
TK5102.5
R48E
#2005-003

Uanactâ*
CAUTION

This information is provided with the
express understanding that

proprietary and patent rights will
be protected C-IC

1:1 Communications Centre de recherches
Research Centre sur les communications
Canada Canada
An Agency of
Inaustry Canada

Un organisme
d'Industrie Canada

Flow Attributes for Use
in Traffic Characterization

Annie De Montigny-Leboeuf

CRC Technical Note No. CRC-TN-2005-003
Ottawa, December 2005

IC

TK5102.5
R48E
#2005-003

Uanacrà

CAUTION
This information is provided with the

express understanding that
proprietary and patent rights will

be protected cic

iai Communications Centre de recherches
Research Centre sur les communications
Canada Canada
An Agency ol
Industry Canada

Un organisme
d'Industria Canada

Flow Attributes for Use
in Ira flic Characterization

Annie De Montigny-Leboeuf

CRC Technical Note No. CRC-TN-2005-003
Ottawa, December 2005

IC

Flow Attributes For Use In Traffic
Characterization

Annie De Montigny-Leboeuf

CRC Technical Note No. CRC-TN-2005-003
Ottawa, December 2005

CAUTION

This information is provided with
the express understanding that

proprietary and patent rights will
be protected

ind
c1a

- (Wean

1 5 1013

1ndustne
Canada

Acknowledgements

This work was funded by the Communications Research Centre Canada (CRC) and conducted within the CRC
laboratory dedicated to research in network security. The author would like to thank the Royal Military College of
Canada (RMC), more specifically Scott Knight and his team, for making the HTTP Reverse Tunnel tool available
to us to test against. I would like to thank my co-workers, Frédéric Massicotte and Tim Symchych, for their ideas,
support and valuable feedback. I am also grateful to the people of the Information Networks and Systems team
(DINFO) at CRC for their help in collecting data for evaluation of the approach.

Abstract

Attackers disguise their activities in order to evade detection and circumvent network security measures. The
work presented in this document builds upon earlier work on traffic profiling to reveal the nature of a flow based
on its behaviour. An important step, which is the focus of the document, consists of identifying relevant and
discriminative flow attributes for use in traffic characterization. We have developed a number of indicators that
portray essential communication dynamics, based solely on information that can be gathered from monitoring
packet headers. The indicators are lightweight and the characteristics measured can be interpreted from domain
lcnowledge. A tool is under development at the Communications Research Centre Canada to demonstrate the
relevance of the flow attributes in characterizing network tra ffic. In particular, the tool includes the capability to
describe the traffic and recognize a number of ubiquitous protocols. Several of the protocols we experimented
with are in essence very similar, but were found to be distinguishable with the indicators presented herein.
Preliminary assessment shows us that the derived tool is useful as is, and may lead with further research to a
number of applications.

Résumé

Les attaquants déguisent leurs activités afin d'échapper à la détection et contourner les mesures de sécurité de
réseau. Le travail présenté dans ce document se fonde sur des travaux de recherche visant à révéler la nature des
flots de trafic en fonction de leur comportement. Une étape importante, qui est le point focal de ce document,
consiste à identifier les propriétés adéquates et distinctives des flots de trafic dans le but de faire la caractérisation
du trafic. Nous avons développé un certain nombre d'indicateurs qui exposent les dynamiques essentielles des
communications, et ce en fonction seulement d'informations disponibles dans les en-têtes des paquets. Les
indicateurs sont simples et les caractéristiques mesurées sont interprétables par un humain. Un outil est en cours
de développement au centre de recherches sur les communications (CRC) pour démontrer la pertinence des
attributs dans la caractérisation du trafic de réseau. En particulier, le prototype comprend une fonction permettant
de décrire le trafic et de reconnaître divers protocoles omniprésents dans les réseaux. Plusieurs des protocoles
avec lesquels nous avons expérimentés sont essentiellement très semblables, mais se sont avérés différentiables
grâce aux indicateurs présentés dans ce document. Une évaluation préliminaire nous montre que l'outil est utile tel
quel et peut mener, avec davantage de recherche, à un certain nombre d'applications.

in

Table of contents

Acknowledgements ii

Abstract iii

Table of contents iv

List of figures vi

1 Introduction 1

2 Background 2
2.1 Notion of Flow 2
2.2 Flow Granularity 2
2.3 Flow Expiry 2
2.4 Flow Attributes 2
2.5 Well known Flow Collectors 3
2.6 Flow Definition in this work 3

3 Related Work 3
3.1 Flow attributes survey 3
3.2 Principles of our Approach 6

4 Description of the Flow Attributes 8
4.1 Pre-processing 8
4.2 Deriving the Flow Attributes 8

4.2.1 Discrete Distribution Attributes for payload and inter-packet delay 10
4.2.2 Characterizing regularity in payload and transmission rate 10
4.2.3 Characterizing interactivity: command-line versus keystrokes 11
4.2.4 Characterizing data transfer 12
4.2.5 Characterizing directional dynamics 12

4.2.5.1 Conversations and transactions 13
4.2.5.2 Characterizing conversations 14
4.2.5.3 Unique versus multiple transactions 14

4.2.6 Characterizing block ciphers 15

5 Special-purpose Recognizers 16

6 Evaluation Experiment 18

7 Evaluation Experiment using a Subversive Tool 21

iv

8 Flow Descriptor 23

9 Current State and Future work 24

10 Conclusions 25

References 26

Appendix: Recognition Criteria 28

1 HTTP web browsing 28

2 HTTPS web browsing 29

3 IMAP 30

4 POP 31

5 SMTP 32

6 SSH 33

7 TELNET 33

8 RLOGIN 34

9 FTPcommand 34

10 FTPdata 35

11 CHATMSN 35

12 TCPaudiostream 36

V

List of figures

Figure 1. Overview of the three step analysis included in the proof of concept tool 7

Figure 2. Conceptual illustration of discrete distribution 10

Figure 3. Illustration of directional patterns based on non-empty packets 13

Figure 4. Proportion of flows, packets and bytes per application 19

Figure 5. HRT coupled with netcat to create a chat session 21

Figure 6. Data disguise example as produced by HRT 22

Figure 7. Flow Description 24

List of tables

Table 1. Lee and Stolfo: Intrinsic Features of Network Connection Records 4

Table 2. Paxson and Zhang: Flow Attributes for detecting keystroke-interactive traffic 5

Table 3. Hernández-Campos et al.: 26 Flow Attributes used for separating traffic 6

Table 4. Attributes measured over the whole flow 8

Table 5. Attributes measured for each direction of the flow 9

Table 6. Attributes as currently used by the Recognizers and Traffic Descriptor 17

Table 7. Summary of the network traffic trace used for the preliminary evaluation 18

Table 8. Estimating Errors on traces consisting of traffic the tool is programmed to recognized 20

Table 9. Count of misclassified flows in traces consisting of other traffic 20

Table 10. Commands and Traffic flows produced using HRT as a chat session 22

Table 11. Outcome of the behavioural analysis tool on the HRT chat sessions 23

vi

I Introduction
Thousands of networked applications flow daily over networks used by governments, industry, and private users. Attacks can
be hidden within these flows by disguising malicious network traffic to appear to be legitimate. Generally, the TCP or UDP
port numbers over which communication is established can be mapped to specific networked applications. For instance TCP
port 80 is usually associated with HTTP. However, it must be assumed that intruders will masquerade unauthorized activity
by using non-standard ports or standard ports in non-standard ways to avoid detection. Authorized inte rnal users may also
attempt to hide activities that violate organizational network security policy. The authors of [1] describe some well illustrated
scenarios by which malicious internal or external users can attempt to disguise the traffic.
We note here that it is not necessary to be a skilled hacker to disguise traffic. Peer-to-peer applications are easy to deploy and
many include disguise capabilities [2]. There also are inexpensive software programs [3] users can installed on their PC to
access services otherwise blocked by the firewalls.

Developing a dependable method for classifying flows is a difficult problem that requires extensive research. We no longer
can reliably identify applications based on the port numbers now that a growing number of applications have the ability to
disguise their activity through the use of arbitrary ports. While payload analysis is a possible approach, it can be resource
intensive if exhaustive payload examination is performed; or easily defeated if only minimal decoding is done. Moreover,
payload .decoding methodologies can only identify protocols for which we have a priori lcnowledge. On the other hand,
behavioural analysis can recognize communication patterns. When the methods do not rely on payload analysis, they remain
applicable even in cases where the application layer is unavailable (or not visible).

There is a pressing need for alternatives to correctly identify network activities. The Network Security Research Group at the
Communication Research Centre (CRC) 1 is worlcing to identify flows of information that disguise abuses and attacks.
Research challenges include uncovering unauthorized activities in high-speed, high-volume networks and within protocols
that obscure the details of the information carried. In this work, we address the problem of behavioural traffic
characterization. The ultimate goal is to develop techniques that can be implemented in a tool that will help identify the
network activities and provide useful insight into the traffic. Such a tool may particularly be useful in recognizing the
aftermath of a successful attack, when other methods to detect and prevent intrusions have failed. The more insight we have
into network flows, the better we can perceive telltale signs of suspicious activities.
We had set the following criteria as guidelines for our approach:

• Lightweight measurements. Develop traffic indicators derived with minimal computational complexity.

• Interpretable measurements. The characteristics and their representations must be meaningful.

• Alternative to payload decoding. The approach must not rely on having access to the payload of packets.

A survey of related research on traffic classification indicated that most approaches that do not rely on payload analysis take
as input basic flow metrics (e.g. average packet size, flow duration, recurring use of addresses/ports). These approaches focus
mainly on the classification algorithms. To further increase the distinguishing capabilities of non-payload analysis, we felt it
was necessary to go back a step and identify other characteristics of traffic behaviour, and derive appropriate ways to
measure these characteristics. Therefore the primary issue we chose to address was the identification of relevant flow
attributes by which a great variety of network applications could be distinguished. Our main contribution to the research is
the identification of about 40 flow features with discriminative power. Not only are the flow features discriminative, but they
reveal the behaviour of the flows and thus can help an analyst investigate unknown flows. These features were constructed
following a domain lcnowledge approach and thus can be interpreted meaningfully. We feel it is very important to incorporate
domain lcnowledge to direct feature selection in order to determine the pertinence of an observed pattern.
To demonstrate the relevance of the flow attributes in characterizing networked applications, we developed criteria to
recognize applications and describe the flow activity. While broad classes of traffic can be defined based on our flow
features, we find that the discriminative power of those features is strong enough to distinguish among similar traffic flows
(e.g. distinguish among e-mail protocols). We have developed a toolset based on these indicators to help identify the network
activities, and if traffic is not recognized, then to provide useful insight into the traffic behaviour. We provide this useful
insight by means of a short description of the traffic behaviour, aiming to reveal the way a networked application is used.
Because we start with discriminative features, only minimal effort was required to derive the profiles of a number of
ubiquitous protocols. This has convinced us that when flow attributes are meaningful and discriminative, lightweight rule sets
can be defined to classify flows. As will be presented later in the document, traffic is currently classified using simple rule

The Communications Research Centre is an Agency of Industry Canada and is located in Ottawa, Ontario, Canada <www.crc.ca>.

1

sets derived from the flow features. Alternative classification algorithms could also be used if these are shown to be more
accurate. Developing the classification rules was not the focus of the project at this present stage, therefore the rules provided
in this document should only be viewed as a starting point for further research.
The method presented herein does assume that the monitor sees every packet (or at least most packets) in both directions of a
communication. For this reason the methodology is typically more appropriate when the monitor is located at the edge of a
network as opposed to somewhere in the core of the internet, where packets of a given flow may take various paths not
necessarily visible to the monitor.

The remainder of the document is organized as follows. Section 2 provides background on traffic flows and specifies our
definition of a flow. Section 3 discusses related work on flow attribute selection and traffic characterization. Section 4
represents the core of the document and describes how we derived the flow attributes. To evaluate the usefillness of the flow
attributes identified, we developed lightweight criteria to recognize a number of ubiquitous protocols as presented in Section
5. Sections 6 and 7 discuss results obtained from network traffic generated by a subversive tool. Section 8 describes how the
flow features can also be used to not only classify the traffic but also to provide a human interpretable description of the
traffic. Section 9 describes the current state of this study and future work, and finally we present conclusions in Section 10.

2 Background
To provide the reader with some background on flows and their measurements, this section briefly describes the notions of
flows, expiry mechanisms, and flow attributes.

2.1 Notion of Flow
When capturing packet traffic, certain tools, such as tcpdump, write copies of packets (or perhaps just their headers) to a
"trace" file on disk. Since packet trace files contain data for every packet, they can be analysed in different ways, yielding
insight into different aspects of traffic behaviour. A disadvantage is that the files can easily be very large, and generally
require further data processing to reveal pertinent characteristics of the traffic.
In 1995, the IETF' s Realtime Traffic Flow Measurement (RTFM) working group was formed to develop a frame-work for
real-time traffic data reduction and measurements [4][5][6]. A flow in the RTFM model can be loosely defined as the set of
packets that have in common values of certain fields found in headers of packets. The fields used to aggregate traffic
typically specify addresses at various levels of the protocol stack (e.g. IP addresses, IP protocol, TCP/UDP port numbers).
Herein, we use the term key to refer to the set of address attributes used to aggregate packets into a flow.

2.2 Flow Granularity
The key specifies the granularity of the flow. The granularity of interest varies with the type of analysis. If the intent is to
monitor the amount of traffic between two hosts, the key can be specified in terms source and destination IP addresses.
However, if finer detail is required, for instance to identify individual TCP connections, then a 5-tuple key consisting of
(source IP address, destination IP address, source port, destination port, IP protocol identifier) is more appropriate. Herein we
specify flows with 5-tuple granularity.

2.3 Flow Expiry
Mechanisms to identify the start and the end of a flow must be defined. There are three primary expiry methods that are
appropriate for studying characteristics of individual flows: protocol based, fixed timeout, and adaptive timeout [7]. With
protocol based mechanisms, the state of a flow is determined by observing protocol specific messages (e.g. TCP SYN, FIN or
RST). With a fixed timeout method, a flow has expired when some fixed period has elapsed since the last packet belonging to
that flow was captured. Claffy et al. [8] have explored a large range of timeout values, ranging from 2 seconds to 2048
seconds (by power of two) and found that values between 16 to 128 seconds are appropriate to profile flows without being
memory intensive. When varying other parameters, they fixed the timeout value to be 64 seconds. An adaptive timeout
strategy as presented in [9] is a little more sophisticated than a fixed timeout method. The timeout is different for each flow
and is computed based on the packet rate observed so far within each flow.

2.4 Flow Attributes
Flow attributes are used to describe a flow. The goal in defining flow attributes is to identify not only the relevant
characteristics but also the proper way to measure them. In the literature, flow attributes are often called features, or
characteristics. They can be values from the fields in headers of packets, counters (total bytes, total packets, etc.) or summary
attributes such as means, median, and variance. The Realtime Traffic Flow Measurement (RTFM) working group [6] has

2

recognized the need to include discrete distribution attributes to observe the probability repartition of certain variables. A
discrete distribution attribute is represented as an array of "bins" with the values stored as counters between a minimum and
maximum, with defined steps between adjacent bins [6]. Our findings indicate that discrete distributions are useful in
distinguishing among networked applications, especially with regard to the size of packets. To the best of our knowledge,
aside from the work presented in [10], [11] and [12], discrete distribution attributes are seldom included in studies on traffic
classification.

