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Abstract

A preliminary invesﬁgéfion of the propagation characteristics of the
cladded fibre optical vaeguide is carried bﬁf. The mode spectrum of fhg various
circularly symmefrié and hybrid SUl:fQCe wave modés, their group velocities and the
radial dependence of their fiéld com.ponenfs.cre' presented for the case of "Leaky Modes".
The work for the éclculéfion of the attenuation coéfﬁéienfs of the various surface wave

mode on a lossy cladded fibre is still going on. The corresponding work for the "pro-

‘pagating modes” which are guided by total internal reflection inside the core, is also

to be pursued. It is believed that this study provides the necessary pre-requisite know-
ledge for the subsequent investigation of the effects of localized inhomogeneities inside
the cladded fibre waveguide. A bibliography on fibre optical waveguides is provided

at the end of this report.
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1. Introduction

Recent advances in low-loss optical fibers and in solid=state optical
sources make optical-fibre transmission very attractive for such applications as on-
premises interconnections, hedium—é’épacify interoffice trunks, and large-capacity.
intercity routes etc. Many review articles have appeared, discussing various prac-
tical and theoretical aspects of optical-fibre waveguides (See Section 1. Bibliog-.

raphy).

Va}ious waveguiding structures have been proposed for optical communi-
cations. A thin dielectric film guidfng structure was proposed b}/ KGl’bOWiQk.] With
films of thickness a fraction of the operating wavelength and width some 10,000 wave-
lengths, the mode supported by the film is essentially a plane surface wave, symmet-
rical about the mid-plane of the film and decaying exponentially in amplitude away
from the film. Some modified forms were examined by Kawakami and NiShiZOWQZ
and also Lc:rsen.3 These examples of thin film dielectric waveguides are aimed at
achieving low loss waveguides by ensuring that adequate guidance is provided by the

structure but that the major part of the energy propagates in the low lossy medium

adjacent to the structure. Hence, relatively lossy dielectric material can be tolerated.

Koo4 suggested the cladded fibre as a suitable waveguiding structure. It consists of a

cylindrical fibre core of circular cross-section cladded by a coaxial dielectric of lower

“dielectric constant. This structure is designed to produce a single mode, i.e. the

dominant HE” mode, by reducing the core diameter sufficiently to cut off all higher
order modes. The thickness of the cladding is chosen to make sure that the field at

the core will decay sufficiently inside the cladding so that the outer boundary can be
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handled without affecting wave propagation. This, together with the fact that glass
is noninductive, will virtually eliminate ;:ross-tqlk when a bundle of fibfes is used.
Since the energy is mainly confined within the dieleciric, low loss material is there-
fore 'required to ensure low power loss. Still another structure, the self-focussing
fibre, was proposed by Kawakami and Nishizawa.” This is a dielectric cylindrical
wayeguide of circular cross-section with a refractive index given by

NCEG) = "/e—o (1+k r2)_]/2, k =a constant and r = radius, so that the paraxial

‘solution gives equal velocity of propagation for all rays lying within the paraxial ray

region. Here again, low loss material is required. Investigation of the optical fibre
. . N~ . 6
in single mode operation for component application was made by Schineller.” The

structures investigated were mainly of planar form.

The present study is primarily concerned with the propagation charac-

teristics of cladded optical fibre as proposed by Kao. In particular, we are interested

R A LR e e e e 54 e e e 8T

in the attenuation of the >op1‘icql waves caused by losses in the fibre. Losses in the

- fibre arise because. of absorption and scattering. Absorption loss is caused essentially

by traces of metallic ions in the fibre glass. They have their peak absorptions within
the visible and near-infrared part of the spectrum. Scattering losses are mainly caused

by Raleigh scattering and scattering due to imperfécﬁons in the bulk of the core and

in the "waveguide" imperfections. The former is due to minute dielectric inhomo-

geneities frozen in the glass, while the latter may be introduced by such fabrication-

induced scatterers as bubbles, crystallites, dust particles, cracks, core-cladding ir-

regularities efc. Our objective is to, hopefully, formulate a theoretical model to

account for losses due to discrete scattering cenires within the cladded fibre, and to
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correlate the physical model to such measurable quantities as e.g. attenuation on a
optical fibre. The information thus gained might possibly be used to suggest improve-
ments in methods of fabricating these fibres and fo understand the basic limitations of

optical fibres as transmission lines.

The present work reports the preliminary study of propagation character-

istics of cladded optical fibre which is free from any inhomogeneities. Although, some

- of the work has been done before, it was felt necessary to have certain repetition of

work for the following reasons : (1) This would afford one of the authors (J. Marucci)
an educational opportunity to acquaint himself with the methods of analysis used in

fibre optical cheguide studies. (2) To assess the effects caused by the presence of

 discrete inhomogeneities, a clear understanding of the propagation characteristics of

the cladded fibre without any inhomogeneities is clearly essential. Having the analysis

: inv‘hcmd, it would be possible to examine those cases, for which no previous data are

available.  Further, it is suggested that the analysis used in evaluating attenuation co-

efficients for optical waves propagating in lossy fibres (assuming both the core and
cladding to be lossy) can also be used for calculating gain coefficients if either the
core or the cladding is made of an amplifying medium of liquid. We understand that

this problem is currently under investigation by CRC scientists .

