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ABS TRAC T 

The most dominant transport protocol used in sending Internet applications is the 
Transmission Control Protocol (TCP). Although TCP was designed to provide reliable 
end-to-end connections over various types of networks, it has several problems when 
running over long delay paths such as satellite links. Large bandwidth-delay products and 
high bit error rates are the two major factors that affect most connections using TCP over 
satellite. Current research suggests that two major problems of TCP are the coupling 
between congestion detection and error control, and the inefficiency of the congestion 
control and loss recovery algorithms over long delay paths such as satellite links. 

In this document, a review of standard TCP mechanisms and functions is given. The 
problems TCP connections encounter over satellite links are presented, and a number of 
solutions including standard extensions, gateway options such as TCP splitting and TCP 
spoofing, and proposed TCP enhancements such as sharing TCP state information are 
analyzed. Implementing such extensions and enhancements will play an important roll in 
improving the efficiency of TCP connections over satellite networks. 

RÉSUMÉ 

Dans le domaine du transport de données sur Internet, le Transmission Control Protocol 
(TCP) est le protocole le plus dominant. Bien que TCP fut conçu dans le but d'offrir des 
connexions point à point fiables sous différents types de réseaux, son utilisation sur des 
liens à longs délais, comme les liens satellites, soulève plusieurs problèmes. Les deux 
principaux facteurs affectant la performance de TCP sur des liens satellites sont les 
produits délais-largeur de bande (delay-bandwidth product) élevés ainsi que les hauts 
taux d'erreurs (bit error rate). Des travaux de recherche suggèrent que les deux 
problèmes majeurs de l'utilisation de TCP sur des liens à longs délais sont la relation 
entre la détection de congestion et le control d'erreurs ainsi que l'inefficacité des 
algorithmes de contrôle de congestion et de correction d'erreurs. 

Ce rapport présente d'abord un bilan des différents mécanismes et fonctions standards du 
protocole TCP. Les problèmes inhérents aux connexions TCP sur des liens satellites sont 
ensuite présentés et certaines solutions à ces problèmes telles que les extensions 
standards, les options de gateway (TCP splitting, TCP spoofing) ainsi que d'autres 
améliorations proposées (partage d'information d'état de TCP) sont analysées. 
L'utilisation de telles extensions jouera un rôle important au niveau de l'amélioration de 
l'efficacité de connexions TCP dans les réseaux satellites. 



EXECUTIVE SUNIMARY 

Satellite communication offers many benefits, such as wide coverage areas, broadcast 
capabilities, and ability to reach remote and geographically adverse locations at relatively 
low cost. Communication satellites have been providing military communications, 
international telephony and broadcast TV for many years. Now, these satellites are being 
used as a complementary source to the terrestrial communication networks. 

While satellite networks provide an extension to the Internet, they also cause some 
problems to the reliable end-to-end data transmission of Internet applications, which is 
realized by the Transmission Control Protocol (TCP). Although TCP was designed to be 
robust and flexible to operate in various environments, it cannot always perform 
efficiently over a satellite link. The main problems arise from the high bit error rates 
(BER), large delay-bandwidth products, intermittent connectivity, variable round trip 
time, and asy-mmetric link capacities associated with satellite links. All of these problems 
result in large bandwidth inefficiency and can lead to poor end-to-end application 
performance. For satellite links, where bandwidth is an expensive resource, inefficient 
use is costly. 

In this document, many possible algorithms which can solve various problems that TCP 
connections encounter over satellite where examined. Some solutions have not been 
thoroughly tested. One such solution is sharing TCP state information, which can 
improve bandwidth efficiency while maintaining end-to-end reliability. Such algorithms 
will play an important roll in improving future use of TCP over satellite networks 

Other solutions and enhancements have become part of IETF standards. The 
enhancements recommended by the authors are increasing the initial advertised window 
size, window scaling such that the BDP is satisfied, and use of the SACK mechanism. 
These enhancements should be implemented and be part of all standard TCP stacks for 
connections over satellite links. However, many of the have not been widely 
implemented at this time. 

More modifications and extensions to these enhancements are being examined and tested, 
but it will be some time•before they are reliable enough to become standards. These 
modifications will have a profound effect on connections using TCP over long delay 
paths, and will improve application performance and the bandwidth efficiency of satellite 
networks. 

vii 



1. INTRODUCTION 

Satellite communication  ffers many benefits, such as wide coverage areas, natural 
broadcast capabilities, and ability to reach remote and geographically adverse locations at 
relatively low cost. Communication satellites have been providing military 
communications, international telephony and broadcast TV for many years. Now, these 
satellites are being used as a complementary source to the terrestrial communication 
networks. 

While satellite networks provide an extension to the Internet, they also cause some 
problems to the reliable end-to-end data transmission of the Internet, which is realized by 
the Transmission Control Protocol (TCP). Although TCP was designed to be robust and 
flexible to operate in a various environments, it cannot always perform efficiently over a 
satellite link. The main problems arise from the high bit error rates (BER), large delay-
bandwidth products, intermittent cormectivity, variable round trip time, and asymmetric 
link capacities associated with satellite links. In addition, most TCP optimizations have 
been made based on assumptions that are true for terrestrial networks but fail for satellite 
links. For example, TCP's congestion control mechanisms are based on the assumption 
that loss of segments is due to congestion rather than corruption, where such conditions 
usually cause excessive TCP timeouts, retransmissions, or even abortion of the 
connection. All of these problems result in large bandwidth inefficiency and can lead to 
poor end-to-end 'application performance. For satellite links, where bandwidth is an 
expensive resource, inefficiency in its use is costly. 

This document first examines the OSI model with a more d.etailed look at TCP. Then the 
characteristics of satellite links and the problems of using TCP over such an environment 
are described and the performance issues that arise are examined. Solutions to these 
problems can be divided into two categories: modifications without the need to modify 
the TCP stack, and protocol enhancements to TCP for satellite use. They will be 
discussed in sections 4 "Improving Satellite Link Performance without Modifying the 
TCP Stack", and 5 " TCP Enhancements for Satellite Links", respectively. 
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2. OVERVIEW OF TCP 

2.1 OSI MODEL 

The OS1 (Open Systems Interconnection) model is part of an international standard 
dealing with connecting systems that are open for communication with other systems[1]. 
The OSI model has seven layers. Each layer performs certain functions that allow users 
to communicate without noticing the underlying interfaces and actual physical links 
needed to send and receive data. Let us examine each layer starting with the physical 
layer. 

ACTUAL PHYSICAL LINK 
N.•n••••••n•-•••n• 

Figure 1: The OSI model 



2.1.1 The Physical Layer 

The physical layer is concerned with transmitting raw bits over the physical medium. 
Thus, it deals with bit formatting, bit rates, bit enor rates, and all the physical and 
electrical interfaces between the actual user hardware and the network terminating 
equipment. 

The most common forms of the physical medium are coaxial cable, twisted copper pair, 
fibre optics, and wireless. A common protocol of this layer is the Physical Layer 
Convergence Protocol (PLCP), which maps the data frames into cells of bits to be 
transmitted over the physical medium. Other interface standards at the physical layer are 
the EIA (EIA 232-E, EIA 449) and V series (V.2, etc.) recommendations. 

2.1.2 The Data Link Layer 

The data link layer's main task is to ensure the reliable delivery of data across the 
physical link[2]. It accomplishes this task by breaking the input data into data frames and 
provides the frame identification, error control and flow control needed to transform the 
link into a line that appears free of undetected transmission errors. Widely used data link 
layer protocols are High-level Data Link Control (HDLC), Synchronous Data Link 
Control (SDLC), Serial Line Internet Protocol (SLIP), and the Point-to-Point Protocol 
(PPP). Some consider the ATM Adaptation Layer (AAL) as an upper sub-layer protocol 
of the data link layer. 

Broadcast networks, such as satellites, must control access to the shared channel. This 
function is done within a sub-layer of the data link layer called the Medium Access 
Control (MAC) sub-layer. Protocols have been developed specifically for the MAC sub-
layer, such as the ALOHA protocols and the Carrier Sense Multiple Access (CSMA) 
protocols. The above-mentioned protocols for the lower two layers of the OSI model help 
create the IEEE 802.xx or ISO 8802.x standards for LANs and WANs. 

2.1.3 The Network Layer 

The network layer is concerned with the transfer of data over multiple paths through the 
network to the proper destination. Its main function is to determine the destination of the 
data, route the packets through a proper path and make sure the resources exist to do 
this[3]. 

The Internet Protocol or IF  is used as the protocol of choice for the network layer. It has 
many versions such as IPv4, IPv6, and the ISO-IP. Each version of IP varies slightly with 
respect to their functions. However, all versions of IF  contain control protocols, such as 
Internet Control Message Proto‘ col (ICMP), Address Resolution Protocol (ARP), Reverse 
ARP (RARP), and BOOTP, which help with the task of locating the IF source and 
destination addresses [4]. 

3 



2.1.4 The Transport Layer 

The transport layer must provide data transport from the source machine to the 
destination machine, by passing the data accepted from the source session layer through 
the network to the final destination. It acts as an end-to-end layer, independent of the 
physical network or networks it is running over, performing end-to-end transfer and flow 
control of data and ensuring it arrives error free at the proper destination machine. This is 
why it is considered the heart of the whole OSI model protocol hierarchy[2]. 

Two main protocols are used in this layer: TCP (Transmission Control Protocol) and 
UDP (User Datagram Protocol). TCP is a reliable transport layer protocol that performs 
error and ordering correction. UDP is considered unreliable, only ensuring that messages 
reach the proper destination. Some also consider the adaptation layer (AAL) for ATM 
networks as a transport layer protocol of sorts[4]. 

2.1.5 The Session Layer.  

The session layer allows users working on different machines to create and establish 
sessions between them. Thus, it is responsible for setting up a communication channel 
between two users, for the duration of the complete network transaction. This allows the 
machines to send data back and forth. It also provides enhanced services that allow the 
machines to synchronize their dialogue and manage their data exchange. Some examples 
of these services are token management and remote login. 

2.1.6 The Presentation Layer 

The presentation layer is concerned with the actual syntax and shared semantics 
(representation) of the information transmitted. The data structures to be exchanged can 
be defined in an abstract way, and these abstract data types are then encoded using a 
standard (transfer syntax) that both machines can understand, such as ASCII or Unicode. 
The presentation layers agree on what standard should be used to ensure proper data 
transfer. ASN.1[1] is an example of a presentation layer protocol defined by ISO 8824 
and 8825 standards. 

