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ABSTRACT

Yin, Y. and Benoît, H.P. 2022. A Comprehensive Simulation Study of A Class of Analysis
Methods for Paired-Tow Comparative Fishing Experiments. Can. Tech. Rep. Fish. Aquat.
Sci. 3466: vi + 99 p.

Bottom-trawl surveys provide fishery-independent information key to assessments for groundfish
and some shellfish stocks worldwide. When a change in survey protocol is necessary,
comparative fishing experiments are often conducted for a required calibration of catchability
to maintain consistency. These experiments often involve paired trawling of the former and
replacement vessel, gear and protocol. Fisheries and Oceans Canada (DFO) is undertaking
comparative fishing in each of its six Atlantic bottom-trawl surveys in 2021 and 2022 to calibrate
two new offshore fisheries survey vessels that will replace two retiring longstanding vessels.
A suite of existing statistical models are proposed for the analysis of the resulting data. This
report presents a comprehensive simulation study to test the performance of these models and
evaluate their statistical qualities. This includes a realistic simulation based on resampling of data
from past DFO Maritimes region bottom-trawl surveys and additional simulations designed to
assess specific issues associated with the sampling design for comparative fishing experiments
and validation of the simulation study itself. Results from the simulations are thoroughly
investigated and discussed. Throughout we provide recommendations for the planning of
comparative fishing experiments and guidance for the analyses in practice.
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RÉSUMÉ

Yin, Y. and Benoît, H.P. 2022. A Comprehensive Simulation Study of A Class of Analysis
Methods for Paired-Tow Comparative Fishing Experiments. Can. Tech. Rep. Fish. Aquat.
Sci. 3466: vi + 99 p.

Les relevés au chalut de fond fournissent des renseignements indépendants de la pêche
essentiels aux évaluations de stock des poissons de fond et certains stocks de crustacés et
mollusques à plusieurs endroits au monde. Lorsqu’un changement de protocole de relevé est
nécessaire, des expériences de pêche comparatives sont souvent menées pour un étalonnage
de la capturabilité afin de maintenir la cohérence des séries temporelles. Ces expériences
impliquent souvent le chalutage en paire de l’ancien et du navire de remplacement, et de l’engin
de pêche et du protocole propre à chacun. Pêches et Océans Canada (MPO) entreprend
une pêche comparative dans chacun de ses six relevés au chalut de fond de l’Atlantique
en 2021 et 2022 pour calibrer deux nouveaux navires de relevés halieutiques hauturiers qui
remplaceront deux navires de longue date qui seront retirés. Une série de modèles statistiques
existants est proposée pour l’analyse des données résultantes. Ce rapport présente une
étude de simulation complète pour tester les performances de ces modèles et évaluer leurs
qualités statistiques. Cela comprend une simulation réaliste basée sur le rééchantillonnage des
données des relevés au chalut de fond antérieurs du MPO dans la région des Maritimes et des
simulations supplémentaires conçues pour évaluer les problèmes spécifiques associés au plan
d’échantillonnage pour les expériences de pêche comparatives et la validation de l’étude de
simulation elle-même. Les résultats des simulations sont minutieusement étudiés et discutés.
Tout au long, nous fournissons des recommandations pour la planification de expériences de
pêche comparatives et conseils pour les analyses en pratique.

vi



1 Introduction

Bottom-trawl surveys provide key inputs to stock assessments for groundfish and some
shellfish stocks worldwide. These surveys can produce annual indices of abundance that are
proportional to stock size, provided that the proportionality constant, often called catchability,
does not change over time. If this consistency is not achieved via proper sampling design and
standardization, then there is a risk that changes in abundance will be confounded with changes
in catchability. Maintaining consistency in survey protocols, and the survey vessel and gear, is
key to maintaining constant catchability. However, periodically it becomes necessary or desirable
to change one or more of these aspects and calibration experiments are required to estimate
adjustments for possible changes in catchability. The most common and effective form of these
experiments is comparative fishing, which usually involves paired trawling of the former and
replacement vessel/gear/protocol as close together as safety permits. This design minimizes the
difference in fish densities sampled by the trawls, such that differences in catches over replicates
of paired-trawl sampling will reflect the difference in catchability. Fisheries and Oceans Canada
(DFO) is undertaking comparative fishing in each of its six Atlantic bottom-trawl surveys in 2021
and 2022 to calibrate two new offshore fisheries survey vessels that will replace two retiring
longstanding vessels. In some surveys, the change in vessel will also be accompanied by a
change in survey trawl and survey procedures (e.g., tow duration), and the joint effect of all of
these factors on relative catchability should be reflected in results of the comparative fishing
experiments.

There are numerous analytical approaches available for estimating relative catchability from
comparative fishing data. The sophistication and flexibility of these methods has improved
considerably since DFO first began undertaking comparative fishing (e.g., Fanning 1985; Koeller
and Smith 1983), and even since the last major round of experiments that took place in Atlantic
Canada in 2004-2005 (e.g., Benoît 2006; Cadigan et al. 2006; Bourdages et al. 2007). Notably,
recent methods involve the use of random effects to account for key sources of variability and
non-parametric modeling of fish length-dependent catchability functions (Miller 2013; Thygesen
et al. 2019; Cadigan et al. submitted). In principle, these methods provide enhanced robustness
to variability in comparative fishing data and better modeling of key factors affecting catchability.
However, these methods and their predecessors have been subjected to limited simulation
testing necessary to confirm robustness and statistical efficiency. Some studies have employed
forms of self-testing, where data are simulated from the model and the ability of the model to
recover parameters is assessed (e.g., Cadigan and Dowden 2010; Thygesen et al. 2019) or
somewhat simple parametric simulations aimed at choosing model options (e.g., Lewy et al.
2004; Cadigan et al. submitted). However, none of the modeling approaches to our knowledge
have been subjected to extensive testing involving structured independent simulation. This
is required to evaluate the robustness of models to mis-specification, which is an important
consideration given that the “true” process that generates catches in a comparative fishing
experiment is unknown and a matching statistical model cannot simply be chosen.

In this report, we present results of independent simulation testing of a suite of statistical models
of varying complexity for comparative fishing data (Miller 2013). These models were notably
applied in the analysis of extensive comparative fishing that took place in the northeast USA
in the 2000s (Miller et al. 2010) and appear well suited to a variety of comparative fishing data.
We begin by describing the estimation models including their mathematical development, the
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model fitting (parameter estimation) procedure, and the model selection method. We then
motivate and describe a realistic simulation framework based on resampling of data from past
Maritimes research vessel (RV) bottom-trawl survey and a set of metrics designed to evaluate
the performance of these estimation models. The majority of the report covers this suite of
simulation tests. Following the interpretation of results from this simulation study, we provide
a more detailed discussion on the differences between the candidate models, and an overview
of general analytical methods for comparative fishing paired catches, in order to guide analysis
in practice. The final sections of the report address specific issues associated with the sampling
design for comparative fishing experiments, and a brief exploration of parametric alternatives for
simulation testing which led to us adopting a non-parametric simulation approach. Throughout
we provide recommendations for the planning of comparative fishing experiments and the
analyses of the resulting data.

2 Estimation Models

A suite of models are presented in this section that are proposed for analysis of paired catches
and estimation of relative catch efficiency between the pair of gears in the comparative fishing
experiment. These models are developed and described in detail in Miller (2013).

2.1 Binomial Models

To estimate the relative catch efficiency between a pair of gears (for simplicity, “gear” in this study
refers to a vessel-gear combination with a specific survey protocol) in the comparative fishing, we
assume the expected catch from gear g (g ∈ {A,B}) at length L and at station i is

E[Cgi(L)] = qgi(L)Dgi(L)fgi, (1)

where qgi(L) is the catchability of gear g, Dgi(L) is the underlying population density sampled by
gear g, and fgi is a standardization term which usually includes the swept area of a tow and if
applicable, the proportion of sub-sampling for size measurement on-board. In a binomial model,
catch from gear A at station i conditioning on the combined catch from both gears within this
station, Ci(L) = CAi(L) + CBi(L), is binomial-distributed

CAi(L) ∼ BI(Ci(L), pAi(L)), (2)

where pAi(L) is the expected proportion of catch from gear A. Paired tows are assumed to
sample the same underlying density, DAi(L) = DBi(L) = Di(L), hence the logit-probability
of catch by gear A is

logit(pAi(L)) = log
(E[CAi(L)]
E[CBi(L)]

)
= log(ρi(L)) + oi. (3)

This gives the conversion factor, ρi(L), as the ratio of catchabilities between gear A and B at
length L and at station i,

ρi(L) = qAi(L)/qBi(L), (4)
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where oi = log(fAi/fBi) is an offset that can be derived from known standardization terms of the
survey tows.

For a length-based conversion factor, we consider a smooth length effect based on a regression
spline approximation,

log(ρ(L)) =
K∑
k=0

βkXk(L) = XTβ, (5)

where β are the spline coefficient parameters and are estimated, X, or {Xk(L), k = 0, 1, · · · ,K},
are a set of smoothing basis functions, and K is the dimension of the basis which controls the
number of coefficient parameters and is usually pre-defined. In this study, we use the cubic
spline smoother (Friedman et al. 2001), and the basis functions and penalty matrices can be
defined correspondingly.

The estimation of a cubic spline smoother is based on the penalized sum of squares smoothing
objective but in practice this is usually replaced by a penalized likelihood objective (Green and
Silverman 1993),

L(β, λ) = f(Y|X, β)e−
λ
2 β

TSβ, (6)

where L is the likelihood objective function, f(Y|X, β) is the joint probability function of the
survey data Y conditional on the basis functions and coefficient parameters, S is the penalty
matrix defined by the smoother and the dimension of the basis, and λ is the smoothness
parameter. This smoothness parameter is estimated by maximum likelihood along with other
model parameters but may be sensitive to the data and in such cases it can be determined by
other criteria such as generalized cross-validation (Wood 2000).

The penalized maximum likelihood smoother can also be re-parameterized into a mixed effects
model (Verbyla et al. 1999; Wood 2017),

log(ρi(L)) = XT
f βf + XT

r b, (7)

where βf are fixed effects and b are random effects. Xf and Xr are transformed from the basis
functions X and an eigen-decomposition of the penalty matrix S, Xf = UT

f X and Xr = UT
r X,

where Uf and Ur are the eigenvectors that correspond to the zero and positive eigenvalues of S.
The random effects b ∼ N(0,D−1

+ /λ) where D+ is the diagonal matrix of the positive eigenvalues
of S. In the mixed effects model representation of the cubic spline smoother, the number of
fixed effects is 2 and the number of random effects is bounded by K − 2. Smoothing effects
are transformed into shrinkage of random effects in the fitting of random deviations, and can be
integrated into complex mixed effects models commonly used in fisheries science (Thorson and
Minto 2015).

Additional random effects can be incorporated into the mixed effects model to address variations
in the relative catch efficiency among stations,

log(ρi(L)) = XT
f (βf + δi) + XT

r (b + εi), (8)

where δi ∼ N(0,Σ) and εi ∼ N(0,D−1
+ /ξ). From a similar re-parameterization of the cubic spline

smoother, these random effects allow for deviations of the length-based conversion at each
station. Σ is the covariance matrix of the random effects corresponding to the random deviations
δi and contains three parameters. ξ controls the degree of smoothness of the random smoother
and the smoother at each station can differ.
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A summary of the above binomial mixed model is as follows,

CAi(L) ∼ BI(Ci(L), pAi(L))
Ci(L) = CAi(L) + CBi(L)
logit(pAi(L)) = log(ρi(L)) + oi

log(ρi(L)) = XT
f (βf + δi) + XT

r (b + εi).

(9)

The model is estimated via maximum marginal likelihood and the marginal likelihood is obtained
by integrating out random effects,

L(βf ,Σ, λ, ξ) =
∫ ( m∏

i=1

∫ ∫
f(Yi|Xf ,Xr, βf ,b, δi, εi)f(δi|Σ)f(εi|ξ)dδidεi

)
f(b|λ)db. (10)

The binomial mixed model can take various assumptions on the smoother and station variation to
accommodate different underlying density of a species and data limitations especially in length
measurements. A set of binomial models are presented in Table 1.

2.2 Beta-Binomial Models

The binomial assumption of the catch can be extended to a beta-binomial distribution to explain
over-dispersion at the stations,

CAi(l) ∼ BB(Ci(L), pAi(L), φi(L)). (11)

The beta-binomial distribution is a compound of the binomial distribution and a beta distribution.
More specifically, it assumes a beta-distributed random effect in the expected proportion of catch
from gear A across stations. As a result, the expected catch by gear A has a variance of

var(CAi) = Cipi(1− pi)
φi + Ci
φi + 1 , (12)

where φ is the variance parameter that is estimated to capture the over-dispersion of a binomial
variable, or extra-binomial variation.

The same smoothing length effect can be applied to this over-dispersion parameter,

log(φi(L)) = XT
f γ + XT

r g, (13)

where γ are fixed effects and g are random effects, g ∼ N(0,D−1
+ /τ). This length effect in the

variance parameter models heterogeneity and can improve model projection of uncertainty.

A summary of the beta-binomial mixed model is as follows,

CAi(L) ∼ BB(Ci(L), pAi(L), φi(L))
Ci(L) = CAi(L) + CBi(L)
logit(pAi(L)) = log(ρi(L)) + oi

log(ρi(L)) = XT
f (βf + δi) + XT

r (b + εi)
log(φi(L)) = XT

f γ + XT
r g.

(14)
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The marginal likelihood is

L(βf , γ,Σ, λ, ξ, τ) =
∫ ∫ ( m∏

i=1

∫ ∫
f(Yi|Xf ,Xr, βf ,b, γ,g, δi, εi)f(δi|Σ)f(εi|ξ)dδidεi

)
f(b|λ)f(g|τ)dbdg.

(15)
Likewise, various smoothing assumptions can be applied to the variance parameter. Table 2
presents a set of beta-binomial mixed models.

2.3 Model Implementation and Selection

In the analysis of a comparative fishing experiment, the conversion factor can be developed
for a user-specified length range. The length range is usually selected as the minimum to the
maximum observed length from the comparative fishing experiment. Rare and extremely large
or small individuals may be excluded from the analysis to avoid possible disproportional impact
from these outliers.

The binomial and beta-binomial models in Tables 1 and 2 are implemented in TMB (Kristensen
et al. 2015) which are compiled into objective functions and subsequently optimized in R (R
Core Team 2020). The basis functions for the cubic smoothing spline and the corresponding
penalty matrices are generated using the R package mgcv (Wood 2011) based on 10 equally-
spaced knots (K = 9) within the pre-specified length range depending on the species and
the comparative fishing survey. TMB automatically calculates a standard error for the maximum
likelihood estimation of the conversion factor via the delta method (Kristensen et al. 2015) and
this can be used to develop a confidence interval for inference.

There are in total 13 candidate models for estimating the conversion factor. The best model
for each species and each comparative fishing survey is selected by AIC (Akaike information
criterion) to maximize model fitting, while avoiding over-fitting of more complicated models
especially in cases without adequate data. In practice, the estimated relative catch efficiency
(i.e., conversion factor) from all converged models should be compared along with the sample
proportions to provide a more appropriate interpretation of results.