2.5 Well known Flow Collectors
Cisco's NetFlow [13] collects information on flows travelling through a router or switch, but its flows are unidirectional and
a limited number of flow attributes are recorded. Nonetheless, NetFlow is widely deployed [14] and many tools such as
cflowd[l 5] and SiLK[16] have been developed to analyze the NetFlow data format. Argus [17] is another popular tool with its
own flow format. Argus can monitor flows in real time or from pre-recorded packet traces. Argus flows are bidirectional but
also have a limited number of Attributes. NeTraMet [18], which was the first implementation of the RTFM architecture,
provides a general way for a user to specify flows and to specify which flow attributes to measure [19]. The tool suite of
NeTraMet comprises components to specify flows and attributes, and to collect and read flow data.

At the moment we use our own in-house program to reconstruct flows from pre-recorded packet traces.

2.6 Flow Definition in this work
As part of this initial study, we examined bidirectional TCP and UDP flows. A flow record is created the first time a
TCP/UDP packet is captured between two hosts. In order to treat TCP and UDP protocols similarly, we did not choose to use
a protocol-based expiry mechanism. While TCP is a connection oriented protocol, UDP has no mechanisms to convey
session state. Because of its simplicity, we chose a fixed timeout approach over an adaptive timeout mechanism to expire
flows. The timeout value chosen for preliminary examination is 64 seconds, which is also commonly used in related works
[2] [8] [20] [21] [22]. Thus, a flow terminates if 64 seconds has elapsed since the last packet belonging to that flow was
captured. In practice many communications can have an inactive period that last longer than 64 seconds. When this happens,
such communications are broken down into multiple flows, all sharing the same key, and the analysis is conducted on each
"active flow" separately.

Flows are identified using a 5-tuple key, defined by the IP protocol (i.e. TCP or UDP), the IP addresses of the Originator and
the Responder, and the two TCP/UDP port numbers involved. The Originator is defined as the sender of the first captured
packet associated to a 5-tapie key.
It is worth mentioning that fragmentation at the IP layer does pose a problem when reconstructing the flows, since all but the
first fragment lack the TCP/UDP port information [8]. Note that there may also be a "cold start" problem when the monitor
starts capturing traffic from an existing traffic stream. In this case, the monitor generally cannot determine which host
initiated the connection. Therefore the roles specified in the key (originator vs responders) may not reflect reality. We do not
address either of these two problems at the moment.

3 Related Work
There is a pressing need for new methods to correctly identify network activities. Research challenges include recognizing
traffic in high-speed, high-volume networks and within protocols that obscure the details of the information carried. Some
novel approaches are being proposed to recognize the traffic based on its behaviour [1] [20] [21] [22] [23]. However the
classification methods proposed take as input basic flow features (e.g. average packet size, flow duration, recurring use of
addresses/ports). While such approaches have the advantage of using information that current flow collectors provide, we
argue that it is necessary to continue to identify other flow features to characterize traffic.
In this work we explore discriminative flow features that portray essential communication dynamics, based solely on
information that can be gathered from monitoring packet headers. We now review related work that has focused on
identifying flow attributes and that has inspired this research.

3.1 Flow attributes survey
Dunigan et al. proposed in [10] and [11] an approach to traffic profiling based on a multivariate analysis. Each packet in a
flow is "binned" (sorted) according to three parameters: the size of the packet, the delay between the packet and the previous
one, and the direction. They used discrete distribution values for the first two parameters (size and inter-arrival time), and the
third parameter (direction) is evaluated based on the direction of the packet and the direction of the packet preceding it,

3

producing four possible values for the direction. The binning process yields a finite number of bins (e.g. 10 bins for the size
by 10 bins for the delay by 4 bins for the direction would produce 10x10x4=400 bins). The value in each bin is treated as a
random variable and represents the percentage of packets in that flow that fell into that bin.
Instead of doing a case by case study of different networked applications, they preferred a more systematic way of separating
flows based on Principal Component Analysis (PCA). PCA is used to find the three variables that show the greatest variation
among all flow types. Each flow can then be reduced to three attributes: the three most important variables for flow
separation. The profile for each flow type can be viewed as a 3-D density function, estimated from samples of flows of the
given type. To classify an unlcnovvn flow, the three principal components are computed for that flow. The probability that the
unlcnown flow belongs to a given flow type is assessed by comparing the result of PCA against each of the known flow
profile. The researchers reported that the classification error rates were high when flows from two different datasets were
compared (i.e. when profiles were created using one data set and then compared to flows from the other data set). They
suggested that optimizing birming delimiters and density smoothing could improve classification performance.
Lee and Stolfo [24] did an extensive study of traffic using the DARPA data [25], and identified 41 attributes of interest to
Network Intrusion Detection Systems (NIDS) technologies. They provided a pre-processed copy of the DARPA 1999 KDD
Cup contest [26] dataset, in which each flow record is summarized using these 41 attributes. To derive the 41 features, Lee
and Stolfo started with nine basic attributes derived from Bro [27], and applied data mining programs to the cormection
records to compute the frequent sequential patterns, which were in turn analyzed to construct additional flow attributes. The
resulting 41 attributes can be divided into three categories. Nine of the attributes are intrinsic TCP/IP network connection
attributes as summarized in Table 1, thirteen are content-based attributes (e.g. "su root" command attempts), and 19 are
statistical features based on history of past connections.

Table 1. Lee and Stolfo: Intrinsic Features of Network Connection Records

Features Description Value type
duration L,ength (number of seconds) of the connection s Continuous
protocol type Type of the protocol, e.g., TCP, UDP, etc. Discrete
service Network service on the destination, e.g., HTTP, Discrete

TELNET, etc. ------
src_bytes Number of data bytes from source to destination Continuous
dst_bytes Number of data bytes from destination to source Continuous _
flag Normal or error status of the connection Discrete

land 1 - connection is from/to the same host/port; Discrete
0 - otherwise

wrong_fragment Number of "wrong" fragments Continuous
—

urgent Number of urgent packets Continuous

source: This table is taken from W. Lee, and S.J. Stolfo [24]

Extracting all of the 41 attributes from a traffic trace can be resource intensive since the monitor has to review each packet's
payload and keep the history of numerous preceding connections. Since the 1999 KDD Cup contest dataset already has the
tedious and time-consuming pre-processing step done, it has been used as the basis for most of the recent research on data
mining IDSs.
Paxson and Zhang [28] developed a general purpose algorithm to identify keystroke-interactive connections by testing packet
size, timing, and directionality against preset criteria. They noted that keystroke packets tend to be very small, carrying 20
bytes or less of data. They also noted that humans transmit (type in) keystrokes relatively slowly and thus the delay between
two consecutive keystoke-packets is likely to be in the range of [10, 2000] milliseconds. From these observations they
derived: 1) an indicator that quantifies how often the inter-arrival time between two consecutive small packets falls in the
range [10, 2000] milliseconds, 2) an indicator to characterize the relative proportion of small packets, and 3) an indicator that
quantifies how clustered together small packets are.
Thus, in the approach adopted by Paxson and Zhang to identify interactive flows, there are three flow attributes talcing
continuous values between zero and one. The closer to one a value is, the stronger the indication of interactivity. A
connection is marked as interactive when all three computed values are greater than certain thresholds.

4

Table 2. Paxson and Zhang: Flow Attributes for detecting keystroke-
interactive traffic

Attributes Description Value type
13 Proportion of small packets (where small packets Continuous

have 20 bytes or less of data)

Y Indicator of the frequency of consecutive small Continuous
packets

a Proportion of keystroke interarrivals (where Continuous
keystroke interarrivals are delays between
consecutive small packets that fall in the range of
[10, 2000] msec)

Paxson and Zhang also developed a set of special purpose algorithms for identifying specific interactive protocols (SSH,
RLOGIN, TELNET, FTP, NAPSTER, and GNUTELLA) [28]. The SSH detection algorithm includes an indicator based on
packet size. All other special-purpose algorithms rely on access to the payloads of packet. Even so, certain applications
looked alike. In particular, they noted that the FTP detection signature, based on status information found in the payload of
packets, could not distinguish between FTP and the SMTP mail transfer protocol. Herein we note that the two protocols
behave differently and may be distinguished.
Ilvesmakï et al. [29] proposed to divide traffic into three classes of interest to researchers working in the field of Quality of
Service (QoS). The classes they defined can be summarized as follow:

Class 1- Interactive traffic, regrouping applications that send packets at very short intervals for lengthy periods of
time and usually have a human user at both ends of the communication (e.g. VoIP).
Class 2- Transactional traffic, regrouping applications that occasionally send packets at very short intervals, but
have moderate intervals between bursts. These applications typically have a human user at one end and requesting
information from a server at the other end (e.g. SSH, HTTP).
Class 3- Supportive traffic, traffic important to network functionality and reliable functioning of the applications but
whose prioritization does not affect the perceived overall quality of the original application (e.g. DNS).

They examined the distribution of packet inter-arrival times, packet lengths, and flow inter-arrival times. They did not
provide classification rules, but similar to Paxson and Zhang, they felt that the inter-arrival time of packets could be used to
classify the traffic into two distinct classes (interactive or non-interactive). However, they reported that the division into three
classes remained difficult and needed further research.
Lastly, in parallel to our work, Hernândez-Campos et al. [30] derived a set of statistics (features) per TCP connection to
group connections into statistical traffic clusters. They too have worked on identifying characteristics based on the behaviour
of the traffic that does not rely on port numbers nor on payload analysis. They aimed to regroup traffic based on the network
usage as opposed to characterizing protocols individually. Therefore a pursued goal was to produce clusters that would
regroup "file transfer traffic", "streaming media traffic", "interactive traffic" for example. As with our methodology, before
categorizing the traffic, each connection is summarized by a set of features. The novelty in their approach is in the use of a
unit of data which is different from a "packet". The unit, called the Application-Data Unit (ADU), may contain several
packets. Alternating patterns in the advances of the TCP Sequence Number and TCP Acknowledgement Number of packets
mark the boundaries of an ADU. Instead of modelling the patterns of packet exchanges within a TCP connection, they model
the patterns of ADU exchanges. In our study, we had observed that patterns in the direction dynamics of packets stand out
more clearly when we remove from the sequence of packets those that contain no payload2. Hernindez-Campos et al.'s
approach also permits observation of these interesting directional patterns and is more robust to packet disordering; although
constructing the ADUs requires more computational effort than discarding empty packets from the analysis. Each TCP
connection is represented as an n-dimensional vector (c,, ...c„) where n is the number of ADU exchanges, called epochs. An
epoch is a triplet of the form c,--(ab bb ti) in which a, is the number of bytes transmitted by the initiator of the connection
within the current ADU, bi is the number of bytes in the other direction, and ti is the idle time between the current ADU and
the next ADU in the sequence. Twenty-six features selected as a first cut at the problem of dividing traffic are reported in
Table 3.

2 Over an established TCP connection, these TCP packets are normally transmitted to simply acicnowledge having received data up to a given
Acknowledgement Number.

5

Table 3. Hernández-Campos et al.: 26 Flow Attributes used for separating traffic

Attributes Description Value type

Number of epochs continuous

ate, bte Total bytes in each direction continuous

am , bmaxe ttnax Maximum bytes and seconds per epoch continuous

amin, bmm Minimum bytes per epoch continuous

a, bp, ao, bo Mean bytes per epoch and standard deviation continuous

ilk', big First quartile continuous

a2, b2g Second quartile continuous

all, bui Third quartile continuous

avai bvs Total variation (Xvs =-" r; •=2 Ixj — I)
continuous

ah, bh homogeneity (Xh = (Xmax + leXinin +1)) continuous

ap, bp Lag-1 autocorrelation continuous

pi(iti.. e,b1.. e) Spearnian's rank correlation continuous

p2021...n.1, a2 ...n) Spearman's rank correlation with lag 1 continuous

source: This table is taken from F. Hernández-Campos et al. [30]

After normalizing the features that vary over several orders of magnitudes and addressing other practical issues dealing with
connections with fewer epochs, Hernândez-Campos et al. compared different clustering methods to classify the traffic.
Results presented in [30] indicate that, without a priori lcnowledge of the protocols in use on a network, meaningful classes of
traffic may be obtain through clustering techniques when input vectors carry important communication characteristics.

3.2 Principles of our Approach
The methodology can be viewed as a three step process in which the output of a previous step becomes the input for the next.
The process is outlined below and illustrated in Figure 1.

Step 1) Packets are grouped into flows. Each flow is identified by a 5-tapie defined by the IP protocol, IP addresses
of the Originator and the Responder, and the two TCP/UDP ports numbers involved. Minimal information per
packet is recorded.

Step 2) Characteristics (attributes) are measured on each flow. About forty communication characteristics are
measured for each flow. The output is a set of flow records containing the flow attributes.

Step 3) Flows are Recognized and Described. Based on the characteristics obtained during step 2, we tag each flow
with two properties: the application recognized (if any) and a flow description based on the traffic behaviour.

The analysis is currently done off line. Our main contribution to the research is the identification of about 40 flow features by
which different types of applications can be distinguished. These features were constructed following a domain knowledge
approach and thus can be interpreted meaningfully. These attributes are different from those of Lee and Stolfo [24] which
were specific to the field of Network Intrusion Detection Systems (NIDS). The process of developing the flow features was
greatly inspired by the work of Paxson and Zhang [28] for detecting interactivity (human control). Herein, we go a step
firther by deriving flow features that can be used to successfully discriminate among a variety of networked applications,
whether they are interactive or machine-driven. We are able to capture distinctive communication characteristics such as
conversation, transaction and data transfer; and derive signatures from a number of observable patterns.

Hernández-Campos et al. [30] also aimed to identify communication patterns and distinguish networking applications. Most
of the attributes they derived are captured by our indicators through some other means. We believe our indicators reveal more
insight into the traffic behaviour than those listed in Table 3. The three attributes that are present in their work and not in ours
are those concerning correlation. These may be examined in future work.

6

Step 1

PACKET FLOW

n Sage 171
um>

I ' rm. Ni
et,

 eine›

Ni

Ni
Ni
1°1

FLOWDESCRWTO1
"persistent bidirectional, cominand-line, interactive, convenetioner

chatting ?

Step 2

FLOW ATTRIBUTEIC

•Intalctive indicator.
'File trend« indictee

se.carvottaticn indicates
dlinnesetion indicates

•Enctyption indictee

•Payload length distrbution

Step 3

•*persistent, directional:Responderlbaiginator, machine-driven,
streaned-media(eudior

—» online radio ?

*" short-lived, directional: CriginatorToResponderdnachine.driven,
data-transfer.bulk"

—> file upload ?

Figure 1. Overview of the three step analysis included in the proof of concept tool

We now enumerate some highlights of our approach:
The focus has been placed on identifying characteristics of traffic that portray distinctive communication patterns.
We have identified about 40 flow attributes to help divide traffic into human-recognizable categories.
The flow attributes identified may be used to define classes of traffic at different level of granularity. Some flow
attributes are appropriate for defining signature-like patterns to recognize specific applications. We refer to such
flow attributes as "give-away" features. Other attributes can help classify the traf'fic at a coarser grain by grouping
similar services based on their behaviour.
The flow attributes can serve as a starting point for different traffic characterization studies not necessarily related to
network security. The classes derived from the flow attributes may be defined differently depending on the intent
being pursued (e.g. traffic accounting, QoS).
We completely avoid relying on port numbers or payload analysis. This provides an alternative method to more
conventional traffic categorization techniques provided by current networking tools.
We only examine communication patterns found at the netvvork and transport layers, requiring minimal information
per packet to be retained.
Patterns are identified at the 5-tapie flow granularity of TCP/UDP communications. Therefore even sporadic or
ephemeral malicious activities may be identified without the requirement of waiting until multiple connections can
be examined.
We show with step 3 that simple rule sets can be defined based on the measured characteristics to distinguish among
various networked applications, ranging from human controlled applications to machine driven data transfer. Other
researchers may choose to replace these simple rule sets by more sophisticated classification techniques.
Even when a flow cannot be classified based on the categories defined, we provide a short description of the traffic
to help a network analyst understand the kind of activities that took place.

