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ABSTRACT 

Marcaccio, J.V., Gardner Costa J., and Midwood J.D. 2022. Potential use of remote 

sensing to support the management of freshwater fish habitat in Canada. Can. Tech. 

Rep. Fish. Aquat. Sci. 3424: ix + 56 p. 

Remote sensing (RS) is the study of the Earth’s surface through image data captured 

from a distance using satellite- or airborne-based sensors. These datasets acquire 

detailed and accurate information over large continuous swaths that can cover a variety 

of spatial (<0.1 m – 1000 m pixel) and temporal (<1 day to 2 week revisit; historically 

from ~1950s) resolutions. At its most basic RS can include simple observation of 

images. Through techniques presented herein, RS can be used to map land cover 

classes such as vegetation and substrate, track changes in habitat area stream 

channels, and measure local factors that may influence habitat aquatic connectivity 

within a watershed, among many other applications. Effective use of RS can reduce the 

need for in-person site visits and increase the geographic and temporal scale of habitat 

mapping to support management of freshwater habitat resources.  With specific focus 

on the Fish and Fish Habitat Protection Program of Fisheries and Oceans Canada, this 

report identifies the types of projects or project end-points that could benefit from RS, 

discusses considerations related to planning and conceiving a RS project, and outlines 

a workflow that can help determine if RS would benefit a project and the steps needed 

for implementation.  
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RÉSUMÉ 

Marcaccio, J.V., Gardner Costa J., and Midwood J.D. 2022. Potential use of remote 

sensing to support the management of freshwater fish habitat in Canada. Can. Tech. 

Rep. Fish. Aquat. Sci. 3424: ix + 56 p. 

La télédétection est l’étude de la surface de la Terre à partir de données d’images 

recueillies à distance par des capteurs satellitaires ou aéroportés. Ces ensembles de 

données permettent la collecte d’informations détaillées et précises sur de grandes 

étendues continues qui peuvent couvrir une variété de résolutions spatiales (pixels de < 

0,1 m à 1 000 m) et temporelles (observation du même point de < 1 jour à 2 semaines; 

depuis les années cinquante environ). Dans sa forme la plus élémentaire, la 

télédétection peut consister en une simple observation des images captées. Grâce aux 

techniques présentées ici, la télédétection peut entre autres être utilisée pour 

cartographier les classes de la couverture terrestre, comme la végétation et le substrat, 

pour faire le suivi des changements qui surviennent dans les cours d’eau d’une zone 

d’habitat, et pour mesurer les facteurs locaux susceptibles d’influencer l’habitat, comme 

la connectivité aquatique d’un bassin versant. L’utilisation efficace de la télédétection 

peut réduire la nécessité d’effectuer des visites sur place et augmenter l’échelle 

géographique et temporelle de la cartographie des habitats pour faciliter la gestion des 

ressources d’eau douce. Ce rapport, qui met l’accent sur le Programme de protection 

du poisson et de son habitat de Pêches et Océans Canada, cible les types ou les 

paramètres de projets susceptibles de tirer avantage de la télédétection, aborde des 

considérations relatives à la planification et à la conception d’un projet de télédétection, 

et décrit un flux de travail permettant de déterminer si la télédétection bénéficierait à un 

projet et quelles seraient les étapes nécessaires à sa mise en œuvre. 
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LIST OF ABBREVIATIONS 

Acronym Definition 

DEM 

Digital Elevation Model. A raster dataset that represents the verticality of the earth's surface, and 
commonly used to describe either a DTM or DSM. There is no consistent definition between DEM, 
DTM, and DSM, though this is the most common delineation between each and as such these 
definitions will be used in this document.  

DN Digital Numbers; raw data output from a RS sensor 

DSM 
Digital Surface Model. A raster dataset representing the verticality of the earth's surface including 
all objects on it.  

DTM 
Digital Terrain Model. A raster dataset representing the verticality of the earth's bare ground 
surface (without objects like plants or buildings). 

EM Electromagnetic, as in spectrum 

HH, VV, 
HV, VH 

H = horizontal, V = vertical. Energy polarizations for radar systems. The first letter indicates the 
plane on which the energy is sent from the system, the second letter indicates the plane on which 
the energy is received by the system.  HH and VV are deemed to be 'like-polarized', while HV and 
VH are cross-polarized. 

LULC Land-use, Land cover.  

NADIR 
Direction pointing directly below an observer. Can be mathematically represented as the negative 
Z-axis from an observer's position. 

NDVI 
Normalized Difference Vegetation Index, Rouse et al. 1973. Represented by ((NIR - Red)/(NIR + 
Red)). NDVI shows the photosynthetic capacity of the object, where dense, growing vegetation has 
a larger response.  

NIR Near-infrared 

RGB Red, green, blue; commonly refers to sensors that span the visible spectrum of energy 

RS Remote Sensing 

SAR Synthetic Aperture Radar 

SR 
Surface Reflectance; a correction applied to RS data that gives values equivalent to the energy at 
the surface of the earth (before rebounding off of the surface into the atmosphere) 

SWIR Short-wave infrared 

TOA 
Top of Atmosphere; a correction applied to RS data that gives values equivalent to the energy 
transmitted through the earth's atmosphere (after rebounding off of the surface) 

UAS 
Unmanned autonomous system or unmanned aerial system. All equipment required for operation 
of a 'drone' (e.g. controller, radio, flight system), including the drone itself. 

UAV 
Unmanned autonomous vehicle, or unmanned aerial vehicle. Commonly referred to as 'drone'; 
separate from UAS in that it only refers to the vehicle itself. 
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INTRODUCTION 

Remote sensing (RS) can be broadly defined as a method to obtain information without 

direct access to it, such as the human senses of sight, smell, and hearing. In a modern 

context, RS refers to utilizing airborne or space-borne sensors that capture information 

on a planet, most commonly Earth. These systems allow researchers to capture 

targeted and accurate data of Earth’s atmosphere and surface properties with collected 

data covering a wide electromagnetic spectrum.  

Remote sensing data are continuous across the area they cover and are composed of 

multiple ‘bands’ of data corresponding to the wavelength of energy they analyze (e.g., 

visible red, ultraviolet). These data are captured by image sensors that can be mounted 

on a variety of platforms. The data produced via each method are largely the same (i.e., 

pixel-based data 'sheets') and the platform to be used is based on project requirements 

and objectives. Once data are collected, they must be processed in software capable of 

handling RS data and analyses. While many GIS software have this capability (e.g., 

ArcGIS, QGIS), dedicated RS software often have more tools and streamlined analyses 

specifically tailored for RS data. With increased computer processing power and cloud-

based software, new RS techniques are constantly being developed and tested at larger 

scales. It is important to note that while these components are reviewed in this 

document individually, most RS projects will utilize many techniques in tandem to obtain 

the desired outputs.  

There are myriad applications of RS including ecological uses (Pettorelli et al. 2016) 

and those related to measuring and monitoring fish habitat (Dauwalter et al. 2017). RS 

can complement or enhance established fish habitat science and monitoring but also 

has several advantages unique to its field. RS can be used for large-scale and/or long-

term monitoring of fish habitat and the surrounding landscape without the need for time-

specific field work. Users can acquire date-specific image data for monitoring changes 

in fish habitat and perform RS analyses to measure changes in physical habitat features 

such as vegetation and substrate cover or composition, changes in habitat area or 

stream channels, and changes in local factors that may influence habitat such as soil 

moisture (represents drainage) or land cover within a watershed. RS provides a 

reproducible approach to analyze fish habitat at local, regional, or even national scales 

without incurring significantly more processing time. The objective of this report is to 

review available RS platforms and their associated features, the types of RS data, 

commonly used software packages for working with and analyzing RS data, and the 

types of analysis that can be done with collected RS information. The report begins with 

recommendations on how RS sensors, techniques, and derived products can be applied 

to support the management of freshwater fish habitat with specific focus on the Fish and 
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Fish Habitat Protection Program at Fisheries and Oceans Canada. RS has many 

common terms and acronyms that may be confusing and unfamiliar to those that do not 

have experience in the topic; a list of these can be found on page ix.  

CONSIDERATIONS FOR FFHPP TO EMPLOY REMOTE SENSING (RS) 

The Fish and Fish Habitat Protection Program (FFHPP) at Fisheries and Oceans 

Canada is responsible for administration of the Fisheries Protection Provisions in the 

Fisheries Act and the Species at Risk Act for aquatic species. As such, the Program is 

responsible for assessing impacts from development on fish and fish habitat and 

protecting fish and fish habitat throughout Canada.  Given the scale of this requirement, 

RS-related techniques and derived products would benefit this Program since RS 

provides a reproducible approach to map fish habitat at local, regional, or even national 

scales. With RS, users can acquire date-specific image data for monitoring changes in 

fish habitat and perform RS-specific analyses to measure changes in physical habitat 

features within a watershed. FFHPP can leverage these techniques to enforce their 

mandate under the Fisheries Act, specifically subsections 34.1 (1)(d), “the cumulative 

effects of the carrying on of ... works, undertakings or activities that have been or are 

being carried out on, on fish and fish habitat”, and (f), “whether any measures and 

standards to offset the harmful alteration, disruption or destruction of fish habitat give 

priority to the restoration of degraded fish habitat” (Minister of Justice 2020). If the goals 

and objectives for a RS-project are defined, DFO science and spatial data management 

groups can help develop RS workflows that can be applied across a range of projects 

and can help create tools to inform regulators reviewing in-water projects. The RS-

related subsections outlined in this report describe in detail the types of imagery that 

can be acquired, the techniques that can be applied to this imagery, and the software 

platforms that are best suited to apply these techniques. In this section, we summarize 

some key messages from the overall document, identify the types of projects or project 

end-points that could benefit from RS, outline a workflow that can help FFHPP 

determine if RS would benefit their project, discuss considerations related to planning 

and conceiving of a RS project and the steps needed for implementation, and conclude 

with an overview of specific elements contained within this document that may be of 

interest to FFHPP. 

KEY MESSAGES 

Overall 

• Remote sensing can be used to acquire detailed and accurate information over 

large continuous swaths of the Earth’s surface.  

• Effective use of remote sensing can reduce the need for in-person site visits and 

increase the geographic and temporal scale of habitat mapping and protection.    
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• More complex uses of remote sensing are likely appropriate for large-scale 

projects or for internal documentation that requires coverage of a large spatial 

area (e.g., State of Habitat reporting, program review, assessment of cumulative 

changes in an area). 

• Large spatial coverage supports mapping and evaluation of watershed-scale 

changes, which can help develop our understanding of the cumulative effects of 

development activities on fish and fish habitat.  

Remote sensing software 

• Remote sensing makes use of software that is often bundled in existing 

Geographic Information Systems but more specialized software, which can 

streamline analyses or conduct more advanced analyses where available (see 

“Remote Sensing Software” section).   

• Remote sensing makes use of software that is often open source and 

reproducible, so the methods and workflow applied in one project can be applied 

to others at local, regional, or even national scales without incurring significant 

development time resulting in faster processing.  

Remote sensing data     

• Many remote sensing platforms exist (satellites, plane-based photography, 

unmanned aerial vehicles) that offer differing spatial (<0.1 m – 1000 m pixel) and 

temporal (<1 day revisit – 2-week revisit; historically from ~1950s) resolution with 

unique data captured (e.g., only visible spectrum light, infrared, microwave; see 

“Remote Sensing Sensors and Platforms” section).  

• Fisheries and Oceans Canada can leverage existing freely available data that 

routinely cover the Earth’s surface (e.g., Landsat and Sentinel satellites - 

recapture imagery every ~2 weeks; the RADARSAT program is owned by the 

Government of Canada). 

Remote sensing techniques 

• Object-oriented image clustering or classification, wherein computer software 

merges pixels with similar properties into an object (see “Remote Sensing 

Techniques:  Image Classification: Object Oriented” section), is a useful 

technique for FFHPP. This technique substantially reduces the burden of 

processing and identification on the user since there are fewer objects that 

require classification and boundaries between features tend to be well defined. 

This technique is especially critical for the new wave of high-resolution remote 

sensing data where pixels <1 m in size can lead to files that are millions of pixels 

and form multi-gigabyte files. This technique has been used to map fish habitat 

features including vegetation (Midwood and Chow-Fraser 2010), wetland 
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inundation dynamics (Wu et al. 2019), and riverine habitat depth and substrate 

type (Hugue et al. 2016). 

• Change detection, which can be accomplished a variety of ways (see “Remote 

Sensing Techniques: Change Detection” section), is a useful technique for 

FFHPP since it can contrast the location and coverage of features of interest 

between two time periods. This can help determine whether offsetting projects 

have been successful (e.g., riparian planting survival, created open water habitat 

meets area targets, desired changes to a system are maintained throughout 

monitoring timeline, or physical habitat has not shifted due to wind/wave action). 

MEASURABLE END-POINTS OR PROJECTS THAT CAN BENEFIT FROM RS 

Pathways of effects (PoE) is a decision-support tool used by management sectors of 

Fisheries and Oceans Canada to support Ecosystem-Based Management (Government 

of Canada 2012). It can be used to determine how anthropogenic activities in or near 

water may affect an ecological or biological endpoint related to fish and fish habitat. An 

essential element of a PoE is the selection of measurable endpoints, which are 

indicators that are used to measure or track changes through time. These endpoints 

need to be well-defined, meaningful, practical, and easily understood and can generally 

be broken down into two components: an ecological entity (i.e., what in the environment 

is changing) and a measurable attribute of that entity (i.e., what about the entity is 

changing; Government of Canada 2012). Given their utility to the management sectors 

within Fisheries and Oceans Canada and the quantitative nature of their requirements 

(which links well with RS techniques), here we identify fish habitat-related ecological 

entities that can be mapped using RS and their associated measurable attributes.  

When combined, these can provide a measurable endpoint that can be useful within the 

PoE framework as well as for works focused on assessing the extent and condition of 

fish habitat. For example, ecological entities and measurable attributes are conceptually 

similar to indicators and metrics as defined by the State of Fish and Fish Habitat in 

Canada reporting initiative that is underway at the time of writing.  

To inform selection of the ecological entities that are listed in Table 1, we drew on the 

different components of fish-habitat paradigms outlined in Minns and Wicheret (2005). 