3 Method for the Simulation Study

The survey catch of a species depends on the population density at the sampling site and
the selectivity of the gear. Simulation of a comparative fishing experiment should consider
both the true relative catch efficiency (a.k.a., conversion factor) and the underlying species
population density. Assumptions for the relative catch efficiency can be either direct, with a
parametric form for the conversion factor, or indirect, from assumed catchabilities for each of
the two gears. The effect of fish size (length effect) and potential variations related to station
locations and resulting from small scale variation in density (station effect) should be considered,
as gear selectivity naturally varies according to the size of fish, and conditions at a specific tow
location may also affect gear performance. The underlying population density is more difficult to
simulate accurately as a species can distribute unevenly in both space and time and population
levels also vary greatly for different sizes or age classes. In addition, the sampling process that
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generates catch numbers given population density and gear selectivity, i.e., via bottom trawl, can
be highly unpredictable and the type of variations is difficult to categorize. For these reasons,
using explicit assumptions for the underlying population density and catch distribution during
the sampling process is likely to lead the simulation model to mis-represent reality. In order to
generate realistic catch numbers for paired comparative fishing tows and to minimize possible
mis-specification due to lack of understanding of the actual catch process, we simulate survey
catches based on a resampling of past Maritimes RV surveys.

A description of methods for the simulation study is detailed in this section. We designed a
variety of simulation scenarios to reflect those that might be encountered during the forthcoming
comparative fishing experiments. Each scenario consists of a data simulation step, a model
estimation step using the proposed suite of models in Section 2, and after iterations of this
simulation-estimation cycle, an assessment step. The assessment includes a set of metrics
to summarize the simulated datasets in a scenario, and a set of performance measures for
evaluating model estimation results. The process of the simulation study is illustrated in Figure 1.

Sections 6 and 7 include additional simulation studies for selected discussion topics, e.g., related
to sample size and catch distribution. The additional simulation studies use similar methods as
described in this section but these studies explore alternative simulation assumptions that are
designed for specific purposes. Specific methodological details associated with those particular
simulation studies are described in the relevant sections to avoid confusion with the general
methodology presented here for the main analyses.

3.1 Simulation Step

3.1.1 Species Considered

In this simulation study, we consider catch characteristics for five archetypal species chosen to
explore a variety of scenarios representing different population levels, spatial distributions, and
size compositions (Maritimes region species codes and latin names in parenthesis):

• Silver hake (14, Merluccius bilinearis): abundant in catches over the survey area

• Haddock (11, Melanogrammus aeglefinus): abundant catches of both juvenile and adult
size classes

• Redfish (23, Sebastes spp.): moderate catch quantities with limited spatial distribution

• Atlantic cod (10, Gadus morhua): infrequent small catches, sparsely distributed

• Winter skate (204, Leucoraja ocellata): extremely low population level with sporadic
catches

3.1.2 Assumptions for Relative Catch Efficiency

Four assumptions are included in this study for generating the true relative catch efficiency
(referred to as ρ-assumptions hereafter). We denote the old gear by A and the replacement
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gear by B in a paired-tow comparative fishing experiment. The relative catch efficiency between
gears A and B is denoted as ρ(L) and equivalently, the proportion of catch by gear A within the
pair of gears is µ(L) (see Equation 3). Below is a detailed description of these assumptions:

1. The first assumption is designed as a control group where the two gears have the same
catchability. Hence, the true relative catch efficiency is 1 and invariant with respect to
length and station, {

µ(L) = 0.5
ρ(L) = 1.

(16)

2. In the second assumption, two logistic size-selectivity curves, qA(L) and qB(L), are
assumed for the two gears featuring different midpoints and steepness parameters
(Hilborn and Walters 2013). The midpoints for gears A and B are set at 1/2 and 1/3,
respectively, of the pre-specified maximum possible length (Lmaxs ) depending on the
species (s), so that gear B has the ability to catch more small-sized fish. The relative
catch efficiency is subsequently derived as the ratio of gear selectivities. This assumption
simulates a case where there is a contrast in the length effect between juveniles and adults
as observed in some species in past comparative fishing experiments, e.g., redfish in Miller
(2013). 

qA(L) = 1/(1 + exp(−0.2(L− Lmaxs /3)))
qB(L) = 1/(1 + exp(−0.1(L− Lmaxs /2)))
µ(L) = qA(L)/(qA(L) + qB(L))
ρ(L) = qA(L)/qB(L).

(17)

3. Instead of an explicit assumption for gear selectivity, the third scenario directly simulates
the relative catch efficiency with a parametric function of length using the exponential
model from Bourdages et al. (2007). This scenario represents a simple, yet realistic, case
where the relative catch efficiency is a monotonic function with an asymptote toward large
sizes, as could occur when the pair of gears are of the same type but with different mesh
sizes. Parameters as, bs and cs (s denotes species) in the exponential model control the
relative size-selectivity. For simulation, we use values extracted from model estimates for
the 2004-2005 northern Gulf of St. Lawrence comparative fishing analysis (Bourdages
et al. 2007) for each simulated species in this study (Table 3). Note that Bourdages et al.
(2007) did not provide estimates for Atlantic cod; in this case, we use the parameter values
for haddock considering similarity in the two species’ length range.{

µ(L) = 1− 1/(exp(as + bs exp(−csL)) + 1)
ρ(L) = µ(L)/(1− µ(L)).

(18)

4. A more intricate fourth assumption takes into account the station-level variation. This
variation may arise when gear performance is affected by conditions at the tow location
such as bottom type. This effect can also compensate for within-pair differences in their
sampled underlying fish population density due to fine-scale heterogeneity in distribution.
In this scenario, the linear model from Bourdages et al. (2007) is used for µ(L) but includes
a random deviation for variations relating to the station. The deviation is represented
in the model parameters εi and νi (i denotes station), each simulated from a lognormal
distribution. The lognormal distribution was chosen because it is a heavy-tailed statistical
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distribution often used for generating samples with occasional extreme observations.
Consequently, divergence from the true relative catch efficiency can be significantly large
at some stations. 

µi(L) = 1− 1/(exp(0.03L · εi − 2 · υi) + 1)
ρi(L) = µi(L)/(1− µi(L))
εi ∼ LN(0− 0.22/2, 0.22)
υi ∼ LN(0− 0.22/2, 0.22).

(19)

Figure 2 illustrates the simulated relative catch efficiency as a function of length for each of the
ρ-assumptions 1, 2 and 4 within a length range of 10-100 cm. The third ρ-assumption simulates
differently for each species, hence the simulated relative catch efficiency functions are presented
separately in Figure 3 and for each species.

3.1.3 Assumptions for Paired Catches

The underlying population density and the catch numbers resulting from the sampling process
can be difficult to simulate explicitly. However, the comparative fishing experiment follows
standard sampling protocols designed to minimize systematic differences between tows in a pair.
Most importantly, the two gears fish simultaneously and in parallel, separated by the shortest
distance considered practical and safe. It is reasonable to assume the pair of gears sample a
similar underlying population density, albeit with some random errors. This facilitates simulation
of paired catches in relative terms without the need to specify the exact underlying population
density in the survey area. In addition, we can circumvent the assumption of parametric catch
distributions by utilizing historical survey catches in this area. Catch distributions (e.g., Poisson,
negative binomial distributions) are often used in population abundance models to explain
dispersion within a spatial region (or any defined stratification), but their ability to accurately
capture catch variations is limited and sometimes problematic (Smith 1990; Greene 1994;
Ver Hoef and Boveng 2007). In the simulation of paired comparative fishing tows, expected
catch numbers by gear A is generated by resampling from catches by recent DFO RV survey
in the Maritimes region (in 2015-2017) such that A is representative of CCGS Alfred Needler
with a Western IIA trawl (denoted as Needler-WIIA hereafter). Expected catch by gear B
is subsequently derived by applying the assumed relative catch efficiency. The resampling
technique also retains length continuity in survey catches within the same tow. This continuity is
a result of interaction between gear catchability, population size composition, and measurement
errors; the level of continuity can otherwise be difficult to quantify accurately in a parametric
simulation.

To provide a pool for resampling, we used data from the Maritimes bottom-trawl survey for 2015-
2017, which includes 48 strata and 633 stations (number of stations for each stratum ranges
between 5-30). The swept area for a tow is 0.04 km2 on average with a standard deviation of
0.003 km2. For the majority of tows and species, catch numbers are counted; however, when
catches are large, numbers are estimated from sub-sampling, where a portion of fish is weighed
and counted, then scaled against total catch weight to derive an estimate of a total catch number.
Survey catches for the five species considered are presented in Figures 4-8 in order to show
their levels and among-tow variation within the survey area. Length-specific mean catch number
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per tow (mnpt) is also calculated for each species (Figure 9) to demonstrate their overall catch-
length compositions from the Maritimes RV survey and for comparison with simulated datasets.

We explain the simulation step, or the data generating process, with an example of Atlantic
Cod. Atlantic Cod caught in the Maritimes bottom-trawl survey during 2015-2017 ranged from
3 to 90 cm (lengths were recorded at an interval of 1 cm). For each station, survey catches
are standardized by the sub-sampling ratio and swept area first; this sample catch-at-length
is smoothed with a 5-point moving average to reduce sampling errors and then assumed to
constitute the expected catch-at-length for gear A at that location, E[CA(L)]. Assuming gear
B samples the same underlying density, the expected catch-at-length by gear B at the same
location is derived by applying the simulated true relative catch efficiency,

E[CB(L)] = E[CA(L)]/ρ(L). (20)

This creates a pool of available stations for each stratum where a pair of tows can be potentially
sampled by the gears according to a simulated comparative fishing station sampling design. For
simplicity, we assume that the catch is completely enumerated and therefore do not simulate
additional error associated with sub-sampling. For each selected station and for each gear,
a random swept area is simulated based on a Gaussian distribution with a mean of 0.04 km2

and standard deviation of 0.003 km2, and a random multiplicative sampling error is assumed for
generating catch numbers based on expected catch-at-length:

Cgi(L) = E[Cgi(L)] · fgi · ηgi(L)
fgi ∼ N(0.04, 0.003)

ηgi(L) ∼ LN(1,
√
log(ĈV 2 + 1)).

(21)

where Cgi(L) is the simulated catch of a species at station i by gear g and measured at length L,
fgi contains the standardization terms and here includes the swept area, and ηgi is the random
sampling error, which is length-dependent and simulated based on an estimated coefficient of
variation (CV, defined as the ratio between sample standard deviation and sample mean) from
the Maritimes survey data (the estimated CV profile is denoted by ĈV ).

The sampling error is inherent to every fisheries survey (Krause et al. 2002) and can be
influenced by various factors related to the gear itself, the sampled species, etc. The lognormal
distribution is suitable for modeling the sampling error in fisheries datasets (Dick 2004) and is
used in this study for simulating the sampling error. This distribution includes two parameters,
the mean and the variance. We assume there is no systemic bias in the sampling process, i.e.,
E[ηgi(L)] = 1, and we estimate the coefficient of variation from the Maritimes bottom-trawl
survey for simulation of realistic variance parameters for these species. The CV is estimated
as a function of length for each species. In order to improve estimation of the CV profile, the
sample CV is calculated from survey catches for each year independently and then averaged
over the years; assuming the survey sampling process is consistent in each year, this increases
the sample size for CV estimation. The sample CV is then smoothed over length to increase
precision of estimated CV (see Figure 10 for estimated CV profiles for the species considered).
Eventually, the variance parameter can be derived from ĈV (Equation 21). The CV informs the
level of variation to be expected during the bottom-trawl sampling process and here effectively
subsumes both observation error and process error caused by variability in gear performance
resulting from factors such as differences in the personnel operating it and effects of bottom
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habitat. More accurate estimation for the CV should consider strata differences; however, this
was not possible for these species due to insufficient number of stations and survey catches.
In addition, data insufficiency was extreme for some species and consequently, even length-
dependency in ĈV cannot be properly estimated for winter skate.

3.2 Iteration Process

There are five species and four assumptions for the relative catch efficiency (i.e., ρ-assumption)
considered for the simulations, yielding 20 simulation scenarios. For convenience of cross-
referencing within the document, the scenarios are labeled as “species code - ρ-assumption
code”, where “species code” includes 10 (Atlantic cod), 11 (haddock), 14 (silver hake), 23
(redfish), and 204 (winter skate), and “ρ-assumption” includes the four listed assumptions for
the true relative catch efficiency, e.g. scenario 10-1 simulates a species population density based
on Atlantic Cod in the Maritimes summer survey and a comparative fishing experiment between
two gears with the same catchability.

For each simulated data series, we fit the 13 candidate models to estimate the relative catch
efficiency. Iterations are retained in which the simulation generates a minimum of five catches
for each gear, noting that in practice, cases with fewer than this number of catches would be
rejected for analysis a priori due to data sparseness. In each retained iteration, the best model
is selected by the lowest AIC among all models that properly converge (see details of estimation
models in Section 2). In practice, an analyst would likely compare estimates of relative catch
efficiency from all converged models instead of relying on a single metric such as AIC (see
discussion in Section 5), but this was not tractable in a simulation setting.

The estimated relative catch efficiency from the best model is used for performance assessment
of the suite of models. The simulation step and estimation step together form a simulation-
estimation cycle (Figure 1); this cycle is iterated 100 times for each scenario. Iterations with
successful and proper model convergence are retained (optimizations of models are checked
for their maximum gradients and hessian matrices during the estimation step). Thereafter
convergence rates of all iterations are reported for each scenario, and residual bias and variance
are summarized from retained iterations. The residuals are investigated in order to provide a
comprehensive review of model performance under all simulation scenarios.

3.3 Performance Measures

3.3.1 Summary of Simulated Data

We designed the following metrics to summarize the level of “difficulty” in terms of recovering
the true relative catchability when the estimation models are applied to the simulated data,
allowing for a comparison between scenarios. These metrics are calculated for each iteration
and their median statistics among the 100 iterations are reported. The median is used to
represent “average” characteristics of repeated simulations instead of the mean in order to avoid
disproportional impacts from potential extreme cases.
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• Magnitude of the length effect in the true relative catch efficiency:

LE(ρ) = SL(ρ(L)). (22)

SL(·) denotes the calculation of standard deviation over the length dimension. The
magnitude of the length effect is assessed as the standard deviation of ρ(L) for its
divergence from a constant, or length-invariant conversion factor. For the 4th ρ-assumption,
the standard deviation is summarized for ρ(L) prior to its compounding with station
variation.

• Magnitude of the station effect in the true relative catch efficiency:

SE(ρ) = ML(Si(ρi(L)). (23)

ML(·) denotes the calculation of mean over the length dimension. Similar to the length
effect, the station effect is the standard deviation of ρi(L) among stations and across
length bins. The station effect only applies to the 4th ρ-assumption and is zero for other
three assumptions of true relative catch efficiency.

• Linearity of the underlying relative catch efficiency:

Lin(ρ) = ML(|µ(L)− lm(L)|). (24)

In each scenario, a least squares regression line is fit to the true µ(L), i.e., expected
proportion of catch by A; the absolute deviation of µ(L) from the optimized linear model
lm(L) is used to indicate its similarity to a linear function of length. The proposed binomial
and beta-binomial models both use the cubic smoothing technique to estimate the
proportion as a smooth function over length. Correspondingly this metric is designed to
measure the complexity of µ(L) in its “shape”. A higher value indicates more divergence in
µ(L) from a straight line, or equivalently, a divergence in ρ(L) from an exponential function.
In the 4th ρ-assumption, µi(L) also varies according to station; for any scenarios based
on this assumption, Lin(ρ) is calculated for each station first, and then averaged across
stations.