•

•

•

•

•

•

•

•

7

4 Description of the Flow Attributes

4.1 Pre-processing
The traffic analysis process starts with a tcpdump data file from which we extract the packet level information. Very little
information per packet is required for the analysis. More precisely, during the pre-processing phase (i.e. step 1), each packet
is summarized using only four attributes: the direction (Originator to Responder or vice-versa), the time of arrival (in
microseconds), the total length of the IP datagram in bytes, and the length in bytes of the payload (data appended to the
transport layer). The packet summaries are grouped by flows. Each flow is identified by a 5-tuple key described earlier.

4.2 Deriving the Flow Attributes
Deriving the flow attributes did require considerable knowledge and experience with network protocols. On top of intuition
acquired from analysing large amount of data collected from real world environments, we have studied protocols within the
TCP/IP suite and other published research, such as those discussed in the related work section and the bibliography, for
important features that characterize networked applications. We also experimented with network traffic within our testbed for
further insight on session dynamics.
The attributes we derived are summarized in Table 4 and Table 5. The following subsections will describe each attribute with
greater detail. Table 4 lists the attributes that are measured over the entire flow. The first three attributes (key, BeginTime,
EndTime) are simply used to identify and sort the flows. Table 5 gives the attributes that are specific to each direction, and
thus are measured in each direction separately.

Table 4. Attributes measured over the whole flow

Attributes Description Value type
Key A 5-tuple indicating the Originator IP address, the Responder IP address, the IP string

Protocol (i.e. TCP or UDP), the source port of the Originator, and the source port of
the Responder.

BeginTime Arrival time of the 1" packet as provided by libpcap. String
EndTime Arrival time of the last packet as provided by libpcap. String
Duration Completion time of the flow in microseconds. Continuous
FirstNonEmptyPacketSize Payload length of the first non-empty packet. Continuous
FirstFewNonEmptyPacketDirections An array of 10 discrete values for the directions (-1 or 1) of the first 10 non-empfY Array of 10

packets. Discrete values
1: Originator to Responder,

-1: Responder to Originator
Array is initialized with values equal to 0 in case fewer than 10 packets contain data.

DatabyteRatioOrigToResp Total amount of payload data transmitted by the Originator over the Total amount of Continuous
payload data transmitted by the Responder (initialized to -I for flows with no data
transmitted by the Responder).

InterarrivalDistribution A discrete distribution of inter-packet delays represented by an array of 9 continuous Array of 9 Conti-
binned values. The value in each bin is between 0 and 1 and represents the relative nuous values.
proportion of packets that fell into that bin.

Conversation Indicators:
«comers/won The number of non-empty packets that belong to a conversation over the total of non- Continuous

empty packets.

P......ei. The number of non-empty packets that belong to a sustained conversation over the Continuous
total of non-empty packets that belong to a conversation.

Yconverlaton The proportion of conversation packets that are transmitted by the originator. Continuous

Transaction Indicator:
atrantection Indicator of how often "ping pong" exchanges are seen in a flow. Continuous

8

For each direction of the flow, we measure the following attributes:

Table 5. Athibutes measured for each direction of the flow

Attributes Description Value type
InterarrivalDistribution A discrete distribution represented by an array of 9 continuous values. The array contains Array of 9 Continuous

the binned values for inter-packet delays in the considered direction. The value in each bin values.
is between 0 and 1 and represents the relative proportion of packets that fell into that bin.

PayloadDistribution A discrete distribution of packet payload length represented by an array of 23 continuous Array of 23 Continuous
values. The array contains the binned values for payload lengths per packet. Again, the values.
value in each bin is between 0 and 1.

ByteCount Total amount of byte transferred (including bytes found in the network and transport Continuous
headers).

DatabyteCount Total amount of byte transferred as payload. Continuous
PacketCount Total number of packets. Continuous
DatapacketCount Total number of non-empty packets. Continuous
Encryption Indicators:

Œ cipharblock Estimated popular GCD among the packet payload lengths. Continuous
13 cipherblock Ratio of non-empty packet-payload lengths that are divisible by aciph«bk.k. Continuous

Keystroke Interactive Indicators:
akey_interactive Indicator of interactive inter-packet departure (for keystroke packets). Continuous
13 key_interactive Indicator of interactivity based on the proportion of small packets. Continuous
y key_interactive Indicator of consecutive small packets. Continuous
6 key_interactive Indicator of piggyback packing. Continuous
E key_interactive Indicator of irregularity between inter-arrival of consecutive small packets. Continuous

Command-line Interactive Indicators:
acmd_interactive Indicator of interactive inter-packet departure (for command-line packets). Continuous
13 and_interactiva Indicator of interactivity based on the proportion of small packets. Continuous

Y and_intaractive Indkator of consecutive small packets. Continuous
8 cmd_interaciive Indicator of piggyback packing. Continuous
E ernd_interective Indicator of irregularity between inter-arrival of consecutive small packets. Continuous

File transfer Indicators:
afile Indicator of inter-packet departure during a file transfer. Continuous
13 file Indicator of file transfer based on the proportion of big packets. Continuous
Y file Indicator of consecutive big packets. Continuous

BitrateMean The bit rate is measured every 5-second. BitrateMean gives the average of the Continuous
measurements.
Indicator of how close to the mean the 5-second bit rate measurements are. Continuous

PacketrateMean The packet rate is measured every 5-second. PacketrateMean gives the average of the Continuous
measurements. —

aconsuntmcketrate Indicator of how close to the mean the 5-second packet rate measurements are. Continuous
PayloadMedian The "middle" packet payload length. Continuous

—
a....b eri..1 Indicator of how close to the median the payloads per packet are. Continuous

The remainder of Section 4, which is the core of the document, describes the attributes in detail with the reasoning behind
each one. When appropriate, we disclose some threshold values we find suitable for separating traffic types, for instance for
distinguishing between interactive and non-interactive flows. These proposed thresholds were based on experiment
conducted within the testbed. They are by no means absolute thresholds, but do give an indication of the range in which
values are expected to fall.

9

4.2.1 Discrete Distribution Attributes for payload and inter-packet delay
Discrete distributions are used for inter-packet delay and packet-payload length. Distribution values are especially important
for packet payload length. Application protocol overhead may imply that non-empty packets are always greater or equal in
length to a given minimum (due to header length). Application negotiation mechanisms may also exhibit a high frequency of
packets of special sizes. Moreover, certain applications may have a preferential packet size, and completely avoid sending
packets of lengths within a given range. For instance, as noted in [29], the HTTP-protocol is characterized by many short and
long packets. Such characteristics are not effectively reflected by means and variances which may be sensitive to outliers.
Discrete distribution attributes are therefore preferred in this work.

The bin delimiters for payload length have been empirically selected to capture payload sizes that are seen frequently or have
special significance. Determining useful bin delimiters required domain knowledge and several cycles of refinement. We
currently use the following bin delimiters for payload length (in bytes):

[0-1[, [1-2[, [2-3[, [3-5[, [5-10[, [10-20[, [20-40[, [40-50[, [50-100[, [100-180[, [180-236[, [236-269[, [269-350r,
[350-450[, [450-516[, [516-549[, [549-650[, [650-1000[, [1000-1380[, [1380-1381[, [1381-1432 [, [1432-1473r, [1473-
inft.

When monitoring TCP and UDP packets on an Ethernet network, where the Maximum Transmission Unit (MTU) is 1500
bytes, the last bin (1473 bytes and over) should always be empty (the network and transport headers take a minimum of 28
bytes). Our findings indicate that, when distinguishing among application protocols, the distribution of packet payload size is
one of the most critical flow attributes. The distribution depends on the application protocol and is largely independent of the
size of the network-dependent MTU.

The inter-packet delays are distributed according to bins ranging from 0 to 64 second-delays. The 64 second-delay upper
bound is due to the fixed timeout expiry. We currently use the following bin delimiters for inter-packet delay (in seconds):

[0-0.000001[, [0.000001-0.0001[, [0.0001-0.001[, [0.001-0.01[, [0.01-0.1[, [0.1-1.0[, [1.0-10.0[, [10.0-64.0[,

The last bin should always be empty because of the fixed timeout flow expiry.

Figure 2 illustrates how packets are being sorted into the discrete bins for payload size and inter-packet delay. In particular,
the fictive payload distribution example illustrated in the Figure would indicate that 45% of the packets carried no data, and
another 45% of the packets were relatively big, not full size packets but big packets.

Payload
(bytes) [0 [1 [2 [3 [5 [10 [20 [40 [1000 [1380 (1381 [1432 [1473 [1500,41

Inter-packet delay
(seconds) [0 [10-6 [0.0001 [0.001 [0.01 [0.1 [1 [10

Figure 2. Conceptual illustration of discrete distribution

[64. 41

4.2.2 Characterizing regularity in payload and transmission rate
While a discrete distribution attribute for inter-arrival delays can help identify applications with a fixed inter-departure time,
it may fail to identify applications that adjust their transmission rate to accommodate a target rate. When they examined
RealAudio traffic, Lan et al. [31] observed a constant bit rate when measured at medium time scales (tens of seconds), but a
bursty on/off source behaviour at small time scale (single seconds). When studying the implication of multiplexing audio and
video, Kuang et al. [32] observed that although RealVideo can be compressed as Variable-Bit-Rate (VBR) at the application
layer, it is often streamed as Constant-Bit Rate (CBR) at the network layer. This observation was for measurements at large
timescale (minutes). They noted that at smaller time scales (seconds), the packet transmission was showing on/off patterns
due to the interleaving of audio and video.

In this work we chose to estimate bit rate and packet rate over 5-second intervals. A five second interval appeared to be long
enough to smooth the perceived transmission rate of streaming applications, and small enough to prevent false positive
identification. flerein we qualify an application as having a target rate, if a large number of the measurements are close to the
mean. Let R be the total number of measurements (bit rate or packet rate estimated over 5-second intervals), and r be the

10

number of these measurements that are within one standard deviation from the mean, we compute the ratio r/R as an indicator
of regularity. When the ratio is high (close to 1), the mean value is a usually useful in describing the flow. Obviously, the
mean and the ratio r/R may only be measured for flows that last longer than 5 seconds3 .
We derive a similar measurement to identify flows that transmit packets of a fixed length (streaming audio is an example).
We use the median instead of the mean so that the attribute value represents a packet length e ffectively transmitted (as
opposed to a calculated length).

4.2.3 Characterizing interactivity: command-line versus keystrokes
In this work we define an interactive flow as being driven, and not just initiated, by human interaction. In contrast with
Ilvesmakï et al. [29], the definition we use classifies a HTTP flow as machine-driven. The human interaction may be visible
across multiple HTTP flows (e.g. by examining flow inter-arrival times), but within a given flow, the information transfer is
an automated mechanism. We test interactivity on each direction. We note here that even if only one side is controlled by a
human, our mechanisms may falsely identify the connection as being interactive in both directions. This typically happens
when the application allows the echo-mode to be turned on. With the echo-mode on, commands typed by the client side
(human driven) are echoed verbatim by the server side (machine-driven), and thus both directions may appear as interactive.
With the exception of a few minor differences, the interactive indicators we use are essentially those of Paxson and Zhang
[28]. We however derive two distinct classes of human-driven packet transmission: keystroke transmission and command-line
transmission. Command-line transmissions are larger in size and are separated by longer delays than keystrokes. The
distinction between command-line and keystroke interactivity helps refine the classification process a step further. FTP
command for instance can be distinguished from interactive SSH and TELNET sessions; and it is foreseen that chat sessions
will be classed di fferently depending on the "flavour" (MSN Messenger for example is of the command-line type).
For keystroke interactive indicators, a small packet is defined as a non-empty packet when carrying 60 bytes or less (Paxson
and Zhang used 20 bytes or less). We augmented the threshold to 60 bytes after observing that with current ciphers, packets
may be as big as 52 bytes, although encapsulating a single encrypted character. We also modified the range of inter-arrival
delays between keystrokes. We use dmin=25ms and d.=3000ms for the delimiters.
For command-line interactive indicators, a small packet is defined as a non-empty packet carrying 200 bytes or less. The
range of inter-packet delays for command-line packets is defined as [dr„,„--250, d.=30000] ms. The boundaries are arbitrary
(10 times greater than those of keystrokes), and modifying the range does not appreciably change the detection performance.
For reference purposes, we denote the three indicators derived by Paxson and Zhang by the same three Greek letters used in
their paper [28], namely a, 13, and y. In the remainder of the document, whenever we derive multiple indicators of a given
property, we use the notation a propeity, 13 property, y property, 8pro1serty, etc. to refer respectively to the first indicator, the second, the
third and so on.
For each direction of the flow, let el be the set of delays between consecutive small packets and A ={ Co n 11, such that
dnii„5_.0od„,„„ }, the indicator of interactive inter-packet departure is defined as:

number of elements in A
ainteractwe • (1)

number of elements in n
Let S be the number of small packets, let N be the number of non-empty packets, let G be the number of gape between small
packets, the indicator of interactivity based on the proportion of small packets is:

interactive = (2)
N

and the indicator of consecutive small packets is
S — G — 1

Yinteractive

A value close to one for interactive indicates that there are many small packets and these packets are grouped together, while
smaller values' suggest that small packets are all spread throughout the connection.

3 As any other time-dependent attribute, the target rate indicator is sensitive to network conditions. Under congestion conditions, the regularity in the
transmission rate may not be perceived if the monitor is located far away from the transmitting end.
4 A gap occurs whenever two small non-empty packets are separated by at least one packet (big or empty).

3 Note that as defined here may even be negative if packets transmitted are either big or empty, in which case S and G are equal to zero and thus
«Yuderactsve= -1/N.

(3)

11

On top of the first three indicators from Paxson and Zhang, we further define two new indicators to penalize certain types of
non-interactive applications that may still get high scores for the first three indicators.
The fourth indicator gives the proportion of small non-empty packets with respect to the total number of small packets
(including empty packets). The goal with this heuristic is to penalize machine-driven applications that transmit a lot of small
packets, which may however be dominated by empty control segments (i.e. TCP ACK packets without piggyback data). The
reasoning is that a node transmitting a high number of empty packets is likely to have a passive role in a communication.
Thus let E be the number of empty packets, we define:

8interactive
S E

as an indicator of piggyback packing.
Lastly, we define a fifth indicator measuring irregularity in the transmission rate of consecutive small packets. This heuristic
penalizes automated transmission processes that send packets at a regular, but slow rate, and thus may get a high score for
ainteractive• Here we qualify the transmission rate as being regular, if a large number of inter-arrival delays are close to the
mean.

