-I-c73  )11 - 1x1). 

All the information is assembled to fully describe the modes of the grating, written in 

the fibre. They are illustrated for the case of a grating written in a step fibre. 

For a circular step fibre, the expressions for all the necessary quantities can be extracted 

from standard references [e.g. 1: p313,319]. With the definitions 

X0 = Uf "-(j-f2 f) 
JO(U1) an 

they follow as 

Jo(Ui jowl) , if r < 1 
Fo(r) = 

Ko (Wi r)  
Ko(Wf) n 1 < r 

w2tu2 n 2\ 
f f X0)  

rl f = 172 X02  
11F0 11

2 .172.AL 

2uî wj ; 

Jo(Uh)  X1 = 1 - uh 
/11(Uh) 

Ji(Utisr)) , if r  < 1 
{ Fi(r) = IjCii(l

l

ehr)  , if 1 < r Ki(Wh) 
Tvg(Ug  + X1 - 1 )  nh = v-2(xî - 1) 

ii V2 (xî - 1 )  11F1112 - 
Ii Ii 

2UÎ W.? 

= xo/11F011 2 ; Ii  =xi/111'111 2 ; 12  = — 1 /11F111 2  
These give 

7r3n 2 ( 3  - X1)  az  = 
281/2 1IF111 2  

rA2 (1 + X1)  
ceY 26V2IIF1112 

Normalized forms of these, namely ebai, are shown, as functions of V, in Fig. 20. They are 

important parameters in determining the way the vector form of the modes changes during 

passage through the grating. It is apparent that az  changes sign at V = 3.794, but ay  does 

not anywhere; it is worth noting that a y  > az  everywhere. Indeed, for much of the domain 

shown, az  is quite small. 

Shown in Fig. 21 is the variation of the angles Or  and Oy during passage through 

a grating with parameters
A2 = 3. It is clear how little axi-asymmetry is needed for 
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For a step-profile fibre, the normalized form of the interference parameters ai, defined by Eq. (B.14), as a 

function of normalized frequency. 



the effective modes to be the LPii modes, which are present when Oi —> ±i-. This is 

particularly true as lax  I —> O. A similar quantification that very little asymmetry is needed 

to establish LPii modes was made previously [1], for the case of an elliptical core in a fibre 

[p361, 385f, 635f]. Using the angles together with Fig. 19, it is seen how each particular 

mode approaches two different LPii modes during its passage through the grating. This 

means that on "average" the modes are VC modes! It is doubtful that such an average has 

any mea.ning. Finally, it is apparent how the evolution of modes 3 and 4 in the grating is 

frequency dependent, i.e. the way they approach the two different LPii modes depends 

on the value of V. As V goes through 3.794, the sign of Ox  switches. As V passes through 

3.794, the sign of Ox  flips over. 

Fig. 22 shows the normalized variation from ah  of the four higher order propagation 

constants during passage of the respective modes through one period of the grating. To 

illustrate the way that the behaviours of modes 3 and 4 interchange, one value of V less 

than 3.794 and one greater are used. The dominant behaviour seen in Fig. 22 is how all 

the propagation constants follow the local variation in the scalar constant, i.e. the local 

perturbation of the effective guidance parameter [26]. The actual forms of the LPii modes 

or VC modes approached by each mode in each section of the grating are better appreciated 

by taking a local birefringence as a measure of z-variation of 13. One possible form of this, 

i.e. (/37 ) — ià e (z) which is the local variation froni the local value of /3 for the even LPii 

mode, and an explidt listing of the limiting forms approached by the modes are shown in 

Fig. 23. 

It requires some ingenuity, but it is possible to show that L(Icx x  i) > L(ay ) everywhere. 

Together with (B.21), this inequality shows that the degeneracy between the even and odd 

HE21 modes is broken, i.e. that (/35) (i33), for all frequencies. The evaluation of Q(z) is 

done numerically, involving as it does Bessel functions, but presents no serious difficulties. 