• Encounter Probability:

P (enc) = n(enc(i, L))
n(i) · n(L) . (25)

Here, enc(i, L) denotes encounter of a species of length L at station i. Encounter is
defined when there is positive catch of a species (by either gear within a pair of tows).
n(·) denotes the count function, e.g., n(i) is the number of stations and n(L) is the number
of length bins. The encounter probability is approximated by the sample proportion of
encounters, calculated as the ratio between the number of encounters across all lengths
and stations and the total number of combinations of length bins and stations. P (enc)
represents the encounter probability during a simulated comparative fishing experiment
and measures the presence of a species within the survey area in each simulation case.

• Number of effective stations:

EN(stn) = n({i :
∑
L

Ci(L) ≥ 3}), (26)
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where Ci(L) is the combined catch for each pair of tows, Ci(L) = CAi(L) + CBi(L). An
effective station is defined here somewhat arbitrarily as a station where there is catch in a
minimum of three length bins. In the simulation study, two stations are sampled for each of
the 48 strata so there are in total 96 stations. The number of effective stations evaluates
the spatial presence distribution of a species.

• Median positive catch:

Med(C) = median({Ci(L) : Ci(L) > 0}). (27)

The median positive catch is defined as the median of positive catch numbers across all
length bins and stations. This metric assesses the positive catch rate, and in combination
with the encounter probability, describes a species’ underlying population density in the a
simulated dataset.

• Pair difference: 
PD(C) = Mi,L({d(A,B) : d(A,B) > 0})

d(A,B) = |CAi(L)− ρ(L) · CBi(L)|
1
2(CAi(L) + ρ(L) · CBi(L))

,
(28)

where d(A,B) calculates the absolute difference between the pairs of catches after
adjusting for the true relative catch efficiency between the gears, and PD(C) is the
average of differences in paired catches across stations and length bins. PD(C) evaluates
the difference between catches sampled by the pair of gears beyond different catchability,
and is an indicator of random deviations of simulation realizations from the simulated truth.

Factors that facilitate model estimation are a) sufficient and informative catches in the simulated
data, b) a smooth conversion with minimal station variation and length variation, c) an abundant
species population with high encounter probability and positive catch rate across its length range,
and d) a sampling process with small observation errors.

3.3.2 Summary of Estimation Results

The objective of the comparative fishing analysis is to derive a calibration between the pair of
gears. The structural parameters defining the statistical models, i.e., the fixed and random
parameters in Equations 9 and 14 excluding ρ(L), are auxiliary in the simulation study.
Evaluation of model estimation results is thus focused alone on the estimated relative catch
efficiency between these gears, i.e., ρ(L). The estimation residual is defined as

e(ρ(L)) = ρ(L)− ρ̂(L), (29)

where ρ̂(L) is the estimated quantity and e(ρ(L)) denotes its estimation errors. Note that for
simulation scenarios based on ρ-assumption 4, estimation residuals are derived for the overall
relative catch efficiency rather than station-specific, ρi(L), since in practice it is the overall
relative efficiency that is used as conversion factor to adjust survey data once a gear change
has occurred.

In this study, each simulation scenario includes 100 iterations (or cycles). During each simulation-
estimation cycle, estimation residuals for ρ(L) are recorded for each of the 13 candidate models
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that properly converged (see Section 5 for a detailed model comparison); however, the summary
of the 100 iterations in a simulation scenario is based on residuals from the AIC-selected best
models. More specifically, for each scenario, residuals from successful iterations are retained,
upon which the performance measures defined in this section are calculated in order to present
a comprehensive, yet concise, comparison of estimation results and model performances. The
Monte-Carlo method of repeated simulation-estimation cycles can result in a vast amount of
model output, and given the large numbers of simulation scenarios and candidate models, it is
necessary to condense the results for a direct comparison among scenarios and models.

The residuals e(ρ) are length-dependent; to summarize residuals over the length dimension, a
weighted-mean technique is applied to integrate length bins (of 1 cm) based on a generic fish
length-weight conversion function defined as follows,

w(L) = β(L) · C(L) · L3∑
LC(L) , (30)

where C(L) =
∑
iCi(L) is the total catch at length L from all stations in the experiment (i.e.,

during one simulation iteration), and the scale parameters β(L) are computed and used to
standardize the set of weighted-mean coefficients w(L) such that∑

L

w(L) = 1. (31)

The weighted-mean technique takes into account both the length-catch composition in a
simulated dataset and a simplified isometric relationship between the length and weight of
a species. This allows the weighted average of residuals to balance risks associated with
estimation loss from different sizes, while placing more weight on adult sizes that are often
of greater interest for abundance indices and stock assessment. Admittedly, this technique
may not be effective for species without sufficient catches covering an essential length range,
e.g., simulated data for winter skate generally are sporadic catches; for such species, the un-
summarized length-specific residuals are more informative. Nevertheless, the technique is
applied to all considered species as any other summary methods are subject to the same issue.

The performance measures for model estimation results are defined as follows by summarizing
the estimation residuals for the relative catch efficiency. We use k (k = 1, 2, · · · , 100) to denote
the 100 simulation iterations (iterations are conducted independently of each other and without
order).

• Weighted residual mean:

ē(ρ) = 1
n(k)

∑
k

∑
L

wk(L)ek(ρ(L)). (32)

Residuals are summarized across length dimension with the set of weighted-mean
coefficients, w(L), and then averaged across 100 simulation iterations for assessment
of overall prediction accuracy. n(·) denotes the count function, e.g., n(k) is the number of
iterations, which is 100 in this study. The application of a conversion factor to calibrate a
survey index is a linear convolution process involving ρ(L). Hence, this measure can be
interpreted as the potential loss (either under-estimation or over-estimation) of total catch
weight due to inaccurate gear conversion, given the assumed length-composition and
length-weight relationship.

13



• Weighted residual standard deviation:

s(ρ) = Sk

(∑
L

wk(L)ek(ρ(L))
)
. (33)

We define Sk(·) as the calculation of the standard deviation of a quantity over dimension
k, or in this case, the standard deviation of the weighted-average residuals across
100 simulations. s(ρ) measures how consistently the models perform over repeated
simulations, and is an approximation of modeling uncertainty, or precision.

• Probability of a loss greater than 20%:

P.20 = n({k :
∑
Lwk(L)|ρ(L)− ρ̂k(L)| < 0.2})

n(k) , (34)

where n(k) is the total number of simulation iterations, i.e., 100 in this study. The loss is
defined as the weighed average of the absolute residuals and approximates the potential
loss of total catch biomass when applying the conversion factor to calibrate the survey
index. The numerator contains the number of iterations where estimated relative catch
efficiency would result in an over-estimation or under-estimation of total catch weight within
20%.

• Probability of a loss greater than 50%:

P.50 = n({k :
∑
Lwk(L)|ρ(L)− ρ̂k(L)| < 0.5})

n(k) . (35)

Similar to P.20, P.50 is the proportion of simulation iterations where the model estimated
conversion factors would resulted in less than 50% over-estimation or under-estimation.

4 Summary of Results

4.1 Simulated Data

For each of the 20 simulated scenarios, there are 100 simulation iterations, and in each iteration,
96 stations are sampled by the pair of gears A and B. An example of simulated dataset from
each simulation scenario is presented in Figures 11-15. For consistency, we select the same
underlying stations for the example (by assigning a random number seed of 1 in R), although
the simulated data from each iteration can vary greatly for the same scenario due to large
sampling variations assumed. We also calculate the mean number per tow (mnpt) for both gears
in every simulation iteration for the 20 simulation scenarios in order to demonstrate overall size-
compositions of simulated catches (Figures 16-20). Iterations based on the same Maritimes
RV survey catches (Figure 9) can vary greatly, due to high sampling variability. The simulation
study samples two stations in each stratum, unlike in the Maritimes RV survey where some strata
included more stations than others. Depending on the spatial distribution, a species may have
been sampled more frequently in strata where it is densely populated; since our calculation of
mnpt treats each station equally, this may result in a discrepancy in the scale of mnpt between
the simulated datasets and results from a proper analysis of the Maritimes survey. For example,
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Atlantic cod had a patchy spatial distribution (majority of catches are within a small number of
stations), so its discrepancy is the most pronounced among the five species: the simulated
catches, when averaged per tow, are generally much smaller than averages from the Maritimes
RV survey (Figures 9 and 16).

A summary of simulated datasets for each scenario using metrics defined in Section 3.3.1
is provided in Table 4. The metrics are in three categories to assess the true relative catch
efficiency, simulated catch abundance levels and distribution, and differences between the
comparative fishing pair, respectively.

The first ρ-assumption (i.e., assumption for true relative catch efficiency) is a control group where
the two gears have the same catchability and there is no length effect or station effect in the
conversion ρ(L), hence LE(ρ), SE(ρ) and Lin(ρ) are zeros. The second ρ-assumption has the
strongest length effect among the four assumptions as well as shape complexity, indicated by
large LE(ρ) and Lin(ρ). The third ρ-assumption is species-dependent but the simulated ρ(L)
generally has a simple shape due to the exponential model setting. The fourth ρ-assumption is
the only assumption to include station effect, and while length effect can be significant, the shape
of ρ(L) is rather smooth giving a small Lin(ρ).

Metrics that summarize catch numbers for each species are indicators of their underlying
population abundance and density distribution in the simulation scenarios. Haddock and silver
hake have a wide spatial distribution: on average of 100 simulations in each simulation scenario,
over half of all stations result in positive catch (EC(stn) > 48) and their encounter probabilities
are the highest among all five species (P (enc) > 0.2). These two species also have high
population levels with large positive catches (catch number per km2), MED(C), and small pair
differences, PD(C). These are signs of sufficient and good quality data for model estimation.
Redfish has a wide presence but is relatively less abundant in the survey area; pair difference is
slightly higher than haddock and silver skate as well. Simulated catches for Atlantic cod indicate
a low population level and sparse spatial distribution. For winter skate, catches are both sporadic
and sparse across the survey area. Atlantic cod and winter skate both have the highest pair
differences, where overall difference between the pair of gears can be over 1.5 times of the
average between the combined catches (PD(C) > 1.5). Different ρ-assumptions also contribute
to variations in simulated catch abundance and density when comparing simulation scenarios,
and the interaction between ρ-assumption and species assumption is complicated. Among
scenarios for the same species, the scenario based on the first ρ-assumption generates lower
catches than the other three assumptions, as the other three ρ-assumptions mostly simulate a
more efficient replacement gear that elevates catch numbers.

4.2 Model Convergence and Selection

The suite of models include five Binomial models and eight Beta-Binomial models; these
candidate models are fit to 100 iterations in each simulation scenario. A summary of model
convergence and model selection results for each simulation scenario is presented in Table 5
and Table 6, respectively. The number of iterations where each candidate model properly
converged indicates estimability of a model given a simulation scenario. The number of iterations
where each candidate model was selected as the best model (by lowest AIC) indicates suitability
of a model for each scenario.
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Model convergence is directly related to the quality of simulated datasets which in turn, depends
on the conditions of simulation assumptions. In general, more complicated models require more
sufficient data for successful estimation, or optimization of model parameters. The Binomial
models have a high convergence rate for all species except winter skate which has extremely
low abundance levels. In comparison, a Beta-Binomial model seeking to estimate an additional
variance parameter than its Binomial model counterpart tends to result in lower convergence
rates, e.g., BB0 vs. BI0, BB4 vs. BI3. However, BB6 and BB7 have slightly better convergence
rates than their counterpart, BI4, especially for abundant species, possibly because the variance
parameters in BB6 and BB7 can allow for more flexibility in the cubic smoothing of the mean
parameter, giving these two models a small advantage to balance out their more complicated
model structures. Within the same category of Binomial or Beta-Binomial models, convergence
rates tend to decrease as number of model parameters (model complexity) increases; the most
complicated models such as BI4, BB6 and BB7 are the least likely to properly convergence since
length effects, station effects and variance are estimated simultaneously. In addition, for the
same model, convergence is easier to attain for more abundance species due to more sufficient
and informative catches, e.g., Scenario 10-1 vs. 11-1 at BB3.

Despite relatively higher convergence rates, the Binomial models rarely prevail over their Beta-
Binomial counterparts in terms of model fit as assessed by AIC (Table 6). In simulation scenarios
for winter skate, the Beta-Binomial models mostly fail to converge and the Binomial models are
selected as the best models; for other species, the best models are predominantly Beta-Binomial
models and at the same time, whenever a more complicated model converges successfully, it
tends to result in lower AIC. This indicates the necessity to allow for extra-binomial variance in
these simulation scenarios, and is a reasonable result considering the high sampling variability
cast upon survey catches in the simulation step. The Binomial models have fixed variance and
due to the bias-variance trade-off, are more likely to produce a “wavy” estimation for the relative
catch efficiency (see Figure 21 for an illustration and Section 5 for a detailed discussion on model
differences). Failure to account for the length effect or station effect can also have significant
consequences. In practice, results from the 13 candidate models should be examined as part of
model selection. Nevertheless, the simulation study with massive iterations require an objective
and efficient model selection method and hence the single metric, i.e., AIC is used. A more
detailed comparison between the Binomial and Beta-Binomial models is discussed in Section 5.
Overall, BB5 is a balance between convergence and performance for more abundant species,
while BI3 is a balanced model for scarce species.

4.3 Performance Assessment

Detailed estimation residuals of the best models are presented for each simulation scenario to
assess performance of the suite of models (Figures 22-25 for Atlantic cod, Figures 26-29 for
haddock, Figures 30-33 for silver hake, Figures 34-37 for redfish, and Figures 38-41 for winter
skate). A summary of estimation residuals using performance measures defined in Section 3.3.2
is in Table 4, next to the summary statistics for the simulated datasets for these scenarios.

The control groups generally result in the lowest estimation bias (weighted-average error of
repeated simulations, ē(ρ)) among the four scenarios for each of these species, respectively,
i.e., Scenarios 10-1, 11-1, 14-1, 23-1 in Table 4; median estimation residuals are effectively zero
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across length bins (Figures 22, 26, 30, 34, and 38). However, estimates are less precise for the
control groups than other scenarios, as weighed-mean residual standard deviations, s(ρ), are
mostly higher (Table 4). This may be due to the assumption of equivalent gear efficiency in the
control groups which generates lower catch levels contributing to higher estimation uncertainty,
while the other three scenarios mostly assume more efficient replacement gears and result in
more sufficient data when combining the pair of gears. Besides, even though the control groups
do not include a length effect in the relative catch efficiency, the precision tends to attenuate at
small and large sizes with widened dispersion resulting from the smaller catch numbers at these
lengths.

Scenarios including a length effect in the true relative catch efficiency result in varying amounts
of estimation error (Table 4, and Figures 23-25,Figures 27-29,Figures 31-33,Figures 35-
37,Figures 39-41, for the five species, respectively). The estimation errors are primarily related
to species abundance, as lower assumed densities and therefore catch numbers lead to smaller
effective sample sizes. Haddock, redfish and silver hake in these scenarios feature more than
6% over-estimation in terms of approximated total biomass while Atlantic cod and winter skate
tend to be under-estimated. More precisely, residuals vary considerably as a function of length
and estimation quality of less abundant lengths are more impacted. In addition, estimation bias
seems to propagate along length, possibly due to length smoothing in the models, as the length
smoothing technique assumes continuity and smoothness for ρ(L) resulting in autocorrelation
among similar lengths. The propagation is more prominent for Beta-Binomial models than
Binomial models since the Beta-Binomial models prefer simpler shapes (more smoothness) by
allowing for flexible variance parameters. The station effect is also critical to model performance.
Station variation adds noise to the data and affects both estimation accuracy and precision. Less
abundant species are the most impacted; for example, Atlantic cod and winter skate both result
in the lowest P.20 in scenarios 10-4 and 204-4, respectively, among the four scenarios for each
species (Table 4).