In that work they discuss an “older” paradigm focused on depth, cover, and substrate as 

measures that relate to fish density or biomass, and a “newer” paradigm formed around 

thermal, motion (i.e., hydrodynamics), and optical regimes that links to growth, survival, 

movement, and egg deposition (among other life history components). Additional 

ecological entities were added based on other biological, physical, or limnological 

features that may influence fish and fish habitat and have been demonstrated as map-

able entities in previous works. Dauwalter et al. (2017) provide an overview of studies 

that have applied RS technology to map many of these features and here we provide a 

similar summary in Table 1 with a focus on measurable attributes for fish habitat. 
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Table 1: List of ecological entities related to fish habitat and their associated measurable 

attributes that can be mapped or tracked using remote sensing approaches. For anything that is 

mapped, distribution (where it is situated spatially), area (surface area), and heterogeneity 

(variety of classes within a defined area) are measurable attributes for all ecological entities and 

are therefore not listed. Further, while this table shows the range of attributes that can be 

mapped, it is by no means exhaustive. 

Ecological entity Measurable attribute 
Vegetation Species; Cover; Height 
Woody Debris/Structure Cover; Height 
Substrate Composition 
Topography Depth; Elevation; Slope 
Temperature Surface Water; Land; Temperature Variability; Growing Degree Days 
Light Turbidity; Water Clarity 
Motion (hydrodynamics) Fetch; Flooding; Stream Alterations 
Connectivity Distance to Proximate Habitats; Number of Connections 
Primary Production Net Primary Productivity; Chlorophyll- 
Watershed Condition Land Cover Type; Changes in Land Cover 
Ice Cover; Type; Thickness 
Geomorphology Connectivity; Channel Morphology 

 

With these ecological entities and measurable attributes in mind, what follows is a list of 

examples of projects that can combine measurable attributes with remote sensing 

techniques (presented in detail in the “Remote Sensing Techniques” section) to support 

management of freshwater fish habitat. 

• Mapping habitat features of interest (e.g., vegetation, substrate) and calculating 

their area of coverage 

• Compiling information on habitat conditions (e.g., stream length or width, 

connectivity of aquatic habitat, shoreline complexity of lakes) 

• Measuring changes in habitat area of cover, condition, or type through time 

• Developing digital elevation models on land (to support evaluation of changes in 

overland flow or connectivity caused by a project) and in water (bathymetry) 

• Measuring cumulative changes in an area of interest (e.g., where multiple 

separate projects may be proposed or underway) 

• Evaluating the un-intended consequences of a project (e.g., channelizing a 

stream may change wetted areas within the watershed away from project area) 

• Complement regular monitoring and reporting for large-scale projects 

• Supporting documentation of reported occurrences (e.g., can collect pre/post 

imagery at the site of an occurrence) 

• Mapping extent and spread of aquatic invasive plants 

• Historic landscape-level analyses where continuous field data do not exist 
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• Expanding local- and regional-scale data to larger spatial scales (e.g., use field 

data from a portion of a lake shoreline to map across the entire lake) 

• Using the above techniques, detect areas and habitats that would benefit from 

habitat remediation 

RS WORKFLOW AND EXAMPLE 

Broadly, the workflow related to using RS products can be split into two phases, project 

conception and implementation (Figure 1). There are four considerations for the project 

conception phase that should be reviewed (below) to determine the most appropriate 

course of action. The implementation phase follows two tracks (Figures 1, 2, 3) where 

Track 1, Deriving New Products, requires more effort and likely the involvement of 

individuals with RS expertise while Track 2, Existing Products, simply involves acquiring 

existing mapping products. There are advantages and limitations to each track (outlined 

below) and project objectives as well as availability of the necessary products will 

dictate the most appropriate path. 

Track 1 

Project conception phase (Figure 1) – The project team needs to outline specific 

objectives that they hope to achieve and then determine whether RS is the right 

approach to meet these objectives; there are four main considerations that will help to 

guide the project conception workflow: 

Timeline when information is required – If the project has a longer timeline (e.g., large-

scale, multi-year project) there is potential for the compilation and classification of 

historic and newly acquired imagery (Implementation Track 1); if urgent, user needs to 

rely on existing RS-derived products (Implementation Track 2). 

Spatial scale – Size of an area of interest will dictate how many images are required, 

the type of imagery that is available to meet the coverage needed, whether existing 

imagery is available to meet the required coverage, and the time it will take to 

process/classify images of interest. Larger areas may not have complete coverage for 

all platforms (e.g., Landsat 8 has a scene size of approximately 180 km x 185 km, 

whereas WorldView-3 has a scene size of 66.5 km x 121 km) and will take longer to 

process/classify.   

Temporal scale – Determining the optimal time of year (season) for image collection is 

linked to the features of interest (e.g., mapping aquatic vegetation should be done in the 

summer while developing digital elevation models may be best done in winter when 

vegetation does not obstruct the ground). It should be determined whether a single time 

period will be sufficient or whether changes through time are of interest (requires multi-

year/season imagery).    
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Features to be mapped – Dictates the type of spectral bands required (e.g., vegetation 

is distinguishable by absorption of energy in the red band and reflection of energy in the 

near-infrared band) and the resolution of the imagery (smaller features require higher 

resolution imagery to accurately map). The types of features to be mapped will also 

inform the type of analysis that should be completed. For example, in deep waters 

(>10m) longer wavelengths of light like red and near infrared do not transmit and would 

not greatly enhance substrate mapping. Conversely, the proportional change in red to 

near-infrared wavelengths is a strong indicator of plant health and chlorophyll 

production. 

 

Project implementation phase (Figure 2) – The appropriate imagery needs to be 

acquired (see “Remote Sensing Sensors and Platforms” section for information on the 

range of available imagery) and brought into an appropriate software package (see 

“Remote Sensing Software” section for a review of available packages). The next step 

is to convert the images created by sensors into distinct land cover classes of interest 

based on their spectral response; this is generally referred to as classification and can 

be done automatically or with input from the user (see “Remote Sensing Techniques” 

section for a review of image classification techniques).  Some level of validation of the 

classification is highly recommended and this is typically completed with the aid of 

reference data that have either been collected in the field or derived from existing 

mapping products. 

Track 2 

This track involves the selection of existing data products that may be as simple as 

reviewing available imagery on Google Earth or downloading products developed and 

maintained by the Canadian Space Agency, NRCAN, NOAA, or NASA (among many 

data producers, see Table A1 for potential data sources). Once the correct image is 

identified, the user can extract the information they need to meet their project objective. 

EXAMPLE WORKFLOW 

Figure 1 provides an example of a RS project workflow with an objective to measure 

changes in aquatic vegetation areal cover following the completion of a project that has 

been authorized by FFHPP (restoration of a small wetland, <10 ha). These authorized 

works involved the revegetation of a wetland with native vegetation, with actions such 

as planting of cattails (Typha sp.). Conceptualizing the project, we have considered 

timelines (need the data within several months), spatial scale (<10 ha area), temporal 

scale (requires multi-year imagery to detect changes in habitat i.e., images from both 

before and after the project was completed), and the features to be mapped [aquatic 

vegetation including cattails, common reed, floating vegetation (e.g., white water lilies - 

Nymphaea odorata), and submerged aquatic vegetation (e.g., pondweed - 

Potamogeton spp.)]. For this example, existing mapping products are available; 
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however, they are of lower resolution (we would prefer <10 m resolution) than we desire 

for this small area. As such, we need to purchase existing higher resolution imagery and 

classify the features of interest. Given that we have several weeks to create an RS 

product, and need to acquire and classify imagery, we will use Implementation Track 1 

(Deriving New Products).  

Since the focus is on mapping wetland vegetation, images collected during the summer 

over multiple years with moderate resolution (<10 m) and multi-spectral bands (e.g., 

red, green, blue, and near-infrared) are required. The object-based classification 

technique was selected to help combine pixels that contain similar aquatic vegetation 

classes; these objects can be more accurately mapped since they have defined 

boundaries and share similar spectral properties (see “Remote Sensing Techniques: 

Image Classification: Object Oriented” section). Object-based classification requires 

input and support from a RS specialist, but it has been used extensively in the literature 

so it can likely be implemented in a matter of weeks. Using semi-automated image 

classification, the analyst can create a repeatable workflow that will simplify and 

accelerate the image classification process for the next image. Following this workflow, 

we have a product made in a few weeks using established techniques that maps the 

cover of aquatic vegetation that was present in the wetland before and after the 

authorized works. From these maps, changes in the areal coverage of the aquatic 

vegetation classes outlined above as well as changes in their distribution within the 

wetland can be measured and this output can be compared to the original changes 

proposed in the authorization to ensure targets are being met. 
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Figure 1. Project Conception Workflow (Track 1) for use of remote sensing. A theoretical 

example is on the right (gray boxes). 

 

  



 

10 

 

Figure 2. Project Implementation Workflow (Track 1) for use of remote sensing. A theoretical 

example is on the right (gray boxes). 
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Figure 3. Project Implementation Workflow (Track 2) for use of remote sensing. A theoretical 

example is on the right (gray boxes). Note that since this track uses derived remote sensing 

products, less onus is placed on the user to conduct processing workflows. 

REMOTE SENSING SENSORS AND PLATFORMS 

Image sensors are the heart of RS and are what translate light/energy into data that can 

be analyzed. RS platforms are systems on which these sensors are mounted and can 

be broadly grouped into three major categories: satellite (space-based), 

orthophotography (from planes), and unmanned vehicle systems (UVS; also defined as 
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unmanned aerial vehicles or systems, unmanned autonomous vehicles or systems, or 

drones). Since the launch of the Landsat series satellites in1972, space-based RS has 

been the primary data source in the field. These offer near-global coverage and 

consistent collection of imagery both temporally and spatially. Images acquired within 

our atmosphere (i.e., from orthophotography and UVS) have much higher resolution 

than satellite-based products and do not have problems inherent with imaging through 

the earth’s atmosphere (see Active Remote Sensing Platforms section). While there are 

historic orthophotography datasets available that go back further than satellite-based 

data, these were not often acquired in a form suitable for more detailed analyses [e.g., 

not at nadir (point directly below observer), not sufficiently overlapped, and not properly 

defined geographically]. Orthophotography is limited in geographic scale and significant 

funds must be allocated when area increases [e.g. the southwestern Ontario 

Orthophotography project, covering 205,000 km2, cost over $5,000,000 per acquisition 

(A. Hogg, Ontario Ministry of Natural Resources and Forestry, personal communication, 

2017)]. For UVS, the restrictions and cost of scale are even greater (Marcaccio et al. 

2015). For orthophotography and UVS, there are a host of unique sensor and craft 

combinations that can be employed since the same sensor mounted to different aircraft 

can change the effective accuracy or spatial resolution of the images collected. This 

flexibility allows for image acquisition across a broad range of field conditions and 

project objectives; however, it can also present a challenge since inconsistent image 

collection parameters can impede both temporal and spatial comparisons. Since 

orthophotography and UVS datasets are specific to time and place, this report will not 

go into those platforms in detail. The RS software and techniques described within this 

document are equally applicable to images from within the atmosphere as well as those 

outside of it.  

There are many historic, current, and future satellite platforms in orbit around Earth. 

Table A2 lists commonly used platforms and includes the type of data captured as well 

as launch and decommission date, which define the time period when data from the 

platform are available. Good historic coverage can be found in the Landsat series 

platforms (available in true colour + near infrared since 1982), but more recent sensors 

offer increased temporal resolution (e.g., 1 – 2 day with RapidEye) or spatial resolution 

(e.g., 30 cm with WorldView-3). A similar table was not generated for orthophotography 

and UVS since images collected via these platforms are typically project specific with 

inconsistent spatial and temporal acquisition. For federal government users, the Earth 

Observation Data Management System (EODMS) contains data from the National Air 

Photo Library (orthophotography) and other RS data purchased by the Government of 

Canada. Individual provinces and cities may have their own RS databases such as 

Land Information Ontario (LIO) and the City of Hamilton GIS database. The platform 

that is chosen will depend on the parameters required for the project and available 

budget, with additional spectral bands and higher resolution costing significantly more.  
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Regardless of platform, imaging sensors can be broken down into passive or active 

sensors. Passive sensors function much like the human eye or a traditional camera by 

capturing electromagnetic (EM) radiation reflected off a surface. The source of energy is 

external to the platform, in most cases the Sun, and the sensor interprets the reflected 

energy within a defined spectrum. Passive sensors typically include three ‘visible’ bands 

that fall somewhere within the red, green, and blue EM spectra (600 – 750 nm, 500 – 

560 nm, and 450 – 500 nm range, respectively); when combined these produce an 

image similar to what we see with our eye. Other wavelengths can be captured with 

passive sensors, most commonly near infrared (NIR; ~750 – 1000 nm) and short-wave 

infrared (SWIR; 1000 – 2500 nm) and when combined with the visible spectrum these 

sensors are typically referred to as multi-spectral. For a list of common RS spectra, see 

Table A3. Some sensors can be hyper-spectral or ultra-spectral; these have many 

(often >10) bands that individually cover narrow EM spectra (often ~10 nm). 

Hyperspectral imaging (HSI) is relatively new in the field of RS and thus few products 

exist (see Table A2). Many platforms also have a separate panchromatic sensor that 

acts like black and white film: it accepts a large spectrum of EM in one band, typically 

across most of the visible spectrum. While panchromatic sensors have coarser spectral 

resolution, they typically have higher spatial resolution (often ½ or ¼ of the multispectral 

sensor). The inclusion of this panchromatic sensor can allow post-processing of the 

coarser multispectral sensors in support of better objective identification (as discussed 

in the preprocessing section). Passive sensors have been in use for a long time, starting 

with balloon and aerial film photography. These older datasets may not have well 

defined metadata or high accuracy but can be important as historic data points. The first 

satellite based passive sensors for non-military use were launched in the 1970s, 

providing a rich and continuous dataset. Most recently, technological advances have led 

to unmanned aerial systems (UAS) being a viable source of high-quality RS data.  

While passive sensors measure multiple wavelengths, active systems use a single 

specific wavelength of energy to record the return or bounce-back of this energy. Since 

they emit their own energy, these platforms can image during day or night and receive 

the same data. Active sensors operate at long enough wavelengths (metres to 

millimetres) that rain, cloud, and other atmospheric properties do not obstruct their 

imaging. With one single wavelength a system can emit energy that is vertically (V) or 

horizontally (H) polarized, travelling along an x- or y- axis. The system can then monitor 

the return of this energy in a like-polarized [e.g., VV (vertical send-vertical receive) or 

HH (horizontal send-horizontal receive)] or cross polarized (e.g., HV) way, giving three 

unique configurations [cross polarization returns (HV and VH) are the same regardless 

of order]. Surface features will give unique responses with different configurations; for 

example, Bourgeau-Chavez et al. (2015) showed that HV polarized L-band radar is well 

suited for differentiating emergent wetland vegetation species while the HH derived data 

are better for open water delineation. When multiple different features are to be 

mapped, it is therefore preferable to obtain dual polarized imagery (i.e., HH and HV or 



 

14 

VV and VH) when possible, though older systems (such as Radarsat-1) can only 

operate in single polarization mode. Most active radar platforms do not image at nadir 

and instead image at an angle, which increases the potential spatial coverage but can 

cause terrain shadowing and other effects. Relative to passive sensor platforms, there 

are fewer active sensor platforms in orbit, but Sentinel-1 is publicly available and has 

been collecting imagery since 2014.  The Canadian Space Agency maintains the 

RADARSAT series satellites (two single satellite missions plus the three satellite RCM) 

and the data collected by these satellites are available to Government of Canada 

employees. Radarsat-1 data are also available to the general public. In addition, 

Government of Canada employees can task the Radarsat satellites (currently restricted 

to Radarsat-2) in order to obtain optimum imagery over their defined region of interest. 