2.1.7 The Application Layer 

The application layer provides the user interface with a range of network-wide distributed 
information services. These include file transfer access and management, electronic mail, 
and other message interchange services. The layer contains the many different protocols 
that are needed to solve the problem of the many incompatible terminal types and 
different file systems that exist. Examples of such protocols are TELNET, FTP, SMTP, 
and SNMP for the TCP/IP suite, and VT, FTAM, MOTIS, CMISE for the OSI — ISO 
standards. Others include HTTP, MIME, DNS, MMS, JTM, and DTP[1]. 

4 
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2.2 TCP/IP SUITE 

The OSI reference model follows the seven-layer design as described in 2.0. However, 
many computer scientists and network specialists follow a modified five layer OSI model 
equivalent, which is a hybrid OSI - TCP/IP reference model (Fig. 2-2)[2]. This is known 
as the TCP/LP suite of protocols. 

Figure 2: Hybrid OSI-TCP/IP reference model compared to the OSI model 

The hybrid reference model's application layer is equivalent to the three upper levels of 
the OSI model. Thus, it contains such protocols as TELNET, FTP, SMTP, DNS, HTTP, 
and other presentation and session protocols such as the ISO 8822 standards[2]. The last 
four layers have a one-to-one correspondence. 

Most multimedia/web applications today, run over TCP/IP. However, TCP behavior is 
highly sensitive to the delay and BER of satellite links. The following two chapters give 
an overview of the characteristics of satellite links and the problems with TCP over such 
links. Before discussing the specific problems of running TCP over a satellite link, a 
more detailed overview of TCP is needed. 

5 



2.3 USING TCP 

TCP (Transmission Control Protocol) is the most widely used transport protocol designed 
to provide a reliable end-to-end byte stream service over an unreliable intemetwork. TCP 
assures that data is delivered reliably, in sequence, and without duplication or loss. It is a 
full-duplex protocol, meaning that each TCP connection supports a pair of byte streams, 
one flowing in each direction[5]. It provides the flow control that enables the receiver to 
regulate the rate at which the sender may transmit data. It also has congestion control 
mechanisms that let the sender adjust its own behavior according to the network 
conditions. 

2.3.1 TCP Segment Format 

The unit of transfer between the TCP peers is called a segment. Segments are exchanged 
to establish connections, to transfer data, to send acknowledgements, and to close 
connections. 

Source Poil Destination Port 

Sequence Number 

Acknowledgement Number 

H I en Reserved Flags Advertised Window 

Checksum Urgent Pointer 

Options 

DATA 

Figure 3: TCP segment format 

Figure 3 displays the format of a segment. Each segment includes a header followed by 
data. Some segments may carry only an acknowledgement without any data. In the TCP 
header, fields  Source Port  and  Destination Port  contain the TCP port numbers that 
identify the application programs at the ends of the connection. The Sequence Number 
field contains the sequence number for the first octet of data transmitted in this segment. 
The Acknowledgement Number field specifies the sequence number of the next octet that 
the source application expects to receive. The  HLen  field contains an integer that 
specifies the length of the segment header measured in 32-bit multiples. The Reserved 
field, as its name implies, is reserved for future use. 

6 



Passive Participant 

Receive SYN; 
Send SYN with seq.# = y; 
Send ACK for SYN and wait 
for an ACK with seq.# = x+1. 

Receive ACK; 
Set up complete; 
Send packet with 
seq. # = y+ 1 . 

There are six flags in the TCP header, and all fit in the six bits available to the Flags 
section. These are: 

URG: Indicates that this segment contains urgent data, which starts at the beginning of 
Data field of the segment. The Urgent Pointer field indicates the amount of 
Urgent Data bytes in the segment. 

ACK: Indicates that the Acknowledgement field is valid (this flag is set for all but the 
initial SYN segment). 

PSH: Indicates that data should be delivered promptly. 
RST: Indicates an error; also used to abort a session. 
SYN: Set to 1 during connection setup. 
FIN: Set to 1 during graceful close. 

The Advertised Window field specifies how many octets of data the source application is 
prepared to accept. Finally, the CheckSurn field is computed over the TCP header, the 
TCP data, and the pseudo header, which is made up of the Source IP Address, 
Destination IF  Address, Protocol, and TCP Length fields from the LP header. Finally, the 
Options field enables the sending TCP entity to indicate the receiver the maximum 
number of octets in the user data field of a segment it is prepared to receive. 

2.3.2 Establishing and Releasing a TCP Connection 

The TCP connection procedure is called a three-way handshake because three messages 
(SYN, SYN + ACK, and ACK) are transmitted to set up the connection. 

Send SYN with seq. # x. 

Receive SYN + ACK; 
Acknowledge them by 
sending an ACK with 
seq.#  =x+1;  
Set up complete; 
Wait for a packet with 
seq.# = y+1 and send data. 

Active Participant 

Figure 4: TCP connection set up 
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Three important pieces of information are exchanged during three-way handshake. Each 
side notifies its partner of: 

• The initial sequence number it will use for numbering outgoing data (field Sequence 
Number) 

• The maximum buffer space available to receive data (placed in the Advertised 
Window field) 

• The maximum amount of data that an incoming segment may carry (the maximum 
segment size MSS in field Options) 

Data Transfer begins after the completion of the three-way handshake. It follows as a 
simple data transfer process where the connected pair updates their Advertised Window 
sizes, and sends Data and ACKs accordingly. 

A connection request can be initially rejected, by responding with the RST flag set. Once 
a connection is established, one side may send a segment with the RST flag set to abort a 
cormection if necessary. In this case, the transfer in both directions ceases immediately. If 
the connection proceeds without any abnormalities, when the application is completed, it 
will release or close the connection with a three-way handshake similar to that of initial 
connection set-up. 

2.4 CORE TCP FUNCTIONS AND MECHANISMS 

TCP performs three important functions, which turn a connection between two users 
within a network into a reliable data transmission path: 
a) Sets up a transmission or receiving window, which allows the receiving TCP to 

control the flow of data being sent to it at any given moment, 
b) Uses congestion avoidance mechanisms to probe the network for available 

bandwidth, 
c) Provides a level of erTor correction by checking for lost data segments and re-

transmitting those segments, which are lost. 

To achieve this, TCP uses sequence numbers and positive/negative acknowledgements 
implemented within a set of algorithms[3]. These algorithms are used for congestion 
control, flow control, and ensuring that the data sent is received correctly at the user end. 
The most significant of these algorithms, or TCP mechanisms, are the: 
- Numbering and Acknowledgments 
- Sliding Window Flow Control 
- Slow Start and Congestion Avoidance 
- Fast Retransmit and Fast Recovery 
- Retransmission Timeouts 

This section describes the mechanisms that TCP uses to deliver data correctly, in order, 
and without loss or duplication. 

8 



1 

Last Byte Written 

Remaining 
Free Buffer Space 

Last Byte ACked Cast Byte Sent 

2.4.1 Numbering and Acknowledgements 

To make data delivery reliable, TCP employs numbering and acknowledgement (ACK) 
schemes. TCP's numbering scheme associates every octet of data sent on a TCP 
connection with a sequence number. A segment's TCP header contains the sequence 
number of the first octet of data in the data field of the segment. 

The receiver is expected to acknowledge (ACK) received data. The acknowledgement 
number (ACK) field in a segment identifies the sequence number of the next octet that 
the receiver expects to receive, implicitly acknowledging all earlier sequence numbers 
from the sender. TCP's cumulative acknowledgement scheme can save bandwidth by 
using a single ACK to acknowledge more than one segment at a time. 

The receiving TCP monitors incoming sequence numbers to ensure arriving data are in 
order and that no data is missing. Since ACKs occasionally are lost or late, duplicate 
segments may arrive at the receiver. The receiver can tell duplicated segments by the 
sequence numbers and just discard them. 

2.4.2 Sliding Window Flow Control 

In an Internet environment, having a mechanism for flow control is essential because 
there are machines of various speeds and sizes communicating through networks. The 
sliding window algorithm realizes TCP flow control. The receiver advertises how much 
data it is willing to accept in the advertised window field, and the sender must stay within 
this limit. 

TCP on the sending side maintains a send buffer used to store data that has been sent but 
not yet acknowledged, as well as data that has been written by the sending application, 
but not transmitted. On the receiving side, TCP maintains a receive buffer. This buffer 
holds received data that the application process has not read. 

(a) TCP sender buffer 

Last Byte Read 

... 
Remaining 

Free Buffer Spaci 

Next. Byte Expected 

(b) TCP receiver buffer 

Last Byte Received 

Figure 5: TCP buffer size manipulation 
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In the TCP sliding window algorithm, the size of the advertised window sets the amount 
of data that can be sent without waiting for acknowledgement from the receiver. Suppose 
that the size of the send buffer is MaxSendBuffer, and the size of the receive buffer is 
MaxRcyBuffer. 

TCP on the receive side must keep: 

Last Byte Rcvd — Last Byte Read <= MaxRcyBuffer 

to avoid overflowing its buffer. 

Therefore, it advertises a window size of: 

Advertised Window = MaxRcyBuffer — (Last Byte Revd — Last Byte Read) 

which represents the amount of free space remaining in the receive buffer. How the 
advertised window size changes, depends on how fast the data arrives and how fast local 
the application process is consuming data. If the local process is reading data just as fast 
as it arrives (causing Last Byte Read to be incremented at the same rate as Last Byte 
Revd), then the advertised window stays unchanged. However, if the receiving process 
falls behind, then the advertised window grows smaller with every segment that arrives, 
until it eventually goes to zero. 

TCP on the send side must adhere to the advertised window it gets from the receiver. 
This means that at any given time, it must ensure that: 

LastByteSent — LastByteAcked <= AdvertisedWindow 

Therefore, the effective window that limits how much data the sender can send is: 

EffectiveWindow = AdvertisedWindow — (LastByteSent — LastByteAcked) 

On the other hand, the sender must also make sure that the local application process does 
not overflow the send buffer, that is: 

LastByteWritten — LastByteAcked <= MaxSendBuffer 

If there is not enough space for the application to write data in the send buffer, the 
application cannot send any data. 

