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ABSTRACT  

This report considers the radiation and mode conversion losses in 

the cladcled fiber due to a scattering center located on or near the fiber axis. 

The other loss mechanism, namely absorption loss by metallic 

impuriiies (e.g. Fe, Cu), had been treated in detail (see Report  No. ,2 io the 

Department of Supply and Services, Ottawa on Contract No. 01GR 36100-2-0204, 

Serial No. OGR2-0163). 

The radiation loss due to a scattering center was also treated in the 

same report. A summary of the materials is included here to provide some continuity 

of this report because radiation los s and mode conversion loss are closely related. 

A discussion to determine the Minimum bend radius by the critical 

angle criterion is also presented. 



1. Introduction 

Our attention is facused on impurities in the fiber or fiber 

inhornogeneities as scattering centers on or near the fiber axis. 

For most operational purposes, the dominant HE
11 

mode is 

used in a single-mode cladded fiber. When it impinges upon a scattering center, 

whose overall dimension is very much smaller than the wavelength, a current 

moment will be induced, and this will scatter power into radiation 	and surface 

waves (both "leaky" and "propagating " modes). 

Fig. 1 depicts the situation under our consideration. As we can 

see, some of the scattered power is radiated  out of the cladded fiber. Some of 

the  scattered power is converted  into higher-order modes and guided along the 

fiber. If these higher-order modes encounter another scattering center, some of the 

power will be reconverted  into lower-order modes and back into the original 

HE
1 1 

mode. This phenomenon is called mode conversion and reconversion. 

Radiation just causes a loss of power ; while mode conversion and reconversion 

will cause signal distortion. This is because higher-order modes are travelling 

with different velocities. When reconversion happens, this will cause intercoupling 

between these modes. 
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FIGURE 1 	Scattering from a Small Particle (e', on the Fibre Axis. 
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• 
(a) 1-1E

11 
modal power incident on scattering particle (6 1 , v`). 

:(b) Modes exalted by scattering particle : 

[1] — radiating  mode • 

. [2,3] — guided cladding and core modes 
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Marcuse 
1,2 

 studied mode conversion caused by surface imperfection 

of a dielectric slcib waveguicie and also mode conversion caused by diameter change 

of a round dielectric waveguicle. Perturbation of the geometry of waveguide was 

assumed to compute the total exchange of energy from the lowest order to the 

next higher order mode. 

Clarricoats and Chan
3 

have analyzed the situation of a scattering 

center located inside the cladded fiber by assuming infinite cladding and, 

by assuming a small dielectric difference between the scatterer and the core 

region (or the cladding region') computed the mode conversion  power  in terms of 

the incident HE
M 

mode. Radiation  power was also computed. 

The method of analysis used in this report is based on the paper 

• 
 by Yip

4 
in studying  the  launching efficiency of the HE

11 
mode on a dielectric 

rod. This method was further employed for the study of the launching efficiency,  

of the FIE
11 

mode on a dielectric tube by Yip and Au-yang
5

. The technique 

involves expressing the sources and fields in a Fourier integral in the z-direction 

and a Fourier series in the so- direction. Though, in general, the Green's 

function for, an open-bounded cylindrical  structurels  extremely complex, for 

the simpler. case of a transversely-oriented infinitesimal dipole on the axis of a 

cladded fiber, the Green's function is available. 

A current moment will be induced on the scatterer when the incident 

dominant H mode impinges upon it. This will make the scatterer appear as 



an electric dipole (Rayleigh scattering)., Suitable fields must then satisfy the 

Maxvvell's equations with boundary conditions met at the interface between the 

core and the cladding, and between the cladding and the outer air regions. 

Radiation and surface waves would be ex -oited an-d can be 

computed. The magnitude of the induced current moment depends  on the field 

of the incident mode. 

5 



free -space propagation constant. 
o 

2. Method of Analysis 

• - 	The decided fibre as pictured in Fig.' 1 -  is assumed lossless, 

characterized by a permittivity of E
l 

=-..
.
E
o 

-E."
1 

in. the core with  radius  a-,creld 

by a permittivity of E-2 	
9 

in the cladding with radius b.- Both haVe. 

a permeability p
o 

. The surrounding free space is characterized by • the  

'permittivity E
o 

and thé permeability p
o 

As explained in the introduction, the point dipole is placed at • 

the origin of the coordinate system, and oriented perpendicular to the 

wt 
The  time  dependence is assumed to be e 	, and the induced current density on 

the point dipole is specified by a normalized delta function: 

[ 
X je 	 

2 Tr f 
(2.1) 

where induced current moment of the point dipole . 

