

i
B

pule | \
l A 500\ O - | ERC LIgR \//

/‘“
“§2= 1 47200

BIBLIOV/IHOUE CRE

TCP OVER SATELLITE

A Review of TCP Over Satellite Links:
Problems and Suggested Solutions

Peter Andreadis and Jing Peng

CRC Technical Note No. CRC-TN-2001-01

Ottawa, April 2001
| ISty Camasyzesss
) ada }
: Library - Queen i
CAUTION : MAR9 3 2013 |
This information is provided with Industyi ;
the express understanding that 1 Bibliof hSéne Canada ‘
proprietary and patent rights will ' que - Queen

be protected

TABLE OF CONTENTS
ABSTRACT A%
RESUME \%
EXECUTIVE SUMMARY _ vii
1. INTRODUCTION 1
2. OVERVIEW OF TCP 2
2.1 OSIMODEL ..cuvuiterimisniressiinsismssesetsossisssessssseassessssatsssstssessesssessssest sestoressetesessssesssarasssesessasesasses 2
2.1.1 ThE PRYSICAI LAYET .cverererereresrerersresesessasasssssssesessesessssssssartesaesssasessassetessssessssesasasastssssessanssessen 3
2.1.2 The Data LINK LAYETcccovervrerrrersrarsrresssrsrssessscsrarssssssssasssssssssressrsassssssesssssssnssssssssasasnsssrersssns 3
2.1.3 The Network LaYerc.vvevrerenmirnssnsererenses reerteeetetit s et e e eras Rt e e Re e e aer A re i ebesrevaeens ISR |
2.14 The Transport LaYErucecrnrnerisrsssnsrenererssersssesmsssssssseressssssssesessssvassssssarassosens ST 4 -
2.1.5 ThE SESSI0N LAYET ...eueereeeeserssernsisrnsrsnsssnssssssessssssessassmsensssssssesesssnssssssaserssasassssasssssssasserasessss 4
2.1.6 The Presentation LaYer ..o 4
2.1.7 The APPHCAHION LAYET.1cvverererenrrinsnssssssrersrsrerssssesssssresssesesasassesesssssassasssssasssastssssessessavassssessases 4
22 TCP/IP SUITE ovuvvvvrenrsnnmssesssssssissssssssssssaisissasssasisssesssssssesssasssssssssssssssnsssnss it e bsrans 5
23 USING TCP o.cririiriniiisiiiiisiinisiiisisnesiosrsessssesasssasessesasssssesassassesssssnsssasessessessastasassesstsnasasssassons 6
2.3.1 TCP Segment FOIMALcccvevreveereersieenentensssessesssseessenssessesesssssssssssssessessnssessssssssssasas rressasennnes 6
23.2 Establishing and Releasing a TCP CONNECIONuvcuivnieiiriniiseseniiimnisnsssssaseniesss s 7
2.4 CORE TCP FUNCTIONS AND MECHANISMS ...eveveeruesieerserssresssessasmssssssssssasessesessssssessasassasssassaserasesass
24.1 Numbering and ACKNOWIEAZEMENLScvvvviiinviernnnicsiserinniee e
2.4.2 Sliding Window FIOW COntrolcuvvinireiisiriesesniessesisisrsmsissmeasesssssssssssssssssssssssessssssns
243 Slow Start and Congestion AVOIAANCEcuceverereererersisanseesesiesssssersssesssesessesarsssssnssssasassseses
244 Fast Retransmiit / Fast RECOVEIY ...uvvivrinrniniimisienccnsssisisisisssssesessssenmsstsesessssssisssssssasasasse
2.4.5 Partial and Selective ACKNOWIEAZIMEDESccvierereeireareresesressssnrsssererssssssssassesassssmsssseressenssons
24.6 Timeout and Retransmission ...vveeeeeenreersseresseseens
2.5 TCP EXTENSIONS FOR HIGH PERFORMANCE
251 TCP Window Scale Option «..ceveeeveresenvereseserensanenns
2,52 Round-Trip Time Measurement (RTTM)
253 Protection Against Wrapped Sequence Numbers (PAWS) ... 16
2,54 The Heart 0f TCPccvvercenessmrssssasasarmssssssssssssssessorersrssnens eneresasaeterereressesssesastseasasas s sOb e be 17
3. TCP OVER SATELLITE LINKS 18
32 SATELLITE LINK PROPERTIES AND THEIR AFFECT ON TCP ..ccuveeverenrenrsrenerensersveessansressserssnsesasonses 20
3.2.1 Long Delay Pathscuiivrisiesiinimiiesinmeomemmsesniomsesssenmersssssararsssssessssesssssssssnsansas 20
3.22 Large Bandwidth-Delay PIOQUCE.....cccieriircrnrensenienernereninessenssssesessesnorestenenssasassssssssssssssassoses 21
323 Increased Transmussion EITOIS .i..iiiiiiersissienninitecsnsessestssssssessmensessassssoassssosssessssssses .22
324 Channel ASYMMEITY ... euirceereessersersersssssesnssessssassssessesresssssassssssssssesessssestaressssasssanens
3.2.5 Variable Round Trip Delays
3.2.6 Intermittent COMMECHIVILY...cveerereeriereseseessermsnessermssessessssessensnsasenssssssesaesasassassassassasses
4. IMPROVING SATELLITE LINK PERFORMANCE WITHOUT MODIFYING TCP....ccoe0re0s25
4.1 APPLICATION LEVEL 11v1110ecesessssuseesssnsssressssssnsssssssssssssssosssssssssssamssseasetsesssssonsorsesssssssmsessnssesssasssssees 25
4.1.1 Multiple TCP CONNECHIONS ..vuiieerrirsinssinsrirensisessesssessssisesamamsasseenssessersasssesssssssassansesssssssssesosss 25
4.12 Persistent TCP CONNECHONS ..ivciiceriesnsnsmerserssersensssesseressosesmmassessesessersssesessesessosgsnssnsssssssasasses 25
4,13 Application Layer ProXies......cccurrevrverersrveresenns et e e e bt ek sas s e 25
4.2.1 TCP SPOOLINE cevniiriiiiriiinisinin sttt se s e ssbabesssrsbaseses Senssatabbnsssbasesasasasannns 26
4.2.2 T'CP SPIIHING .. eveviisrsresrisssnimnssnsieriosssesnnstesstessssssssns ssasassasssssseseonssssasesssntastonsassasarasessentons 27
4.3 LINK LAYER . ccccoiintnniiissscnsisissisosisssssimsisses siosssessesasnssssanassnssessessssssesessssssnsssnsssesssssssosasssnsssssanan 28
i

S.

6.

7.

8.

4.4 OTHER MECHANISMS...covteriniereerersrereesensersesesnssssissssssssasssssossossassessessossessossessssssosssssessassssssosssssones 28
441 TCP AZENL..coriririiriiiiiririisirisi ittt eesesssesesvoressstvassssastsssssatsronssssssersnsensassressssesases 28
442 Path MTU DISCOVEIV..uuueerirerirrnirersrenreesisuersessssesesmsssessssssssssssessssssssssssssssssssssoresssssssosessses 29
TCP ENHANCEMENTS FOR SATELLITE LINKS ' 30

5.1 TCP FOR TRANSACTIONS (T/TCP) .eovvererieieiiinintiecenierensnisssesessessossssossesmssrssssessssosssssssssesssssesesns 30

52 SLOW START c..coitmiiiriteiinnsiacnnesssisisbsose st ossabosssasassosssossnsssssnsssserssensasasersesssentasessssatssssssossases 30
5.2.1 Larger Initial Windowc.ccvimernnincernnininonimnninisssessosssssesesens e 31
522 Delayed ACKS after SIoW Start......ccceveinivriesemrernnnesesssesssinenensesssssssmsssssssssssssssosesssssssessns 31
523 Byte COUNINE...ciiiniiieiiiriririninsirs e sssenesesnsssestosassassssonssssenssessssasassssarssaosesssssnsssssese 31
5.2.4 Reducing Burstiness in SIoW Startcccvvverercerevcririsresssnsieneinsnssesesssmmssssssssssssssessssssssens 32
52.5 Terminating Slow Start at the Right TIme......cececenreericrmnininsnmininosiisiesssnesserssssssiins 33

