Fisheries and Oceans
Canada
Ecosystems and Oceans Science

Pêches et Océans Canada

Sciences des écosystèmes et des océans

Canadian Science Advisory Secretariat (CSAS)
Research Document 2022/024
Maritimes Region

Changes to Survey Indices and Implications for Assessment of Spiny Dogfish (Squalus acanthias) in the Northwest Atlantic
G.M. Fowler and H.D. Bowlby

Canadian Atlantic Shark Research Laboratory
Bedford Institute of Oceanography
Fisheries and Oceans Canada
PO Box 1006, 1 Challenger Drive
Dartmouth, NS B2Y 4A2

Foreword

This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations.

Published by:
Fisheries and Oceans Canada
Canadian Science Advisory Secretariat
200 Kent Street
Ottawa ON K1A 0E6
http://www.dfo-mpo.gc.ca/csas-sccs/
csas-sccs@dfo-mpo.gc.ca

© Her Majesty the Queen in Right of Canada, 2022
ISSN 1919-5044
ISBN 978-0-660-43170-3 Cat. No. Fs70-5/2022-024E-PDF

Correct citation for this publication:

Fowler, G.M. and Bowlby, H.D. 2022. Changes to Survey Indices and Implications for Assessment of Spiny Dogfish (Squalus acanthias) in the Northwest Atlantic. DFO Can. Sci. Advis. Sec. Res. Doc. 2022/024. iv + 73 p.

Aussi disponible en français :

Fowler, G.M. et Bowlby, H.D. 2022. Modifications des indices du relevé et conséquences pour l'évaluation de l'aiguillat commun (Squalus acanthias) dans l'Atlantique Nord-Ouest. Secr. can. des avis sci. du MPO. Doc. de rech. 2022/024. iv + 74 p.

TABLE OF CONTENTS

ABSTRACT iv
INTRODUCTION 1
FISHERY 1
DATA INPUTS 2
COMMERCIAL CATCH 3
Canada. 3
United States 4
Fisheries Removals 4
RESEARCH VESSEL SURVEYS 4
DFO Summer RV Survey 5
NMFS Spring RV Survey 5
EVALUATION OF DATA INPUTS 5
INCORPORATING RECENT DATA 5
Survey Time Series 5
Commercial Catch Composition 6
FACTORS AFFECTING DOGFISH CATCHABILITY 6
Survey Vessel 6
Diel Patterns 7
Outer Slope Sampling 8
METHODOLOGICAL EVALUATION 9
Survey Vessel 9
Diel Patterns 10
Slope strata 11
Combined Approaches 11
Calibration Approach 12
CONCLUSIONS 13
REFERENCES CITED 14
TABLES 16
FIGURES 41

Abstract

Spiny Dogfish in NAFO areas 2-6 are considered to be one stock, with the greatest concentration of the population in US territorial waters. The main index of abundance used for assessment by the US and Canada derives from the National Marine Fisheries Service (NMFS) Spring trawl survey, where a new vessel with new monitoring protocols has been used in recent years.

This document provides information on the data that will be used to assess Spiny Dogfish in Part II of a new Assessment Framework. It includes summaries of commercial catch and survey abundance indices relative to the dogfish stock definition. Also, it provides a comprehensive evaluation of factors that may influence dogfish catchability and discusses their effects to the NMFS Spring survey and their implications for population assessment. Differences in catchability owing to survey vessel, sampling strata, dogfish life stage, sex, day/night patterns, and combinations thereof were explored. A calibration approach specific to life stage is proposed to relate catches from the new survey vessel to the older one, and this results in a more biologically realistic trend in the abundance index for recent years. This calibrated index of stratified abundance at length will be compared using a split uncalibrated series in the stage-based population dynamics model in Part II of the Framework. Other changes to the structure of the assessment model suggested by the data were the need to incorporate sex-specific sampling error for the survey catches and to make process error proportional to the realized level of sampling in influential strata for Spiny Dogfish along the outer slope.

INTRODUCTION

Spiny Dogfish (Squalus acanthias) are small squaloid sharks found throughout coastal temperate oceans. The population in the Northwest Atlantic typically ranges from Newfoundland to Georgia and is most abundant along the continental shelf from Nova Scotia to Cape Hatteras (Nammack et al. 1985, NEFSC 2006). The population migrates seasonally, concentrating in mid-Atlantic waters to southern Georges Bank in the Winter and Spring, moving northward in the summer, and returning to Southern New England, Georges Bank and the Gulf of Maine in autumn (Fowler and Campana 2015). However, historical (DFO 2007), as well as more contemporary (Carlson et al. 2014), tagging suggests population structuring throughout their range, with resident and migratory components to the population. Movement between Canadian and US waters is not the predominant pattern. Throughout their distribution, dogfish tend to school by size and by sex as they approach maturity. In the Northwest Atlantic, dogfish occur in water temperatures from $0-12^{\circ} \mathrm{C}\left(6-11^{\circ} \mathrm{C}\right.$ preferred) and depths of $0-350 \mathrm{~m}(50-200 \mathrm{~m}$ preferred). Reproductive potential for the population is low due to slow growth rates, late age-at-maturity, and a 22-24 month gestation period for females (Jensen et al. 1961, Nammack et al. 1985, Campana et al. 2009), making them vulnerable to exploitation. In Canada, Spiny Dogfish have been designated 'Special Concern' by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC 2010).
Spiny Dogfish are considered to be a unit stock in NAFO areas $2-6$ (Figure 1) with the majority of the population found in US waters. Originally, the US and Canadian components of the stock were assessed independently. In 2010, an attempt was made to model the entire Northwest Atlantic population in a joint Canada-US Transboundary Resources Assessment Committee (TRAC) meeting, but consensus on an assessment model was not reached (Rago and Sosebee 2010). Since that time, the US has elected to meet its domestic management requirements by proceeding with a US-only stock assessment. Canada has attempted to continue with the population-level assessment. The last DFO framework review and assessment of Northwest Atlantic Spiny Dogfish occurred in 2014, using data up to 2010 (Fowler and Campana 2015). The accepted model was a forward-projecting stage-based, spatially explicit population dynamics model with two time steps.
Efforts to incorporate more recent data into the framework model have not been successful, in that abundance estimates for dogfish became implausibly high (DFO 2016). Because the main index used to scale commercial catches to total abundance in the model is derived from the National Marine Fisheries Service (NMFS) Spring survey, changes to the survey index that influence dogfish catchability could explain this discrepancy.
The objectives of the Data Inputs component of the Northwest Atlantic Spiny Dogfish Framework Review are to: (1) describe the fishery-dependent and fishery-independent data sources from the US and Canada used to assess the population, (2) evaluate factors affecting dogfish catchability in the NMFS Spring survey and describe their implications for stock assessment, and (3) propose methods to standardize the abundance index from the NMFS Spring survey for input into a population-level assessment model. The assessment model will be developed for, and reviewed at, a separate meeting.

FISHERY

Total landings of dogfish were comparatively small throughout 1922-1955 (Jensen et al. 1961), remaining below 100 mt in most years prior to 1956. The first significant exploitation of dogfish was a US government-subsidized World War II vitamin A fishery that was conducted primarily during 1940-1941. Industrial (or trash) fishing between the mid-1950s and mid-1960s
represented the largest directed fishery conducted on dogfish at that time, and led to the highest bycatch levels of dogfish in the time series, but these declined due to market competition as the Peruvian anchovy fishery grew in the 1960s (DFO 2014). Commercial interest in dogfish expanded considerably with the arrival of foreign fishing fleets in the Northwest Atlantic, which caught appreciable numbers of dogfish between 1966 and 1977. Reported landings prior to extension of jurisdiction in 1977 were dominated by USSR (Russia) and other European countries, and they peaked at about $25,000 \mathrm{mt}$ in 1975 (Figure 2). Since 1977, US commercial landings have accounted for most of the reported catch. A sharp intensification of the US commercial fishery began in 1990, peaking at more than 28,000 mt in 1996 (NEFSC 2006). Canadian landings were a relatively small proportion of the total catch until 2000, at which point the introduction of restrictive quotas in the US made Canadian landings a significant portion of the total (DFO 2014).

