

1

Mar.fleets: an R Package for Integrating Commercial
Catch and At-Sea Observer Data from Maritimes Region

Mike McMahon and Heather Bowlby

Fisheries and Oceans Canada
Science Branch, Maritimes Region
Population Ecology Division
1 Challenger Drive
Dartmouth, NS, B2Y 4A2

2021

Canadian Technical Report of
Fisheries and Aquatic Sciences 3450

Canadian Technical Report of Fisheries and Aquatic Sciences

Technical reports contain scientific and technical information that contributes to existing knowledge

but which is not normally appropriate for primary literature. Technical reports are directed primarily

toward a worldwide audience and have an international distribution. No restriction is placed on subject

matter and the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely,

fisheries and aquatic sciences.

Technical reports may be cited as full publications. The correct citation appears above the abstract

of each report. Each report is abstracted in the data base Aquatic Sciences and Fisheries Abstracts.

Technical reports are produced regionally but are numbered nationally. Requests for individual

reports will be filled by the issuing establishment listed on the front cover and title page.

Numbers 1-456 in this series were issued as Technical Reports of the Fisheries Research Board of

Canada. Numbers 457-714 were issued as Department of the Environment, Fisheries and Marine Service,

Research and Development Directorate Technical Reports. Numbers 715-924 were issued as Department

of Fisheries and Environment, Fisheries and Marine Service Technical Reports. The current series name

was changed with report number 925.

Rapport technique canadien des sciences halieutiques et aquatiques

Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent

une contribution aux connaissances actuelles, mais qui ne sont pas normalement appropriés pour la

publication dans un journal scientifique. Les rapports techniques sont destinés essentiellement à un

public international et ils sont distribués à cet échelon. II n'y a aucune restriction quant au sujet; de fait,

la série reflète la vaste gamme des intérêts et des politiques de Pêches et Océans Canada, c'est-à-dire les

sciences halieutiques et aquatiques.

Les rapports techniques peuvent être cités comme des publications à part entière. Le titre exact

figure au-dessus du résumé de chaque rapport. Les rapports techniques sont résumés dans la base de

données Résumés des sciences aquatiques et halieutiques.

Les rapports techniques sont produits à l'échelon régional, mais numérotés à l'échelon national. Les

demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et

la page du titre.

Les numéros 1 à 456 de cette série ont été publiés à titre de Rapports techniques de l'Office des

recherches sur les pêcheries du Canada. Les numéros 457 à 714 sont parus à titre de Rapports techniques

de la Direction générale de la recherche et du développement, Service des pêches et de la mer, ministère

de l'Environnement. Les numéros 715 à 924 ont été publiés à titre de Rapports techniques du Service des

pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom actuel de la série a été établi

lors de la parution du numéro 925.

i

Canadian Technical Report of
Fisheries and Aquatic Sciences 3450

2021

Mar.fleets: an R package for Integrating Commercial Catch and At-Sea Observer Data
from Maritimes Region

By

Mike McMahon and Heather Bowlby

Fisheries and Oceans Canada
Science Branch, Maritimes Region

Population Ecology Division
1 Challenger Drive

Dartmouth, NS B2Y 4A2

ii

© Her Majesty the Queen in Right of Canada, 2021

Cat. No. Fs-97-6/3450E- PDF ISBN 978-0-660-41046-3 ISSN 1488-5379

Correct citation for this publication:

McMahon, M and Bowlby, H. 2021. Mar.fleets: an R package for integrating commercial
catch and at-sea observer data from Maritimes Region. Can. Tech. Rep. Fish.
Aquat. Sci. 3450: v + 28 p.

iii

TABLE OF CONTENTS

ABSTRACT .. iv

RÉSUMÉ .. v

INTRODUCTION .. 1

BACKGROUND .. 1

PACKAGE DESCRIPTION ... 3

Overview .. 3

Data access ... 4

PACKAGE FUNCTIONALITY ... 4

Included Data ... 4

Wrapper Functions ... 5

Function Flow ... 5

MARFIS Extractions ... 6

ISDB Extractions .. 8

Output ...11

Additional Parameters ...15

Ancillary Functions ..18

POST-EXTRACTION VALIDATION .. 24

Mar.fleets and Bycatch ..25

ACKNOWLEDGMENTS .. 25

REFERENCES CITED .. 26

APPENDIX 1: NETWORK CONNECTION VS LOCAL DATA ... 27

iv

ABSTRACT

McMahon, M and Bowlby, H. 2021. Mar.fleets: an R package for integrating commercial catch
and at-sea observer data from Maritimes Region. Can. Tech. Rep. Fish. Aquat. Sci. 3450: v
+ 28 p.

For Maritimes Commercial Fisheries, information on non-retained catch (i.e. observer data) is
stored in a separate database from retained catch information (i.e. commercial landings). While
the observer database includes sufficient information to identify vessels, it does not include the
suite of licencing information used to associate vessels with fleets. Further, neither database
includes a mechanism for reliably associating the recorded trips and sets in one with those
recorded in the other.

Maritimes staff frequently need to identify all of the participants in a fishery, and extract fleet-
specific data associated with the commercial landings as well as any observed catch. To better
understand the wider impact of a given fishery on non-retained species, it is often imperative to
know which commercial trips are associated with which observed trips to correctly prorate catch
data.

This report describes Mar.fleets, a new R package offering Maritimes users a unified approach
for reliably: 1) identifying fleets, 2) extracting commercial landings, 3) matching commercial and
observed trips and sets, and 4) extracting the matched observer data. Each of the underlying
functions are described, as are the mechanisms for fleet identification and inter-database
matching. A key component of the package consists of fleet-specific "wrapper functions", which
were developed to ensure consistent and repeatable extractions by hard-coding fleet-specific
information. Ancillary functions for summarizing and mapping the results are also described.

v

RÉSUMÉ

McMahon, M and Bowlby, H. 2021. Mar.fleets: an R package for integrating commercial catch
and at-sea observer data from Maritimes Region. Can. Tech. Rep. Fish. Aquat. Sci. 3450: v
+ 28 p.

En ce qui concerne les pêches commerciales dans la région des Maritimes, les renseignements
sur les prises non conservées (c.-à-d. les données des observateurs) sont stockés dans une
base de données distincte de celle dans laquelle les renseignements sur les prises conservées
(c.-à-d. les débarquements commerciaux) sont stockés. Bien que la base de données des
observateurs contienne suffisamment de renseignements pour identifier les navires, elle ne
contient pas la série de renseignements sur la délivrance des permis utilisée pour associer les
navires aux flottilles. En outre, aucune des deux bases de données ne contient de mécanisme
permettant d’associer de manière fiable les sorties et les calées enregistrées dans l’une avec
celles enregistrées dans l’autre.

Le personnel de la région des Maritimes doit souvent identifier tous les participants à une pêche
et extraire les données propres à la flottille associées aux débarquements commerciaux ainsi
qu’aux prises observées. Pour mieux comprendre l’impact plus large d’une pêche donnée sur
les espèces non conservées, il est souvent impératif de savoir quelles sorties de pêche
commerciale sont associées aux sorties observées afin de correctement répartir au prorata les
données sur les captures.

Ce rapport décrit Mar.fleets, un nouveau progiciel R qui offre aux utilisateurs des Maritimes une
approche unifiée pour : 1) l’identification des flottilles, 2) l’extraction des débarquements
commerciaux, 3) l’appariement des sorties et des calées de pêche commerciale et observées,
4) l’extraction des données d’observation correspondantes. Chacune des fonctions sous-
jacentes est décrite, de même que les mécanismes d’identification de la flottille et
d’appariement entre les bases de données. L’un des composants clés du progiciel consiste en
des « fonctions d’enveloppage » propres à chaque flottille, qui ont été développées pour
garantir des extractions cohérentes et reproductibles par codage manuel des renseignements
propres à la flottille. Les fonctions auxiliaires de synthèse et de cartographie des résultats sont
également décrites.

1

INTRODUCTION

In the Fisheries and Oceans Canada (DFO) Maritimes Region, landings data from commercial
fisheries (i.e. “commercial landings”) are not inherently linked to the associated at-sea observer
data (i.e. “observer data”) from the same fishing trips. It can be difficult to consistently extract all
of the relevant data for a specific fishing fleet from underlying databases. Consistently
identifying fleet participants is critical to extracting the appropriate commercial landings and
logbook data for a given fishery, as well as identifying the component of that fishery that was
observed at sea. These data are necessary for all components of stock assessment as well as
questions related to the ecosystem-level impact of fisheries. This document and the R Package
it describes addresses the need to consistently identify all available data for a given fishing fleet
within the Maritimes Region.