This tasking must be coordinated with the Canadian Space Agency through the 

Government Radarsat Data Services and the Enhanced Management of Orders and 

Conflicts (EMOC) form. 

Most common sensors use RADAR (Radio Detection And Ranging) technology in the 

microwave spectrum. Multiple sensors within a range of microwave spectra are given 

the same code (e.g., C-band: 2.75 cm – 7.5 cm). Different microwave spectra generate 

unique signals from similar land cover, just as visible spectrum passive sensors show 

different colours for unique land cover.  Since active sensors generate their own energy 

source they can specify the polarization of that energy.  Active sensors also include 

non-imaging devices which include altimeters, scatterometers, and LiDAR (Light 

Detection And Ranging) products. These are unique in that they generate one-

dimensional points of data which can later be interpolated into two- or three-dimensional 

surfaces. Common uses of these sensors include range detection, elevation 

determination, and surface properties of materials.  

Many sensors exist across a variety of satellite platforms that offer different spatial, 

temporal, and spectral resolution. Which products to use is dependent on the questions 

the researcher intends to answer or the outputs an analyst must provide. From a spatial 

resolution perspective, satellites can be broadly classified as coarse/low resolution 

(>100 m pixels, like MODIS), medium resolution (10 – 100 m resolution, like Landsat 

and Sentinel-2) or high resolution (<10 m, such as SPOT). With new advancements in 

sensor technology and relaxing of satellite regulations, which formerly limited 

commercial satellite outputs to >30 cm resolution, very high-resolution satellites are 

coming forward that offer sub-metre spatial resolution. Not all these satellites have fast 

repeat times, with coverage coming in approximately bi-weekly (Landsat: 10 days), sub-

weekly (RADARSAT Constellation: 3 days) and daily (MODIS) intervals. Both temporal 

and spatial resolution depend on the orbit path and velocity of the satellite which can 

lead to differing revisit times and spatial resolution dependent on latitude. This is 

especially true for sensors that image off-nadir as the ‘stretch’ of pixels becomes greater 

at increasing view angles. Finally, spectral resolution is an area of rapid development; 

most historic platforms have focused on single wavelengths, three in the visible 
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spectrum (red, green, and blue), and/or one in the near-infrared region. Recent and 

future sensors have expanded these limited bands to offer 10 or more wavelengths of 

observation, commonly called hyperspectral imaging (see ‘CHIME’). Increases in 

resolution of any type come at increased financial cost and maximizing all three can be 

extremely costly. For each project, the RS analyst should know what spatial, temporal, 

and spectral resolution is necessary to address their needs a priori to not incur 

avoidable financial costs. 

The field of RS is evolving with rapid advancements in technology and computer 

processing. There are significant yearly upgrades in satellites, imaging technologies, 

and software that are allowing innovative and more complex RS projects to proceed. 

While this list is not exhaustive it does showcase a selection of new and upcoming RS 

technology that can benefit fisheries research. 

RADARSAT CONSTELLATION MISSION (RCM) 

As part of Canada’s mission to map the Arctic and its ice channels, the Canadian Space 

Agency (CSA) operates RADARSAT satellites in cooperation with MDA Coroporation 

(owners of RADARSAT 2). The RADARSAT Constellation Mission (RCM) utilizes three 

satellites that are smaller than RADARSAT-2, which combined provide a faster repeat 

cycle (~1 day) than previous missions. The RCM also utilizes circular polarization which 

can produce and receive any angle of polarization (not just horizontal and vertical); this 

opens many more opportunities for detailed polarimetric analyses and mathematical 

manipulations of the data.  The RCM was launched in 2019 and became operational 

later that year. Government employees can task RADARSAT-2 and the RCM to obtain 

C-band imagery over their area of interest free of charge. Further information and 

updates can be found at: https://www.asc-csa.gc.ca/eng/satellites/radarsat/default.asp 

LANDSAT 9 

While the launch date has been pushed back from 2020 to March 2021, Landsat 9 will 

continue the historical imaging platform of the US Government and continue to offer 

multi-spectral, medium resolution data on a continuous basis. Landsat 9 has an imaging 

array similar to Landsat 8 and will be placed in the same orbit as its predecessor. This 

will decrease the image cycle (~8 days) for global mapping. Landsat 8 should remain 

operational until 2025 with Landsat 9 providing imaging for an additional 5 – 10 years, 

though most platforms have far exceeded their operational life expectancy. By the end-

of-life of Landsat 8 and 9, the Landsat missions will have provided over 50 years of 

continuous multispectral imaging. Further information and updates can be found at: 

https://landsat.gsfc.nasa.gov/landsat-9/ 

 

 

https://www.asc-csa.gc.ca/eng/satellites/radarsat/default.asp
https://landsat.gsfc.nasa.gov/landsat-9/
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COPERNICUS HYPERSPECTRAL IMAGING FOR THE ENVIRONMENT (CHIME) 

Hyperspectral data are incredibly useful tools with very high spectral resolution, but they 

often cannot achieve high spatial or temporal resolution due to computational costs. 

These data are also expensive to acquire. The European Space Agency’s Copernicus 

program is planning the launch of the Copernicus Hyperspectral Imaging for the 

Environment (CHIME) satellite that will supply 20 – 30 m resolution on a 10 – 15 day 

repeat cycle. CHIME will operate seamlessly between 400 nm (ultra-blue) to 2500 nm 

(SWIR) in 10 nm increments. If these data are offered as free products (like other 

Copernicus satellites, e.g. Sentinel-series) this would represent a marked increase in 

data quality that would be easily accessible for RS. The satellite is planned for launch in 

the mid-2020s. Further information and updates for CHIME and ROSE-L (below) can be 

found at: 

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Copernicus_High_Pri

ority_Candidates 

RADAR OBSERVING SYSTEM FOR EUROPE L-BAND SAR (ROSE-L) 

An additional Copernicus satellite launch is planned for launch in the mid-2020s using 

L-band SAR. Currently, freely available SAR is only C-band, with the CSA offering 

historic data from RADARSAT-1 and Copernicus offering Sentinel-1 that is still ongoing. 

L-band SAR uses a longer wavelength that is more sensitive to wet soil and vegetated 

areas and can provide better contrast for sea ice determination. The Radar Observing 

System for Europe (ROSE-L) will use the same orbit as Sentinel-1 and will provide a 

near-daily repeat cycle in the Arctic and somewhat longer for northern Canada. These 

data are planned to be of higher resolution than Sentinel-1 (20 m) and should provide a 

great new dataset to use in Northern regions. 

REMOTE SENSING DATA 

The primary advantages of RS data are that they cover large geographic ranges and 

are not discrete across their coverage. In a Geographic Information System (GIS) 

almost all RS data are ‘raster’ type data, which are continuous data ‘sheets’ (in contrast, 

‘vector’ data are discrete). These sheets have pixels (like cells) that are arranged along 

rows and columns, with the size of the pixel determined by the product used (a function 

of the sensor’s inherent resolution and the distance from sensor to viewing object, 

usually expressed in metres per pixel). The data value stored in each pixel represents 

the total reflectance of an object captured by the sensor; more reflectance results in a 

higher value. Many RS products have multiple ‘bands’ of data that capture reflectance 

with a specific energy, which is equivalent to multiple data ‘sheets’ overlapping each 

other. The results are concurrent data from multiple bands or wavelengths for a single 

pixel. How these sensors obtain data is broadly separated into passive and active 

https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Copernicus_High_Priority_Candidates
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Copernicus_High_Priority_Candidates
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sensors, which rely on either an external source of energy (i.e., the sun) or emit their 

own specific energy, respectively. Raster data will contain more information per unit 

area than vector data, but this comes with increased processing requirements. Being 

discrete, vector data does not have to confine itself to a set resolution or grid and can 

more precisely define boundaries and locations compared to raster data. Some 

techniques are only available to one data type or the other so even in RS projects it is 

often necessary to switch between these in order to appropriately address the research 

question or goal.  

RS data are often square (with equal length and width of cells) but can be transformed 

to other shapes depending on their underlying geographic datum or method of capture. 

Raster data can also be represented by tabular data but is most often saved in an 

image specific format such as a geoTIFF or JPEG. These data can be opened in any 

photo viewing software but will lack the geographic information provided within a GIS or 

RS software. Multiple bands of data in imagery (e.g. red, green, and blue channel 

response as independent bands) are represented within the same image file as multiple 

overlapping cells. It is important to understand the metadata and file structure of each 

RS system a user works with as not all systems present their data with the same band 

numbering scheme. For example, Landsat 7, band 1 represents blue data (450 – 520 

nm) whereas Landsat 8, band 1 represents coastal aerosol data (430 – 450 nm) and 

band 2 represents blue data. Data from different bands within an image are projected 

onto the exact same grid but these grids may differ between images that cover the 

same area at different time-points; this can become an issue with high resolution data 

when high spatial precision is required to compare conditions between time points. 

Some RS systems will deliver their data in a proprietary data format but most GIS and 

all RS software can convert these data to more accessible formats.  

A challenge with RS data is managing, storing, and working with the relatively large 

files. With high spatial resolution and many bands, a single image can be over one 

gigabyte in size. The data are often delivered as a single image file with a geographic 

identifier in a separate file, but the image file itself takes up the majority of the size on 

disk (>98%). Many modern satellite systems will have data files exceeding one 

gigabyte, with a full Landsat 8 [Multi-spectral satellite with 30 m resolution (10 m 

panchromatic band, 100 m thermal bands), 11 bands, NIR] file requiring 1.6 GB of 

storage for a 3,300 square kilometer scene and Sentinel-2 [multi-spectral satellite with 

10 m resolution (20 m red-edge and SWIR, 60 m water vapour band), 12 bands] 

requiring 500 MB of storage for a 100 square kilometer scene. Higher resolution 

products or hyperspectral products can easily exceed 10 GB of storage per image.  

In these ways, RS data are unique from other tabular or GIS data. The power of RS 

data comes from their continuous nature, but that results in large file sizes and requires 

adequate storage space and computational power. 
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REMOTE SENSING SOFTWARE 

While most GIS packages include some RS capabilities (e.g., image manipulation, and 

basic image processing/classification), true RS software provide a wider array of 

techniques that are generally easier to undertake, access, and customize. ESRI’s 

ArcPro (ESRI, California, USA) has made significant strides towards becoming a more 

viable RS software but it is still limited when compared to other options like ENVI (Harris 

Geospatial, Colorado, USA) or eCognition (Trimble Geospatial, California, USA; for 

more RS software, see Table A4). There are also proprietary software available from 

some satellite image providers, which are dedicated to processing their own image data 

(e.g., SNAP for Sentinel data). Often a project will require the use of multiple software, 

which usually include a dedicated GIS software in addition to a dedicated RS software.  

AVAILABLE SOFTWARE 

To date, the most common RS software are ENVI (Harris Geospatial, Colorado, USA), 

ERDAS IMAGINE (Hexagon AB, Stockholm, Sweden), and eCognition (Trimble 

Geospatial, California, USA). Whereas the former two are general RS software, 

eCognition is primarily used for object-based image analyses where pixels are grouped 

according to their value and proximity (discussed in more detail in Common Remote 

Sensing Techniques section). The resulting data becomes vectorized and can enhance 

the accuracy and speed of further functions/calculations when the input data are of high 

spatial resolution. Other software like the SNAP Toolbox (European Space Agency) are 

similarly specialized; while usable on any input raster data, the tools and functions 

within SNAP are designed to be automated for the Sentinel series of satellites.  

Most RS software have distinctive features, tools, or workflows that make certain 

analyses easier to perform or allow for a greater range of adjustment than other 

software. For example, eCognition allows for the most in-depth object-based analyses 

of the software listed in Table A4, while ENVI has simple graphical interfaces for 

computationally complex functions like cloud detection and masking. Most RS software 

can support vector data as well as raster data, but they may not be as efficient at 

processing and displaying these as GIS software. Some software also provides cloud-

based analyses where performance can be enhanced via cloud computing. The 

increased performance power from any device must be balanced with the potential 

security of these services. As RS studies will often involve more than one image as 

input, it is important to consider the ability of the software to automate concurrent 

processing of several images. While some software do this easily with a graphical 

interface (e.g. ENVI) it is often more powerful to leverage the internal coding language 

of these software. Just as in ArcMap products, some functions or calculations are only 

available through coding and these scripts provide easily repeatable workflows that can 

be applied throughout a project or to novel projects. Most software now support Python 

scripting which is an easy language to learn and there are considerable help resources 
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available online for it. Despite the availability of more user-friendly graphical interfaces 

and more intuitive coding languages, software users still require training on how to use 

these software and a base-level of knowledge on RS theory in order to properly 

implement an RS-based project.  

In contrast to many traditional GIS software, dedicated RS software fully utilize the 

graphical power of computers. Many desktops and laptops now come with dedicated 

graphical processing units (GPUs) that are better designed to handle image processing 

(often used heavily in video editing and gaming); these are fully utilized by modern RS 

software. Because RS data are large continuous sheets of data, they require more 

computing power to process without significant delays to the end user. When viewing 

data, the user will often zoom in and out and regularly move around the image; the 

computer is constantly loading, projecting, and reloading data during this process. For 

the best results, computers that will conduct RS analyses should be equipped with a 

discrete graphics card and at least 8 gigabytes of RAM (random access memory) to 

reduce lag in the software. Since zooming and panning requires constant loading of 

data, a computer with more RAM will be able to keep more of the image ‘in memory’ 

and reduce load times when looking across a scene. These specifications or better are 

becoming standard for most computers, but older systems may not be able to meet 

these requirements. It is therefore important to ensure the computer to be used meets 

the required specifications for the software that will be used, and it is prudent to try to 

use a computer that exceeds these specifications to ensure a better user experience.  