Canadian landings of Spiny Dogfish were unrestricted prior to 2002 and mostly occurred in commercial longline and gillnet fisheries for groundfish (Fowler and Campana 2015). The total allowable catch (TAC) from 2004 through 2013 was set at $2,500 \mathrm{mt}$. A 10,000 mt TAC was set for 2015 (approximately equivalent to US landings during 2013 and 2014), with no restrictions on discarding or by-catch of Spiny Dogfish in other fisheries (DFO 2016). Spiny Dogfish are primarily sold to European markets, which have a requirement for Ecological Certification of landings. The US directed fleet obtained Marine Stewardship Council (MSC) certification in 2012, but the Canadian fleet has yet to obtain MSC. Thus, landings since 2009 from Canadian fleets have never exceeded 200 mt ; making the Canadian TAC non-restrictive (DFO 2016).

DATA INPUTS

This document considers the data sources that were incorporated in the most recent Canadian framework assessment for Spiny Dogfish (Fowler and Campana 2015). These include abundance indices and size sampling from the Fisheries and Oceans Canada (DFO) Summer survey and the NMFS Spring survey, as well as landings data and total discard estimates from commercial fleets in both countries. The US commercial catch data were provided from NEFSC in advance of this assessment.

The commercial catches, landings and discards of Spiny Dogfish, partitioned by season (November to April; May to October) and fishery, are processed into numbers of fishery removals by sex and maturity stage for input into the current framework assessment model (Fowler and Campana 2015). Similarly, sex-specific maturity-at-length proportions are applied to the stratified abundance at length from the surveys to produce abundance indices by sex and maturity stage. The maturity stages are determined by dogfish length, where stage 1 represents juveniles and stage 2 represents adults. Further details on the delineation of maturity stage are given in Fowler and Campana (2015).
The biological characteristics of the US fishery (to determine catch at length) have been well sampled since 1989, while Canadian fisheries were adequately sampled from 1998 until 2006, when the directed fishery declined. To estimate the commercial catch composition for poorly sampled years, we used nearest-neighbour length-frequencies of well-sampled years, partitioned by individual fisheries, if possible. This becomes pure assumption where little or no sampling was conducted over long contiguous periods of time, such as 1922-1982. The survey catches in both countries have been well-sampled with respect to the biological characteristics of dogfish since 1970 for the Summer survey and since 1990 for the Spring survey. We see no individual fish sampling in the Spring survey until 1990, but consider that more data might exist than the database provides (e.g., the Nammack et al. 1985) life-history sampling came primarily from the Spring survey during 1980-1981, but these data do not appear in the database).

Length compositions are available for both surveys in all years with the exception of 1973-1979 in the NMFS Spring survey, where sexed length measurements of dogfish were not taken.
For the assessment model, growth and maturity equations are applied to survey abundance at length to determine abundance by maturity stage (juvenile, adult), as well as annual maturity transition thetas (the proportion of the population maturing from juvenile to adult). Dogfish exhibit sexually dimorphic growth, with females exhibiting later age at maturity and larger maximum sizes than males (Campana et al. 2009). Different Von Bertalanffy growth curves are used for data from Canada and the US (Table 1). The Canadian model is derived from the survey and commercial catch data collected during 2002-2005, updated to 2012 (Fowler and Campana 2015). The US model comes from NEFSC Spring survey data collected during 1980-1981 (Nammack et al. 1985). Similarly, the maturity ogives representing the proportion of Spiny Dogfish mature at length differ for Canada and the US (Figure 3). Length at 50\% maturity ($L_{50 \%}$) was determined using logistic regression for Canadian data (Campana et al. 2009), while the US used an arcsine function on fork length rather than total length. It was not possible to replicate the US methodology relative to total length to make relationships for Canadian and US data comparable (Fowler and Campana 2015). Therefore, a logistic function assuming the same intercept as the Canadian data and the $L_{50 \%}$ values for males and females from the US arcsine analysis was fit to the US data (Figure 3).

COMMERCIAL CATCH

Landings of Spiny Dogfish from commercial fleets in Canada are 100\% dockside monitored and the biological characteristics of the landed catch are determined through port sampling. Information on landings in the US comes from the NEFSC commercial fisheries database. In the US, there is a substantial recreational fishery for Spiny Dogfish, where recreational landings and discards are estimated from logbook reports through the Marine Recreational Information Program. Recreational landings of Spiny Dogfish in Canada are minimal and are not considered in this assessment.
Information on discards comes from fisheries observer programs for commercial vessels, initiated in 1977 in Canada and fully implemented in US waters by 1989. Observed discards by year, fishery, and season are scaled up to fishery-wide totals using a ratio estimator of discarded to kept (landed) catch, where the kept component is scaled to the total landings of dogfish within fishery components (NEFSC 2006). A similar methodology (i.e., a d/k ratio) is used to estimate total Canadian discards from observed trips, but ratios are specific to dogfish discarded versus kept catch (Fowler and Campana 2015). Observer coverage is variable among Canadian fleets that intercept dogfish. For each gear type that intercepts dogfish, both countries calculate dead discards by multiplying annual totals by gear-specific mortality rates. These mortality rates were accepted during the 2010 TRAC meeting (TRAC 2010) and are reproduced in Table 2. Although mortality would be expected to be 100% from scallop dredge in Canada, discards are minimal and have not been incorporated into this assessment. As an example of magnitude, $12,000 \mathrm{mt}$ of scallop landings were observed in the Maritimes Region in 2014, with 2 mt of dogfish by-catch. Total mortality of Spiny Dogfish would have been estimated as 11 mt .

Canada

Canadian landings of Spiny Dogfish were usually low in years prior to 1999 (Table 3). Foreign fleets fishing in Canadian waters landed substantial amounts of dogfish during the 1970s, peaking just under 10,000 mt in 1974 (Table 3, Figure 4). During 1998-2008, landings by Canadian fleets increased by an order of magnitude, peaking at 3,578 mt in 2001 and averaging $2,300 \mathrm{mt}$ across years. Most of these were taken in the directed longline fishery for Spiny

Dogfish, with lesser amounts from gillnets and otter trawl. Since 2009, landings from all Canadian fisheries have been very low (< 125 mt) and were essentially zero in 2015 (Table 3).
Discard estimates from Canadian otter trawl, gillnet and longline fisheries for groundfish are available from the early 1960s. From 1946 to 1962, total annual discards were assumed to remain about 3,500 mt (Figure 4). In Canadian waters, discards are the primary source of fishing mortality, with the exceptions of the foreign directed fishery in the 1970s and the Canadian directed fishery in the early 2000s (Table 3, Figure 4). Total discard estimates have been declining since the 1990s, presumably due to more stringent management measures and lower TACs being implemented in groundfish fisheries. The lowest discard estimate in the time series was in 2015, at 51 mt (Table 3). After accounting for gear-specific discard mortality, dead discards by individual Canadian fleets have not exceeded 2,000 mt in any year (Figure 4).

United States

During 1962-1979, US landings averaged about 400 mt annually, while landings by foreign fleets operating in US waters increased to upwards of $25,000 \mathrm{mt}$ by the early 1970 s (Table 4; Figure 4). With the advent of the USA directed fishery in 1990, landings averaged $17,900 \mathrm{mt}$ from 1990-2000, but they dropped to an average of $2,200 \mathrm{mt}$ during 2001-2008 due to quota restrictions. Since obtaining MSC certification in 2012, US landings of Spiny Dogfish have increased to approximately $10,000 \mathrm{mt}$ annually (DFO 2016). Recreational landings have always been very low (averaging 200 mt from 1981-2008), although recreational discards have been much higher (averaging 1,500 mt from 1981-2008). Quantitative estimates of discards are available for individual US fisheries from 1989 onwards (TRAC 2010). Discards during 1964-1988 were approximated using the ratio of dogfish discards to total landings of dogfish. Estimated discard mortalities range from $2,900 \mathrm{mt}$ to $22,800 \mathrm{mt}$ assuming gear-specific mortality rates. In recent years, US discards have been much lower than before the mid-1990s (Table 4).