5.3 CONGESTION AVOIDANCE 1tuiuiiiismsissssninisnssstsssssssassssssessessssssssssssssssesssssssssassssssssssesssssssssasstsssss 34
53.1 RoULEr-DaSEd SUPPOIL....crireereiriisisricrerensiietseeeemerstses s esssasse s snsesersrssarssssssasesssssosersssrsssins 34
53.2 Source-based Congestion Avoidance........... beresaesssenes ebbes bttt s e e s ereransranarens 35
533 Controlling ACK COngeStioN......uiercririereeemesmsessseereninsrssersmsssssreresssssssssssssssssssssorssons 36
5.34 Reducing Unfairness of Linear INCIEase. ...cocrereiereversensesmrsrisererssssssrssssessessssssssssasssssaons 36

5.4 LOSS RECOVERY «tiuviiineiniisimesesins i sssssesissssosssassssessasssssenssassossssssesinssasesssrssenserssnssssassssesases 37

5.5 DETECTING CORRUPTION LLOSS ...ccveertrerersaiereesresssesssnssncsserserssmsssrsssmssesssssssessssessssssssrsensessassssssssns 38
5.5.1 - Explicit Corruption NOtHICAtION. ..ccorivsirirsinrernirninnseesisisinnsessinsscssessreressssesssessesessersrenss 38
5.5.2 Detecting Corruption Loss i TCP ...ccuiviiceinnninrenscenisessmeninsiensresrensiessssmsssssssossssssssssssans 38

5.6 HANDLING INTERMITTENT CONNECTIVITY ..vvctivernrenrnnsnssrersesssessnsssmssssessesssssssesssessscnsssssesssessesss 39

5.7 SHARED TCP STATE INFORMATION AMONG SIMILAR CONNECTIONSecovernreererseiresenenssensnsnns 40
CONCLUSIONS 41
RECOMMENDATIONS 42
REFERENCES 43

ii

LIST OF FIGURES
Figure 1: The OSIMOGEL ...c.covvirerreirenreeeeierrererensenresessssssssiesessensssessesessessssoressessessssssassesens 2
Figure 2: Hybrid OSI-TCP/IP reference model compared to the OSI model 5
Figure 3: TCP SEZMENt fOIMAL.....cvcvcverrerernarererenseresseresssseressesenesesssssssssesssssaessssssssesns 6
Figure 4: TCP cONNECLION SEt UP....iiicerereeereniersieneeressersnenssseserserssaersssesssnssessssassessssassons oee 7
Figure 5: TCP buffer size manipulation........ccceveeeeriereeereneeresieseerneinsssssssesssssssssessssssssssesens 9
Figure 6: SACK option field eXampleccccevnrnreririnnersenmesnsnnsnesmeesessesssssssns 13
Figure 7: Table of times until 32-bit sequence number space wraps around.................... 16
Figure 8: Simple atellite NELWOTKcovvverererereeerrererereressesessssssesesesesssesssssssssssesssssssses 18
Figure 9: TCP SPOOLING....c.covvrrrerermrerenrreserarersrssenessssesssesssnsesssarsasessasesesssssssessssssssssssseness 26
Figure 10: TCP SPIItHING. ...cccerrerererererrnrrerenieressrissesesnsnsseresesssssersssessusssssssesassasessssasansasssesess 27
Figure 11: T/TCP, establishing and closing a connectionuewvvercrrirererersuercseanenens 30
Figure 12: Example of SMOOth SIOW STAIT c..cveveeriveciierieseriesisseninsesesnsssesssssessssssesessssens 32
Figure 13: Terminating SIoW Start.......c.cccoeviviueincnnininiinssseseenes 33

iii

ABSTRACT

The most dominant transport protocol used in sending Internet applications is the
Transmission Control Protocol (TCP). Although TCP was designed to provide reliable
end-to-end connections over various types of networks, it has several problems when
running over long delay paths such as satellite links. Large bandwidth-delay products and
high bit error rates are the two major factors that affect most connections using TCP over
satellite. Current research suggests that two major problems of TCP are the coupling
between congestion detection and error control, and the inefficiency of the congestion
control and loss recovery algorithms over long delay paths such as satellite links.

In this document, a review of standard TCP mechanisms and functions is given, The
problems TCP connections encounter over satellite links are presented, and a number of

solutions including standard extensions, gateway options such as TCP splitting and TCP

spoofing, and proposed TCP enhancements such as sharing TCP state information are
analyzed Implementing such extensions and enhancements will play an important roll in
improving the efﬁc:1ency of TCP connections over satellite networks.

RESUME

Dans le domaine du transport de données sur Internet, le Transmission Control Protocol
(TCP) est le protocole le plus dominant. Bien que TCP fut congu dans le but d’offrir des
connexions point & point fiables sous différents types de réseaux, son utilisation sur des
liens a longs délais, comme les liens satellites, souléve plusieurs problémes. Les deux
principaux facteurs affectant la performance de TCP sur des liens satellites sont les
produits délais-largeur de bande (delay-bandwidth product) élevés ainsi que les hauts
taux d’erreurs (bit error rate). Des travaux de recherche suggérent que les deux
problémes majeurs de I’utilisation de TCP sur des liens a longs délais sont la relation
entre la détection de congestion et le control d’erreurs ainsi que 1’inefficacité des
algorithmes de contrdle de congestion et de correction d’erreurs.

Ce rapport présente d’abord un bilan des différents mécanismes et fonctions standards du
protocole TCP. Les problémes inhérents aux connexions TCP sur des liens satellites sont
ensuite présentés et certaines solutions a ces problémes telles que les extensions
standards, les ‘options de gateway (TCP splitting, TCP spoofing) ainsi que d’autres
améliorations proposées (partage d’information d’état de TCP) sont analysées.
L’utilisation de telles extiensions jouera un rdle important au niveau de ’amélioration de

I’efficacité de connexions TCP dans les reseaux satellites.

EXECUTIVE SUMMARY

Satellite communication offers many benefits, such as wide coverage areas, broadcast
capabilities, and ability to reach remote and geographically adverse locations at relatively
low cost. Communication satellites have been providing military communications,
international telephony and broadcast TV for many years. Now, these satellites are being
used as a complementary source to the terrestrial communication networks.

_ While satellite networks provide an extension to the Internet, they also cause some

problems to the reliable end-to-end data transmission of Internet applications, which is
realized by the Transmission Control Protocol (TCP). Although TCP was designed to be
robust and flexible to operate in various environments, it cannot always perform
efficiently over a satellite link. The main problems arise from the high bit error rates
(BER), large delay-bandwidth products, intermittent connectivity, variable round trip
time, and asymmetric link capacities associated with satellite links. All of these problems
result in large bandwidth inefficiency and can lead to poor end-to-end application
performance. For satellite links, where bandwidth is an expensive resource, inefficient
use is costly.

In this document, many possible algorithms which can solve various problems that TCP
connections encounter over satellite where examined. Some solutions have not been
thoroughly tested. One such solution is sharing TCP state information, which can
improve bandwidth efficiency while maintaining end-to-end reliability. Such algorithms
will play an important roll in improving future use of TCP over satellite networks

Other solutions and - enhancements have become part of IETF standards. The
enhancements recommended by the authors are increasing the initial advertised window

. size, window scaling such that the BDP is satisfied, and use of the SACK mechanism.

These enhancements should be implemented and be part of all standard TCP stacks for
connections over satellite links. However, many of the have not been widely
implemented at this time.

More modifications and extensions to these enhancements are being examined and tested,

. but it will be some time before they are reliable enough to become standards. These

modifications will have a profound effect on connections using TCP over long delay
paths, and will improve application performance and the bandwidth efficiency of satellite
networks. :

vii

v

1. INTRODUCTION

Satellite communication offers many benefits, such as wide coverage areas, natural
broadcast capabilities, and ability to reach remote and geographically adverse locations at
relatively low cost. Communication satellites have been providing military
communications, international telephony and broadcast TV for many years. Now, these
satellites are being used as a complementary source to the terrestrial communication
networks.