• In the core region 0 < p <a, the normalized electric and 

magnetic fields must satisfy the following Maxwell's equations: 

V x E 	H 0_ 
(2.2) 

v.x H.K0 E 1 E 

where 1 	H 	and 	 ,“ ... 0 -zzi 	 0 	1 

with subscripted quantities representing the normalized fields and currents.. 



c;”0 

(2.3) 

KOr 
Fq3 4), Y)c 	dr ?,cP , z) 

where "Y = normalized propagation constant. • 

E. 5, 1 (?, , Y.) 

r) 

1-1 Ï1(9,q5, 

(2.6a) 

By the Fourier transform technique, the actual fields can be 

7 

represented as 

— 

The transformed fields F( p, p, "Y) are further expressed in a .  

Fourier series: 
OC) 

n • 

FrA(,Y) etve‘  
(2.4) 

In the source-free region inside the.fibre..Core 0< p < a : 

[ 

D? 	-57.  a5b  
(?<)) r) zi 

1-1 z1(S), 	Y 
.1 • s. 

— 

 K 2  

ay 4 	
a95 

D ITP 
Dsb 	ay _ 

(2.5) 
D 	

• 

095 	àf 

	

1%1'1,2' 	- 

vvile  r 	= 	— 
With these and Maxwell's equations, the longitudinal field 

components in the core satisfy the following wave equations: 



f 
- I-1 1-1 22 (?) -6- ) 

LE (§' 
Z2 (2.6b) 

e.) 

• (2.6c) 

8 

From (2.6), we can clearly see that only m = ± 1 modes will be excited. 

The wave equations are also true for the cladding and the tree-

space regions with J 	 v
2  

	

e  = o and 11 	replaced by 	, 	 2 , 

	

•• 1 	 ' 	• 	 2 
_ 

no - y1  - y 	respectively. 

For a <p<b 

For p 

Hi.3(9)0  

iE (S),K) 
13 

Our solutions for longitudinal fields in the core  0  <  p < a 



2 
<y  < = f 

2 	 1 	' 111 	el 
is still real, while r 2  = 

2 - 

H.,,, ,,(v,e) 	( Sr, .1- '1 C Kay(s 9) 4- 13, j.(t<0/1 ?)] 

E \() (1(„Ift,?) + A ,,,T,(r.*/, ?) 
(2.7) 

where s- 	2_11 C 
anc ,> 

As mentioned in the earlier contract report (Report  No  1 to the 

Department of Supply and Services, Ottawa on contract No. OIGR 36001-1.-0519, 

Serial No•OGRI-104),  there are two regions of interest to be accounted for in the 

dispersion characteristics (see Fig. 2). 

In the domain where the normalized propagation constant 

2 
, both - "'

2 
and eri

2 	
,T1

2 
- 	are real. In 

1 	1 

ihis case (Case 1), we have the so-called "leaky" modes, or "cladding" modes 

as the waves are mostly propagating in the cladding. 

In the domain where the normalized propagation constant 

becomes imaginary. This (Case 2) gives rise to the so -called "propagating" 

modes, or "core" modes, as most of the waves are propagating in the core. 

In the claddirig a <  Y <b  , the longitudinal fields should be given 

according to the two cases mentioned in the last paragraph. 
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Hz2 e, (1<0vq,1?)] 