While there have been several successful efforts by individual assessment units to match
landings and logbook data to at-sea observer data to explore the ecosystem-level effects of
fisheries (e.g. Gavaris et al. 2010; Sameoto and Glass 2012; Clark et al. 2015), these efforts
often relied on user-specific data objects (e.g. lookup tables) and reproducibility was not
considered when these analyses were conducted. Additionally, most (if not all) of these
attempts were specific to particular fleets, and were not applicable beyond specific assessment
units.

This document describes "Mar.fleets", a new R package built specifically to address the issues
described above. It extracts fleets, their commercial landings data, and any associated observer
data. It does so using information already available within the source databases, and the logic
behind the extractions and the matching routines is all "fleet-agnostic". That is to say that
beyond the initial parameters, the underlying extraction and matching methodology is
consistent, and will return a consistently formatted data-product, regardless of the selected fleet.

Many fleets already have their fleet-defining parameters enshrined in "wrapper functions", such
as fleet_halibut(). These functions each consist of only three or four lines of code, and they

are the only aspect of the package that is fleet-specific. Each wrapper contains all of the
information needed to define a fleet. With assistance from specific assessment units, new
wrapper functions can be added to the package with relative ease. Once created, a wrapper
function facilitates repeated, reproducible extractions by all users, regardless of their familiarity
with the specific fishery.

Beyond extractions, Mar.fleets provides cursory quality control (QC; QA/QC) on the underlying
databases and also provides tools for researchers to understand why outputs from Mar.fleets
may differ from other ways of extracting data. Every effort has been made to ensure that the
returned data are defensible, and the justifications for matching landings data with observer
data are provided for every matched trip and set. Lastly, the package also includes some
additional tools for summarization and visualization.

BACKGROUND

To understand the extent and characteristics of fishing activity for a fleet, both the commercial
landings and observed catch data must be examined together. In the Maritimes Region, the
databases that store the commercial and observer data are MARFIS and ISDB, respectively.
MARFIS (i.e. MARitimes Fisheries Information System) is maintained by the Commercial Data
Division (Policy and Economics Branch), and this database houses all of the data related to the

2

fishing activity of the various fleets within the Maritimes Region. It was designed for quota
monitoring, and archives all commercial landings recorded from fisheries monitoring documents
from 2002 to present. The ISDB (i.e. Industry Surveys DataBase AKA the “Observer DB”) is
maintained by the Population Ecology Division (Science Branch), and houses all of the data
collected by the At-Sea Observer Program. It was designed for science and research, and
contains data from 1977 to present. These databases were built independently and each was
created to address a unique goal. While many fields are shared between them (e.g. vessel,
licence identifiers, hail in and hail out confirmation codes), data are entered into each database
independently, and no programmatic linkages exist between them that would ensure the
integrity of any shared information. In other words, instances where a specific value should be
the same, but isn’t, aren’t found automatically during data entry. Given a list of fishing activity
for a fleet from MARFIS, finding the associated trip and set records in the ISDB is not
straightforward. The complexity associated with identifying fleets can present challenges for
both fisheries managers and assessment biologists.

The identification of all of the activity for a particular fleet is also not straightforward. It is
commonplace within DFO Science and in Policy & Economics to refer to “fleets” however no
single identifier stored in either MARFIS or ISDB can be used to uniquely identify the vessels or
activity associated with a fleet. Further, vessels don't necessarily always belong to a single fleet.
For example, the “Silver Hake fleet” consists of vessels that:

1. fish under particular combinations of licence types and subtypes licenced for
"groundfish";

2. use a “STERN OTTER TRAWL”;
3. use a square mesh size between 55 and 65mm; and
4. are active in NAFO area 4VWX and 5Y.

Similarly, the “Unit 3 Redfish fleet” consists of vessels that:

1. also fish under particular combinations of licence types and subtypes licenced for
"groundfish";

2. also use a “STERN OTTER TRAWL”;
3. use a mesh size of 110-115mm; and
4. are active in NAFO areas 4X, 5YF, and 4WDEHKL.

Vessels in either of these fleets may also be allowed to fish under additional licenses using
other gears in other areas. Should any of the vessels in either of these fleets start fishing in
another NAFO area, or alter their gear type or its characteristics (e.g. mesh size), they may
effectively become a member of a different fleet. In some cases, gear can even be changed
between sets, meaning that a vessel has the potential to participate in multiple fleets during a
single fishing trip.

MARFIS stores all of the information necessary to correctly identify a fleet, and all of the
monitoring document information pertaining to fishing activity and reported landings. While ISDB
does not store any of the licence type/subtype or licenced species information, it does include
information such as the vessel registration (VR) numbers, the LICENCE_IDs and a fleet proxy
called TRIPCD_ID. TRIPCD_ID attempts to associate trip-level information with fleets, but these
codes are not programmatically linked with MARFIS, and relying on them alone will almost
certainly result in both 1) overlooking a component of the valid trips undertaken by a fleet, as
well as 2) including non-fleet vessel activity that primarily caught the same target species.

Currently, multiple assessment units in the Population Ecology Division as well as groups within
other DFO Science divisions undertake MARFIS and ISDB matching independently, each using

3

a slightly different methodology. Given the complexity of fleet identification and data extraction,
it is unlikely that these varied identification and extraction processes will result in identical
results for fleets, commercial landings and observer data.

The intent of Mar.fleets is that it can offer a unified approach for identifying fleets, uniting
databases, and facilitating repeatable and reproducible results within and across fisheries
assessments and between data users. This document assumes that readers are familiar with
the general structure and variable names for data stored in MARFIS and the ISDB (e.g.
PRO_SPC_INFO as a data table in MARFIS and LICENCE_ID as a variable name).

PACKAGE DESCRIPTION

Overview

The data extraction and amalgamation tools are available from GitHub in the Mar.fleets package
(https://github.com/Maritimes/Mar.fleets).

The Mar.fleets package endeavors to simplify and standardize the process for extracting fleet-
specific commercial fisheries data from the MARFIS database and for associating it with the
observer data stored in the ISDB. It approaches this problem through a number of sequentially-
run functions that:

1. Identify all of the fishing activity for groups of vessels sharing particular characteristics
(i.e. fleets);

2. Extract all of the commercial (i.e. MARFIS) data for that fleet;

3. Extract all of the Observer (i.e. ISDB) data for that fleet;

4. Match the commercial and observed trips and sets wherever possible; and

5. Report all catches (both commercial landings and observed) associated with all of the
fleet activity.

In addition to the core functions that perform the steps above, there are also several helper
functions that facilitate assembling the data in various ways, assist with plotting, and query
additional data sources (e.g. Vessel Monitoring Systems (VMS) data stored by Conservation
and Protection).This document is intended to be a general reference for anyone extracting and
working with data from MARFIS and the ISDB. Development of the Mar.fleets package
(particularly wrapper functions) will continue in the future, so readers are urged to refer to the
online documentation on GitHub (https://github.com/Maritimes/Mar.fleets) for the most up-to-
date information.

We anticipate that this package will be applicable to data requests from Fisheries Management,
Biodiversity Management, Ecosystems Management, Marine Planning and Conservation, as
well as Science. We would welcome the opportunity to work with different groups to streamline
data, improve QA/QC, develop extractions for annual data requests, and/or to further
standardize methods. Each unique situation will ensure that the Mar.fleets package remains up-
to-date and applicable, even as data capture methods and reporting requirements change.

https://github.com/Maritimes/Mar.fleets
https://github.com/Maritimes/Mar.fleets

4

Data access

Installing the Mar.fleets package does not grant access to any of the required data. The vast
majority of these data are protected under the Canadian Privacy Act1, and are not available to
anyone outside of DFO in their raw form. Even within DFO, relatively few individuals will have
sufficient access to all of the tables within MARFIS and the ISDB necessary for the package to
function.

One of the inputs for the package is a valid Oracle account that has been granted all of the
necessary permissions. Prior to attempting to extract any data, the package will first ensure that
all of the necessary data are accessible. Specifically, SELECT permissions are required on all
of the objects shown in Table 1.