Overall, species abundance and population density distribution are key to model performance
since simulated catches directly depend on them. Abundant species such as haddock, silver
hake and redfish have a consistent capped loss: all simulation scenarios have high quality
estimations where estimated quantities lead to under 20% loss (either over-estimation or under-
estimation). For less abundant species such as Atlantic cod and winter skate, performance is
more sensitive to nuanced factors in the true relative catch efficiency such as length effects and
station effects. In general, the length effect can be successfully recovered by these models with
the smoothing technique, except when a strong length effect is expected and in combination with
low population density, e.g. Scenarios 10-2 (Figure 23) and 204-2 (Figure 39). The station effect
is more difficult to effectively account for, and these models tend to have reduced performance
dealing with strong station variation, e.g., Scenarios 10-4 (Figure 25), 23-4 (Figure 37), and 204-
4 (Figure 41). Overall, model performance is acceptable and in most scenarios can contain the
loss within 50% (Table 4).

5 Model Comparison

The Monte Carlo simulation study requires an objective and simple-to-apply criterion for
efficient model selection during the automated iteration process; for this purpose, the Akaike
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information criterion (AIC) is used. Information-based model selection criteria such as the AIC,
AICc (AIC with a correction for small sample sizes) and BIC (Bayesian Information Criterion)
are designed to balance model fit and complexity by penalizing the number of parameters, or
degree of freedom, that are estimated given the data (Friedman et al. 2001). With different
penalties, these metrics have their respective advantages and disadvantages in performance,
for example, for finite samples, BIC prefers simpler models while AIC tends to select more
complex models (Friedman et al. 2001). Relying on a single form is unlikely to be successful
universally (Brewer et al. 2016). In the present case of simulations, we used a single metric as it
simplified the summarization of results; however, in practice, it is recommended to scrutinize and
compare results from the suite of models in practice in addition to these metrics for proper model
selection.

The 13 candidate models are progressive in complexity, with a variety of statistical assumptions
for effects that potentially exist in the data that are related to over-dispersion, lengths, or stations
etc. In this section, we compare these candidate models based on the simulation study in
Sections 3 and 4. We examine their statistical assumptions in detail and implications for model
performance with respect to different scenarios, in order to guide model selection in practice.
The performance measures in Section 3.3.2 are applied to estimation residuals from each of
these models and a summary of residuals are presented in Tables 7-18 for the three species
Atlantic cod (10), silver hake (14) and winter skate (204), and the four ρ-assumptions for true
relative catch efficiency in Section 3. Discussion in this section is focused on theses three
species for simplicity, as results from the three species are sufficient for illustration of main
differences in data properties against which the performance of different models is evaluated.

5.1 Length Effect

When the true relative catch efficiency does not contain any length effect, any estimation model
that uses the length smoothing technique (BI2-BI4 and BB2-BB7) is more complicated than
necessary. This can lead to over-fitting and inflated estimation errors. In Scenarios 10-1, 14-1
and 204-1, estimation bias is smaller for estimation models that assume no length-dependence,
corresponding to the truth, than models that incorrectly assume length-dependence (Tables 7,
11 and 15). In these scenarios, AIC failed to select the simpler models even though they have
better performance. However, the AIC-selected best models do not have significantly worse
performance, either, since length smoothing can produce a flat conversion as well, despite
more sensitivity to sampling variability. Moreover, because surveys in the Gulf and Maritimes
region will involve a change in both vessel and gear, and because gear changes often involve a
a change in length selectivity, it is not realistic to assume the length effect is trivial, and when the
true relative catch efficiency does contain length effect, these simple models quickly deteriorate
in performance (Tables 8-10, 12-14 and 16-18).

Among models which apply the smoothing technique, accurately capturing the length effect
highly relies on data quality. When there are no significant catches within a certain length range,
the smoothing technique must interpolate using information from catches in nearby length bins,
hence missing any particular length effect within the range, e.g. Scenarios 10-2, 14-2 and 204-2
where length smoothing cannot capture the detailed transition in the V-shaped relative catch
efficiency (Tables 8, 12 and 16, Figures 23, 31 and 39). In these scenarios, statistical models
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simply can not compensate for data deficiency.

A practical approach for proper model selection that accommodates consideration of the length
effect is to compare all model results; if model-estimated length effects are not significant
statistically, we should select a simpler model regardless of AIC. This can be assessed by
examining the confidence intervals, or more rigorously, by model comparison tests that calculate
a p-value to indicate statistical significance of the length effect.

5.2 Station Effect

Implications of the station effect on model performance are less conclusive. The station effect
in the estimation models assumes a particular form (Section 2) and when this form cannot
explain the dispersion among stations, its incorporation may not lead to much improvement.
For example, in Scenario 10-4, the true relative catch efficiency contains a station effect, but
estimation models without a station effect perform better than models with one in terms of P.20,
i.e., BI2 versus BI3 and BB2-BB3 versus BB4-BB7 (Table 10). In Scenario 14-4, however, BB5
and BB7 give more accurate estimates than BB2 (Table 14) with progressively more elaborate
structure of a station effect. In practice, a station effect should be examined by comparing
sample conversion among stations when there is adequate data (e.g., by individually calculating
the sample proportion of catch of one gear from each station and then evaluating difference
among stations).

5.3 Binomial versus Beta-Binomial

The suite of estimation models for the comparative fishing analysis in this study includes two
categories, the Binomial models and the Beta-Binomial models, distinguished by a binomial
versus beta-binomial distribution for the conditional catch as a random variable. The binomial
distribution BI(n, p) has a fixed variance, i.e., np(1 − p), in relation to its mean, np, while the
beta-binomial distribution BB(n, p, φ) includes an explicit variance parameter, φ, that allows for
larger variance given the same mean. This additional parameter also allows the beta-binomial
distribution to take various shapes, e.g., bell-shape similar to the binomial distribution, J-shape
or inverse J-shape, and even U-shape (the beta-binomial distribution can be equivalently
characterized by two shape parameters in place of the mean and variance parameters). As
a result, the beta-distribution is more flexible than the binomial distribution and usually more
effective when there is clear over-dispersion in the random variable. For this reason, the beta-
binomial distribution has been widely used for binomial variables in many fields when the
binomial distribution is not adequate in modeling the dispersion structure, e.g., in ecology
(Harrison 2015), in phytopathology (Hughes and Madden 1993) and in machine learning
(Schuckers 2003).

Survey catch from bottom trawl surveys tends to have large variability and in paired tow
comparative fishing analysis, it can be a necessity to account for extra variance compared to
the simple binomial assumption. This is because when variance is not properly explained, the
estimate for the mean parameter is subject to a large estimation uncertainty, and the estimated
value in practice can potentially deviate greatly from the truth. To illustrate this circumstance, an
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example in presented in Figure 21 based on one simulation case (the simulation iteration based
on the random seed 1 and scenario 14-4 from Sections 3 and 4). In this example, the simulation
casts large sampling variability onto simulated catches. Most Binomial models result in “wavy”
shapes for the estimated relative catch efficiency - failure to explain the dispersion leads to huge
swings in the estimates even though the confidence interval (estimation uncertainty) can cover
the truth. The Beta-Binomial models, on the other hand, predict smooth curves for the relative
catch efficiency since variance can be properly addressed in these models.

However, this variance parameter is attached to a specific assumption for the type of over-
dispersion, i.e., a “prior” beta-distribution for the proportion of catch (Miller 2013). When there
is model mis-specification, that is, a mis-match between the simulation model (or truth) and the
estimation model, it could lead to an estimation bias. This is the case in Scenarios 14-2, 14-3,
and 14-4 where there is a noticeable difference in ē(ρ) between the Binomial models and their
Beta-Binomial counterparts (Tables 12-14). Although the Binomial models have better estimation
accuracy, the estimates contain higher estimation variance, indicated by s(ρ), and consequently
their overall performance, gauged by P.20 in particular, is slightly poorer compared to the Beta-
Binomial models. Besides, if we examine these simulations case by case, the Beta-Binomial
models tend to predict a more realistic and smoother shape for the relative catch efficiency. The
estimation bias in Beta-Binomial models was also noticed by Cadigan and Bataineh (2012) in
their analysis of comparative fishing data. However, Cadigan and Bataineh (2012) simulated
negative binomial catches from a parametric distribution rather than empirically from past
survey data and they did not consider length-dependency in the relative catch efficiency. As
an expansion to Cadigan and Bataineh (2012), we included an additional simulation study in
Section 7 where we simulated negative binomial catches with length-dependency in order to test
performance of Binomial vs. Beta-Binomial models and to elaborate this potential estimation
bias. In addition, Kim and Lee (2017) studied the estimation bias when fitting beta-binomial
distributions to over-dispersed binomial variables in general and concluded that the beta-binomial
distribution could fit better than the binomial distribution but recommended caution when there is
significant evidence that it is not valid for the data. Our simulation study here supports a similar
recommendation.

As for model selection, AIC tends to select a Beta-Binomial model over Binomial models, despite
some loss in accuracy, again demonstrating the limitation of using a summarized model selection
metric (see detailed discussion in the second paragraph of Section 5). The trade-off between
bias and variance is a common topic in statistics and the choice of a balance point depends on
risk tolerance in reality (Friedman et al. 2001; Ding et al. 2018).

5.4 Overview of Model Types

Aside from the suite of Binomial and Beta-Binomial models proposed in this study, there are
various other methods for analysis of paired catches, e.g., Miller et al. (2010) provided a list of
models for comparative fishing analysis, although all lacked consideration for the length effect.
The spectrum of model complexity can relate to the bias-variance trade-off and here are some
examples of model types and a brief discussion of their relative strengths and weaknesses (in
the order of model complexity):
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1. The simplest estimator for the relative catch efficiency is the ratio estimator, i.e., the
sample mean of ratios between paired catches,

ρ̂(L) =
∑
iCAi(L)∑
iCBi(L) , (36)

where ρ̂(L) is the station-aggregated sample relative catch efficiency (sample conversion),
CAi(L) and CBi(L) are the catches at station i and length L by gears A and B, respec-
tively. The sample conversion is subject to wide uncertainty especially when sample size
is small, and may not exist for some lengths due to lack of data. An improvement to the
ratio estimator is to incorporate a non-parametric smoothing over length; however, this
has limited improvements on precision since large sampling variability during bottom trawl
surveys typically results in excessive sample variance. The ratio estimator is asymptotically
unbiased and can be used as a benchmark for more complicated estimation models.

2. The station effect can be considered in the ratio estimator as well, for example, by fitting a
parametric distribution to the station-wise sample ratios, ρi(L) = CAi(L)

CBi(L) ∼ Dist

ρ̂(L) = mean(Dist),
(37)

where ρi(L) is the station-specific sample ratios and ρ̂(L) is the estimated overall
conversion. Using a statistical distribution may better locate an estimate for ρ̂(L) as the
mean parameter than simple averaging, but any improvement depends on suitability of the
distributional assumption and sample size. Besides, in reality and for many species, there
is insufficient catch when partitioned by length and station (curse of dimensionality). When
the catch by B is zero, the sample ratio is undefined. In practice, it is possible to simply
discount zeros samples from gear B and then use a censored or truncated distribution
instead; this is necessary because a redefinition of the measurable set is required for the
ratio statistic when there is a finite probability of zero catch by B (see Griffin 1992; Dietz
and Böhning 2000; Johnson et al. 2005, for details about this practice). Consequently, the
estimate can be highly biased and it is not recommend for the comparative fishing analysis
of data limited species (Nemes et al. 2009).

3. Instead of a parametric distribution for the ratio, we can consider fitting to the catch
numbers by the two gears separately, for example, with independent Poisson or
independent negative binomial distributions,

CAi(L) ∼ Dist1

CBi(L) ∼ Dist2

ρ̂i(L) = mean(Dist1)
mean(Dist2) ,

(38)

This surmounts the issue in modeling the ratio distribution but introduces more model
parameters, and the method is both sensitive to suitability of distribution and sample size,
especially when length is considered. In theory, these methods will have the same MLE
with the station-aggregated ratio estimator in Point 1.
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4. Another alternative to modeling ratio distribution is by conditioning the catch of one gear
on the combined catches from the pair of gears. The Binomial and Beta-Binomial models
in this study fall into this category. Possible issues have been discussed extensively in
this section and in addition, model mis-specification can also cause bias in the estimate,
particularly in the Beta-Binomial models (see Section 7 for a detailed discussion).

5. The Binomial and Beta-Binomial models in this study use a non-parametric smoothing
for the length effect. This technique typically does not introduce bias but can be sensitive
to sampling variability when sample size is small; performance may decrease for low-
abundance species, and for small and large sizes of a species. Besides, extrapolation
outside of the modeled length range can be inappropriate since the technique is a local
smoothing. Stronger assumptions can be made for length-dependency to improve these
issues, e.g., a monotonic smoothing, a parametric form for the length effect, or based on
autocorrelation among lengths (Bourdages et al. 2007; Thygesen et al. 2019; Cadigan
et al. submitted). There can be alternative assumptions for differences among stations as
well. However, as we have concluded from the simulation study, there are consequences
associated with each statistical assumption. Therefore, justification for model building and
vigorous validation are crucial for any additional or alternative assumptions.

In summary, the suite of Binomial and Beta-Binomial models cover a range of assumptions and
have the flexibility to cover a diversity of situations. However, analysis of a specific species may
be improved by adapting these models to include assumptions that suits the species, including
those on length-selectivity, spatial stratification (either based on stations or spatial area), etc.

6 Sample Size

In this section, we explore the effect of sample size on model performance. Two topics are
discussed: 1) equal sampling of each stratum, where increases in the number of stations
sampled is uniform across strata, and 2) unequal sampling of each stratum, where some strata
are sampled disproportionately to target a particular species, aiming at increasing the ratio of
effective stations.

6.1 Number of Stations Per Stratum

To keep the additional simulation study succinct, we only test three situations of abundant, less
abundant and scarce population levels, based on the three archetype species silver hake (14),
Atlantic cod (10) and winter skate (204), respectively, as well as the four assumptions for true
relative catch efficiency in Section 3. This gives 12 combinations of species and relative catch
efficiency assumptions in total; each combination is expanded to three scenarios with different
sample sizes, where the number of sampled stations per stratum are set to 1, 2 and 3. Except
for the sample size, all other simulation settings remain the same as in Section 3. There are 36
scenarios in this section and each scenarios include 100 iterations; in each iteration, data are
generated and models are fit to the data. For each scenario, the same data summary metrics
and model performance measures are used for performance assessment, and estimation
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residuals are compared among scenarios for different sample sizes. For convenience of
reference, the scenarios in this section are named as “species code-ρ-assumption code-sample
size code”, where sample size code includes 1, 2 and 3, e.g., 10-1-1 denotes the scenario where
population density is simulated to resemble Atlantic cod, relative catch efficiency is simulated
as length-independent at 1, and a single station is sampled for each stratum in the comparative
fishing experiment.

Table 19 summarizes the simulated datasets for each scenario. Metrics for the true relative catch
efficiency remain the same when increasing the sample size, despite small variations in the
station effects SE(ρ) due to randomization. Effective stations increase roughly proportionally to
the number of stations per stratum, while encounter probabilities and median catches are mostly
invariant with respect to sample size, all as expected. For abundant species, pair differences,
PD(C), also remain similar for different sample sizes, but for scarce species such as Atlantic
cod and winter skate, PD(C) seems slightly elevated when number of stations per stratum
decreases.