2.8b) 

2.9) 

Cm) Lv]--- Es] 2.10) 

Case 1:  For 	and 12 2  both real ("leaky" modes), 

4.2?.21 C,;„(1(on,?)  r De„ . 3; K olj 

11 

2.8a) 

Em y (K01,5)) 	j  

Case 2: For 'i
ll 

real' and72  imaginary ("propagating" modes), 

E,K,( 1<0 1 12- 1 Ç' ) 	Frn 1. ■ (1<onz i ? )i 

In the free space p > b where n
o 

= 	 thè 

longitudinal fields are giien by: 

(? 	rz '1 170  
23,rn 

"0) 

(1Ç 0 )  

3 (?,e-) 	IY/0 	H ) ( K ,en 

The eight coefficients A m 's are excitation coefficients and can 

be determined by matching the tangential field components at p = a, b. This 

is given in matrix forms: 

The details of the matrix components for the case where both 

7/ 1  and n 2  are real are given in table I. X = k 
o 	1 a  

V  k  
o 2 



TABLE I' Continuity of Tcnoentiol Fields Ari-onged 

. in Motrii< Forrnot M y = S. 

source column 



Y 4  
c 2 k 

 4 
(—) 	N 

c 	o 
2 2 	2 j 2 (x) y 2 (v)  y2 

 (CV) 
 F.12 (N ) a(y).  

j 	1  1 77 2 

13 

N k
6 
 b, and W IN.  For the case where 	real .  and 772  imaginary, 

o 	•1,  

we  just change .1 1 	l.  , .and Y
1 	

. 

The transverse field components of the transformed fields are 

cle.rived from the longitudinal fields by Eq. (2.5). 

Therefore the actual fields, e.g., H
z3 

(p, 	. z) and 

i E 
z3 

( P,  p, z)  cari  be obtained by Fourier transformation : 

.>--- }-1 	'(' P, Y.) e' vn(1)] 'f--.1Kcsric:'\ '' s  
11 . <5' , 1)) 2 . )  = -2-7 	i.);-----t 1 . -2  ''11 

 

5 Z3 

i 	9 0 F 	e .oUr (2.11) F ' 	
• 	LK,,le 

2.3,nrt 

As explained in the rod case
4 
 , the real poles y

s 
can be shown 

to give rise to  surface  waves guided and unattenuated along the fibre. 

The various coefficients can be conveniently expressed in the 

following form" : 

.Am 	
— 
Bm  

B m   etc 
A( Y)•' 	e( 

where A(Y) is the dispersion équation, and is derived from det. [M ]  . It is 

interesting to note that det [M 	
. „ . 

Here, AiY) is the dispersion equation of a source-free cladded fiber, and has been 

derived previously. 



For the power radiated, we integrate the real part of the radial 

component of the complex Poynting ,vector in Région Ill over a cylindrical surface 

of radius p greater than ID, i .è., 

ci  2îr 

krc)4, 

(3 . 1) 

----Ke 	çr(9,1),z).1-1 
g-

(1;1'2 ,z) E tub )F-1,1-,(e1.-z)JP4-4-ck 
_ 

r 3 
 

3. Radiation Power 

14 

12.=,  

O 1 1? 1  9`) 	oil) 0, ?i p c 	) 

4-01;bEo 	
using Parseval's 

-co 	 Theorem 

where - 
 (10(p.,n 0:3 f (, 4, e) - q3 ç 	.1-41 (, Y.)) 

Now for I 	I > 1 , the radial component of the complex Poynting 

vector is purely imaginary, corresponding to the evanescent guided modes. Hence, 

these do not contribute to the radiated power. By making the usual far field 

approximations for the Fiankel functions and realizing that Y 	cos Q , Eq. (3.1) .  

becomes 

jufrir 

Pr=.1e 2 	p(e,(1, ) dcpcie 

0 

(3.2) 

on setting  Y = cos  O and integrating over 



(3.4c) 

±. I 

Pr  = 

3.6) 

where 

15 

(3. 3 ) 

(3.Lia) 

(3.4b) 

À-4 0 -1-1) 1 cos21) 	F) Sin.24)j Siyl 
E.0 	11 	12 	 13 

G rrs, ( co s O)) 21 

R, e-  2 [G G + G G -1- 	L -1-  Lu  
r,  

[ 	G 	G 	-+LLIL 1;1 

L w, c  cos 0) 	L 

( cos e) G r 
The integrand P(0 , 	) in eq. (3.3) is proportional to the power 

intensity at angles (0, p ) . Hence P(0, p) can be interpreted cis the radiation 

power pattern. It should be noted, however, that the terms P 12  and P 13  do not 

contribute to the radiated power since the azimuthal (e) integrations are zero 

for these two terms. 

Hencel the total radiated power becomes: 

rr 

) 	I .L.,(CO 5  0)1
2. 	