Table 1. Objects for which SELECT permission is necessary for Mar.fleets to function.

Schema: MARFISSCI ISDB OBSERVER

Objects: HAIL_IN_CALLS
HAIL_OUTS
LOG_EFRT_ENTRD_DETS
LOG_EFRT_STD_INFO
MARFLEETS_LIC
MON_DOC_ENTRD_DETS
NAFO_UNIT_AREAS
PRO_SPC_INFO
TRIPS
VESSELS

ISFISHSETS
ISTRIPS
ISVESSELS
ISCATCHES
ISGEARS

ISSETPROFILE_WIDE

When querying Oracle, the Mar.fleets package can use either the RODBC (the default -
https://cran.r-project.org/web/packages/RODBC/) or ROracle packages (https://cran.r-
project.org/web/packages/ROracle/). To use one or the other, include the parameter usepkg =
"rodbc" (the default) or usepkg = "roracle".

Installing either RODBC or ROracle such that they can communicate with Oracle is beyond the
scope of this document, and users should refer to the documentation associated with their
chosen package.

PACKAGE FUNCTIONALITY

All functions within this package are discussed below, but the vast majority of users are
expected to limit their use of the package to one or more of the fleet wrapper functions.
Wrapper functions are purpose-built to provide all of the parameters necessary to correctly
extract the data associated with a particular fleet. What follows below is a description of the data
that are included with the package, and a listing of all of Mar.fleets' functions, with a short
description of what each does.

Included Data

The Mar.fleets package includes seven dataframes: GEARS_MARFIS, GEARS_ISDB,
SPECIES_MARFIS, and SPECIES_ISDB are all code tables that come directly from the source

1 https://laws-lois.justice.gc.ca/ENG/ACTS/P-21/index.html

5

databases. These are provided as a convenience for quickly looking up the numerous species
and gear codes. LIC_CORE, LIC_AREAS, and LIC_GEAR_SPEC were developed specifically for

use by the package and these dataframes will expand with future versions of the package, as
new wrappers are added.

Any fleet can be associated with many different licence types, licence subtypes, and species.
LIC_CORE is the primary lookup table that associates the various "fleet" character strings sent by

the wrapper functions (e.g. "HALIBUT", "HAGFISH", etc.) with the specific licence information
stored in MARFIS to identify fleets.

LIC_AREAS is a lookup table that can associate the various "area" character strings sent by

some wrapper functions with the actual NAFO areas they represent (e.g. "UNIT2" (redfish)
represents NAFO areas 3PS, 4VN, 4VS, 4WF, 4WG and 4WJ).

LIC_GEAR_SPEC is a lookup table that stores information related to the specific fishing gear

specifications for a fleet (e.g. "UNIT2" (redfish) corresponds with a mesh size from 90-115mm).

Wrapper Functions

Fleet wrapper functions were designed to minimize confusion associated with identifying all of
the necessary parameters and sequentially running the core functions. These functions contain
all of the parameters necessary to specifically identify a particular fleet. Three parameters in
particular are critical to identifying fleets - "fleet", "area", and "gearSpecs". The values for these
three parameters do not relate directly to information found in MARFIS, but are used to look up
information that is. Depending on the fleet, a value for at least "fleet" is present in every
wrapper. For example:

- fleet_swordfishTunaShark() includes fleet = "SWORDFISHTUNAS";

- fleet_halibut() includes fleet = "HALIBUT", and area = "3NOPS4VWX5";

- fleet_silverhake() includes fleet = "SHAKE", and gearSpecs = "ALL".

How these text strings are used to determine specific MARFIS licence information is discussed
in Datasets and fleet_**() sections below.

By storing all fleet-identifying information within the wrapper functions, the package reduces the
potential for user-error, and ensures that extractions are repeatable. During development, the
output of these functions was QC against data extracted by assessment leads to ensure that the
correct fleet specifications were being called. With the exception of the Cod/Haddock/Pollock
wrapper, all wrappers are named fleet_*.R and many take fleet-specific variables, such as

“UNIT” for redfish. The parameters encoded in each wrapper are available within the help for
each function

Function Flow

fleet_() is the only function called by any of the fleet wrappers, and serves as a skeleton for

the package. It ensures that each of the underlying functions that actually do the extractions/
matching are called in the correct order, and that the returned data is combined in a consistent
manner, regardless of which wrapper is used. Prior to calling any functions, fleet_() converts

the values of fleet, area, and gearSpecs from the text strings provided by the wrappers into

values that are understood and associated with licence numbers in MARFIS. This is done
through the associated data files LIC_CORE, LIC_AREAS, and LIC_GEAR_SPEC (see Included

Data, above).

6

Then, it calls the functions below in the order indicated:

set_defaults()

More than 30 different parameters exist that can be passed to any of the wrapper functions.
This function ensures that all parameters exist with appropriate values without requiring the user
to provide all those values herself. Excluding the fleet-defining exceptions listed below, all these
parameters can be overridden by user-specified alternatives. For example, the parameter
“debug” exists and set_defaults ensures that it is set to FALSE unless specified otherwise by

the user – she does not always have to include debug=FALSE. Similarly, the user need not

provide a timeframe (i.e. year or startDate) to the wrappers, since set_defaults will ensure

that the wrapper is run for the current calendar year. All available parameters (and their
defaults) are listed in the help file for each wrapper function.

“fleet”, “area”, “gearSpecs”, “tripcd_id”, “marfSpp”, “isdbSpp and “marfGear” are all

exceptions in that they help define the fleet, and cannot be overridden by user selections.
“marfGear” is better described as “soft-coded”, meaning that the user can overwrite the default

values, but she can only do so with gear codes from within a vector of known gear types for the
specified fleet. For example, one might want to extract only the harpoon component of the Large
Pelagics fleet. However, it is impossible to run the same wrapper while sending the gear code
for “TRAP” because that gear type is not valid for the Large Pelagics fleet.

can_run()

Wrapper functions can be run using local copies of data (i.e. useLocal==T), or by querying

Oracle directly (i.e. useLocal==F). This function verifies that the package can be run as

requested. Specifically, if useLocal==T, then the data.dir parameter must be passed,

pointing to a local folder containing the necessary data. If useLocal == F (the default), then

valid Oracle credentials with necessary privileges must be provided.

MARFIS Extractions

get_fleet()

This function identifies all of the fishing activity associated with the parameters provided by the
wrapper. First, it identifies all of the licences that had the necessary combinations of licence
type, subtype and gear at any point during the requested time period (i.e. “the fleet”). Then,
because it’s possible that some members of the fleet might change gear between trips (or in
rare cases, sets), it extracts identifiers for all of the trips and sets where the conditions
described by the wrapper parameters continue to be met (i.e. the “fleet activity”).

To accomplish all of this, several sub-functions are called, each of which is described below.

get_fleetLicences()

Licences in MARFIS are associated with particular licence types, subtypes, gears, and
licenced species. Each licence has dates indicating when it first became valid, and when
it expires. get_fleetLicences() uses the parameters sent by the wrapper to identify

only those fleet licences that were valid for the time period specified by the user. For
example, if a vessel were licenced to catch some species starting in 2018, but the wrapper
indicated that the user was only interested in data from 2016, this step would ensure that
any pre-2018 data for that vessel would be excluded from the results. Although the vessel
might now be a member of the fleet, it was not so during the time period specified.

7

get_fleetActivity()

get_fleetActivity() filters the PRO_SPC_INFO and TRIPS tables for the activity of

the licences found by get_fleet_licences(). Further, it ensures that the returned

records are within the user’s specified time period, that the recorded gear matches gear
used by the fleet, and if necessary, ensures that the fishing activity occurred within
acceptable NAFO areas.

get_fleetGear() & chk_Gears()

get_fleetGear() & chk_Gears() use the information from get_fleetActivity() to

extract additional, detailed information about the specifics of the gear used. The type and
size of various mesh, hook and trap-based gear would all be determined by this function.
If particular gear configurations help define a fleet, it is this function that extracts the
information needed to perform those filters. For example, if the discovered gear is a net,
and gearSpecs has been provided by the wrapper, these functions filter

LOG_EFRT_STD_INFO_ID to only those gears that match the specified gearSpecs (e.g.

max and min size ranges; D(diamond) vs S(square) mesh).