For the combination of parameters Ire' 2  = 3, the results for ([3i) are seen in Fig. 24. The 

discontinuity at V = 3.794 in the effective or average values of the propagation constants for 

modes 3 and 4 is apparent. This discontinuity is not surprising, considering the way that 

the modes evolve changes at this value of V. Indeed, as can be seen from Fig. 23, their 

behaviours swap. 
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Figure 21: Modal rotation during passage through grating 

For a step-profile fibre, angles of rotation of the modal sets during transit through one period of the 
LPoi LP ii  grating. Here ifià2 145 = 3.0. Three different values of V are shown. 
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Figure 22: Change in fi  during passage through grating 

For an LPei LPii grating in a step-fibre, variation of the local propagation constant j3 (z),  given by Eci •  

(B.16), during transit through one period of the LPoi LPII grating. Here rà145 = 3.0 and the modes 

are indexed as in Pl. Two different values of V are shown. 
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Figure 23: "Local birefringence" during passage through grating 

For an LPoi 1-n LPii grating in a step-fibre, variation of the local birefringence pi (z)-  /3h (z)  during transit 
through one period of the LPoi grating. On the left, modes are indexed as in §B.1; in the middle, 

modes are identified by their axisymmetric form; on the right, are listed the two different LPII modes, 

which are limiting forms. Here rià/d = 3.0. Two different values of V are shown. 
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For an LPoi  s--> LP j  grating in a step-fibre, the frequency dependence of corrections to the propagation 
constants, averaged over one period of the grating, as given by Eq. (B.21), are shown as solid curves. Broken 
curves are the corresponding results on an axisymmetric step-fibre. Here Iri/6 = 3.0 and the modes are 
indexed. as in VI . 



replaced by 73 ({jee  and j3 ({Yq. Further, in the left-hand side of (B.12), "ije  becomes 
in the right-hand side of (B.12) it follows 

7r3,2 -.( .;5})2 73(,{I})2 

Q(z)  2V2 5 à — 
=  (1+  î)Q_(z)  

ID(z) dS gi(r, 0 , z)ffir) (B.24a) 

B.9 INCLUSION OF ANISOTROPY 

It may be that the weak perturbations forming the periodic structure have an anisotropic 

nature, i.e. bx  Si,,,  where  Sj  is the perturbation seen by the j-polarized light. For simplicity, 

it is assumed that the optical axes, defined by the anisotropic refractive index tensor, are the 
Cartesian axes used in the problem, defined by the symmetry of the form of the perturbation. 
This is not an unreasonable assumption. The anisotropy is frequently induced by the same 

symmetry structure as produces the perturbation. As a notational device, put 

8x  = 8 ; = (1 + E)S• 

As the anisotropic axes are aligned with the Cartesian axes, the two states of polarization 
are the X- and Y-polarized modes, mentioned above. The respective polarization constants 
are found by replacing 8 with 8x  and Sy in (B.7). 

For the higher-order modes, we again proceed as above. The problem is only more 
cumbersome. 

As in (B.8) and (B.9), derive four values for by replacing  5  with either bx  or Sy . 
Next, in (B.11a) and (B.11b), respectively, it is important to realize that -,j{: } and i-j{: } are 

and 

using the definitions (B.8), (B.9) and 
1  

Q+(z) = ge(z) q0(z) Ce  + Co = 41)112 
1  Q _(z) = qe (z) — q 0 (z) Ce  — Co

2111'111 2  p(z) 
dS gi(r,  , 9,  z)er) cos 20. (B.24b) 

The latter is the same as Q(z) defined at (B.13b). However, in this anisotropic case, Q(z) 
depends on the family of modes examined. Define 

— 
Q{:} (z) = ( 1  + )Q_(z)  {T}ÎQ+(z). (B.25) 
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Given the appropriate choice of Qj(z), the above results about the modes' vector forms 

— defined by the angles given in (B.17) — all carry over. It is important to note that, 

while Q_(z) vanishes in the region in which the perturbation is axisymmetric and is an 

antisymmetric function over a period, Q+(z) does not have these properties. Thus, in this 

region, the modes are not the same as on an aldsymmetric fibre, as can be seen because 

0 Oy. This is expected. In this region, the original axisymmetric fibre is perturbed to 

an anisotropic one. An example of the form of the actual modes, as described by the angles 

q5r  and Oy , during passage through the grating is shown in Fig. 25, which is interpreted 

together with Fig. 19. In this case  2L3' 2  = 3. 