The methods of analysis followed mainly the works of Astrahan, Kiely,
Kharadly and Lewis, and Roben‘s.8“].l However, a new method was used for group

velocity calculations.
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2, Derivation of the Chorocferisfic'Equo’rion for Propagating Surface Wave Modes

The waveguide under consideration is the cladded fibre, as shown below.

c - &
= b
E-|>62

FIGURE 1. =~ GEOMETRY OF THE PROBLEM.

"It consists of a core of relative permittivity €., which is embedded in a second di=-
p Y €

~electric (5'2), called the cladding. The third region is air. In the following anal-

ysis, we will seek source-free wave solutions for the waveguide of infinite extent

in the z-direction.

Solving Maxwell's source free wave equations, i.e. v{[% = -wzpo e{%}

“in each region we arrive at the following solutions for the fields :

i
i
i
1
i
i
|
{

Region | (core) : p S a

- ‘ _ ibhftet-yz) (1)
Ezl i Jn (k] p) Fn ‘ Fn ©
_Hz1 B bn] ‘Jn (kl ) Fr A (2
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Hm‘ —l—é{uoe]k]a]J'(k]p)- J (k]p)}F (4)

‘1

y L
S T . Y

Ep] - —L—21|'yk] an] Jn (k] D)"""‘B“"‘ Jn (k] p) Fn (5)

'I .
: B me]nqn]J (k] o)
H = ?{f . - iyl b (g p)} F ©)

L - - 2 2w2 = - -
where €=ee , Y= ko v, and k] = /w My €9 —y2 = (5\-3) A/p] €1 -y2
o
Region Il (cladding) : a < p = b
E22 ={qn2 Jn (k2 f) T3 Yn>(k2 p) } Fo @)
H22 ={bn2 Jn (k2 o)+ bn3 Yn (k2 p)} Fn (®) |
= _]_ Zﬂ | ] 1 [ ’ ! i ]
EﬁZ » k2 {( p)[qnz Jn (k2 p) +qn3 Yn_(kZ P) * prZkZ anJn (l(2p)+bn3Yn (k2fj Fl
2 ' .

)
= '.......]_. H i i __'ZI_T[ ]
Hyo 'kZ{INEZkZ[GnTJn(k2p)+an3Yn(k2Dﬂ 5 anJn(k2p)+bn3Yn(k2p)}Fn
2 | | 0
- - .k'_ 'k 'k']w—-—Pzn k
BRI 5 L4 olong i g ) o 5 Y7 (cy0)]- 5 [By224 20 3 (ky )] LF,

= an
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' Hp2 -7 P P [QnZJn(kZp) + h3 Yn(kZioﬂ+| VkZ[anJn(k2p)+bn3Yn(k2 D)J}Fn
2" o | (12)
27 - - =2
where k2 ‘};‘ n’ 2277
Région [l (outer medium): p = b
) ) _ 2, .0t |
Ez3, “n4 Hn (k3 2 I:n 1r 1) %4 K‘n (W3, P) Fn (13)
.= (]) | = ._2._ -1 n+l
Hyg™ bygHy Ggp) Foo= G b K Wy o) Fy (14)
E. = 1 AL H (k )+'w‘Akb‘ H' (k, p) L F (15)
@3 k2 p n4d n 3P/ T 1Y H3 K3 P4 n'3 n
3
. = - J_ H ' - _'Y_ll
Hﬂ3 : k2 {l ©es k3 “hd Hn (k3 P) P IOn4 Hn (k3 p)} Fn : (16)
3 ‘
| o 1r, , L pgn
' Ep3 T _k—é_{l 7k3 “n4 Hn(k3 p) - bn4 Hn (k3 p)} Fo (17)
3 ‘ 1
: ) 1 W €3n . :
Ups™ 7 {'" 5 a4 My (g o) — Ty kgh fH oG ")} o 18
3 S
where k3 = j W3 = (2X1r) J ;,2 -1 pure imagi:nary and ' denotes differentia-
. ! O . N

tion with respect to the argument.

[t is to be noted that Equations (1) - (18) give the most general field

solutions for the cladded dielectric structures. If, however, we are only interested in
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Ez]——_.EZZ '

“at P=a

Hz] =H22

at P=a

Em =Eﬁ2

at P=a

Hm=Hﬂ2
at P=a

E22 B Ez3

af p=a

H . =H

z2 z3‘

at p=b .},

o7k H
at p=b ¥

at p=b |

- ., » - . ) .

0 c=q/b,x=k]q,v=k2b, cV=k2q, N=k3b=]W
” N i | | | | |
Jn (x) Jn (c v) Yn (cV) 0 0 ' 0 0 ,
] | o [
0 o o 0 v Y (V)
; | ' — — e
DT e R R G o
1 X =) (V) ==Y (cV 0 | — J (x J'eV) | =+ Y'(cV)
x2 n ! (cV)2 n !( V‘)2 n { | n ’ (cV) “n F(eV)
oy e, e, | , o - P
—_— ' (x H(eV) ' —yn n cV) n c I
a2 R o RC A 5 s S A
T TEm R m T me T e T e T e
% | | I 1 | _
0 ‘ o | o | o I o | vy W o)
e —— | | | l‘ ]
bl L . imp iwp (2]t
o Buw lave BEeae !l oo TBZw | R2viw w2
Y Y N T I S S
—f—l"wez : | Twe, . miweq . [ o | Cy ,)’n
0 svat A\ v YV g Hn(N)I 0 ! ;Zz-Jh(V), | SY, M SSH )
M
(©x8)
' (19)

an] 0
a0 0
an 0
a4 ) 0
bn] 0
bn2 0
bn3 0
bn4 0
= ‘J ~
y o
(8x1) ~ '

|

{
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. the low~order modes which are propagated in the core by total internal reflection, we

.shoulvd seek solutions in such a form that the radial wavenumber k2 in the cladding

- 4

is purely imaginary. Field solutions for this special case are given in Appendix I.