Fisheries Removals

Total fisheries removals are higher in US territorial waters than Canadian throughout the time series (Table 5; Figure 5). The contribution to total removals from discarding is substantial and results in US removals remaining high throughout the 1960s to late 1990s, even though landings were low during the 1980s (cf. Figure 4 and Figure 5). Comparing the Canadian and US catch composition, annual fishery removals for each maturity stage and sex are substantially higher in US waters (Figure 6). Juvenile females are more abundant in the US catch composition than juvenile males, with the opposite pattern for adult males and females (Figure 6).

RESEARCH VESSEL SURVEYS

Two Research Vessel (RV) surveys provide estimates of Spiny Dogfish abundance. The NMFS Spring survey in US waters serves as the primary index of population abundance, as most of the population is considered to be available to this survey. The Fisheries and Oceans Canada (DFO) Summer survey in Canadian waters serves as an index of migration and local stock abundance. Preliminary assessments and modelling during the 2010 TRAC review considered up to twelve surveys as candidate indices for Spiny Dogfish, but only the NMFS Spring and DFO Summer surveys were retained for the population-level assessment (Fowler and Campana 2015). Since the TRAC review, only the NMFS Spring survey has been used in US assessments (e.g., Rago and Sosebee 2015). The two bottom trawl surveys are conducted using stratified random sampling, with coverage that partially overlaps on Georges Bank. Abundance or biomass estimates for Spiny Dogfish are calculated as the stratified number or weight per tow, after standardizing for the distance towed.

DFO Summer RV Survey

Stratified abundance estimates for all sex/stage groups of Spiny Dogfish were low at the beginning of the survey time series, increasing during the 1980s to the late 1990s, before gradually declining until 2010 (Figure 7). In the most recent years, there was an extremely large peak in 2012-2013, which has since declined. The majority of survey catches in Canada are adult males, with lower but similar numbers of female and male juveniles. Female adults form the smallest component of the survey catches throughout the time series. The DFO Summer survey is thought to primarily index changes in distribution as the population moves northward in the summer months (Fowler and Campana 2015).

NMFS Spring RV Survey

Abundance trends for Spiny Dogfish from the US Spring survey increased throughout the 1980s, gradually declined from the early 1990s until the early 2000s, increased rapidly from the mid-2000s through 2013, and then declined rapidly in the last two years. Since the late 1990s, adult males have been the dominant component of survey catches, with more similar abundances of juveniles and adult females (Figure 7). The highest abundances in the time series occurred in 2012 and 2013, dropping sharply in 2014 and again in 2015. Mechanical problems prevented sampling in several strata in 2014, which has led to the exclusion of 2014 from the most recent US assessments for Spiny Dogfish (Rago and Sosebee 2014, 2015).

EVALUATION OF DATA INPUTS

The assessment framework for Spiny Dogfish (Fowler and Campana, 2015) was developed using United States (US) and Canadian survey and commercial catch composition data through 2010. Since that time two major developments related to the US survey index have occurred that have implications for the assessment of Spiny Dogfish. One has been the implementation of a new research vessel with a new type of gear to conduct surveys since 2009 (Miller et al. 2010). The second was a determination of diel differences in catchability of dogfish that applies to all years in the survey, thus impacting the historical time series (Sagarese et al. 2016). These developments altered our perceptions of the population dynamics of Spiny Dogfish relative to the assessment framework, and the changes were sufficient to warrant a call for review of the data inputs.

INCORPORATING RECENT DATA

Survey Time Series

Prior to 2015, the NMFS Spring survey series was updated for Canadian assessments by obtaining biomass estimates and size compositions from NMFS, and deriving annual abundances at length from sex-specific length-weight relationships for dogfish (Fowler and Campana 2015). In 2015, direct access to NMFS survey databases was obtained and stratified abundance at length was estimated directly for the NMFS Spring survey time series.

The survey abundance time series derived for previous assessments from biomass data did not match the abundance time series calculated in 2015 (Figure 8). This would result from the length-weight relationships being used to convert abundance to biomass by NMFS and back to abundance by DFO. Comparing the two data series, the mean divergence of 1980-1981 estimates is much less than in later years, (almost 0 before splitting by stage). This suggests the length-weight relationship used to calculate the abundance series for the previous Canadian framework may derive from Nammack et al. (1985). This published relationship was also used to convert biomass back to abundance for the Canadian assessment. Although most of the data
used by Nammack et al. (1985) were collected from the Spring survey, the current database to which we have access does not include any individual sampling data for dogfish until 1992.
If the length-weight relationship was assumed to be static across all years, changes in the relationship between length and weight of dogfish over time may explain the divergence in estimates. For example, the predicted weight of a 65 cm dogfish (the most abundant length in the time series) can exhibit substantial inter-annual and long-term variation from that of Nammack et al. (1985) in years for which we have data from individual fish (Figure 9). For this assessment framework, we propose using stratified abundance at length estimates for all years that dogfish length data are available, as opposed to updating the previous series derived from biomass estimates. This is consistent with the estimation method used for the Canadian Summer survey and with the structure of the Canadian population model. During the years where no length information is available (1973-1979), estimates will remain as provided for the original framework model (Fowler and Campana 2015).

During this investigation, we also noticed that the coefficient of variation (CV) for survey abundance at length could diverge considerably between sexes (Figure 10). In addition to annual variability, there were contiguous periods of time when one sex is better estimated than the other. In the Spring survey, females are typically better estimated than males during 1984 to 1993, while males are better estimated in most years since 2007. In the Canadian Summer survey females are usually better estimated than males throughout. Although the current framework model estimates abundance separately by sex, males and females shared the same error structure. For this assessment framework, we propose to allow for separate error structures by sex as well.

Commercial Catch Composition

There has been no formal data-sharing agreement between the US and Canada for Spiny Dogfish since the 2010 TRAC assessment. However, the US commercial catch composition up until 2015 was provided for this assessment. For assessment updates undertaken by Canada in the intervening years (DFO 2014, DFO 2016, Fowler and Campana 2015), the commercial catch composition from US fisheries was approximated from summary statistics in US assessment documentation (Rago and Sosebee 2013, 2014, 2015). The actual sex and size composition of removals during 2011-2014 differed substantially from those assumed, with discrepancies as high as 50% for a given sex and maturity stage (Figure 11). Possibly different approaches to approximating catch composition from summary statistics might improve the representation of removals in years for which the underlying data are unavailable. We have not explored this, and propose that future updates should be based solely on trends in the Spring survey indices when catch composition data are unavailable.

FACTORS AFFECTING DOGFISH CATCHABILITY

Survey Vessel

A new survey vessel, the Henry B. Bigelow, employing a new type of trawl, replaced the Albatross IV beginning in 2009. The Bigelow is larger, quieter, tows a larger net, and follows different sampling protocols than the Albatross (Rago and Sosebee 2015). A large-scale paired-tow calibration study was conducted in 2008 to compare catches between the two vessels, with the Bigelow mirroring the tows of the Albatross as the Albatross conducted the Spring, Summer (site-specific tows in June and July) and Fall surveys. The paired tows were temporally and spatially offset by enough to minimize the effect of one tow on the other, while keeping the fish densities available to each vessel equivalent.