For the propagation constants, observe that the analogous result to (B.15) is 

2 1 — A-2 V —Qi(z) = /31,2  -7---r6 V2 ((1 -=';)Q-1-(z)  7r6_ 2 

Hence, using (B.24) and defining the average scalar constant in the obvious way as 

(5V2  
Ra = -F ( 1 + î)(ee + e0), 

it follows that 

8v2 
- eo )  

+ {T}I2) + 

2_ t z \ 7q2 mp{:} n / 

z \ = h. 2 
fr'a  

89/2  
7i37-(ee  

1 
— A{ 2 } 

(Fv2
(ee  43, 

((1 -U-)(qe (z) q0(z)) — U.(qe (z) 

8V 2  
{T}A .77-3, sgn(ax )(14 ez)11 

— go(z))) 

— laxl) 
(so f 

—eo) + + pqe(z) + go(z)) + (*(z) go(z))) 
1.1 - 12 — à{ ) {T}à—sv2 sgn(ay ){1a 2y  Q2y (z)Il — lay 1). 0 ir,à2 

The average values for the propagation constants of the X- and Y-familles are different; there 

are the terms Ti-. (ee  —e0 ). For j = s, y, define  Li(s) as in (B.20) with the appropriate choice 

of Qj(z) replacing Q (z) . The average values of fle  follow: 

(8e) = &t2  {T}à-6 
432 
=v2 

(
ee  — eo) — AB, + {±}à—

'51/2
sgn(a7 )/i (ja7 1), . irp2 

where y indicates the family to which (,(3e ) belongs, the choice of sign on the second term 

is dependent on -y = {p, and the third term and the choice of sign on the fourth term are 

those relevant to e, as found in (B.21). 
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Figure 25: Modal rotation during passage through anisotropic grating 

For a step-profile fibre, angles of rotation tki of the modal sets during transit through one period of an 

anisotropic LPoi 4-> LPII grating. Here irà2 b5 = 3.0 and V = 3.50. Compare with Fig. 21(b). 

101 



al( 0 ) = 1 a2(0) = 0 = a3(0). (C.2) 

APPENDIX C 

Three Coupled, Linear Differential Equations 

We are interested in finding the solution of the system 

alk (s) 0 K2eill, ei02x K3e ilk e i93x ai x 
a2 (x) = i K2e— el k e—i92e C2 iMei(°3-82)e) (a2H 

( 
) 

al3 (x) K3e —i e e—ie3e  —iM e —i (93-82 )r C3 a 3 x 

together with the initial conditions 

(C.1) 

All of K2, K3, M, z1), 92, and 03 are real. 

It is straightforward to verify that the solution of the system can be described by 

aa(x) = ilajei(ei -8a )z , 

with 91 = 0 and the summation convention implied for a Latin index, but not for a Greek 
one. The coefficients satisfy 

Pa K2 eill" K3e 20 A\  
K2 e —fik B2 — iM A2a = / 

—im e3  — A3ct 0 

where it is defined that for, (3 = 2, 3, 

ei3  = 0)3 + C 0. 

This gives Ala  arbitrary; it follows that 

A2c, = Aia(K2(Pa —  93) iM K3)e —it  I 1(Pa e3)(ticv — -62) — M2 ; 

A3a = Alce(K3(4icv — 02) — iMK2)e—i° /(iict — 9.3)(tia — e2) — m 2 . 
The /la  are three solutions of the cubic equation 

3 t e , 2 f 172 _1_ re2 A4-2 re23 re-23 
2 1- — 1 11 2 11 3 m v2v3i Pa m £12 v3 7. 21 3 V2 -  0.  

Further notational changes 

102 



1 _ 
K2 (p 2 -03 )-FiMK3  
(72 —X) 2  —y2—m2 
K3(1 4 2 -à2) - iMK2  
(72-X) 2  -Y 2 -M2  

(7a  — X) 2  — Y2 , this is 

(1 
—iik K2 (P1-#3) -1- iMK3  e   

(71 -X)2-Y2-M 2  
e-ilk K3G1 1 -(72 ) -- ilif K2  

(71 -X)2-Y 2-312  

which yields the solution 

1 
K2 (-43 -63)+iMK3 ( All 1 
(73 __X)2_y2 Al2 = o 

e- ilk K3 (P3 -62 )—iMIC2 A13 0 
(-13—X) 2  —Y 2 —M2 

, 
Pa = —3 lu2 + v3) = 7a + 2X 

give the cubic equation 

0 = -y—(44-4_,m2+3,x2 1,2 n rfre -1-4(X—Y)+4(X+Y)+2X(X 2  —Y2 —M2 ).  (C.3) 

The important feature of this equation is that the coefficient of -ya  is real and negative, so 

that three real solutions for -ya  are assured. 