G,( cos Q)1 2 ] dO 
± I 	 • 

(3.5) 



, normalized frequency -= 
o.  

16  

is the radiation resistance of the point source on the fiber axis. 

The integral in equation (3.6) is then computed numerically. 

In Fig. 3 (a,b,c) , we plot the radiation power pattern 

P(0, 	) for the three principal planes, i.e., P(0 , 0
o

) , P (G , 90
o

), and 

P( 90
o
, 9), where each one is normalized with its corresponding maximum value. 

When V 0.1, there are nulls along the Z- axis (Fig. 3.a, b), as compared 

to that of a point dipole in free space. This corresponds to  the power launched 

into the guided modes propagating in the Z -axis (both forward and backward). 

For the case of V = 1.5, 2.4 vve still have nulls along the Z. -axis, but now the 

power pattern displays many minimums as well. The pattern in the transverse 

plane of the fiber axis (Fig. 3.c,  P(90° , 	)) is the same as that in free space. 

3.1 Fraction of Incident Power  Scattered into Radiation 

by a Small Scattering Volume on the  Fiber Axis 

The incident HE /  ./ power is: 

Tr b2 -S« . (V) A 2  
11 	 1 

where Tr b -̀ = cladding area 

A
1 
 -= excitation coefficient of 1-1E

11 

S. (v) = integral expressions of fields 

(see eqs. 71 in Report No. 1) 

3.7) 
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C 4 

2r 7: I 	
( 

( 	 r  --- -4) (3.9) 

where e' - scattering particle 

=376.7  
e

o 
_ 	(core radius)  

(cladding radius) 

19 .  

As stated before, the power radiated by a small scattering volume on the 

fiber axis is given by 	- 

Pr  = 1/2  i2  R 
m r 

= 1/2 	ile  j E' I A, V' )
2 

R y for a dielectric particle (e') 
• i 

Taking the ratio of P
r 

i•o P. and normalizing with sCattering parameters 
s 

(se, y'),  we finally get 

(3.8) 

normalized scattering  volume  (a is core radiuS of fibre) 

= transverse field intensity at the Scattering centre 

R-
r 

(V) 	b2  R , normalized radiation resistance for a point 

source on the fibre axis 

For the infinite medium approximation (with a refractive index 

), we merely replace the normalized radiation resistance (R
1

) 

of the cladded fibre by the correspondirsg one of the infinite medium, i.e., 

I E l . 
s 



(V) 	[b2  R 

R 	 ) 

(3.10) 

20' 

where 
80 IT 

2 
1 

• ( 	 
o 	n

1 	
2 

X
o 

radiation resistance of'a point . 

source in an infinite'. medium (n,) 

In Figure 4, we plot the fraction of power scattered into 

radiation normalized according io equation (3:9). The infinite medium 

approximation is also shown for comparison. We conclude from the results that 

the infinite medium approxiination is reasonably good and may disagree by about 

one or two dB with the exact solution. This is for a scattering centre on or very 

• 

near the fibre axis. It is speculated, however, that an off-axis scattering centre 

might produCe a more pronounCed difference. 

The ratio of the exact solution of the power radiated  (P)  to the 

infinite-medium approximation (P,...) is - given by 

P 	1 1 	R 
r 	z m 	r 	_ 	r 

1 
P 	 R 	 Ro 

o 	z rn o 

3.11) 

which is just the ratio of the corresponding radiation resistances as defined earlier. 

The variation of this ratio with the permittivity difference between 

the core and cladding, i.e. , 	=(i
1 

- 	) 	is illustrated in Figure 5. 
2 

Contrary to the expected result of having the ratio approach one as the difference 

A e goes to zero, the graph shows an oscillatory behaviour about the value one. 

The departure illustrates the difference between the exact solution and the 

infinite-medium approximation. 
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Aletter which reported some preliminary results  on  the problem 

of scattering loss from a localiied inhomogeneity in a cladded optiéal fiber 

has been published and is included herewith. 