The original design of the calibration study recommended using an estimate of the ratio of stratified mean catches between the two vessels as the calibration factor, but it did not specify the appropriate estimator. Spiny Dogfish were observed at more than 30 stations during each of the Spring and Fall surveys (i.e., were abundant and common), leading to the recommendation to use a beta-binomial estimator for the calibration factor for counts (Miller et al. 2010). However, it was recognized that the applicability of this estimator would partially depend on the magnitude of station-to-station variability, as well as whether differences in the ratio of Bigelow to Albatross catchability among strata were expected. Subsequently, Miller (2013) proposed a methodological framework for estimating relative catch efficiency by size, allowing for extra-binomial variation in means among paired observations using the NMFS paired-trawl study as an example. Accounting for random variation in relative efficiency among pairs using hierarchical mixed effects was important for all species considered, while models allowing for extra-binomial dispersion (conditional beta-binomial) performed better for more than half.

The calibration methods proposed by Miller (2013) were of particular interest for Spiny Dogfish given differences in the size distribution of the catches between vessels and surveys. Survey catchability encompasses three components: the presence of a species in an area, the proportion encountered by the gear, and the proportion caught when encountered (Sagarese et al. 2016). Thus, changes in seasonal distribution or in pelagic versus demersal behaviour might be expected to influence catch at length of Spiny Dogfish in the Spring and Fall NMFS surveys. Also, diet analyses suggest that immature and small Spiny Dogfish are predominantly pelagic, while mature and large individuals shift to being demersal (Alonso et al. 2002). However, the length distribution of survey catches in the Spring is bimodal, containing relatively high numbers of newborn offspring and young juveniles in some strata, particularly when sampled using the Bigelow (Figure 12). The Spring survey is believed to be concurrent with pupping, and survey catches suggest that newborn Spiny Dogfish are also briefly demersal, before shifting to a more pelagic existence. In contrast, survey catches in the summer and fall rarely exhibit substantial bimodality with length.

Diel Patterns

Another factor influencing survey estimates came to light in a recent study that evaluated dogfish catchability patterns in NMFS Spring and Fall surveys (Sagarese et al. 2016). This analysis used a quasibinomial Generalized Linear Model (GLM) to estimate relative survey catchability for Spiny Dogfish during the day (Benoit and Swain 2003, Casey and Myers 1998, Sagarese et al. 2016). The proportion caught during the day in each year and strata combination was the response, and the model incorporated an offset to represent the proportion of sets that took place during the day. Observed Catch Per Unit Effort (CPUE) in the survey in each year was adjusted to account for any significant day-night effect, leading to the conclusion that CPUE in the Spring survey may be overestimated by 41% (all age classes combined) or up to 49.8% for adult males. The authors suggested that vertical migration could account for Spiny Dogfish being less available to the demersal trawl during the night, in addition to daytime increases in availability due to feeding, aggregation behavior, or any visual herding on the bottom.

The coefficient estimates for relative daytime catchability of each maturity stage and sex of Spiny Dogfish from Sagarese et al. (2016) could not be applied directly to the NMFS Spring survey time series used here to account for diel catchability. For each stage and sex, one conversion factor was estimated for all years using survey data up to 2009. Including data up to 2015 would be expected to change these coefficients, particularly given that recent sampling was conducted using a different survey vessel with different protocols. In addition, Sagarese
et al. (2016) did not evaluate any variability in the proportion of day/night sets over strata or year, instead assuming that diel survey catchability in each year approximated mean conditions.

Outer Slope Sampling

The largest catches of dogfish in the Spring survey have occurred in strata along the edge of the continental shelf, hereafter called outer slope strata (Figure 13). Sampling of outer slope strata was higher in the early years of the survey (1968-1987), dropped until 2008, and then increased when the Bigelow took over in 2009 (Table 6). Similarly, the relative contribution of outer slope strata to the dogfish abundance index appears to have changed throughout the survey time series. During 1988-2008, 2009 strata accounted for 50% of dogfish abundance overall, none of them outer slope strata. Since 2009, 6 of these 9 strata remain associated with high dogfish abundance, while 2 outer slope strata have become important. Both these strata were skipped in about half the years during 1988-2008 (zero sets), and minimally sampled (1 set) in other years. The same is true for other outer slope strata, having zero or 1 set during 1988-2008, yet $2-3$ sets in the early survey time period as well as since the Bigelow was deployed in 2009.

Four of the outer slope strata can make huge contributions to abundance in years they are sampled. For example, stratum 1,120 was 53% of the total abundance in 2003, stratum 1,150 was 44% in 1994 , stratum 1,720 was 38% in 1,986 , and stratum 1,760 was 39% in 2012 . Three of these strata are major contributors to abundance (at least 15%) in at least one year during the Bigelow period. Most were sampled in at least 14 of the 21 years from 1988 to 2008 , while stratum 1,120 was only sampled in 7 years. Also, with the exception of 2007 , the sampling was always a single set. Thus the contribution of outer slope strata to survey estimates changed considerably during the Bigelow period.
Data are collected for a wide range of species from the NMFS Spring and DFO Summer surveys, meaning that sample allocation in either survey cannot be optimized for a single species to minimize within-stratum variance. In other words, variable catch rates of the target species among tows leads to increased uncertainty in the resulting abundance index (Nelson 2006). Besides having low precision, small samples taken from populations with highly variable densities tend to produce underestimates of available biomass (Schnute and Haigh 2003). To demonstrate this characteristic, we first assigned each outer slope strata a probability of being sampled in a given year, based on the actual number of sets completed by the Albatross during 1988-2008 (values ranged from 0.2 to 0.7). Catches in each stratum by the Bigelow were randomly selected according to these probabilities and were used to calculate weighted mean abundance estimates in each year (1,000 iterations). Plotting actual survey abundance estimates from 2009-2015 relative to the mean of the randomizations demonstrates systematic underestimation of juveniles (males and females), with differences up to 29\% (Figure 14). The randomized mean values for adults were much closer to the actual survey estimates.
The actual sampling that has taken place each year during the NMFS Spring survey does not necessarily meet the minimum number of observations per strata required to estimate a mean and variance under the current survey design and stratification scheme. Although these sampling limitations could be addressed by developing a post-stratification scheme for the entire survey (e.g., Gavaris and Smith 1987), it would be simpler to allow process error to vary in the framework model in a manner proportional to the number of missed outer slope strata. Four outer slope strata are considered critical to Spiny Dogfish abundance estimates (1,120, 1,150, 1,720 , and 1,760). Instead of keeping process error constant at 0.2 , one option would be to attribute a process error of 0.025 for each missing set (relative to a minimum stratified sampling limit of 2 sets) in a key outer slope stratum, effectively according higher weights to years characterized by better sampling. For example, if sampling was missed in all four outer slope
strata, process error would become 0.2 for that year. If one sample was taken in two of these strata and zero in the other two, process error would become 0.15 . This adjustment would apply to all years characterized by poor sampling in the outer slope strata. In the previous assessment (Fowler and Campana 2015), process errors of 0.6 had been assumed for the survey years 1973 to 1979 on the basis that length data were missing. Here, we propose that values should be 0.2 for those years, reflecting the adequate sampling of outer slope strata.

The sensitivity of the assessment model to this weighting approach for process error will be evaluated at the assessment meeting. There is the possibility that more strata may be considered when setting process errors.

METHODOLOGICAL EVALUATION

As detailed in the previous section, dogfish catchability is expected to vary between sexes, as well as among life stages, seasons, and times of day. Each of these factors could influence the abundance index derived from stratified random sampling, in isolation or in addition to changes in the sampling or vessel used during a survey. Because the Canadian assessment model uses NMFS survey data from the Spring season exclusively, it would be beneficial to have calibration factors specific to the Spring survey. It would also be beneficial to exclude strata that are not part of the stock definition used in previous assessments by the US (Figure 15; NEFSC 2006) and Canada (Figure 16; Fowler and Campana 2015) when calculating stratified abundance or biomass. Lastly, the current framework model splits data by life stage and sex, so an appropriate calibration is unlikely to be general to the entire population.