At this point, the package will have extracted all of the vessels associated with the fleet, as well
as all of the trip and set identifiers associated with the fleet.

get_marfis()

This function uses the information previously found for a fleet to extract all of the associated
landings data from MARFIS. get_fleet() passes the information about the fleet's activity

during the specified time period, including relevant values for PRO_SPC_INFO_ID,
LOG_EFRT_STD_INFO_ID, MON_DOC_ID, and TRIP_ID, to the functions getPS(),

get_marfis_sets(), getED(), getHIC(), and getHOC(), each of which are explained below.

getPS()

This is the source for the bulk of the information about the MARFIS trips and the
MARFIS catches. Other data will be joined to it, and it serves as the source for
MARF_MATCH, which represents the data that will later be used to attempt to associate

specific MARFIS trip and set information with specific ISDB trip and set information.
Specifically, this function extracts data from MARFISSCI.PRO_SPC_INFO, and then
filters it by:

o the previously found fleet activity;

o the specific species being directed for (sent by the wrapper);

o any specified areas; and

o the specified date range

The resultant MARF_TRIPS and MARF_CATCHES are both derived from this function,
with MARF_CATCHES typically having more records, since for some fleets, a single trip
can have landings for multiple species.

get_marfis_sets()

This is the source for the MARFIS set information. Specifically, it extracts
MARFISSCI.LOG_EFRT_STD_INFO, and filters it by the previously determined fleet
activity. The data typically contains reported NAFO areas, and this function checks the
reported coordinates to verify in which NAFO area they belong. This new calculated

8

NAFO area is reported as "NAFO_MARF_SETS_CALC". If the wrapper has indicated
that another spatial file is relevant to the data, the set positions are compared against
that as well, and the polygon that each position is contained within is captured in a new
column. This new column's name is determined by the name of the spatial file used (e.g.
"strata", "grid", etc.)

getED()

This function uses the previously determined fleet activity to extract information
regarding whether or not an observer was reported to be on board, and whether or not
an ISDB trip name was associated with the trip. These data are then merged onto the
MARFIS trip information.

getHIC() and getHOC()

For each trip, these functions extract the CONF_NUMBER (aka "confirmation code")
from MARFISSCI.HAIL_IN_CALLS and MARFISSCI.HAIL_OUT_CALLS, respectively.
The identified values are then merged onto the MARFIS trip information, and are later
used to help match MARFIS data with ISDB data.

At this stage, all of the MARFIS extractions are complete, and the package will have extracted
all of the MARFIS activity associated with the specified fleet (i.e. trips, sets, and catches).
Additionally, it will have generated an object called MARF_MATCH populated with data for use in

matching data against the ISDB data. This object includes confirmation codes, ISDB trip names,
whether or not an observer was reported to be onboard, and observer ID numbers.

ISDB Extractions

get_isdb()

This function does a very liberal extraction from the ISDB database for data related to the
identified fleet. It is an intentionally broad extraction, since the understanding is that data will be
pared away while attempting to match it with MARFIS data.

get_isdb_trips()

This function does an initial subset of all of the ISTRIPS data to retain only those data
that overlapped with the specified date range. If keepSurveyTrips == FALSE, then any

survey trips are removed from further analysis. Remaining trips are then assessed (not
discarded) for whether or not they meet the following criteria:

o are of the same TRIPCD_ID sent by the wrapper (if any);

o have the same combination of VR_NUMBER and LICENCE_ID as the MARFIS
data (likely swaps of VR and LICENCE_ID are noted)2;

o have a LICENCE_ID that matches a LICENCE (or VR) from the MARFIS data;

o have a VR that matches a VR (or LICENCE) from the MARFIS data;

2 During development, it was noticed that due to a similarity in the formats of licence ids and vessel
registration (VR) numbers in MARFIS and the ISDB databases, the values were sometimes "swapped".
For this reason, all trip matching also looks for potentially swapped values, and notes the existence of
potential swappage when it is found.

9

For each trip, whether or not any of the criteria above are matched is tracked in an
object returned to the user called “MATCH_DETAILS”. That dataframe includes MARFIS
and ISDB trip identifiers, as well as all of the fields match_TripName, match_CONF_HI,

match_CONF_HO, match_VR, match_LIC, match_TRIPCD_ID, match_Date, and

swappedLIC_VR, each of which will be populated with either TRUE or FALSE. Trips

typically match many criteria, and any trips that don't match any criteria are still retained
(for the time being) since they are potentially interesting in that they match in time.

match_trips()

This function takes all of the ISDB trips found by get_isdb_trips() and attempts to

match them with individual MARFIS trips using the various values from the MARF_MATCH

dataframe (described at the end of the get_marfis() section). The MARF_MATCH dataframe

contains information from MARFIS that might be relatable to ISDB. All ISDB trips are
tested for matches using ISDB trip names, HAIL_IN and HAIL_OUT confirmation codes,
the VR_NUMBER, the LICENCE_ID and the date. Each of ISDB trip name, HAIL_IN
confirmation code, and HAIL_OUT confirmation code should uniquely identify a single
trip, and trips that match on at least one of these are considered to be matched.
Conversely, trips that match any of date, LICENCE_ID, and/or VR_NUMBER are each
too general on their own and must be examined together to uniquely identify a matched
trip.

Both MARFIS and ISDB databases report times in local time. The start and end times for
MARFIS trips are taken from TRIPS.EARLIEST_TRIP_TIME and

TRIPS.LATEST_TRIP_TIME while the start and end times for ISDB trips use

ISTRIPS.BOARD_DATE and ISTRIPS.LANDING_DATE. During date matching, all of the

ISDB trips are matched against all of the MARFIS trips, and the difference in time
between each MARFIS and ISDB trip is calculated. In some cases, the trips from both
databases completely overlap in time, but most will be weeks or months apart. Trips that
were further apart in time than the value specified by maxTripDiff_Hr (default is 48) are

removed from consideration for matching. The remaining ISDB trips are then checked to
ensure that they also share at least one of a VR_NUMBER or LICENCE_ID with the
MARFIS trip, or that they were identified as part of the desired fleet through the
existence of the correct TRIPCD_ID.

Each ISDB trip has now been tested against a number of fields within the MARFIS data.
At this stage, it is likely that a single ISDB trip might have matched one MARFIS trip due
to some criteria, but matched a different MARFIS trip due to some other criteria. To help
identify which MARFIS trip is the more likely match for an ISDB trip, the following two
values are calculated:

1. The number of matches to the 3 trip-specific fields (i.e. ISDB trip name; HAIL_IN
confirmation code; and HAIL_OUT confirmation code); and

2. The number of matches to MARFIS trips sharing the same VR_NUMBER,
LICENCE_ID, and TRIPCD_ID that occurred within maxTripDiff_Hr of each

other.

For each ISDB trip, the best-matched MARFIS trip is the one with the most matches of
#1, above. Should the results of #1 above reveal a tie (i.e. the same ISDB trip matches
multiple different MARFIS trips based on trip-specific fields), then the number of matches

10

in #2 is used to try to identify the most likely match. Ties are much less likely at this point
but still possible.

When complete, the ISDB trips will be categorized as:

o a normal 1 to 1 match between an ISDB and a MARFIS trip;

o a "multimatch", where a single ISDB trip seems to match multiple MARFIS trips
equally well (i.e. a “tie”); and

o "unmatchable", where a MARFIS trip should be able to be matched to an ISDB
trip but cannot be. The presence of one or more of the following data suggests
that a MARFIS trip should be able to be matched:

 a reported ISDB-style trip name (e.g. Jyy-xxxx);

 an Observer ID;

 a flag indicating that an observer was present.

Immediately after match_trips() is completed, if dropUnmatchedISDB == TRUE (the

default), any ISDB trips that were not found to correspond with MARFIS trips are now
dropped.

get_isdb_sets()

This function grabs all of the sets associated with each of the ISDB trips found by
get_isdb_trips(). ISDB sets can have up to 4 pairs of coordinates associated with

them, and this function grabs the first available pair of valid coordinates it can find
(starting with LAT1 and LONG1 to LAT4 and LONG4). The data typically contains
reported NAFO areas, but this function checks the reported coordinates to see which
NAFO area they are actually contained by (and this new calculated NAFO area is
reported as "NAFO_ISDB_SETS_CALC"). If the wrapper has indicated that another
spatial file is relevant to the data, the set positions are compared against that as well,
and the polygon that each position is contained within is captured in a new column. The
new column's name is determined by the name of the spatial file used (e.g. "strata",
"grid", etc.)

 match_sets()

This function attempts to match the returned ISDB sets with the MARFIS sets for all of
the matched trips. Set information has significantly less information associated with it
than trips, so this function relies on the time differences and the geographical distance
between MARFIS and ISDB sets within a given, matched trip. For each matched trip, all
of the sets from both databases with either valid times and/or positions are joined
together, and for each pair:

o The difference in times is calculated, and any that exceed the value of
maxSetDiff_Hr (default is 48) are not considered for matching.

o the distance between the pairs of coordinates is calculated and any that exceed
the value of maxSetDiff_Km (default is 100) are not considered for matching.