Equating the E, , Ez componenfé af p=a and p=b, we get
eight equations in eight unknowns. This is the result of imposing the boundary con=-
dition of the confinuity of tangential electric and magnetic field components across

each interface. Since we are not considering sources of excitation, the set of eight

-equations in eightunknowns ishomogeneous, and hence, for non-irivial solutions,

the determinant of the system must be set equal fo zero. This gives the characteristic
equation for propagating modes i.e. det M =0 . However, we shall first reduce

this (8 x 8) matrix to a (4 x 4) matrix, and then take the determinant. The proce-

:dure is as follows : Frqm Equations (1) and (2), we solve for {Gn] ‘ bn]} .

ay ={Jd CEVa,*Y eVagsl/) & (20)

b = {4, @V * Y, Vb T/ ) ) (21)

n

From Equaf.iéns (8) and (6) we solve for {qn4’ bn4]‘ ’

nd {Jn v) 92 * Yn (V) 93 }/ Hn (N) - (22

It

by = {a Wby Y, b}/ H N) (23)

Substituting aqr bn] r Qg bn4 into the remaining four equations, we get after

-some algebra and elementary operations :
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- | l 9 ' | 2 1‘ 7
nAgs L NS mCTFE, A3Byg  mC R Bl 9o
S S LA v
C2Fe A Aol CPFe A | nAgS “ns a
© 1502379 079 3 l n3
e el T R
: n2
nTA, | T | Fu, A4Bos ‘ ~Fu, Bgs (_'i—)
S R R X
l n3
LFA4€OA25 ' Fe Ags | nT A, |  -nT ﬂ-(—i_—.. .
— - , (24
‘where
Arg = (eg &~ ¢y Ag) Big = (up &y =1y Ag)
Ags = (€5 8g=e545) Bgs = (by Ag -1z 45)
S C . (25)
Ags = (€5 Ay €5 45) Bys = (by Ay~ b3 45)
Azg = (eghy=ep a9 Brg = (g g iy &gl |
2 2 .
S = (I/V)" - (C/X)
T = a2+ a/w)?
2 .
w p_ € A i
ST
7 4 L (26)
b ) -
W = 2'Ir('>\—) y -1 , v = EX
o] ’ (o]
A
7 >\0 l“loeo
2
.(Q = Flpge) |
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= kyb , N = kb = |W (27)
H;(N)
A [, S,
5 NH N
Yr'} (c V)
47 BENCRY) Y V)
s (28)

Y (V)
Ag = VY V)

J0(X)

By = X1 (X)

e

Now, for non-zero solutions of a.pr O 3s (bn'2/i)’ (bn3/i) in the

4 equations, we require def A =0, This deferminant takes the following form :

det A =£Y]+Y2+Y3+Y4+Y5]= 0

where

Y '.=-n4

—

272 2
STT [Aag- 441

Dispersion
Equation (29)

Yy = =<t Q7 [aglaag) = 4,45 A [ AglB1)Bgg) = 8,(8,0)6,9)]

=<
i

=<
Il

=<
fl

5. ”Z.TZQ C4[ *:2('514) ol (D94)1[22(D14) ) 21(D94)]

2 2 - -
5= -2n°STQc Az A, [A]-A7][A2-A8] ey iy

A | SERCIEACIE *73(¢54)][€2(C84) - E3((:54)]
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1

Gy = (bghg = Ay A
Cop = “A5(A3 ek
Dy = (8y 23~ 47 4,)
Dos = Bglag - ay)

e

- 11

In what follows, we take Fl] = ﬁz = ;13 =eqa=1. Thus the dispersion equation is a

-function of several variables, namely,

det A = fn(_y—,b/)\o,n,c,'e'],'e'2) = 0

The cases of usual interest are when n=0, n=1.

Case 1: n=1 (hybrid modes)

Then,

det A|n=1 = f] ()—/, b/)\o , 1, ¢ E]’ 62) =0
By fixing ¢, E]’—e2' we finally get

det Alnz] = F] (v, b/}\o) = 0 (0~ B diagram)

(31)

(32)

Next, we use a root-searching ftechnique for solving f (v, b/}\o) = 0, and we find

two types of hybrid modes ( HE and EH) :




‘
- . .

12

‘:HEH s called the "fu“'nd)ananenfal mode, because. it has no low-frequency cutoff. For

our dispersion curves', c=0.5, E] =2.56, '62 =2.53. (E.I > '€2).

Case 2: n=0 (circularly symmetric modes)

det Al Lo = £ (3, B, 0 ¢, g0 &)

=Y

- _ 432 _ -
ST QA5 A0 Agsm Ay Ay A79][A3 %19 %85 = A4 Bys B79]
=0 ; (33)

and we can show that for

By (TM) mode s [ A3 Ajg Ags= A, Aps Az | = 0 = 1 (7, LIRS
TE

Hom (TE) mode : [ Ag B1g Bos = A, Bys Byg ] =0 = (5, b/\)]| . (35)
. X n=!

. om

Here again, we employ a root-searching technique for each equation

=2.53 as before.