With the definitions 

cr î + m 2 + 3x2 + y2 

3(4(X — Y) + Kî (X + Y) + 2X(X2 _ y2 /1/2) 
cos(0) = /, 

cf2 N/cf/3 

where is fixed between 0 and 7r, it follows that these three solutions of (C.3) are [7: #3.8.2 1  

71 = 2 \F3T3 COS(0/3 ) 

72 = —21-07icOS((0 — 7r)/3) 

= —2\7icos((0 7r)/3). 

With the initial conditions presciibed at (C.2), it is straightforward to obtain the 

equation for the Ala , which was left arbitrary above. Noting that (ya  — é3)(Pot — 2) = 

All = ( ( n — X) 2  Y2  — M2 )/(71 — 72)(71 73) 

Al2 = ((72 X) 2  — Y2  — M2 )/(72 — 73)(72 — 71) 

A13 = ((73 X) 2  — Y2  — M2 )/(73 — 71)(73 — 72)- 
As the -ya  are all  real, it follows that the Ala  are, too. 

Thus, the solutions for the aa(z) can be recovered, though they won't be reproduced 

here. It is possible to rearrange the expression for la1l 2 (x)1 — which is power — to a more 

useful form: 

1a11 2 (x) = 1 — Tn.  sin2 (vix) — 772 sin2 (v2x) — 773 sin 2 (v3x), (C.4) 
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(C.5) 

(C.6) 

where the frequencies are defined by 

1 1 \ 
vi =D71  — 72)  = v sin((0+ r)/3) 

1 
v2 =i(72  — 73)  = — Vjsin(0/3 ) 

1 
'i(73 — 71) =  / sin((0 ir)/3) 

and the coefficients (or "efficiencies") by 

.( (X  _ 71 )2 y2 m2)((x  Y2)2  y2 m2 )/41,? 1,21,3  

772  .., ((x. _ 72)2 _ y2 m2 )((x 73 )2 y2 m2)/41), 4,3  

773 = ((x. 73)2 y2 m2)((x 71  )2 y2 m2)/4p1 v2 vg .  

For a resonance to occur in this solution, the requirement is simply that cos(0) ±1, 

i.e. 0 -4 0 or 0 —> ir . Under these circumstances, from (C.5) and (C.6), it follows that 

v2 —> 0 and 772  1 or v3 —> 0 and r13 —> 1, respectively. In other words, with 0 close to 

0, the conversion is very strong and the frequency very small on the second term in (C.5), 

and, with 0 close to ir , the same happens on the third term. We can use this requirement 

to recover the conditions for resonance. 

For a small angle, replace the trigonometric functions above with their limiting forms, 

and replace these in the expressions for at (C.6). The "resonant" effidency has a square 

of the small angle in the denominator, so the condition to keep it bounded at 1 is that the 

numerator vanish. This gives the condition (X ± 4)2 y2 + 214-2, and the ± indicates 

two possibilities, which correspond to the two options 0 —> 0,r, though not necessarily 

respectively. Thus, the resonance condition is 

< K-- K=  2VA/2 Y2( !/M2 +1,2 ± 3X) 

which has two solutions, corresponding to ±. 

v3 
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+ 2w(wr — '5)e 2  — w2e3  (D.1) 

APPENDIX D 

Zeroes of Polynomial 

0 .1 FUNCTION FOR ZEROES 

Consider the cubic polynomial given by 

Q (e)  .1 — (i. + (wr — 

and defined on e E [0, 1]. How do the zeroes of Q(e) vary as the parameter w changes, with 

to > 0? Since all functional dependence is continuous, there is continuous variation with 

parameters i, r. Trivially, for all  R>  0, it follows that q(1-1- R)  < 0 and q(—R) > 0. Hence, 

all the roots of Q(e) are in [0,1]. Of particular interest is the smallest root of Q(e). Define 

it to be e  . edw;  r, 51 which is a function of w, with parameters T, i. 

Rather than finding the zeroes of Q(e) as functions of w, consider w to be a function 

of the zeroes and get w(e) by solving Q(e). 0 for w. Trivially, this gives two branches of a 

function defined for e E [0, 1 ] : 

w±(e) = -.- ---5' ±  ii — e  
e — 7-  c .  — TWe .  