For all of these potential matches within each trip, should a particular pair of sets be both
closest in time and closest in space, they are considered as matching, and will report
"POS AND TIME" in the SET_MATCH field. Remaining ISDB sets might be closer in
time to one MARFIS set, but closer in space to a different MARFIS set. Differences in

11

time are considered more important, so in these cases, the sets with closer times are
considered as matches, reporting "TIME". Lastly, sets that are matched due to their
geographic proximity only report "POS". “POS” matches tend to occur when one or both
of the sets do not have a valid time associated with them.

Assuming that dropUnmatchedISDB was left with its default value of TRUE, all of the retained

ISDB trips will now be associated with specific MARFIS trips. Because different fleets may
define sets differently, matching sets is more ambiguous (e.g. one logbook record per day vs. a
higher number of individual sets recorded by an observer). For this reason, all sets associated
with each matched ISDB trip are retained. The raw catch data from ISDB for all of these sets is
extracted, and returned as ISDB_CATCHES$ALL, and a summary table where the raw data is
rolled up by species is returned as ISDB_CATCHES$SUMMARY.

summarize_locations()

With set information available, this function produces a table showing how the number of sets
recorded from both MARFIS and ISDB break down across areas. By default, the results include
the NAFO areas (as reported in the databases), as well as the calculated NAFO areas
determined during get_isdb_sets() and get_marfis_sets(). Additionally, if a custom area is

specified (via the "areaFile" parameter), the sets from both the MARFIS and ISDB are

analyzed for that area too (as a separate data frame). Finally, all of the various outputs are
organized, and returned in a list.

Output

When any wrapper is run successfully, the output is a nested list, containing information about:

 the parameters that were used;

 the members of the fleet and their activity during the specified time period;

 the MARFIS trips, sets, catches, as well as additional information from MARFIS that is
used in matching against ISDB (i.e. "MARF_MATCH");

 the ISDB trips, sets, and catches;

 a summary of how the MARFIS and ISDB sets were each distributed across all of the
various NAFO areas (as well as custom areas, if specified);

 details illustrating why particular ISDB trips were matched against particular MARFIS
trips; and

 optionally, one or more debug objects with information about why particular VRs,
Licences, TRIP_IDs, or Trip Names were not included in the results.

For example, if the following wrapper were run:

 > example <- fleet_hagfish(...)

All of the following objects can be present in the list, but those flagged as <optional> will only be
present when certain parameters are present.

 example$params$user

 example$params$fleet$licencesCore

 example$params$fleet$licencesAreas

12

 example$params$fleet$licencesGearSpecs

 example$fleet$FLEET

 example$fleet$FLEET_ACTIVITY

 example$marf$MARF_MATCH

 example$marf$MARF_TRIPS

 example$marf$MARF_SETS

 example$marf$MARF_CATCHES

 example$isdb$ISDB_TRIPS

 example$isdb$ISDB_SETS

 example$isdb$ISDB_CATCHES$ALL

 example$isdb$ISDB_CATCHES$SUMMARY

 example$location_summary$NAFO

<optional> example$location_summary$<customArea>

 example$matches$MATCH_SUMMARY_TRIPS

 example$matches$MATCH_DETAILS

 example$matches$ISDB_UNMATCHABLES

example$matches$ISDB_MULTIMATCHES

<optional> example$debug$debugVRs)

 <optional> example$debug$debugMARFTripIDs

 <optional> example$debug$debugISDBTripIDs

 <optional> example$debug$debugISDBTripNames

Each of the objects listed above is described in more detail, below.

example$params$user

This data frame captures all of the information sent to the wrapper that resulted in the data that
was returned. It includes all wrapper-specific and user-specified variables, as well as any default
values that were generated. The date it was run and the version of Mar.fleets are also stored
here. This data frame facilitates reproducibility by explicitly associating the function call with the
outputs.

example$params$fleet$...

The information contained within each wrapper is sufficient to uniquely identify a fleet. Text
parameters sent by each wrapper are used to identify appropriate records from each of the data
frames "licencesCore", "licencesAreas", and "licencesGearSpecs".

 "licencesCore" - contains the types, subtypes and licenced species for a fleet;

 "licencesAreas" - (optional) can specify any NAFO areas associated with a fleet. These
are used like wildcards (e.g. "5Z" would match any 5ZE, 5ZJ, etc.); and

13

 "licencesGearSpecs" - (optional) can specify the MIN & MAX size values and/or the
TYPE (e.g. "D" (diamond) or "S" (square)) of gear associated with a fleet.

example$fleet$FLEET

This data frame contains all of the unique combinations of VR_NUMBER, LICENCE_ID,
GEAR_CODE, and LOA associated with the fleet (for the specified time period). Note that single
vessels that fish under multiple licences or those that change gear specifications during a trip
will be accounted for automatically.

example$fleet$FLEET_ACTIVITY

This data frame contains all of the information describing the fleet's activity (for the specified
time period). It consists primarily of key fields from various MARFIS tables that can be used to
look up specific records (e.g. record ID numbers such as MON_DOC_ID).

example$marf$MARF_MATCH

This data frame contains all of the information from MARFIS that might be useful in attempting
to match MARFIS trips with ISDB trips. This includes all of the variables that should be key
punched into a MARFIS record when the trip was observed.

example$marf$MARF_TRIPS

This data frame contains trip-specific information from MARFIS, largely from the table
"PRO_SPC_INFO" (e.g. TRIP ID, MON_DOC_ID, VR, LICENCE, GEAR_CODE, start/end
dates, etc.).

example$marf$MARF_SETS

This data frame contains set-specific information from MARFIS, largely from the table
"LOG_EFRT_STD_INFO" (e.g. LOG_EFRT_STD_INFO_ID, GEAR, set time, NAFO area,
coordinates, etc.).

example$marf$MARF_CATCHES

This data frame contains the reported landings for the MARFIS trips. The fields are
TRIP_ID_MARF, LOG_EFRT_STD_INFO_ID, SPECIES_CODE, and RND_WEIGHT_KGS.
Some fleets will only report a single species, but others can land many different species.

example$isdb$ISDB_TRIPS

This data frame contains trip-specific information for ISDB trips that are associated with the
specified fleet, and by default, only those that have been matched with MARFIS trips. The data
frame includes the TRIP_IDs from both the MARFIS and ISDB databases. If
dropUnmatchedISDB was set to FALSE (default is TRUE), there will likely be trips present that

have a TRIP_ID_ISDB, but no associated TRIP_ID_MARF.

example$isdb$ISDB_SETS

This data frame contains set-specific information from the ISDB, including the times and
coordinates associated with each, the reported and calculated NAFO areas, and the
LOG_EFRT_STD_INFO_ID for any MARFIS sets that were matched.

14

example$isdb$ISDB_CATCHES$ALL

This data frame contains the TRIP_IDs and FISHSET_IDs for all of the sets associated with the
trips in ISDB_TRIPS, as well as the reported numbers and weights of all of the species that
were caught.

example$isdb$ISDB_CATCHES$SUMMARY

This data frame summarizes the data of "ISDB_CATCHES$ALL" by species, so that each
species encountered has summed values for the number caught, and the kept and discarded
weights.

example$location_summary$NAFO

This data frame shows all of the NAFO areas, and provides a count of the number of sets in
which fishing activity took place from both MARFIS and ISDB. Counts by NAFO areas are
generated from both the reported NAFO areas, as well as the calculated NAFO areas.

Instead of counting towards specific NAFO areas, some sets may be categorized as one of:
"LAND", "missing coord", "not recorded", "on boundary line", or "outside known areas".

 "LAND" - the reported coordinates for this set plot on land.