1 2

| E (M) H =0
| n»:O /_————— om [ z ]
| | | \—_* H  (TE) [EZ 01

(E , Hom) , and take ¢ =0.5, €, =2.56, €

om
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3. .Phasé Velécif* : ( Vp)

Let

1
- = velocity of light

o o o .
V4 M, €, in vacuum

then
e ko Yoo @Y%
v - - = '::'T('_ - T
p v Y % Y
therefore
: . ] |
(\-/-E) = — , normalized phase velocity. - (36)
y .
o

Thus, instead of plotting directly ';/ Vs. (b/)\o) as found from the root-
1

searching technique, we plot (—_')-/-) vs (%) from which we can read off the phase
' 0o

velocity (l__- = v _/v_) immediately.
Y p- 0

4. Group Velocity 1 ( vg)

The group velocity is obtained in a novel way as follows.

dw d (kovo)‘ . w = ko o
vV =T == 5 = , using
d (k —
g % (o'y) y =k 7
now
dy - 2&) _l_[‘+k°dy]
W v dk v Y d k
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therefore :
v v -
Yy (E‘..‘_*’_) Yo du 7+ko dko
1 d k
= a + — % = o
% ;X = =
X ko d %
hence
v ! ‘
() = — (37)
T : _
o '}/ X
Now the dispersion equation is
Fn ( Vi b/>\o) = 0
‘or
(1) ,— - oo e
Fn (v, buw) 0 , using Y
) )
or

AG, bk) = 0, wing w =k v

o o

Therefore, differentiating implicitly ff,Z)(;” b ko) = 0 with respect to
“y: we get @ new equation, namely, -
dk

(2),— oy -
gn ('}’lbkold;s-/) 0

or

gn (")-;l b/>\ol X) = 0 ‘ (38)
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. _ _ b2xw _ d ko
~using - bk = and X = .
s ) A dy
: o o
 Fora ineh p;jir of « (;/, b/)\o) corresponding to a point on the dis-
persion curve of a particular mode, we can solve 9, (;/, b/)xo, x) = 0 for x by

using the root=searching technique. Having found the value of x corresponding to

a given (¥, b/)xo), we can find

(%) =

o

]

|

7+ (7. b/A)

: _) :
Doing this for other values of (5, b/)\o) on the particular dispersion

A

’ . b . .
curve, we get pairs of (;9, -}\—) from which we plot the group velocity curves.

o o

In summary :

Gt ¥ fro

kdiod

f'ﬂ( %"/!i) =0

B

(%, £

o

(().ujtfuzﬂ? I(sm;r
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5.7 Field Expressions

The_:fie_l‘d s‘olutions as given before have 8 unknown coefficients, namely,
{on], °n2’ Q. 3r O 4 bn] , bn2’ bn3’ bn4} . However, only one of these coefficients

is independent, and its magnitude is determined by the sources of excitation (which

we are not considering). We will arbitrarily take a o to be the independent coef-

ficient, and express the remaining ones in terms of a o We do this as follows :

Case 1: n=1 (_h»)ﬂ/'bljiglwr_nqdes)

* When n=1, the 4 equations and 4 unknowns on page 9 become:

(1) AgSa, + Sapy-[e Filg 43819 ] (By5/1). - [<“F i, Byg [ (bya/ D) =0f.

2 2 . N
(2) < Fe0 A3A]9c]2 + ¢ FEOA79013 - AGS(IO12/I) - S(b]3/|) =0
- S (39)
(3) TAjaj, * Tq]3 - Fug A4825 (b]2/i) - Fp@ Bgs (b]3/i) =0
(4) FeOA4A2501]2 + Fe Agrayg - T»A4(b]2/i) - T (b]3/i).= 0
Now, the first 3 eciucn‘ions can be rewritten in this form :
e . -~ o -y ™~ N
2 2
(VA (7R Byo/S) (T () By, /AGS) | ayg B
2 2 bp |
CAz4/B3Ag)  (B/eTFe Arg)  (/eTFe Mgy || (F7) | = | apy
1o b13
L. 'L : . - »J - - L
A (3x3) (40)
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' By gsih’g Cramer's rule, we can solve for {013, —_, _T} in ferms of a1
result is :
93, T By 9y
(byp/ ) = Gy oy A =[]
byg/i) = G5_ a9
J
where
_ . |
Be = Gar A [(622°33732923) ™ (412033793213 T (6129937 ©213)]

N ‘ , '
©4= Tora {15337 %31%13) 7 (21 337 %31 °29) 7 11 037 S 1 %19

o
Cg = ot A {(eg) c307 G371 ¢09) = (617 e3p= 31 ¢1 ) (e cpncpy &1 )]

det A = ¢

o) : :
and cii 171, 2,3, {=1,2,3, are the mairix elements of A (e.g. cq =-1/A4).