To define w(e), retain only the portions of these with w± > 0., If such a choice doesn't 

exist, then no w is defined for the value of e, i.e. no value of the parameter w will make 

such a value e into a root of Q(e). Also, w(e) may be multiple valued, i.e. both w±(4) ..> 0. 
Examine functional form of w(e). As a simplification, note 

W±(e; 7 1 —5) = —wT(e;r,i) 

so that one can assume '5,  > 0 and then take the solutions w < 0 for the case 5,  < 0. 

It follows that w( 144. -1.5, ) = 0, since w+( 11-1:77). This combines with a knowledge of the 

limiting behaviour of w±(e) near any asymptotes to give an indication of which branches 

W±(C) exist in which portions of the domain [0,1], for the specific choice of parameters r, 7y. 
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There is a vertical asymptote at 4 = 0. As e —› 0+, it follows that 

w± (e) —› Tlfrel , if r 0 0 
±1/e , if 7 = 0 3 

where the need is to distinguish the special case r = 0. For this special case, w+ > 0 and 

w—  <0. In general, w+ has the opposite sign to that of r, and w_ has the same one. There 
is another vertical asymptote at e  = T. With r 0 0 and e —› 0+, it follows that 

W±(T ) 
e.7- (± 5)/ e  if 7 1.* 

e 
—(1 +52)/25" if  = 

e) (T\F—=7:z  î')/ 6  if r 1+-y 

where the need is to distinguish the exceptional case r — 1+ If r = --el  then there is a -y • 1+5- 
finite limit for w+(7). Otherwise, it is necessary to know if 7 > y since then 5 > 
If r>  11-1:77 , then the limit is positive for w±(r — e) and negative for w±(r e). If 7 < 1+-y 
then the limit is positive for w+(r e) and w_ (7 — e) and negative for other pair. 

Trivially, w(1) = w±(1) = , which is valid only if r 1. It is positive or negative if 
r>  1 or r < 1, respectively. Below it is shown that the derivative is infinite at e  = 1. 

It is useful to have the derivatives of w±(4). Their vanishing tells whether any stationary 
points exist on the branches w±(e). Thus, 

r — 3e + 2e2  
11/±(e) = f 3 ke — 1-) 2 ± 2(e — 7) 2ei07-71 

which is undefined for e = 1,0, r. The latter two values are expected as they are vertical 
asymptotes. e  = 1 is the only point w±(e) have in common. Stationary values are not 
immediate — finding them involves solving a quartic polynomial in e: 

for w± (Recall it is assumed 5 > 0). The number and some details of the solutions can be 
found graphically. Refer to Fig. 26 and Table 1, where w+(e) corresponds to the lower and 
w_(e) to the upper solid branch. Thought shows that critical values of w(e) represent values 
for which Q(4) has a degenerate root. 

T25/e if r — 14-5 T25/e if r — 1+5- 
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Figure 26: Graphical solution for critica1 points 

Graphical solution of the equation for the critical points of w(q), for various combinations (r, -7y). 
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1 

2 

1 

> ^y > 
1 1 

4 1+7 2  "- 4 

I  7>  
• 11 - > - ' 4 1+7 2  

>  7>  3 9 
> 

28 1+7 2 4  

> ^y 9 
1 27 

1+7 2 28 

1 1 > T > 1 r = R_ . 2 1 > r > 3 

R_ > r >— 3 1±72 

1 1 >  r>  1+7 

0 0 > r 

0 > r > R_ 2 
r = R_ 1 0 > r 
R_ > r 0 

0 0 > r 0 

Table 1: Solutions for critical points 
List of the number of solutions for the critical points, illustrated by Fig. 26. 

(a) Solutions for w_(e), i.e. upper curve 

r>  R+ 
r = R+  

> r > 1 

1>  r > 0 

0 > r 

(b) Solutions for w+ (e), i.e. lower curve 

r > 1 r > 1 

r = 1 1 i r = 1 

r > R_ 0 

r = R_ ,1 
R_> r>1 2 

1 r = 1 3 
1 > r > R_ 1 

r — ___ 1+7 2  
r  = 1 2 r = —I— 2 , 1 2 . _ 1+72 . r — 1+72 1+7 2 

3 1-1--i3  
1 3 r =  R_ 2 i 1+72 " > r  ? ° 

11 ..„.> 0 1  
1+73 -- 

R_ > r > 0 1 

Here the notational device is 
9 'y R*=  
8 
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Knowledge of the location of stationary points, and the asymptotic forms of w±(4) can 

be combined. Figs. 27 and 28 show all the possible general forms of the zeroes of Q(4) as 

functions of parameter w. In these, it is seen when a discontinuity in 40(w) exists. Fig. 