10 



2.4.3 Slow Start and Congestion Avoidance 

While flow control prevents the sender from ovenunning the capacity of the receiver, 
slow start and congestion avoidance prevent too much data from being injected into the 
network. TCP maintains a state variable for each connection, called the Congestion 
Window, which is used by the sender to limit how much data it can put into the network 
at any given time. 

Slow Start defines a mechanism when starting traffic on a new connection or recovering 
from congestion indicated by a timeout event. Specifically, the source starts out by 
setting Congestion Window to one segment. For each segment that is ACKed 
successfully, the Congestion Window is increased by one segment. That is, the 
Congestion Window is doubled for every Round Trip Time (RTT) completed. When 
starting a new connection, if there is no loss of segments, the Congestion Window can 
keep increasing until it reaches the same size as the Advertised Window. 

Additive Increase/Multiplicative Decrease algorithms are used in TCP to react to the 
network congestion and adjust the Congestion Window size accordingly. In the current 
Internet environment, it is rare that a packet is dropped because of an error during 
transmission. Therefore, TCP interprets timeouts as a sign of congestion and reduces the 
rate at which it is transmitting. Specifically, each time a timeout occurs, the sender sets 
Congestion Window to half of its previous value. This mechanism is called multiplicative 
decrease. When the congestion is relieved, the Slow Start mechanism is implemented. 
Once the Congestion Window reaches one half of its original size before congestion 
occurred, the additive increase mechanism is used beyond this point to linearly increase 
the Congestion Window size. 

With the additive increase mechanism, if each packet sent out has been ACKed before 
the timeout, roughly one MSS (Maximum Segment Size) is added to the Congestion 
Window. The maximum unacknowledged amount of data is now the minimum of the 
Congestion Window and the Advertised Window. Thus, the Effective Window indicating 
how much data the sender can send is revised as follows: 

Effective Window = min (Advertised Window, Congestion Window) — (LastByteSent — 
LastByteAcked) 
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2.4.4 Fast Retransmit / Fast Recovery 

Fast Retransmit is a heuristic that sometimes triggers the retransmission of a dropped 
segment sooner than the regular timeout mechanism. Whenever the receiver gets an out-
of-order  segment,  it sends an ACK that identifies the first octet of the missing data (the 
same ACK the receiver sent when it received the last in-order segment). After receiving 
three duplicate ACKs, TCP performs a retransmission of the lost segment indicated in the 
ACK, without waiting for the retransmission timer to expire. Fast retransmit is 
implemented in TCP Tahoe 

When the fast retransmit mechanism signals congestion, the sender cuts the congestion 
window in half and resumes with additive increase, rather than going into the Slow Start. 
This mechanism is called Fast Recovery. Fast Retransmit/Fast Recovery (called FR/FR) 
is implemented in TCP Reno. 

When multiple segments are lost in transmission of one Congestion Window (cwnd) size 
worth of data, only one of these segments can be resent using fast retransmit and the rest 
of the dropped segments usually have to wait for the Retransmit Time Out (RTO), which 
will trigger the costly Slow Start mechanism[6]. 

2.4.5 Partial and Selective Acknowledgments 

An experimental loss recovery mechanism is proposed to detect multiple losses in the 
same window using Partial Acknowledgements. A Partial ACK covers some new data, 
but not all data in flight when a particular loss event starts. If there are multiple losses, 
when TCP resend the first lost segment indicated by several duplicated ACKs, the 
receiver will send back an ACK indicating loss of another segment which is then the first 
lost segment. More than one lost segment per window can be found and retransmitted by 
this means. Partial ACKs are implemented in TCP New Reno. 

Partial ACKs avoids timeout but cannot result in a recovery faster than one loss per RTT. 
The sender needs to wait for the ACK of the retransmission to discover the next loss. 
Some studies show that in some cases (i.e. multiple-losses of segments) relying on the 
RTO timer may be more efficient than simply using partial ACKs to retransmit all lost 
segments [1]. 

To solve this problem, TCP provides another acknowledgement strategy called Selective 
Acknowledgements (SACKs). SACKs allow TCP receivers to inform TCP senders 
exactly which segments have arrived so that the sender can resend lost segments quickly 
and avoid unnecessary retransmissions. 

The SACK option field contains a number of SACK blocks, where each SACK block 
reports a non-contig-uous set of data that has been received and queued, as illustrated in 
Figure 6 [37]. SACKs enables the receiver to inform the sender exactly which segments 
have arrived so that the sender can resend lost segments quickly and avoid unnecessary 
retransmissions. 
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Segment Acknowledgment Received 
Sent Ack First Block Second Block Third Block 
3000 3500 
3500 (lost) -- 

4000 3500 4000 4500 
4500 (lost) 

5000 3500 5000 5500 4000 4500 
5500(lost) 

6000 3500 6000 6500 5000 5500 4000 4500 

Figure 6: SACK option field example 

The sender is also able to transmit segments (retransmissions or new segments) during 
the recovery phase, therefore sustaining the ACK clock. SACKs generally allow TCP to 
recover from multiple segment losses in a window of data within one RTT of loss 
detection[16]. 

In one SACK implementation[6], the sender enters Fast Recovery when the data sender 
receives three duplicate acknowledgments. The sender retransmits a packet and cuts the 
congestion window in half. During fast recovery, SACK mechanism maintains a variable 
called pipe that represents the estimated number of packets outstanding in the path. Pipe 
is initialized to the value of the cwnd size and adjusted as following: 

--  For each duplicate ACK received, decrease by one segment; 
-- For each partial ACK received, decrease by two segments; 
--  For each segment sent, increase by one segment 

The sender only sends new or retransmitted data when the estimated number of packets in 
the path is less than the congestion window, that is pipe  <  cwnd. The sender exits fast 
recovery when a recovery acknowledgment is received acicnowledging all data that was 
outstanding when fast recovery was entered. When a retransmitted packet is lost, the 
SACK mechanism detects the drop with a RTO, retransmits the dropped packet, and then 
implements Slow Start [6]. 

SACK leads to a significant improvement in performance when multiple losses appear in 
the same window. Studies show that TCP with SACK options performs very well in 
long-delay environments with moderate losses (under 50 percent of the window size)[18]. 
The partial ACK is needed only in the absence of SACKs. However, the recovery of the 
SACK mechanism is still sensitive to the loss of ACKs[28]. In addition, the TCP header 
is limited to 64 bytes, thus the SACK can indicate at most three lost blocks[24] per 
window. 



2.4.6 Timeout and Retransmission 

TCP retransmits each segment if an ACK is not received for the segment before a 
specific TCP clock times out. This time out is called the RTO (Retransmit Time Out). 
TCP sets the RTO clock as a function of the RTT (Round Trip Time). In an internetwork 
environment, TCP must accommodate both the vast differences of delays between 
different pairs of machines and the variance of delay between the same pair. 

TCP uses an adaptive retransmission mechanism that monitors delays on each connection 
and adjusts its timeout parameter accordingly. Every time TCP sends a data segment, it 
measures a Sample RTT: 

SampleRTT = Tack  -  Tsend 

Where: 
Tsen d is the time when TCP sends a data segment, 
Tack 1S the time when TCP receives an ACK to that segment. 

Algorithms of Jacobson and Karn[2][10] enable TCP to obtain a reasonable estimation of 
retransmission timeout from the sample RTT. Jacobson's algorithm can deal with the 
high variance of delay, and Karn's algorithm is used whenever there is a retransmission. 

Jacobson's Algorithm calculate the timeout as follows: 

Difference = SampleRTT  —  EstimatedRTT 

EstimatedRTT = EstimatedRTT + (8 x Difference) 

Deviation  =  Deviation + 8 (1Differencel  -  Deviation) 

TimeOut = la x EstimatedRTT + 4) x Deviation 

Where: 
8 is a fraction between 0 and 1, 
la is typically set to 1 and 4i  is set to 4. 
Thus, when the variance is small, TimeOut is close to Estimated RTT. A large variance 
causes the Deviation term to dominate the calculation. 

When a segment is retransmitted and then an ACK arrives at the sender, it is impossible 
to determine if this ACK should be associated with the first or the second transmission of 
the segment for the purpose of measuring the sample RTT. Karn's algorithm provides a 
simple solution: TCP only measures Sample RTT for segments that have been sent only 
once. Whenever TCP retransmits a segment, it stops taking samples of the RTT, and sets 
the next timeout value to be twice the last timeout for subsequent packets until a valid 
sample RTT is obtained. This may cause TCP to wait too long to determine a loss and 
delay the retransmission in the next RTT. 
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2.5 TCP EXTENSIONS FOR HIGH PERFORMANCE 

2.5.1 TCP Window Scale Option 

TCP performance depends not only upon the transfer rate itself. The window size and 
RTT play as important role on TCP performance. A helpful quantity that can help predict 
performance is the product of the transmission rate and the round-trip delay time[14], 
called the Bandwidth-Delay Product (BDP). The BDP is equivalent to the recommended 
amount of data that the pipe or channel can accommodate at any given time. Thus: 

BDP = Bandwidth RTT Delay 

The sender should send as much data as the BDP specifies to keep the pipe full. 
However, the maximum amount of unacknowledged data a TCP sender can transmit into 
a network is limited by the receiver's Advertised Window size. This amount cannot 
exceed the throughput. TCP throughput is given by the following formula [25]: 

Throughput = Window Size / RTT 

The maximum window size for standard TCP Reno is 65,535 bytes (— 525 kilobits). For a 
satellite link with a RTT of around 0.6 seconds, the throughput carmot exceed 875 kbps. 
Thus, no matter how large the channel bandwidth is, the throughput will not exceed 875 
kbps. For example, a DS-1 speed satellite channel using TCP Reno has a BDP of 925 
kilobits. Thus using TCP Reno over such a channel will give bandwidth utilization of less 
than 57%. TCP cannot fully utilize the available bandwidth because of a small 
window[14]. Hence, TCP performance problems arise when the BDP is much larger than 
the Advertised Window. Thus, if the maximum window size were increased to 925kbits 
(— 115,000 bytes), then the throughput would reach the speed of a DS-1. 

To achieve the optimal throughput, the window size should be at least the same as the 
Bandwidth-Delay Product. RFC 1323 [22] defines a set of window scaling options that 
enable TCP to operate over large BDP networks including satellite links. This set 
involves an option that defines a scaling factor for the Advertised Window, which 
supports large window sizes up to 23°  bits. The window scaling option specifies how 
many bits each side should left-shift the Advertised Window field in the TCP header 
before using its contents to compute an Effective Window size[l 0]. 