Let 1.1 and a be respectively the mean and standard deviation of the delays between consecutive small packets; let A= { e
SI, such that (0 E [1.1.-a,g+cr] }, then the indicator of irregularity between inter-arrival times of consecutive small packets is:

number of elements in A ,
ginteractive • (5) number of elements in S2

For all five indicators, the closer to one a value is, the stronger the indication of interactivity is. Based on traffic collection
experiments within our testbed, we mark a direction of a flow as interactive if net -- —interactive, Ointeractive, Yinteractive, 5interactive, and
Einteractive, are greater or equal to 0.3, 0.6, 0.6, 0.3, and 0.3 respectively. The first three criteria are in general sufficient to
recognize interactive flows, and the last two are merely there to reduce the number of false positives. Separately, the
indicators are also useful in distinguishing among applications whether they are interactive or not. For instance, episodes of
consecutive small packets were found to be extremely rare in the case of HTTP, which translates into values smaller or equal
to zero for the indicators of consecutive small packets (7keystree_interactive and v 4 cnd_interactive)•

4.2.4 Characterizing data transfer
From the interactive indicators, we derive file transfer indicators. In general, a file transfer flow contains episodes of
consecutive big packets transmitted within a short delay. In order to include video and audio streams in the category of data
transfer, we have set a very lax threshold for the size of a big packet. A big packet is defined as carrying 225 or more bytes. A
short inter-packet delay is 50ms or less.

For each direction of the flow, let B be the number of big packets, let N be the number of non-empty packets, let G' be the
number of gaps between big packets. Furthermore, let a be the set of delays between consecutive big packets and A' = { (0 E

fi', such that (t) E [0, clinax] }, then the indicator of inter-packet departure during a file transfer is:
number of elements in A'

atile • (6)
number of elements in a

The indicator of file transfer based on the proportion of big packets is defined as:

(7)

and lastly, the indicator of consecutive big packets is
B — G

Yfile (8) •

For all three indicators, a value close to one is a strong indication of data transferring. We find that thresholds of 0.5, 0.5, and
0.2 work well in practice. We therefore mark the direction of a flow as a file transfer if afi le, r file, Wile, are greater or equal to
0.5, 0.5, and 0.2 respectively.

4.2.5 Characterizing directional dynamics
A main observation when we examined directional behaviour of the communications is that patterns are more easily
identified when discarding empty packets (i.e. carrying no payload) from the sequence of analysed packets. We recognize
however that most of the applications considered in this study run over TCP. With TCP, empty packets transmitted over an
established connection normally have the ACK field set to 1 and are transmitted to acicnowledge the receipt of data. Since the
UDP header has no acicnowledgement field, the ACK mechanism must be handled at the application layer if the service

(4)

12

requires such mechanism. Thus UDP packets should always contain some data, except possibly in rare cases where an
application may transmit empty packets to prevent the session from timing out. From the traces collected on our
organization's network, there has not been evidence of any common UDP applications transmitting empty packets. Perhaps
in order to observe patterns in the directional dynamic of UDP applications, we may have to derive a threshold by which
packets carrying less data would be discarded from the directional analysis. We leave the UDP case for future work when a
greater variety of UDP applications will be examined.

We describe below how we capture directional dynamics observable during the beginning of TCP flows, and then later on we
describe indicators of conversation and transaction that can be perceived throughout the life of a flow.
We observed that monitoring the direction of the first few non-empty packets was very useful. Option negotiation and
authentication processes appear to be standardised. This was not as apparent for connection termination processes, where a
greater variability was observed among different implementations of a given application. The chance of recognizing a pattern
of initial direction dynamics is greatest within the first four or first five non-empty packets. Nonetheless, we maintain an
array containing the direction of the first ten non-empty packets as reported in Table 4 for the attribute named
"FirstFewNonEmptyPacketDirections". Figure 3 gives an example with the Simple Mail Transport Protocol (SMTP). While
it is the client that initiates the connection, the first non-empty packet is sent by the server. From this point, SMTP behaves
like a Command-Response protocol driven by the client commands.

SMTP Client SMTP Server
Server Description

1■1■1....m.•■■••••■■•••

Client "HELD*

Sew "HEW' -----------_--
"AUTH" Info

■••■••■•■•••■•■••■..••■■•••■•■■■■•••
AlIcePtiRejeCt

"MIL tionr Commend

Accept/Reed ----------
'MAIL to" Commend

AcooptfRoect

Figure 3. Illustration of directional patterns based on non-empty packets

Knowing the size and direction of the very first non-empty packet is particularly insightful. The size of the first non-empty
packet tends to be constant among flows a given network application. We record the payload length of this packet in the
attribute named "FirstNonEmptyPacketSize". The direction of this packet determines which, between the two end-points, is
the first to "speak up" once the session is established. We noted differences among certain protocols with respect to this
characteristic. In particular, it is the client of a RLOGIN session that transmits the first non-empty packet, while in the case of
TELNET it is the server. The information is contained in the first element of "FirstFewNonEmptyPacketDirections".
Another flow attribute that is quite usefiil when characterizing traffic is the total amount of data transferred in each direction.
For instance, successful SMTP connections transfer more than 300 bytes due to a more-or-less fixed overhead [33].
Comparing the amount transferred by each side is a good indicator of the directionality of the traffic. Bulk transfers tend to be
highly asymmetrical. FTP data connections for instance are unidirectional, where non-empty packets flow in one direction
only. For a TELNET connection, the ratio between bytes sent by the computer-side and bytes sent by the user is about 20:1
[33]. On the other hand, the proportion of bytes transferred in each direction of a "chat" session may be similar. The attribute
comparing the amount of data transferred between the two end-points is named "DatabyteRatioOrigToResp" in Table 4.

4.2.5.1 Conversations and transactions
Communications may be built from many episodes, where an episode is a communication sequence marked by the
occurrence of an incident or the presence of a distinctive feature. To capture the directionality dynamics of the whole

13

We define a second notion named sustained conversation. To qualify as a sustained conversation episode, a sequence of
packets must contain at least three "exchanges". More explicitly,

Sustained conversation episode
A sustained conversation episode must contain consecutive packets in one direction, followed by consecutive packets
in the opposite, and followed again by consecutive packets in the first direction (e.g. A->B, B->A, A->B).

connection we developed heuristics to quantify transaction and conversation episodes. Both heuristics are computed after
empty packets (i.e. packets carrying no payload) have been removed. Thus TCP ACK packets have no effect on the two types
of indicators we derive. Packets are treated as a sequence of positive and negative values (the sign of each value indicates the
direction of the packet) and the idea is to characterize the changes in sign. Whether they are interactive or machine-driven,
applications often exhibit differences with respect to the transaction and conversation indicators.

4.2.5.2 Characterizing conversations
To derive the conversational heuristics (conversation indicators), we need to introduce the notion of conversation episodes:

Conversation episode
A conversation episode in this work contains consecutive (back to back) packets in one direction followed by
consecutive packets in the other direction.

The conversation indicators are then based on packet counts. We define three heuristics that take their values between 0 and
1. Let M be the total number of non-empty packets in a flow, let C be the number of non-empty packets associated with a
conversation, and be number of non-empty packets associated with a sustained conversation. We define a - conversation as the
number of non-empty packets that belong to a conversation over the total number of non-empty packets:

(9) aconversation = — •

We define B conversation as the number of non-empty packets that belong to a sustained conversation over the total of non-empty
packets that belong to a conversation:

Pconversation = — •

Let 0 be the number of non-empty packets associated with a conversation and transmitted by the Originator, we define an
indicator of symmetry in a conversational flow, "V conversation as the proportion of conversation packets that are transmitted by the
originator:

0
Yconversation = — • (11)

The indicators a - conversation, Oconversation, and Yconversation are initialized to zero and are only computed if the denominators are
nonzero. A value close to 0.5 for the last indicator denotes conversational symmetry, and a value close to 1 for the first two
indicators is a strong indication of conversational behaviour. In practice we find that when the first two indicators lot , - conversation
and B conversation) are greater or equal to 0.4, then it is likely that the flow has conversational episodes.

4.2.5.3 Unique versus multiple transactions
As mentioned earlier, data transfers are characterized by asymmetry in the total bytes transferred in each direction. We define
here an additional indicator, which attempts to differentiate between "one shot" transfers, and transactions involving multiple
negotiations. FTP data is an example of the first category and SMTP is an example of the other. SMTP involves multiple
exchanges between the client and the server, in the form of automated Command/Response mechanisms. As with the
conversation indicators, we examine a sequence of signed values, where each sign gives the direction of a packet in the flow.
Again, only non-empty packets are retained. When looking at the sequence of signed values for various types of applications
involving multiple transactions, it appeared that a lot of "ping-pong" exchanges take place, where one packet is followed by a
packet coming in the opposite direction. We quantify this phenomenon by comparing the number of changes in sign
effectively seen, with the maximum number of times a change of sign can occur, given the number of positive and negative
values in that sequence.
More precisely, let p and 1 be respectively the number of positive and negative values, the maximum number of time a
change in sign can occur, denoted by z, is

{2p —1 f P = r =
2 min(p,) otherwise

(10)

(12)

14

and let 3 be the number of sign changes observed, then
o

atransaction = — r
is an indicator of how often "ping pong" exchanges are seen in a flow. t is equal to 0 when the flow is unidirectional and thus
atransaction may not be defined for all flows. a - transaction is initialised to zero by default. When et - transaction is non-zero, a value close
to 1 is a strong indicator of multiple transaction exchanges.
While on the subject of Command/Response mechanisms, it is interesting to note that an essential invariant of such
interactions is that endpoints do not transmit data concurrently. In their paper, Hernández-Campos et al. refers to this
category of applications as "sequential connections" [30]. By looking at the Sequence Number and Acknowledgement number
of TCP packets, Hernández-Campos et al. are in better position to recognize concurrent data transmission. While they report
that patterns of concurrent data exchanges are not commonly found in TCP connections on the Internet today, they can occur
in certain protocols such as BitTorrent, HTTP, and NNTP [30] at some point of the communication. We anticipate that flows
dominated by concurrent data transmissions would get a low score for both the indicators of transaction and conversation,
since the direction of packets is expected to be irregular. Obviously, both of these indicators can also get an artificially lower
value if many packets arrive out of order at the monitor.

4.2.6 Characterizing block ciphers
Finally, we developed a heuristic that attempts to determine whether packets are encrypted or not based on the following
assumptions:

• Encryption schemes used by attackers are likely to utilize block ciphers. The Advanced Encryption Standard (AES)
block cipher algorithm for instance is used in backdoor programs [34] and network utility tools [35].

• With block ciphers, lengths of encrypted packets typically have a greatest common divisor (GCD) different than one
[28].

• Depending on the transport layers and the applications, it is possible that not all packets within a flow will be
encrypted using a cipher block.

The algorithm follows an iterative process. At each step,
• the array of input is broken into two parts for pair wise GCD calculation, and
• the array to be examined in the following step will contain the GCD values that are greater than 1.

The process is interrupted if, at a given step, the count of GCDs that are greater than 1 is smaller than the count of GCOs
*equalled to 1. •
The calculation is done for each direction separately, the output gives two values:
ac,,,h„block gives the estimated popular GCD among payload lengths of packets.
ft,,,,hertdock gives the ratio of non-empty packet-payloads that are divisible by
If the GCD calculation process got interrupted due to too many pair-wise GCD equal to one, then the value for acipherbtock is
equal to 1 and the value for 13 ,cipherblock 5 set to 0.

Currently, the initial array of input that is passed to the algorithm contains the payload lengths in bytes of each non-empty
packet. It is worth mentioning that while this heuristic can recognize SSH and popular encrypted utility tools such as aes-
netcat [35], it fails to identify applications for which one or more unencrypted application headers are appended to the
application data. SSL is an example of the latter case. Therefore even when a SSL flow utilizes a block cipher encryption
scheme, the flow will not be marked as such by our heuristics. Fortunately, the SSL protocol can be distinguished based on
other flow attributes.
To demonstrate the relevance of the flow attributes in characterizing networked applications, we developed simple rule sets
to recognize applications and describe the flow activity as discussed in the next sections.

(13)

acipherblock•

15

5 Special-purpose Recognizers
We developed rule sets to distinguish among flows of various networked applications. Because we start with discriminative
flow attributes, lightweight rule sets can be defined to classify flows. We call a Recognizer a set of rules associated with a
given networked application. As part of this initial study, we concentrated on a limited number of applications and protocols.
We have developed Recognizers for FTPdata, HTTP, HTTPS, IMAP, POP, SMTP, FTPcontrol, RLOGIN, SSH, TELNET,
MSNchat, and TCPAudio. The Recognizers take as input a file containing flow records, in which each flow record is
summarized based on the attributes listed in Table 4 and Table 5.

The flow features selected in this first round are listed in Table 6 for each Recognizer. To distinguish between the protocols
listed above, we found that very few criteria were required. The selection of criteria was done based on lcnowledge of the
protocols and the thresholds have been chosen by analysing samples of flows collected from our testbed. Since the traffic
traces were collected in a controlled environment and for the purpose of this experiment, we did not have to worry about
hidden malicious activities within our trace. As reported in [22] a major difficulty encountered when building profiles is to
find a "clean" reference dataset. If the dataset is taken from a real-world network, selecting the network traffic for each class
based on port numbers may not yield reliable profiles. Herein we produced traffic within the testbed for each of the 12
service types listed above. The initial study included an average of fifty flows per applications. While this does not qualify
for an exhaustive reference dataset, it was considered a sufficient proof-of concept of the usefulness of the flow features in
distinguishing among applications. One can expect however that from such a small dataset, the profiles may fail to represent
all possible variants and implementations of a given networked application. Therefore the goal pursued when constructing the
profiles was not to derive the most accurate set of rules but rather to identify distinguishing patterns using our flow attributes.
Recognizers are typically based on "give-away" features. For instance FTPdata is strictly unidirectional in terms of payload
carried in non-empty packets; it is the Originator of a RLOGIN session that transmits the first non-empty packet, while in the
case of TELNET it is the Responder; SMTP Responders avoid sending packets of length between 1 and 5 bytes and over 350
bytes. Such give-away features may not necessarily provide much insight about the communication. In fact, when defining
Recognizers, we even refrain from using criteria based on interactivity for applications that may easily be scripted (using
expect [36], for instance).

Deriving the profiles does require human decision when identifying patterns, whether the dataset is small or not. When a
pattern can be interpreted, a human analyst can decide whether the pattern is likely to be observed on other datasets. We also
recognize that since the communications are within a local network, the applications have a very high throughput due to the
low Round-Trip-Time (RTT) and hence packet inter-arrival time may differ significantly from other datasets. For this reason
we have used very loose thresholds for rules based on delays.

Some of the protocols for which we built Recognizers are in essence very close in terms of purposes (e.g. POP and IMAP for
retrieving e-mails, HTTP and HTTPS for web browsing), but are found to be distinguishable with the indicators presented
herein.

Table 6 provides a list of the flow features currently used in the rule sets composing the profiles of the different applications.
Indicators (e.g. for conversation, interactivity, etc.) are constructed to get high scores when a given characteristic is strongly
present. Low scores are also useful in many circumstances; therefore a check mark in Table 6 does not necessarily indicate
that the criterion is based on a high value. We note herein that there is room to investigate new flow attributes constructed
from those of Table 6. In particular, certain flow attributes have better discriminative power when combined with others. This
is the case for instance with the data packet count in a given direction. While less significant on its own, the ratio of
DatapacketCount over the PacketCount was found to be useful in many of the Recognizers. For TCP flows, this ratio
corresponds to the relative proportion of times the packets are transmitted in order to send data (as opposed to acicnowledge
having received data). For some Recognizers, we also compare the count of data packet transmitted in each direction.