While satellite networks provide an extension to the Internet, they also cause some
problems to the reliable end-to-end data transmission of the Internet, which is realized by
the Transmission Control Protocol (TCP). Although TCP was designed to be robust and
flexible to operate in a various environments, it cannot always perform efficiently over a
satellite link. The main problems arise from the high bit error rates (BER), large delay-
bandwidth products, intermittent connectivity, variable round trip time, and asymmetric
link capacities associated with satellite links. In addition, most TCP optimizations have
been made based on assumptions that are true for terrestrial networks but fail for satellite
links. For example, TCP’s congestion control mechanisms are based on the assumption
that loss of segments is due to congestion rather than corruption, where such conditions
usually. cause excessive TCP timeouts, retransmissions, or even abortion of the
connection. All' of these problems result in large bandwidth inefficiency and can lead to
poor end-to-end application performance For satellite links, where bandwidth 1s an
expensive resource, mefﬁcmncy in its use is costly

This document first examines the OSI model with a more detailed look at TCP. Then the
characteristics of satellite links and the problems of using TCP over such an environment
are described and the performance issues that arise are examined. Solutions to these
problems can be divided into two categories: modifications without the need to modify
the TCP stack, and protocol enhancements to TCP for satellite use. They will be
discussed in sections 4 “Improving Satellite Link Performance without Modifying the
TCP Stack”, and 5 “ TCP Enhancements for Satellite Links”, respectively.

2. OVERVIEW OF TCP

2.1 OSIMODEL

The OSI (Open Systems Interconnection) model is part of an international standard

dealing with connecting systems that are open for communication with other systems[1].

The OSI model has seven layers. Each layer performs certain functions that allow users
to communicate without noticing the underlying interfaces and actual physical links
needed to send and receive data. Let us examine each layer starting with the physical
layer. '

USER 1 Each User layer communicates with the USER 2
corresponding layer of the other user
APPLICATION | < > | APPLICATION
PRESENTATION | < > | PRESENTATION
SESSION < > SESSION
TRANSPORT < > TRANSPORT
NETWORK | < > | NETWORK
DATALINK | < : : > | DATA LINK
PHYSICAL e > PHYSICAL
A A
" ACTUAL PHYSICAL LINK
Figure 1: The OSI model

2.1.1 The Physical Layer

‘The physical layer is concerned with transmitting raw bits over the physical medium.

Thus, it deals with bit formatting, bit rates, bit error rates, and all the physical and
electrical interfaces between the actual user hardware and the network terminating
equipment.

The most common forms of the physical medium are coaxial cable, twisted copper pair,
fibre optics, and wireless. A common protocol of this layer is the Physical Layer
Convergence Protocol (PLCP), which maps the data frames into cells of bits to be
transmitted over the physical medium. Other interface standards at the physical layer are
the EIA (EIA 232-E, EIA 449) and V series (V.2, etc.) recommendations.

2.1.2 The Data Link Layer

The data link layer’s ‘main task is to ensure the reliable delivery of data across the
physical link[2]. It accomplishes this task by breaking the input data into data frames and
provides the frame identification, error control and flow control needed to transform the

- link into a line that appears free of undetected transmission errors. Widely used data link

layer protocols are High-level Data Link Control (HDLC), Synchronous Data Link
Control (SDLC), Serial Line Internet Protocol (SLIP), and the Point-to-Point Protocol
(PPP). Some consider the ATM Adaptation Layer (AAL) as an upper sub-layer protocol
of the data link layer.

Broadcast networks, such as satellites, must control access to the shared channel. This
function is done within a sub-layer of the data link layer called the Medium Access
Control (MAC) sub-layer. Protocols have been developed specifically for the MAC sub-
layer, such as the ALOHA protocols and the Carrier Sense Multiple Access (CSMA)

_ protocols. The above-mentioned protocols for the lower two layers of the OSI model help

create the IEEE 802.xx or ISO 8802.x standards for LANs and WANS.

2.1.3 The Network Layer

“The network layer is concerned with the transfer of data over multiple paths through the

network to the proper destination. Its main function is to determine the destination of the
data, route the packets-through a proper path and make sure the resources exist to do
this[3].

The Internet Protocol or IP is used as the protocol of choice for the network layer. It has
many versions such as IPv4, IPv6, and the ISO-IP. Each version of IP varies slightly with
respect to their functions. However, all versions of IP contain control protocols, such as
Internet Control Message Protocol [CMP), Address Resolution Protocol (ARP), Reverse
ARP (RARP), and BOOTP, which help with the task of locating the IP source and
destination addresses [4].

2.1.4 The Transport Layer

The transport layer must provide data transport from the source machine to the
destination machine, by passing the data accepted from the source session layer through
the network to the final destination. It acts as an end-to-end layer, independent of the
physical network or networks it is running over, performing end-to-end transfer and flow
control of data and ensuring it arrives error free at the proper destination machine. This is
why it is considered the heart of the whole OSI model protocol hierarchy[2].

Two main protocols are used in this layer: TCP (Transmission Control Protocol) and
UDP (User Datagram Protocol). TCP is a reliable transport layer protocol that performs
error and ordering correction. UDP is considered unreliable, only ensuring that messages
reach the proper destination. Some also consider the adaptation layer (AAL) for ATM
networks as a transport layer protocol of sorts[4].

2.1.5 The Session Layer .

The session layer allows users working on different machines to create and establish
sessions between them. Thus, it is responsible for setting up a communication channel
between two users, for the duration of the complete network transaction. This allows the
machines to send data back and forth. It also provides enhanced services that allow the
machines to synchronize their dialogue and manage their data exchange. Some examples
of these services are token management and remote login.

2.1.6 The Presentation Layer

The presentation layer is concerned with the actual syntax and shared semantics
(representation) of the information transmitted. The data structures to be exchanged can
be defined in an abstract way, and these abstract data types are then encoded using a

standard (transfer syntax) that both machines can understand, such as ASCII or Unicode.

The presentation layers agree on what standard should be used to ensure proper data
transfer. ASN.1[1] is an example of a presentation layer protocol defined by ISO 8824
and 8825 standards.

2.1.7 The Application Layer

The application layer provides the user interface with a range of network-wide distributed
information services. These include file transfer access and management, electronic mail,
and other message interchange services. The layer contains the many different protocols
that are needed to solve the problem of the many incompatible terminal types and
different file systems that exist. Examples of such protocols are TELNET, FTP, SMTP,
and SNMP for the TCP/IP suite, and VT, FTAM, MOTIS, CMISE for the OSI — ISO
standards. Others include HTTP, MIME, DNS, MMS, JTM, and DTP[1].

Three important pieces of information are ekchanged during three-way handshake. Each
side notifies its partner of:

e The initial sequence number it will use for numbering outgoing data (field Sequence
Number)

o The maximum buffer space available to receive data (placed in the Advertised
Window field) '

e The maximum amount of data that an incoming segment may carry (the maximum
segment size MSS in field Options)

Data Transfer begins after the completion of the three-way handshake. It follows as a
simple data transfer process where the connected pair updates their Advertised Window
sizes, and sends Data and ACKs accordingly.

A connection request can be initially rejected, by responding with the RST flag set. Once
a connection is established, one side may send a segment with the RST flag set to abort a
connection if necessary. In this case, the transfer in both directions ceases immediately. If
the connection proceeds without any abnormalities, when the application is completed, it
will release or close the connection with a three-way handshake similar to that of initial
connection set-up.

24 CORE TCP FUNCTIONS AND MECHANISMS

TCP performs three important functions, which turn a connection between two users
within a network into a reliable data transmission path:

a) Sets up a transmission or receiving window, which allows the receiving TCP to
control the flow of data being sent to it at any given moment,

b) Uses congestion avoidance mechanisms to probe the network for available
bandwidth, ' _ :

c) Provides a level of error correction by checking for lost data segments and re-

transmitting those segments, which are lost.

To achieve this, TCP uses sequence numbers and positive/negative acknowledgements
implemented within a set of algorithms[3]. These algorithms are used for congestion
control, flow control, and ensuring that the data sent is received correctly at the user end.
The most significant of these algorithms, or TCP mechanisms, are the:

- Numbering and Acknowledgments

- Sliding Window Flow Control

- Slow Start and Congestion Avoidance

- Fast Retransmit and Fast Recovery

- Retransmission Timeouts

This section describes the mechanisms that TCP uses to deliver data correctly, in order,
and without loss or duplication.

In the TCP sliding window algorithm, the size of the advertised window sets the amount
of data that can be sent without waiting for acknowledgement from the receiver. Suppose
that the size of the send buffer is MaxSendBuffer, and the size of the receive buffer is
MaxRcvBuffer.

TCP on the receive side must keep:

Last Byte Rcvd — Last Byte Read <= MaxRcvBuffer

to avoid overflowing its buffer.

Therefore, it advertises a window size of:

Advertised Window = MaxRcvBuffer — (Last Byte Rcvd — Last Byte Read)

which represents the amount of free space remaining in the receive buffer. How the
advertised window size changes, depends on how fast the data arrives and how fast local

the application process is consuming data. If the local process is reading data just as fast

as it arrives (causing Last Byte Read to be incremented at the same rate as Last Byte
Rcvd), then the advertised window stays unchanged. However, if the receiving process
falls behind, then the advertised window grows smaller with every segment that arrives,
. until it eventually goes to zero.