Recalling from before that, for n=1,

=B, a

= {J](CV)Q]2+Y] (cV)alg}/J](*), use aj3=Bgar,

%1 \

[ @) B, Y, Vo), /) 60 = Gyapy

1l

by = {J; €V) bi_2_+ Y, (eV) by /)y &)

il

| 4V G, 7Y, (eV)Ggay,/ &) = i Gga,

(42)

(43)

(44)

11 (G99€33 = C39C03) = Co1 (615Ca3 = G35 C13) F g (e 5C03=Co9 01 4)

(45)

“e)
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Similcrl_y,
g = 2 epFa, = (W) B, Y, (V] arn/K W)
B VR U VI A 6 "1 12/ M
= 62 a9 (48)
L = _2.. -1 | = .
by = Ty =-{Jy (V) G Yy (V) GyYap /K (W)
= - Gé ajo 49
o _ on 2, nt _
where we have used Hn (N) = Hn (jw)= oy -D l(n (W) andset n=1,
Thus, the seven coefficients expressed in terms of ay, are:
_ _ N
ap T Gy byy = 1 Gz 9y
a3 T By 9y by = 1 G4 apy
- | (50)
Ay T Gy bi3 = 1 G5 9y
b1y T "G a2
.J

Case 2: n =0 (circularly symmetric modes)

(@ Egpy modes (TM) :

Here, b b..=b..=b. =0 ( H,=H ,=H ,=0)

01~ P02 03 04 21 T2 Mg

On using this condition and setting n =0, the 4 equations in 4 un-

knowns (p.9 ) reduce to the following :



! 1

H . o . : . ]

: . . . .

’ - N - . -

A3A

19 %2 T Az9 93 = 0
Ay A5 gy t Agsdpg = O
From. (51),
A
19
Cagy = AL () a
03 3V A %02
Hence
agy = {Jo_(cV) 002+Yo (®V) 003}/J0 (X)
=T 14, ©V) = &3 (A0/ Ase) Y6 VI1/ 3, ) | g,
- 2. [ Jo V)= 83(A19/A) Y ) T
%04 x| 04 W) 92
In summary :
'ﬁ
boy = byy = bog = by, = 0
V) Ay A /A9 Y, (V) o
] { 1) boagy = hyap)
A
19
a = - A, (—)a., = h. «
103 3'A,, %2 = "5 ‘o2
a4 ~ | K W) } agg = g 9y

19

(51)

(52)

(53)

(54)

(55)
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modes (TE) :

om
Here, A = 459 = 93 = 04 = 0,
Again, putting these conditions in the 4 equations and 4 unknowns, we
find s
ol { T } Po2 T M Pg2
B1o
Loz T " 4305 kop T Paboy | (36)
N ” _ Jo (V)—A3(819/B74) Yo (V) b = h. b
o4 ~ 1 K W) } P2 T 302

where b02 is chosen as the independent variable.

Notfe : On the angular (§) variation of fields :

given by

Consider E21 =y Jn (k] p) eln’g. However, a general solution is

zl

E - [an] Jn(k] o) ein'@.‘_’- A—n] J—n(kl p) e—inﬂ]
= Jn (k] Q) [ a einﬂ+ (-1)n d_ni e—inﬂ] , on using J_n(y) = (-1)" Jn(y)

Since we are considering wave propagation in the z direction, the factors

describing the variation of the fields with 0 must be real.

By taking aq= (-1)n a Ez] = Jn (k]p) a 2cosnf@. From

-nl 7.

a . =1)"a

a1 ¢ We can derive :
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n o
1) G2 1 3 T

%en2

b R ( N bnl ! b-—nZ 1) bn2 ! b—nS (]) I:’nS’ E :

-nl
Agdin, a general solution for HZ] is

Hy o= by d e ) e™ s+ b0k p) e

z1 nl “n

b

nl “n

il

b 3 (k p) (el - 5"y

n

j2b JnA(k] o) sinZI,ﬂ_

nl

Similarly, by using a combination of +n and =n and the relations between coef-

- ficients of +n and -n as given above , we can establish if the angular variation

of the remaining field components have a cos n @ or sin n .

Final Field Expressions :

On setting

| | M of - _
n=1, s=(f), zo=£—; , F=el®7) pagp/)

0
and using :
1912 ¢ 93T 8oy s a1 =Coap, 4 by =G

=G

M 3%2 ¢

b b. = -G, a

by =i G 5912 ¢ Py 612

12 =iG

3912 « P1pT i1 G a1, 4 byg

the original field solutions take the following form (h =1) :
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Electric

E 1=.cosﬁ[G] J (Xs/c)] Foag , s = p/b (

o1
i

o T
~

E, = cosf[J (Vs) + B Y, (V 5) ] Fooay,

E,q = cosf [G, K, (W s)IFo ay,

ey = isin @@/ XAB[5679 6, 3y (X5/0) - 2, X e G I (Xo/0) | Fy oy,
. . 2 -

i sinff (2n/V )b{?’(l/s)‘[‘.u] (V) +B, Y, (vs)] - VZO[G#JE(V5)+G5Y3(Vsﬂ}FO ay

lEﬂs = jsind (21r/W2) B[—;(]/s) Gé K] (Ws) + W Zo GéKa (Ws)] Fo ary

| . 2 2 _ . _
Ep] = jcos @ (2n/X") [Zo (c™/s) (33 J] (Xs/c)-% Xec G] .J] (xc/s)] b Fo a9
_ 2 . . i
Ep2 = jcos @ (2n/V ){Zo (1/s) [G4 J](Vs) + G5 Y] (Vs)]- 'yV[J']»(Vs)—i-BéY] (Vsz' b Fo :]2
. 20 - , | i}
E g = i cos 8 (2n/WI YW G, K Ws) -2, 1/ 64Ky W[ B, apy
where « is the independent coefficient. : (51
12 ependent ¢ _
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Magnetic (h=1)