Estimation residuals for the scenarios are compared in groups where only sample size varies
(Figures 42-53). Performance summaries are presented in Tables 20, 21, and 22 to assess the
impact of sample size on estimation accuracy, precision, and overall performance, respectively.
While precision consistently improves with more sampled stations per stratum for most scenarios,
accuracy only improves in scenarios of more abundant species and without length effects
(Tables 20 and 21). For most scenarios, the weighed-mean residuals do not indicate significant
improvements with increasing sample size. This could be an estimation error that is difficult to
improve by simply increasing sampled stations per stratum, as additional stations hardly address
the key issue, i.e., a lack of population in certain sizes such as juveniles due to gear selectivity.
However, it may also result from an inherent bias from the estimators that is related to model
mis-specification, as in most cases, the Beta-Binomial models are selected as the best model
and these tend to sacrifice some accuracy for precision (i.e., bias-variance trade-off; a more
detailed exploration and discussion on this topic is in Section 5). Overall model performance
measured by P.20 gives a mixed conclusion (Table 22): while three stations per stratum could
improve estimation of relative catch efficiency for Atlantic cod in all scenarios, estimation quality
for winter skate does not improve as much. Besides, when station variation is present, additional
stations led to worse performance, possibly due to an overwhelming amount of noise (strong
station variation) rather than useful information (few effective catches) within these sampled
tows.

Considering that the number of iterations where models properly converged is small for winter
skate, and hence these summarized statistics have less credibility than for abundant species
(i.e., statistical power is low), we examine the residual plots in detail (Figure 50-53). Residuals
for winter skate exhibit a slight but positive response to increased number of stations, which
results in less erratic behavior and fewer cases of extreme deviations (residuals from each
iteration in grey dotted lines appear slightly less dispersed for simulations with larger sample
size). At the same time, when residuals for Atlantic cod are assessed over length, it seems that
estimation for less abundant length bins does not benefit as much from larger sample sizes,
e.g., the median residual deviations are unchanged for small lengths in Figures 43, and for
large lengths in Figures 45. This is similar to the winter skate situation where indiscriminately
increasing the number of stations failed to increase data quality.
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Conclusion from the comparison of model performance for different species and in different
length ranges of the same species emphasizes the dominant role of population density which
has the strongest impact in data quality to support statistical analysis. Simply adding more
stations, without specific additions of stations involving larger catches that provide a contrast
in relative catch amounts between gears, does not improve performance. Thus for species with
sporadic small catches, there is limited benefit to simply increasing the number of paired tows.

6.2 Targeted Stations

Section 6.1 demonstrated the more limited benefits of indiscriminately increasing sample size
without regard to the likely catch densities of the species of interest. A better approach might
be to target additional paired stations to areas in which a species (or a certain length range
of a species) of interest is relatively abundant. Targeted stations can improve data quality
theoretically by generating more effective catches. However, it can be difficult or even impossible
to “target” given the need to optimize the experimental design with respect to numerous species
that have different spatial distributions and because identifying high density areas for survey
sampling can be difficult when a species is sparsely distributed and distribution is poorly
characterized using recent surveys or when there are shifts in distribution among years. Based
on results of the simulation study above, benefits of targeting stations depends on the species,
the survey, and the “targeting” plan.

7 Parametric Simulation of Catch

The simulation method in Section 3 uses a resampling technique to generate catch numbers
from a pool of catch-at-length established based on past Maritimes RV surveys. This method is
both convenient and realistic, without projecting excessive assumptions on the characteristics
of the sampling process. However, most traditional simulations employ a parametric model
for survey catch with statistical distributions, such as the Poisson and negative binomial
distributions. These distributions are prevalent in the modeling of survey catch or population
abundance (Hilborn and Walters 2013; Venables and Dichmont 2004) where they are used to
account for variations within a group of observations, e.g., catches stratified by time, space or
other indices, but do not address the sampling process directly. In this section, we test these
alternative methods that generate catch numbers in the comparative fishing experiment based on
parametric catch models, and compare to the resampling method in Section 3.

7.1 Assumption for Population Density

The population density is required for simulation of catch based on parametric distributions.
However, the spatial distribution of the absolute underlying population density is difficult to
simulate explicitly as it is obscure in its nature. In this study, the available density to the sampling
gears are considered instead, and only at a limited number of stations rather than spatially in
the study area. The available density is the population density “seen” by a specific gear (i.e.,
post-gear selection). This facilitates simulation of paired catches as they can be considered
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in relative terms for the two gears. We estimate the available density for gear A from recent
Maritimes RV survey catches (during 2015-2017) and then derive the available density for gear
B by applying the assumed relative catch efficiency. Assuming within-stratum homogeneity of a
species distribution, the mean catch per tow is calculated for each stratum and each length bin,
from which the available density for gear A at station i (in stratum s) is estimated by a 5-point
moving average over length and denoted by

µAi(L) = qAi(L)Di(L). (39)

Here, qAi(L) denotes catchability of gear A and may include station variation; Di is the absolute
population density at station i and is not estimated explicitly. The available density to gear B can
be derived by applying the assumed true conversion ρi(L),

µBi(L) = qBi(L)Di(L) = qAi(L)Di(L) · ρi(L). (40)

In reality, catches can vary greatly even for stations within the same stratum. To simulate this
phenomenon, a random station variation δi is added to the available densities: µA, i(L)δi and
µB, i(L)δi. This station variation is the same for the pair of tows within the same station and does
not contribute to pair difference. δi is realized from a lognormal distribution, and the median of δi
is set to 1 so that half of the stations are expected to have elevated catches while the other half
are depressed. This effect can create a contrast among stations even within the same stratum
where homogeneity is assumed.

7.2 Assumption for Catch Distribution

We test the following three candidate assumptions of parametric catch distributions for
comparison with the resampling method:

• Pois: Independent Poisson distributions are used for generating paired catches by gears A
and B, {

CAi(L) ∼ Pois(µAi(L))
CBi(L) ∼ Pois(µBi(L)),

(41)

where µAi(L) and µBi(L) are the available densities for gears A and B, respectively, at
station i and length L.

• NB: Independent negative binomial distributions are used for generating the pair of
catches by gears A and B, {

CAi(L) ∼ NB(µAi(L), φAi(L))
CBi(L) ∼ NB(µBi(L), φBi(L)),

(42)

where φAi(L) and φBi(L) are the variance parameters of the negative binomial distribu-
tions and control the variance of realized catches.

• NB −Beta: A negative binomial distribution is used for generating the combined catch from
the pair of gears and then, a Beta distribution is used for partitioning the combined catch
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and assigning to the two gears,
CAi(L) + CBi(L) ∼ NB(µAi(L) + µBi(L), φi(L))

CAi(L)
CAi(L) + CBi(L) ∼ Beta(αi(L)µAi(L), αi(L)µBi(L)),

(43)

where φi(L) controls the variance of realized combined catches, and parameters of the
Beta distribution are formulated in such a way that expectation of proportion of catch by A
is the same as the proportion of the available density to gear A, while parameter k controls
the station variation in the proportion,

E[ CAi(L)
CAi(L) + CBi(L) ] = µAi(L)

µAi(L) + µBi(L)) . (44)

The Beta-distribution assumption for the proportion of catch by gear A within a pair matches
the process assumed in the Beta-Binomial estimation models, hence there is no model mis-
specification between the simulation step and the estimation steps. This is typical in statistical
simulation studies that seek to recover model parameters or test model efficiency (Morris et al.
2019) and in fisheries is sometimes referred to as “self-testing”. The Pois assumption does not
introduce mis-specification, either, since both the Binomial and Beta-Binomial models assume
conditional binomial distribution for paired catches while the sum of two independent Poisson
variables is still Poisson-distributed (Miller 2013). The use of negative binomial distributions for
generating catches based on population density, and the resampling method with lognormal
sampling errors in the simulation step is a mismatch with the Binomial and Beta-Binomial models
in the estimation step.

Catch numbers by gears A and B at station i are generated by the catch distributions based on
the density available to each gear at the station. For Pois and NB assumptions, the process is
straightforward: catches are realized from a Poisson or negative binomial distribution for each
gear, respectively. Note that in the Poisson distribution, variance is equal to the mean; in the
negative binomial distribution, an alternative parameterization can relate the variance (φ) to the
mean (µ) as φ = µ+ µ2/k, and we constrain the variance by fixing the parameter k = 0.5 for both
gears A and B; for the NB − Beta assumption, the combined catch at each station is realized
from the negative binomial distribution and subsequently assigned to the two gears based on a
random Beta-distribution, and the tuning parameters are specified as k = 0.5 and α = 0.5.

For simplicity, the simulation study in this section only considers two scenarios based on two
species, 10-4 for Atlantic cod and 14-4 for silver hake, to test contrasting cases of an abundant
and a less abundant species, respectively. The simulation settings for the true relative catch
efficiency is maintained the same as in Section 3, so here we only describe the simulation
of catch numbers. For convenience of reference, the scenarios in this section are named as
“species code-conversion code-catch assumption code”, where catch assumption code includes
“Pois”, “NB”, “NB −Beta”, and “R” (for the resampling technique in Section 3), e.g., 10-4-NB.

7.3 Comparison of Catch Simulations

In all scenarios, two stations are sampled for each stratum with a total of 48 strata in the
Maritimes region. Figures 54 and 55 present an example of the simulated datasets for each
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simulation scenario (based on the same randomization setting, i.e., random seed is 1 in R).
Similar metrics to summarize simulated datasets and measures to assess model performance
are used in this section (Table 23).

Despite an additional station effect to the underlying population density, the two stations within
each stratum tend to give similar patterns in catch-at-length, especially for scenarios 10-4-Pois
and 14-4-Pois (Figures 54 and 55), while scenarios based on the resampling method do not
exhibit such clear patterns and catches are more erratic (4th row of Figures 11, 13). The degree
of station difference in the survey catch-at-length can be extremely high and difficult to simulate
functionally with parametric models (Figures 4 and 6). In addition, number of effective stations
is on average smaller for scenarios based on empirical simulation than scenarios based on
parametric distributions (Table 23). These are indications that parametric simulation of catch
does not fully capture certain characteristics of the survey sampling process, and suggests that
the empirically-based simulations may provide a more realistic test base for the models.

As for model performance, scenarios with the Pois and NB−Beta assumptions result in negligible
prediction bias; since both Binomial and Beta-Binomial models are correctly specified; this
indicates adequate statistical properties of the models including identifiability and estimability
(Table 23). Facing the lowest data quality (most complicated datasets) from the resampling
method, estimation errors are higher than scenarios with the Pois and NB −Beta assumptions
and on par with scenarios based on the NB assumption depending on the species: both residual
bias and precision improves with population level for the resampling technique, i.e., from Atlantic
cod to silver hake (Table 23). This is a more reasonable result than the NB simulation technique
and is an indication that the resampling simulation technique may be more realistic. The suite
of models do not perform well in scenarios with the NB simulation assumption; recovering
relative catch efficiency from independently negative binomial distributed catches is ineffective
even for the most abundant species, silver hake, where there is a consistent estimation bias
even though estimation variance is small (Table 23). More specifically, this bias is related to
the mis-specification of Beta-Binomial models, as AIC mostly selects a Beta-Binomial model
over Binomial models in these simulation cases. Cadigan and Bataineh (2012) noticed a similar
issue with the Beta-Binomial models when applied to paired catches simulated from independent
negative binomial distributions although their simulation study did not include length-dependent
relative catch efficiency. This issue is also a result of the bias-variance trade-off (see detailed
discussion on model comparison between Binomial and Beta-Binomial models in Section 5).

To further investigate how model mis-specification (or mismatch between the simulation model
and estimation model) impacts performance, we examine residuals from models BI3 and BB3
(Figures 56 and 57) and compare between scenarios with the NB simulation and scenarios
using the resampling method. These two models have a balanced performance between
convergence and fit among models in each category and are representative. In both scenarios,
estimates from BB3 are smoother, more consistent, and less dispersed among 100 iterations.
This can be explained by the additional variance parameter in the Beta-Binomial model that
accounts for potential divergence in the relative catch efficiency from the truth. This comparison
indicates that the Beta-Binomial model is not as effective as the Binomial model when dealing
with independent negative binomial assumption of paired catches and may be inherently biased
- the additional structural assumption in the Beta-Binomial models is specified as a Beta-prior
for station variation in the relative catch efficiency, and hence when there is strong model mis-
specification, i.e., divergence from this prior, model performance can be expected to deteriorate.
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The Binomial models, on the other hand, do not model the variance explicitly, and thus are less
subject to constraints in smoothness of the estimates. The fixed variance of the Binomial models
can cause the model to “chase” the shape of the sample conversion when smoothing over length,
and to result in more wiggly estimates in individual cases as was often the case in the simulation
study in Section 3. This bias-variance trade-off demonstrates that all model assumption come
with consequences, and the two model categories balance bias and variance differently.

The suite of models are sensitive to mis-specification and consequently the parametric NB
simulation can lead to an inaccurate conclusion of model performance. We examine model
performance under the resampling simulation scenarios: in scenarios 10-4-NB and 14-4-NB,
BB3 results in small biases while BI3 does not have such biases; in scenario 14-4-R, BB3
resulted in similar residual bias with BI3, while in scenario 10-4-R, BB3 has lower estimation bias
than BI3 (Figures 56 and 57). These results are reasonable as the suite of models are expected
to have improved performance for more abundant species.

In conclusion, the resampling simulation is recommended, and model performance under
the resampling simulation is satisfactory. A comprehensive simulation study should consider
the mismatch between the simulation model and the estimation model, and assess the effect
of potential model mis-specifications to avoid partial conclusions. One estimation model
may perform better than another model for a specific type of data. Failure to account for mis-
specification may produce a prejudiced and biased simulation study. In addition, statistical
methods play an important role in ecological modeling, and modeling fisheries count data
can be tricky (Elphick 2008). Model robustness to mis-specification should not be ignored
since model assumptions come with consequences, and any additional assumption should be
evaluated to achieve a desired balance between bias and variance in the estimator. We believe
the resampling method is more suitable than the parametric NB assumption at simulating
realistic paired catches for the comparative fishing experiment, and the proposed estimation
method including the suite of models is recommended for analysis. However, in practice, it is
highly recommended to use caution, for example, by assessing the data and comparing between
models before automatic selection of the best model based on AIC.

8 Sampling Variability

Simulation of sampling error (as a measure of how sampled values differ from “truth”) in
Section 3 included two components. Variation in the swept area of a tow is simulated by a
Gaussian distribution which is bi-directional and symmetrical. This variation may broadly
represent gear performance deviations that apply to catches of all lengths of a species within
the same tow. However, sampling variability of this component is generally small. The major
component of sampling variability was simulated by a lognormal distribution to represent
sampling errors in survey catches, i.e., their deviations from simulated true underlying available
density. Simulation of sampling error in catches depended on the sample coefficient of variation
in past RV surveys to be realistic and varied over length (depending on data sufficiency, see
Section 3 for details). In practice, errors were generated from the lognormal distribution for each
length bin independently; however, errors may be autocorrelated within lengths. The simulation
study in Sections 3 did not account for autocorrelated sampling errors due to its ambiguous and
abstruse nature.
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Continuity in survey catches is expected despite large sampling variability in RV surveys; in fact,
both the mean (relates to underlying available density) and variance (relates to coefficient of
variation) demonstrated this continuity over length in past RV surveys (Figure 9 and Figure 10,
respectively). As such, continuity within underlying density and coefficient of variation in survey
catches were both considered in the simulation. However, the superimposed sampling errors
are less conclusive. Anecdotally, one possibility for measurement error may come from human
errors in counting fish, e.g., random factors in length measurements leading to variations in catch
numbers. Mis-classification errors may contributed to negative autocorrelation in neighboring
length bins but are impossible to prove or quantify solely based on past survey data.