TCP on the send side must adhere to the advertised window it gets from the receiver.
This means that at any given time, it must ensure that:

LastByteSent — LastByteAcked <= AdvertisedWindow
Therefore, the effective window that limits how much data the sender can send is:
EffectiveWindow = AdvertisedWindow — (LastByteSent — LastByteAcked)

On the other hand, the sender must also make sure that the local application process does
not overflow the send buffer, that is:

LastByteWritten — LastByteAcked <= MaxSendBuffer

If there is not enough space for the application to write data in the send buffer, the
application cannot send any data.

10

2.4.3 Slow Start and Congestion Avoidance

While flow control prevents the sender from overrunning the capacity of the receiver,
slow start and congestion avoidance prevent too much data from being injected into the
network. TCP maintains a state variable for each connection, called the Congestion
Window, which is used by the sender to hrmt how much data it can put into the network
at any given time.

- Slow Start defines a mechanism when starting traffic on a new connection or recovering

from congestion indicated by a timeout event. Specifically, the source starts out by
setting Congestion Window to one segment. For each segment that is ACKed
successfully, the Congestion Window is increased by one segment. That is, the
Congestion Window is doubled for every Round Trip Time (RTT) completed. When
startlng a new connection, if there is no loss of segments, the Congestion Window can
keep increasing until it reaches the same size as the Advertised Window.

Additive Increase’/Multiplicative Decrease algorithms are used in TCP to react to the
network congestion and adjust the Congestion Window size accordingly. In the current
Internet environment, it is rare that a packet is dropped because of an error during
transmission. Therefore, TCP interprets timeouts as a sign of congestion and reduces the
rate at which it is transmitting. Specifically, each time a timeout occurs, the sender sets
Congestion Window to half of its previous value. This mechanism is called multiplicative
decrease. When the congestion is relieved, the Slow Start mechanism is implemented.
Once the Congestion Window reaches one half of its original size before congestion
occurred, the additive increase mechanism is used beyond this point to linearly increase
the Congestion Window size.

With the additive increase mechanism, if each packet sent out has been ACKed before
the timeout, roughly one MSS' (Maximum Segment Size) is added to the Congestion
Window. The maximum unacknowledged amount of data is now the minimum of the
Congestion Window and the Advertised Window. Thus, the Effective Window 1nd1cat1ng
how much data the sender can send is rev1sed as follows:

Effective Window = min (Advertised Window, Congestioﬁ Window) — (LastByteSent —
LastByteAcked) : _

11

2.4.4 Fast Retransmit / Fast Recovery

Fast Retransmit is a heuristic that sometimes triggers the retransmission of a dropped
segment sooner than the regular timeout mechanism. Whenever the receiver gets an out-
of-order segment, it sends an ACK that identifies the first octet of the missing data (the
same ACK the receiver sent when it received the last in-order segment). After receiving
three duplicate ACKs, TCP performs a retransmission of the lost segment indicated in the
ACK, without waiting for the retransmission timer to expire. Fast retransmit is
implemented in TCP Tahoe

When the fast retransmit mechanism signals congestion, the sender cuts the congestion
window in half and resumes with additive increase, rather than going into the Slow Start.
This mechanism is called Fast Recovery. Fast Retransmit/Fast Recovery (called FR/FR)
is implemented in TCP Reno.

When multiple segments are lost in transmission of one Congestion Window (cwnd) size

worth of data, only one of these segments can be resent using fast retransmit and the rest
.of the dropped segments usually have to wait for the Retransmit Time Out (RTO), which
will trigger the costly Slow Start mechanism[6].

2.4.5 Partial and Selective Acknowledgments

An experimental loss recovery mechanism is proposed to detect multiple losses in the
same window using Partial Acknowledgements. A Partial ACK covers some new data,
but not all data in flight when a particular loss event starts. If there are multiple losses,
when TCP resend the first lost segment indicated by several duplicated ACKs, the
receiver will send back an ACK indicating loss of another segment which is then the first
lost segment. More than one lost segment pet window can be found and retransmitted by
this means. Partial ACKs are implemented in TCP New Reno.

Partial ACKs avoids timeout but cannot result in a recovery faster than one loss per RTT.
The sender needs to wait for the ACK of the retransmission to discover the next loss.
Some studies show that in some cases (i.e. multiple—losses of segments) relying on the
RTO timer may be more efficient than simply using partial ACKs to retransmit all lost
segments [1].

To solve this problem, TCP provides another acknowledgement strategy called Selective
Acknowledgements (SACKs). SACKs allow TCP receivers to inform TCP senders
exactly which segments have arrived so that the sender can resend lost segments quickly
and avoid unnecessary retransmissions.

The SACK option field contains a number of SACK blocks, where each SACK block
reports a non-contiguous set of data that has been received and queued, as illustrated in
Figure 6 [37]. SACKSs enables the receiver to inform the sender exactly which segments
have arrived so that the sender can resend lost segments quickly and avoid unnecessary
retransmissions.

12

2.5 TCPEXTENSIONS FOR HIGH PERFORMANCE

2.5.1 TCP Window Scale Option

TCP performance depends not only upon the transfer rate itself. The window size and
RTT play as important role on TCP performance. A helpful quantity that can help predict
performance is the product of the transmission rate and the round-trip delay time[14],
called the Bandwidth-Delay Product (BDP). The BDP is equivalent to the recommended
amount of data that the pipe or channel can accommodate at any given time. Thus:

BDP = Bandwidth * RTT Delay

The sender should send as much data as the BDP specifies to keep the pipe full.
However, the maximum amount of unacknowledged data a TCP sender can transmit into
a network is limited by the receiver's Advertised Window size. This amount cannot
exceed the throughput. TCP throughput is given by the following formula [25]:

Throughput = Window Size / RTT

The maximum window size for standard TCP Reno is 65,535 bytes (~ 525 kilobits). For a
satellite link with a RTT of around 0.6 seconds, the throughput cannot exceed 875 kbps.
Thus, no matter how large the channel bandwidth is, the throughput will not exceed 875
kbps. For example, a DS-1 speed satellite channel using TCP Reno has a BDP of 925
kilobits. Thus using TCP Reno over such a channel will give bandwidth utilization of less
than 57%. TCP cannot fully utilize the available bandwidth because of a small
window[14]. Hence, TCP performance problems arise when the BDP is much larger than
the Advertised Window. Thus, if the maximum window size were increased to 925kbits
(~ 115,000 bytes), then the throughput would reach the speed of a DS-1.

To achieve the optimal throughput, the window size should be at least the same as the
Bandwidth-Delay Product. RFC 1323 [22] defines a set of window scaling options that
enable TCP to operate over large BDP networks including satellite links. This set
involves an option that defines a scaling factor for the Advertised Window, which
supports large window sizes up to 2°° bits. The window scaling option specifies how
many bits each side should lefi-shift the Advertised Window field in the TCP header
before using its contents to compute an Effective Window size[10].

2.5.2 Round-Trip Time Measurement (RTTM)

RTT estimates are essentially important to TCP’s reliability. Poor RTT estimation may
delay necessary retransmission or cause unnecessary retransmissions. Many TCP
implementations base their RTT measurements on a sample -of only one packet per
window. While this yields an adequate. approximation to the RTT for small windows, it
results in an unacceptably poor RTT estimate for a network with large BDP[14]. In
addition, according to Karn’s algorithm, each time TCP retransmits a segment; it stops
taking samples of the RTT and sets the next timeout value to be twice the last timeout

15

2.5.4 The Heart of TCP

The reliable transmission and flow control of data are at the heart of the TCP layer.
Within these functions, problems arise when the assumptions inherent to the above
algorithms are violated. Such violations occur over high bandwidth-delay and bit error
rate (BER) links, such as satellite networks, and the above enhancements are not
adequate to prevent these problems. The next chapter examines the characteristics of
satellite links and the violations to the TCP algorithms due to these characteristics.

17

Thus the type of link, the delays along the link and the BER will define the goodput. If
the BER is large, many retransmissions will be needed, thus reducing the goodput further,
but most importantly, increasing the time it takes to correctly send an application from
one end to another[13]. Thus, the quality of real time applications can be severely
degraded, while delays for file transfers, accessing web pages, and remote login can be
large.