 "missing coord" - these sets are missing either a latitude, a longitude, or both (i.e.
they are null in the source database).

 "not recorded" - these are sets for which a NAFO area was not indicated in
MARFIS.LOG_EFRT_STD_INFO (i.e. FV_NAFO_UNIT_AREA_ID is null).

 "on boundary line" - these coordinates land right on the dividing line between 2 or
more NAFO divisions and can’t be assigned to any particular one.

 "outside known areas" - these coordinates put the set beyond the extent of the
NAFO divisions spatial file. Zeros in the latitude or longitude fields will fall under this
category.

example$location_summary$<customArea>

If a custom area file was provided, a second data frame will be produced within the
location_summary object, with a breakdown of the MARFIS and ISDB sets across the various
polygons of the custom area. Custom areas are typically unable to indicate that data occurred
on "LAND", and will instead identify such positions as "outside of known areas". An example of
a custom area file would be polygons corresponding to Scallop Fishing Areas.

example$matches$MATCH_SUMMARY_TRIPS

This is a summary of the relative success of the different techniques used to match MARFIS
and ISDB data. The number of trips matching on each of "Trip Name", "Hail In Confirmation
Code", "Hail Out Confirmation Code", "Date, Licence and VR", "Date and Licence (not VR)",
"Date and VR (not Licence)", and those that matched but with a "likely swapped licence/VR" are
all shown. Trips can match on more than one of these, and "Total Matches" indicates how many
ISDB trips in total, were matched. The number of multi-matches and unmatchable trips are also
shown.

example$matches$MATCH_DETAILS

This data frame provides a trip-by-trip breakdown illustrating the various combinations of ISDB
and MARFIS trips that matched on one or more techniques.

15

example$matches$ISDB_UNMATCHABLES

This data frame consists of MARFIS trips that had evidence that they should be able to be
matched to ISDB records, but couldn't be. Specifically, they contain one or more of the
following:

 a reported ISDB-style trip name (e.g. Jyy-xxxx);

 an Observer ID;

 a value for OBS_PRESENT that is different from NA or "N".

example$matches$ISDB_MULTIMATCHES

This data frame consists of ISDB trips that "tied" in the attempt to associate them with MARFIS
trips despite the efforts described in the match_trips() section above. As a result, there is a

single record for each ISDB trip and a column called "POTENTIAL_TRIP_ID_MARF", populated
by a comma-separated list of the MARFIS TRIP_IDs that could not be decided between.

Additional Parameters

Functions in Mar.fleets accept a wide variety of parameters, some of which are pre-determined
by the fleet wrappers. Available parameters that can or must be specified by the user are
described below.

year/dateStart/dateEnd

Extractions can be filtered to provide data for a specific calendar year through the use of year =
YYYY. Alternatively, more specific date ranges (e.g. fishing seasons) can be specified through

the use of dateStart="YYYY-MM-DD" (and optionally, dateEnd = "YYYY-MM-DD") If no time

period is specified, data will be extracted for the current calendar year

The length of time taken by an extraction is dependent on the selected time period. While it is
possible to extract data for multiple years at once, it is expected that most extractions will be
limited to shorter time periods (i.e. single years or seasons). Further, it is likely that selecting
excessively long time periods will result in memory issues for R.

returnMARFIS/returnISDB (default is TRUE)

The wrapper functions work by extracting the fleet data, the MARFIS data (i.e. the trips, sets
and catch from the MARFIS database), and the ISDB data (i.e. the trips, sets and catch from the
ISDB database) in that order. Each additional returned data object requires additional
processing time, and there may be instances where only the fleet is desired, or only the fleet
and the MARFIS data. If returnMARFIS==FALSE, no MARFIS or ISDB objects will be returned –

only the fleet. If returnISDB==FALSE, only the fleet and MARFIS objects will be returned.

Because of how the functions work, it is not possible to return ISDB results without also
returning MARFIS results.

areaFile/areaFileField

If any custom polygon shapefile or any Mar.data dataset (i.e. Mar.data/data) is provided to the
parameter areaFile (e.g. areaFile = "C:/<files>/myCustomShapefile.shp", areaFile
= "Strata_Mar_sf") in combination with a specific field within that file (e.g. areaFileField =
"StrataID"), the location_summary object will include additional results showing how the

various MARFIS and ISDB sets were distributed amongst the polygons of that custom file. This
allows specific fishing areas (e.g. Scallop Fishing Areas) to be evaluated.

https://github.com/Maritimes/Mar.data/tree/master/data

16

nafoDet (default is 2)

By default, nafoDet = 2, which means that the location_summary results are determined to

NAFO areas that can be defined with 2 characters (e.g. "4V", "5Z", etc). nafoDet can be
changed to 3 or 4, which provide increasingly finer grained descriptions of where fishing took
place (e.g. nafoDet = 3 would yield results like "4VS" and "5ZE", while nafoDet = 4 could

include results like "4VSB", "5ZEG").

keepSurveyTrips (default is TRUE)

Within the ISDB database are non-commercial, survey trips. These have an TRIPCD_IDs
between 7010 and 7098. Setting this to FALSE ensures these trips are dropped.

dropUnmatchedISDB (default is TRUE)

By default, ISDB trips that are not found to be associated with specific MARFIS trips are
excluded from the results It is possible to retain them by setting this parameter to TRUE, but
doing so means that not all ISDB data belongs to the specified fleet

maxTripDiff_Hr (default is 48)

Any MARFIS and ISDB trips that vary by more than the number of hours specified by this
parameter will NOT be considered matches (on the basis of common Vessel, licence and date).
However, they may still match on confirmation codes and/or trip names. This can be changed to
better correspond with the normal trip durations reported by different fleets.

maxSetDiff_Hr (default is 48)

Any MARFIS and ISDB sets that vary by more than the number of hours specified here will NOT
be considered matches. This can be changed to better correspond with the how sets are
reported by different fleets.

maxSetDiff_Km (default is 100)

Any MARFIS and ISDB sets that vary by more than the # of kilometers specified here will NOT
be considered matches. This can be changed to better correspond with the data reported by
different fleets.

useLocal (default is FALSE)

Each wrapper can be directed to either use locally stored data (extracted via the package), or
use valid Oracle credentials to query Oracle directly (VPN/network access required). (Please
see APPENDIX 1: NETWORK CONNECTION VS LOCAL DATA for details). When this value is
FALSE, these scripts query Oracle directly. When the value is TRUE, the scripts run using local
copies of the data that the user downloaded previously. The specified value for useLocal

establishes which other parameters must be provided, and the various additional parameters
necessary for each of these two situations are listed below:

useLocal=FALSE (i.e. querying Oracle directly)

oracle.username – default is "_none_". This is your username for accessing

oracle objects;

oracle.password – default is "_none_". This is your password for accessing

oracle objects;

17

oracle.dsn – default is "_none_". This is your dsn/ODBC identifier for accessing

oracle objects. The correct value is likely to be “PTRAN” but can vary between
computers;

usepkg – default is "rodbc". This indicates whether R should use the RODBC

("rodbc") or ROracle ("roracle") package to connect to Oracle.

useLocal=TRUE (i.e. querying local data)

data.dir – default is file.path(getwd(), "data"). This is the path where

the extracted data should be saved (or where it has been previously saved) on
the user’s computer.

debug (default is FALSE)

If TRUE, this parameter causes the package to run in debug mode, providing much additional
information, such as which function is currently being run, and additional information about the
extractions and filtering.

debugLics/ debugVRs/ debugMARFTripIDs/ debugISDBTripIDs/ debugISDBTripNames

As various stock assessment units try Mar.fleets, they will undoubtedly discover cases where
data that has been included in past analyses is "missing" from the Mar.fleets results. Similarly,
they may also discover "new" data that was not previously associated with their fleet. Because it
is important to understand these differences, every wrapper can be sent vectors of one or more
of LICENCES, VRs, MARFIS TRIP_IDs, ISDB TRIP_IDs and ISDB trip names. The vectors sent
to each of these parameters should be those values that were expected, but are not present.

As the functions proceed, data is periodically collected on whether or not the contents of each
vector are present in the data, and this information is returned with the rest of the wrapper
results in a new list object (e.g. "<data>$debug$debugVRs"). Each debug vector that is

provided will return a different object, giving insight into when expected values were dropped.