Survey Vessel

As a starting point, we obtained dogfish data from the paired-tow calibration study and the modelling script used in Miller (2013) to evaluate relative catchability at length. Initial fits combined data from both sexes as well as from all NMFS surveys (Figure 17). Based on marginal Akaike Information Criterion (AIC) (Miller 2013), the chosen model incorporated a conditional beta-binomial distribution for data within each tow pair, included random variation in the mean relationship between pairs (cubic spline smoother for mean) and included variation among pairs in the relationship of size to relative catch efficiency (cubic spline smoother of size for mean and dispersion).
Restricting the data to tow-pairs conducted during the Spring survey reduced the number of observations of the smallest and largest sizes of Spiny Dogfish (Figure 18). To ensure that enough observations existed at a given length, we only included sizes where a minimum of 10 fish had been captured by either vessel. This had a relatively small effect on the length range; going from $21-104 \mathrm{~cm}$ to $22-98 \mathrm{~cm}$. On the basis of marginal AIC, the same model structure was selected as optimal for this reduced dataset; however, mean relative catchability of the Bigelow increased substantially for the smallest lengths (Figure 19).

Male dogfish mature at smaller lengths than females. If their transition to demersal behaviour is governed primarily by life stage rather than size, earlier maturation would affect their catchability by demersal trawl. Because the Bigelow is more effective at catching smaller dogfish, relative catchability at length could vary between sexes. As a first step, we split the survey data into catches of males and females and re-fit the suite of models. Mean relative catchability is similar over a different size range for males than females: approximately $40-80 \mathrm{~cm}$ vs. 60-98 cm, respectively (Figures 20 and 21). This supports the idea that Bigelow catches should be calibrated separately for adults of each sex.

Diel Patterns

The analysis by Sagarese et al. (2016) suggests that day-night catchability varies so markedly for dogfish that it should not be ignored when calculating abundance indices from surveys. Relative to the vessel calibration for the NMFS Spring survey, we wanted to evaluate how markedly catch at length differed between daytime and nighttime paired tows. Although the paired-tow calibration study data did not include local time, the sets were also regular survey tows. By matching station numbers, we assigned local time and survey stratum to each paired tow. Using the approximate timing of dawn and dusk from Sagarese et al (2016), sets occurring from 05:01-19:00 were categorized as daytime sets, while those occurring from 19:01-05:00 were categorized as nighttime. The proportion of paired tows that took place at night was 0.37 , compared to an average of 0.42 in the Spring survey generally.

Dogfish catch at length varied substantially for daytime and nighttime tows conducted by the Albatross (Figure 22) and the Bigelow (Figure 23). For both vessels, relatively few strata had sets that occurred in the day and night, and total catches tended to be higher during the day. Summing over strata, such diel differences in catch at length were pronounced, particularly for juveniles.

Bigelow catches of juveniles could be an order of magnitude higher than those by the Albatross, in both the day and night (Figure 24). This fits with the hypothesis that the Bigelow fishes pelagically during haul-back because it maintains a fishing configuration throughout the duration of each tow (R. Johnston, NOAA, pers. comm.). The net configuration of the Albatross did not fish during haul-back.

If diel patterns were explicitly incorporated into a vessel-based standardization for catch at length during 2009-2015, it would become necessary to account for day-night differences in catchability throughout the survey time series. As a starting point, we redid the analyses presented in Sagarese et al. (2016) to estimate relative catchability coefficients for pups, juveniles and adults (split into male and female), using data from all survey years. The quasibinomial GLM estimated intercepts (calibration coefficients) for each life stage, combining data from all years. We subsequently evaluated sensitivity of the estimates to a range of factors, including: (1) the strata used in the calculation, where Sagarese et al. (2016) used all strata rather than the dogfish stock definition, (2) the years contributing to the estimates, where Sagarese et al. (2016) included 2009, the first year of sampling by the Bigelow; and (3) the life stage partitions, where Sagarese et al. (2016) used length at 50% maturity (L50) to separate juveniles from adults even though females appear to transition between more pelagic to more demersal behaviour at much smaller (immature) sizes.
Here we present five examples of how daytime catchability coefficients change with different ways of partitioning the data: (1) defining life stage relative to L50 and using data from the stock definition (Table 7; Stock definition strata only), (2) defining life stage relative to the apparent switch from pelagic to demersal behaviour suggested by survey catch at length for males and females (Table 7; Demersal length cutpoints), (3) using only data from the Albatross and demersal cutpoints to define life stage (Table 7; Demersal length cutpoints, drop 2009 Bigelow), (4) restrict the data to sampling done by the Bigelow and define life stage relative to maturity (Table 7; Bigelow years), and (5) restrict the data to sampling done by the Bigelow and define life stage relative to demersal behaviour (Table 7; Bigelow years, demersal cutpoints). The switch from pelagic to demersal behaviour was only approximate, taken as the inflection point in catchabilty at length for juvenile (> 26 cm) and adult male or female dogfish. For males, the demersal and maturity cutpoints are essentially the same (59 cm and 60 cm , respectively), but the demersal cutpoint is at a much smaller length for females (65 cm and 80 cm , respectively).

Pups—neonates in Sagarese et al. (2016)—represent dogfish $\leq 26 \mathrm{~cm}$ as opposed to 25 to 31 cm used elsewhere in this document.

Adult catchability (both sexes) was similar in day or night sets when only those strata in the dogfish stock definition were included. This suggests that the large and significant increase to catchability during the day for adult males reported by Sagarese et al. (2016) may have been primarily a result of herding in shallow and constrained inshore strata. For example, relative catchability of adult males dropped from 2.0 across all strata to 1.09 for the dogfish stock definition. When sampling was conducted exclusively by the Bigelow, relative catchability of adult males dropped to 0.81, suggesting higher catchability at night than during the day (Table 7). Also, relative catchability coefficients substantially increased for juveniles and pups when data from the Bigelow were included. For example, relative catchability for juvenile males (assuming demersal cutpoints) went from 1.48 (Albatross data only) to 1.70 (including 2009) to 5.16 (only Bigelow data) (Table 7). Thus, an appropriate diel calibration would have to be applied to the pup and pelagic life stages and would need to be specific to each survey vessel.

Most strata were sampled during either the day or night (not both), which means that the diel calibration could be sensitive to the manner in which dawn and dusk are identified. Sagarese et al. (2016) differentiated day and night based on constant time blocks. Given the broad longitudinal range of the Spring survey, using constant times to differentiate day and night could misclassify sets that were conducted close to twilight. To evaluate the sensitivity of a diel calibration to the definition of day and night, we calculated dusk and dawn relative using the astronomical methodology presented in Jacobson et al. (2011) and recalculated relative catchability by life stage. Coefficients were very similar for the relatively well represented demersal lengths, but results changed considerably for the poorly sampled pup and pelagic lengths (Table 13). This is mostly attributable to a single set switching diel definition, highlighting the sensitivity of catchability estimates to the poor representation of small dogfish. We would expect calibration estimates based on set-specific calculation of astronomical twilight to be better than those based on generalized dusk-dawn cutpoints, but the accuracy of pup and pelagic lengths is questionable.

Slope strata

Differences in slope sampling could affect the estimation of diel catchability, especially for the Albatross. Breaking the time series into 1980-1987 (two to three set sampling along the outer slope) and 1988-2008 (one or zero set sampling) and using the quasibinomial GLM described in Sagarese et al. (2016) to estimate daytime differences in catchability, suggests higher coefficients for pups and pelagic lengths for the earlier data (Table 8). This could occur if catchability of these life stages differed in the outer slope strata specifically, or if daytime catchability is better estimated by the greater number of samples. To evaluate the former, we compared relative catchability coefficients (day/night) over all strata, only slope strata, and only non-slope strata for fishing by the Bigelow (2009-2015), Albatross (1988-2008), and Albatross (1980-1987). Coefficients are variable when comparing data from slope with other strata (Table 9A and B), suggesting that the sampling design alone does not account for the variation in daytime catchability by the Albatross.