CLOUD COMPUTATION 

Cloud computing and software has recently become a more common processing 

method in the sciences and RS. Initially, cloud software enabled easy sharing of tools 

and data, but now cloud processing leverages networked servers (with much more 

processing power than standard desktops) to quickly solve complex issues. Cloud 

processing is already in use through some RS software with tools like DroneDeploy and 

Google Earth Engine being exclusively cloud-based platforms. Another significant 

advantage to these services for the user is a decrease in hard drive storage space 

required for large projects and intermediate files. In larger projects there will often be 

data created that only serves as an input into another processing step that by itself is 

meaningless and cloud computing software does away with the need to save these files 

to one’s local disk. Many of these services will also host data, which will further 

decrease the burden on the user. Though personal computers continue advancing in 

speed and capacity, it is likely that some RS functions (especially for large datasets) will 

be best based on cloud computing software in the near future. 

In the case of Google Earth Engine, all historic and current images from freely available 

satellite data (such as the Landsat and Sentinel series) are pre-processed and available 

for immediate use. Combined with increased computational power, this has allowed for 
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very large mapping projects over significant time scales of countries (Sidhu et al. 2018, 

Traganos et al. 2018, Amani et al. 2019) and even the globe (Pekel et al. 2016, Gorelick 

et al. 2017, Yang et al. 2019). Canada-wide wetland maps and identification of small 

water bodies created with consistent methodology will be invaluable for future fish 

habitat works (Mahdianpari et al. 2020). With cloud computing, resources can be hosted 

online without the need to constantly download file revisions or new products. Many RS 

processes and analyses can be done with only publicly available data to generate 

meaningful results. Within Google Earth Engine, all processes are done via coding, 

which is easily transferable and shareable to all other users. Cloud-based products 

must be assessed for security of data if the processes require confidential, private, or 

otherwise sensitive information to be transmitted online. The use of these platforms 

should be assessed by Information Technology and Security before any widespread 

use is adopted within the Government of Canada.  

RS software offers an experience tailored for its unique data and analyses. While 

traditional GIS software can conduct some RS processing, they are often less intuitive 

to use and do not provide as many built-in functions as RS software do. RS software 

can also display and process data more rapidly as they are optimized for raster data. 

Built-in programming language functionality can allow for consistent and shareable 

workflows for transferring processes across geographic scales and between project 

teams. As RS data get increasingly high in spatial and spectral resolution, loading and 

processing takes longer. Cloud computing has become a way to circumvent high 

computational and storage cost; data can be stored online and processed without any 

burden on the user’s computer. Future advancements in RS software and techniques 

will allow for easier processing by less experienced users while allowing for very 

complex analyses for advanced RS analysts. 

PRE-PROCESSING 

Most RS data will require some amount of pre-processing in order to obtain optimal 

results. For image data and products that are purchased, vendors will often sell forms of 

pre-processing software to reduce the burden on the user. Many common and open-

source data (e.g. Landsat series, Sentinel series) have their own pre-processing 

programs or coding scripts that can be freely accessed via the web. The type of pre-

processing required depends on the data type and source, techniques to be used, and 

repeatability required.  

A common pre-processing step is georecitifcation, where image data are accurately tied 

to a coordinate reference datum by use of Ground Control Points (GCPs) or highly 

accurate GPS (such as Real Time Kinetic; RTK). While most satellite data are delivered 

as a georeferenced image, aerial photography, UAV image data, and point clouds are 

often found without geospatial data directly attached to them. Most GIS and RS 
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software can georectify image data with some user input (delineation of GCPs or 

attributing a GPS dataset tied to image/point capture). To use GCPs, the user will 

specify the coordinates of known locations such as control towers (often used with data 

covering large spatial scales) or some form of ground marker (often used for smaller 

projects) where coordinates are acquired with high positional accuracy GPS devices (<1 

m). These must be easily distinguishable and immovable during image acquisition as 

these points are delineated by the user in the software. Without GCPs, the 

georectification is only as accurate as the available basemap plus error in plotting. Care 

should be taken to only use points that are relatively immutable (e.g. building corners, 

rock outcrops) as any change in position of these points between years will result in a 

compounding error. In this regard, it can be difficult to georectify natural sites from 

basemap data as non-rocky natural features (e.g. vegetation, water boundaries) are 

variable through time. It is often the case that basemap imagery will be of lower quality 

or resolution than that which is to be georectified so obvious features (with high 

contrast) and well-defined points (corners) are best suited for this technique. Whether 

GCPs or manual delineation is conducted, the imagery must be altered in some way to 

cohere with the Earth’s surface. Satellite data are often available as a terrain-corrected 

product where changes in elevation are accounted for (as pixels are compressed and 

stretched along different axes). Similar processing can be done in many GIS and RS 

software, which can adjust for global or local accuracy (or a combination, whichever is 

desired). For the final step of georectification, the user can choose to change the 

imagery in one or more dimensions. A zero-dimensional shift is used to line up 

georectified images whose pixels are not aligned; this can rotate and move the image. A 

one-dimensional shift is most common; this can rotate, move, and rescale (increase or 

decrease size) of the image. With more than three control points, higher scale 

transformations can take place that are akin to terrain correction. These transformations 

are not used as often and are only necessary under specific accuracy applications.  

PASSIVE DATA PRE-PROCESSING 

Passive satellite imaging systems must contend with capturing data through the 

atmosphere, which can degrade image quality unevenly across pixels within the image 

data. Most satellite data come delivered as top-of-atmosphere (TOA) datasets, meaning 

they are calibrated to the spectral response received at the sensor (not the surface 

imaged, so it includes atmospheric particles). While this does offer a standardized 

dataset, changes in the atmosphere can limit the transferability of algorithms between 

image data. For studies attempting to quantify change over large temporal scales, it is 

best to process the data to surface reflectance (SR). This transformation will make two 

image datasets relatable so that common features exhibit the same spectral response 

regardless of atmospheric interference. This technique is especially relevant when 

observing spectral indices (e.g. normalized difference indices like NDVI, Tasseled Cap 

Transformations) over time as small changes due to atmospheric differences can create 

false differences in values that incorrectly assert change over time. Some imagery have 
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thermal bands that can assess the temperature of land and water surfaces. For these 

data, thermal calibration is necessary and is analogous to atmospheric correction to 

surface reflection for other bands.  

Clouds are a problem for passive imaging systems as they can saturate (increase 

values of) pixels within the clouds and de-saturate (decrease values of) pixels in their 

shadow. Most data from satellite sensors have pre-processed algorithms in the data 

received that can deduce the probability of cloud and cloud shadow occurrence. More 

recent satellites can detect cloud types, which are useful for detecting cirrus clouds 

(delicate, hair-like clouds) that are more subtle but still change the spectral response of 

land cover. Cloud cover in imagery can be expressed as a function of the whole scene 

or per-pixel. When ordering satellite imagery, whole scene cloud cover is often 

presented as a percentage of scene covered, which can indicate the viability of an 

image for use in a project. Cloud cover is also calculated at the per-pixel level where 

each pixel is either flagged as cloudy or assigned a probability of cloud cover; these can 

be used directly in GIS and RS software to ‘mask’ or exclude pixels that are too cloudy 

(Figure 4). 

 

Figure 4. Example of cloud masking. On the top row, Landsat 8 images (17 August 2019 left, 2 

September 2019) are heavily compromised by cloud cover on chosen date. (Bottom left) Cloud 

masking eliminates all pixels contained clouds or cloud shadows to give only data 

uncompromised by the atmosphere for 17 August 2019 image, but removes over 80% of data. 

(Bottom right) Summer composite (including both top row images) of summer images with 

median values calculated for each pixel to eliminate cloud cover. 
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ACTIVE DATA PRE-PROCESSING 

The energy sent from active sensors are relatively low-powered and discrete compared 

to the amount of solar energy that is reflected and received by passive image sensors. 

Energy is sent at discrete wavelengths which vary based on the sensor used; common 

satellites use L-band (30 – 15 cm wavelength) and C-band (7.5 – 3.75 cm wavelength) 

energy. This energy will encounter unique signals and scattering that change based on 

dielectric (i.e. ability to absorb energy from electric fields) and surface properties (i.e. 

texture) of the material encountered which sends some energy back to the sensor and 

the majority out in other directions. As a result of these variances, these images contain 

speckle, which should be filtered out to increase data clarity and quality. Active systems 

image at non-nadir angles in order to deduce textures and geometry; changes to the 

imaging angle must be corrected for in pre-processing to keep the data consistent.  

Due to these sensor properties, speckle is an inherent property within active RS 

products. As scattered waves of energy arrive at the sensor, they can be in or out of 

phase with each other and produce constructive or destructive interference resulting in 

speckle.  It appears as adjacent light and dark pixels over the same land cover (Figure 

5). This can affect data processing, especially with image classification, as it results in 

variability within land cover types that causes spectral confusion. The simplest form of 

speckle filtering are mean or median moving windows that look at adjacent pixels (often 

in a 3 x 3 or 5 x 5 square) and change the pixel to the median/mean value of these. This 

type of filtering is quick to conduct but treat the speckle variance as equal locally and 

merge the speckle into the data. More advanced speckle filtering such as the Sigma-

Lee filter and Gamma-MAP filters utilize more advanced statistical techniques that look 

at the global and local scene together. These methods are preferable as they reduce 

speckle noise while preserving the inherent data (Mansourpour et al. 2006). Most 

speckle filtering methods use some local window analyses, which do not function 

properly near image borders as part of the window contains no data pixels. Data loss 

near image borders is therefore to be expected when removing speckle. 
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Figure 5. Example of speckle and speckle filtering in active satellite data (Sentinel-1 HH band) 

in Hay River, NWT, Canada. (Left) Over a continuous land cover, the data exhibit bright and 

dark speckling. (Right) By using a simple mean filter over three times the input resolution (in this 

case, 60m), the data are ‘smoothed’ to reduce speckle. Note that this does decrease the spatial 

resolution of the image making edges (like those along the river) appear ‘fuzzy’. 

As the energy received by the sensor changes relative to the distance the energy 

travels, imaging at an angle (e.g. 20 degrees) will produce different return values than 

imaging at nadir (0 degrees) over the same land cover. Images at extreme angles (>40 

degrees) can exhibit slant-range distortions that can cause relief displacement 

(apparent change in distance from steep slopes) and terrain shadowing (data loss 

behind steep slopes). As they often image at non-nadir, active satellite sensors will 

include the imaging angle as a band, which can be used to correct for differences with 

various formulas (Mladenova & Jackson 2011). Since RS data are provided at large 

spatial scales, a difference in viewing geometry can be observed within a single scene 

(especially near borders) and could impact any analyses without proper corrections. 

Due to the above issues, it is preferable to obtain active image data with a consistent 

image angle, typically around 20 degrees. 

When vertical changes are large and abrupt, they cause a significant difference in return 

values to the sensor as mentioned above. Natural terrain can be corrected for with the 

use of high-resolution Digital Elevation Model data to terrain-correct the image product. 

Depending on the angle of imaging, image shadows may also be present. Similar to 

shadows in true-colour imagery, active data will not be recorded on the opposing side of 

steep/abrupt terrain. The sides of the terrain that are ‘shaded’ depend on the viewing 
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angle and orbit of the satellite. To fully image steep/abrupt terrain, images from two or 

more angles/orbits must be combined. 

POINT CLOUD PRE-PROCESSING 

Point-cloud data can be considered a subset of active data where values are not 

gridded into raster format (with constant data) but come as unique vector point data. 

Since these data do not have consistent spacing between observed values they are not 

reported as pixels and instead reported as average distances (e.g. “mean 0.1 m 

distance between returns”). Not all energy emitted by the system will return back to the 

sensor due to signal scattering (due to uneven surfaces reflecting energy away from the 

sensor) and terrain shadows still apply with these data. Point cloud data will normally 

have greater return value density in areas with more consistent flat features (e.g. 

buildings and roads) compared to complex features (such as vegetation canopies). Like 

active data, there is inherent noise within the data and some form of filtering is 

necessary to find the true bottom.  

With values that are geographically discrete, point cloud data can provide good 

vegetation canopy definition if the spatial resolution of the dataset is sufficient. Within 

vegetation canopies, some return values will be obtained from the canopy top, leaves 

within the canopy structure, and the actual ground. Many GIS and RS programs can 

delineate vegetation canopies and true bottoms by observing the spread of values over 

small spatial scales. The canopy top will be defined by many return values at one height 

(Z) and the bottom will have return values at a lower value (Z-b). Very dense vegetation 

(e.g. invasive Phragmites australis) or areas with multiple canopies (e.g. tropical forests) 

will have multiple bounceback signals throughout the vertical height of the vegetation. 

While this complicates true bottom delineation (especially with lower resolution 

scanning) it does make these land cover types spectrally unique. Point cloud data 

captured near the land-water interface requires special attention. Transmissibility of 

energy differs significantly between water and air, which can cause issues with point 

cloud data. Special underwater LiDAR sensors are available that operate within an 

energy range that is feasible for bottom detection in water up to a certain depth 

(wavelength dependent). With most other LiDAR sensors, water will cause significant 

signal decay and either return no data or only data from the water’s surface. 

REPEATABILITY REQUIRED 

Depending on the project being undertaken, pre-processing may or may not be required 

and different techniques used within the same project may require multiple bouts of pre-

processing. In other cases, projects may require less pre-processing to conduct simpler 

RS methods that can yield results quickly. This is often the case for projects that require 

little or no repeatability; often this takes the form of basic image classification. Projects 

over large spatial and temporal scales need to be repeatable or automated in order to 

facilitate timely and consistent results. For smaller projects (focused on one area from a 
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single date), the additional work required for repeatable analyses over time may 

negatively impact the timing of deliverables. For example, if a user has one UAV image 

dataset from a study site and wants to classify the image into types of fish habitat, it is 

faster to manually delineate these classes as opposed to developing a suitable 

supervised image classifier. This can be even more relevant when timeliness is 

important such as when projects involve species-at-risk habitat or when planning field 

visits to specific fish habitat zones. Conversely when analyzing a time-series of images 

the user would want high repeatability between images to maintain a consistent end 

product that can be produced quickly along the entire series.  In cases such as this, the 

initial investment in terms of time setting up a workflow is likely well worth effort since it 

will reduce effort later and ensure consistency throughout the project. 

RS data are delivered in a usable format but should be pre-processed for many 

analyses. There are techniques specific to passive and active data though many are for 

similar purposes of equalizing data between times and scenes. While many projects 

should be pre-processed for repeatability, projects of small scale can omit pre-

processing to hasten the results while still producing valid results. 