29 shows the region of the (7, 5)-p1ane in which it is possible. Below, there is an explicit 

presentation of this discontinuity. 

D.2 SPECIAL CASES 

Now examine some special cases in detail. 

(i) CASE 5 = 0: 

In understanding how the pattern of zeroes of Q(e) changes, is easiest to consider special 

example with 5 = 0, i.e. 

w(e) = —e)  
ele — Ti 

with 

wi(e) = s gn(e r)  ,2e2 — 3e r  
2e 2 (e _ 

which gives stationary values at 

4 9 
i.e. only if r < 9/8. If T > 1, then e+  doesn't e]dst in the domain of interest; if r < 0, 

then e_ doesn't. Thus, at r = 1,1,0, there are special transitions whose importance is best 

understood by considering a continuous variation of r from infinity (see Fig. 27). The first is 

the value where the point of inflection occurs, i.e. the first appearance of a stationary value 
of w(e); the second is when the r-asymptote first appears in domain; the third is when this 

asymptote disappears. 

For the smallest root of Q(4), i.e. the function 4 = eo (w; r, 0), the important detail is 

that, for r E [0,1.125], there is a discontinuity in Co at w =  wp. This is easily found to be 

2N/i 4 8 8 3 - 2 
W D W(e- ) = 

(
r 1 — —27

72 + (1 — —7)i) . 

The size of this discontinuity e,(T, 0) is given by 
1 

4.1  = w2(4_)e2 e_ = _  r  - 1 + -Jr). 
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Figure 27: Pattern of zeroes 5 = 0 

Functional dependence on w of the zeroes of the exiunined polynomial, defined by Eq. (D.1), for various 
choices of r and with 5,  = O. 
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Figure 28: Examples of pattern of zeroes 5 * 0 

Functional dependence on w of the zeroes of the examined polynomial, defined by Eq. (D.1), for various 

choices of the parameter pair (r, 5').  Note that w < 0 is really 5,  < 0, as explained in §D.1. 
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Its peak value is 9/16, which occurs at T = 27/32 when wip = 32/3.\/. The accompanying 

two roots are eo = 3/8 and ei  = 15/16. 

(ii) CASE r = 

In this case, r = 1*- is an asymptote. The value shown for w = 0 in the above analysis 

is no longer valid. However, it can be seen that q( i+e) — 0, independent of the choice of 

w. The other two roots are trivial as the solution sof a quadratic: 

= 
—25(1 ,5,2) w  .1w2 45(1+ 5  2 ) _ 4(1 + 5  ) 2 

e  2.(1 + 52 ) 
These two roots exist if 

w2 4 ( 1 4. 52)5w  _ 4(1 + 52)2 > 

w > 2(1 + 52 )(\/52  + 1+ 5). 
The critical value, at which the two roots are degenerate, gives 

1 e =  

Fig. 28 shows the curves w(4) for representative values of 5, and thus 7. 

For 5 < —1/V5, the smallest root 40  is always the value eo — 1. _-+5,1 . For 5 > —1/13-, a 

discontinuity in eo  occurs at 

1 ± 
wD = 2 ( 1  1-2)(\/52  + 1 + 5) = 2 3  

and the size of the discontinuity is 

1+/1+5 2  _ 2  27±07-.--7—.7 —1 
2(1 + 52 ) — 2 

since 5" = . The peak value of this discontinuity is 9/16, which occurs at r = 
15/16,5 = 1/N/ï when wD =  32/3/L. The value of the two roots are eo = 3/8 and 

= 15/16. 

D.3 DISCONTINUITIES 

It is easy to show that for a general (7, ;y") there is a discontinuity in eo(w; r, 5) in shaded 

region of Fig. 29. Further and more remarkably, an explidt solution for this discontinuity is 

possible. 

= 
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Figure 29: Region in which switching is possible 

The shaded region is that portion of the (r,5)-plane in which a valid solution to Eq. (D.2) exists, i.e. 

parameters (7-, 5) for which a discontinuity exists in the function for the smallest zero of the polynomial 

defined by Eq. (D.1). The heavier shading indicates two solutions, i.e. two discontinuities, occur. 