Combined Approaches

The paired-tow calibration data appear to be too sparse to support the inclusion of additional predictors for sex and diel period directly into the length-based calibration models developed by Miller (2013). For example, there is only one observation (a single tow pair) of non-zero catch of male dogfish ($31-58 \mathrm{~cm}$ and $\geq 86 \mathrm{~cm}$) or female dogfish ($31-60 \mathrm{~cm}$) at night for a large proportion of their length distribution (Table 10). If the data were to be split into subsets and
re-modelled, the results suggest that catchability is similar for each vessel when fishing either sex during the day (Figures 24 and 25). However, the same comparison for sets completed during the night demonstrates much higher relative catchability of smaller dogfish of both sexes, coupled with lower relative catchability of larger lengths (Figures 26 and 27). This suggests that diel period has a much greater influence on relative catchability by the Bigelow as compared to differences between the sexes.

The extreme paucity of data for pelagic lengths in the vessel catchability study seemed inconsistent with the large and significant coefficients for juvenile daytime catchability estimated from the Albatross data in the diel analysis. Large catches of pelagic lengths of dogfish typically occur in outer slope strata, and these strata were poorly sampled in the paired-tow study. Also, the length composition of the Bigelow catches in the calibration study does not reflect those of the Bigelow in other survey years (Table 11). Catches of pup and demersal lengths appear proportionate, but the Bigelow catches far more dogfish at pelagic lengths during survey years than in the calibration study. The calibration study sampling might be missing the main strata associated with pelagic catches (Table 12). Over 50% of the pelagic length catches for the Bigelow during 2009-2015 derive from just 4 strata, 3 of them outer slope (1,120, 1,150, 1,760) and 1 inner slope (1,110). All three of the primary outer slope strata were missed by the Bigelow during the calibration study, and the primary inner slope stratum was represented by a single night tow. This may be because the sharp depth gradients of slope strata are difficult to accommodate when attempting paired tows. Virtually all the outer slope strata associated with tallies over a thousand were sampled by the Albatross alone in 2008 (Table 12).

The low catches of pelagic lengths in the paired-tow calibration study in 2008 raises the question of comparability if data were to be used to standardize recent catches by the Bigelow (2009-2015). The length distribution caught during the Spring survey each year (separated into day and night catches) indicates extremely low catches of dogfish < 65 cm from 1996 until 2008 (Figure 28). The size composition of the catch during 2012 and 2013 by the Bigelow stands out as something we have never seen before. Increases of this magnitude from the 2011 survey year are biologically implausible given the life history of dogfish (Rago and Sosebee 2013), and they are very unlikely to come from recruitment alone.

Calibration Approach

Given that catchability varies by sex and with diel period, one option for calibration would be to incorporate these additional factors as predictors directly into the beta-binomial modeling framework proposed by Miller (2013). However, this would likely lead to less complex binomial or beta-binomial model from the suite of models being selected as optimal given the characteristics of the paired tow data. For example, there is only one observation (a single tow pair) of non-zero catch of male dogfish (31-58 cm and $\geq 86 \mathrm{~cm}$) or female dogfish ($31-60 \mathrm{~cm}$) at night for a large proportion of their length distribution (Table 10). A simpler method for calibration would be to partition the data into subsets and calculate a calibration factor for each subset. The significance of specific partitions could be evaluated using summed marginal AIC provided the model being applied to all subsets was the same. For example, fitting an intercept-only beta-binomial or quasibinomial GLM to data partitioned by life stage (pups juveniles, and adults) versus data partitioned by life stage and sex (pups, pelagic lengths, demersal males and demersal females) and comparing summed AIC between the two groups will give information on the importance of considering sex in the calibration model.

There are three main factors: life stage (pups, pelagic and demersal lengths), sex, and diel period. A simple (no smoothing) beta-binomial model with station-specific random effects intercepts fit to the entire data set gives a marginal AIC of 6,207.1. Fitting data partitioned by sex, life stage and diel period with the equivalent model and summing the marginal AIC gives
5816.7. Attempts to extend this comparison to more specifically address the roles of diel period (as a factor in sex-stage partitions) or life stage (as a factor within sex-diel partitions) were confounded by failures of some partitions to fit with the simple model (or any common model). We did, however, fit binomial Generalized Additive Models (GAMs) to assess the roles of diel (AIC of $6,902.4$ versus $6,948.7$) and life stage (AIC of $7,191.6$ versus $7,202.1$) factors. The AIC comparisons suggest that both factors significantly affect catchability.
Moving forward, it would be possible to make a vessel calibration conditional on the diel catchability pattern. However, our evaluation of this scenario produced calibration coefficients that were extremely large. Estimating relative daytime catchability of each life stage of dogfish from the Albatross (1980-2008) and Bigelow (2009-2015) using the quasibinomial model described in Sagarese et al. (2016) and then multiplying the paired-tow survey night sets by the significant relative daytime catchability coefficients (Table 7, demersal cutpoint results; pup and pelagic life stages, and demersal males for the Bigelow alone) gave factors of $1 / 10.3$ and 1/29.3 to equate Bigelow night catches of pup and pelagic lengths to the Albatross. Demersal adult males drop slightly from $1 / 2.0$ to $1 / 1.6$.

Although differences in day or night catchability would affect the variance and relative magnitude of the survey index, diel patterns should not cause systematic bias provided the proportion of day and night sets did not change systematically over time. There was no evidence of substantial change in the proportion of daytime sets in the NMFS Spring survey (Figure 29). Furthermore, a comparison of the resulting survey index using calibration coefficients determined from quasibinomial GLMs of data partitioned only by life stage with data partitioned by diel period and life stage revealed very minor differences (Figure 30).

Relative to uncalibrated data, partitioning the data by life stage and estimating relative catchability of the Bigelow to the Albatross produces large differences in abundances relative to uncalibrated estimates (Figure 31). The effect of this calibration is most pronounced in 2012 and 2013, where the survey caught extremely large numbers of small dogfish (Figures 32), which are subject to the highest Bigelow catchabilities. Such variability in the length distribution of the survey catches would be a critical consideration if NMFS Spring survey estimates were to be interpreted directly (outside a model that estimates catchability).

CONCLUSIONS

We propose to use the same data sources and stock definition for the dogfish assessment as in the most recent Canadian framework (Fowler and Campana 2015). However, the NMFS Spring survey index will be calculated directly as stratified abundance at length rather than being converted from the stratified biomass estimates as has been done in the past.
For the commercial catch data from the US, there is no formal data-sharing agreement to obtain annual updates. The method used in previous assessment updates to approximate the catch composition from summary statistics gave results that were very different from the actual data. If the commercial inputs to the population model cannot be updated annually, it would be better to interpret Spring survey trends rather than update the population model with assumed catch inputs.
There were three changes to the structure of the dogfish population model suggested at the data inputs meeting. First, process error associated with the surveys will be allowed to vary depending on the realization of stratified sampling of strata. Second, the observation error associated with survey catches will become sex-specific. Third, a model that incorporates the calibrated Spring survey index with one estimate for catchability (q) will be compared with a
model that splits the Spring survey index into the Bigelow and Albatross time periods and estimates two survey q's.
For the calibrated Spring survey index, the calibration constant recommended originally to standardize dogfish catches from the Bigelow relative to the Albatross (Miller et al. 2010) would adjust juvenile and adult components of the population equally. These analyses suggest that the largest differences in catchability between vessels pertain to juveniles, while the more demersal adult components of the population pose much smaller differences. To calibrate between vessels, the intercepts estimated from quasibinomial GLM fits to data portioned by sex and stage (pup, pelagic and demersal lengths) will be applied to total survey catches of the Bigelow as divisors within these partitions to relate Bigelow catches to the Albatross.

REFERENCES CITED

Alonso, M.K., E.A. Crespo, N.A. Garcia, S.N. Pedraza, P.A. Mariotti, and N.J. Mora. 2002. Fishery and ontogenetic driven changes in the diet of the Spiny Dogfish, Squalus acanthias, in Patagonian waters, Argentina. Environmental Biology of Fishes 63 (2): 193-202.