2.5.2 Round-Trip Time Measurement (RTTM) 

RTT estimates are essentially important to TCP's reliability. Poor RTT estimation may 
delay necessary retransmission or cause unnecessary retransmissions. Many TCP 
implementations base their RTT measurements on a sample of only one packet per 
window. While this yields an adequate approximation to the RTT for small windows, it 
results in an unacceptably poor RTT estimate for a network with large BDP[14]. In 
addition, according to Karn's algoritlun, each time TCP retransmits a segment, it stops 
taking samples of the RTT and sets the neXt timeout value to be twice the last timeout 
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value for subsequent packets. Simply doubling the timeout value will cause TCP to wait 
too long to determine a loss and delay the retransmission during frequent loss period. 

The timestamp option provides a solution to these problems. Each time when TCP is 
about to send a segment, it reads the system clock and puts the time in the timestamp 
option of the segment. The receiver echoes these timestamps back in the ACK segments. 
Then the sender can obtain an accurate  RIT  measurement for every ACK segment from 
the current system clock and the echoed timestamp. This mechanism is called Round-
Trip Time Measurement (RTTM). 

2.5.3 Protection Against Wrapped Sequence Numbers (PAWS) 

TCP allocates its sequence numbers from a 32-bit sequence space. To ensure that a given 
sequence number uniquely identifies a particular byte, TCP requires that no two bytes 
with the same sequence number be active in the network at the same time. However, TCP 
usually assumes that the maximum time a datagram can live in the network is only two 
minutes. Thus, when TCP sends a byte in an IP datagram, the sequence number of that 
byte cannot be reused in two minutes. A 32-bit sequence space spread over two minutes 
gives a maximum data rate of only 286 Mb/s[8]. Table 2.2 shows how long it takes the 
32-bit sequence number to wrap around on networks with various bandwidths[l 0]. 

Bandwidth Time until Wraparound 

T1 (1.5 Mbps) 6.4 hours 

Ethernet (10 Mbps) 57 minutes 

T3 (45 Mbps) 13 minutes 

FDDI (100Mbps) 6 minutes 

SIS-3 (155 Mbps) 4 minutes 
STS-12 (622 Mbps) 55 seconds 

SIS-24 (1.2G) 28 seconds 

Figure 7: Table of times until 32-bit sequence number space wraps around 

TCP PAWS extensions prevent TCP's 32-bit Sequence Number field wrapping around 
too fast on a high-speed network. PAWS uses the same TCP Timestamps option as the 
RIT  mechanism. The TCP receiver decides whether to accept a segment based on a 64- 
bit identifier that has the Sequence Number field in the lower-order 32 bits and the 
timestamp in the high-order 32 bits[10]. This extension is sufficient for link speeds of 
between 8 Gb/s and 8 Tb/s[8]. 
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2.5.4 The Heart of TCP 

The reliable transmission and flow control of data are at the heart of the TCP layer. 
Within these fimctions, problems arise when the assumptions inherent to the above 
algorithms are violated. Such violations occur over high bandwidth-delay and bit enor 
rate (BER) links, such as satellite networks, and the above enhancements are not 
adequate to prevent these problems. The next chapter examines the characteristics of 
satellite links and the violations to the TCP algorithms due to these charactelistics. 
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Building 1 Building 2 

3. TCP OVER SATELLITE LINKS 

A satellite network (or link) is comprised of a series of terminals on the surface of the 
Earth, called ground stations, which transmit and receive microwave signals, and one or 
more satellites. A satellite acts as an overhead relay or repeater for communications 
between two geographically remote locations[16]. As illustrated by the sample 
configuration in Figure 8, a router (within Building 1) is connected to a ground station 
(shown as a satellite dish) that takes the incoming traffic, converts it into a microwave 
signal, and transmits it on a specific frequency up to the satellite. The satellite receives 
the signal, amplifies it, and then transmits over the downlink on a different frequency. 
The ground station then receives the signal, converts it to a terrestrial link format, and 
passes it on to a router in Building 2. 

11111114111, 
/ SAT 

Uplink , 

Downlink 

Figure 8: Simple satellite network 

Satellite channels have several characteristics that differ from most terrestrial channels. 
These characteristics may have negative effect on TCP's utilization of satellite 
bandwidth[7]. The most important of these is the large distance between the satellite 
orbits and the receiving Earth stations. These distances can range from 800 km for Low 
Earth Orbit (LEO) satellites through and up to 36,000 km for Geosynchronous orbit 
(GEO) satellites. Thus, the distance the signal must travel is large, creating a delay, while 
also being more susceptible to poor atmospheric conditions that can lead to corruption of 
the data[17]. These issues, as well as the problems they cause for TCP performance, will 
be discussed in this section. 
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3.1 TCP PERFORMANCE OVER SATELLITE 

Three parameters that provide a measure of performance for TCP are the maximum 
possible throughput or data rate (Max d.r.), the Bandwidth-Delay Product (BDP), and the 
actual throughput or goodput[9]. These parameters are related in the following equations 
valid for satellite links using TCP[11]: 

BDP = BW x RIT (eq. 1 ) 

And 

Max d.r. = SWS I RTT (eq.2) 

Where, 
BW: is the link's bandwidth or pipeline capacity 
RTT: is the Round Trip Time 
SWS: is the Sliding Window Size or receiver buffer size 

Thus, RTT and BW must be known so the SWS and other TCP attributes can be modified 
to enhance performance. Hence, to be able to achieve improved performance, the sliding 
window (receiver bu ffer) must be at least as large as the BDP. From here the maximum 
possible data rate can be found. However, maximizing buffer size and all other TCP 
parameters also depends on the operating system kernel. If the appropriate hardware is 
not available, the buffer size cannot be increased. A lot of reconfiguring would be 
needed. 

Even if all parameters can be modified easily to the recommended value, the RTT, the 
BER and the Maximum Transmission Unit (MTU) of the underlying protocols effect the 
actual throughput or goodput[12]. The equation below shows this. 

Goodput = (1 - OH )x 0 W - L)x x BW (eq.3) 
1 + 2xCxIIMTU 

Where, 
OH: Overhead from all sources (as a fraction) 
L: Probability of error occurring within a TCP window 
W. TCP window size (in MTUs) 
C. Flow-controlled data rate (Max d.r. in Kbps or Mbps) 
I: One way delay from all sources (distance + processing) 
BW: Pipeline capacity in Kbps or Mbps 
MTU: The IF  MTU, measured in bits, and varies depending on the data link protocol  IF  
runs over. 
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Thus the type of link, the delays along the link and the BER will define the goodput. If 
the BER is large, many retransmissions will be needed, thus reducing the goodput further, 
but most importantly, increasing the time it takes to comely send an application from 
one end to another[13]. Thus, the quality of real time applications can be severely 
degraded, while delays for file transfers, accessing web pages, and remote login can be 
large. 

Some of the most important properties of satellite links that can affect the performance of 
protocols running over them are: long delay paths, large bandwidth-delay products, 
increased channel errors, channel asymmetry, variable Round Trip Times, and 
Intermittent Connectivity. 

3.2 SATELLITE LINK PROPERTIES AND THEIR AFFECT ON TCP 

3.2.1 Long Delay Paths 

Latency in a satellite environment is generally higher than that in a terrestrial 
environment. Satellite network delays are influenced by several factors. The main factor 
is the orbit type. In most LEO systems, one-way propagation delays are 20-25ms. The 
propagation delays increase to 110-150 ms for medium earth orbit systems (MEO) and 
go up to 250-280 ms for GEO systems [6][18]. The RTT may also be increased by some 
other factors in satellite networks such as on-board processing, signal handoff and, in the 
future, intersatellite links. These long delays hurt interactive applications such as telnet 
and remote login, as well as multimedia applications running over TCP, since the flow 
control and congestion control algorithms of TCP are affected. The affect of a satellite 
environment on the behaviour of TCP algorithms is discussed in the following sections. 

3.2.1.1 Acknowledgments 

The TCP acknowledgment is essential to the reliable delivery of data. Due to the long 
propagation delay of some satellite links, it may take a long time for a TCP sender to 
determine whether a packet has been successfully received at the final destination. The 
sender also uses the acknowledgment as network feedback for rate adjustment for slow 
start, congestion avoidance, and loss recovery. 

The large propagation times will delay the execution of these functions and affect TCP 
throughput. The Delayed ACK suggested in RFC 1122 could make . the situation worse, 
especially for Slow Start. Since the data sender increases the size of cwnd based on the 
number of arriving ACKs, reducing the number of ACKs slows the cwnd growth 
rate[27]. According to[13], under no-loss conditions, with a window size of 10  MB and a 
RTT of about 500 ms, it takes TCP about 10 seconds to fill the OC-3 pipe when delayed 
ACK is used. Compare this to a time 0.5 seconds to fill an OC-3 terrestrial WAN pipe, or 
2 milliseconds to fill a LAN pipe. Possible high bit error rates will cause a loss of ACK 
packets, which in turn  will lead to unnecessary retransmissions and diminished 
throughput. 
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3.2.1.2 Congestion Avoidance 

TCP uses linear increase to slowly probe the network for additional capacity after Slow 
Start. Whenever losses occur, TCP congestion control mechanisms halve the transmission 
rate with both the drawbacks of slowing-down the sending rate and long-lasting loss 
recovery occurring. However, losses are inevitable since this linear increase mechanism 
continuously increases its cwnd without any mechanisms to predict the incipient of 
congestion. In fact, TCP always needs to create losses to find the available bandwidth of 
the connection. This is inefficient for use over a long delay satellite link because a large 
amount of time is required for loss recovery and for reaching the optimum transmission 
rate after rate reduction. 

Another problem arises with the linear increase: during congestion avoidance, in the 
absence of loss, the TCP sender adds approximately one segment to its congestion 
window during each RTT. Several researchers have observed that this policy leads to 
unfair sharing of bandwidth when multiple connections with different RTTs traverse the 
same bottleneck link, with the long RTT connections obtaining only a small fraction of 
the share of the bandwidth[16]. 