Fig. ,s should replace Fig. 2 in the letter. 
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SCATTERING LOSS IN A CLADDED-FIBRE 
• OPTICAL WAVEGUIDE 

Indexing terms; Optical wareguides, 1 ihre optic. Light 
Scattering, Green's-funciion methods 

	 • 
-- 

An exact analysis using the Green's-function formulat`ion of 
the  problem of scattering from a local inhomogencity inside 

cladded-libre waveguide is carried out, and yiefds a radiation 
loss higher than .that evaluated from the inlinite-medium 
approximation 

There is considerable current interest in improving the trans-

mission characteristics of glass-fibre optical waveguides, and 

one specifk riliblent in this domain is the reduction of the 

attenuation of the optical waves caused by losses in a cladded 

fibre. Such losses arise because of both absorption and 

scattering.' –3  The absorption is  caused by traces of metallic 

ions- in the glass fibre Scattering losses are mainly causéd by 

Rayleigh scattering and scattering duc to imperfections in 

the bulk oi the' core and in the `waveguide' imperfections 

The former is due to minute dielectric inhomogeneities frozen 

in the glass, while the latter may be introduced by such 

fabrication-induced scatterers as bubbles, crystallites, dust • 

particles. cracks, core-cladding irregularities en_ The presence -

id' scattering centres causes loss of energy by radiatibn when 

light is guided by the fibre. Further, power carried in the 

 guided mode (the dominant HE 1  mode in a monornode 

Fibre) is scattered also into higher-order modes. This mode-

, canversion and reconversion phenomenon causes error 

si'g,nals, and limits the channel capacity in an optical-com-

municat ton  sSSICI -11. 

The object of this letter is to present a theoretica.1 model 

to account for losses due to discrete scattering centres within 

the cladded tibre. . For the present purpose, the discussion is 

confined to a consideration of the radiation loss from  one 

scattering centre .in •a single-mode'cladded fibre operating in 

the dominant HE rt  mode. It is 'assumed that the scatterer is 

a 

-80 

0 	1 	2 	3 	4 

, 	 V.2tr(aiX0)./(ei-e2) 

• • 

Fig. 1 Normalised radiated power PrIP,(AeAy"» against 

normalised frequency V = 27i(a1A 0 ) (c17--e2) 

Pi as the power in the Incident liEti mode 
‘Ne 

jr 3  
Dielectric •, 
— exact 
---- infinite medium ' 
(u) b 	‘, 20, f. ‘ 	2 34, f j Z.: 2.25, e t 	1.0 

(h) 	= 5. c ■ 	2 34, 	=2.25, c 3 	1.0  

.small compared with the incident wavelength -  and the size 

of the fibre, conditions that are usually met  in  practice. To a 

first approximation, the scatterer czin. be  assumed to be 	2 5 
approximately spherical in shape. and hence Rayleigh theory' 	• 

holds. 	It thus -follows that the radiation fields from the 

spherical scatterer are the same as those from a short electric 

dipole parallel to the Incident electric field and with a - dipole 	• 

moment 

N 2  

P= 47rc0 c2 . 2 	/ 3  
N +2 

where 

N 2  — 
7,12. 	• 

(Lie ° 	/7, 

and //,` and n, are the refractive indices  of the scatterer and 

the surrounding medium, respectively. e.„ Ej. . and a( are the 

permittivity and conductivity of the scatterer. E.,;./ is the 

permittivity of the surrounding medium, r iS -  the radiusof 

scattering :entre on fibre ,Dxis 

the scattering sphere and -É", is the amplitude of the incident 

electric field. ,Flence the current moment of the short dipole 

is related to the dipole moment by 

/Ax 	jcoP 	. 	. 	. 	. 	. 	. 	(3) 

where .  Ax is the length of the dipole  and  w is the angular 
frequency' of the incident wave. The current 'moment Can  also 

 be expressed  as  it‘u,'where J is the induced current densitY -
*in the scatterer and At- is its volume. Snyder.' and Clarri-
coats and Chan-  considered the problem of radiation loss 
from  a scattering centre . in a cladded fibre:by assuming the 
cladding to be infinite in extent. and., because of the  small. 
dielectric difference.between the core and the cladding, using 
the expression fôr the  power  radiated froM an. infinitesimal 
diPole into an infinite medium co  e, • . 