Results for each debug parameter will be different, but the format is the same. A data frame is
created with the first column called "expected", and it is populated by the user-sent values in the
vector. Columns are generated as the functions proceed, and each will be populated with a 1 or
0 indicating the presence or absence of a particular value at that point. Column names are
generally prefaced to indicate which function was acting - e.g. "flt_*" indicates get_fleet();

"marf_*" indicates get_marfis(), "isdb_*"" indicates get_isdb(), etc.

For example, if a "missing" VR is sent via "debugVRs = c(xxxx,yyyy, …)", when looking at

the results of "<data>$debug$debugVRs", each provided VR will have an entry of 1 for many

columns, and 0 for others. For example, a particular VR may show 1 for all of "flt_PSDates",
"flt_PSNAFOAreas", "marfPSallProSpcInfo", "marfPSSpc", "marfPSNAFO", "marfPSDates",
"isdb_initial", and "matchTrips_VR", but 0 for the column "matchTrips_LIC", "matchTrips_date",
"matchTrips_Initial", and "isdb_droppedUnmatched". More investigation would be needed in this
situation, but we know that:

1) the vessel was present throughout the filtering for the fleet (i.e. "flt_PSDates",
"flt_PSNAFOAreas");

2) It was present within the extracted MARFIS data for that fleet (i.e.
"marfPSallProSpcInfo", "marfPSSpc", "marfPSNAFO", "marfPSDates);

3) It existed during the initial extraction of the ISDB data (i.e. "isdb_initial");

18

4) It could be matched using VR (i.e. "matchTrips_VR");

5) It could not be matched on LICENCE_ID, or dates (i.e. "matchTrips_LIC",
"matchTrips_date", respectively).

Ultimately, despite having a VR that exists within the fleet, no activity of that vessel could be
matched between ISDB and MARFIS.

This indicates that the vessel was present during many of the early filters, and while the VR was
able to be matched with the ISDB data, the Licence could not, and the date of the ISDB activity
for this vessel did not correspond with the dates of any MARFIS activity.

The description above represents a real-world application, and further investigation showed that
for the specified year, the specified vessel used multiple gears. The only activity of this vessel
that overlapped in time between MARFIS and ISDB used a gear that was different than that
specified by the wrapper.

The debug functions simply indicate whether or not different values are present as filtering
proceeds - they do not explain why. In the example above, perhaps the gear code was entered
incorrectly in one of the databases, or maybe the licence was entered incorrectly in the ISDB.
Cases like these may need to be verified against the original, hardcopy logbook records.

Ancillary Functions

Once the fleet, commercial, and observed data have been extracted, there are infinite
possibilities of what to do with it. However, a few functions have been developed for some initial
analyses.

summarizer()

This function quickly distills the output from any of the fleet wrappers into a list containing data
frame objects for each of the ISDB and MARFIS results. For each, it reports the total number of
unique trips, number of unique licences, number of unique VRs, as well as the sums of
RND_WEIGHT_KGS (for MARFIS), and the sums of EST_NUM_CAUGHT,
EST_KEPT_WEIGHT, EST_DISCARD_WT and EST_COMBINED_WT (for ISDB). Parameters
within this function allow the results to be aggregated by any number of the following:

 Year

 Species codes

 Gear codes

 NAFO areas

 as well as any custom field existing in the TRIPS, SETS or CATCHES data frames
for either the ISDB or MARFIS data.

Additionally, the default weight units can be returned in kgs, metric tonnes, or lbs. This greatly
simplifies comparing the results of any fleet wrapper with published results.

While the various numbers have been changed, the example below shows how a single line of
code can distill the salient results for a fleet.

> example <- fleet_xxx(year = 2010, ...)
> summarizer(example, bySpp = F, byGr = F, units = "TONNES")

19

$ISDB

YEAR NVESS NLICS NTRIPS
EST_NUM
_CAUGHT

EST_KEPT
_WT_TONNES

EST_DISCARD
_WT_TONNES

EST_COMBINED
_WT_TONNES

2010 16 18 26 27818 497.844 6.31674 504.16074

$MARF
YEAR NVESS NLICS NTRIPS RND_WEIGHT_TONNES

2010 40 47 382 4110.8

get_vmstracks()

In addition to the MARFIS and ISDB data streams, VMS (vessel monitoring system) data are
also available for many fleets. This information is housed by Conservation and Protection and is
not strictly related to commercial fisheries. However, many fishing vessels are obligated to carry
a VMS transponder and the positional information is stored. With appropriate permissions (i.e.
SELECT on mfd_obfmi.VMS_ALL), this function can extract the VMS data associated with the
activity captured in the wrapper results. VMS data are free of any catch information, but are
useful for illustrating vessel movements.

Unlike individual records in the MARFIS and ISDB, VMS information is captured as a single long
file of vessel positions. This means that it needs to be broken into components, representing
trips away from the dock. To do this, this function relies on functions from Maritimes/Mar.utils to
extract and process the appropriate data. Mar.utils::VMS_get_recs() extracts the data, and

Mar.utils::VMS_clean_recs() converts to point data into groups corresponding with fleet

activity determined by the Mar.fleets wrapper functions. Since the observed ISDB trips are
flagged so they can be distinguished, the observer coverage can be graphically illustrated in the
VMS data. The returned result is an sf object, which can be looked at individually or in

combination with quick_map(), below. In practice, extracting the VMS data for a Mar.fleets data

object is done similar to the example below. Note that Oracle credentials MUST be supplied,
and a network connection to Oracle must exist.

> example2 <- fleet_xxx(...)
> example2VMS <- get_vmstracks(data=example2,
 oracle.username= "<your username>",
 oracle.password="<you password> ",
 oracle.dsn="PTRAN",
 usepkg="roracle")

quick_map()

This function generates a leaflet-based interactive map of the results of any wrapper. The
following example shows all that is necessary to generate and plot some data.

> example2 <- fleet_xxx(areaFile = "C:/<path>/polygons.shp", ...)
> quick_map(data=example2)

MARFIS and ISDB sets are plotted, and are displayed with NAFO areas, as well as any custom
areas that were selected. A toggle button on the map allows each layer to be shown/hidden
individually, while a second map button toggles the display of a legend. In the example above, a
custom shapefile was provided, so that becomes available on the output map. Many extractions
contain huge amounts of data, so results are clustered as shown in Figure 1. As the plot is
zoomed in, more and more discrete positions are shown.

https://github.com/Maritimes/Mar.utils

20

Figure 1. Plot showing the set locations for data extracted by a fleet wrapper.

When discrete positions are shown, they are clickable, and a popup shows useful information
about each position, facilitating identification of issues. Additionally, positions where the NAFO
area determined from the coordinates differs from the reported NAFO area are highlighted in a
different colour. This is illustrated in Figure 2 below.

21

Figure 2. Example of data available via quick_map(), and an illustration of how colours are used to flag
cases where the reported NAFO area is different than the calculated NAFO area.

Additionally, should you only be interested in several unusual species, the species codes can be
provided to quick_map(), and the map can be directed to plot only those sets where those

species were encountered. Setting either marfSpp or isdbSpp to "?" results in a select box

where the user can choose one or more of the available species from a list of all those
available. For example, to plot only those sets where certain skate species were observed, one
could run the following code:

> quick_map(example2, isdbSpp = "?")

which would result in the select box and map shown in Figure 3.

22

Figure 3. Using isdbSpp="?" to select and display a subset of the available species.

Alternatively, the same map could be generated by explicitly sending the desired species codes
to isdbSpp as a vector, as shown below.

> quick_map(example2, isdbSpp = c(200,201,202,203,204,205,211,217))

The marfSpp parameter behaves identically to isdbSpp by allowing the user to specify a subset

of the species available from the MARFIS component of the data. The number of available
MARFIS species will almost certainly be less than what is available for the corresponding ISDB
object, as only legally landed species are recorded in MARFIS.

Additionally, for any species found in either the MARFIS of ISDB data, a quick interpolated
surface3 illustrating the relative distribution of that species amongst the sets can be generated.
The surface will be of "RND_WT_KGS" for MARFIS data, or one of "EST_COMBINED_WT",
"EST_NUM_CAUGHT", "EST_KEPT_WT", or "EST_DISCARD_WT" for ISDB data (chosen via
the parameter isdbField). The surface resolution can be selected from "low", "med" or "high".