= -sing [G3J] (X S/C)] Fo 12

zl

H22 = ~sind [G4J] (Vs)+G4Y] (Vs)] FoQ]Z

Mg T e e wa] ke,

U = icosﬂA(Zw/Xz)B[?(Cz/?) Gy X5/6) - (€/Z)) X < Gy i X5/0)] F e,

Hﬁz - ‘i.cos}?f (2“/\/2) B{'(;//S) [G4'J](_VS)+G5 Y] (Vsil-— EZ(V/ZO)[Ji(Vs)+BéYi (VS)]}F

| Hgg = i cos @ 20/ WA b [-—(;//s)‘ Gy Ki Ws) + (W/Z ) G, K| (Ws)l

H ;= isin }25‘(2Tr/X2‘) B[—E]/Zo_(c2/s) G] J] (X s/<) + Xc‘G3 ; (X s/c)]

o
i

o
|

o3 = 1sin g @n/WAE[1/2, (1/8) G, K, Ws)- 7 W G, K]-(WS):I Fo o1z

where

s=(p/b) , b = (b/2)

i sin 8 (2n/VA) E{f;/zo(1/s) [1,0v9)+8, ¥, (valyy Ve, i v +G, v (vSE[}FO

o M2

(58)
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 Field Plots (n=1)

In plotting the field componeh’rs as a function of S = (®/b), we have

normalized all-the components by | (Fo 012) , and also taken out the factor cos g,

i cos@ and jsinf@ . wherever it appeared. For example, in plotting E}Zf what is

Eg

actually plotted is (Fo @ 2) B We have not included this normalization

factor in the field curves.

6. Ah‘enuaﬂo.n

For a lossy dielectric 4 =B - ja, where o is the attenuation coef-

ficient. The axial power flow becomes

Pz) = P 29z (59)

~ where P, is the initial power flow at z =0.

Differentiating both sides

_ 9P _
L = | - 'a—; 2aP (Z)
Therefore
o = = | | (60)
2P (z) °
Now for small losses P (z) =~ Po , hence e TN
o = = approximately ©h
2P,
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power loss per unit length

3
.o
o .
L=
m 4
-
It

-
!

power flow for a lossless waveguide

Next, we derive an expression for L. Set L = Li , where Li

| [.\/Jc.o

=
is the loss per unit length in medium i (i =1, 2, 3). It is given by

1 . %

i 2 Jg oue (- E ) d si_ (62)
i
“where -E-i = total electric field in medium i
Si = cross-sectional area of ith medium
and G:aff = effective conductivity of the ith dielectric medium

= (0 fanSi)éi' , €' = Re (ei) = Re (ei’—ieg')

To show that U;ff = (v tan Si) eil :

where fan 8i = :

For time-harmonic fields we have

v X Hi = (g+ jow ei) E. , o conductivity of the dielectric medium
~ jw € Ei , o >~ 0 for dielectric

= iwei'(l—-il‘c:mSi)__E_i

= 4 : :
_[(wjan Si)ei + 'l_weiv Ei
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- = i : 1
Thenefore oW Ei [ O off + jw € Ei
‘ ‘wljnerefj U;ff = (w tan Si) ei' (63)
Hence,
L =—]—j € -EDdS |E. | = peak electric field
i 2 S Geff _‘i —‘i i 7 i peCl elecliric rie
i
€. *
= (0 tan §j) = r (E. - E.)dS,.
2 JS- i i i
i
= (@ tan Si) Ww. (64)
where
! 1
WL i ® _ 2(ei s
i | G- E)ds, =2{4 | E.E)ds,
, Si Si
= 2 WE (65)
We = time-averaged stored electric energy per unit length
therefore
' 3 i 3 3
L = Z L= w0 -y ~(tan 8,) W, (66)
i=1 i=1
then o
3
" \; (tan Si) W.
L i=1
o« ~ 3= = —3%F (©7)
o o
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For convenience, we normalize o with «, which is the attenuation

2

coefficient of a TEM wave propagating in an infinite medium with dielectric constant

€n = E'2 - EE. For small losses, we can show that
vV W JF
a = —\-/—c;- E2 tan 82 (68)
3 .
Y“
Yo /. (ran 6i) WI/PO normalized attenuation

&y = coefficient (69)

Since the expression for the attenuation coefficient a involves the energy

and power expressions, the latter will now be derived.

(1) Energy (per unit length)

where




. X . a
. . ‘

28
1 2 a ' N
\ E { : . *
M =79 J, IO£1 E* pd pdf
1 rZTr (‘Q : :
= _ . P * T
S B R [Eq En * i Bt 7 E o Ep]] pdpdf
Similarly ' (70)
o 1 PZ'IT rb A
= [ * . B%
W, - 26“0 J [E22 +Eg Eﬂ2+E Epz]pd od 8
1 r“ >
Wy = 7] Jb[Ezs' "By By T E -Ezs]pd od g
Closed. form expressions of W] ’ W2, W3’are given later.
(2) Axial Power Flow
2
Po = /. Pi = P] + P2 + P3
=
where
: ! f‘21T a ‘ * i
= em . & - d
Pz, ), Bt T B o) pd e 4l
1 r'21r f'b
= e * L & 'l
Py = 3 g JQ(Ep2Hg2 EgpHpg) pd pdf 1)
. 1 r?n rcn _
’ = s L &
"3 7 7y, o3 s e Mge) o peld