The actual rule sets used in each profile are provided in the Appendix.

16

Table 6. Attributes as currently used by the Recognizers and Traffic Descriptor

Recognizers

& Descriptor -

• g 'C

Attributes .8 8. 8, .5 -:.°:
Duration 4 4 J 1 NI NI 4 4
FirstNonEmptyPacketSize 4 J 1 4 J 4 4
FirstFewNonEmptyPacketDirections 4 4 4 4 J J J J 4 11
DatabyteRatioOrigToResp 4 J 4 4 1 J 4 1 1 4
InterarrivalDistribution
Conversation Indicators 4 4 4 J
Transaction Indicator 4 4 4
Originator.InterarrivalDistribution
Originator.PayloadDistribution J 1 1 J 4 4 4 4 J 4 4 4
Originator.ByteCount 4
Originator.DatabyteCount 4 4
Originator.PacketCount 4 J J J 1
Originator.DatapacketCount 4 1 4 4 4 J 4
Originator.EncryptionIndicators 4

Originator.KeystrokeInteractiveIndicators 4 4
Originator.CommandlineInteractivelndicators 4 4 4
Originator.FileTransferIndicators 4

 Originator.BitrateMean
Originator.a.barue 4 1 1 J 1 J
Originator.PacketrateMean
Originator.a.p.ketrat. J 4 J 4 J 1
Originator.PayloadMedian
Originator.a..... 4„,,o,d 4

Responder.InterarrivalDistribution
Responder.PayloadDistribution 1 J -4 J J 1 1 J J _
Responder.ByteCount 4
Responder.DatabyteCount 4
Responder.PacketCount 4 4 4 1 1 J 4 J
Responder.Datapacketcount 4 1 J J 4 4 J
Responder.EncryptionIndicators 4

Responder.KeystrokeInteractiveIndicators 4 4
Responder.CommandlineInteractiveIndicators 4 4 4
Responder.FileTransferIndicators 4 4
Responder.BitrateMean
Responder.a.c.. 4 4 4 4 4 4
Responder.PacketrateMean
Responder.a..".a.n., 4 J J 4 4
Responder.PayloadMedian
Responder.a..tmi.d 4

17

6 Evaluation Experiment
For the purpose of a first evaluation early in the research process, we obtained a traffic trace that met our needs. The traffic
trace contains traffic "to" and "from" the Internet and also contains a significant amount of internal LAN to LAN traffic.
Over 20 million packets were captured from almost 2 thousands different IP addresses, for an average bandwidth utilization
of 16 Mbits per second. Statistics about that trace can be found in Table 7.

Table 7. Summary of the network traffic trace used for the preliminary evaluation
Start Time: February 10, 2005 13:38:38 Average bits/s: 16,017,040.06
Time Saved: February 10, 2005 16:13:00 Max bits/s: 63,394,608.00
Duration: 2:34:21 Only he first 100 Bytes of each packet were saved on disk.

Group Statistics Bytes Packets Bisec Pisec % of B % of P
General Total Bytes 18,372,330,066 - 1,983,651.27 - 100.00% -

General Total Packets - 21,393,474 - 2,309.84 - 100.00%

General Total Broadcast 26,768,909 183,990 2,890.23 19.865 0.15% 0.86%

General Total Multicast 4,130,273 54,635 445.944 5.899 0.02% 0.26%

General Dropped Packets - o - 0 - 0.00%
Physical Addresses

Counts Seen 923 923 923 923 923 923

Counts IP Addresses Seen 1,854 1,854 1,854 1,854 1,854 1,854

Counts Protocols Seen 198 198 198 198 198 198

Size Distrib. <= 64 - 2,539,406 - 274.178 - 11.87%

Size Distrib. 65-127 - 4,985,037 - 538.232 - 23.30%

Size Distrib. 128-255 - 547,283 - 59.09 - 2.56%

Size Distrib. 256-511 - 446,776 - 48.238 - 2.09%

Size Distrib. 512-1023 - 1,879,708 - 202.951 - 8.79%

Size Distrib. 1024-1517 - 3,826,915 - 413.19 - 17.89%

Size Distrib. >= 1518 - 7,168,349 - 773.963 - 33.51%
Source: EtherPeek Analysis tool, from WildPackets (http://www.wildpackets.com/)

A large number of failed connection attempts was observed on the test dataset. In an effort to eliminate those failed
connections, we kept only flows with more than three packets in each direction.

To facilitate the estimation of misclassifications, we separated the traffic into files based on port numbers commonly
associated with the protocols considered. Other TCP/UDP traffic was directed to a separate file, which we further sorted
based on four categories:

• netservices (LDAP, file sharing, printing, etc.),
• remotepc (rdesktop, timbuktu, pcanywhere, etc.),
• dns, and
• other TCP/UDP.

Note that we had no reference dataset for any of the last four categories of traffic. Since it is an objective to be able to classify
new applications, these last traces can be quite insightful. In particular, as we will later see, a profile for the remotepc traffic
can easily be derived from the profile of ftp data.

18

1 — 1 — r r 111 11—rk
• c O -0 4-6

o
_c

ne
ts

er
v i

ce
s

r---

Co

CO

CO

0
5

0

CL CI_ g;:). m
.-• 0 CD .0 V (T3 a.

Co 0 w c En E 1-1i . -
_ 0

Tu _ -c 0. 0. 42 =

60.0

50.0

40.0

30.0

20.0

10.0

0.0

• Flow %
• Packet %
o Bytes %

Figure 4. Proportion of flows, packets and bytes per application.

The sorted traffic traces are not evenly represented. The count of HTTP flows was much larger than the flow count for other
protocols. In particular, there was no rlogin session and no MSN chat sessions running on the default port. There was one
TCPAudio stream, but the beginning of the session was missing and the roles of "Originator" and "Responder" were
reversed. That flow was not recognized as TCPAudio stream by our program. Figure 4 gives a high level view of the
proportion of flows, packets and bytes per application. The statistics shown in Figure 4 are for flows with a minimum of three
packets per direction. Therefore the actual flow count for the DNS traffic is much greater than what is artificially displayed
here. For other applications, the flows discarded for the analysis are largely dominated by failed connection attempts. Had
there been numerous UDP based streaming media flows (such as video conferencing flows) a greater number of legitimate
sessions would have been mistakenly discarded for the analysis. This is because it is common for UDP based video
conferencing applications to open unidirectional channels in each direction for carrying voice and video packets separately.
The evaluation process consisted of running all Recognizers over each trace and counting the flows that were correctly and
incorrectly classified. The results are shown in Table $ and Table 9. Table 8 contains the results obtained on the traces
consisting of traffic the Recognizers were expected to distinguish. Table 9 reports the number of errors on other traffic.
Both tables are read line by line, where each line corresponds to a different tra ffic trace. The first column gives the category
of traffic contained in the trace. The second column of Table 8 gives the count of flows correctly identified, the other three
columns give the count of flows that the corresponding behavioural Recognizer failed to uniquely identify. For the 'pop' trace
for instance, 427 out of the 429 flows were marked as 'pop'; however 51 flows marked as 'pop' were also marked as imap'
Therefore in the case of the POP protocol, we consider the count of flows correctly identified as being 376 instead of 427. In
the columns reporting flows that were falsely marked, we also give the "labels" these flows were marked with.
Aside from the HTTP traffic trace for which the percentage of flows reported as "missed" was as high as 30% and the TCP
Audio trace where the one TCP Audio flow was not recognized, the tool correctly identified 80% to 100% of the flows it was
programmed to recognize. Although these results indicate that the profiles need to be refined, they are much more
encouraging than those reported in [10] when performing the test on a new dataset.
Moreover, since the traffic traces were separated based on port numbers which we know cannot be reliable, what we have
reported as "errors" (i.e. flows incorrectly identified) may in fact be associated to suspicious flows. Further examination of
the traffic traces indicated that the majority of the flows in the HTTP traffic trace that were missed by the HTTPRecognizer
had an unusually high proportion of very large packets flowing in the Client-to-Server direction. While the first bytes of
many of these large packets indicated that they were HTTP GET Requests, it is hard to tell whether these were legitimate
requests since most of the payload portion was stripped off at capture time. The author would rather mark these flows as
being suspicious, especially since as noted in [2] several peer-to-peer protocols use HITP requests and responses to transfer
files.

19

Table 8. Estimating Errors on traces consisting of traffic the tool is programmed to recognized

Errors Flows Correctly Ambiguous Flows Flows Falsely Identified Unrecognized Flows
Traces identified (overlapping profiles)
'imap' 113 flows (81%) 0 2 flow (1%): I 'pop', 1 'telnet' 25 flows (18%) (140 flows)
'POP 376 flows (88%) 51 flows (12%) imap/pop 0 2 flows (0.5%) (429 flows)
'smtp' 26 flows (87%) 0 0 4 flows (13%) (30 flows) -
'ssh' 19 flows (79%) 0 1 flow (5%): 'telnet' 4 flows (16%) (24 flows)
'Wind 15 flows (100%) 0 0 0 (15 flows)
'rlogin'

(0 flow) - - -

'ftpcmd' 101 flows (93%) 0 0 8 flows (7%) (109 flows)
'ftpdata' 39 flows (83%) 0 0 8 flows (17%) (47 flows)
'http' 68 flows (2%): `ftpdata' 2093 flows (64%) 69 flows (2%): `http/https' 986 flows (30%) (3249 flows) 33 flows (1%): %Ups'
'https' 643 flows (92%) 5 flows (0.7%): `http/https' 2 flows (0.3%): `http' 50(7%) (700 flows)
'chatmsn'
(0 flow) - - - -

'tcpaudiostream' 0 0 0 1(100%) due to cold start. (1 flow)

On traces consisting of other traffic (Table 9), the false positive rate remained low with respect to the total number of flows
included in those traces (3096 flows). The Recognizers have falsely marked 5% or less of the flows. However, when
examining applications separately, some Recognizers frequently misclassified certain types of flows. For instance 30% of the
DNS flows were marked as 'imap' . The FTPDataRecognizer also falsely identified 72% of the `remotepc' flows. Further
analysis of the remotepc' trace indicated that the misclassification count goes to zero by adding two new rules to the
FTPDataRecognizer. One rule is on the Duration, acicnowledging that FTP data transfers are completed relatively quickly;
and the other rule imposes that FTP data transfers carmot be interactive. These changes also slightly reduce the number of
HTTP flows falsely marked as ftpdata' in Table 8 (the count goes to 59 flows instead of 68), while not affecting the
accuracy on the 'fipdata' trace. The results presented in Table 8 and Table 9 do not reflect the changes made to the
FTPDataRecognizer rule sets. The reader can refer to Table 6 and the Appendix to see which flow attributes have been used
to produce this first round of results. It is worth mentioning that the two flows marked as `chatmsn' among the "other
TCP/UDP" category turned out to be Yahoo Messenger sessions ov.er TCP/5101.

Table 9. Count of misclassified flows in traces consisting of other traffic

Recognizers
.1.. b ..m

Traces -
-

g• -IL -13'.. 1 'fr «I I .1 .e.. j 9
' netservices' 40 0 0 0 0 0 1 4 58 42 0 0 (2136 flows)
'remotepc' 0 0 0 0 0 0 0 135 0 0 0 0 (188 flows)

' dne 85 0 0 0 0 0 10 0 0 0 0 0 (267 flows)
'other TCP/UDP' 15 2 0 7 0 0 5 3 8 80 2 0 (504 flows)

Total 140 2 0 7 0 0 16 142 66 122 2 0
(3096 flows)

(5%) (5%) (4%)

We plan to refine some of the profiles based on this preliminary experiment, and follow up with similar evaluation
experiments in the near future.

20

t\>hrtc -i 10.10.0.200

NTIP Reverse Tunnel CLIENT v0.20 / 08-2001

Connect any tep client to this client's . local network
interface<s>. Set up simihrly on server side. AIT

I traffic is rever,,e-tunneled asynchronously in wur

1U,P:;Idue !).M0./.1j!,1
Copyright 198S-199V Microsoft Corp.

'nnc localholt 10O1
.7110 foreign

bonett
, are you today?

thdnk you.
• you

well
nkyou
nou

7 Evaluation Experiment using a Subversive Tool
We have also tested our proof of concept program against a subversive tool called HTTP Reverse Tunnel (HRT) [37], which
was developed at the Royal Military College of Canada to demonstrate that any networking activity disguised as HTTP can
be turmelled through proxies and firewalls. A first experiment with HRT used as a chat session showed that the HTTP
disguise failed because of the difficulty of imitating all behavioural characteristics of the given protocol.

We briefly describe this primarily test with HRT used as a chat session. HRT is a Windows 2000/XP implementation of an
HTTP reverse tunnel that serves as a transport medium for tunneling arbitrary data over HTTP. The "Quick-Start Guide" that
is provided with the tool describes how it can be used with netcat to allow for an interactive covert channels.
HRT consists of two parts, one that acts as a client (to simulate a web browser) and one that act as a server (to simulate a web
server). Assuming that the client side has been successfully installed on a host behind a protected network, upon execution of
the HRT program on the client host, the client establishes an HTTP tunnel with the server and data from either direction can
be transmitted within that opened connection. For this first preliminary experiment, we used HRT coupled with netcat as
described in the "Quick-Start Guide" to create a chat session between two hosts and we captured the traffic involved. Figure
5 depicts the scenario where a host named foreign is running the server side of HRT and a host named home is rurming the
client side. The host named home has the IP address 192.168.0.200 and the host foreign, located on a different network, was
given the IP address 10.10.0.200. The two Command Prompt windows shown in the Figure were opened on the client side.
One window was used to launch HRT and the other to use netcat on the opened channel to send and receive the data. The
corresponding Command Prompt windows on the server side were omitted from the Figure for clarity. As the left Command
Prompt window indicates, both hosts took turn to chat. The details of the commands are given in Table 10. The tool does a
really good job at disguising the activity. TCP flows are always established by the client side as it is expected with legitimate
web browsing activities, and the data carried appears as legitimate HTTP requests and responses as shown in Figure 6 for one
of the TCP connection produced during this experiment. By emulating legitimate web browser behaviour, this tunnel pierces
most contemporary network perimeter defences like firewall, IDS, and HTTP caching proxies [37].

,ccess 1: port 3001
Iccess 2: port 3002
4ttpteru: port OM
ionnectiny to 10.10.0.200:80— succeeded.
;onnect on port 3001 from 122.0.0.1.1148.
:echeloned port 80 from 10.10.0.200;80.
ninnecting to 19.19.9.200:80— succeeded.
lockclosed port 89 from 10.10.0.290:80.
:onnectiny to 10.10.0.200:80— succeeded.
u)ckclosed port 80 from t0.10.9.290:89.
:onnectiny to 10.10.9.200:80_ succeeded.
.ockctosed port 80 frou 114. 10.0.200:80.
ionnecting to 10.10.0.290:80_ nucconded.
tockelosed port 89 from 10.10.0.200:80.
nnmecting tn 10.19.0.290:811... ,II 0808.

usckclosed port 80 from 10.10:0.299:80.
,onettinq lo 10.10.0.200:80.. ,itcceeded.
,ochcloned poet RO from 10.10.à.200:80.
connectinq to 1.0. 10.0.200:80. . succeeded.
sockclosed port 80 from 10.10.0.214080.
connectinq to to.to.o.goo:so.. succeeded.
so,Lcln,ed port. 00 from 10.10.0.200:80.
d - 1 • 1 , failed

100:80.

jav •

Foreign
(fake web server)

Home
(fake browser)

Figure 5. HRT coupled with net cat to create a chat session

Stream Content
ce -

ache-control: private
onnection: Keep-Al ive

J1.0 200 OK
• -control t .riveta
onnactlon: Ka -alive
Ontanttypai xt/html
ontant-aMoaings giip

- vers ed5/2.1
ontant-length: 1171

ml>
body biter •n•"«Firatiet",

debeadoodilleavzeileffle-.1)‹.