= 	(v' Po 80 E 1) ( 
) 

as an approximation. It was poinfed out by thesé 'authors that 
the Green's-funetion formulation for open-bounded cylindri-• 

'cal hybrid-mode structures' is.extreinely complex. However, 
for the simpler  case .of a , transversel .v oriented infinitesimal 
dipole on.the  axis ofa dielectric rod, the Green's function  is 

 available. We shitIU now cr.:tend analysis 5 ' develope. d 
previously for u dielectric rod JO a eladded fibre, The niethod 
of analysis involves expresSing' the dipole and the .fields  as 

'Fourier integral  in the z direction and a Fourier series in the 

1> 
4 

1- 
Q. 

the 

(4) 



(6) 

. 	(7) 

dy (8) 
1 

ii0 1/0 

direction in a cylindrical co-ordinate systcm. The longi-

tudinal components of the fields arc given, in the core 

(0 < p a), 4--  

iEzi...(P. )' / = 	 'fk'ti 	P) 	• 
.1 

-h-  4,,(Y) JIU oliP) 

(5) 

• 11.1.,i(P, 	 V.1(k„ 1j p) 

+13,(7) i(korlIP)} 

in the cladding (a < p < b), by: 	• 	. 

..1Ez2.,,(P. 7) -= J. l/2{1)')  Y, (k o 	p) 

niF (y) 1(k 0 112 11 )1 

z2,m 1 11.» 	r 112{C m(l)Y 1(k0 112 	„ 
1),(7) J (ko e/2 p)} 

and, in •the free spacc ( p > b), by 

= J.  Lm(Y)  Il 1 ( "(k no P) 

11:3.•,,(1), Y) =  J,. Gni( )')111" 2 (ko ho I)), 
where 

• 

je =  j4  k o .N/ Po ' 	 • 	 • 

=  1 or —1,2/ =••■./ (ei —  Y2 ), i12 . = / (1:2 —  Y 2 ), 	= 	— 7 2 ), 
J,. is the current moment en the dipole and y is the Fourier 

:transform variable, and G,„ and L.„, are two of the eight un-

- known coefficients.in the fields that can be determined through 

the imposition of boundary conditions. On applying the 
Fourier transformation and Parseval's theorem. .the total 

• radiated power is given by 

	

/pl o\ k o 2 	• • 1 I 

Pr 	2 \ eo  47r • -1 
0J 

and ca.n be evaluated by numerical integration— Fig. I pre-

sents results of PrIP 1 (-A8A 2  as -'a function of the normalised 

frequency  V = 2n(r7/20) V(e,--e , ) for two different values 

of alb, where P I  is the incident power in the HE 11  mode, 

(5e e i  e2 and Ai.,  = At17- 3 . It is interesting to note that  

the radiation loss calculated from the Green"s-funetion solu-

tion is about - 5 dB higher. than that obtained by the infinite-

medinni approximation of eqn. 4.- - Within . the validity-  of the 

Raleigh  theory, the Green's-function solution gives the 

exact solution where boundary effects at core- cladding• and 

cladding—free-space interfaces have been taken into accouru, 

and hence against which the accuracy of approximate 

'solutions can he checkcd. The 5 dB is the difference in the 

calculated power radiated when only one scattering centre is 

considered. In a long fibre, there will be man' scattering 

centres, and the cumulative difference in the calculated traits-

mitted power levels over a certain distance of the fibre càn, 

therefore; be quite appreciable.. 

• ln Fig. 2,- the ratio  P,./ P o  has been plotted as a function 

Of the dielectric difference, where P o  is the , power radiated 

from the same dipole into an infinite medium e l. , as given by 

eqn. 4. This ratio does not approach unitY  as the dielectric 

difference vaniShes (de ---> 0); because, in the present treat-

ment, - the finite boundary at • /7 =1) has been taken into 

account, so that, in the Itnit, the cladded fibre becomes a 

dielectric rod as (5e. approaches zero. •The variations observeçl. 

in the calculated power with changes in (.5e illustrate, the . • 

departure froth the ,infinite-e,-medium approximation  when 

the boundary effects are taken into account.• 

To sumniarise, we see that the infinite-medium approxima-

tion in the evaluation of radiated power from a scattering 

centre can lead to inaccuracies. Within the validity of the 

'Rayleigh scattering theory, the Green's-function formulation 

-yields the exact solution. Moreover, the latter method can 

also be used to compute the spatial distribution of séattered 

power. This result,' as well as other pertinent data, will be -
reported later. •• 
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4. Surface-Wave Power. 