-Some of the most important properties of satellite links that can affect the performance of
protocols running over them are: long delay paths, large bandwidth-delay products,
increased channel errors, channel asymmetry, variable Round Trip Times, and
Intermittent Connectivity.

3.2 SATELLITE LINK PROPERTIES AND THEIR AFFECT ON TCP

3.2.1 Long Delay Paths"

Latency in a satellite environment is generally higher than that in a terrestrial
environment. Satellite network delays are influenced by several factors. The main factor
is the orbit type. In most LEO systems, one-way propagation delays are 20~25ms. The
propagation delays increase to 110~150 ms for medium earth orbit systems (MEO) and
go up to 250~280 ms for GEO systems [6][18]. The RTT may also be increased by some
other factors in satellite networks such as on-board processing, signal handoff and, in the
future, intersatellite links. These long delays hurt interactive applications such as telnet
and remote login, as well as multimedia applications running over TCP, since the flow
control and congestion control algorithms of TCP are affected. The affect of a satellite
environment on the behaviour of TCP algorithms is discussed in the following sections.

3.2.1.1 Acknowledgments

The TCP acknowledgment is essential to the reliable delivery of data. Due to the long
propagation delay of some satellite links, it may take a long time for a TCP sender to
determine whether a packet has been successfully received at the final destination. The
sender also uses the acknowledgment as network feedback for rate adjustment for slow
start, congestion avoidance, and loss recovery. ‘

The large propagation times will delay the execution of these functions and affect TCP
throughput. The Delayed ACK suggested in RFC 1122 could make the situation worse,
especially for Slow Start. Since the data sender increases the size of cwnd based on the
number of arriving ACKs, reducing the number of ACKs slows the cwnd growth
rate[27]. According to[13], under no-loss conditions, with a window size of 10 MB and a
RTT of about 500 ms, it takes TCP about 10 seconds to fill the OC-3 pipe when delayed
ACK is used. Compare this to a time 0.5 seconds to fill an OC-3 terrestrial WAN pipe, or
2 milliseconds to fill a LAN pipe. Possible high bit error rates will cause a loss of ACK

packets, which in turn will lead to unnecessary retransmissions and diminished
throughput.

20

3.2.1.2 Congestion Avoidance

TCP uses linear increase to slowly probe the network for additional capacity after Slow
Start. Whenever losses occur, TCP congestion control mechanisms halve the transmission
rate with both the drawbacks of slowing-down the sending rate and long-lasting loss
recovery occurring. However, losses are inevitable since this linear increase mechanism
continuously increases its cwnd without any mechanisms to predict the incipient of
congestion. In fact, TCP always needs to create losses to find the available bandwidth of
the connection. This is inefficient for use over a long delay satellite link because a large
amount of time is required for loss recovery and for reaching the optimum transmission
rate after rate reduction.

Another problem arises with the linear increase: during congestion avoidance, in the
absence of loss, the TCP sender adds approximately one segment to its congestion
window during each RTT. Several researchers have observed that this policy leads to
unfair sharing of bandwidth when multiple connections with different RTTs traverse the
same bottleneck-link, with the long RTT connectiohs obtaining only a small fraction of
the share of the bandwidth[16].

3.2.2 Large Bandwidth-Delay Product

The product of bandwidth and delay determines how much unacknowledged data a TCP
sender should transmit into the network to fully utilize the capacity of the link. The delay
in this equation is the RTT, and the bandwidth is the maximum bandwidth of the slowest
link in the path. Satellite channels usually use large bandwidths (larger than many of the
terrestrial networks); factor in the long propagation delays, and the bandwidth-delay
product can be quite large, especially for GEO systems. This means that the sender and
receiver must be able to handle larger amounts of data in flight[6].

3.2.2. 1 TCP Window size

As we discussed in 2.5.1, larger windows enable TCP to better utilize the available

" bandwidth; therefore, the TCP large window extension is recommended for use in a
satellite environment[6].

The sliding window algorithm allows multiple segments to be sent in a “window” from
sender to receiver. The bandwidth-delay product is equivalent to the amount of data that
the network can at most accommodate, at any given time. The sender should send as
much data as possible to keep the pipe full. Thus, the window size should be at least the
same as the bandwidth-delay product. The larger the window, the more data can be in
transmission, and the capacity of the data link can be maintained at or near its maximum

capamty

The current maximum TCP window size is 64K. This means a TCP sender can only filla
channel with a bandwidth-delay product less than 64K. If the round trip time is 0.5

~second, the link has a transmission rate less than 1 Mbps. In other words, if the

bandwidth is larger than 1 Mbps, the link cannot be fully utilized. RFC 1323 defines a set

21

of window scaling options available to TCP implementations that operate over large
bandwidth-delay networks including satellite links.

While enlarging the window would compensate for the large bandwidth-delay product in
satellite networks, it will also provide some complications, such as increased variation of
the measured RTT and increased probability of multiple losses within a single window

because of the increased number of segments per window, and increased likelihood of -

data bursts [14][32]. As a result, the SACK option is recommended in a satellite
environment because it can help accelerate the lengthy recovery procedure. In addition,
the RTTM using the timestamp option is recommended in obtaining a more precise
measurement of RTT when using the large window option[16].

3.2.2.2 Slow Start

The slow-start period is one of the most important factors for a TCP connection’s
performance over satellite links. Slow Start is triggered at the connection establishment
phase, and after a retransmission timeout or possibly after an extended idle period.

During Slow Start, the Congestion Window (cwnd) is increased by one segment for each
ACK received. Under ideal conditions, this would yield a doubling of cwnd per RTT.
Over GEO satellites, the increase in the transmission rate will be much slower due to the
long propagation delay, because the increase of the transmission window relies on the
acknowledgment. It usually takes several seconds to reach maximum throughput [25].

When lost segments trigger congestion avoidance, the resulting throughput decrease can
continue for several minutes. Slow Start is particularly inefficient for transfers that are
short compared to the BDP of the network. In this case, TCP may never reach the full
rate available.

Large bandwidth-delay products of satellite links make slow-start threshold (ssthresh)

estimation critical. A too small ssthresh causes the majority of cwnd growth to be linear -

(very slow); a too large ssthresh increases the possibility of multiple-losses within a
window. When Slow Start resumes, the new ssthresh (old_cwnd/2) will cause the bulk of
future cwnd growth to be linear[32]. In addition, because the cwnd is roughly doubled
every RTT during Slow Start, the likelihood of a data burst is increased when using a
large window size[20].

3.2.3 Increased Transmission Errors

Signal strength attenuates proportionally to the square of the distance traveled and this
distance is large for a satellite link. Thus, the signal becomes weak before reaching its
destination. This results in a low signal-to-noise ratio and a high bit error rate. Some
frequencies are particularly susceptible to atmospheric effects such as rain attenuation. In
a satellite environment, the raw BER usually ranges from 102 to 10, With the aid of
Forward Error Correction (FEC) schemes the BER ranges from the 107t0 107 range[18].

This is much higher than in terrestrial environments where the typical BER is better than

10797151

22

The use of FEC coding on a satellite link is recommended in RFC 2488 [25] to reduce the
link BER[6]. However, FEC does not come without cost. FEC requires additional
hardware and uses some of the available bandwidth. It can add delay and timing jitter due
to the increased complexity. In addition, there are some situations where FEC cannot
solve the problem such as noise caused by rain fade[6].

3.2.3.1 Slow Start

The high BER of satellite links makes slow start even more inefficient. If there is a loss
due to corruption rather than congestion, Slow Start will make the cwnd return to its
minimum value and start over again. This action will cause the slow-start to prematurely
terminate and may have a significant impact on throughput for the remainder of the
connection.

3.2.3.2 RTO based on RIT Estimation

High BER and increased delay variances in satellite links can adversely affect TCP timer
mechanisms. One such example is the RTT estimation algorithm needed to set the RTO
of TCP. Poor RTT estimation may trigger unnecessary retransmissions, or -delay
necessary retransmission. According to Karn’s algorithm, each time TCP retransmits a
segment, it stops taking samples of the RTT, and sets the next timeout value to be twice
the last timeout. for subsequent packets. Simply doubling the timeout value will cause
TCP to wait too long to determine a loss and delay the retransmission during frequent

loss periods. This variability affects the timers directly, resulting in false timeouts and-

unnecessary retransmissions, yielding incorrect wmdow sizes, and thus reducing the
overall bandwidth efficiency.