Closed form expressions for P] ’ P2, P3 are given later.
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From (70), _ detailed expressions for energy per unit length for n =1

can be shown to be given by,

2_‘ .
2 c e 2
2° “1 [ 2 27" 272 2 2 |
W, = o) lay, | 77 {G] T+ -)—(—- ’b [20 +Z G}EI"IZ)+T] )] |
(2"2)24c2z 'yb G, G, 1)}
X“ |

2 €2

3—3 5% [T(2) + TJ(0 ][2+z G]+2“ 52[Tv(@) + TYO)| [ %8, + 22 6

v [YJ 2) + YJ(0 ]['y B, +Z G4G5]b Ii;rz)z

+ (B, G, + Gy [534]}}

' 2
_,mhb 2 1 2 _,2m\2
W3 = ("\';;-') : -——-'{G K](D (— 4'y5 Z G

a2l )
12l 77172 W

+-——b2[7 G +z G ]['K] + KI( 0):{}

where

TI(1), TI(2), T1(0), T4(}), TJ(1), TY(1), YJ(1), TJ(2),

wb 2 ’
9 = (*\',:")Ia]2l§'—z-;{TJ m + B6 TY (1) + 2B6

YJ (1)

5

vZ, b {2@ [s1] + 28, G4 [52]

,G, K4(T)

(72) -

1

TJ(O), TY(2),

TY(0), YJ(2), YJ(), ST, $2, 534, K1(1), K1(2), K1(0), K4(1)

but not given explicitly here for the sake of brevity.

‘are algebraic expressions involving Bessel, Neumann and modified Hankel functions,
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Similarly, the detailed expressions for the axial power flow can also be

obtained as follows . (n = 1)

| 2 2 c2 21r 272 2 2 | 2 - 9 7
P el G 09) b35S [ZOG3;+(e]/ZO)G]][T1(2)+T](0)]

- 2c” G, 63[372fE]] T4 (1)}
P, = b’ fay,| ?;/“ “’{ [z G+ 2/z |[T@+130 ]

+ %\—/—2[206?(22/20) Bé][TY(Z)fTY(Oﬂ Ve [zo G, Gs+.(22/zo) BJ[YJ(2)+YJ(0§

_[22+;2H_;G4 [s1] +28, G, [s2] + (G5 +8, G,) [5341-}}

, ,
- 1.2 2 2w\ 2724 W _ 2 2 N
Pg = mb legpl €970 ‘{T 7 [2,6,+0/2,) 63 [[K1@ + K10)

26,6, [1 + 5% kaq) }

(73)

By glancing at the energy and power expressions, we see that they contain

v and b = (b/)\o). Now a particular mode is characterized by a set of values for

(v, B)7which can be found from the dispersion equation as discussed before. Thus,

to find the attenuation for HE” mode,we must put in the corresponding values (;/, b) in

the energy and power expressions, since

o]

: v, [ (tan 8,) W, (y,b) + (ran 8,) W, (,b) + (tan 85) W, (v, B)]

)
Q2 |(-')-),B) ,\/e fdnS




4
i .. ll . " L i,
i o : - B - . . . B X -

Slmllarly for fhe other modes (EH

of (y, b) belonging to fhe mode in question.

17

H
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..), we supply the values
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7. Discussion of Numerical Results

.. Using the dispersion equations derived previously, the mode spectrum
of the guided waves on the cladded fibre waveguide was plotted in Figure 2. The

2=0.99e].

parameters used are as indicated i.e. c¢c=qa/b = .5, E] =2.56 and €
These parameters have been used throughout all the calculations. The mode designa-
tion follows the usual one used for dielectric surface waveguides (for example, see

Ref. 10). It is seen that the dominant hybrid mode HE” has no low frequency cut-

off. This mode is followed by the next higher order circularly-symmetric modes Hy

and E_, . These are in retumn followed by higher order hybrid modes EHyq, HE;, etc.

All the higher order modes have finite low frequency cutoff. For large values of

P

(b/}\o), the dispersion curves for all the modes all approach the value

.]/")7 = ]/,\/E] =0.629. Note that those portions of the dispersion curves shown in

Figure 2 represent the modes for which the angles of incidence 0 of the guided waves
at the core—élqdding interface are less thﬁ the critical angle, Qc ® < Qc). Conse-
quently, a portion of the waves leak info the élqdding region and travel inside the
cladding. They might appropriately be called "Leaky Modes".6 The portions of the
dispersion curves which produce waves guided by total internal reflection (i.e.

0 > Qc) in the core and hence evanescent fields in the cladding have yet to be map-
ped out. Since evanescent fields are produced in the cladding, the radial wave num-
ber there, ko ,ﬁ-.:—'y2 , must be imaginary. This would necessitate changes in the

2

field expressions and also dispersion equation as indicated in the Appendix.

The group velocities of the various modes have been calculated, using

a novel method, and are shown in Figure 3. The group velocity of all the modes is




H : :
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|es$ than Vo r the velocify of light in vacuum, but can be made arbitrarily close to

Vo / “/é] for large djiqmefer fibres. The lowest order mode, the HE” mode, is an
excepfion in that its group velocify.ccm be very closed to v o if the fibre is made suf-
ficiently thin. In general, for a given diameter of the fibre, the group velocities of
the various modes are not equal. This gives rise to d;alay distortion for propagated
signals. At the fwo exiremes when the group velocity is vy or vo/A/El the dis~
persion is smallest and signal distortion at a minimum. It is under either of these two
conditions that the ibre can be considered to be suitable for transmission over long
distances. The former corresponds fo single mode.operaﬂon, the latter multi-mode

propagation.