Suppose (r, 5) satisfies 

9 3N(à.  (3 3  2  
7  - = i'2 2 1  — ( 1 

= , 
(D.2) 

for some y E [0, 1] (and w(p) is defined below). Each such y uniquely defines a straight 

line, cutting the r-axis between 0 and 1.125. The value of the r-intercept is  p. More 

usefully, given (7,5), it is possible to solve (D.2) for the appropriate p and find on which 

such line, if any, (r,5) lies. A quartic polynomial in y results. In general, there are 0, 1 or 

2 valid solutions for p. If there is no solution, then (r,5) lies outside the shaded region in 

Fig. 29. 

If a valid solution for p exists (As can be seen from some examples of Fig 28, there may 

be two solutions.), then for the pair (7,5), there is a discontinuity in eo when w = 

given by 
„ 2 \/-2-  (3 

2  = .7à-3 /1 1— /12  + (1 — 2  

The size of the discontinuity e,(,) and the value of the lesser root at the discontinuity eo (y) 

are given by 

9  e./(y) = —4 (/ 1  —  p — 1  + (D.4) 
3 

eo(y) = —4 (1 — \/1  — (D.5) 

respectively. Thus are given the constant values of these three functions whenever (r,5) lies 

on the straight lines defined as in (D.2) by a choice of y E [0,11. As functions of y, they are 

shown in Fig. 30. It is found that the maximum possible value of e, is e,
(

) = 9/16, and 

that this always requires wp = 32/31-1-g. Also, the two roots of Q (e ) are then eo() = î 

and ei  =15/16. 

The design consideration for the optical switch is given simply. It is to maJdmize the 

value of 4j (y), while minimizing the value of wD(2). It is apparent that the two cannot be 

achieved simultaneously. 

(D.3) 
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Figure 30:  u variation of discontinuity parameters 

The variation of the three functions, given by Eqs (D.3), (D.4) and (D.5), of interest in seeking optimal 

solutions for all-optical switching. 
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wt = IY  de 1  
— I dx  

eo 1  
° (eo — e) n/e(eo — e) eo—Y x \leox_ x2  

. [2 \/x(eo  — x) 
 eo—Y 

eox ] tn  eo x eo 
—2 y ( 0  — y) 

APPENDIX E 

Solution of Power Equation 

The equation for the power propagating is given at (5.18). How does one explidtly solve 

for y(t) 

y' (t)2 = _ y Q( y ) t  = f Y(t) de 1 
Jo \I4Q(e) 

with the prescribed initial condition is y(0) = 0 and Q as defined at (D.1)? Put it into 

Legendre normal form [27: §13.5]. The transformation required for this depends on the 

roots of Q. There are various cases; all will be presented in detail. In all of them, remember 

0 < y(t) < 40. 

The case when Q has a triply degenerate root eo is the simplest. After rewriting (E.1), 

it follows that 

(E.1) 

_ 

from consultation of tables [28: #2.266]. This implicit definition of y(t) can be inverted to 

give 

2 w2t2 1 
• 

Y(t) = eo 2 2 2 = el)  
1 + 

4 _L i el  t eou--- . - 

It is clear that y(t) —> eo monotonically at t --> oo. 

Next, consider the case when Q has a doubly degenerate root eo, less than the other 

(E.2) 
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root ei . After rewriting (E.1), it follows that 

wt = f de 1 1  
 — feo dx r, 

0 (e0  — e) \/4(ei — e) ho—y xoeo  — s)(ei — 40 + x) 
c) --- Y 

= 
in 

1 2e0 (ei  — eo) + (2e0 — ei)x + 2,/40(ei — e0)(e0 — x)(41 — 40 + x) 

/  

] 
[  , 
\ e — 0(ei — 4.0) . i eo 

1  ln (e0ei + (ei — 240)y + 2 \/(ei —e0)yeeei — y) — , 
\/e0(ei. — eo) 41(40 — y) 

) 
 

from consultation of tables [28: #2.266]. This implicit definition of y(t) can be inverted. 