3.2.3.3 Congestion vs. Corruption

Différentiating between congestion and corruption is particularly important in a high

- BER environment because the actions that TCP should take in the two cases are entirely

different. In the case of congestion, TCP sender should immediately reduce its congestion
window to avoid making the congestion worse, and retransmit the lost segment at the
appropriate time. In the case of corruption, TCP should merely retransmit the damaged
segment as soon as its loss is detected. There is no need for TCP to reduce its congestion
window; however, there is no specific mechanism defined in TCP to differentiate
between congestion losses and link corruption losses. It always interprets segment loss as
a sign of congestion and reduces the rate at which it is transmitting. This greatly dégrades
performance when the loss is caused by corruption. Further research is needed into
mechanisms that allow TCP to respond to corruption loss in an appropriate manner.

3.2.4 Channel Asymmetry

Satellite communication networks are often constructed asymmetrically due to the
expense of the equipment used to send data to satellites and various engineering
tradeoffs. Some studies show that it is not uncommon for the ratio of downlink to uplink

23

capacity to approach 100 or more [15][19]. Another situation involving channel
asymmetry is sending all outgoing traffic over a slow terrestrial link such as a dial-up
modem channel, and receiving incoming traffic via the satellite channel.

TCP has not been designed for asymmetric networks. If a satellite is transmitting data

over a high capacity channel, the returning acknowledgements may overrun the reverse

channel. For example, if the data sender uses 1500 byte segments, and the receiver
generates 40 byte acknowledgments (Ipv4, TCP without options), the reverse link will
congest with ACKs for asymmetries of more than 75:1 if delayed ACKs are used, and
37:1 if every segment is acknowledged[16]. The congestion of ACKs increases the RTT,
which in turn increases end-to-end delay. Current congestion control mechanisms are
aimed at controlling the flow of data segments, but do not regulate the flow of ACKs.

3.2.5 Variable Round Trip Delays

Since the coverage of LEO systems is relatively small, satellite constellations with
dynamic inter-satellite routing are required to provide continuous coverage over larger
regions. This factor increases end-to-end delay variability in satellite communications
since the delay will change depending on the number of satellites, the propagation
distances of the paths, constellation topology, inter-satellite routing algorithms, and so
on. Onboard processing overhead and buffering can also increase the delay variability.
Variable delay can cause difficulty in RTT estimation, resulting in false timeout or
unnecessary retransmission. In the case of large windows, TCP’s RTTM mechanism is
recommended to mitigate the delay variance in a satellite environment.

3.2.6 Intermittent Connectivity

For satellites, connectivity on a given communication link is often intermittent. Contact
may be interrupted for a number of reasons, including ground station handoffs, changing
network topology, antenna obscurations, weather, and orbit dynamics.

The intermittent connectivity of satellite links causes serious problems for TCP. If the
TCP sender does not receive the expected acknowledgments, it will invoke congestion

control algorithms and repeatedly retransmit and back off its retransmission timer. If the -

maximum retransmission threshold is reached before connectivity is restored, the
connection will be aborted. Drastically delayed acknowledgments may cause the same
problem on TCP as the intermittent connectivity feature described above.

24

4. IMPROVING SATELLITE LINK PERFORMANCE WITHOUT
MODIFYING TCP

The IETF and other network specialists have specified the problems of using TCP over

. GEO satellite links and outlined possible solutions. In this section, we examine some of

the possible solutions that can be used to enhance satellite link performance without
enhancing TCP mechanisms and modifying TCP behaviour.

4.1 APPLICATION LEVEL

Some of TCP’s shortages when used over long-delay networks can be avoided if Internet
applications use TCP more effectively.

4.1.1 Multiple TCP Connections

This method has been used at the application level to overcome TCP’s inefficiencies in a
satellite environment. It uses multiple TCP connections to transfer a given file. This
method accelerates the growth of the aggregate cwnd, but increases the aggressiveness of
the transfer and hence increases the losses in the network. This may seem to be mitigated
by the smaller aggregate cwnd decrease during congestion avoidance. However, this
smaller decrease will defeat the purpose of the congestlon avoidance mechanism if
congestion, not corruption is the culprit of the losses in the network. An adaptive
mechanism has been proposed to change the number of connections as a function of
network congestion [16][28].

4.1.2 Persistent TCP Connections -

Persistent TCP connections are another solution at the application level, which can
accelerate the transfer of Web pages. A typical Web page consists of many small objects.

"It usually takes tens of seconds to fetch such a page over a GEO satellite if independent

TCP connections are used to fetch every object in a page[34]. By using persistent TCP
connections, the client establishes a persistent connection and asks the server to send all
the objects on it. Only the first object suffers from the long slow start phase, and the
remaining objects are transferred at a high rate[28].

4,1.3 Application Layer Proxies

Some application protocols employ many unnecessary round trips, lots of headers and/or
inefficient encoding which may have a significant impact on performance when using on
a long-delay link. By using application layer proxies in an intermediate node, this
unnecessary overhead can be reduced and the performance of both the application
protocol and TCP can be improved[36]. Application-specific proxies can use domain
knowledge to match network constraints and reduce the effect of latency[34]. Such
proxies are widely used in today’s Internet for web caching and relaying Mail Transfer
Agents.

25

There are two possible ways to handle intermittent connection in TCP splitting, The first
one is to hide the link disconnection in the intermediate gateways. The intermediate
gateways employ a modified TCP version, which retains the state and all
unacknowledged data segments during the period of disconnection and then performs
local recovery when the link is restored. Another way to handle this problem is that the
-sender-side gateway retains the last ACK before losing the connection, so that it can shut
down the TCP sender’s window by sending the last ACK with a windéw set to zero.
Thus, the TCP sender will go into persist mode, sending periodic probe packets without
repeated time-out and retransmissions[36].

43 LINKLAYER

Link layer approaches are proposed to reduce the BER of the satellite channel. One well-
known mechanism is Automatic Repeat Request (ARQ). The link layer fragments user
datagrams into smaller link-layer frames and ensures the reliable delivery of these frames
using a variety of approaches, such as stop-and-wait, go-back-N, or selective-repeat.
ARQ is efficient when losses are not frequent and propagation delay is not important
[18][28].

All ARQ schemes add to channel delay and delay variability. Furthermore, ARQ may
interfere with TCP mechanisms[16][28]. If the link layer does not provide in-sequence
delivery of packets, TCP packets following the loss keep arriving at the destination,
triggering the transmission of duplicate ACKs. These duplicate ACKs reach the source
while the link layer is retransmitting the packet. This causes an unnecessary window
reduction. The proposed solution to this problem is to use a TCP-aware ARQ protocol.
The link layer suppresses the duplicate ACKs so that they don’t reach the source. This
solution is applicable only when the lossy link is the last hop to the destination. If the
lossy link is followed by other routers, congestion losses will be hidden[28].

44 OTHER MECHANISMS
44.1 TCP Agent

This kind of solution tries to improve link quality by retransmitting packets via a TCP
agent located in the router at the input of the lossy link. The TCP agent keeps a copy of
every data packet. It discards this copy when it sees the ACK of the packet, and it
retransmits the packet on behalf of the source when it detects a loss. This technique has
been proposed for terrestrial wireless networks where the delay is not so important as to
require the use of FEC[28].

In fact, this solution is no other than link-level recovery implemented at the TCP level.

Similar to a link-level solution, because the TCP agent hides all losses, congestion losses -

must not occur between the TCP agent and the destination. Otherwise, without a signal of

- 28

.

* the congestion, the TCP sender will continue to increase the sending rate and make the

congestion worse[28].

4.42 Path MTU Discovery

The use of Path MTU (Maximum Transmission Unit) Discovery is recommended in RFC
2488 to allow TCP to use the largest possible MTU over the satellite channel. The sender
transmits a packet with a certain size appropriate for the local network and sets the IP
“Don’t Fragment” (DF) bit. If the packet is too large, a router will return an ICMP
message to the TCP sender indicating the size of the largest packet that can be forwarded
by the router[6]. - ‘

Large packets reduce the packet overhead by sending more data bytes per overhead byte.
In addition, the TCP’s congestion window is increased on a segment basis, rather than a
byte-by-byte basis; therefore, larger segments enable TCP senders to increase the
congestion window more rapidly, in terms of bytes, compared to smaller segments.

The disadvantage of Path MTU Discovery is that it may spend a large amount of time
determining the maximum allowable packet size on the network path between the sender
and receiver. Satellite delays can aggravate this problem. Storing the MTU values can
reduce latencies for future connections in relatively static topologies[18].