For Z > 0, the surface wave contribution to the fields, 

e.g., H
z3 

( p , 	, z) and i  E
3, 

( p , ep , z) can -be-obtained by evaluating 

the residues at the poles y
s 

with the following results. 

For 0 	P < a : 
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1- 

. 	E3,  
H c 9, cP, z ) 	K0 Je 	zà'ffs ) - 

rn 	Y.  7,- 
( l'<o •Yis ?) el »e ° 5  

(4.1) 

A(Y)  
where 

For a < p  <b :  

Case 1: When both, ri and 77 2  are real ("Leaky" modes) 

(4.2a) 
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Case 2: When 77 	real and 17 imaginary ("propagating" modes) 
• 	. 	 2 

28  

E (P,C),, Z 
Z2 	" 

(P'1K I
(Ka 1 12) 	 ....1.7 1 	( V I 

0 	 ky...1 	
0312 	 $114) 	 z 
	  e 	c. s 

yky.*1 4.2b) 

For p > b 

2 	l<0 17?oi 

3 

im 	Kars  z, 

(4.3) 

a 
 - 	

Lny.,(KOPYiol?)  e ' z)--= 1- 1 '70 13-el-  
Wo rs Z 

Other field components can also be obtained by the use of Eq. (2.5). 

Because of symmetry, the total power carried by surface waves is 

twice that in the positive Z direction. 	 , 

where 
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Thus, 

E (f) 	* ( ?) 
r3,■-e% 	r3,re 	03, ty, 	P3, 

(4.6c) 

It is clear from above expressions that total surface-wave power is 

equal to the summation of power carried by the individual modes, and there is 

no contribution from the cross-over terms. 

Finally, from eqs. (2.5), (4.1), (4.2), (4.3), and (4.6), we have 
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For case 1, when both 77.1  and are real 

P = 	I 	-I- I 	-I-. 
s2 	1 	2 

where 

;

1 5  IT2 1<ciii. 

4'(r5)12> 
 

(J
:

) 

isTra  

Z.  41 A'o-,? 
04"az Y; 	a) R'e ) 	 (--.) 

(Koiiick)' 



. 51T 2 	4 2 2 

A-14 (( 
	 Ko 	J, (Kolîzb) Re 

rs )I2  

302(Ks.21.z_L>) +. 
3:2 ( l<0 _,Î  b.)  

31  

2Cyn 

.) 
D s4 	 (r),  

e  ,kyrz I 
 

t 

ji  I 5 7IT"  2' 	4 

2- 41 A'or5) ■ 2  

15 
II. K

2 Re • 2 	0 

an■ ( irs)) 
(4.8c) 

37:(Kol,a)  
(K„,72a) -i- I) .z 

4  5-  
Koz „laz a.. 2 

, 	I 

-(Ko.fiza) R e  C-1-  2 Vet 

(4.8b) 

4-o 2 5 rn )  

Q 23 1 n  = r ( rd'-:„) 24--E2- 1E1J 2)•  

— 2 

vin 	à-- ( c 	--Er) ) 	2 	 ) 

2. 	1_51 2  1-  e--, F-,12  

(D,1+ 	n,12) 

(K0 O) 	( Ko.'72 	— ,T,(Kort2.1,)Y,(  K0 	b) 

	

55 17-:  PO (Kt:Y/2  b)Y,, (K 0 2 :)) 	k 0r0,) 	( Ko vuz b ) 

c2  (j.(1(o.)Y,(1< à )b.0-) 	‘);( vo 72.a)Y(K42a 

D, = r (CC„ Dy: 	 tv,„ 	33 

D, 	r2  
For case 2, when ni  real and 11 2  imaginary: 

P = L + L + L 
s2 	1 	2 	3 

Q 2  

where 
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where 17_ iS the normalized power. 

D= 	F 	E, ) 	* D„ 

Finally, 

4.10) 

And the total surface wave powers can be normalized with respect to the source 

current according to 
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5. Results and Discussions on Mode Conversion due to a Scattering Center 

First the surface-wave power expressions are checked wiih ihose 

of  the  rod case by making e 
2 

= 1.001 and C -= 0.9999. It is found under this 

specified situation, the surface wave power agrees very well with that of the rod 

case. This checks the  correctness of the analysis. 