•1

hrtifeittPz/hens.googla.com/Ao to soogla.cteK/a>elprelbody>

gaga

=TIMM Entire conversation (387 bytes) di 0 ASCII 0 EBCDIC 0 Hex Dun O C Arrays 0 Raw

611

Filter out tNs stream I Sim I

Table 10. Commands and Traffic flows produced using HRT as a chat session

Commands Traffic Flows

On Foreign (10.10.0.200):

Open cmd shell and run the server: C:\>hrts

Open cmd shell and connect netcat to default local port on hrts: C:\>nc localhost 2001

On Home(192.168.0.200):

Open cmd shell and run the client: C:\>hrtc -i 10.10.0.200 192.168.0.200:10.10.0.200:6:1147:80

Open cmd shell and connect netcat to default local port on hrtc: C: Pnc localhost 3001

In netcat shell, type "hello foreign" and hit enter closes previous connection and
opens a new one to carry the data:
192.168.0.200:10.10.0.200:6:1149:80

On Foreign(10.10.0.200):

In netcat shell, type "hello home!!" and hit enter closes previous connection and
opens a new one to carry the data:
192.168.0.200:10.10.0.200:6:1150:80

In netcat shell, type "how are you today?" and hit enter: closes previous connection and
opens a new one to carry the data:
192.168.0.200:10.10.0.200:6:1151:80

On Home(192.168.0.200):

In netcat shell, type "fine thank you." and hit enter closes previous connection and
opens a new one to carry the data:
192.168.0.200:10.10.0.200:6:1152:80

In netcat shell, type "and you." and hit enter closes previous connection and
opens a new one to carry the data:
192.168.0.200:10.10.0.200:6:1153:80

On Foreign(10.10.0.200):

In netcat shell, type "very well" and hit enter closes previous connection and
opens a new one to carry the data:
192.168.0.200:10.10.0.200:6:1154:80

In netcat shell, type "tankyou" and hit enter: closes previous connection and
opens a new one to carry the data:
192.168.0.200:10.10.0.200:6:1155:80

In netcat shell, type "bye now" and hit enter: closes previous connection and
opens a new one to carry the data:
192.168.0.200:10.10.0.200:6:1156:80

Figure 6. Data disguise example as produced by HRT
Source: Ethereal, www.ethereal.com

22

During the experiment, each line typed in the netcat Command Prompt was transmitted in a new TCP connection. This had
the effect of hiding from our analysis tool the interactivity since the indicators are measured on each flow separately.
However, although each flow was meant to appear as a legitimate HTTP connection established on port TCP/80, none of the
flows were recognized as HTTP. In the context of network security, these flows would have been marked suspicious. As
shown in Table 11 in the column entitled "Application" these flows were not recognized as any other application neither. The
last column entitled "Description Summary" provides a description of the flows as perceived by our tool. How we produce
this description will be briefly discussed in section 8.

The HTTP disguise failed in this case because of two attributes, both measuring characteristics of the packet payload size.
Namely, the first attribute is FirstNonEmptyPacketSize, and the second is Originator.PayloadDistribution. The reader can
refer to Table 4 and Table 5 of Section 4.2 for a short description of these attributes. Moreover, aside from one flow marked
as bidirectional, the directionality of the flows was correctly identified as per the last column of Table 11. While the
Originator of each flow is the host named home (IP 192.168.0.200), the Description Summary reveals the direction in which
the data was actually flowing.

It is expected that when HRT is used for file transferring then the disguise will have a better chance to succeed. However for
tunneling chat sessions, some padding would be required to mimic the packet length distribution of HTTP traffic. The fITTP
tunnel will be a nice tool to test against and we plan to conduct a more thorough set of tests covering a variety of tunneling
scenarios.

As a general note on subversive tools, we acknowledge that detecting network misuse and abuse is much more difficult when
the attacker deliberately attempts to circumvent detection. The traffic recognition approach adopted here is expected to work
well for benign-evasive activities such as the use of port-agile peer-to-peer applications in order to bypass firewall rules.
flowever the profiling mechanisms can be defeated by ingenious intruders, though it requires more effort, time, and more
sophisticated intrusion software such as HRT. To defeat our classification technique, packets could be padded to fixed or
varying lengths, transmission of packets could be regulated or randomized, and "dummy" packets could even be transmitted
to further obscure the dynamics of inter-packet departure. While ideally any detection algorithms should be conceived to be
resistant to evasive attackers, ensuring such robustness can sometimes be exceedingly difficult. We feel that there is utility in
elevating the degree of difficulty for defeating security measures.

Table 11. Outcome of the behavioural analysis tool on the HRT chat sessions

Flow Key Application DescriptionSummary

1 192.168.0.200:10.10.0.200:6:1147:80 short flow, short-lived, directional:OriginatorToResponder, machine-
driven, suppo rt ive

2 192.168.0.200:10.10.0.200:6:1149:80 short flow, short-lived, directional:OriginatorToResponder, machine-
driven, streamed-media:suppo rt ive

3 192.168.0.200:10.10.0.200:6:1150:80 short flow, short-lived, directional:ResponderToOriginator, machine-
driven, streamed-media:data-transfer:spu rt

4 192.168.0.200:10.10.0.200:6:1151:80 short flow, short-lived, directional:ResponderToOriginator, machine-
driven, data-transfer:spu rt

5 192.168.0.200:10.10.0.200:6:1152:80 short flow, short-lived, bidirectional, machine-driven, supportive

6 192.168.0.200:10.10.0.200:6:1153:80 short flow, short-lived, directional:OriginatorToResponder, machine-
driven, supportive

7 192.168.0.200:10.10.0.200:6:1154:80 short flow, short-lived, directional:ResponderToOriginator, machine-
driven, data-transfer:spurt

8 192.168.0.200:10.10.0.200:6:1155:80 short flow, short-lived, directional:ResponderToOriginator, machine-
driven, data-transfer:spurt

9 192.168.0.200:10.10.0.200:6:1156:80 very short flow, short-lived, directional:ResponderToOriginator,
machine-driven, data-transferspurt

8 Flow Descriptor
On top of allowing classification of network traffic, the flow attributes we derived may be used to describe the network
activity. We have developed a flow Descriptor that gives a human-readable description of each flow. As with the special-
purpose Recognizers, the flow Descriptor takes as input a file containing flow records. The output gives a FlowDescription
for each flow record. A FlowDescription is a structure with six attributes as summarized in Figure 7. The FlowDescription is
based on directionality, length (in terms of packet count and of duration), control (human-driven or machine-driven),
transmission rate, and possible purpose.

23

Based on the DatabyteRatioOtiginatorToResponder.

Based on the number of packets in both directions.

Based on the Duration.

Based on the Duration and the Interactive Indicators.

Based on aconstantbltrate and atonstaeacketrate

}

Based on the File Transfer Indicators in both directions,
the transmission rate as well as the indicators of Conver-
saticn and Transaction.

The output of the Descriptor is quite useful for a security analyst as it provides the practitioner with insight about the nature
of the communication. A given application may receive different descriptions depending on its use. The Descriptor has also
proved to be useful when investigating certain flows running on unprivileged ports. For instance, a traffic trace examined
recently contained a significant number of flows on high ports (TCP/6881- TCP/6886) that were described as "long flow,
persistent, directional:OriginatorToResponder, machine-driven, data-transfer:bulk". These ports are now known to be
associated with BitTorrent [38], a peer-to-peer file sharing technology quickly growing in popularity [39].

Fl
ow

 D
es

cr
ipt

io
n

CriginatorToRespondw
bldrectional .. iloapondetToOriestor Dire ctionally direcianal
unldiroctkinal----___________ OriginaterTeflesponder

RespenderTeCfignstor
very short Length ... shad
long

 Insianteneous
Lie - short-litred

persistent
keystroke

Intone" ------------ Commend-Me
Conlrolor niachine-driven

Transmission rats< frefeetular

transactional
conversational bulk P data transfer spurt
«WNW* "«. stream•d media
(»norm

Figure 7. Flow Description

9 Current State and Future work
The characterization process is currently done off-line, and in three steps. The first step is programmed in JAVA and consists
of analysing a packet trace to group the packets into flow records. The next step is currently done with MATLAB [40] and
consists of extracting the essential flow attributes. The output is a file of flow records in which all flow records are
summarized with the same set of flow attributes. Finally, the last step, also programmed in MATLAB, consists in processing
the file containing the flow attributes to deduce information about the nature of each flow. During this step we use both the
special-purpose Recognizers and the flow Descriptor to tag each flow with two properties: the application recognized (if any)
and the FlowDescription.
We are in the initial stages of our study where the focus has been placed on identifying flow attributes that are useful in
characterizing network traffic. We have identified flow attributes that can differentiate between specific networked
applications and also between categories of networked applications (interactive remote control, file transfers, streaming
media, and chat). While we examined applications running on either TCP or UDP, the majority of the services considered are
TCP based. Much remains to be done, in particular we plan to:

• Based on the preliminary evaluation of Section 6, refine the special-purpose Recognizers developed so far and
reassess the accuracy on different real world traffic traces.

• Examine a greater number of applications not yet considered (e.g. VoIP, gaming traffic). This may involve
developing new flow attributes to capture other important traffic characteristics.

• Examine the traffic produced by a number of subversive tools such as those discussed in [37].
• Identify the most important subset of flow attributes for discriminating between applications. While we are still in

the exploratory stage of flow characterization, future work may require reducing the number of measurements of
each flow to accelerate the analysis without loosing significant accuracy. The trade-off between performance and
accuracy will need to be determined.

• Add the capability of doing cross-examination of flows to determine patterns of applications than span over multiple
connections. On the other hand, it may also be interesting to examine portions of a flow through sliding windows in
order to characterize "episodes" within that flow.

24

• Examine the possibility of estimating the flow attributes in near real-time as opposed to measuring them over a
connection's total lifetime. Selecting attributes that can be updated in a streaming (recursive) fashion [22] [41]
would allow approximation of measurements in near real-time and eliminate the need for storing data per packet.

• Examine the possibility of using alternative classification methods to derive profiles. The profiles described in
Section 5 were derived manually. It would be interesting to see how machine-lea rning techniques could be used in
step 3 to classify traffic based on the flow features obtained from step 2.

• Rebuild the tool as a stand-alone program written in C or in JAVA (as opposed to MATLAB), or perhaps include
the capability into an existing tool if applicable.

There also are a few technical problems we would like to address. As mentioned in Section 2.6, problems due to the "cold
start" of the monitor and the presence of fragments are overlooked at the moment. A future version may include some
precautions when constructing the flows with regards to these two shortcomings. We also have encountered a number of
difficulties during the validation process that we hope to address for future evaluation experiment. In particular, even when
much (if not all) of the payload is available in each packet, it is still extremely painful and difficult to identify the true nature
of a flow to validate our results. On the other hand, we note that it is exactly because manual investigation of flows is so
cumbersome that we put effort into developing analysis tools like the one presented herein. As mentioned in Section 6, we
also faced another shortcoming during the preliminary evaluation when attempting to eliminate failed connections from our
analysis. We kept only flows with a minimum of three packets in each direction. Had there been several unidirectional flows
in the traffic trace, this practice would have mistakenly discarded many flows from our analysis.
This work on traffic recognition is an ongoing project. We are currently doing outreach activities to other researchers in the
field to identify avenues of collaboration. This will help further develop the concepts and to see the problem from di fferent
perspectives. We also have recently initiated a related project with Virtual Private Networks (VPNs) for which one of the
goals is to determine how the encryption layer alters the characteristics measured by the flow attributes described herein. The
study will focus on traffic prodticed by commonly available business class VPN equipment.

10 Conclusions
We have presented in this document a number of indicators that reveal intrinsic characteristics by which we can recognize
particular networked applications or groups of networked applications. The flow attributes are supported by interpretation
with domain lcnowledge and thus allows separation of traffic into flows of human-recognizable categories. When flow
attributes are meaningful and discriminative, lightweight rule sets based on these attributes can be defined to classify flows.
In this work, much of the effort so far has been concentrated on identifying significant flow attributes. We have also
experimented with special-purpose Recognizers that can pinpoint particular applications. Our methodology can be used not
only to "tag" a flow as belonging to a given category, but is also useful at providing a human-interpretable description of
what the flow is about. This provides a starting point when investigating suspicious flows.
We have developed a proof of concept tool that analyses pre-recorded traffic traces. The tool first extracts for each flow the
important flow attributes. Then based on simple rule sets the tool attempts to recognize as whether a flow belongs to one the
commonly used protocols and at the same time provides a description of the flow behaviour. Preliminary assessments with
the proof-of-concept tool are quite encouraging. With further research and development, this tool can become very handy in
many security-related tasks. It could be used to document and label traffic traces produced in the context of experiments or
forensic analysis; allow an analyst to search for flows matching a given profile (a particular network service or flow
description); identify suspect flows that may be in violation of the security policy; alert security personnel; and provide
contextual information on flows surrounding a security event.
The majority of currently available tools that classify traffic rely on well-known port numbers to identify the networked
applications. Some of these monitoring tools also use protocol-aware mechanisms based on payload decoding. The author
believes that cloaking attacks to appear as innocuous applications will greatly accelerate. Mechanisms that infer the true
nature of information flows based on traffic behaviour can be use to increase the level of confidence in the monitoring tools.
The pressing need for alternatives to correctly identify network activities has attracted attention in the research community.
However, a large proportion of related work focus on the classification algorithms and take as input basic flow features, such
as those provided by NetFlow[13] and Argus [17]. We argued that it is necessary to continue investigate discriminative
characteristics and ways to measure these characteristics so that the nature of the communications can be revealed. We hope
that our findings will assist other researchers in their search for new attributes to increase the discriminating capabilities of
their classifiers.

25

References

[1] J. P. Early, C. E. Brodley, C. Rosenberg, "Behavioral Authentication of Server Flows", in Proc. of the 19th Ammal
Computer Security Applications Conference, December 2003.