29

5.3 CONGESTION AVOIDANCE

TCP in its congestion avoidance phase repeatedly increases the load it imposes on the
network until congestion occurs, and then it backs off from this point. TCP congestion
avoidance implements linear increase and multiplicative decrease algorithms to avoid
incurring congestion and to recover from congestion loss. These algorithms have a
negative impact on TCP performance in a satellite environment. The linear increase
slowly probes the network for additional capacity, which is especially inefficient over
long-delay satellite channels because of the large amount of time required for the sender
to obtain feedback from the receiver. On the other side, the multiplicative decrease halves
the transmission rate whenever loss occurs. It is too conservative when used with a slow
increase algorithm like linear increase. It causes more waste of bandwidth if the loss is
due to corruption instead of congestion.

An appealing alternative is to predict when congestion is about to happen and then to
reduce the rate at which hosts send data just before packets start being discarded[10].
Solutions to congestion control for TCP address the problem either at the intermediate
routers in the network or at the endpoints of the connection[29].

5.3.1 Router-based support

Router-based support for TCP congestion control can be realized by random early
detection (RED), a solution in which packets are dropped in a fair manner once the router
buffer reaches a predetermined size. RED is to be used in conjunction with TCP, which
currently detects congestion by means of packet loss.

As an alternative to dropping packets, Explicit Congestion Notification (ECN) allows
routers to inform TCP senders about the imminent congestion so that the source will slow
down its sending rate. There are two major forms of ECN: backward ECN (BECN) and
forward ECN (FECN). A router employing BECN transmits messages directly to the data
originator informing it of congestion. The arrival of a BECN signal may or may not mean
that a TCP data segment has been dropped, but it is a clear indication that the TCP sender
should reduce its sending rate. FECN routers mark data segments with a special tag when
congestion is imminent, but forward the data segment. The data receiver then echoes the
. congestion information back to the sender in the ACK packet.

ECN may be part of the solution that helps TCP react properly on congestion loss and
corruption loss. If all the sources, receivers, and routers are compliant, congestion losses
will considerably decrease. However, on a satellite link, the main losses are mostly
caused by problems other than congestion. Given that non-congestion losses require only
retransmission without window reduction, the disappearance of congestion losses may
lead to the definition at the source of a new congestion control algorithm, which reacts
less severely to losses. However, if some non-compliant routers cannot provide the
source with the required information, TCP still needs to consider losses as signs of
congestion and reduce its window accordingly[28].

34

5.3.2 Source-based Congestion Avoidance

Source-based congestion avoidance can detect the incipient stages of congestion from the
end hosts before losses occur. The general idea of these techniques is to watch for some
signs from the network that a router’s queue is building up and that congestion will occur

if nothing is done about it.

One approach takes advantage of the fact that there is a measurable increase in the RTT
as packet queues build up in the network’s routers. For every two RTTs, this approach
checks to see if the current RTT is greater than the average of the minimum and
maximum RTTs seen so far. If it is, then the algorithm decreases the congestion window
by one-eighth; otherwise, the window size is increased as usual.

Another proposal does something similar. However, the decision as fo whether or not to
change the current window size is based on the. changes to both the RTT and the window
size. The window is adjusted once every two round-trip delays based on the product:

(CurrentWindow — OldWindow) * (CurrentRTT — OIdRTT)

If the result is positive, the source decreases the window size by one-eighth. If the result
is equal to or less than zero, the source increases the window size by one maximum '
packet length. Note that the window changes during every adjustment. Hence, it
oscillates around its optimal point.

In addition to the change of RTT, another sign of network congestion is the flattening of
the sending rate. Rate control congestion approaches change the current window size by
examining the changes in the throughput. One proposal is to increase the window size by
one packet every RTT and compare the throughput achieved to the throughput when the
window was one packet smaller. If the difference is less than one-half the throughput
achieved when only one packet was in transit — as was the case at the beginning of the
connection — the algorithm decreases the window by one packet. An alternative solution
calculates throughputs differently, and instead of looking for a change in the throughput
slope, it compares the measured throughput rate with an expected throughput rate. This
solution is implemented as TCP Vegas. The results in terrestrial networks using TCP
Vegas indicate over 30 percent improvement in throughput and much fewer losses than
TCP Reno does. However, more studies are necessary for tuning TCP Vegas in satellite
networks[18].

A problem with rate-control and relying upon RTT estimates is that. variations of
congestion along the reverse path cannot be identified and separated from events on the
forward path. Therefore, an increase in RTT due to reverse-path congestion or even link
asymmetry will affect the performance and accuracy of these algorithms[29]. A proposal
in [29] makes use of an additional timestamp returned from the receiver to estimate the
level of queuing in the bottleneck link of a connection. The receiver attaches a timestamp
in every ACK packet that specifies the arrival time of the packet at the destination. The -
sender then calculates the relative delay, which is defined as following:

35

DFj,i =Ry —S;;i
Where
R;i: is the time interval between the receipt of packet j and i,
S;ji: is the time interval between the transmission of packet j and i,
D% represents the change in forward delay experienced by packet j with respect to
packet i.

From the relative delay measurement the sender can determine whether congestion is
increasing or decreasing in either the forward or the reverse path of the connection.

5.3.3 Controlling ACK Congestion

There are two prbposals addressing the ACK congestion: ACK Congestion Control and
ACK filtering,

ACK Congestion Control (ACC) extends the concept of flow control for data segments to
acknowledgment segments. When detecting ACK congestion, the receiver dynamically
adjusts the rate of acknowledgments using the multiplicative decrease and additive
increase as in general congestion control mechanisms. There are two ways to detect ACK

congestion: Explicit Congestion Notification and Relative Delay mechanism discussed in

5.3.1 and 5.3.2.

In ACK Filtering (AF), the bottleneck router in the low speed link will scan the queue for
redundant ACKs for the same connection, i.e. ACKs that acknowledge portions of the
window, which are included in the most recent acknowledgement. All of these “earlier”
ACKs are removed from the queue and discarded.

Both of the two mechanisms may cause unwanted side effects, such as increased

likelihood of segment bursts from the data sender, and the decrease of sender’s cwnd
growth rate even if the data link is non-congested. ACK spacing is suggested to reduce
the burstiness by smoothing out the flow of ACKs. Finally, ACK Reconstruction (AR) is
recommended when using AF. However, AR requires sharing and storage of TCP state
information in the exit router, and more research is needed before implementing AR.

5.3.4 Reducing Unfairness of Linear Increase

Another problem with the linear increase occurs during congestion avoidance. In the
absence of loss, the TCP sender adds approximately one segment to its congestion
window during each RTT. Several researches have observed that this policy leads to
unfair sharing of bandwidth when multiple connections with different RTTs traverse the
same bottleneck link, with the long RTT connections obtaining only a small fraction of
their fair share of the bandwidth. The solution to the unfairness of linear increase at the
TCP sender is to change the window increase policy. '

The “Constant-Rate” increase policy attempts to equalize the rate at which TCP senders
increase their sending rate during congestion avoidance. However, the proper selection of

36

‘a constant for the increase rate is an issue. This policy may be difficult to incrementally

deploy in an operational network[16].

The “Increase-by-K” policy can be selectively used by long RTT connections. It simply
changes the slope of the linear increase, with connection over a given RTT threshold

- adding “K” segments to the congestion window every RTT, instead of one. This policy,

when used with small values of “K”, may be successful in reducing the unfairness while
keeping the link utilization high when a small number of connections share a bottleneck .
link[16].

54 LOSS RECOVERY

The large BDP.causes more losses for TCP in satellite environment. Because of the
conservative congestion control mechanisms and the long delayed feedback from the
receiver, TCP takes a long time to recover from congestion loss. Selective ACK (SACK)
is recommended in RFC 2488 to help TCP survive multiple segment losses within a
single window without incurring a retransmission timeout. Fast recovery with SACK is
more efficient than fast recovery with or without partial ACK scheme[25]. However,
SACK is generally viewed as a method to address data recovery. It has not been widely
investigated to control congestion while recovering from dropped segments[35]. Fast
recovery with SACK is unable to prevent excessive timeouts under extreme losses[18].
One proposed solution, called Forward Acknowledgment (FACK), works in conjunction
with the SACK option to add more prec1se data transmission control during the recovery
phase.