The radial dependence of the various field components is shown in
Figure 4. For the HE;; mode, two points on the dispersion curve were chosen,
one near cutoff where y=1.010962 and-the other far away from cutoff where
;/ =1.582547. For the HE]2 mode, a point close to cutoff was chosen, where
'-y =1.001572, while, for the EH,, mode, a point far away from cutoff was chosen,
where y =1.562437. The field components computed at these operating points are
for illustrative purposes. It is seen that for the EHH and HE]2 modes, a radial

node exists in the Ez and Hz component in the cladding region. It can be expected

" that, as.the mode order increases, the fields inside the core and cladding would be-

come more oscillatory so that the number of radial nodes in Ez and Hz will in-

crease. Whereas the fields in. the free—spc@e region decay exponentially in the out-
ward radial direction, the fields inside fhé cladding do not decay as rapidly as might
be expecied. The reason is that the fields plotted are for the "Leaky Modes" only.

Further computations will be performed for the "Propagating Modes" in order to
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show the "evanescent. fields" in the cladding, which can be expected fo

deccy. rapidly.

No conclusive remarks can yet be made about the attenuation coef-

ficients. The plots in Figure 5 are only preliminary in the sense that the program for

the normalized attenuation coefficient (a/ 0(2) is still being debugged (0(2 is the
attenuation coefficient for an infinite plane wave in an infinite dielectric medium

with the same dielectric constant as the cladding).

8. Conclusions

A preliminary study of the propagation characteristics of the surface
wave modes on a cladded fibre optical waveguide has been carried out. 1t is felt
this is a necessary prereqﬁisife for studying the effects of inhomogeneities or dust
particles imbedded in the cladded fibre. All the computations were performed for

the "Leaky Modes". Further computations will be performed for the "Propagating

“Modes" with evanescent fields in the cladding. This involves the case, in which

the normalized axial prOpagcfion.coefficienf v lies in the range */El <.7}7 < “/E'Z .
A novel way of calculating the group velqcify was used. The calculations of the
attenuation coefficients are still being carried out. Although some preliminary re-
sults were shown. Their accuracies need to be established. However, it is felt that
the method of analysis used for calculating the attenuation coefficients may profitably
be used to calculate the gain COeffiCienfS}f‘. either the core is surrounded by an am-

plifying medium in the cladding on the core itself is made of an amplifying medium.
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FIELD SOLUT‘IO‘NS. FOR THE SURFACE WAVE MODES GUIDED IN THE

CORE BY TOTAL INTERNAL REFLECTION

h . .
Let m represent the m' region. Then, for the mthreglon,

1 . 7m aEzm . aHzm ]
Eﬁm kZ[—lT@5’+lwpm 3 p Fn
m .

3E m + ?_/_rg b.Hzm]F
P I o EY/) n

- 1.
Hﬁm~-;~2-[|ue
m .

oE
zm +i
> p o o8

E ‘:_.._]_.['
pm ’k2 L Ym
m o

° Ezm zm

H ____1_[.2_5_ -'#"b ]F
pm k2 | o of 7 3 0 n
m

where E, H_ arei given by
Region 1 : - Ez] = a;ﬂ Jn-(k1 P) Fn
Hz] : brlﬂ Jn (k'l,.p) Fn
Region l!: E22 = [0;]2 ln (Ikzlp) +°rl13 Kn (|k2|p):1 Fn
Hz2 =[br112 In (|k2|p) * brI13 Knv(|k2|p)"] Fn
Region [l E23 = 0;14 Kn (.Ik3 | o) Fn
Hya = by K, (lkglo) Fy

Y P 8Hzm]F
n

(3)

(4)

(5)
(6)

@)

©)
(10)
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FIGURE CAPTIONS

Mode Spectrum (Phase Velocity) for Cladded Fibre.

¢ = 0.5, & = 2.5, i, = .99% =~ 2.53

Group Velocity for Cladded Fibre.

¢ =0.5 & = 256, €, = .99¢&, ~ 2.53

1 2 1

NEAR CUT-OFF radial- dependence of Hz, HP, Hr for HEH mode.

(b/N) = 0.15, ¥ = 1.010962

NEAR CUT-OFF radial dependence of Ez, E@, Er for HE;| mode.

(b/N) = 0.15, ¥ = 1.010962.

FAR FROM CUT-OFF radial dependence of Hz, HJ, Hr for HE
b/)) = 1.70, F =1.582547

. FAR FROM CUT-OFF rqdicl dependence of Ez, Ef, Er for HE” mode.

(b/N) = 1.70, ¥ = 1.582547

. NEAR CUT-OFF radial dependence of Hz, H@, Hr for HE, , mode.

(b/)) = 0.52, ¥ = 1.001572

NEAR CUT-OFF radial dependence of Ez, E@, Er for HE]2 mode.
(b/)) = 0.52, 7 = 1.001572

FAR FROM CUT-OFF radial dependence of Hz, HJ, Hr for EH” mode.
b/N) = 2.50, v = 1.562437.
o |

11 mode.
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Figure 4(h). FAR FROM CUT-OFF radial dependence of Ez, EF, Er for EH” mode.
(b/)\o) = 2,50, % = 1.562437

Figu_re.'_.‘-j. _Normglized_Affenuafion Coefficient (o&/az) .
tan 8] = 0.0005
tan & 0.0005

0.0

1l
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