In order to assess this sampling error, we assume that catch-length composition from a tow is
an unbiased sampling of the underlying available density at this location; deviations of sampled
catch-length composition from its moving average (i.e., anomalies sequence) may reflect the
scale of sampling variability since the smoothed catch-length composition is an unbiased and
non-parametric estimator. Given sufficient number of repeated sampling (i.e., stations), we
calculated autocorrelation from these anomaly sequences (i.e., cross-correlation at lag one;
equivalent to autocorrelation coefficient of an AR(1) model). Figure 58 illustrates distributions
of this autocorrelation for each assessed species (where 5-point moving average was used
for smoothed catch-length composition). Estimated autocorrelation coefficients were highly
variable depending on the moving average and data sufficiency of the assessed species; for
more abundant species haddock, silver skate and redfish (species 11, 14 and 23 in Figure 58,
respectively), these coefficients mostly did not show conclusive evidence for a strong positive
autocorrelation within length that is akin to survey catch-length composition .

The above assessment of sampling error autocorrelation is subject to high uncertainty but
nevertheless could provide some guidance on simulation of such autocorrelation. We adapted
the simulation study in Section 3 with these estimated coefficients. More specifically, to
incorporate autocorrelation among lengths in the sampling process, the lognormal distributions
in Equation 21 that applied to each length individually were changed to a multivariate lognormal
distribution (MVLN),

{ηgi(L), L ∈ LR} ∼MV LN(1,Σ), (45)

where ηgi(L) is the sampling error for length L and gear g at station i, LR denotes the length
range depending on the species, and Σ is the MVLN covariance matrix for sampling errors over
all lengths. The covariance matrix was derived from sampling variances for each length bin
(based on the sample coefficient of variation, same as in Equation 21) and a Toeplitz correlation
matrix (based on an auto-regressive correlation model with coefficient ρ); covariance between
errors at length Lm and Ln is defined by

cov[ηgi(Lm), ηgi(Ln)] = Σm,n = ρ|m−n|

√
log( ̂CV (Lm)

2
+ 1)

√
log( ̂CV (Ln)

2
+ 1). (46)

For the simulation study in this section, ρ was resampled from estimated coefficients from each
station in past RV surveys (Figure 58).

In this section, we tested autocorrelated sampling errors on an example species, silver hake,
considering relatively more credible estimations of ρ based on abundant data. All procedures
of simulation remain the same as in Section 3 except the generation of sampling errors in
Equation 21 which was replaced by Equation 45. Simulation scenarios 14-1, 14-2, 14-3 and
14-4 as defined in Section 3 were modified accordingly in this section and coded as 14-1-AE,

29



14-2-AE, 14-3-AE and 14-4-AE (“AE” for autocorrelated errors). Results for these simulation
scenarios are in Table 24.

Results for simulation scenarios 14-1-AE, 14-2-AE, 14-3-AE and 14-4-AE did not differ
significantly from scenarios 14-1, 14-2, 14-3 and 14-4; simulated autocorrelation were mostly
close to zero (see Figure 58, species 14), hence, these additional simulation scenarios did
not introduce much difference in their generated datasets. This indicates that simulations
in Section 3 and 4 were adequate. However, upon further investigation, a high positive
autocorrelation (i.e., close to 1) would generally simulate more structured errors that lead to
less accurate and more divergent estimates (e.g., higher s(ρ), lower P.20): structured errors
contribute to more uniform deviations between the true values and simulated samples, and since
estimates from these binomial and beta-binomial models tend to follow the sample mean due
to the smoothing technique, model performances can decrease consequently. This should be
considered if there is conclusive evidence to support a high autocorrelation within sampling
errors.

9 Conclusion

As a summary, this section provides a list of conclusions for the simulation studies in this
document for the suite of Binomial and Beta-Binomial models that are proposed for analysis
of paired catches from the comparative fishing experiment (Section 2):

1. A first simulation study was designed to assess performance of the analysis method under
various scenarios (Section 3). These scenarios include four assumptions for the true
underlying relative catch efficiency between paired gears and five archetypal species.
Simulation of paired catches is based on resampling of data from past Maritimes RV
survey and two stations are sampled for each of 48 strata. Results (Section 4) indicated
that species abundance and population density are key factors to generating effective data
during the comparative fishing survey and are impactful for model performance: estimated
conversion factor for abundant species such as haddock, silver skate, and redfish can
contain loss (over-estimation or under-estimation of converted total biomass) within 20%;
for less abundance species such as Atlantic cod and Winter skate, estimation quality tend
to be sensitive to nuanced factors due to data deficiency but can mostly contain loss within
50%.

2. The analysis method can efficiently recover length effects in the relative catch efficiency
(due to different size-selectivity between the pair of gears) in most scenarios, but station
effects in the relative catch efficiency (due to sampling variability at stations, fine-scale
heterogeneity in distribution etc.) can significantly reduce model performance especially
when compounded with low population density (Section 4).

3. The Beta-Binomial models tend to estimate a smoother shape in relative catch efficiency
than the Binomial models. Depending on the nature of catch dispersion, the Beta-Binomial
models may result in a small estimation bias; the Binomial models, on the other hand,
often have more estimation uncertainty. The Beta-Binomial models have better overall
performance considering both bias and variance. In practice, model selection should
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be guided by meticulous comparison of estimation results from the suite of models
(Section 5).

4. A second simulation study indicated that indiscriminately increasing sample size over the
survey area may not result in estimation improvement (Section 6). Increasing sample size
is only effective if the additional paired tows sample overall densities and length-specific
densities that contrast with those covered by the original sampling, e.g., via targeted
stations. However, tactical targeting may be difficult to implement in practice due to the
need to optimize efficiency over many species and because specific high density locations
may be difficult to identify for some species.

5. In a simulation study, model mis-specification (mis-match between the simulation model
and estimation model) can lead to biased or partial results. A third simulation study
compared different simulation methods and results indicated that the resampling technique
is the most realistic, reaffirming conclusions from the first simulation study and validating
the performance of the proposed analysis method (Section 7).
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12 Tables

Table 1. A set of binomial models with various assumptions on the length effect and station effect
in the relative catch efficiency. A smoothing length effect can be considered and the station effect
can be added to the intercept, without interaction with the length effect, or added to both the
intercept and smoother to allow for interaction between the two effects.

Model log(ρ) Description
BI0 β0 no length effect, no station variation
BI1 β0 + δ0,i no length effect, with random station variation on

the intercept
BI2 XT

f βf + XT
r b smoothing length effect, without station variation

BI3 XT
f βf + XT

r b + δ0,i smoothing length effect, with random station
variation on the intercept

BI4 XT
f (βf + δi) + XT

r (b + εi) smoothing length effect, with random station
variation of the smoother
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Table 2. A set of beta-binomial models with various assumptions on the length effect and
station effect in the relative catch efficiency, and the length effect on the variance parameter.
A smoothing length effect can be considered in both the conversion factor and the variance
parameter. A possible station effect can be added to the intercept, without interaction with the
length effect, or added to both the intercept and the smoother to allow for interaction between the
two effects.

Model log(ρ) log(φ) Description
BB0 β0 γ0 no length effect, no station variation,

constant variance over length
BB1 β0 + δ0,i γ0 no length effect, random station

variation on the intercept, constant
variance over length

BB2 XT
f βf + XT

r b γ0 smoothing length effect, no station
variation, constant variance over
length

BB3 XT
f βf + XT

r b XT
f γ + XT

r g smoothing length effect, no station
variation, smoothing length effect in
variance parameter

BB4 XT
f βf + XT

r b + δ0,i γ0 smoothing length effect, random
station variation on the intercept,
constant variance over length

BB5 XT
f βf + XT

r b + δ0,i XT
f γ + XT

r g smoothing length effect, random
station variation on the intercept,
smoothing length effect in variance
parameter

BB6 XT
f (βf + δi) + XT

r (b + εi) γ0 smoothing length effect, random
station variation of the smoother,
constant variance over length

BB7 XT
f (βf + δi) + XT

r (b + εi) XT
f γ + XT

r g smoothing length effect, random
station variation of the smoother,
smoothing length effect in variance
parameter
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Table 3. Parameter values used in the exponential model for simulating the third assumption
of true relative catch efficiency (Section 3.1.2). Values are extracted for each species from
parameter estimations of the exponential model (Bourdages et al. 2007); Bourdages et al. (2007)
did not provide an estimation for Atlantic Cod so the same model is assumed for this species as
Haddock considering similar length range of the two species.

Species Parameter
Name Code a b c
Atlantic Cod 10 1.1003 4.8778 0.0594
Haddock 11 1.1003 4.8778 0.0594
Silver Hake 14 -4.0647 5.2651 0.0018
Redfish 23 0.7653 2.4198 0.2607
Winter Skate 204 1.6172 -3.8652 0.1199
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Table 5. Summary of convergence results for the simulation study with the 20 simulation
scenarios described in Section 3. Each scenario includes 100 iterations (only iterations are
retained in which the simulation generated a minimum of five catches for each gear) and the
13 Binomial and Beta-Binomial models are fit in the estimation step within each iteration. The
number of iterations where each model properly converged is provided. See Tables 1 and 2 for
model specifications.

Scenario BI0 BI1 BI2 BI3 BI4 BB0 BB1 BB2 BB3 BB4 BB5 BB6 BB7
10-1 100 100 100 90 1 98 93 93 67 82 62 48 9
10-2 100 100 100 100 0 99 98 97 89 96 69 57 13
10-3 100 100 100 98 9 100 96 91 80 89 72 14 9
10-4 100 100 99 100 7 100 96 98 88 92 84 17 20
11-1 100 100 100 100 0 100 100 99 97 64 62 22 10
11-2 100 100 100 100 3 100 100 100 100 100 79 39 11
11-3 100 100 98 100 11 100 100 100 94 98 94 22 23
11-4 100 100 99 100 9 100 100 99 92 97 94 5 29
14-1 100 100 100 100 6 100 100 100 100 55 74 39 14
14-2 100 100 100 100 3 100 100 99 100 97 99 43 26
14-3 100 100 100 100 7 100 100 100 98 82 95 35 15
14-4 100 100 98 100 8 100 100 99 100 100 100 8 31
23-1 100 100 100 100 11 100 100 99 100 67 75 44 14
23-2 100 100 100 99 10 100 100 99 99 95 96 57 17
23-3 100 100 100 100 14 100 100 94 100 90 98 45 18
23-4 100 100 98 100 23 100 100 99 100 96 98 10 18
204-1 71 71 71 61 0 28 9 8 0 4 0 0 0
204-2 76 76 76 63 0 44 20 14 0 3 0 1 0
204-3 76 76 75 62 1 44 41 9 0 11 0 1 0
204-4 81 81 80 71 1 49 32 14 1 3 1 1 0
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Table 6. Summary of model selection results of the simulation study with the 20 simulation
scenarios described in Section 3. Each scenario includes 100 iterations (only iterations are
retained in which the simulation generated a minimum of five catches for each gear) and the
13 Binomial and Beta-Binomial models are fit in the estimation step within each iteration. The
number of iterations where each model properly converged is provided. See Tables 1 and 2 for
model specifications.

Scenario BI0 BI1 BI2 BI3 BI4 BB0 BB1 BB2 BB3 BB4 BB5 BB6 BB7
10-1 0 3 0 12 1 0 0 0 2 17 11 46 8
10-2 0 0 0 5 0 0 1 2 3 10 18 48 13
10-3 0 0 3 10 7 0 0 2 14 6 36 13 9
10-4 0 0 3 6 1 0 0 14 15 14 19 12 16
11-1 0 0 0 0 0 0 17 0 3 15 38 17 10
11-2 0 0 0 0 0 0 2 0 0 17 37 33 11
11-3 0 0 0 0 0 0 0 0 0 6 58 16 20
11-4 0 0 0 0 0 0 0 0 5 5 59 2 29
14-1 0 0 0 0 0 0 10 0 0 12 35 29 14
14-2 0 0 0 0 0 0 1 0 0 10 37 28 24
14-3 0 0 0 0 0 0 2 0 0 21 34 31 12
14-4 0 0 0 0 0 0 0 0 0 26 41 4 29
23-1 0 0 0 0 0 0 9 0 0 10 31 37 13
23-2 0 0 0 0 0 0 0 0 0 8 34 44 14
23-3 0 0 0 0 0 0 1 1 0 16 32 36 14
23-4 0 0 0 0 0 0 0 4 0 40 30 9 17
204-1 0 0 9 55 0 0 0 3 0 4 0 0 0
204-2 0 2 24 44 0 0 0 3 0 2 0 1 0
204-3 0 1 36 33 1 0 0 3 0 1 0 1 0
204-4 0 1 36 36 1 0 1 2 1 2 0 1 0
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Table 7. Summary of estimation residuals from the 13 candidate Binomial, Beta-Binomial models
and the AIC-selected best models for simulation scenario 10-1. See Section 3.3.2 for definition of
the performance measures.

ē(ρ) s(ρ) P.20 P.50
BI0 0.004 0.250 0.660 0.970
BI1 -0.014 0.175 0.750 0.990
BI2 -0.044 0.267 0.620 0.940
BI3 -0.111 0.415 0.644 0.933
BI4 - - - -
BB0 -0.013 0.128 0.847 1.000
BB1 -0.006 0.129 0.839 1.000
BB2 -0.021 0.158 0.763 1.000
BB3 -0.016 0.129 0.836 1.000
BB4 -0.013 0.154 0.768 1.000
BB5 -0.018 0.134 0.839 1.000
BB6 -0.035 0.138 0.812 1.000
BB7 - - - -
AIC -0.026 0.164 0.780 0.990

Table 8. Summary of estimation residuals from the 13 candidate Binomial, Beta-Binomial models
and the AIC-selected best models for simulation scenario 10-2. See Section 3.3.2 for definition of
the performance measures.

ē(ρ) s(ρ) P.20 P.50
BI0 0.098 0.130 0.740 1.000
BI1 0.109 0.115 0.790 1.000
BI2 0.037 0.119 0.930 1.000
BI3 0.089 0.114 0.850 1.000
BI4 - - - -
BB0 0.035 0.100 0.949 1.000
BB1 0.073 0.116 0.847 1.000
BB2 0.047 0.075 0.990 1.000
BB3 0.042 0.073 0.989 1.000
BB4 0.074 0.082 0.948 1.000
BB5 0.068 0.081 0.913 1.000
BB6 0.058 0.078 0.965 1.000
BB7 0.039 0.061 1.000 1.000
AIC 0.067 0.077 0.940 1.000
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Table 9. Summary of estimation residuals from the 13 candidate Binomial, Beta-Binomial models
and the AIC-selected best models for simulation scenario 10-3. See Section 3.3.2 for definition of
the performance measures.