REMOTE SENSING TECHNIQUES 

A list of RS techniques can be found in Table A5. The data are split into three 

categories as some techniques are common between passive and active sensors and 

others are unique to the sensor type. In all cases, there are often specific workflows or 

programs designed for each sensor that take into account the sensor’s design and 

flightpath. For example, most multi-spectral passive image sensors can conduct band 

arithmetic to deduce the Tasseled Cap index (Kauth and Thomas 1976) but the 

conversion values are specific to each sensor. It is often best to choose a sensor that is 

commonly used so that such calculations and applications are defined and already 

developed by RS engineers. Since becoming publicly available, the Landsat series and 

Sentinel series passive sensors have been the subject of extensive research. These 

have well defined processing pathways that can simplify complex analyses. Conversely, 

newer sensors such as high-resolution WorldView-3 are more difficult to work with but 

the rapid evolution of RS data and processing has led to extensive development on this 

sensor in just a few years (Wang et al. 2016, Kwan et al. 2017, Sibanda et al. 2017, Ye 

et al. 2017, Sidike et al. 2019). Some of the more commonly used techniques for 

working with RS imagery are presented below along with an example of how this 

technique has been used to support the conservation or management of natural 

resources. 
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IMAGE CLASSIFICATION 

Digitization (manual classification) 

The most basic method of discerning land use/land cover (LULC) within RS data is 

through manual classification or digitization. Using field data and expert knowledge, 

users will trace LULC on an image and assign them to a class (effectively vectorizing 

the raster data). It is best if the users have some field-level history and knowledge of the 

site to get the most accurate classification possible. Manual digitization can take place 

over a subset of the image that is not necessarily continuous (e.g. only classifying one 

land cover over an image, resulting in several non-touching polygons) though it is often 

conducted across the entire image. Care must be taken by the user to ensure that the 

polygon data created have suitable topology and are directly adjacent but do not 

overlap. The human eye and brain can interpret a significant amount of information that 

can sometimes exceed the abilities of computer software, especially with poor quality 

image data. The accuracy of the method is not generally reported and is only as good 

as the user, therefore experience and training can help improve classification accuracy.  

Markle and Chow-Fraser (2018) manually digitized a series of historic air photos over 

Point Pelee National Park (Leamington, ON) to determine changes in aquatic habitat for 

species at risk turtles. Automated image classification was not possible due to the poor 

quality of the data, which were from scanned single band (black and white) film 

orthophotography. These data were not collected with the purpose of conducting 

change detection or complex RS, but the interpretive power of the user was able to 

extract useful information. In this study they were able to determine the changes in 

available habitat types throughout the park over a 40+ year time period. Manual 

digitizing using image-objects (discussed below) has been found to be a faster (50% 

time-reduction) and equally accurate as more traditional digitizing (A. Reinert, 

Environment and Climate Change Canada, personal communication, 2018). Manually 

derived image-object based classifications of images must be checked for polygon 

topology to ensure they do not overlap or miss areas of the image. 

Supervised image classification 

Image classification is an automated analysis using computer software. In supervised 

image classification, user input is required but the workload is significantly reduced on 

the human user compared to manual digitization. The user creates a set of training data 

for each LULC class that is determined to be present within the image and 

distinguishable within the dataset. It is often recommended to create 30 polygons for 

each LULC class, though more complex (spectrally variable) classes should have as 

many as feasible (Ma et al. 2015). These training data are fed into a classifier that 

learns the spectral profile of each LULC class and then assesses and classifies every 

pixel/object within the dataset. There are many classifiers that can be used in this 

process, with the most common ones being maximum likelihood, random forest, and 
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CART (Classification and Regression Trees) classifiers (Ma et al. 2017). These use 

different statistical methods to separate the training data classes and none are 

universally better or more accurate. Most RS software require the user to create training 

data, train a classifier, and then apply the classifier to the image data so it is relatively 

easy to train multiple classifiers to see which garner the best results. In order to 

determine the accuracy of these methods, it is common to report overall accuracy and 

user’s and producer’s accuracy of the most relevant LULC classes. To establish these 

measures of accuracy, an additional validation or testing dataset must be created; this 

is done in a similar manner to the creation of training data but is held back from input 

into the classifier during the training phase. The validation data will form the basis of all 

accuracy analyses, with an error (or confusion) matrix that describes the user’s and 

producer’s accuracy for every single class used within the analyses.  

Bourgeau-Chavez et al. (2015) used a multi-sensor, multi-date image stack (one file 

that contains data from multiple overlapping images; in this case Landsat data 

combined with PALSAR data) to create an extensive LULC map of the Great Lakes 

shoreline that could discern unique wetland types (such as open marsh, swamp, and 

Phragmites). They used a random forest classifier with unique training and validation 

data for each individual stack to increase the accuracy of the classification. The error 

matrices were amalgamated on a lake-by-lake basis to provide a lake specific measure 

of classification accuracy for each LULC type. 

Object-oriented image classification 

A subset of image classification, an object-oriented approach is typically used with high 

spatial resolution datasets. While many RS software can conduct object-oriented image 

classification, the most dedicated and advanced solution comes through eCognition 

(Trimble Geospatial, California, USA). The unique feature of these analyses is image 

segmentation which creates polygons out of the image pixels by grouping like pixels 

together and separating unlike pixels (Figure 6). Most software will allow for the user to 

specify how these objects are created by defining the importance of inter- and intra-

class values, size, and shape. These rules can be applied at multiple instances to 

create classification ‘trees’; as an example, water is often found in large, homogenously 

dark patches and a specific ruleset could be used to easily classify water before 

classifying the rest of the image. Since high resolution data have many small pixels, 

there are often strong edge effects where two LULC classes will overlap and produce a 

mixed signal to the sensor. These data would be incorrectly classified as being from 

neither of their original classes in pixel-based classification. Object-oriented image 

classification can group like-pixels and include some mixed-pixels or ‘off-values’ so that 

tiny ‘sliver’ polygons are not created as they are highly unlikely to exist in reality. As per 

other forms of image classification, these processes can be saved and replicated across 

multiple images to speed up processing and decrease the burden on the user when 

working across multiple sites.  
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Object-oriented image classification can considerably reduce the burden on the user as 

‘polygons’ are automatically created. These can be classified in an automated fashion 

(through an image classification scheme, as in the above section) or by manually 

defining each polygon (see above).  Midwood and Chow-Fraser (2010) used object-

oriented classification to map wetland vegetation (e.g., meadow, emergent and floating 

vegetation) and rock features in coastal wetlands in Georgian Bay, Ontario to quantify 

the area of fish habitat in each wetland. This same approach was then applied to 

imagery that was captured six years later to quantify the changes in vegetation cover 

that occurred in the intervening years when water levels were historically low and to link 

these changes in habitat conditions with a reduction in the diversity of fishes and 

change in community assemblage in these wetlands (Midwood et al. 2012).  

Unsupervised image classification 

Fully automated image classification requires little to no input by the user and returns a 

classified image without labels (i.e., the user must determine what each class is 

mapping on the ground). This technique is typically less accurate for full image 

classification and is often used as an intermediate step within another form of image 

classification (e.g., unsupervised classification is applied to an image to find general 

groupings and then a supervised classification is applied only to general groupings of 

interest). Common unsupervised classifiers include k-means, ISO clustering, and X 

means. Some require the user to set the number of classes to be created while others 

will determine the most feasible number of distinguishable classes from within a given 

range. As with supervised classifiers, unsupervised classifiers will separate the data into 

the most distant (or most separated, on a graph) classes but do so without knowledge 

of what they are separating or where to start separating from. The resulting 

classification appears the same as supervised classification but does not contain 

meaningful class labels; the user will later define the classes manually.  

Sobiech and Dierking (2013) used an unsupervised classifier to delineate lake ice with 

SAR (synthetic aperture radar) image data. Water absorbs almost all incoming energy 

and thus has extremely low return values at the sensor, whereas ice (and snow) has 

much higher returns. By using a k-means classifier, Sobiech and Dierking (2013) were 

able to automatically separate the image of a waterbody into water (one class) and 

ice/snow (one class) quickly with minimal input. While the classification itself does not 

indicate if the class is ice or snow, it isolates these areas of interest so that additional 

classification methods can be applied that are focused solely on distinguishing ice and 

snow. 
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Figure 6. (Top) A Sentinel-2 visible spectrum image (red, green, and blue bands) from June 

2019 over Long Point, Ontario; (Middle); the same image after image object creation, with 

unique objects shown in random colours; (Bottom) the same image objects of Long Point 

classified according to mean value in all spectral bands. 
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Artificial Intelligence and Deep Learning in image classification 

The further development of Artificial Intelligence (AI) programs will have a significant 

impact on image processing and RS software. Machine Learning has been the focus of 

most RS research in the past, most commonly with Maximum Likelihood, Random 

Forest, and Support Vector Machine (Maxwell et. al 2018). These processes require 

fine tuning inputs (e.g. labelled training data, parameters) in order to obtain good 

results. In contrast, Deep Learning (DL) and Neural Networks (NN) need few inputs but 

require large amounts of training data and computing power to handle them. DL and NN 

take the input data and create many connected ‘learned’ processes that lead to unique 

outputs. These processes take a ‘black box’ approach in that the internal learning 

structure of the model is not known or specified but this allows for the reduced inputs in 

DL and NN (compared to Machine Learning). Common toolkits used in RS to conduct 

these processes include TensorFlow, Keras, and PyTorch; these are often accessed 

through coding (e.g. Python, R) and have options to conduct processing on a cloud 

server to reduce computational demands on local machines. Development of NN and 

DL has made significant advances towards fully automated image classification with 

complex data and LULC. van Duynhoven and Dragićević (2019) showcase the capacity 

for AI in analyzing changes in land cover and reporting higher accuracies with limited 

input data (similar results were also found by Kwan et al. 2020, Ayhan and Kwan 2020, 

and Miyoshi et al. 2020). With ever-increasing image data and classifications to draw 

from, software like Pix4D has been able to automatically classify some classes within 

images (e.g. forest, road, building) without any input by the user. In the future, it is likely 

that broad, simpler classes (e.g. forest, roads, water) could be automatically generated 

with advanced AI systems using repositories of existing classifications. This will ease 

the computational burden on the user but will still require advanced RS users to 

complete full, detailed classification of images. As future research proceeds with AI in 

RS, the ease of use and development within current RS software will continue to 

expand and become more commonplace within the field. 

CHANGE DETECTION  

One of the most common techniques in RS is change detection. Change detection is a 

comparison of two or more data sets in the same geographic area but at different time 

points. This can be conducted with varying degrees of complexity depending on the 

needs of the project. At the very basic level, change detection can be conducted visually 

between two images of the same scene (even two images without the same viewing 

angle). The user simply compares the features of interest between the two images to 

identify differences or changes in the images. Most data currently used in RS will have 

consistent image properties that allow for more complex analyses to take place. 

Generally, some method of image classification (manual, unsupervised, or supervised) 

is applied to each image of interest and the shift in LULCs (Land-use, land-cover, e.g. 

forest, water, urban area, vineyard) between dates can be defined (i.e., change in LULC 
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type) and quantified (i.e., LULC type expands or contracts). Most GIS and RS software 

have some functionality to allow users to easily (or automatically) conduct these 

analyses and visualize the changes within their dataset.  

Jung et al. (2017) used manual digitization to discern changes in wetland vegetation 

composition over a 30-year timescale. This allowed them to document the invasion of 

non-native common reed (Phragmites australis subsp. australis) throughout Long Point 

National Wildlife Area, which included the identification of new patches of Phragmites as 

well as the rates of expansion outward from established patches.  The manually 

digitized maps were further used to develop a predictive model to identify areas where 

Phragmites was likely to expand into, which supported an assessment of risk from 

Phragmites invasion for critical habitat for species at risk.   

DATA FUSION (BY DATE OR SENSOR) 

Some LULCs are indistinguishable for a given sensor at a particular point in time, but 

they may be easily separated by other RS platforms or at other dates. Advanced 

computational power has allowed for data fusion, a common technique to stack data 

from multiple sensors and dates into one large image. Classifications can then be 

developed that use a variety of characteristics of a LULC type to arrive at a final class 

type for pixel. This approach is best explained through examples of how it can be used. 

When conducting these analyses, care must be taken to ensure consistent pre-

processing for the stacked image data. If the image alignment or pre-processing differs 

within a stack it will cause significant issues with any analyses.  

Bourgeau-Chavez et al. (2013) found that passive image data from Landsat could 

distinguish wetland classes from other LULCs but could not differentiate within wetland 

classes. They combined their passive data with active PALSAR (L-band SAR) data in 

order to increase discernibility among wetland classes. Combining images from multiple 

dates (i.e. spring, summer, and fall) helped to further distinguish wetland vegetation due 

to their phenological differences at these times. While Phragmites and Typha spp. are 

similarly green and dense in summer, the former stands taller in spring imagery and 

have unique purple fronds (from seeds) in later summer/fall images. 

PASSIVE-SPECIFIC REMOTE SENSING TECHNIQUES AND EXAMPLES 

SPECTRAL POWER DISTRIBUTION 

In order to specify a LULC class, the user will most often use field-based observations 

to ensure the validity of their classification (as described above). With the use of a 

spectroradiometer, the user can assess the spectral power distribution of a LULC class 

to determine the exact reflectance across a large spectrum of electromagnetic energy. 

Using this approach, spectral profiles are created that represent the reflectance of these 
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LULCs as they would be seen from the sensor (aerial- or satellite-base) being used in 

the study. This approach requires specialized and expensive instrumentation but 

provides a means of better differentiating LULC classes of interest. If suitable for a 

project, spectral profiles can be used to automatically assign pixels/objects to a LULC 

class or determine the likelihood that it is part of this specific class. This can be a 

powerful tool for species delineation with high resolution imagery or for any project 

where there can be high spectral confusion among LULCs. 

Brooks et al. (2019) used this technique to determine the spectral profile of invasive 

Eurasian water milfoil (Myriophyllum spicatum) in the Great Lakes. By also conducting 

these analyses on other submerged aquatic vegetation (SAV), they were able to 

determine the spectra required in a sensor in order to accurately discern Eurasian water 

milfoil from other species. Since these species of SAV are found within the water 

column, Brooks et al. (2019) took measurements of the plants both out of the water as 

well as in the water (with the field spectroradiometer held just above the surface of the 

water). This approach can help to determine the feasibility of class distinctions for a 

range of sensors and in this study, Eurasian water milfoil was found to not be 

distinguishable from other aquatic vegetation for most common sensors. 