3.2.2 Large Bandwidth-Delay Product 

The product of bandwidth and delay determines how much unacknowledged data a TCP 
sender should transmit into the network to fully utilize the ,capacity of the link. The delay 
in this equation is the RTT, and the bandwidth is the maximum bandwidth of the slowest 
link in the path. Satellite channels usually use large bandwidths (larger than many of the 
terrestrial networks); factor in the long propagation delays, and the bandwidth-delay 
product can be quite large, especially for GEO systems. This means that the sender and 
receiver must be able to handle larger amounts of data in flight[6]. 

3.2.2.1 TCP Window size 

As we discussed in 2.5.1, larger windows enable TCP to better utilize the available 
bandwidth; therefore, the TCP large window extension is recommended for use in a 
satellite environment[6]. 

The sliding window algorithm allows multiple segments to be sent in a "window" from 
sender to receiver. The bandwidth-delay product is equivalent to the amount of data that 
the network can at most accommodate, at any given time. The sender should send as 
much data as possible to keep the pipe full. Thus, the window size should be at least the 
same as the bandwidth-delay product. The larger the window, the more data can be in 
transmission, and the capacity of the data link can be maintained at or near its maximum 
capacity. 

The current maximum TCP window size is 64K. This means a TCP sender can only fill a 
channel with a bandwidth-delay product less than 64K. If the round trip time is 0.5 
second, the link has a transmission rate less than 1 Mbps. In other words, if the 
bandwidth is larger than 1 Mbps, the link caimot be fully utilized. RFC 1323 defines a set 
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of window scaling options available to TCP implementations that operate over large 
bandwidth-delay networks including satellite links. 

While enlarging the window would compensate for the large bandwidth-delay product in 
satellite networks, it will also provide some complications, such as increased variation of 
the measured RTT and increased probability of multiple losses within a single window 
because of the increased number of segments per window, and increased likelihood of 
data bursts [14][32]. As a result, the SACK option is recommended in a satellite 
environment because it can help accelerate the lengthy recovery procedure. In addition, 
the RTTM using the timestamp option is recommended in obtaining a more precise 
measurement of RTT when using the large window option[16]. 

3.2.2.2 Slow Start 

The slow-start period is one of the most important factors for a TCP connection's 
performance over satellite links. Slow Start is triggered at the connection establishment 
phase, and after a retransmission timeout or possibly after an extended idle period. 

During Slow Start, the Congestion Window (cwnd) is increased by one segment for each 
ACK received. Under ideal conditions, this would yield a doubling of cwnd per RTT. 
Over GEO satellites, the increase in the transmission rate will be much slower due to the 
long propagation delay, because the increase of the transmission window relies on the 
acknowledgment. It usually takes several seconds to reach maximum throughput [25]. 

When lost segments trigger congestion avoidance, the resulting throughput decrease can 
continue for several minutes. Slow Start is particularly inefficient for transfers that are 
short compared to the BDP of the network. In this case, TCP may never reach the full 
rate available. 

Large bandwidth-delay products of satellite links make slow-start threshold (ssthresh) 
estimation critical. A too small ssthresh causes the majority of cwnd growth to be linear 
(very slow); a too large ssthresh increases the possibility of multiple-losses within a 
window. When Slow Start resumes, the new ssthresh (old_cwnd/2) will cause the bulk of 
future cwnd growth to be linear[32]. In addition, because the cwnd is roughly doubled 
every RTT during Slow Start, the likelihood of a data burst is increased when using a 
large window size[20]. 

3.2.3 Increased Transmission Errors 

Signal strength attenuates proportionally to the square of the distance traveled and this 
distance is large for a satellite link. Thus, the signal becomes weak before reaching its 
destination. This results in a low signal-to-noise ratio and a high bit error rate. Some 
frequencies are particularly susceptible to atmospheric effects such as rain attenuation. In 
a satellite environment, the raw BER usually ranges from 10-3  to 10-6 . With the aid of 
Forward Error Correction (FEC) schemes the BER ranges from the 10-7  to le range[18]. 
This is much higher than in terrestiial environments where the typical BER is better than 
10-10  [15]. 
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The use of FEC coding on a satellite link is recommended in RFC 2488 [25] to reduce the 
link BER[6]. However, FEC does not come with-out cost. FEC requires additional 
hardware and uses some of the available bandwidth. It can add delay and timing jitter due 
to the increased complexity. In addition, there are some situations where FEC cannot 
solve the problem such as noise caused by rain fade[6]. 

3.2.3.1 Slow Start 

The  high BER of satellite links malces slow start even more inefficient. If there is a loss 
due to corruption rather than congestion, Slow Start will make the cwnd return  to its 
minimum value and start over again. This action will cause the slow-start to prematurely 
terminate and may have a significant impact on throughput for the remainder of the 
connection. 

3.2.3.2 RTO based on RTT Estimation 

High BER and increased delay variances in satellite links can adversely affect TCP timer 
mechanisms. One such example is the RTT estimation algorithm needed to set the RTO 
of TCP. Poor RTT estimation may trigger urmecessary retransmissions, or delay 
necessary retransmission. According to Karn's algorithm, each time TCP retransmits a 
segment, it stops taking samples of the RTT, and sets the next timeout value to be twice 
the last timeout for subsequent packets. Simply doubling the timeout value will cause 
TCP to wait too long to determine a loss and delay the retransmission during frequent 
loss periods. This variability affects the timers directly, resulting in false timeouts and • 
unnecessary retransmissions, yielding incorrect window sizes, and thus reducing the 
overall bandwidth efficiency. 

3.2.3.3 Congestion vs. Corruption 

Differentiating between congestion and corruption is particularly important in a high 
BER environment because the actions that TCP should take in the two cases are entirely 
different. In the case of congestion, TCP sender should immediately reduce its congestion 
window to avoid making the congestion worse, and retransmit the lost segment at the 
appropriate time. In the case of corruption, TCP should merely retransmit the damaged 
segment as soon as its loss is detected. There is no need for TCP to reduce its congestion 
window; however, there is no specific mechanism defined in TCP to differentiate 
between congestion losses and link corruption losses. It always interprets segment loss as 
a sign of congestion and reduces the rate at which it is transmitting. This greatly degrades 
performance when the loss is caused by corruption. Further research is needed into 
mechanisms that allow TCP to respond to corruption loss in an appropriate manner. 

3.2.4 Channel Asymmetry 

Satellite communication networks are often constructed asymmetrically due to the 
expense id the equipment used to send data to satellites and various engineering 
tradeoffs. Some studies show that it is not uncommon for the ratio of downlink to uplink 
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capacity to approach 100 or more [15][19]. Another situation involving channel 
asymmetry is sending all outgoing traffic over a slow terrestrial link such as a dial-up 
modem channel, and receiving incoming traffic via the satellite channel. 

TCP has not been designed for asymmetric networks. If a satellite is transmitting data 
over a high capacity chatmel, the returning acknowledgements may overrun the reverse 
charnel. For example, if the data sender uses 1500 byte segments, and the receiver 
generates 40 byte acknowledgments (Ipv4, TCP without options), the reverse link will 
congest with ACKs for asymmetries of more than 75:1 if delayed ACKs are used, and 
37:1 if every segment is acknowledged[16]. The congestion of ACKs increases the RTT, 
which in turn increases end-to-end delay. Current congestion control mechanisms are 
aimed at controlling the flow of data segments, but do not regulate the flow of ACKs. 

3.2.5 Variable Round Trip Delays 

Since the coverage of LEO systems is relatively small, satellite constellations with 
dynamic inter-satellite routing are required to provide continuous coverage over larger 
regions. This factor increases end-to-end delay variability in satellite communications 
since the delay will change depending on the number of satellites, the propagation 
distances of the paths, constellation topology, inter-satellite routing algorithms, and so 
on. Onboard processing overhead and buffering can also increase the delay variability. 
Variable delay can cause difficulty in RTT estimation, resulting in false timeout or 
unnecessary retransmission. In the case of large windows, TCP's RTTM mechanism is 
recommended to mitigate the delay variance in a satellite environment. 

3.2.6 Intermittent Connectivity 

For satellites, connectivity on a given communication link is often intermittent. Contact 
may be interrupted for a number of reasons, including ground station handoffs, changing 
network topology, antenna obscurations, weather, and orbit dynamics. 

The intermittent cormectivity of satellite links causes serious problems for TCP. If the 
TCP sender does not receive the expected acknowledgments, it will invoke congestion 
control algorithms and repeatedly retransmit and back off its retransmission timer. If the 
maximum retransmission threshold is reached before connectivity is restored, the 
connection will be aborted. Drastically delayed acknowledgments may cause the same 
problem on TCP as the intermittent connectivity feature described above. 
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4. IMPROVING SATELLITE LINK PERFORMANCE WITHOUT 
MODIFYING TCP 

The IETF and other network specialists have specified the problems of using TCP over 
GEO satellite links and outlined possible solutions. In this sectiim, we examine some of 
the possible solutions that can be used to enhance satellite link performance without 
enhancing TCP mechanisms and modifying TCP behaviour. 

4.1 APPLICATION LEVEL 

Some of TCP's shortage's when used over long-delay networks can be avoided if Internet 
applications use TCP more effectively. 

4.1.1 Multiple TCP Connections 

This method has been used at the application level to overcome TCP's inefficiencies in a 
satellite environment. It uses multiple TCP connections to transfer a given file. This 
method accelerates the growth of the aggregate cwnd, but increases the aggressiveness of 
the transfer and hence increases the losses in the network. This may seem to be mitigated 
by the smaller aggregate cwnd decrease during congestion avoidance. However, this 
smaller decrease will defeat the ptupose of the congestion avoidance mechanism if 
congestion, not corruption is the culprit of the losses in the network. An adaptive 
mechanism has been proposed to change the number of connections as a function of 
network congestion [16][28]. 

4.1.2 Persistent TCP Connections 

Persistent TCP connections are another solution at the application level, which can 
accelerate the transfer of Web pages. A typical Web page consists of many small objects. 

• It usually takes tens of seconds to fetch such a page over a GEO satellite if independent 
TCP connections are used to fetch every object in a page[34]. By using persistent TCP 
connections, the client establishes a persistent connection and asks the server to send all 
the objects on it. Only the first object suffers from the long slow start phase, and the 
remaining objects are transferred at .a high rate[28]. 

4.1.3 Application Layer Proxieà 

Some application protocols employ many unnecessary round trips, lots of headers and/or 
inefficient encoding which may have a significant impact on performance when using on 
a long-delay,  link. By using application layer proxies in an intermediate node, this 
unnecessary overhead can be reduced and the performance of both the application 
protocol and TCP can be improved[36]. Application-specific proxies can use domain 
knowledge to match network constraints and reduce the effect of latency[34]. Such 
proxies are widely used in today's Internet for web caching and relaying Mail Transfer 
Agents. 