, „ Weeei — y) + ,/(ei — e0)y) 2  exp(twVe0(ei — SOP = . 
ei(e0 — y) 

exp(—twVeo(ei — e0)) =  
( \/40(41 — y) + n/(ei — 40)y) 2  

_ Weeei — y) — n/(ei — eo)y) 2  
ei(40 — y) 

Hence, 

e0(ei — y) + (ei — eo)y)  cosh(tto N/40(ei — e0)) = ei(e0  —y)  
eoei(cosh(twieeei — e0) — 1))  y(t) = 

ei(cosh(twVeeei — e0)) + 1) — 240 • 
It is apparent that y(t) --+ eo as t —› oo. 

Consider the case when Q has a doubly degenerate root el , greater than the other root 

eo. After rewriting (E.1), it follows that 

ei. wt . f  1 de — f dx 
1  

° (41 — e)/e(40 — e) ei—y x \Ael  — x)(eo — el + x) 

el 
241( Pe e0 — el) + i —4-0)x,i 

— [Ve(ei 
1 _  eo)  arcsin( ) . 

i x4o 
1  r eleo + en — 2ely

)) =  
2 

, arcsin( 
,/41(ei — eo) (  

from consultation of tables [28: #2.266]. The implicit definition of y(t) can be inverted. 

.140 + 40Y — 2ely  .  
— y) 

sin(  — wt,/ei(ei — et))) e0(ei 2 

(E. 3) 
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y(t) e041(1 — cos(tw \/ei(ei — eo)))  (E.4) 
24 1  — eel cos(tw,/ei(ei — 40))) 

In this case, y(t) is a ( to    peliodic function of amplitude 40 •  

Take the case of three real roots: eo  < el  < e2 . After rewriting (E.1) and consultation 

of tables [28: #3.147(2)1, it follows that 

wt 1 ck  
° n/e(eo — e)(e — e1)(e —2)  

2  F (9; £) 
\Iel(e2 — e0) 

where F(0; 1) is the elliptic integral of the first kind [14: ch16] and 

eo42 sin2  0  
0(y) = arcsin( \I (42  — 40)  

Y)
) = e2 — eo + eo  sin2  

/2 40(4.2 — el)  _ 1  42(e1 — 4o)  
ei(e2 — eo) — el (e2 — eo) • 

The implicit definition of y(t) can be inverted in terms of the Jacobi elliptic functions [7: 

ch17] sn(z; /), cn(z;/), and dn(z; /). This yields 

sin(0(Y)) = sn(tw\/41(42 — 40); .e) 

and, thus, from the definition above of 0(y), 

(t) = 4042 5n2 (tot\/41(42 — 40); 1 )  y 
e2 — eo + eosn 2 (iwteiTe-2.770i; t) 

0e2(1 — cn(tw \/ei(e2 — 40); £)) 
e2 + (e2 — eo)dn(tw i; L) — eo cti(tw \feiTe'2 L) .  

Here, y(t) is a (v...1)===4K ) periodic function with amplitude eo• K(i) is the complete 
w eice2—e0) 

elliptic integral of the first kind [7: ch16]. For the paranieter, 0 < < 1, and / --> 1 as 

41 —› 40, i.e. there is really a repeated root. 

Finally, take the case of one real root ej and two complex roots el ± ie2. It follows that 

( E. 5) 

MO 2  
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After rewriting (E.l) and consultation of tables [28: #3.145(2) ] , it follows that 

wt = c/4 
1  

JO Nffieo — 4)(ce — + eî) 
= 

vrs 

where 
341(1 — cos  9)  

0(y) = 2arccot(\   
ry r-Fs+(r—s)cosi9 

e = a — (r — s) 2  1 1—  ( ‘Tpqo  _ 5, )pqoa _ i 
r
,2

u
,

0'. 
2e3 

4rs = 2 
(1 ) 

1 
Pq0red 

1 
r2  = a — 2e0ei + e? + a = — 2e0er — -if )-E  

NO p2  ell) 

s 2  = ef +  a  = 1/eodp2 . 
The implicit definition of y(t) can be inverted in terms of Jacobi elliptic functions. This 

shows 

cos(0(y)) = cn(wWFs; t) 

and, thus, from the definition above of 0(y), 

seo(1—  cn(ttv.VT=s;  t))  (E.6) Y(t) = 2r + (s — r)(1 — cn(ttvli--s;/)) •  

The function y(t) is a ( 4w51.$ )-periodic function with amplitude eo. For the parameter, 

O  < < 1, and 1 only as e2 --> 0 with el < eo, i.e. the two complex roots become a 

repeated real root. 
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