[2] T. Karagiannis, A.Broido, M. Faloutsos, and K.C. claffy. "Transport layer identification of P2P traffic". In IMC, 2004.
[3] iNetPrivacy Software: AntiFirewallTM (-35$), http://www.antifirewall.com .
[4] Realtime Traffic Flow Measurement Working Group (RTFM), in proceeding of the Thirty-fourth Internet Engineering

Task Force (IETF), Dallas, Texas; December 1995. http://www.ietforg/proceedings/95dec/ops/rtfm.html
[5] N. Brownlee, C. Mills, G. Ruth, "Traffic Flow Measurement: Architecture", RFC 2722, category Informal, October

1999.
[6] S. Handelman, S. Stibler, N. Brownlee, G. Ruth, "RTFM: New Attributes for Traffic Flow Measurement", RFC 2724,

category Experimental., October 1999
[7] K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch, and k. claffy, "The Architecture of CoralReef: an Internet Traffic

Monitoring Software Suite," in PAM2001 -- A workshop on Passive and Active Measurements, Apr 2001.
[8] K. Claffy, H-W. Braun, G. Polyzos, "A Parameterizable Methodology for Internet Traffic Flow Profiling," IEEE JSAC,

13(8), pp. 1481-1494 Oct.1995.
[9] Ryu, D. Cheney, H. Braun, Internet Flow Characterization: Adaptive Timeout Strategy and Statistical Modeling, Passive

and Active Measurement Workshop, Amsterdam, April 2001.
[10] S. Abdulrahman "Network Intrusion Detection Using Flow Characterization", project description,

http://www.cs.utk.edu/—abdulrah/project/paper.html
[11]T. Dunigan, G. Ostrouchov, "Flow Characterization for Intrusion Detection", ORNL/TM-2001/115, November 2000,

available at http://www.csm.ornl.govt—dunigan/pubs.html
[12]A. Soule, K. Salamatian, N. Taft, R. Emilion, and K. Papagiannaki. "Flow Classification by Histograms or How to Go

on Safari in the Internet. In Proceedings of ACM Sigmetrics", New York, NY, June 2004.
[13] Cisco, "NetFlow", Cisco's flow measurement technology,

http://www.cisco.com/en/US/products/ps6601/products=ms_protocol_group_home.html
[14]C. Gates, M. Collins, M. Duggan, A. Kompanek and M. Thomas, "More Netflow Tools: For Performance and Security",

Proceedings of USENIX LISA, Atlanta, November 2004.
[15]CAIDA, "cflowd", traffic flow analysis tool, http://www.caida.org/tools/measurement/cflowd
[16]CERT/NetSA, "SiLK", NetFlow Analysis Suite , http://sourceforge.net/projects/silktools/
[17]QoSient, "Argus", network Audit Record Generation and Utilization System, http://www.qosient.com/argus
[18]Nevil Brownlee, "NeTraMet", an open-source implementation of the RTFM architecture,

http://www2.auckland.ac.nz/net/NeTraMet/
[19]N. Brownlee, "Using NeTraMet for Production Traffic Measurement", in Integrated Management Strategies for the New

Millenium, 14-18 May 2001.
[20]T. Karagiannis, K. Papagiannaki and M. Faloutsos, "BLINC: Multilevel Traffic Classification in the Dark," in Proc. of

ACM SIGCOMM, August 2005.
[21]K. Xu, Z. Zhang, and S. Bhattacharya. "Profiling Internet Backbone Traffic: Behavior Models and Applications". In

SIGCOMM, 2005.
[22]M. Roughan, S. Sen, O. Spatscheck, N. G. Duffield. "Class-of-service mapping for QoS: a statistical signature-based

approach to IP traffic classification". In IMC 2004.
[23] A. W. Moore and D. Zuev. "Internet Traffic Classification Using Bayesian Analysis Techniques". In ACM

SIGMETRICS, 2005.
[24]W. Lee, S.J. Stolfo, "A Framework for Constructing Features and Models for Intrusion Detection Systems," ACM

Transactions on Information and System Security, Vol. 3 No. 4, November, 2000.
[25]DARPA Intrusion Detection Evaluation, Lincoln Laboratory, http://www.11.mit.edu/IST/ideval/
[26]KDD-cup data set, data set used for The Third International Knowledge Discovery and Data Mining Tools Competition,

available at http://kdd.ics.uci.edu/ databases/kddcup99/kddcup99.html
[27]V. Paxson, "Bro: A System for Detecting Network Intruders in Real-Time", Computer Networks, 31(23-24), pp. 2435-

2463, 14 Dec. 1999.
[28]Y. Zhang and V. Paxson, "Detecting Backdoors", in Proc. of USENIX Security Symposium, August 2000.
[29]M. Ilvesmaki, M Luoma, "On the capabilities of application level traffic measurements to differentiate and classify

Internet traffic", in Proc. of SPIE, Internet performance and Control of Network Systems II, Vol.4523, 2001.
[30]F. Hernández-Campos, A. B. Nobel, F. Donelson Smith, K. Jeffay, "Understanding Patterns of TCP Connection Usage

with Statistical Clustering", in Proc. of the Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), Atlanta, September 2005.

26

[311K. Lan, J. Heidemann, "Structural Modeling of RealAudio Traffic". Technical Report ISI-TR-544, USC/Information
Sciences Institute, Sept. 2001.

[32] T. Kuang, C. Williamson, "A Measurement Study of RealMedia AudioNideo Streaming Traffic", in Proc. of SPIE
ITCOM, pp. 68-79, July 2002.

[33]V. Paxson, "Empirically-Derived Analytic Models of Wide-Area TCP Connections", IEEE/ACM Transactions on
Networking, Vol. 2 No. 4, August 1994.

[34]Les Gordon, "SANS Intrusion Detection FAQ, What is the Q Trojan?", http://www.sans.org/resources/idfaq/qtrojan.php
[35]aes-netcat, by Mixter, is a patch for netcat 1.10 in order to provide netcat with AES encryption. Available at

http://packetstormsecurity.org/UNIX/utilities/
[36]expect, by Don Libes, a tool for automating interactive applications such as telnet, ftp, passwd, etc. Available at

http://expect.nist.gov/
[37]C. Daicos, G.S. Knight, "Concerning Enterprise Network Vulnerability To Http Tunnelling", IFIP TC11 18th

International Conference on Information Security, Athens, May 2003.
[38]Bit Torrent, a file distribution software, available at http://bittorrent.com
[39]CacheLogic, a market research firm. http://wvvw.cachelogic.com/news/mediacoverage.php
[40]MATLAB, a technical computing language. It is a commercial product by MathWorks

http://www.mathworks.com/products/matlab/
[41]A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and M. J. Strauss. "Fast, small-space algorithms for

approximate histogram maintenance". In Proceeding of the ACM Symposium on Theory of Computing, Montreal, 2002.

Biblography

[1] W. Richard Stevens, "TCP/IP Illustrated", Volume 1: The protocols, Addison-Wesley, 1994.
[2] J. Postel, RFC 791: "Internet Protocol", status: standard, September 1981, available at http://www.ietf.org/rfc/.
[3] J. Postel, RFC 792: "Internet Control Message Protocol", status: standard, September 1981, available at

http://www.ietf.org/rfc/.
[4] J. Postel, RFC 793: "Transmission Control Protocol", status: proposed standard, September 1981, available at

http://www.ietf.org/rfc/.
[5] J. Postel, RFC 768: "User Datagram Protocol", status: standard, August 1980, available at http://wwwietforg/rfc/.
[6] J. Klensin, RFC 2821: "Simple Mail Transfer Protocol", status: proposed standard, April 2001, available at

http://www.ietforg/rfc/.
[7] M. Crispin, RFC 3501, "Internet Message Access Protocol", version 4rev 1, status: proposed standard, March 2003,

available at http://www.ietf.org/rfc/.
[8] J. Myers, M. Rose, RFC 1939, "Post Office Protocol", version 3, status: standard, May 1996, available at

http://wwvv.ietforg/rfc/.
[9] P. Chown, RFC 3268, "Advanced Encryption Standard (AES) Ciphersuites for Transport Layer Security (TLS)", status:

proposed standard, June 2002, available at http://wwwietforg/rfc/.
[10]R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, RFC 2616, "Hypertext Transfer

Protocol — HTTP/1.1", status: draft standard, June 1999, available at http://www.ietf org/rfc/.
[11]R. Khare, S. Lawrence, RFC 2817, "Upgrading to TLS within HTTP/1.1", status: proposed standard, May 2000,

available at http://www.ietforg/rfc/.
[12]E. Rescorla, RFC 2818, "HTTP Over TLS", status: informal, May 2000, available at http://www.ietforg/rfc/.
[13]W. Lee, S. J. Stolfo, K. W. Mok. "Mining in a data-flow environment: Experience in network intrusion detection". In

Proc. of the ACM SIGICDD International Conference on Knowledge Discovery & Data Mining (KDD-99), August 1999.
[14]W. Lee, S. J. Stolfo. "Data mining approaches for intrusion detection", in Proc. of the 7th USENIX Security Symposium,

1998.
[151W. Lee, S. J. Stolfo. "Combining Knowledge Discovery and Knowledge Engineering to Build IDSs". In Proc. of the

Workshop on Recent Advances in Intrusion Detection (RAID), September 1999.
[16]M. Mellia, A. Carpani, R. Lo Cigno, "Measuring IP and TCP behavior on Edge Nodes", IEEE Globecom, Taipei (TW),

Nov. 2002.
[17]Y. Zhang and V. Paxson, "Detecting Stepping Stones", In Proc. of the 9th USENIX Security Symposium, August 2000.
[18] X. Wang, D. Reeves, S. F. Wu, "Inter-Packet Delay Based Correlation for Tracing Encrypted Connections Through

Stepping Stones", in Proc. of European Symposium on Research in Computer Security (ESORICS 2002), Aug 2002.

27

Ap_pendix: Recognition Criteria

The appendix contains the rule sets currently used in the profiles of the protocols found in Table 6. To satisfy a
profile, all of the specified tests must succeed. Note that the lines corresponding to the rules are not exactly
written as is in the proof of concept tool. They have been transcribed in a form that is easy to follow. As
mentioned in Section 5, the profiles were built from examining small samples of flows per applications. Therefore
the profiles may fail to represent all possible variants and implementations of a given network service. The goal
pursued when constructing the profiles was not to derive the most accurate set of rules but rather to identify
distinguishing patterns using our flow attributes. Even so, the rules below • did perform reasonably well at
recognizing network activities during preliminary experiments desciibed in Sections 6 and 7. Because they
constitute a starting point for deriving profiles, we chose to provide them in appendix. Also note that the rules
below apply to the first flow seen with a given 5-tuple key (IP addresses, IP protocol, TCP/UDP ports). When
processing subsequent flows associated with the same key, the rules actually implemented differ slightly, in some
cases, from those provided below.

1 HTTP web browsing

Test duration:
Duration > 50000 psec

Test transmissionrate:
Originator.a.mtwubitate <0.5 && Originator.a comtantpacketmte < 0 . 5 &&
Responder.acong.wwfrme <0.5 && Responder.a.t awpaearee <0.5
i.e. The transmission rate is more irregular than regular.

Test_payload:
Originator.PayloadDistribution([0-1[)+Originator_PayloadDistribution([180-650[)>0.8 &&
Originator.PayloadDistribution([1-1000+Originator.PayloadDistribution([1380-inf[)==0
i.e. At least 80% of the packets transmitted by the Originator fall in the bins corresponding to 0 byte and [180-650[bytes
of payload; and the Originator of the connection never sends packets with 1 to 100 bytes of payload nor does it send
packets containing more than 1380 bytes of payload.

Test databyteratio:
0.005<DatabyteRatioOrigToResp<4
i.e. The server sends less than 200 times the data it receives, and the client never sends more than 4 times the data it
receives. Note that we allow the client to send more data than the server in case the page is in cache.

Test requestdatabyte:
Originator.DatabyteCount < 21000
i.e. The client sends less than 21000 bytes in total (which could correspond to 60 HTTP GET requests containing an
average of 350 bytes each).

Test firstnonemptvpacketsize:
120 < FirstNonEmptyPacketSize < 1000
i.e. The first non-empty packet of the session, which is a HTTP GET, contains at least 120 bytes of data (small URL and
only essential HTTP fields) and at most 1000 bytes of data (long URL and many HTTP fields).

Test firstnonempt,ypacketdirections:
FirstFewNonEmptyPacketDirections(1:2)=[1, -1]
i.e. The first non-empty packet is sent by the Originator (client) and the second is sent by the Responder (server).

Test noconsecutivesmallpackets:
Originator.ykeyjiwmaiveS 0 && Originator.y m aive 5 0 &&
Responder.yktemeive S 0 && Responder.ycmd_ interactive..5 0

28

2 HTTPS web browsing

Test duration:
Duration > 50000 psec

Test transmissionrate:
Originator . . Œc.staatbltrate <0'5 && Originator . . 0,coxiat.tpacketrate <0 .5 &&
ResPœlder • aconstantbitrate <0.5 && Responder . ac meant packetrate <0 " 5
i.e. The transmission rate is more irregular than regular.

Test_payload:
Originator.PayloadDistribution([0-1[40riginator.PayloadDistribution([50-180[) > 0.6 &&
Originator.PayloadDistribution([1-5D+Originator.PayloadDistribution((1000-infE)==0 &&
Responder.PaYloadDistribution([0-10+Responder.PayloadDistribution([20-1000+
Responder.PayloadDistribution([549-infE) > 0.6
i.e. At least 60% of the packets transmitted by the Originator fall in the bins corresponding to 0 byte and [50-180[bytes
of payload; and the Originator of the connection never sends packets with 1 to 5 bytes of payload nor does it send
packets containing more than 1000 bytes of payload. A large proportion (60%) of the packets transmitted by the
Responder falls in the bins corresponding to 0 byte, [20-100[bytes and over 549 bytes of payload.

Test datapacketcount:
Originator.datapacketcount<10
i.e. The Originator sends very few non-empty packets. This rule failed to recognize 8 flows out of 700 in the Evaluation
Experiment described in Section 6. The flows missed contained 60 or less non-empty packets in the direction of the
Originator-to-Responder.

Test firstnonemptwacketsize:
90 < FirstNonEmptyPacketSize < 250
i.e. The first non-empty packet of direct SSL connections (a SSL Client Helo packet) is typically small (contains very few
cipher specifications). When tunnelling through a HTTP proxy, the size of the first non-empty packet (a CONNECT
packet) is also expected to be within the specified boundaries. As is, this rule failed to recognize 4 flows out of 700 in the
Evaluation Experiment described in Section 6. The flows missed had a first non-empty packet of size between 250 bytes
and 300 bytes.

Test firstnonemptvpacketdirections:
FirstFewNonEmptyPacketDirections(1:2).[1, -1]
i.e. The first non-empty packet is sent by the Originator (client) and the second is sent by the Responder (server).

Test conversation:
(originator.aconversation > 0.25 && Originator.datapacketcount 5) II Originator.datapacketcount < 5
i.e. Based on the 50 flows composing the training data set, 95% of the https connection had a score higher than 0.25 for
the first conversation metric. This score is higher than with http. The flows composing the remaining 5% had less than 5
data packets in the Originator to Responder direction. Therefore the conversation rule does not discard a flow containing
too few data-packets.

29

3 IMAP6

Test duration:
Duration > 100000 gsec

Test transmissionrate:
Originator. aconstantbitrate <0 . 5 && Originator. aconstantpacketrate <0 .5 &&

Responder • aconstantbitrate <0 . 5 && Responder . aeonstantpacketrate <0 . 5
i.e. The transmission rate is more irregular than regular.

Test_payload:
Originator.PayloadDistribution([0-10+Originator.PayloadDistribution([5-180[)>0.8 &&
Responder.PayloadDistribution([0-10+Responder.PayloadDistribution([20-1000>0.2
i.e. At least 80% of the packets transmitted by the Originator fall in the bins corresponding to 0 byte and [5-180[bytes of
payload. At least 20% of the packets sent by the Responder fall in the bins corresponding to 0 byte and [20-100[bytes of
payload.

Test databyteratio:
DatabyteRatioOrigToResp<1
i.e. The server sends more data than the client.

Test firstnonemptypacketsize:
10 < FirstNonEmptyPacketSize < 250
i.e. The first non-empty packet, which is sent by the mail server, is typically small ("OK" + optional info such as server
version, name, capabilities, etc.).