25 



4.2 NETWORK LEVEL 

4.2.1 TCP Spoofing 

TCP spoofing is a technique used to mitigate the problems associated with high latency. 
In this approach, TCP acknowledgments are manipulated in an intermediate gateway 
without waiting for the actual acknowledgment from the receiver [15 ][34], as shown in 
Figure 9. The gateway will then take responsibility for delivering that data using an 
optimized transport protocol. 

This transport protocol is tuned to quickly increase its transmission rate without the need 
for a long slow start phase[1 5]. Once arriving at the output end of this link, another TCP 
connection may need to be used to transmit the packets to the destination. Because 
packets have already been acknowledged, any loss between the input of the link and the 
destination must be locally retransmitted on behalf the source. In addition, ACKs from 
the receiver must be discarded silently to not confuse the source. 

0 ...... ........ ...... .. • /... Satellite Link .. ',. • . 
, 

Data 

WIT 

ACK 

Perceived 
RTT 

Spoofing ACK 

Actual ACK 

Data 

Figure 9: TCP spoofing 
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The main gain of TCP spoofing in performance comes from not using SS on the long 
delay link. The window increases more quickly because of the rapid feedback, which 
improves performance. However, TCP spoofing has a number of problems. It breaks the 
end-to-end semantics of TCP since a packet is acknowledged before reaching its end 
destination. It also introduces a heavy overload on network routers. Furthermore, it does 
not work when encryption is accomplished at the IP layer[28]. 

4.2.2 TCP Splitting 

TCP splitting is an approach that uses a gateway at the periphery of the satellite network 
to convert TCP traffic into an intermediate protocol that is well suited for the satellite 
environment. On the other end of the satellite link, the protocol will be converted back to 
TCP [15][28][34]. TCP splitting breaks an end-to-end TCP connection into two or three 
segments, as shown in Figure 10. 

End-to-End TCP 

TCPI   • n • TCP2 TCP3  
>11 

Figure 10: TCP splitting 

TCP splitting allows optimization of the connection between the two intermediate 
gateways over a satellite link. In general, it tends to address a mismatch in TCP 
capabilities between two end systems[36]. The protocol converter may simply convert 
between different versions of TCP. Incoming TCP connections that may not be operating 
with protocol stacks and/or applications appropriate for use over satellite links will be 
converted to a connection that takes full advantage of the TCP extensions suitable for 
satellite links. Another approach to TCP splitting is to use a protocol other than TCP on 
the satellite segment of the network. This will largely enhance TCP performance, but it 
must be able to look at the TCP headers. This means it will not work with encryption 
techniques that encrypt the transport header unless the gateway is a trusted system[15]. It 
is believed that TCP splitting works well in cases where applications actively participate 
in TCP connection management[8]. 

27 



There are tvvo possible ways to handle intermittent cormection in TCP splitting. The first 
one is to hide the link disconnection in the intermediate gateways. The intermediate 
gateways employ a modified TCP version, which retains the state and all 
unacknowledged data segments during the period of disconnection and then performs 
local recovery when the link is restored. Another way to handle this problem is that the 
sender-side gateway retains the last ACK before losing the connection, so that it can shut 
down the TCP sender's window by sending the last ACK with a windôw set to zero. 
Thus, the TCP sender will go into persist mode, sending periodic probe packets without 
repeated time-out and retransmissions[36]. 

4.3 LINK LAYER 

Link layer approaches are proposed to reduce the BER of the satellite channel. One well-
known mechanism is Automatic Repeat Request (ARQ). The link layer fragments user 
datagrams into smaller link-layer frames and ensures the reliable delivery of these frames 
using a variety of approaches, such as stop-and-wait, go-back-N, or selective-repeat. 
ARQ is efficient when losses are not frequent and propagation delay is not important 
[18][28]. 

All ARQ schemes add to channel delay and delay variability. Furthermore, ARQ may 
interfere with TCP mechanisms[16][28]. If the link layer does not provide in-sequence 
delivery of packets, TCP packets following the loss keep arriving at the destination, 
ttiggering the transmission of duplicate ACKs. These duplicate ACKs reach the source 
while the link layer is retransmitting the packet. This causes an unnecessary window. 

 reduction. The proposed solution to this problem is to use a TCP-aware ARQ protocol. 
The link layer suppresses the duplicate ACKs so that they don't reach the source. This 
solution is applicable only when the lossy link is the last hop to the destination. If the 
lossy link is followed by other routers, congestion losses will be hidden[28]. 

4.4 OTHER MECHANISMS 

4.4.1 TCP Agent 

This kind of solution tries to improve link quality by retransmitting packets via a TCP 
agent located in the router at the input of the lossy link. The TCP agent keeps a copy of 
every data packet. It discards this copy when it sees the ACK of the packet, and it 
retransmits the packet on behalf of the source when it detects a loss. This technique has 
been proposed for terrestrial wireless networks where the delay is not so important as to 
require the use of FEC[28]. 

In fact, this solution is no other than link-level recovery implemented at the TCP level. 
Similar to a link-level solution, because the TCP agent hides all losses, congestion losses 
must not occur between the TCP agent and the destination. Otherwise, without a signal of 
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•  the congestion, the TCP sender will continue to increase the sending rate and make the 
congestion worse[28]. 

4.4.2 Path MTU Discovery 

The use of Path MTU (Maximum Transmission Unit) Discovery is‘ recommended in RFC 
2488 to allow TCP to use the largest possible MTU over the satellite channel. The sender 
transmits a packet with a certain size appropliate for the local network and sets the 1P 
"Don't Fragment" (DF) bit. If the packet is too large, a router will return an ICMP 
message to the TCP sender indicating the size of the largest packet that can be forwarded 
by the router[6]. 

Large packets reduce the packet overhead by sending more data bytes per overhead byte. 
In addition, the TCF"s congestion window is increased on a segment basis, rather th an  a 
byte-by-byte basis; therefore, larger segments enable TCP senders to increase the 
congestion window more rapidly, in terms of bytes, compared to Smaller segments. 

The disadvantage of Path MTU Discovery is that it may spend a large amount of time 
determining the maximum allowable packet size on the network path between the sender 
and receiver. Satellite delays can aggravate this problem. Storing the MTU values can 
reduce latencies for future connections in relatively static topologies[18]. 
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5. TCP ENHANCEMENTS FOR SATELLITE LINKS 

In this section, we will discuss some suggested solutions to the problems we discussed 
before, using TCP enhancements. Some solutions may need the support of network 
modification.  

5.1 TCP FOR TRANSACTIONS (T/TCP) 

Many TCP applications involve only simple communications between the client and the 
server: a client sends a request to a server and the server replies. Under standard TCP, 
even a small transmission involving a single request segment and a reply must undergo 
TCP's three-way handshalce prier to data transmission. This connection setup requires 1.5 
(RTTs) for the active participant and one RTT for the passive participant. This is 
especially inefficient on a long-delay satellite path. 

An experimental extension of TCP for Transactions (T/TCP) suggested in RFC 1644 [23] 
provides a solution to this problem. After the first connection between a pair of hosts is 
established, T/TCP is able to bypass the three-way handshake, allowing the data sender to 
begin transmitting data in the first segment along with the SYN. With T/TCP, a short 
transmission can be done by only two messages and an ACK, as showed in Figure 11. 

[ Active Participant 
] 

 Passive Participant I 

SYN, FIN, Data 

SYN, ACK, FIN,  Response 

ACK > 

Figure 11: T/TCP, establishing and closing a connection 

5.2 SLOW START 

Slow Start is a safeguard against transmitting an inappropriate amount of data into the 
network when starting up or recovering from congestion. However, it can also waste 
available network capacity in satellite networks due to the long delay and the large 
bandwidth product. The following are some proposals that have been suggested to make 
slow start more efficient to operate over satellite links. 

4 

30 



5.2.1 Larger Initial Window 

One method that will reduce the amount of time required by slow start is to increase the 
initial value of cwnd. An experimental TCP extension outlined in RFC2414 allows the 
initial size of cwnd to be increased from one segment to that defined by equation (4): 

Min(4*MSS, max(2*MSS, 4380 byte)) (eq.4) 

By increasing the initial value of cwnd, more packets are sent during the fist  RIT,  which 
will trigger more ACKs, allowing the cwnd to increase more rapidly. In addition, it 
avoids the ACK delay timer interval when delayed ACKs are used. Studies have shown 
that an initial value of four segments improves startup times significantly without a 
noticeable increase in the packet loss[18]. In RFC 2581[26], a TCP connection is allowed 
to use an initial cwnd of up to two segments. This change is highly recommended for 
satellite networks[16][36]. 

5.2.2 Delayed ACKs after Slow Start 

As discussed in section 2, TCP increases the cwnd based on the number of arriving 
ACKs. Moreover, since the delayed ACKs recommended in RFC 1122 reduce the 
number of ACKs by roughly half, the rate of growth of the cwnd is reduced. One 
proposed solution to this problem is to use delayed ACKs only after the slow start phase. 
This provides more ACKs while TCP is aggressively increasing the congestion window, 
and less ACKs while TCP is in steady state. Studies show that simulations using Delayed 
ACKs After Slow Start (DAASS) improve transfer time when compared to a receiver that 
always generates delayed ACKs. However, DAASS also slightly increases the loss rate 
due to the increased rate of cwnd growth[30]. 

5.2.3 Byte Counting 

Byte counting is another solution to delayed ACKs during slow start. It can also benefit 
asymmetric networks where the ACKs are heavily delayed. 

Using standard ACK counting, the congestion window is increased by one segment for 
each ACK received during slow start. While using byte counting, the congestion window 
increase is based on the number of acknowledged bytes covered by the incoming ACK. 
This makes the increase relative to the amount of data transmitted, rather than depending 
on the ACK interval used by the receiver. 