BAND RATIOS/ARITHMETIC 

The data derived from RS platforms comes as a numeric representation of reflectance 

for a particular wavelength or bands of electromagnetic energy. While each band of 

data offers a distinct view of planetary surface properties, these bands can be combined 

in a mathematical formula to leverage different reflectance properties of LULC classes 

among wavelengths. One of the most common approaches is the application of band 

ratios, such as: 

(𝐵1 − 𝐵2)

(𝐵1 + 𝐵2)
 

Where B1 and B2 are two bands representing reflectance in different wavelengths. 

In RS these are referred to as normalized difference (ND) ratios. There are many ratios 

that have been developed, including those for vegetation (NDVI; vegetation index), 

snow (NDSI; snow index) and moisture (NDMI; moisture index). There can also be more 

complex mathematical equations applied to the input bands, such as the Enhanced 

Vegetation Index, which uses Near-infrared (NIR) and Red bands but adds a Blue band 

term or the Tasseled Cap transformation (Kauth and Thomas 1976). Many RS indices 

make use of bands derived from Landsat satellites as these have the longest 

continuous dataset; for example, the NDVI uses NIR and Red bands as defined by 

Landsat (0.845–0.885 µm for NIR, 0.63–0.68 µm for Red). Many of the simpler methods 

are applicable across other sensors with similar spectral properties (e.g. NDVI works 

with Sentinel-2 data even though the wavelengths for NIR and Red are slightly 
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different), but more complex models are sensor specific (e.g. Tasseled Cap coefficients 

must be determined for each individual sensor). Using these band ratio or arithmetic 

techniques, the user can increase the number of input values for LULC classification, 

which increases the usability of the dataset and the differentiation of certain land cover 

classes. Only the computations necessary for the project should be undertaken as more 

complex arithmetic (e.g. Tasseled Cap transformation) require significant computational 

power and will increase the size of the dataset as additional bands are added.  

Shuchman et al. (2013) describe a formula for depth-invariant aquatic vegetation 

mapping. While submerged aquatic vegetation can be detected by human observers in 

some satellite data, it is difficult for computer systems to consistently delineate this 

LULC across different water depths. As light penetrates deeper into the water column, 

the reflectance value of the substrate and vegetation change dramatically due to 

attenuation and scatter, this can cause confusion during image classification since 

reflectance values will differ for the same LULC based on depth. Using submerged 

aquatic vegetation as a training class separate from water is not suitable if the depth of 

water within the image varies greatly; deep areas can be mistaken as vegetation or only 

vegetation within a certain depth range will be delineated. Shuchman et al. (2013) 

developed the Submerged Aquatic Vegetation Mapping Algorithm (SAVMA) which uses 

deep water (where no bottom reflectance is visible) and shallow water (where bottom is 

reflected) to create a linear equation to correct for the effects of water on the observed 

reflectance. This technique is easily determined from RS data alone and does not 

require extraneous field data or knowledge of any water quality parameters of the water 

body being observed (common among other similar techniques). Since the effect of 

water can be effectively ‘removed’ by applying the linear equation to relevant bands (i.e. 

higher energy wavelengths that penetrate the water column), bottom type can be 

mapped to the observable depth within the image’s and water body’s specifications. 

SAVMA was applied over several areas in Lake Michigan and Lake Ontario to 

demonstrate the applicability of this algorithm. Using this in a time series, they 

determined that the maximum observable depth changed as a function of water quality 

parameters within Lake Michigan but still provided enough information to map sandy 

substrates and submerged aquatic vegetation in low or high densities.  

AERIAL PHOTOGRAPHY 

While satellite imagery has become the standard for RS information since the advent of 

consistent high-quality data, aerial photography has been used for many decades 

before the first satellites were launched into orbit. Aerial photography can still be a 

useful technique today as it can obtain high resolution data (usually less than 50 

cm/pixel) that does not have significant atmospheric effects since the sensor is much 

closer to the observed surface. Many systems are available today, including those that 

integrate both passive RS systems with active LiDAR systems. Many of these systems 

include high accuracy GPS, though this is a relatively modern addition. Most flight plans 
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for orthophotography will fly low in altitude (2,000 to 5,000 m) and at low speed in order 

to obtain good quality imagery at nadir with sufficient overlap between images. Without 

overlap, it is difficult to stitch individual image frames together to create a seamless map 

unless good quality GPS data are available for each scene. Since the sensor is close to 

the observed surface, each image does not cover a large area and must be stitched 

together to form a cohesive map. The completed “product” for an area of interest is 

often many ‘tiles’ of image data that form a single map. These acquisitions are 

conducted exclusively for the needs of the purveyor and as such orthophotography will 

often only include relatively small geographic areas. An exception to this would be 

provincial and national efforts for mapping such as the Ontario Orthophotography 

Projects, which aim to map the southern half of the province with high resolution aerial 

imagery every five years.  

While there are historical datasets for airphoto (many from war efforts in the early to mid 

1900s), they were often not captured with orthophotography in mind, rather they were 

used for reconnaissance. An example of this can be found from imagery and mapping 

from World War II: extensive collections are available, but the imagery are often of 

singular locations at oblique angles and do not represent consistent nadir acquisitions 

with sufficient overlap in parallel rows. This makes the imagery difficult or impossible to 

use with many modern RS techniques, though they can be used for simple visual 

observation (as was their intended purpose).  

Marcaccio and Chow-Fraser (2018) mapped invasive Phragmites throughout roadside 

habitat in southwestern Ontario using images collected as part of the Southwestern 

Ontario Orthophotography Project. These data are high resolution (30 cm resolution) 

but are only acquired once every five years, with the first year only capturing data in the 

visible spectrum (2006) and subsequent collections also obtaining NIR band data. 

These data were of sufficient resolution for monitoring the invasion of Phragmites as 

small patches from one image collection (<5 m2) can quickly expand to large 

conglomerated patches, which are difficult to eradicate (Marcaccio and Chow-Fraser 

2018). The long time-gaps between acquisitions are not ideal for invasive species 

monitoring (i.e., to facilitate annual eradication efforts for Phragmites), but these data 

did serve as a good regional/provincial dataset to map large-scale changes and 

demonstrated the utility of these high-resolution images for mapping Phragmites.  

UAV IMAGERY 

Similar to orthophotography, Unmanned Aerial Vehicle (UAV) imagery is collected at the 

discretion of the user and is flown in close proximity to the surface. The main difference 

is the use of unmanned aerial/autonomous vehicles to obtain the imagery (as the name 

implies). Advantages of UAVs are that they can capture higher resolution imagery than 

aircraft since they are much closer to the ground (<100 m) and they are easier to 

deploy. These systems cannot cover the same spatial area as plane or helicopter-based 
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systems during a single flight since they are restricted by the life of their onboard 

batteries. Since the UAV system is a one-time purchase, these can be used to 

consistently map an area on a small timescale (daily or less) without incurring significant 

additional costs. As with orthophotography individual images must be stitched into a 

final map, which requires specialized software (e.g. Pix4D, Agisoft; see Table A4).  

Marcaccio et al. (2016) used UAV imagery to determine the extent of invasive 

Phragmites in a coastal wetland on Lake Erie. While orthophotography data were 

captured over this area, the timing was not adequate for delineation of Phragmites and 

other wetland species. Available satellite data were too coarse to distinguish small 

patches of Phragmites, which are vital to map for restoration purposes. With a UAV, 

Marcaccio et al. (2016) obtained <10 cm resolution image data of the field site and the 

resultant data were better than other imagery products at identifying wetland plant types 

based on field verification data. Multiple sensor types exist for UAVs and can be 

interchanged on some systems which places the burden of knowledge on the purchaser 

of these systems. Regardless of band choice for passive systems, sensors that can be 

easily calibrated to solar irradiance will provide standardized reflectance across imaging 

times and dates that make comparisons easier to conduct. The authors determined an 

ideal RS workflow to effectively map and monitor invasive Phragmites within coastal 

wetlands, which included the use of UAVs on a site level basis. The areal limitations of 

UAVs restrict them to these smaller scales, but the ability for rapid and repeated 

imaging makes them an integral source of a RS program for invasive species. 

STEREOSCOPY AND STRUCE-FROM-MOTION 

With sufficient overlap (approximately 70%) between them, images collected from 

airborne or satellite platforms can be stitched together to form a two-dimensional map. 

Between each image capture, the sensor will have moved, which provides a slightly 

different viewing angle of the same objects (when there is appropriate image overlap). 

This means that between one image and the next, one object will appear in a slightly 

different location if it is at a different location on the z-axis (vertical axis) when not 

observed at nadir. This is analogous to observing tall objects (such as trees or 

skyscrapers) straight up from ground level: tall objects close to you appear to rise 

straight up, whereas tall objects further away from you appear to lean or move in 

multiple planes. The relative difference in location between images of these objects 

represents their height, and if sufficient overlap is obtained between images a 3D point 

cloud can be created from them. Historically this was done by using a stereoscope, 

where each eye would look at a different image to create the perception of depth. 

Modern RS software can create and analyze these point clouds and determine a z-axis 

value for points within the image through a process called ‘Structure-from-Motion' 

(Figure 7). While similar to active data methods like LiDAR, image stereoscopy is limited 

to the observed points of an image, which means that this approach cannot accurately 

determine canopy-ground differences. In addition, each point used for these analyses 
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must be uniquely identifiable between the two images; while computer processing and 

computer vision capabilities have increased greatly in recent years, this can still be a 

limiting factor especially with surfaces or objects that are homogeneous (e.g. flat water) 

or complex (e.g. dense grasslands). Stereoscopy should not be viewed as a substitute 

for dedicated DEM/DSM products (e.g., LiDAR), but it can provide similar (but lower 

quality) data with sufficient image overlap. 

Husson et al. (2017) used stereoscopy-based ‘Structure-from-Motion' with UAV data in 

Lake Osstrasket in northern Sweden. To obtain sufficiently high resolution and overlap, 

a flight height of 150 m was used (creating a 5.6cm pixel) and image overlap was set to 

70% both vertically and horizontally. Agisoft Photoscan (Agisoft LLC, St. Petersburg, 

Russia) was used to create a digital surface model (DSM); these data were added as an 

additional band to the visible-spectrum image data. Using an object-oriented approach, 

image classification accuracy for the non-submerged wetland plants was significantly 

higher in every case when the DSM data were included in the classification tree. Since 

most aerial photography and UAV projects can easily generate surface height data, this 

should be a common technique within a remote sensing workflow with these data. While 

satellite data do not often have sufficient overlap in close temporal proximity to conduct 

‘Structure-from-Motion' analyses, similar analyses could be conducted with surface 

height data from another source (e.g. world DEM from 90 cm TanDEM-X). 

 

Figure 7. Three-dimensional terrain view of a coastal wetland in Lake Huron constructed via 

stereoscopy/SFM from a UAV. Verticality has been exaggerated by five times to better 

demonstrate the range of height values available. The constructed DSM is shown with visible 

spectrum data overlain but can also be utilized separately. 
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ACTIVE REMOTE SENSING TECHNIQUES AND EXAMPLES 

INTERFEROMETRIC SAR 

Since active RS sensors send out a consistent amount of energy, small changes in the 

response to the sensor over short time periods can only be due to changes in the 

surface. Interferometric SAR, or inSAR, looks for small changes in the spectral 

response, which can detect even millimeter changes in the surface imaged. Two SAR 

images covering the same geography within a small time period (from a dual-sensor 

satellite or multiple replica satellites flying in tandem) from slightly different view angles 

must be co-registered so that each pixel represents the same geometry on the imaged 

surface. After cross-multiplication of the images the difference or phase signal is 

calculated. These can be used for DEM generation but also geometry deformations 

from natural disasters (earthquakes, landslides), glacial and ice flows, and volcanic 

activity. While this technique is intensive to process and requires dedicated imaging 

(due to the timescale restrictions) it is very powerful for detecting small changes to the 

geometry of the Earth’s surface.  

inSAR can take advantage of a system’s specific wavelength and polarizations to create 

interferograms that are sensitive to unique land cover types. C-band SAR, like 

RADARSAT has unique responses to water and vegetation in the HH (horizontal send, 

horizontal receive) polarization, which Brisco et al. (2017) leveraged to conduct water 

level monitoring in wetlands. Even with relatively long intervals between repeat images 

(average 24 days) wetland water levels could be accurately determined.  They were 

also able to delineate treed and shrub wetlands throughout the image, which are 

notoriously difficult to identify in standard optical/passive imagery. This approach 

cannot, however, be applied to open water bodies that are likely to experience wind and 

wave action, since wind-driven changes in surface elevation will likely be greater than 

short-term changes in water level.    

POLARIMETRIC DECOMPISITION 

Active RS platforms rely on microwave-scale energy to image and this type of energy is 

sensitive to the texture of LULC. Textured surfaces will uniquely reflect incoming energy 

and can be classified into four types. Smooth surfaces like roads and calm water exhibit 

surface scatter where all energy bounces off the surface together without a polarization 

phase shift. Double-bounce is obtained when there are corners or angles in a surface 

(such as wall/ground interfaces) where energy strikes a surface twice before returning 

to the sensor; in this way the energy can be angled away from the sensor and undergo 

a phase shift resulting in a different signature than if it were flat. When there are multiple 

obstructions that the energy encounters it is deemed volume scattering; vegetation is a 

common LULC type that causes this. Volume scattering can cause the sensor to record 

many unique values for a single LULC as the energy may return at different distances, 

phases, and angles. A unique type of double bounce/volume scattering is called Bragg 
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scattering and is the result of a surface containing a wave pattern of a distance that is 

within the range of the energy wavelength being emitted by the platform. In RS Bragg 

scattering is typically confined to instances of waves on water bodies, which can cause 

significant constructive interference and increase the energy signal detected by the 

sensor. To make these details easier to ascertain by RS analysts, spectral 

decomposition can be performed, which creates a new band of information for each 

scattering mechanism; the most common of these techniques are the Freeman-Durden 

and Cloude/Pottier decompositions (Freeman and Druden 1998, Cloude and Pottier 

1997).  

Wetlands are comprised of many different species of vegetation, which can make image 

classification difficult based solely on spectral properties. With so much variability, 

simply classifying land cover as broadly ‘wetland’ can lead to confusion with other 

classes. Polarimetric analyses of plant species can help make delineation of these 

classes easier for the user. Atwood et al. (2020) examined the properties of Typha 

dominated wetlands, which are common throughout Canada. Since these are tall, 

freestanding species, they exhibit an abundance of double bounce and volume 

bounceback as the emitted energy gets caught in their dense canopies. While the 

authors found modelling these structures from mathematical models possible, there 

were significant seasonal changes that led to unexplained variations found in 

RADARSAT-2 data.  