Fig. 6 shows the computed results of Fi for HE
11' 

EH
11 ' 

and 

HE
12 

versus the normalized frequency V. At the transition from the cladding (leaky) 

modes to the core (propagating) modes, F
s 

goes through some kind of a minimum. 

From the characteristic curves in Fig. 2, the transition from the cladding region to 

the core region of the
"11 

 mode is sharp, hence the transition of i"."-  from the 

cladding region to the core region is sharp too. For the EH
11 

and HE
12 

modes, 

the transition is wide over a band of normalized frequency, hence also wide is the 

transition of P
s 

from the cladding réàion to the core region. 

Fig. 7 shows the ratios of P / 	, P /F and P / 17' for the 
1,  

HE
11 

EH
11 

and  HE
12 

modes where P
I ' 

P
2 	

and P
3 

refer to surface wave powers 

in core, cladding and outer air regions. At higher frequencies, most of the power is 

concentrated in the core as predicted. 

As mentioned before, when we increase the ratio of b a, there 

will be more and more modes exèited by the scattering center. Mode identification 

will require more computational time and better programming techniques. This is 

especially so as Y approaches ie-2  (e.g., the V= 1.50  line in Fig. 2) where all 

the cladding modes will asymptotically coverage at higher normalized frequency and 

where we are close to the transition from the "leaky" modes to the "propagating " modes. 
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Once ID' . for all the scattered  modes. are  established, we have to 

normalize them to the incident power and scattering volume and express them in 

terms of dB for comparison with existing data (such as those by Clarricoats and 

Chan). 

As E. Rawson suggested that during pulling of a cladding fibre, 

sàme of the impurities will be elongated to become "dielectric needles". This 

will be studied in the near future, too. 
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(A.1)  
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on using sin 0
c 1 

sin O  - —1 	(see Figure 8) 
1 

ÀPPEN DIX 

Minimum Bend  Radius Determined by Critrcal Angle .Criterion 

We now derive an approximate expression for the minimum bend 

radius by using the critical angle criterion. It is assumed that the bend has a 

negligible effect on the dispersion curves of the guided modes, so that we can 

use the unperturbed values ( y V) of the mode spectrum. The geometry is 

illustrated in Figure 8. Focusing attention on a single core mode (0 > 	), 

it is seen that in entering the bend these guided core rays leak out into the 

cladding and hence cause mode conversion; Applying the law of sines on 

triangle with vertices (1-2--3) gives 

38  

:it • 

The critical angle criterion is = 0
. 1 
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FIGURE 8 	Determination of Minimum Bend Radius ( 
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d, 	(y+ n 2. ) 
, for core mode 	 (A.4) 

2 

+ n 2 )  

( V n 2 ) 

for core mode , V (A.5 ) - 

R
(2) 

= v+ 1) 	, for cladding  mode  

1) 
V) 	(A.6) 

Hence, 
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d, 
,R= R + ( 	 ) 

C 	o 	2.  

Equation (2.71) also holds for a cladding, mode provided vve replace d
l 

by d
2 

, 

and n 9  by n 	= 1, i.e., 

It is noted that at cut-off, Le., y 	1 equation (A.6) gives 

(2)  
R 

c 
-) co, which means that power will leak out into the outer medium even 

though the fibre axis is straight (as expected by the definition of cut-off). 

- 	( 1 ) Equation (A.5) above shows that, for radii smaller than R 
c 

, power from a 

core mode will be coupled to a cladding mode; whereas equation (A.6) shows 

that, for radii smaller than R
(2) 

, power from a cladding mode will be coupled 

into radiation. In both cases, mode conversion will also take place, since the 

bend mixes the characteristic angles (0nm)  identifying the guided modes. It 

should also be observed that a fibre of micron dimensions (d
2  • 
	10

-6 
m) can 

-3 
tolerate sharper bends than one of millimeter dimensions (d

2 	
10 	m). This 

(11) 
makes the optical fibre more attractive than the millimeter dielectric ràd br tube. 



No attempt is made here to evaluate the power loss from the 

waveguide bend. The original intention was - on'ly to give some physical insight 

into the nature of  the  problem. For more detailed treatments the reader is 

referred to Gloge
(12) 

, Marcuse (13) 
and Marcatili

(14)
. 
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