Benoît, H. P. and D. P. Swain. 2003. Accounting for length- and depth-dependent diel variation in catchability of fish and invertebrates in an annual bottom-trawl survey. ICES Journal of Marine Science 60:1298-1317.

Campana S.E., W. Joyce, and D.W. Kulka. 2009. Growth and reproduction of Spiny Dogfish off the eastern coast of Canada, including inferences on stock structure. In: V.F. Gallucci, G.A. McFarlane, and G.G. Bargmann [eds.]. Biology and management of dogfish sharks. American Fisheries Society, Bethesda Maryland: 195-208.

Carlson, A.E., E.R. Hoffmayer, C.A. Tribuzio, and J.A. Sulikowski. 2014. The use of satellite tags to redefine movement patterns of Spiny Dogfish (Squalus acanthias) along the U.S. East Coast: Implications for fisheries management. PLoS ONE 9(7): e103384. doi:10.1371/journal.pone.0103384.

Casey, J.M. and R.A. Myers. 1998. Diel variation in trawl catchability: is it as clear as day and night? Canadian Journal of Fisheries and Aquatic Sciences 55:2329-2340.

COSEWIC. 2010. Committee on the Status of Endangered Wildlife in Canada (COSEWIC) assessment and status report on the Spiny Dogfish Squalus acanthias, Atlantic population, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. Vii + 50pp.
DFO. 2007. Assessment of Spiny Dogfish in Atlantic Canada. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2007/046
DFO. 2014. Assessment of Spiny Dogfish in the Northwest Atlantic. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2014/055.
DFO. 2016. Northwest Atlantic Spiny Dogfish Stock Status Update Report. DFO Can. Sci. Advis. Sec. Sci. Resp. 2016/019.
Fowler, G.M. and S.E. Campana. 2015. Framework Assessment and 2013 Update using a Stage-based Population Model for Spiny Dogfish (Squalus acanthias) in the Northwest Atlantic. DFO Can. Sci. Advis. Sec. Res. Doc. 2015/065. v + 134 p.
Gavaris, S. and S.J. Smith. 1987. Effects of allocation and stratification strategies on precision of survey abundance estimates for Atlantic cod (Gadus morhua) on the eastern Scotian Shelf. J. Northw. Atl. Fish. Sci. 7: 137-144.

Jacobson, L., A. Seaver, and J. Tang. 2011. AstroCalc4R: software to calculate solar zenith angle; time at sunrise, local noon and sunset; and photosynthetically available radiation based on date, time and location. US Dept Commer, Northeast Fish Sci Cent Ref Doc. 11-14; 10 p.
Jensen, A.C., R.L. Edwards, and G.C. Matthiessen. 1961. The Spiny Dogfish - a review. Woods Hole Laboratory Report 61-7.
Miller, T.J. 2013. A comparison of hierarchical models for relative catch efficiency based on paired-gear data for US Northwest Atlantic fish stocks. Canadian Journal of Fisheries and Aquatic Sciences 70(9): 1306-1316.
Miller, T.J., C. Das, P.J. Politis, A.S. Miller, S.M. Lucey, C.M. Legault, R.W. Brown, and P.J. Rago. 2010. Estimation of Albatross IV to Henry B. Bigelow calibration factors. Northeast Fish Sci Cent Ref Doc. 10-05; 233 p.

Nammack, M.F., J.A. Musick, and J.A. Colvocoresses. 1985. Life history of Spiny Dogfish off the northeastern United States. Trans. Amer. Fish. Soc. 114: 367-376.

Nelson, G.A. 2006. A guide to statistical sampling for the estimation of river herring run size using visual counts. Massachusetts Div. Mar. Fish. Tech. Rep. TR-25.

Northeast Fisheries Science Center (NEFSC). 2006. 43rd Northeast Regional Stock Assessment Workshop (43rd SAW): 43rd SAW Assessment Report. US Dep. Commer., Northeast Fisheries Science Centre Reference Document 06-25.

Rago, P.J. and K.A. Sosebee. 2010. Biological Reference Points for Spiny Dogfish . Northeast Fish Sci Cent Ref Doc. 10-06; 52 p.

Rago, P. and K. Sosebee. 2013. Update on the Status of Spiny Dogfish in 2013 and Projected Harvests at the Fmsy Proxy and Pstar of 40\%. Draft Working Paper of the Mid Atlantic Fishery Management Council.

Rago, P. and K. Sosebee. 2014. Update of Landings and Discards of Spiny Dogfish in 2014. Draft Working Paper of the Mid Atlantic Fishery Management Council.
Rago, P. and K. Sosebee. 2015. Update on the Status of Spiny Dogfish in 2015 and Projected Harvests at the Fmsy Proxy and Pstar of 40\%. Draft Working Paper of the Mid Atlantic Fishery Management Council.

Sagarese, S.R., M.G. Frisk, R.M. Cerrato, K.A. Sosebee, J.A. Musick, and P.J. Rago. 2016. Diel Variations in Survey Catch Rates and Survey Catchability of Spiny Dogfish and their Pelagic Prey in the Northeast U.S. Continental Shelf Large Marine Ecosystem. Mar. Coastal Fish. 8: 244-262.

Schnute, J.T. and R. Haigh. 2003. A simulation model for designing groundfish trawl surveys. Canadian Journal of Fisheries and Aquatic Sciences, 2003, 60(6): 640-656.

Sosebee, K.A. 2005. Are Density-dependent Effects on Elasmobranch Maturity Possible? J. Northw. Atl. Fish. Sci., 35: 115-124.

TRAC. 2010. Proceedings of the Transboundary Resources Assessment Committee (TRAC) Spiny Dogfish Review Benchmark Data Meeting 30 March - 2 April 2009 and Benchmark Model and Assessment Meeting 25-29 January 2010. Woods Hole, Massachusetts. Meeting Chairpersons: L. O'Brien and T. Worcester. Trans. Resourc. Assess. Commit. Proc. 2010/01.TRAC.

TABLES

Table 1. Von Bertalanffy growth parameters for dogfish in Canada and the US as reported in Fowler and Campana (2015). Values represent total length (TL) for length at birth (L_{0}) and asymptotic length (L_{∞}). The curvature parameter (K) representing how quickly the fish grows is also given.

Country	Sex	L_{∞}	K	L_{0}
Canada	Male	83.0	0.126	30.35
Canada	Female	106.0	0.066	30.35
US	Male	82.5	0.148	30.35
US	Female	100.5	0.106	30.35

Table 2. Discard mortality estimates determined during the 2010 Spiny Dogfish TRAC meeting. "NA" = data not available.

Country	Longline	Otter Trawl	Gillnet	Recreational Landings	Foreign Otter Trawl	Other Gear*	Scallop Dredge
Canada	0.1	0.25	0.55	NA	0.25	0.1	NA
USA	0.1	0.5	0.3	0.25	0.5	0.5	0.75

*Other Gear = groundfish-directed longline for Canada

Table 3. Canadian dogfish landings and discards in metric tons by fishery, year and time period (1 = November-April, $2=$ May-October). "NA" = data not available.