POLARIMETRIC ANALYSIS 

Dielectric properties, which are determined from the chemical structure of the material 

and how it responds to electric polarization, vary among LULC and can affect active RS 

sensors. Conductive materials like metals and salt water will have a greater response 

back to the sensor than insulated materials like fresh water and wood (regardless of 

texture). Studying the dielectric properties of materials in active RS is useful for 

polarimetric analyses, which can help to automate image classification (similar to 

spectral power distributions with passive RS). While some LULC can be very complex, 

basic and consistent land cover types like open water and concrete can be separated 

by their dielectric properties.  

Polarimetric analyses have been conducted on ocean and lake ice, as observing and 

classifying sea ice is of interest for shipping and Arctic marine travel. Surdu et al. (2015) 

successfully used RADARSAT-2 data to identify ice formation and break up in shallow 

Alaskan lakes. While RADARSAT-2 does not offer frequent repeat cycles (i.e., it does 

not pass over the same area of interest on a regular basis), Surdu et al. (2015) found 

that ice-on and ice-off could be accurately modelled when compared to the Canadian 

Lake Ice Model. Muhammad et al. (2016) similarly showed that lower spatial resolution 

MODIS data could be used to monitor these same outputs within the Mackenzie River 

with the advantage of daily image acquisition.  
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DEM/DTM GENERATION 

Both Digital Elevation Models (DEM; bare-earth) and Digital Terrain Models (DTM; 

covered earth) can be generated from active RS data. Since these data use known 

energy values that are tracked from emission to reception, they can generate accurate 

and high-resolution (roughly two times ground resolution) changes in elevation on a 

surface. Passive data can also produce DTMs but they are generally lower resolution 

than the dataset (often 2 – 5 times) and do not penetrate canopies well. In contrast, 

active data creates a high-resolution product and can distinguish canopies and hard 

bottoms, though this varies depending on the spatial resolution and wavelength used. 

For satellite data, DEMs and DTMs are created using inSAR techniques (see above) 

and rely on gridded raster data. These will often use satellites with two opposite look 

sensors (e.g. TanDEM-X) placed on an angle to reduce ‘land shadows’. When steep 

terrain is encountered, a single look system will not be able to capture data on the 

trailing or ‘cliff’ edge leading to a ‘land shadow’ effect. While an off-nadir angle is 

required to produce good DEM data, it can lead to a more pronounced shadow if two 

opposite look angles are not used. Good data can also be obtained by a single sensor 

that passes the same location with a different view angle or direction of travel within a 

relatively short time span. 

The Government of Canada maintains a database of high resolution DEMs and DTMs 

generated by LiDAR known as the High-Resolution Digital Elevation Model (HRDEM). 

In early 2020, an updated version of the ArcticDEM was released that covers all the 

territories at 5 m resolution. While not a contiguous product for the rest of the country, it 

does cover many areas of higher population density and is generally available at a 

higher 1 m resolution. The dataset is available from: 

https://ftp.maps.canada.ca/pub/elevation/dem_mne/highresolution_hauteresolution/. 

LaRocque et al. (2020) used these data as valuable input into their wetland mapping 

project in southern New Brunswick. They took these raw data values and created other 

topographic metrics such as slope, profile and plan curvature (convergence and 

divergence of flow across a surface), topographic position index (a measure of elevation 

relative to surrounding pixels), and topographic wetness index (a measure of area and 

slope draining into a pixel).  Along with optical and active satellite data, they were able 

to map 11 distinct wetland classes at a very high accuracy over 95%. While the most 

important variable for wetland delineation was the DTM, the topographic wetness index 

and topographic position index were also valuable contributors to the model. This was 

an excellent example to show that non-optical data can significantly contribute to image 

classification in wetland systems.  

 

 

 

https://ftp.maps.canada.ca/pub/elevation/dem_mne/highresolution_hauteresolution/
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POINT CLOUDS 

Most point cloud data (e.g., aircraft, UAV, or handheld) will generate point clouds that 

are viewed as vector data (e.g., points in space) instead of raster. The systems are 

often quoted with a precision (akin to pixel size) and viable distance (since the sensor is 

limited in power due to design constraints and health restrictions). These are most often 

used for DEM/DTM generation, but recent advances have led to the development of 

more wavelengths for unique land cover mapping (like species-specific mapping) and 

multiple wavelength systems for multi-surface mapping (such as combined land/water 

DEMs). The ground resolution of these sensors is highly dependent on the distance to 

the surface and speed of the sensor, although most systems will come with a specific 

recommendation to achieve optimal results. LiDAR (Light Detection and Ranging) 

technology is the most known form of point cloud data; these can generate especially 

high-resolution datasets over small- to medium-spatial scales.  

Vernal pools and small wetlands can be especially difficult to map given their cryptic 

nature and seasonality. In order to capture these small wetlands, Riley et al. (2017) 

used a lidar-based DEM over Wakulla County, Florida with 1.52 m resolution and 8.6 

cm root mean square error vertical accuracy. Using a topographic position index, Riley 

et al. (2017) were able to identify wetlands and vernal pools given small depressions in 

the elevation profile. They were also able to identify pools based on their ponded 

duration, though longer duration or permanent pools were more accurately classified 

than shorter duration pools. It would be nearly impossible to identify these depressions 

using lower resolution datasets that are often derived from satellite data. The methods 

presented in Riley et al. (2017) do have higher rates of commission than omission, 

though the former is preferable when dealing with such inscrutable wetlands. 

CONCLUSIONS 

RS provides tools and data that can streamline current analyses and open a new line of 

research and questions to be addressed. RS provides users the ability to provide 

continuous data over large spatial scales, which are not addressed through field work or 

other GIS work. Tools in RS software such as image classification and DEM generation 

can provide additional, high quality data for other analyses within RS, GIS, and other 

software. While many operations within FFHPP are currently conducted with some RS 

(e.g. basic visual identification), incorporating further skills and support with advanced 

RS analyses could drastically improve the speed and quality of the data being used and 

generated. With satellite data, there are long (>30 year) historic datasets available; 

long-term datasets can provide continuous spatial analysis of climate change, habitat 

transitions, and human alteration. Further advances in computing and cloud power will 

more easily provide larger (spatial and temporal) scale analyses and potentially 

automate some basic RS tasks. RS will provide a significant benefit to the overall 
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freshwater fish habitat management program through its own work and collaborations 

with current GIS, statistical, and field-based analyses.  
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APPENDIX 

Table A1. Freely available remote sensing raw data and data products 

Name Supplier Data Available Website 

Airbus Sample Imagery Airbus 
SPOT data, basic elevation datasets, and radar data at specific 
geographic locations 

intelligence-
airbusds.com 

ALOS World 3D JAXA 30m resolution global DEM 
eorc.jaxa.jp/ALOS/
en/aw3d30 

CLASS (Comprehensive 
Large Array-Data 
Stewardship System) 

NOAA Global-scale, low to moderate resolution data including MODIS  

Copernicus Scihub 
European Space 
Agency 

Sentinel-series data 
scihub.copernicus.e
u 

DigitalGlobe Open Data Maxar High resolution datasets at disaster sites 
digitalglobe.com/ec
osystem/open-data 

EarthData NASA 
Raw & real-time imagery, global-scale earth process products (e.g. 
climate indicators, ocean data, agriculture) 

search.earthdata.n
asa.gov 

EarthExplorer 
United States 
Geological Survey 

Landsat satellite data, aerial imagery, and LiDAR datasets (some 
geo-restricted to American users) 

earthexplorer.usgs.
gov 

EODMS (Earth Observation 
Data Management System) 

Natural Resources 
Canada 

Radarsat data, imagery purchased by the GoC (free to GoC 
employees unless authorization to new department required) 

eodms-
sgdot.nrcan-
rncan.gc.ca 

Geodiscover Alberta 
Government of 
Alberta 

Both GIS and RS products, including raw aerial imagery, image 
classification products, and field data 

geodiscover.alberta
.ca 

Global Water Futures 
Multiple (projects 
funded under 
GWF) 

Multiple data types  
gwf.usask.ca/-
outputs-data/ 

Google Earth Engine 
Multiple (collated 
by Google) 

Pre-processed free satellite data (e.g. Landsat, Sentinel); output 
products such as global forest mapping & surface water mapping 

earthengine.google.
com 

Manitoba Land Initiative 
Conservation and 
Water Stewardship 

Both GIS and RS products, including raw aerial imagery, image 
classification products, and field data 

mli2.gov.mb.ca 

Ontario GeoHub 
Land Information 
Ontario 

Both GIS and RS products, including raw aerial imagery, image 
classification products, and field data 

geohub.lio.gov.on.c
a 

Saskatchewan GeoHub 
Government of 
Saskatchewan 

Both GIS and RS products, including raw aerial imagery, image 
classification products, and field data 

geohub.saskatchew
an.ca 

Worldview NASA 
Similar to Google Earth; provides free image access focused on 
global events (e.g. widlfires, coastal erosion) 

worldview.earthdat
a.nasa.gov 
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Table A2. Commonly used remote sensing satellite-based platforms. “Data Captured” uses broader terms than specific wavelengths 

for easier comparison between platforms. Constellation is only included if present; spatial coverage is only listed if not worldwide 

between the 60th parallels. 

Name Data Captured 
Temporal 

Resolution 

Geographic 
Resolution 

(metres/pixel) 

Years of Data 
Available 

Constellation Owner 

Passive Sensors 

Landsat 
1-3 

Red, Green, NIR 18 days 60 (resampled from 
79x57) 

23 July 1972 - 31 
March 1983 

 
NASA 

Landsat 
4-5 

Visible, NIR, SWIR, 
Thermal 

16 days 30 (Thermal: 120) 16 July 1982 - 5 
June 2013 

 
NASA 

Landsat 
7 

Panchromatic, Visible, 
NIR, SWIR, Thermal 

16 days 30 (Thermal: 60) 15 April 1999 - 
present 

 
NASA 

Landsat 
8 

Panchromatic, Visible, 
NIR, SWIR, Thermal, 
Cirrus, Ultra blue 

16 days 30 (Thermal: 100) 11 February 2013 
- present 

 
NASA 

Sentinel-
2 

Visible, NIR, SWIR, 
Thermal, Red edge, 
Cirrus, Ultra Blue, 
Water Vapor 

6 days 10 (Red 
Edge(1,2,3,4) + 
SWIR (1,2): 20; 
Ultra Blue, Cirrus, 
Water Vapor: 60)  

23 June 2015 - 
present 

Two ESA 

ALOS-1 
/ Daichi 

Panchromatic, Visible, 
NIR 

46 days (2 day 
sub-cycle for 
disaster 
monitoring) 

10 (Visible + NIR) + 
2.5 (Panchromatic) 

24 January 2006 - 
22 April 2011 

 
JAXA 

GOCI Visible (6 band), 2 NIR 
bands 

1 hour 500m 1 June 2010 - 
present 

 
KOSC 

ENVISA
T MERIS 

Visible, NIR, 15 total 
bands across 412nm-
900nm 

3 days 300m (1,000m 
reduced resolution) 

1 March 2002 - 8 
April 2012 

 
ESA 

MODIS Cloud/Aerosols, Ocean 
Colour, Phytoplankton, 
Water Vapor, 
Temperature (36 total 
bands) 

1-2 days 250m, 500m, 
1,000m 

24 February 2000 
/ 4 July 2002 
(Terra / Aqua)- 
present 

Two (Terra + Aqua) NASA 

Worldvie
w-2 

Panchromatic, Visible, 
two NIR bands, red 
edge, coastal, yellow 

1-2 days 2.4m (Multispectral), 
0.5m 
(Panchromatic) 

8 October 2009 - 
present 
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Name Data Captured 
Temporal 

Resolution 

Geographic 
Resolution 

(metres/pixel) 

Years of Data 
Available 

Constellation Owner 

Passive Sensors 

Worldvie
w-3/4 

Panchromatic, Visible, 
two NIR bands, red 
edge, coastal, yellow, 8 
SWIR bands, 12 
CAVIS bands 

1-2 days 1.24m 
(Multispectral), 0.3m 
(Panchromatic), 
3.7m (SWIR bands), 
30m (CAVIS bands) 

13 August 2014 - 
present 

Two (Worldview-4 
does not include 
SWIR/CAVIS bands; 
decommissioned in 
January 2019) 

 

GeoEye-
1 

Panchromatic, Visible, 
NIR 

3 days 1.65m (Visible + 
NIR), 0.41m 
(Panchromatic) 

7 October 2008 - 
present 

 
DigitalGlobe 

Pleiades 
1 

Panchromatic, Visible, 
NIR 

1 day with 
constellation 

2.8m (Visible + 
NIR), 0.7m 
(Panchromatic) 

17 December 
2011 - present 

Two (Pleidas 1A + 
1B); in same orbit as 
SPOT 6/7 

 

KOMPS
AT/Arira
ng series 

Panchromatic, Visible, 
NIR 

1.4 days with 
constellation 

4m/2.8m/2.2m 
(Visible + NIR; 
2/3/3a), 
1m/0.7m/0.55m 
(Panchromatic; 
2/3/3a) 

28 July 2006 / 17 
May 2012  / 25 
March 2015 - 
present (2/3/3a) 

Two KARI 

Quickbir
d 

Panchromatic, Visible, 
NIR 

1-3.5 days 2.4m (Visible + 
NIR), 0.61m 
(Panchromatic) 

18 October 2001 - 
17 December 
2014 

 
DigitalGlobe 

SkySat Panchromatic, Visible, 
NIR 

<1 day with 
constellation 

1m (Visible + NIR), 
0.72m 
(Panchromatic) 

21 November 
2013 - present 
(Gen2: 22 Jue 
2016 - present) 

Thirteen Planet Labs 

IKONOS Panchromatic, Visible, 
NIR 

3 days 3.28m (Visible + 
NIR), 1m 
(Panchromatic) 

24 September 
1999 - 31 March 
2015 

 
GeoEye 

Gaofen 
series 

Panchromatic, Visible, 
NIR 

41 days 8m/3.2m (Visible + 
NIR; 1/2), 2/0.8m 
(Panchromatic; 1/2) 

  
CNSA 

TripleSat Panchromatic, Visible, 
NIR 

1 day with 
constellation 

4m (Visible + NIR), 
1m (Panchromatic) 