FACK uses additional information provided by the SACK option to keep an explicit
measure of the total number of bytes of data outstanding in the network. It introduces two

. new state variables, send_fack and retran_data. The send fack is to reflect the forward- -

most data successfully received by the receiver. The value of send_fack is equal to the
highest sequence number known to have been received plus one. The retran_data is used
to hold the number of outstanding retransmitted data segments in the network. For
convenience, a variable awnd is used to denote the estimate of the actual quantity of data .
outstanding in the network, and send_nxt denotes the sequence number TCP is about to
send next. When all unacknowledged segments have left the network:

awnd = send_nxt —send_fack
During reeoVery, retransmitted data must also be included in thecomputation of awnd:
| awnd = send_nxt — send_fack + 1'et1'a11_~date
The values of these variables are adjusted as following:
-- If TCP retransmits old data, it will increase retran_data;

-- If TCP sends new data, it advances send_nxt;
-~ When receiving an ACK, it decreases retran_data or advances send_fack.

37

If the sender receives an ACK which results in a send_fack beyond the value of send_nxt
at the time a segment was retransmitted, the sender know that the segment which was
retransmitted has been lost[35]. In another words, FACK detects the loss of a
retransmission by the receipt of a segment that was sent later than the retransmitted
segment while the retransmitted one is unacknowledged.

The current implementation of FACK is FACK with rate halving[33]. The rate-halving
algorithm adjusts the congestion window by spacing transmissions at the rate of one data
segment per two segments acknowledged over the entire recovery period, thereby
sustaining TCP’s self-clocking and avoiding transmission burst. The FACK algorithm is
triggered after receiving three duplicate SACK blocks. The missing segment indicated in
SACK is retransmitted. The connection will perform rate halving for one RTT after the
retransmission. For every two ACKSs received during recovery, it checks for any hole that
equals or exceeds the retransmit threshold and retransmits that segment. If no segment
exceeds the retransmit threshold, new data can be sent if the cwnd allows[37].

The FACK mechanism separates the recovery algorithm from the retransmission
algorithm, providing a simple and direct way to use SACK to improve congestion
control. In addition, FACK causes less data burst than fast recovery with SACK and is
more robust against heavy losses[18]. Studies showed the performance of FACK is much
closer to the theoretical maximum for TCP than either TCP Reno or fast recovery with
SACK extensions. Although more studies are needed for using FACK over noisy and
long-delay satellite links, it is expected to provide good performance gains [18] [16].

5.5 DETECTING CORRUPTION LOSS
5.5.1 Explicit Corruption Notification

This approach uses a new “corruption experienced” ICMP error message generated by
routers that detect corruption. These messages are sent in the forward direction, toward
the packet’s destination, rather than in the reverse direction as is done with ICMP Source
Quench Messages. Each TCP receiver that gets this information must forward it to its
respective sender. The TCP sender then assumes that packet loss is due to corruption
rather than congestion for two.round trip times (RTT) or until it receives additional link
state information. However, in shared networks, ignoring segment loss for two RTTs may
aggravate congestion by making TCP unresponsive[16].

5.5.2 Detecting Corruption Loss in TCP
In reference [21], a non-congestion packet loss detection algorithm is proposed. This

introduces a feedback mechanism from the receiver to inform the transmitter of packet
losses that are not due to congestion.

The algorithm distinguishes packet loss due to congestion from a loss due to link errors.
If a router within the network drops a packet, a number of consecutive packets will

38

usually be dropped; if a packet is lost due to random link errors, the probability of losing
the next packet is independent of previous losses and depends only on the link BER. In
this case, the next packet will arrive without a relative delay.

This algorithm at the receiver waits for a calculated period after a packet loss is detected,
before it decides whether to send an indication to the transmitter. This is called the back-
off timeout (BTO). The BTO is calculated in a similar way to the TCP RTO.

. The errors on a link may result in the loss of a numbér of consecutive packets; however

most satellite links may be accurately modeled by a random packet loss model, and
therefore there is only a low probability of two or more consecutive packets being
corrupted. B is used to denote the number of consecutive packet losses, an indication of
congestion. A value from 2 to 4 for p is recommended.

On reception of an out-of-order segment, the receiver checks whether the number of
segments that have been lost is less than P, and the following segments arrive soon with
an interarrival time less than BTO. If this happens, the receiver will start a BTO timer.
When this timer expires without reception of the missing segments, the receiver sends a
non-congestion, packet loss indicator in the TCP header back to the transmitter. The
transmitter then retransmits the lost packets without reducing the sending rate.

5.6 HANDLING INTERMITTENT CONNECTIVITY

Rate-based pacing (RBP) is a technique used to maintain an intermittent connection. In
the absence of incoming ACKs, the data sender temporarily paces TCP segments at a
given rate to restart the ACK clock. Upon receipt of the first ACK, pacing stops and
normal TCP ACK clocking resumes[16].

A more specific solution is proposed in[19]. The mechanism for identification of the

onset of a link outage is link dependent. In general, a link outage may be identified at the
ground station by loss of carrier lock or the received signal strength falling below a
threshold. Once the ground station (or spacecraft) detects the link outage, it sends a link- -
outage ICMP message to any host on its own side of the served link from which it
receives traffic. The ICMP message is triggered by incoming traffic. It contains the TCP
header of the packet that caused the message to be generated. The sender’s response to a
link outage signal is to enter persist mode, sending periodic probe packets. During this
period, TCP does not repeatedly time-out, retransmit, and back off the retransmission
timer. Instead, it suspends its timers and ceases transmitting, except for the occasional
probe packets. TCP exits persist state when it receives a link-restored ICMP message
from the ground station, or when one of the probes is acknowledged.

39

5.7 SHARED TCP STATE INFORMATION AMONG SIMILAR
CONNECTIONS

TCP includes a variety of parameters, many of which are set to initial values that can
severely affect the performance of TCP connections traversing satellite links. Various
suggestions have been made to change these initial conditions in an effort to support TCP
over satellite links. However, it is difficult to select any single set of parameters which is
effective for all environments.

An alternative solution to attempting to select these parameters appropriately is sharing
state information across TCP connections and using this information when initializing a
new connection. Sharing TCP state information can automatically tune TCP to the
- surrounding environments and coordinate multiple TCP connections sharing a satellite
link. For example, if all connections to a subnet result in extended congestion window of
1 megabyte, it is probably more efficient to start new connections with this value, than to
rediscover it using slow start that may cost dozens of round-trip times. However, several

problems need to be addressed before using this approach, such as what information to -

share, with whom to share, how to share it, and how to age shared information[16]. At
this time, CRC is investigating TCP state sharing and testing various algorithms and
possible solutions with the help of the OPNET simulation tool.

40

6. CONCLUSIONS

" TCP has several problems when running over satellite links. Large bandwidth-delay

product and high bit error rate are the two major factors that affect most TCP
mechanisms thus creating problems over satellite links.

Solutions to some of these problems are still not clear. Some problems have suggested
solutions that have not been fully proven and tested, while other solutions that have
become part of IETF standards are not yet widely implemented. For example, all TCP
versions use the sliding window and slow start algorithms, but only the newly modified
versions such as TCP Reno use the TCP mechanisms such as window scaling and larger
initial window size described earlier.

The goal of all modifications and enhancements is to improve bandwidth efficiency and
application response time, without negatively affecting the end-to-end reliability offered
by TCP. For this reason, solutions such as TCP splitting and TCP spoofing are difficult to
implement if one wishes to maintain end-to-end transport reliability. The coupling of
congestion avoidance and data corruption also poses difficulties in maintaining end-to-
end reliability.

More modifications and extensions to these enhancements are being examined and tested,
but it will be some time before they are reliable enough to become standards. One such
modification is sharing TCP state information, which can improve bandwidth efficiency
while maintaining end-to-end reliability. Such modifications and extensions will play an
important roll in using TCP over satellite networks.

41

7. RECOMMENDATIONS

In this document, many possible algorithms which can solve various problems that TCP
connections encounter over satellite where examined. The enhancements recommended
by the authors are increasing the initial advertised window size, window scaling such that
the BDP is satisfied, and the SACK mechanism. These enhancements should be

‘implemented and be part of all standard TCP stacks for connections over satellite links.

Finally, one algorithm that must also be investigated is the sharing of state information
across TCP connections and using this information when initializing a new connection.

This algorithm can improve bandwidth efficiency while ensuring the end-to-end

reliability of TCP. The above mechanisms will have a profound effect on connections
using TCP over long delay paths, and will improve the bandwidth efficiency of satellite
networks.

42

DATE DUE
DATE DE RETOUR

i

1

i

L]