ē(ρ) s(ρ) P.20 P.50
BI0 0.184 0.061 0.460 1.000
BI1 0.220 0.018 0.130 1.000
BI2 0.063 0.055 0.990 1.000
BI3 0.112 0.032 1.000 1.000
BI4 - - - -
BB0 0.139 0.037 0.960 1.000
BB1 0.201 0.026 0.479 1.000
BB2 0.057 0.040 1.000 1.000
BB3 0.050 0.043 1.000 1.000
BB4 0.100 0.031 1.000 1.000
BB5 0.088 0.032 1.000 1.000
BB6 0.095 0.036 1.000 1.000
BB7 - - - -
AIC 0.087 0.036 1.000 1.000

Table 10. Summary of estimation residuals from the 13 candidate Binomial, Beta-Binomial
models and the AIC-selected best models for simulation scenario 10-4. See Section 3.3.2 for
definition of the performance measures.

ē(ρ) s(ρ) P.20 P.50
BI0 0.288 0.211 0.150 0.930
BI1 0.445 0.087 0.000 0.690
BI2 0.019 0.271 0.465 0.939
BI3 0.172 0.169 0.480 0.990
BI4 - - - -
BB0 0.307 0.116 0.170 0.970
BB1 0.426 0.094 0.010 0.750
BB2 0.063 0.179 0.622 1.000
BB3 0.045 0.186 0.636 1.000
BB4 0.162 0.157 0.522 0.989
BB5 0.151 0.163 0.524 0.988
BB6 0.176 0.156 0.471 1.000
BB7 0.175 0.153 0.500 1.000
AIC 0.130 0.178 0.550 0.990
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Table 11. Summary of estimation residuals from the 13 candidate Binomial, Beta-Binomial
models and the AIC-selected best models for simulation scenario 14-1. See Section 3.3.2 for
definition of the performance measures.

ē(ρ) s(ρ) P.20 P.50
BI0 -0.028 0.198 0.710 0.990
BI1 -0.015 0.101 0.950 1.000
BI2 -0.056 0.212 0.610 0.980
BI3 -0.047 0.135 0.870 0.990
BI4 - - - -
BB0 -0.002 0.044 1.000 1.000
BB1 -0.002 0.044 1.000 1.000
BB2 -0.002 0.047 1.000 1.000
BB3 -0.002 0.046 1.000 1.000
BB4 -0.001 0.053 1.000 1.000
BB5 -0.005 0.048 1.000 1.000
BB6 -0.004 0.043 1.000 1.000
BB7 -0.004 0.045 1.000 1.000
AIC -0.003 0.047 1.000 1.000

Table 12. Summary of estimation residuals from the 13 candidate Binomial, Beta-Binomial
models and the AIC-selected best models for simulation scenario 14-2. See Section 3.3.2 for
definition of the performance measures.

ē(ρ) s(ρ) P.20 P.50
BI0 -0.097 0.128 0.790 1.000
BI1 -0.053 0.066 0.980 1.000
BI2 -0.021 0.113 0.910 1.000
BI3 0.004 0.065 0.990 1.000
BI4 - - - -
BB0 -0.149 0.037 0.910 1.000
BB1 -0.146 0.038 0.910 1.000
BB2 -0.074 0.031 1.000 1.000
BB3 -0.077 0.031 1.000 1.000
BB4 -0.071 0.030 1.000 1.000
BB5 -0.076 0.031 1.000 1.000
BB6 -0.068 0.032 1.000 1.000
BB7 -0.079 0.032 1.000 1.000
AIC -0.074 0.032 1.000 1.000

42



Table 13. Summary of estimation residuals from the 13 candidate Binomial, Beta-Binomial
models and the AIC-selected best models for simulation scenario 14-3. See Section 3.3.2 for
definition of the performance measures.

ē(ρ) s(ρ) P.20 P.50
BI0 0.010 0.073 1.000 1.000
BI1 0.033 0.034 1.000 1.000
BI2 -0.006 0.080 1.000 1.000
BI3 0.021 0.044 1.000 1.000
BI4 - - - -
BB0 -0.074 0.020 1.000 1.000
BB1 -0.072 0.020 1.000 1.000
BB2 -0.078 0.022 1.000 1.000
BB3 -0.081 0.024 1.000 1.000
BB4 -0.076 0.023 1.000 1.000
BB5 -0.081 0.023 1.000 1.000
BB6 -0.077 0.024 1.000 1.000
BB7 -0.084 0.027 1.000 1.000
AIC -0.076 0.023 1.000 1.000

Table 14. Summary of estimation residuals from the 13 candidate Binomial, Beta-Binomial
models and the AIC-selected best models for simulation scenario 14-4. See Section 3.3.2 for
definition of the performance measures.

ē(ρ) s(ρ) P.20 P.50
BI0 0.067 0.060 0.990 1.000
BI1 0.058 0.030 1.000 1.000
BI2 0.026 0.064 0.990 1.000
BI3 0.029 0.041 1.000 1.000
BI4 - - - -
BB0 -0.067 0.028 1.000 1.000
BB1 -0.054 0.029 1.000 1.000
BB2 -0.081 0.030 1.000 1.000
BB3 -0.087 0.030 1.000 1.000
BB4 -0.069 0.029 1.000 1.000
BB5 -0.074 0.029 1.000 1.000
BB6 - - - -
BB7 -0.062 0.029 1.000 1.000
AIC -0.071 0.030 1.000 1.000
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Table 15. Summary of estimation residuals from the 13 candidate Binomial, Beta-Binomial
models and the AIC-selected best models for simulation scenario 204-1. See Section 3.3.2 for
definition of the performance measures.

ē(ρ) s(ρ) P.20 P.50
BI0 -0.064 0.215 0.648 0.958
BI1 -0.057 0.239 0.648 0.944
BI2 -0.248 0.751 0.563 0.859
BI3 -0.190 0.500 0.557 0.852
BI4 - - - -
BB0 -0.075 0.195 0.643 0.964
BB1 - - - -
BB2 - - - -
BB3 - - - -
BB4 - - - -
BB5 - - - -
BB6 - - - -
BB7 - - - -
AIC -0.248 0.751 0.563 0.859

Table 16. Summary of estimation residuals from the 13 candidate Binomial, Beta-Binomial
models and the AIC-selected best models for simulation scenario 204-2. See Section 3.3.2 for
definition of the performance measures.

ē(ρ) s(ρ) P.20 P.50
BI0 0.178 0.094 0.539 1.000
BI1 0.232 0.139 0.421 0.947
BI2 0.127 0.171 0.671 0.987
BI3 0.194 0.138 0.603 0.968
BI4 - - - -
BB0 0.186 0.101 0.523 1.000
BB1 0.243 0.142 0.300 0.950
BB2 0.121 0.089 0.786 1.000
BB3 - - - -
BB4 - - - -
BB5 - - - -
BB6 - - - -
BB7 - - - -
AIC 0.132 0.172 0.671 0.987

44



Table 17. Summary of estimation residuals from the 13 candidate Binomial, Beta-Binomial
models and the AIC-selected best models for simulation scenario 204-3. See Section 3.3.2 for
definition of the performance measures.

ē(ρ) s(ρ) P.20 P.50
BI0 0.076 0.035 1.000 1.000
BI1 0.124 0.054 0.934 1.000
BI2 0.100 0.040 1.000 1.000
BI3 0.133 0.048 0.935 1.000
BI4 - - - -
BB0 0.076 0.033 1.000 1.000
BB1 0.134 0.046 0.902 1.000
BB2 - - - -
BB3 - - - -
BB4 0.134 0.037 1.000 1.000
BB5 - - - -
BB6 - - - -
BB7 - - - -
AIC 0.108 0.045 0.987 1.000

Table 18. Summary of estimation residuals from the 13 candidate Binomial, Beta-Binomial
models and the AIC-selected best models for simulation scenario 204-4. See Section 3.3.2 for
definition of the performance measures.

ē(ρ) s(ρ) P.20 P.50
BI0 0.275 0.159 0.284 0.938
BI1 0.346 0.177 0.210 0.802
BI2 0.188 0.205 0.438 0.963
BI3 0.271 0.204 0.296 0.887
BI4 - - - -
BB0 0.256 0.151 0.286 0.959
BB1 0.356 0.175 0.188 0.812
BB2 0.218 0.174 0.500 0.929
BB3 - - - -
BB4 - - - -
BB5 - - - -
BB6 - - - -
BB7 - - - -
AIC 0.200 0.212 0.420 0.951
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Table 19. Summary of simulated datasets for the 36 simulation scenarios in Section 6. These
scenarios are designed to assess the effect of sample sizes, e.g., scenarios 10-1-1, 10-1-2 and
10-1-3 use the same simulation settings based on Atlantic Cod and the first ρ-assumption but
the number of stations per stratum are 1, 2 and 3, respectively. See Section 3 for details of the
simulation process and definition of the summary metrics.

Scenario Relative Catch Efficiency Population Density Pair
LE(ρ) SE(ρ) Lin(ρ) EN(stn) P (enc) MED(C) PD(C)

10-1-1 0.00 0.00 0.00 4 0.02 4.00 1.76
10-1-2 0.00 0.00 0.00 8 0.02 4.00 1.73
10-1-3 0.00 0.00 0.00 12 0.02 4.00 1.71
10-2-1 0.76 0.00 0.11 6 0.03 5.00 1.53
10-2-2 0.76 0.00 0.11 11 0.03 5.00 1.52
10-2-3 0.76 0.00 0.11 17 0.03 4.75 1.51
10-3-1 0.11 0.00 0.02 15 0.05 24.50 1.70
10-3-2 0.11 0.00 0.02 30 0.05 21.00 1.68
10-3-3 0.11 0.00 0.02 45 0.05 21.25 1.68
10-4-1 0.46 0.36 0.01 9 0.04 8.00 1.63
10-4-2 0.47 0.38 0.01 17 0.04 7.00 1.60
10-4-3 0.47 0.38 0.01 26 0.04 7.00 1.58
14-1-1 0.00 0.00 0.00 84 0.19 96.00 1.42
14-1-2 0.00 0.00 0.00 56 0.19 92.00 1.42
14-1-3 0.00 0.00 0.00 84 0.19 96.00 1.42
14-2-1 0.43 0.00 0.08 30 0.21 118.50 1.29
14-2-2 0.43 0.00 0.08 59 0.20 114.00 1.30
14-2-3 0.43 0.00 0.08 88 0.20 113.25 1.29
14-3-1 0.06 0.00 0.00 31 0.23 153.75 1.31
14-3-2 0.06 0.00 0.00 61 0.23 151.50 1.32
14-3-3 0.06 0.00 0.00 91 0.22 151.75 1.32
14-4-1 0.22 0.21 0.01 31 0.23 187.00 1.34
14-4-2 0.22 0.22 0.01 62 0.23 196.75 1.34
14-4-3 0.22 0.22 0.01 94 0.23 189.50 1.33
204-1-1 0.00 0.00 0.00 0 0.00 4.00 2.00
204-1-2 0.00 0.00 0.00 1 0.00 5.00 1.79
204-1-3 0.00 0.00 0.00 1 0.00 3.25 1.70
204-2-1 0.62 0.00 0.11 1 0.01 5.00 1.71
204-2-2 0.62 0.00 0.11 2 0.01 5.00 1.50
204-2-3 0.62 0.00 0.11 2 0.01 4.75 1.44
204-3-1 0.09 0.00 0.02 1 0.01 10.00 1.90
204-3-2 0.09 0.00 0.02 3 0.01 9.00 1.72
204-3-3 0.09 0.00 0.02 5 0.01 10.00 1.72
204-4-1 0.46 0.39 0.01 1 0.01 6.00 1.63
204-4-2 0.46 0.41 0.01 2 0.01 6.75 1.52
204-4-3 0.46 0.41 0.01 2 0.01 6.00 1.51
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Table 20. Summary of estimation results for the 36 simulation scenarios in Section 6: a
comparison of estimation accuracy ē(ρ), (see Section 3.3.2 for definition). These scenarios
are designed to assess the effect of sample sizes, e.g., the first row includes the three scenarios
10-1-1, 10-1-2 and 10-1-3. See Section 6 for details of the simulation study.

Scenario Sample Size
n=1 n=2 n=3

10-1 -0.0414 -0.0261 -0.0031
10-2 0.0538 0.0675 0.0595
10-3 0.0882 0.0866 0.0812
10-4 0.1027 0.1295 0.1467
14-1 0.0007 -0.0029 0.0006
14-2 -0.0840 -0.0744 -0.0765
14-3 -0.0762 -0.0760 -0.0802
14-4 -0.0755 -0.0711 -0.0779

204-1 -0.0640 -0.2477 -0.0672
204-2 0.1431 0.1315 0.1643
204-3 0.0976 0.1080 0.1138
204-4 -1.0954 0.1995 0.1957
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Table 21. Summary of estimation results for the 36 simulation scenarios in Section 6: a
comparison of estimation precision s(ρ), (see Section 3.3.2 for definition). These scenarios
are designed to assess the effect of sample sizes, e.g., the first row includes the three scenarios
10-1-1, 10-1-2 and 10-1-3. See Section 6 for details of the simulation study.

Scenario Sample Size
n=1 n=2 n=3

10-1 0.2591 0.1638 0.1223
10-2 0.1404 0.0766 0.0658
10-3 0.0519 0.0358 0.0388
10-4 0.2870 0.1779 0.1524
14-1 0.0470 0.0472 0.0366
14-2 0.0469 0.0322 0.0286
14-3 0.0332 0.0231 0.0200
14-4 0.0380 0.0296 0.0233
204-1 0.4613 0.7507 0.3042
204-2 0.1324 0.1724 0.1092
204-3 0.0467 0.0449 0.0415
204-4 7.7243 0.2119 0.3548
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Table 22. Summary of estimation results for the 36 simulation scenarios in Section 6: a
comparison of estimation quality P.20, (capped estimation loss within 20%, see Section 3.3.2
for definition). These scenarios are designed to assess the effect of sample sizes, e.g., the first
row includes the three scenarios 10-1-1, 10-1-2 and 10-1-3. See Section 6 for details of the
simulation study.

Scenario Sample Size
n=1 n=2 n=3

10-1 0.6500 0.7800 0.8800
10-2 0.8300 0.9400 0.9700
10-3 0.9900 1.0000 0.9900
10-4 0.5300 0.5500 0.6100
14-1 1.0000 1.0000 1.0000
14-2 1.0000 1.0000 1.0000
14-3 1.0000 1.0000 1.0000
14-4 1.0000 1.0000 1.0000
204-1 0.6667 0.5634 0.6374
204-2 0.6512 0.6711 0.6383
204-3 0.9767 0.9868 0.9681
204-4 0.4906 0.4198 0.3579
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13 Figures

Figure 1. A schematic for the simulation study in Section 3. Each simulation scenario includes
100 iterations of the simulation cycle, where a dataset is simulated, then the 13 candidate
models are estimated; performance of the suite of models is summarized for the 100 iterations
for each scenario.
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Figure 2. An illustration of ρ-assumptions 1, 2 and 4 (in rows 1, 2, and 3, respectively) with an
example species within the length range 1-100 cm for the simulation study in Section 3. The
left panels are the simulated proportion of catch by gear A within the pair of comparative fishing
gears (µ, in black solid lines) and the right panels are the simulation relative catch efficiency
between gears A and B (ρ, black solid lines). On the left panel in the second row, the dotted and
segmented lines are simulated catchabilities for gears A and B, respectively. On the panels in
the third row, segmented lines are the simulated µ and ρ for each station, respectively, and solid
lines are the true µ and ρ before adding station variations.
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Figure 3. An illustration of ρ-assumptions 3 for the simulation study in Section 3. ρ-assumption 3
is species dependent and each row corresponds to each simulated species; the left panels are
the simulated proportion of catch by gear A within the pair of comparative fishing gears (µ) and
the right panels are the simulation relative catch efficiency between gears A and B (ρ).
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Figure 4. Catch numbers (effort-standardized) of species 10 from the past Maritimes surveys.
Color intensity indicates catch at each length (cm) and station (for simplicity, station ID is not
labelled). Stations are numbered sequentially according to the original order in which they were
sampled.
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Figure 5. Catch numbers (effort-standardized) of species 11 from the past Maritimes surveys.
Color intensity indicates catch at each length (cm) and station (for simplicity, station ID is not
labelled). Stations are numbered sequentially according to the original order in which they were
sampled.