There are two forms of byte counting, unlimited byte counting (UBC) and limited byte 
counting (LBC). UBC simply uses the number of previously unacknowledged bytes to 
increase the congestion window each time an ACK arrives. LBC limits the amount of 
cwnd increase to two segments. Both UBC and LBC may cause burst of data since they 
allow cwnd to increase faster. LBC prevents large line-rate bursts when compared to 
UBC, and therefore offers better performance. RFC 2581 allows TCP to use byte 
counting to increase cwnd during congestion avoidance, but not during slow start[36]. 
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5.2.4 Reducing Burstiness in Slow Start 

In slow start phase, for each segment that is ACKed successfully, the congestion window 
is increased by one segment. That is, the congestion window is doubled in every RTT. 
The double-numbered segments are usually transferred in a bursty manner. The study in 
[20]shows TCP is likely to produce losses during slow start due to data burst in a network 
with long delay and large bandwidth. This kind of loss may not be a signal of network 
congestion, but rather of the overflow of limited buffer size of routers. It will cause 
unnecessary retransmission, reduction of transmission rate, and an underestimate of 
available bandwidth of the link. To avoid bursty data transfer, controlling the interval of 
data transfer is required. The proposed solution is called smooth slow start. 

Smooth slow start uses a timer interrupt routine to control data transfer. When sender 
receives an ACK, it decides whether or not to expand the interval of next transmission. If 
so, it only sends one segment when receiving an ACK and set a flag for later cwnd 
increment. The timer interrupt routine will check the flag periodically. If the flag is set, it 
will increase the congestion window and invoke the segment transfer routine to transmit 
the delayed segment. 

Figure 12 shows an example of smooth slow start. This example compares smooth slow 
start with current slow start implementation. As seen in Figure 12, the number of 
transmitted segments is doubled in every 500 ms. Compared with normal Slow Start, 
smooth slow start reduces burst segment transfer. Furthermore, despite the expanded 
interval of segment transfer, the number of transmitted segments in one RTT is the same 
as normal slow start. 

Time (sec) Normal Slow Start Smooth Slow Start Timci 

Figure 12: Example of smooth slow start 
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5.2.5 Terminating Slow Start at the Right Time 

Slow start is terminated when TCP detects losses, or when the size of cwnd reaches the 
ssthresh. When TCP initially starts up, without the knowledge of the capacity of the link, 
TCP roughly doubles the size of cwnd every RTT. This leads very quickly to congestion. 
When congestion is detected, TCP sets the ssthresh to half of the congestion window. In 
other words, TCP needs to create losses to find the available bandwidth of the 
connection. Due to the long delay in satellite networks, the recovery can be very time-
consuming. Therefore, terminating slow start at the right time is very useful. There are 
two proposals for the right time to terminate slow start. 

cwnd 
• 

IMP 

1n• Time 

Figure 13: Terminating slow start 

One proposal is to use the packet-pair algorithm and the measured RTT to determine a 
more appropriate value for ssthresh. The algorithm observes the spacing between the first 
few returning ACKs to determine the bandwidth of the bottleneck link. Together with the 
measured RTT, the BDP is determined and ssthresh is set to this value[16]. The challenge 
of this approach is that obtaining an accurate estimate of the available bandwidth in a 
dynamic network is not easy. 

Another proposal for terminating slow start properly is TCP Vegas's slow start 
mechanism. To be able to detect and avoid congestion during slow start, Vegas allows 
exponential growth only every other RTT. In between, the congestion window stays fixed 
so a valid comparison of the expected and actual rates can be made. When the actual rate 
falls below the expected rate by a predefined value, Vegas changes from slow start mode 
to congestion avoidance mode[31]. However, increasing window size every other RTT 
may not be suitable for satellite links. Alternative mechanisms need to be used to predict 
network congestion during slow start. 
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5.3 CONGESTION AVOIDANCE 

TCP in its congestion avoidance phase repeatedly increases the load it imposes on the 
network until congestion occurs, and then it backs off from this point. TCP congestion 
avoidance implements linear increase and multiplicative decrease algorithms to avoid 
incurring congestion and to recover from congestion loss. These algorithms have a 
negative impact on TCP performance in a satellite environment. The linear increase 
slowly probes the network for additional capacity, which is especially inefficient over 
long-delay satellite channels because of the large amount of time required for the sender 
to obtain feedback from the receiver. On the other side, the multiplicative decrease halves 
the transmission rate whenever loss occurs. It is too conservative when used with a slow 
increase algorithm like linear increase. It causes more waste of bandwidth if the loss is 
due to corruption instead of congestion. 

An appealing alternative is to predict when congestion is about to happen and then to 
reduce the rate at which hosts send data just before packets start being discarded[10]. 
Solutions to congestion control for TCP address the problem either at the intermediate 
routers in the network or at the endpoints of the connection[29]. 

5.3.1 Router-based support 

Router-based support for TCP congestion control can be realized by random early 
detection (RED), a solution in which packets are dropped in a fair manner once the router 
buffer reaches a predetermined size. RED is to be used in conjunction with TCP, which 
currently detects congestion by means of packet loss. 

As an alternative to dropping packets, Explicit Congestion Notification (ECN) allows 
routers to inforin TCP senders about the imminent congestion so that the source will slow 
down its sending rate. There are two major forms of ECN: backward ECN (BECN) and 
forward ECN (FECN). A router employing BECN transmits messages directly to the data 
originator informing it of congestion. The aifival of a BECN signal may or may not mean 
that a TCP data segment has been dropped, but it is a clear indication that the TCP sender 
should reduce its sending rate. FECN routers mark data segments with a special tag when 
congestion is imminent, but forward the data segment. The data receiver then echoes the 
congestion information back to the sender in the ACK packet. 

ECN may be part of the solution that helps TCP react properly on congestion loss and 
corruption loss. If all the sources, receivers, and routers are compliant, congestion losses 
will considerably decrease. However, on a satellite link, the main losses are mostly 
caused by problems other than congestion. Given that non-congestion losses require only 
retransmission without window reduction, the disappearance of congestion losses may 
lead to the definition at the source of a new congestion control algorithm, which reacts 
less severely to losses. However, if some non-compliant routers cannot provide the 
source with the required information, TCP still needs to consider losses as signs of 
congestion and reduce its window accordingly[28]. 
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5.3.2 Source-based Congestion Avoidance 

Source-based congestion avoidance can detect the incipient stages of congestion from the 
end hosts before losses occur. The general idea of these techniques is to watch for some 
signs from the network that a router's queue is building up and that congestion will occur 
if nothing is done about it. 

One approach takes advantage of the fact that there is a measurable increase in the RTT 
as packet queues build up in the network's routers. For every two RTTs, this approach 
checks to see if the current RTT is greater than the average of the minimum and 
maximum RTTs seen so far. If it is, then the algorithm decreases the congestion window 
by one-eighth; otherwise, the window size is increased as usual. 

Another proposal does something similar. However, the 'decision as to whether or not to 
change the current window size is based on the changes to both the RTT and the window 
size. The window is adjusted once every two round-trip delays based on the product: 

(CurrentWindow — OldWindow) (CuiTentRTT — OldRTT) 

If the result is positive, the source decreases the window size by one-eighth. If the result 
is equal to or less than zero, the source increases the window size by one maximum 
packet length. Note that the window changes during every adjustment. Hence, it 
oscillates around its optimal point. 

In addition to the change of RTT, another sign of network congestion is the flattening of 
the sending rate. Rate control congestion approaches change the current window size by 
examining the changes in the throughput. One proposal is to increase the window size by 
one packet every RTT and compare the throughput achieved to the throughput when the 
window was one packet smaller. If the difference is less than one-half the throughput 
achieved when only one packet was in transit — as was the case at the beginning of the 
connection — the algorithm decreases the window by one packet. An alternative solution 
calculates throughputs differently, and instead of looking for a change in the throughput 
slope, it compares the measured throughput rate with an expected throughput rate. This 
solution is implemented as TCP Vegas. The results in terrestrial networks using TCP 
Vegas indicate over 30 percent improvement in throughput and much fewer losses than 
TCP Reno does. However, more studies are necessary for tuning TCP Vegas in satellite 
networks [18]. 

A problem with rate-control and relying upon RTT estimates is that variations of 
congestion along the reverse path cannot be identified and separated from events on the 
forward path. Therefore, an increase in RTT due to reverse-path congestion or even link 
asymmetry will affect the performance and accuracy of these algorithms[29]. A proposal 
in [29] makes use of an additional timestamp returned from the receiver to estimate the 
level of queuing in the bottleneck link of a connection. The receiver attaches a timestamp 
in every ACK packet that specifies the arrival time of the packet at the destination. The 
sender then calculates the relative delay, which is defined as following: 
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= Ri,i — 
Where 

is the time interval between the receipt of packet j and i, 
S: the time interval between the transmission of packet j and i, 

represents the change in forward delay experienced by packet j with respect to 
packet i. 

From the relative delay measurement the sender can determine whether congestion is 
increasing or decreasing in either the forward or the reverse path of the connection. 

5.3.3 Controlling ACK Congestion 

There are two proposals addressing the ACK congestion: ACK Congestion Control and 
ACK filtering. 

ACK Congestion Control (ACC) extends the concept of flow control for data segments to 
acknowledgment segments. When detecting ACK congestion, the receiver dynamically 
adjusts the rate of aclmowledgments using the multiplicative decrease and additive 
increase as in general congestion control mechanisms. There are two ways to detect ACK 
congestion: Explicit Congestion Notification and Relative Delay mechanism discussed in 
5.3.1 and 5.3.2. 

In ACK Filtering (AF), the bottleneck router in the low speed link will scan the queue for 
redundant ACKs for the same connection, i.e. ACKs that aclmowledge portions of the 
window, which are included in the most recent acknowledgement. All of these "earlier" 
ACKs are removed from the queue and discarded. 

Both of the two mechanisms may cause unwanted side effects, such as increased 
likelihood of segment bursts from the data sender, and the decrease of sender's cwnd 
growth rate even if the data link is non-congested. ACK spacing is suggested to reduce 
the burstiness by smoothing out the flow  of ACKs. Finally, ACK Reconstruction (AR) is 
recommended when using AF. However, AR requires sharing and storage of TCP state 
information in the exit router, and more research is needed before implementing AR. 

5.3.4 Reducing Unfairness of Linear Increase 

Another problem with the linear increase occurs during congestion avoidance. In the 
absence of loss, the TCP sender adds approximately one segment to its congestion 
window during each RTT. Several researches have observed that this policy leads to 
unfair sharing of bandwidth when multiple connections with different RTTs traverse the 
same bottleneck link, with the long RTT connections obtaining only a small fraction of 
their fair share of the bandwidth. The solution to the unfairness of linear increase at the 
TCP sender is to change the window increase policy. 