Test firstnonemptvpacketdirections:
FirstFewNonEmptyPacketDirections(1:5).[-1, 1,-1, 1,-1]
FirstFewNonEmptyPacketDirections(1:6)4-1,-1, 1,-1, 1,-1]
i.e. 1)Responder describes server,

2)(optional) If client remains quiet, server sends an empty response. From this point, IMAP behaves like a
Request/Response protocol driven by the client Requests. For instance, the following sequence may follow:

3)Originator asks for capability
4)Responder responds with capability
5)Originator sends login & password
6)Responder accepts/rejects login

Test nonemptvpacketratio:
Originator.datapacketcount/Originator.packetcount > 0.5 &&
Responder.datapacketcount/Responder.packetcount > 0.6
i.e At least 50% of the packets sent by the client carry data, and at least 60% of the packets sent by the mail server carry
data.

6 As seen from Table 9 of Section 6, many non-IMAP flows are recognized as IMAP based on these criteria. This profile needs to be tightened to reduce the
number of false identification.

30

4 POP

Test duration:
100000 < Duration < 10000000 psec
i.e. In contrast with IMAP, POP terminates the session once mail messages have been downloaded, this typically takes
less than 5 seconds (say a maximum of 10 seconds to set a loose threshold).

Test transmissionrate:
originator • aconstantbitrate <0 . 5 && Originator • aconstantpacketate <0 . 5 &&
Responder . aconstantbitrate <0 . 5 && Responder • aconstantpacketrate <0 .5
i.e. The transmission rate is more irregular than regular.

Test_payload:
Originator.PayloadDistribution((0-1[)+Originator.PayloadDistribution([5-20[)>0.9 &&
Originator.PayloadDistribution([1-5[)==0 &&
(Responder.PayloadDistribution([0-500+Responder.PayloadDistribution([236-269D+
Responder.PayloadDistribution([516-549D+Responder.PayloadDistribution([1432-1473[0>0.6
i.e. At least 90% of the packets transmitted by the Originator fall in the bins corresponding to 0 byte and [5-20[bytes of
payload. The Originator does not transmit packets carrying only 1 to 5 bytes of payload. The majority (60%) of the
packets transmitted by the Responder fall into two categories: small packets (0 to 50 bytes of payload) and full length
packets. To represent the second category ("full length packets"), we sum over the bins corresponding to [236-269[,
[516-549[and [1432-1473[of payloads. These bins are based on typical MTUs (296,576,1492,1500).

Test databyteratio:
DatabyteRatioOrigToResp<0.65
i.e. The server sends more data than the client.

Test firstnonemptypacketsize:
10 < FirstNonEmptyPacketSize < 100
i.e. The first non-empty packet, which is sent by the mail server, is typically small ("OK" + optional info such as server
version, and name). POP server responses tend perhaps to be smaller than IMAP server responses.

Test firstrionemntypacketdirections:
FirstFewNonEmptyPacketDirections(1:5)=[-1, 1,-1, 1,-1] II
FirstFewNonEmptyPacketDirections(1:6)=[-1,-1, 1,-1, 1,-1]
i.e. Similar to IMAP with regards to the initial directional dynamics.

Test nonemptvpacketratio:
Originator.datapacketcount/Originator.packetcount < 0.7 &&
Responder.datapacketcount/Responder.packetcount > 0.5
i.e At most 70% of the packets sent by the client carry data, and at least 50% of the packets sent by the mail server carry
data.

31

5 SMTP

Test duration:
100000 < Duration < 10000000 psec
i.e. SMTP terminates the session once mail messages have been transferred, this typically takes less than 5 seconds (say
a maximum of 10 seconds to set a loose threshold).

Test_transmissionrate:
originat or aconstantbitrate <0 .5 && Originator- aconstantpacketrate <0 . 5 &&
Responder . .aconstambitrate <0 .5 && Responder. aconstantpacketrate <0 .5
i.e. The transmission rate is more irregular than regular.

Test_payload:
(Originator.PayloadDistribution([0-1[)+Originator.PayloadDistribution([5-1000+
Originator.PayloadDistribution([236-2690+ Originator.PayloadDistribution([516-549D+
Originator.PayloadDistribution([1432-1473[0>0.6 &&
Responder.PayloadDistribution([0-1[)+Responder.PayloadDistribution([5-100[)>0.8 &&
Responder.PayloadDistribution([1-51)+Responder.PayloadDistribution((350-inf1)=.0
i.e. The majority (60%) of the packets transmitted by the Originator fall into three categories: empty ACKS, small
packets (5 to 100 bytes of payload) and full length packets. To represent the third category ("full length packets"), we
sum over the bins corresponding to [236-269[, [516-549[and [1432-1473[based on typical MTUs (296,576,1492,1500).
A large proportion (80%) of the packets transmitted by the Responder fall in the bins corresponding to 0 byte and [5-
100[bytes of payload; and the Responder never sends very small packets or very big packets.

Test databyteratio:
DatabyteRatioOrigToResp > 1
i.e. The databyte ratio Originator To Responder is greater than one, typically MUCH greater than 1.

Test firstnonemptypacketsize:
20 < FirstNonEmptyPacketSize < 300
i.e. SMTP server responses are typically around a hundred bytes. We chose loose boundaries (20 and 300 bytes).

Test firstnonemptvpacketdirections:
FirstFewNonEmptyPacketDirections(1:5).1-1, 1,-1, 1,-1]
i.e. 1)Responder describes server. From this point, SMTP behaves like a Request/Response protocol driven by the client
Requests. For instance, the following sequence may follow:

2)Originator sends Client Helo
3)Responder sends Server Helo
4)Originator sends AUTH command
5)Responder accepts/rejects

Test nonemptvpacketratio:
Originator.datapacketcount/Originator.packetcount > 0.5
i.e At least 50% of the packets sent by the client carry data.

Test datanacketcount:
4 < Responder.datapacketcount < 15
SMTP servers respond with a somewhat fixed number of non-empty packets.

Test databytecount:
300 < Responder.databytecount < 900
SMTP servers respond with a somewhat fixed number of data bytes.

32

6 SSH7

Test_payload:
Originator. PayloadDistribution([O-1 [) +Originator.PayloadDistribution([10-180 L) > 0.8 &&
Originator.PayloadDistribution([1-10[)==0% && Responder.PayloadDistribution([1-10[)==0 &&
Responder.PayloadDistribution([0-10+Responder.PayloadDistribution([10-1800 > 0.5

Test databyteratio:
DatabyteRatioOrigToResp<1
i.e. The server sends more data than the client.

Test cipherblock:
mod (Originator acipherNock) ==0 && ntOd (Responder . acipherblock

OriginatOr • Pcipherblock > 0 . 8 && Responder. Ocipherblock > 0.8
i.e. At least 80% of the non-empty packets must be divisible by 4.

Test firstnonemptypacketdirections:
FirstFewNonEmptyPacketDirections(1). -1
i.e. The first non-empty packet is sent by the Responder (server).

Test nonemptypacketratio:
Responder.datapacketcount/Responder.packetcount > 0.5
i.e At least 50% of the packets sent by the server carry data.

4)==0 &&

7 TELNET

Test_payload:
Originator.PayloadDistribution([0-100 > 0.8 && Originator.PayloadDistribution([350-inf[)==0

Test databyteratio:
DatabyteRatioOrigToRespc0.2 && Originator.datapacketcount < Responder.datapacketcount
i.e. The server sends much more data than the client. The server also sends more non-empty packets.

Test firstnonemptypacketsize:
FirstNonEmptyPacketSize < 30
i.e. empirical estimate based on a max of 10 options negotiated.

Test firstnonemptypacketdirections:
FirstFewNonEmptyPacketDirections(1:2). [-1, 1)
i.e. The first non-empty packet is sent by the Responder (server) and the second is sent by the Originator.

Test nonemptypacketratio:
Responder.datapacketcount/Responder.packetcount > 0.4
i.e At least 40% of the packets sent by the server carry data.

Test transaction:
atransaction > 7
i.e Telnet is mostly transactional.

This profile is specific to ssh used as a remote login program. File transfers using scp do not match this profile. The only criteria that are satisfied by scp
traffic are Test_cipherblock and Test_firsMonemptypacketdirections.

33

8 RLOGIN8

Testpayload:
Originator.PayloadDistribution([0-5[) > 0.8 && Originator.PayloadDistribution([350-inf[)==0

Test firstnonemptypacketdirections:
FirstFewNonEmptyPacketDirections(1). 1
i.e. The first non-empty packet is sent by the Originator.

Test nonemptypacketratio:
Responder.datapacketcount/Responder.packetcount > 0.4
i.e. At least 40% of the packets sent by the server carry data.

Test conversation:
aconversation > 0.01 && Oconversation > 0 • 4 && '(conversation > 0 • 6
i.e. RLOGIN appears a little like a conversation (compared to SSH,TELNET, and FTPcommand). When conversing, the
Originator sends more packets than the Responder.

9 FTPcommand

Test duration:
Duration > 500000 gsec

Test payload:
Originator.PayloadDistribution([0-10+Originator.PayloadDistribution([5-1000>0.8 &&
Originator.PayloadDistribution([1-5[)+Originator.PayloadDistribution([350-inf[)==0 &&
Responder.PayloadDistribution([0-1[)+Responder.PayloadDistribution([10-180[)>0.8 &&
(Responder.PayloadDistribution([1-5[)+Responder.PayloadDistribution([350-6500+
Responder.PayloadDistribution([1000-inf[0==0

Note that while the responder also avoids sending big packets, it was not unusual to see packets containing between 650
and 1000 bytes of payload, in particular when transmitting "code 220" for greetings and warnings.

Test databyteratio:
0.1 < DatabyteRatioOrigToResp < 0.5 && Originator.datapacketcount < Responder.datapacketcount
i.e. The server sends more data and non-empty packets than the client.

Test firstnonemptvpacketdirections:
FirstFewNonEmptyPacketDirections(1)= -1
i.e. The first non-empty packet is sent by the Responder.

Test nonemptypacketratio:
Responder.datapacketcount/Responder.packetcount > 0.6
i.e. At least 60% of the ftpcmd packets sent by the server carry data.

Test transaction:
atransaction > 0 • 95
i.e. FTPcommand is mostly (if not completely) transactional.

Test noconsecutivebigpackets:
Responder.yffl e < 0

i.e While IMAP and FTPcommand are similar with respect to the other criteria, ftp server tend not to transmit
consecutive big packets in the FTPcommand connection.

8 Aside from the training data set, the RLOGIN profile has not been tested on RLOGIN traffic.

34

10 FTPdata9

Test_payload:
(Originator.PayloadDistribution([1-50..0 && Responder.PayloadDistribution([0-1[)..1)
(Responder.PayloadDistribution([1-50-0 && Originator.PayloadDistribution([0-1[)==1)

Test databyteratio:
DatabyteRatioOrigToResp 0 DatabyteRatioOrigToResp == -1
i.e. The data is flowing in one direction only. The value is -1 if the transmitting end is the Originator, and the value is 0 if
the Responder is the transmitting end. A value of -1 can be associated to two cases: the transfer is an ACTIVE get or a
PASSIVE put, depending on whether the Originator is the FTP server or the FTP client respectively. Similarly, a value of
0 indicates an ACTIVE put or a PASSIVE get, depending on whether the Originator is the FTP server or the client
respectively. The role of the Originator can be determined by examining related flows marked as FTPcommand.

Test databytecount:
Originator.DatabyteCount + Responder.DatabyteCount > 0
i.e. As a rule of thumb, a FTPdata session involves transferring data... therefore there should be packets carrying data in
at least one of the direction.

Test packetcount:
0.3 e (Originator.PacketCount/(Originator.PacketCount+Responder.PacketCount)) < 0.7
i.e. The amount of packets transmitted in each direction is similar.

Test nonemptvpacketratio:
(Originator.datapacketcount..0 && Responder.datapacketcount/Responder.packetcount > 0.3) II
(Responder.datapacketcount==0 && Originator.datapacketcount/Originator.packetcount > 0.3)

This rule typically holds provided there are more than 5 packets in each direction.

11 CHATMSN

Test_payload:
Originator.PayloadDistribution([0-10 + Originator.PayloadDistribution([100 - 450[) > 0.8 &&
Originator.PayloadDistribution([1-5[)=.0 && Responder.PayloadDistribution([1 - 50.= 0 &&
Responder.PayloadDistribution([0-1 () + Responder.PayloadDistribution([100-450[) > 0.8
i.e. At least 80% of the packets fall into the bins corresponding to 0 and [100-450[bytes of payload. And there are no
packets carrying only 1 to 5 bytes of payload.

Test databyteratio:
0.1 < DatabyteRatioOrigToResp e 10
i.e. This assumes that one of the user may be at most 10 times chattier than the other.

Test firstnonemptvpacketdirections:
FirstFewNonEmptyPacketDirections(1). 1
i.e. The first non-empty packet is sent by the Originator.

Test interactive:
Originator. acmd_inte.,„eive > 0.3 && Originator. Ocmdin tmeive > 0.6 && Originator.y.untmeive > 0.6 &&

Originator. 8cmclinteractive> 0.3 && Originator .gemdinteractive > 0.3 &&

Responder.aemiintemeive> 0.3 && Responder. Pemd interactive

Responder .45cind_ intemcfive> 0.3 && Responder . Ecmdinteractive > 0.3
i.e. Each direction is command-line interactive.

Test conversation:
aconversation > 0.4 && Oconversation > 0.4 && (0 • 35 < Yconversation < 0 • 65)

i.e the flow must have conversational episodes (a,on„,..tion), it must have sustained conversation episodes ln .,conversation) and
the amount of packets belonging to a conversation must be similar in each direction (.rconversation).

9 The FTPdata profile will catch FTPdata flows whether the FTP transfer is in mode PASSIVE or ACTIVE. While this set of rules is sufficient to distinguish
FTPdata from the other applications of the Appendix, this FTPdata profile falsely recognize flows associated with applications like pcanywhere and
rdesktop. As mentioned in section 6, adding two new rules to the FTPData profile eliminates the ambiguity.

1 1

> 0.6 && Responder. Ymclintemetive> 0. 6 &&

35

12 TCPaudiostream

Test tcp:
key.ipproto==6

i.e. The profile is only valid for audio stream using TCP as the transport protocol.

Test duration:
Duration > 10000000 psec
i.e. Typically last much longer than 10 seconds.

Test transmissionrate:
Responder.a.mtammtee >0.5

i.e. The server tries to transmit data at a target bit rate.

Test_payload:
Originator.PayloadDistribution([0-10 >0.8 &&
Originator.PayloadDistribution([1-20[) + Originator.PayloadDistribution([1000-inf0 ==0 &&
Responder.PayloadDistribution([650-1381[)>0.6
i.e. The client transmits small packets, the server sends relatively large packets.

Test databyteratio:
DatabyteRatioOrigToResp < 0.01
i.e. The client sends little data.

Test firstnonemptvpacketsize:
100 < FirstNonEmptyPacketSize < 1000
i.e. Similar in size than a HT7'P Get.

Test firstnonemptvpacketdirections:
FirstFewNonEmptyPacketDirections(1:2)=[1, -1]
i.e. The first non-empty packet is sent by the Originator and the second by the Responder.

36

DATE DUE
08. MC Io&

INDu M Ili21111[1(MillINI ADA
--., . le