56



Figure 6. Catch numbers (effort-standardized) of species 14 from the past Maritimes surveys.
Color intensity indicates catch at each length (cm) and station (for simplicity, station ID is not
labelled). Stations are numbered sequentially according to the original order in which they were
sampled.
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Figure 7. Catch numbers (effort-standardized) of species 23 from the past Maritimes surveys.
Color intensity indicates catch at each length (cm) and station (for simplicity, station ID is not
labelled). Stations are numbered sequentially according to the original order in which they were
sampled.
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Figure 8. Catch numbers (effort-standardized) of species 204 from the past Maritimes surveys.
Color intensity indicates catch at each length (cm) and station (for simplicity, station ID is not
labelled). Stations are numbered sequentially according to the original order in which they were
sampled.
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Figure 9. Mean catch number per tow (mnpt) for each species from past Maritimes survey
(2015-2017).
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Figure 10. The coefficient of variation over length (CV profile) for each species from past
Maritimes survey (2015-2017). See Section 3.1.3 for details of estimation of the CV profile.
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Figure 11. An example of simulated datasets for simulation scenarios (rows) 10-1, 10-2, 10-3,
and 10-4, i.e., catch numbers for the pair of gears A and B (right and left columns, respectively)
at each station and length (cm). The examples are generated using random seed 1 in R for each
scenario.
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Figure 12. An example of simulated datasets for simulation scenarios (rows) 11-1, 11-2, 11-3,
and 11-4, i.e., catch numbers for the pair of gears A and B (right and left columns, respectively)
at each station and length (cm). The examples are generated using random seed 1 in R for each
scenario.
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Figure 13. An example of simulated datasets for simulation scenarios (rows) 14-1, 14-2, 14-3,
and 14-4, i.e., catch numbers for the pair of gears A and B (right and left columns, respectively)
at each station and length (cm). The examples are generated using random seed 1 in R for each
scenario.
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Figure 14. An example of simulated datasets for simulation scenarios (rows) 23-1, 23-2, 23-3,
and 23-4, i.e., catch numbers for the pair of gears A and B (right and left columns, respectively)
at each station and length (cm). The examples are generated using random seed 1 in R for each
scenario.
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Figure 15. An example of simulated datasets for simulation scenarios (rows) 204-1, 204-2, 204-3,
and 204-4, i.e., catch numbers for the pair of gears A and B (right and left columns, respectively)
at each station and length (cm). The examples are generated using random seed 1 in R for each
scenario.
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Figure 16. Mean catch number per tow (mnpt) calculated for each simulated dataset (gray line)
and the median across 100 simulation datasets (blue line), for simulation scenarios 10-1, 10-2,
10-3, and 10-4. The lognormal distribution may generate extreme errors in some simulation
iterations; the y-axis is limited by the 95% quantiles of the plotted data in each scenario.
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Figure 17. Mean catch number per tow (mnpt) calculated for each simulated dataset (gray line)
and the median across 100 simulation datasets (blue line), for simulation scenarios 11-1, 11-2,
11-3, and 11-4. The lognormal distribution may generate extreme errors in some simulation
iterations; the y-axis is limited by the 95% quantiles of the plotted data in each scenario.
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Figure 18. Mean catch number per tow (mnpt) calculated for each simulated dataset (gray line)
and the median across 100 simulation datasets (blue line), for simulation scenarios 14-1, 14-2,
14-3, and 14-4. The lognormal distribution may generate extreme errors in some simulation
iterations; the y-axis is limited by the 95% quantiles of the plotted data in each scenario.
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Figure 19. Mean catch number per tow (mnpt) calculated for each simulated dataset (gray line)
and the median across 100 simulation datasets (blue line), for simulation scenarios 23-1, 23-2,
23-3, and 23-4. The lognormal distribution may generate extreme errors in some simulation
iterations; the y-axis is limited by the 95% quantiles of the plotted data in each scenario.
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Figure 20. Mean catch number per tow (mnpt) calculated for each simulated dataset (gray line)
and the median across 100 simulation datasets (blue line), for simulation scenarios 204-1, 204-2,
204-3, and 204-4. The lognormal distribution may generate extreme errors in some simulation
iterations; the y-axis is limited by the 95% quantiles of the plotted data in each scenario.
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Figure 21. An example of estimated proportion of catch by gear A from each candidate model
to illustrate the difference in bias-variance trade-off between the Binomial and Beta-Binomial
models. The Binomial models tend to produce “wavy” estimations and the Beta-Binomial models
tend to result in smoother shapes in the presence of strong sample variance. This example is
from the simulation iteration based on the random seed 1 and scenario 14-4 in Sections 3 and
4). The segmented line is the simulated true proportion of catch by gear A; the gray line is the
sample average proportion; the blues lines are estimated quantities from the candidate models
and the red line is the estimate from the AIC-selected best model.
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Figure 22. Estimation residuals for the relative catch efficiency over length in simulation scenario
10-1. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.

Figure 23. Estimation residuals for the relative catch efficiency over length in simulation scenario
10-2. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.
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Figure 24. Estimation residuals for the relative catch efficiency over length in simulation scenario
10-3. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.

Figure 25. Estimation residuals for the relative catch efficiency over length in simulation scenario
10-4. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.
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Figure 26. Estimation residuals for the relative catch efficiency over length in simulation scenario
11-1. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.

Figure 27. Estimation residuals for the relative catch efficiency over length in simulation scenario
11-2. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.
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Figure 28. Estimation residuals for the relative catch efficiency over length in simulation scenario
11-3. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.

Figure 29. Estimation residuals for the relative catch efficiency over length in simulation scenario
11-4. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.
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Figure 30. Estimation residuals for the relative catch efficiency over length in simulation scenario
14-1. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.

Figure 31. Estimation residuals for the relative catch efficiency over length in simulation scenario
14-2. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.
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Figure 32. Estimation residuals for the relative catch efficiency over length in simulation scenario
14-3. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.

Figure 33. Estimation residuals for the relative catch efficiency over length in simulation scenario
14-4. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.
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Figure 34. Estimation residuals for the relative catch efficiency over length in simulation scenario
23-1. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.

Figure 35. Estimation residuals for the relative catch efficiency over length in simulation scenario
23-2. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.
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Figure 36. Estimation residuals for the relative catch efficiency over length in simulation scenario
23-3. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.

Figure 37. Estimation residuals for the relative catch efficiency over length in simulation scenario
23-4. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.
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Figure 38. Estimation residuals for the relative catch efficiency over length in simulation scenario
204-1. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.

Figure 39. Estimation residuals for the relative catch efficiency over length in simulation scenario
204-2. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.
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Figure 40. Estimation residuals for the relative catch efficiency over length in simulation scenario
204-3. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.

Figure 41. Estimation residuals for the relative catch efficiency over length in simulation scenario
204-4. Blue dotted lines are residuals from the selected model in each of the 100 simulation
iterations, blue circles are the average residuals for the 100 iterations, blue segments are the 5%
and 95% quantiles of the 100 iterations, and the gray horizontal lines indicate ±20% and ±50%
estimation error ranges.
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Figure 42. Estimation residuals for the relative catch efficiency over length from 100 iterations for
simulation scenarios 10-1-1 (top),10-1-2 (middle) and 10-1-3 (bottom), where 1, 2 and 3 stations
per stratum are sampled, respectively. Blue dotted lines are residuals from the selected model in
each of the 100 simulation iterations, blue circles are the average residuals for the 100 iterations,
blue segments are the 5% and 95% quantiles of the 100 iterations, and the gray horizontal
lines indicate ±20% and ±50% estimation error ranges. See Section 6 for the simulation study
designed to assess the effect of sample sizes.
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Figure 43. Estimation residuals for the relative catch efficiency over length from 100 iterations for
simulation scenarios 10-2-1 (top),10-2-2 (middle) and 10-2-3 (bottom), where 1, 2 and 3 stations
per stratum are sampled, respectively. Blue dotted lines are residuals from the selected model in
each of the 100 simulation iterations, blue circles are the average residuals for the 100 iterations,
blue segments are the 5% and 95% quantiles of the 100 iterations, and the gray horizontal
lines indicate ±20% and ±50% estimation error ranges. See Section 6 for the simulation study
designed to assess the effect of sample sizes.
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Figure 44. Estimation residuals for the relative catch efficiency over length from 100 iterations for
simulation scenarios 10-3-1 (top),10-3-2 (middle) and 10-3-3 (bottom), where 1, 2 and 3 stations
per stratum are sampled, respectively. Blue dotted lines are residuals from the selected model in
each of the 100 simulation iterations, blue circles are the average residuals for the 100 iterations,
blue segments are the 5% and 95% quantiles of the 100 iterations, and the gray horizontal
lines indicate ±20% and ±50% estimation error ranges. See Section 6 for the simulation study
designed to assess the effect of sample sizes.
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Figure 45. Estimation residuals for the relative catch efficiency over length from 100 iterations for
simulation scenarios 10-4-1 (top),10-4-2 (middle) and 10-4-3 (bottom), where 1, 2 and 3 stations
per stratum are sampled, respectively. Blue dotted lines are residuals from the selected model in
each of the 100 simulation iterations, blue circles are the average residuals for the 100 iterations,
blue segments are the 5% and 95% quantiles of the 100 iterations, and the gray horizontal
lines indicate ±20% and ±50% estimation error ranges. See Section 6 for the simulation study
designed to assess the effect of sample sizes.
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Figure 46. Estimation residuals for the relative catch efficiency over length from 100 iterations for
simulation scenarios 14-1-1 (top),14-1-2 (middle) and 14-1-3 (bottom), where 1, 2 and 3 stations
per stratum are sampled, respectively. Blue dotted lines are residuals from the selected model in
each of the 100 simulation iterations, blue circles are the average residuals for the 100 iterations,
blue segments are the 5% and 95% quantiles of the 100 iterations, and the gray horizontal
lines indicate ±20% and ±50% estimation error ranges. See Section 6 for the simulation study
designed to assess the effect of sample sizes.

87



Figure 47. Estimation residuals for the relative catch efficiency over length from 100 iterations for
simulation scenarios 14-2-1 (top),14-2-2 (middle) and 14-2-3 (bottom), where 1, 2 and 3 stations
per stratum are sampled, respectively. Blue dotted lines are residuals from the selected model in
each of the 100 simulation iterations, blue circles are the average residuals for the 100 iterations,
blue segments are the 5% and 95% quantiles of the 100 iterations, and the gray horizontal
lines indicate ±20% and ±50% estimation error ranges. See Section 6 for the simulation study
designed to assess the effect of sample sizes.
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Figure 48. Estimation residuals for the relative catch efficiency over length from 100 iterations for
simulation scenarios 14-3-1 (top),14-3-2 (middle) and 14-3-3 (bottom), where 1, 2 and 3 stations
per stratum are sampled, respectively. Blue dotted lines are residuals from the selected model in
each of the 100 simulation iterations, blue circles are the average residuals for the 100 iterations,
blue segments are the 5% and 95% quantiles of the 100 iterations, and the gray horizontal
lines indicate ±20% and ±50% estimation error ranges. See Section 6 for the simulation study
designed to assess the effect of sample sizes.
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Figure 49. Estimation residuals for the relative catch efficiency over length from 100 iterations for
simulation scenarios 14-4-1 (top),14-4-2 (middle) and 14-4-3 (bottom), where 1, 2 and 3 stations
per stratum are sampled, respectively. Blue dotted lines are residuals from the selected model in
each of the 100 simulation iterations, blue circles are the average residuals for the 100 iterations,
blue segments are the 5% and 95% quantiles of the 100 iterations, and the gray horizontal
lines indicate ±20% and ±50% estimation error ranges. See Section 6 for the simulation study
designed to assess the effect of sample sizes.
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Figure 50. Estimation residuals for the relative catch efficiency over length from 100 iterations
for simulation scenarios 204-1-1 (top),204-1-2 (middle) and 204-1-3 (bottom), where 1, 2 and 3
stations per stratum are sampled, respectively. Blue dotted lines are residuals from the selected
model in each of the 100 simulation iterations, blue circles are the average residuals for the
100 iterations, blue segments are the 5% and 95% quantiles of the 100 iterations, and the
gray horizontal lines indicate ±20% and ±50% estimation error ranges. See Section 6 for the
simulation study designed to assess the effect of sample sizes.
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Figure 51. Estimation residuals for the relative catch efficiency over length from 100 iterations
for simulation scenarios 204-2-1 (top),204-2-2 (middle) and 204-2-3 (bottom), where 1, 2 and 3
stations per stratum are sampled, respectively. Blue dotted lines are residuals from the selected
model in each of the 100 simulation iterations, blue circles are the average residuals for the
100 iterations, blue segments are the 5% and 95% quantiles of the 100 iterations, and the
gray horizontal lines indicate ±20% and ±50% estimation error ranges. See Section 6 for the
simulation study designed to assess the effect of sample sizes.
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Figure 52. Estimation residuals for the relative catch efficiency over length from 100 iterations
for simulation scenarios 204-3-1 (top),204-3-2 (middle) and 204-3-3 (bottom), where 1, 2 and 3
stations per stratum are sampled, respectively. Blue dotted lines are residuals from the selected
model in each of the 100 simulation iterations, blue circles are the average residuals for the
100 iterations, blue segments are the 5% and 95% quantiles of the 100 iterations, and the
gray horizontal lines indicate ±20% and ±50% estimation error ranges. See Section 6 for the
simulation study designed to assess the effect of sample sizes.
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Figure 53. Estimation residuals for the relative catch efficiency over length from 100 iterations
for simulation scenarios 204-4-1 (top),204-4-2 (middle) and 204-4-3 (bottom), where 1, 2 and 3
stations per stratum are sampled, respectively. Blue dotted lines are residuals from the selected
model in each of the 100 simulation iterations, blue circles are the average residuals for the
100 iterations, blue segments are the 5% and 95% quantiles of the 100 iterations, and the
gray horizontal lines indicate ±20% and ±50% estimation error ranges. See Section 6 for the
simulation study designed to assess the effect of sample sizes.
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Figure 54. An example of simulate datasets for simulation scenarios 10-4-Pois, 10-4-NB and
10-4-NB −Beta, i.e., catch numbers for the pair of gears A and B at each station and length (cm).
The examples are generated using random seed 1 in R for each scenario. See Section 7 for the
simulation study designed to assess the effect of model mis-specification.
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Figure 55. An example of simulate datasets for simulation scenarios 14-4-Pois, 14-4-NB and
14-4-NB −Beta, i.e., catch numbers for the pair of gears A and B at each station and length (cm).
The examples are generated using random seed 1 in R for each scenario. See Section 7 for the
simulation study designed to assess the effect of model mis-specification.
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Figure 58. Estimated AR(1) autocorrelation coefficients for each species using anomaly
sequences from each station (deviations of survey catch-length compositions from their 5-point
moving averages).
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