Figure 4 shows and example of this, and was generated using the following code:

> quick_map(example2, marfSpp = 110, plotMARFSurf = T)

3 The interpolation is done by the idw() function of the gstat package.

23

Figure 4. Example of an interpolated surface of the MARFIS data.

If VMS data from get_vmstracks() exists, it can be added to the plot, and observed treks will

be displayed differently than normal, commercial treks. When displayed via quick_map(), it can

be helpful for discovering patterns in fishing activity, and may provide insight into differences in
fishing patterns, such as whether they change depending on whether or not an observer was on
board. Following is an example of how VMS data extracted via get_vmstracks() could be

added to quick_map():

> quick_map(example2, vms = example2VMS)

For privacy reasons, a figure showing the extent of the data cannot shown here, but the
following image shows the plotted VMS data for a small area. Red and grey lines differentiate
between observed and unobserved treks, respectively. The treks are clickable, and a pop-up
shows the VR_NUMBER, as well as the start and end times for that particular line.

24

Figure 5. Example of adding observed (red lines) and unobserved (grey lines) VMS treks to the catch
observations.

POST-EXTRACTION VALIDATION

This document describes the functionality of the Mar.fleets package, outlines what data
currently exists, and details how the functions work to bring it all together. When run
successfully, users are rewarded with information about a fleet, including the commercial data,
the observer data, and information about how these datasets were matched. The MARFIS data
includes data on all landed species. The observer data includes all species that were
encountered on the observed sets, including both those that were landed as well as those that
were discarded.

The outputs of this package are raw data from the source databases. Users should not assume
that records are clean and ready for analyses. Knowledge of the fishery being assessed is
critical to be able to find and correct errors in specific values. The onus is on the researcher to
ensure that the extracted data are useful and appropriate for the specific research question(s)
that will be addressed. However, this package can greatly facilitate data QA/QC, and facilitate
data discoverability and reproducibility.

While many fleets have trip- and set-level data, the commercial records of some fleets are often
summarized (e.g. once per day) in captain’s logbooks or at a temporal resolution that makes
sense to the individual recording effort (e.g. total duration of a group of fishing tows). The effort
information that is entered into MARFIS comes from these commercial logbooks. When
matching sets, there are often situations in which the observer reports a different number of
fishing events than the commercial records from the same trip.

25

Meaningful analyses of observed data requires knowledge of the monitoring protocol used by
the observer companies. There are instances where:

 only a proportion of the effort on a particular set is sampled (e.g. 1 of 3 nets);

 when monitoring takes place in a 12-hour period but fisheries continue for 24 hours,
leading to unobserved sets on an observed trip;

 where only specific bycatch species are recorded (as opposed to all species
encountered);

 where specific types of information are recorded from a specific fleet rather than all
fleets (e.g. release condition of discarded sharks from pelagic longline but not otter
trawl).

For some fleets, the effort recorded in the ISDB will need to be compared with that recorded in
MARFIS and the observed catch information may need to be prorated appropriately to account
for the unobserved sets or proportions of sets that took place on observed trips (Sameoto and
Glass, 2012). Working with the stock assessment lead is strongly recommended when using
data extracted by Mar.fleets, because such particularities are not obvious. Other information
necessary for interpretation may also exist in fields within the ISDB or MARFIS that are not
retained by Mar.fleets.

Mar.fleets and Bycatch

Mar.fleets does not evaluate bycatch. Mar.fleets extracts the observer data associated with a
fleet, and these data include information on retained and non-retained species. Truly
understanding bycatch is more complicated than simply listing the weights of discarded species
caught during a small subset of (potentially unrepresentative) commercial trips. Running the
functions in Mar.fleets extracts the necessary raw data to start analyses of bycatch.

The functions in Mar.fleets do not extract all types of existing catch information. For some fleets,
supplementary data on bycatch are recorded in commercial logbooks, which would be entered
directly into MARFIS. Also, species at risk that are listed on Schedule 1 of SARA (e.g. White
Shark, sea turtles, etc.) are subject to mandatory reporting requirements from specific fisheries
in a separate SARA logbook, and these data are not currently accessed by Mar.fleets.

Additionally, the observer coverage data must be evaluated for bias to determine how
representative the observed trips are of the behavior of the fleet as a whole (Benoît and Allard
2009). Species distributions can vary over time and space, and observer coverage may over- or
under-represent certain areas (geographical bias) and/or certain times (temporal bias). Some
participants in the fleet might carry observers more or less than expected relative to random
sampling (deployment effects). In situations where observer coverage is not 100%, the catch
data extracted here also would need to be scaled up to fleetwide estimates. Such extrapolation
may require complex analytical methods (reviewed in Stock et al. 2019) for specific bycatch
species.

ACKNOWLEDGMENTS

We would like to acknowledge the expertise and contributions of several individuals who made
this work possible, including: Heath Stone (retired), Jessica Sameoto, Melanie Barrett, Claire
Mussells, Irene Andrushchenko, Peterson (Jake) Coates, Krista Wry and Peter Comeau. This
work was supported by the DFO Science National Ecosystem-Based Fisheries Management
Working Group.

26

REFERENCES CITED

Benoît, H. and Allard, J. 2009. Can the data from at-sea observer surveys be used to make
general inferences about catch composition and discards?. Can. J. Fish. Aquat. Sci. 66:
2025-2039. 10.1139/F09-116.

Clark, K.J., Hansen, S.C., and Gale, J. 2015. Overview of discards from Canadian commercial
groundfish fisheries in Northwest Atlantic Fisheries Organization (NAFO) Divisions 4X5Yb
for 2007-2011. DFO Can. Sci. Advis. Sec. Res. Doc. 2015/054. iv + 51 p.

Gavaris, S., Clark, K.J., Hanke, A.R., Purchase, C.F., and Gale, J. 2010. Overview of discards
from Canadian commercial fisheries in NAFO divisions 4V, 4W, 4X, 5Y and 5Z for 2002-
2006. Can. Tech. Rep. Fish. Aquat. Sci. 2873. 112 p

Sameoto, J.A and Glass, A. 2012. An overview of discards from the Canadian inshore scallop
fishery in SFA 28 and SFA 29 West for 2002 to 2009. Can. Tech. Rep. Fish. Aquat. Sci.
2979. vi+39 p.

Stock, B., Ward, E., Thorson, J., Jannot, J, and Semmens, B. 2019. The utility of spatial model-
based estimators of unobserved bycatch. ICES Journal of Marine Science. 76: 255-267.
10.1093/icesjms/fsy153.

27

APPENDIX 1: NETWORK CONNECTION VS LOCAL DATA

Cases exist where users need to work without a connection to the DFO network and therefore
with no access to Oracle. For these instances, the package can run against local copies of the
data by including the parameter useLocal = "TRUE" in the function calls.

In order to run the package against local versions of the data, it is necessary to first extract the
data from MARFIS and the ISDB into a local data folder while still on the network. Within the
package is a function called enableLocal(), and running this function ensures that all of the

necessary objects are extracted. Extracting data to run locally requires identical permissions to
the Oracle objects that would be necessary to query the database directly.

Some of the Oracle objects are very large, so extracting data for local use is a relatively onerous
task (e.g. >20 minutes) and should not be repeated until the local data is considered stagnant.
Both the MARFIS and ISDB databases undergo regular QC, so differences can turn up when
the local copies of the data get older and no longer reflect the edits that have been made to the
databases.

The following code illustrates how to extract data for local use:

Mar.fleets::enableLocal(data.dir = "C:/local_folder",
 fn.oracle.username = "username",
 fn.oracle.password = "password",
 fn.oracle.dsn = "PTRAN",
 usepkg = "roracle")

After running the code above, .Rdata files (e.g. ISDB.ISCATCHES.RData) should exist in the
specified data directory. These files are copies of the equivalent data tables from MARFIS or the
ISDB.

Following is a decision tree illustrating the available ways the package may be run, including
example code snippets showing the necessary parameters for the different options (Figure A1).

28

Figure A1. Decision tree illustrating options for running Mar.fleets using remote or local data.

* The “necessary permissions” are for all objects listed in Table 1in the DATA ACCESS section.

Once enableLocal() has been run successfully, the parameter useLocal can be set to TRUE

or FALSE, depending on whether the scripts should run against local copies of the data or

against Oracle. In addition to useLocal, different parameters are necessary depending on

whether the scripts are run against the local data or the database.