The "Constant-Rate" increase policy attempts to equalize the rate at which TCP senders 
increase their sending rate during congestion avoidance. However, the proper selection of 
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a constant for the increase rate is an issue. This policy may be difficult to incrementally 
deploy in an operational network[16]. 

The "Increase-by-K" policy can be selectively used by long RTT connections. It simply 
changes the slope of the linear increase, with connection over a given RTT threshold 
adding "K" segments to the congestion window every RTT, instead of one. This policy, 
when used with small values of "K", may be successful in reducing the unfairness while 
keeping the link utilization high when a small number of connections share a bottleneck 
link[16]. 

5.4 LOSS RECOVERY 

The large BDP causes more losses for TCP in satellite environment. Because of the 
conservative congestion control mechanisms and the long delayed feedback from the 
receiver, TCP takes a long time to recover from congestion loss. Selective ACK (SACK) 
is recommended in RFC 2488 to help TCP survive multiple segment losses within a 
single window without incurring a retransmission timeout. Fast recovery with SACK is 
more efficient than fast recovery with or without partial ACK scheme[25]. However, 
SACK is generally viewed as a method to address data recovery. It has not been widely 
investigated to control congestion while recovering from dropped segments[35]. Fast 
recovery with SACK is unable to prevent excessive timeouts under extreme losses[18]. 
One proposed solution, called Forward Acknowledgment (FACK), works in conjunction 
with the SACK option to add more precise data transmission control during the recovery 
phase. 

FACK uses additional information provided by the SACK option to keep an explicit 
measure of the total number of bytes of data outstanding in the network. It introduces two 
new state variables, send_fack and retran_data. The send_fack is to reflect the forward-
most data successfully received by the receiver. The value of send_fack is equal to the 
highest sequence number known to have been received plus one. The retran_data is used 
to hold the number of outstanding retransmitted data segments in the network. For 
convenience, a variable awnd is used to denote the estimate of the actual quantity of data 
outstanding in the network, and send_nxt denotes the sequence number TCP is about to 
send next. When all unacknowledged segments have left the network: 

awnd = send_nxt — send_fack 

During recovery, retransmitted data must also be included in the computation of awnd: 

awnd = send_nxt — send_fack + retrandàta 

The values of these variables are adjusted as following: 
-- If TCP retransmits old data, it will increase retran_data; 
-- If TCP sends new data, it advances send_nxt; 
-- When receiving an ACK, it decreases retran_data or advances send_fack. 
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If the sender receives an ACK which results in a send_fack beyond the value of send_nxt 
at the time a segment was retransinitted, the sender know that the segment which was 
retransmitted has been lost[35]. In another words, FACK detects the loss of a 
retransmission by the receipt of a segment that was sent later than the retransmitted 
segment while the retransmitted one is unacknowledged. 

The current implementation of FACK is FACK with rate halving[33]. The rate-halving 
algorithm adjusts the congestion window by spacing transmissions at the rate of one data 
segment per two segments acknowledged over the entire recovery petiod, thereby 
sustaining TCP's self-clocking and avoiding transmission burst. The FACK algorithm is 
triggered after receiving three duplicate SACK blocks. The missing segment indicated in 
SACK is retransmitted. The connection will perform rate halving for one RTT after the 
retransmission. For every two ACKs received during recovery, it checks for any hole that 
equals or exceeds the retransmit threshold and retransmits that segment. If no segment 
exceeds the retransmit threshold, new data can be sent if the cwnd allows[37]. 

The PACK  mechanism separates the recovery algorithm from the retransmission 
algorithm, providing a simple and direct way to use SACK to improve congestion 
control. In addition, PACK causes less data burst than fast recovery with SACK and is 
more robust against heavy losses[18]. Studies showed the performance of FACK is much 
closer to the theoretical maximum for TCP than either TCP Reno or fast recovery with 
SACK extensions. Although more studies are needed for using  PACK  over noisy and 
long-delay satellite links, it is expected to provide good performance gains [18] [16]. 

5.5 DETECTING CORRUPTION LOSS 

5.5.1 Explicit Corruption Notification 

This approach uses a new "corruption experienced" ICMP error message generated by 
routers that detect corruption. These messages are sent in the forward direction, toward 
the packet's destination, rather than in the reverse direction as is done with ICMP Source 
Quench Messages. Each TCP receiver that gets this information must forward it to its 
respective sender. The TCP sender then assumes that packet loss is due to corruption 
rather than congestion for two round trip times (RTT) or until it receives additional link 
state information. However, in shared networks, ignming segment loss for two RTTs may 
aggravate congestion by making TCP unresponsive[16]. 

5.5.2 Detecting Corruption Loss in TCP 

In reference [21], a non-congestion packet loss detection algorithm is proposed. This 
introduces a feedback mechanism ftom the receiver to inform the transmitter of packet 
losses that are not due to congestion. 

The algorithm distinguishes packet loss due to congestion from a loss due to link errors. 
If a router within the network drops a packet, a number of consecutive packets will 
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usually be dropped; if a packet is lost due to random link en-ors, the probability of losing 
the next packet is independent of previous losses and depends only on the link BER. In 
this case, the next packet will arrive without a relative delay. 

This algorithm at the receiver waits for a calculated period after a packet loss is detected, 
before it decides whether to send an indication to the transmitter. This is called the back-
off timeout (BTO). The BTO is calculated in a similar way to the TCP RTO. 

The errors on a link may result in the loss of a number of consecutive packets; however 
most satellite links may be accurately modeled by a random packet loss model, and 
therefore there is only a low probability of two or more consecutive packets being 
corrupted. p is used to denote the number of consecutive packet losses, an indication of 
congestion. A value from 2 to 4 for (3 is recommended. 

On reception of an out-of-order segment, the receiver checks whether the number of 
segments that have been lost is less than f3, and the following segments arrive soon with 
an interarrival time less than BTO. If this happens, the receiver will start a BTO timer. 
When this timer expires without reception of the missing segments, the receiver sends a 
non-congestion, packet loss indicator in the TCP header back to the transmitter. The 
transmitter then retransmits the lost packets without reducing the sending rate. 

5.6 HANDLING INTERMITTENT CONNECTIVITY 

Rate-based pacing (RBP) is a technique used to maintain an intermittent connection. In 
the absence of incoming ACKs, the data sender temporarily paces TCP segments at a 
given rate to restart the ACK clock. Upon receipt of the first ACK, pacing stops and 
normal TCP ACK clocking resumes[16]. 

A more specific solution is proposed in[19]. The mechanism for identification of the 
onset of a link outage is link dependent. In general, a link outage may be identified at the 
ground station by loss of carrier lock or the received signal strength falling below a 
threshold. Once the ground station (or spacecraft) detects the link outage, it sends a link-
outage ICMP message to any host on its own side of the served link from which it 
receives traffic. The ICMP message is triggered by incoming traffic. It contains the TCP 
header of the packet that caused the message to be generated. The sender's response to a 
link outage signal is to enter persist mode, sending periodic probe packets. During this 
period, TCP does not repeatedly time-out, retransmit, and back off the retransmission 
timer. Instead, it suspends its timers and ceases transmitting, except for the occasional 
probe packets. TCP exits persist state when it receives a lirik-restored ICMP message 
from the ground station, or when one of the probes is acknowledged. 
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5.7 SHARED TCP STATE INFORMATION AMONG SIMILAR 
CONNECTIONS 

TCP includes a variety of parameters, many of which are set to initial values that can 
severely affect the performance of TCP connections traversing satellite links. Various 
suggestions have been made to change these initial conditions in an effort to support TCP 
over satellite links. However, it is difficult to select any single set of parameters which is 
effective for all environments. 

An alternative solution to attempting to select these parameters appropriately is sharing 
state information across TCP connections and using this information when initializing a 
new connection. Sharing TCP state information can automatically tune TCP to the 
suffounding environments and coordinate multiple TCP connections sharing a satellite 
link. For example, if all connections to a subnet result in extended congestion window of 
1 megabyte, it is probably more efficient to start new connections with this value, than to 
rediscover it using slow start that may cost dozens of round-trip times. However, several 
problems need to be addressed before using this approach, such as what information to 
share, with whom to share, how to share it, and how to age shared information[16]. At 
this time, CRC is investigating TCP state sharing and testing various algorithms and 
possible solutions with the help of the OPNET simulation tool. 
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6. CONCLUSIONS 

TCP has several problems when rurming over satellite links. Large bandwidth-delay 
product and high bit error rate are the two major factors that affect most TCP 
mechanisms thus creating problems over satellite links. 

Solutions to some of these problems are still not clear. Some problems have suggested 
solutions that have not been fully proven and tested, while other solutions that have 
become part of IETF standards are not yet widely implemente'd. For example, all TCP 
versions use the sliding window and slow start algorithms, but only the newly modified 
versions such as TCP Reno use the TCP mechanisms such as window scaling and larger 
initial window size described earlier. 

The goal of all modifications and enhancements is to improve bandwidth efficiency and 
application response time, without negatively affecting the end-to-end reliability offered 
by TCP. For this reason, solutions such as TCP splitting and TCP spoofing are difficult to 
implement if one wishes to maintain end-to-end transport reliability. The coupling of 
congestion avoidance and data corruption also poses difficulties in maintaining end-to-
end reliability. 

More modifications and extensions to these enhancements are being examined and tested, 
but it will be some time before they are reliable enough to become standards. One such 
modification is sharing TCP state information, which can improve bandwidth efficiency 
while maintaining end-to-end reliability. Such modifications and extensions will play an 
important roll in using TCP over satellite networks. 
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7. RECOMMENDATIONS 

In this document, many possible algorithms which can solve various problems that TCP 
connections encounter over satellite where examined. The enhancements recommended 
by the authors are increasing the initial advertised window size, window scaling such that 
the BDP is satisfied, and the SACK mechanism. These enhancements should be 
implemented and be part of all standard TCP stacks for connections  over satellite links. 

Finally, one algorithm that must also be investigated is the sharing of state information 
across TCP connections and using this information when initializing a new connection. 
This algorithm can improve bandwidth efficiency while ensming the end-to-end 
reliability of TCP. The above mechanisms will have a profound effect on connections 
using TCP over long delay paths, and will improve the bandwidth efficiency of satellite 
networks. 
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