10 July 2015 - 
present 

Three 21AT 

FORMO
SAT 
series 

Panchromatic, Visible, 
NIR 

1-2 days 8m/4m (Visible + 
NIR; 2/5), 2m 
(Panchromatic) 

20 May 2004/24 
August 2017 (2/5) 
- present  

 
NPSO Taiwan 

RapidEy
e 

Visible, NIR, Red edge 1-5.5 days with 
constellation 

5m 28 August 2008 - 
present 

Five Planet Labs 
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Name Data Captured 
Temporal 

Resolution 

Geographic 
Resolution 

(metres/pixel) 

Years of Data 
Available 

Constellation Owner 

Passive Sensors 

SPOT 5 Panchromatic, Visible, 
SWIR 

 
10m (Visible + NIR), 
2.5m 
(Panchromatic) 

4 May 2002 - 
present 

 
CNES 

SPOT 
6/7 

Panchromatic, Visible, 
NIR 

1 day with 
constellation 

6m (Visible + NIR), 
1.5m 
(Panchromatic) 

17 October 2012 - 
present 

Two AIRBUS 

JERS-1 Green, Red, two NIR 
bands, 4 SWIR bands 

44 days 20m 11 February 1992 
- 11 October 1998 

Two JAXA 

Vision-1 Panchromatic, Visible, 
NIR 

1-8 days with 
constellation; 35 
days (3 day for 
commissioning) 

3.5m (Visible + 
NIR), 0.9m 
(Panchromatic) 

21 November 
2013 - present 
(Gen2: 22 Jue 
2016 - present) 

  

Deimos-
2 

Panchromatic, Visible, 
NIR 

4 days 5m (Visible + NIR), 
0.75m 
(Panchromatic) 

  
Deimos 
Imaging 

Supervie
w-1 

Panchromatic, Visible, 
NIR 

2 days 2m (Visible + NIR), 
0.5m 
(Panchromatic) 

9 January 2018 - 
present 

Four Beijing Space 
View 
Technology 

ZiYuan-3 Panchromatic, Visible, 
NIR 

5 days 5.8m (Visible + 
NIR), 2.1m 
(Panchromatic) 

9 January 2012 - 
present 

 
Ministry of Land 
and Resources 
of the People's 
Republic of 
China 

OHS 32 band hyperspectral 
(blue to NIR) 

1 day 10m 26 April 2018 - 
present 

Eight (second set 
launched 19 
September 2019) 

Orbita 

Active Sensors 

Sentinel-
1 

Single polarized HH & 
VV, Dual Polarized with 
HV/VH  

6 days Full resolution: IW: 
10, EW: 25   High 
resolution: IW&EW: 
40 

03 October 2014 - 
present 

Two 
 

RADAR
SAT 
series 

Single polarized HH & 
VV, Dual Polarized with 
HV/VH (RADARSAT-1: 
HH only) 

14 days (less 
towards North 
Pole, e.g. 2-3 days 
in Arctic); Daily at 
50m (RCM) 

Most data in 
medium resolution: 
30 (high: 8; low: 
100) 

4 November 1995 
- present (RCM: 
12 June 2019) 

Single (RCM: 3) CSA 
(RADARSAT-2) 

AVHRR 
series 

Two red bands, NIR, IR 
(after 1986) 

1 day 1,000m June 1979 - 
present 
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Name Data Captured 
Temporal 

Resolution 

Geographic 
Resolution 

(metres/pixel) 

Years of Data 
Available 

Constellation Owner 

Active Sensors 

ALOS 
PALSAR 
series 

Single polarized HH & 
VV, Dual Polarized with 
HV/VH, Quad 
Polarized 

ALOS-1: 46 days; 
ALOS-2: 14 days 

ALOS-1: 10m / 
100m; ALOS-2: 3m, 
6m, 10, 100m 

24 January 2006 - 
22 April 2011 
(ALOS-1); 24 May 
2014 - present 
(ALOS-2) 

 
JAXA 

ENVISA
T ASAR 

Single polarized HH & 
HV, Dual Polarized 
with HV/VH 

3 days 30m (100m wide 
swath) 

1 March 2002 - 8 
April 2012 

 
ESA 

TerraSA
R-X 

Single polarized HH & 
HV, Dual Polarized 
with HV/VH 

11 days (less 
towards poles, 
e.g. 3-4 days in 
Arctic) 

1m (SpotLight), 3m 
(StripMap), 
ScanSAR(16m) 

15 June 2007 - 
present 

Two (with TanDEM-
X) 

Astrium 

ERS 
series 

Single VV polarized 1-8 days with 
constellation; 35 
days (3 day for 
commissioning) 

30m (50km in wind 
scatterometer 
mode) 

17 July 1991 -10 
March 2000 

  

JERS 
series 

Single HH polarized 44 days  18m 11 February 1992 
- 11 October 1998 

 
JAXA 

ENVISA
T ASAR 

Single polarized HH & 
VV, Dual Polarized with 
HV/VH 

35 days (3 day for 
commissioning) 

30m (wide swath: 
150m; global 
monitoring: 1,000m) 

1 March 2002 - 8 
April 2012 

 
ESA 

KOMPS
AT-5 
(Corea 
SAR 
Instrume
nt) 

Single polarized HH, 
VV, HV, VH 

28 days 1m (Highest), 3m 
(StripMap), 30m 
(global mapping) 

22 August 2013 - 
present 

 
KARI 
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Table A3. Electromagnetic spectrum as represented in remote sensing. Active remote sensing 

bands are sometimes referred to by frequency in gigahertz but passive bands are not.  

Wavelength (m) System Colour/Name Frequency (GHz) 

1*10-9 – 1*10-6 Passive Ultraviolet  

(0.4 - 0.6)*10-9 Passive Visible  

(0.446 - 0.500)*10-9 Passive Blue  

(0.500 - 0.578)* 10-9 Passive Green  

(0.620 - 0.700)* 10-9 Passive Red  

(0.7*10-9) – (1*10-4) Passive Infrared  

(0.7 - 1.0)*10-7 Passive Near Infrared  

(1 - 1.5)*10-6 Passive Short wave Infrared  

(3.0*10-5) – 1*10-4  Passive Thermal Infrared  

(0.75 - 1.1)*10-2 Active Ka-Band 26.5-40 

(1.1 - 1.67)*10-2 Active K-band 18-26.5 

(1.67 - 2.4)*10-2 Active Ku-band 12.5-18 

(2.4 - 3.75)*10-2 Active X-band 8-12.5 

(3.75 - 7.5)*10-2 Active C-band 4-8 

(0.75 - 1.5)*10-1 Active S-band 2-4 

(1.5 - 3.0)*10-1 Active L-band 1-2 

(3.0 - 10)*10-1 Active P-band 0.3-1 
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Table A4. List of commonly used remote sensing softwares. Some GIS-focused packages are included for comparison 

Software 
Main 

functionality Additional functionalities 
Coding 

Language 
Cloud 

Programming Source 
ENVI Remote 

sensing 
Automated Atmospheric correction, object-based image analysis, 
3D point cloud generation from image data, spectra library, ESRI & 
DigitalGlobe & Pix4D integration, API available for custom apps, 
deep learning classification with extension, Additional SAR data 
processing capabilities with extension 

IDL Available L3 Harris 

eCognition Object-based 
image 
analysis & 
remote 
sensing 

Workflow creation, Deep learning, eCognition Server: Batch 
processing for large datasets 

 
No Trimble 

ArcMap GIS analyses Standard GIS software tools, Workflow creation (via ModelBuilder), Python No ESRI 

ArcPro GIS analyses Standard GIS software tools, Workflow creation (via ModelBuilder), Python No ESRI 

Google Earth 
Engine 

Big data 
remote 
sensing  

Big data analysis, long time-series analysis Javascript, 
Python 

Cloud software Google 

SNAP Sentinel 
satellite data 
processing & 
remote 
sensing 

  
No European 

Space 
Agency 

QGIS  GIS analyses 
(based on 
GRASS & 
SAGA 
software) 

Standard GIS software tools, Many plugins available e.g. semi-
automatic classification 

Python No qgis.org 

ORFEO 
Toolbox 

Remote 
sensing 

Basic GIS software tools, Accessible via QGIS, Python, Command 
Line, and C++ 

Python No orfeo-
toolbox.org 

Pix4D UAV image 
data 
transformation 
to 3D models 
& maps 

Basic measurements (area, perimeter, volume), elevation data 
creation & display, machine learning-based automated image 
classification (aimed at agriculture & construction) 

None Available; 
cloud-leveraged 
machine 
learning image 
classification 

Pix4D 

DroneDeploy UAV image 
data 
transformation 
to 3D models 
& maps 

Basic measurements (area, perimeter, volume), elevation data 
creation & display, basic automated image classification (aimed at 
agriculture & construction) 

None Cloud software; 
third party apps 
available 

DroneDeploy 
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Software 
Main 

functionality Additional functionalities 
Coding 

Language 
Cloud 

Programming Source 
Geomatica Remote 

sensing 
Object-based image analysis, Sentinel-1 TOPS SAR & InSAR 
workflows (with radar suite), Radarsat Constellation support, UAV 
image processing, Many additional products from PCI Geomatics to 
enhance usability 

Python No PCI 
Geomatics 

ERDAS 
IMAGINE 

Remote 
sensing & GIS 
analyses 

 
Python Available Hexagon 

Geospatial 

Opticks Remote 
sensing 

 
Python No Ball 

Aerospace & 
Technologies 

IDRISI/TerrSet Remote 
sensing 

Standard GIS software tools, Tools for REDD projects, Change 
detection and trends module, climate change modelling module  

None No Clark Labs 

TNTmips GIS analyses Standard GIS software tools, basic remote sensing tools,  SML No MicroImages 

RemoteView Remote 
sensing 

Basic GIS software, SAR data integration, video analysis, object-
based image analysis, LiDAR analysis, ArcGIS integration 

 
With RVCloud 
integration 

Overwatch 
Textron 
Systems 

BEAM Basic remote 
sensing 

Sentinel integration (SNAP) Java No European 
Space 
Agency 
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Table A5. List of commonly used remote sensing techniques 

Type Main function Data inputs Data outputs Examples FFHPP Application 
Change 
Detection 

Quantify spatial and spectral 
differences between images 

Two raster datasets with 
overlapping pixels separated 
by a time delta 

Raster data; 
change between 
images 

Modeling invasive 
Phragmites expansion in 
Long Point (Jung et al. 
2017) 

Determine cumulative 
effects of physical 
alterations and climate 
change in watersheds 

Image 
Classification, 
Unsupervised 

Define classes within image 
data by their spectral 
properties; classes 
generated automatically 
(often by specified number of 
classes or 
minimum/maximum number 
of classes 

Image data Raster data; 
classified image 

k-means classification of 
SAR data for lake ice 
delineation (Sobiech & 
Dierking 2013) 

Fully automated image 
classification for initial 
image classification 
analyses to determine 
potential spectral 
distinguishability 

Image 
Classification, 
Supervised 

Define classes within image 
data by their spectral 
properties; reference value 
inputs required (training 
polygons or spectral values) 

Image data, training 
polygons/spectral values 

Raster data; 
classified image 

Random forest classification 
for wetland type 
determination in Great 
Lakes coastal wetlands 
(Bourgeau-Chavez et al. 
2015) 

Semi-automated image 
classification for multiple 
areas of interest 

Digitization Manual delineation of 
features 

Image data Vector (polygon) 
data; no inherent 
properties unless 
user 
defined/calculated 

Digitization of historic aerial 
photography to determine 
change over time & effects 
on SAR in a national park 
(Markle & Chow-Fraser 
2018) 

Easy, fully manual image 
classification for small 
areas of interest 

Clustering Create image objects with 
inherent spatial properties 
(e.g. area, perimeter, 
adjacent objects) 

Image data Raster or vector 
(polygon) data; 
spectral data with 
spatial properties 

Delineation of habitat types 
to support coastal wetland 
mapping in Georgian Bay 
(Midwood & Chow-Fraser 
2010) 

Improve image 
classification from very 
high-resolution image 
data 

Passive data 

Band Ratios Use a ratio of two or more 
bands to extract additional 
data on land cover features 

Multi-band image raster Raster; New ratio 
band 

Mapping submerged aquatic 
vegetation with depth-
invariant index (Shuchman 
et al. 2013) 

Mapping and comparing 
SAV, physical habitat, 
vegetation vigor, soil 
moisture 

Aerial 
Photography 

Very high-resolution image 
data without atmospheric 
interference 

Plane with orthophotography 
equipment, site coordinates, 
flight plan 

Continuous image 
data over site, 
three-dimensional 
point cloud (if 
sufficient image 
overlap) 
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Type Main function Data inputs Data outputs Examples FFHPP Application 

Passive data 

UAV Imagery Extremely high-resolution 
data with specific spectral 
response 

UAV, site coordinates, flight 
plan 

Continuous image 
data over site, 
three-dimensional 
point cloud (if 
sufficient image 
overlap) 

Determine extent of invasive 
Phragmites in coastal 
wetland (Marcaccio et al. 
2016) 

Rapid image updates 
from field; very high-
resolution data products 

Stereoscopy Using two overlapping 
images to create three-
dimensional model 

Overlapping image data Three-dimensional 
point cloud data 

Differences between 
stereoscopy and laser 
scanned point clouds (White 
et al. 2013 

Updated surface models 
for more recent analysis 

Spectral 
Power 
Distribution 

Determine full spectral 
response of a feature in-situ 

Spectro-radiometer data Spectral response 
values  

Determine Eurasian water 
milfoil spectral profile for 
wetland classification 
(Brooks et al. 2019) 

Automated vegetation 
mapping using spectral 
profiles 

SAR data 

InSAR Map surface 
deformation/elevation with 
high accuracy (<1m) 
between two dates 

Two SAR images from same 
sensor / bands and same 
geometry in quick 
succession (time scale 
dependent on features 
imaged; <10 days) 

Interferogram Wetland water level 
monitoring and 
discrimination from other 
land cover types (Brisco et 
al. 2017) 

Quantify erosion and 
watercourse change 

Polarimetric 
Analysis 

Define dielectric, surface, 
and bounceback properties 
of surfaces being imaged 

SAR data, training polygons N/A Polarimetric properties of 
Typha wetlands (Brisco et 
al. 2020) 

Soil moisture analyses; 
vegetation canopy 
density 

DEM/DTM 
Generation 

Use highly calibrated SAR 
satellite to create digital 
elevation model over very 
large areas  

SAR data, reference 
coordinates with accurate 
elevation data 

Rater data; 
DEM/DTM, DSM 
(vector data 
outputs possible) 

TanDEM-X Updated surface models 
for more recent analysis 

 