Year	Period	Directed longline landings	Otter trawl landings	Gillnet landings	Foreign otter trawl landings	Groundfish longline landings	Directed longline discards	Otter trawl discards	Gillnet discards	Foreign otter trawl discards	Groundfish longline discards	Total
$\begin{gathered} 1922- \\ 1945 \end{gathered}$	1+2	NA										
$\begin{gathered} 1946- \\ 1962 \end{gathered}$	1+2	8	1	0	0	NA	NA	1,326	1,433	NA	824	3,592
1963	1+2	8	1	0	0	NA	NA	1,420	1,535	NA	882	3,846
1964	1+2	8	1	0	0	NA	NA	1,392	1,505	NA	866	3,772
1965	1+2	8	1	0	76	NA	NA	1,479	1,598	NA	919	4,081
1966	1+2	33	5	1	3,110	NA	NA	1,594	1,723	NA	991	7,458
1967	1+2	0	0	0	620	NA	NA	1,526	1,650	NA	949	4,744
1968	1+2	0	0	0	540	NA	NA	1,609	1,739	NA	1,000	4,888
1969	1+2	0	0	0	363	NA	NA	1,571	1,698	NA	977	4,609
1970	1	0	1	0	143	NA	NA	165	437	NA	307	1,052
1970	2	16	1	0	553	NA	NA	1,331	1,180	NA	623	3,705
1971	1	0	0	0	197	NA	NA	162	429	NA	301	1,089
1971	2	3	0	0	758	NA	NA	1,308	1,160	NA	612	3,842
1972	1	0	0	0	1,021	NA	NA	148	393	NA	276	1,839
1972	2	2	0	0	3,935	NA	NA	1,198	1,063	NA	561	6,759
1973	1	0	1	0	1,275	NA	NA	154	409	NA	288	2,127
1973	2	17	1	0	4,910	NA	NA	1,247	1,106	NA	584	7,866
1974	1	1	2	0	1,965	NA	NA	119	316	NA	222	2,625
1974	2	30	3	1	7,572	NA	NA	964	855	NA	451	9,876
1975	1	0	0	0	1,560	NA	NA	123	325	NA	229	2,237
1975	2	1	0	0	6,009	NA	NA	992	880	NA	464	8,346
1976	1	0	0	0	1,220	NA	NA	134	355	NA	249	1,958
1976	2	2	0	0	4,700	NA	NA	1082	959	NA	506	7,250
1977	1	0	0	0	288	NA	NA	146	386	NA	271	1,091
1977	2	1	0	0	1,111	NA	NA	1,178	1,044	NA	551	3,886

Year	Period	Directed longline landings	Otter trawl landings	Gillnet landings	Foreign otter trawl landings	Groundfish longline landings	Directed longline discards	Otter trawl discards	Gillnet discards	Foreign otter trawl discards	Groundfish longline discards	Total
1978	1	1	5	0	8	NA	NA	172	455	NA	320	961
1978	2	70	6	2	29	NA	NA	1,388	1,231	NA	650	3,376
1979	1	23	74	0	5	NA	NA	198	526	NA	370	1,195
1979	2	1,109	99	27	30	NA	NA	1,603	1,422	NA	750	5,039
1980	1	11	37	0	74	NA	NA	210	557	NA	391	1,279
1980	2	550	49	13	293	NA	NA	1,697	1,505	NA	794	4,900
1981	1	10	32	0	67	NA	NA	220	583	NA	410	1,321
1981	2	470	42	11	491	NA	NA	1,779	1,578	NA	833	5,203
1982	1	7	22	0	25	NA	NA	231	614	NA	431	1,329
1982	2	324	29	8	27	NA	NA	1,871	1,659	NA	876	4,793
1983	1	0	0	0	151	NA	NA	217	576	NA	405	1,350
1983	2	0	0	0	233	NA	NA	1,758	1,559	NA	822	4,372
1984	1	0	0	0	6	NA	NA	209	553	NA	389	1,157
1984	2	2	0	0	307	NA	NA	1,687	1,496	NA	790	4,282
1985	1	0	1	0	33	NA	NA	215	571	NA	401	1,222
1985	2	11	1	0	379	NA	NA	1,741	1,544	NA	815	4,492
1986	1	0	0	0	21	NA	NA	698	341	NA	180	1,240
1986	2	8	2	0	216	NA	NA	1,668	1,862	NA	913	4,669
1987	1	3	1	0	1	NA	NA	811	347	NA	458	1,621
1987	2	223	25	5	93	NA	NA	1,630	2,083	NA	934	4,993
1988	1	13	0	0	275	NA	NA	590	134	NA	403	1,415
1988	2	0	0	0	272	NA	NA	1,676	1,741	NA	1,010	4,699
1989	1	0	0	0	96	NA	NA	832	149	NA	372	1,449
1989	2	123	37	2	68	NA	NA	1,279	2,344	NA	927	4,780
1990	1	0	61	0	108	NA	NA	562	381	NA	403	1,515
1990	2	566	17	13	276	NA	NA	968	2,510	NA	1,100	5,450
1991	1	36	5	0	99	NA	NA	714	214	NA	409	1,477
1991	2	138	10	0	107	NA	NA	1,676	1,979	NA	1,121	5,031

Year	Period	Directed longline landings		Gillnet landings	Foreign otter trawl landings	Groundfish longline landings	Directed Iongline discards	Otter trawl discards	Gillnet discards	Foreign otter trawl discards	Groundfish longline discards	Total
1992	1	0	0	0	45	NA	NA	738	151	NA	428	1,362
1992	2	515	38	2	0	NA	NA	1,854	1,475	NA	1,199	5,083
1993	1	2	1	1	27	NA	NA	478	115	NA	321	945
1993	2	590	24	112	0	NA	NA	1342	1,137	NA	820	4,025
1994	1	1	0	5	0	NA	NA	311	27	NA	105	449
1994	2	791	0	26	0	NA	NA	888	851	NA	629	3,185
1995	1	22	2	0	0	NA	NA	262	13	NA	102	401
1995	2	328	3	42	0	NA	NA	741	854	NA	372	2,340
1996	1	1	1	0	0	NA	NA	323	2	NA	67	394
1996	2	25	6	27	0	NA	NA	862	545	NA	426	1,891
1997	1	29	1	0	0	NA	NA	342	8	NA	92	472
1997	2	125	8	107	7	NA	NA	1,232	788	NA	378	2,645
1998	1	24	10	0	0	NA	NA	495	15	NA	98	642
1998	2	732	13	92	0	NA	NA	1,263	795	NA	289	3,184
1999	1	38	2	16	0	NA	NA	262	17	NA	75	410
1999	2	1,658	7	169	0	NA	NA	982	492	NA	253	3,561
2000	1	7	6	0	0	NA	NA	357	90	NA	88	548
2000	2	2,339	37	150	0	NA	NA	785	434	NA	220	3,965
2001	1	44	4	26	0	NA	NA	375	74	NA	76	599
2001	2	2,978	18	508	0	NA	NA	800	505	NA	199	5,008
2002	1	68	2	31	0	NA	NA	328	107	NA	70	606
2002	2	2,838	7	492	0	NA	NA	995	527	NA	153	5,012
2003	1	1	1	0	0	NA	NA	300	147	NA	73	522
2003	2	868	5	418	0	NA	NA	887	515	NA	134	2,827
2004	1	0	1	0	0	NA	NA	344	120	NA	62	527
2004	2	1,945	1	343	0	NA	NA	698	668	NA	99	3,754
2005	1	86	1	0	0	NA	NA	346	71	NA	35	539
2005	2	1,926	4	294	0	NA	NA	779	449	NA	93	3,545

Year	Period	Directed Iongline landings		Gillnet landings	Foreign otter trawl landings	Groundfish longline landings	Directed longline discards	Otter trawl discards	Gillnet discards	Foreign otter trawl discards	Groundfish longline discards	Total
2006	1	31	1	0	0	NA	NA	226	59	NA	44	361
2006	2	1,896	1	513	0	NA	NA	597	276	NA	104	3,387
2007	1	26	1	0	0	NA	NA	271	9	NA	46	353
2007	2	1,926	8	426	0	NA	NA	703	313	NA	121	3,497
2008	1	23	0	0	0	NA	NA	242	16	NA	47	328
2008	2	1,395	2	126	0	NA	NA	695	295	NA	110	2,623
2009	1	12	0	0	0	NA	NA	276	3	NA	55	346
2009	2	152	1	0	0	NA	NA	860	259	NA	83	1,355
2010	1	0	0	0	0	NA	NA	254	12	NA	49	315
2010	2	5	0	0	0	NA	NA	842	265	NA	91	1,203
2011	1	0	4	0	0	NA	NA	201	4	NA	47	256
2011	2	94	26	0	0	NA	NA	846	204	NA	82	1,252
2012	1	0	8	0	0	NA	NA	266	9	NA	41	324
2012	2	0	57	0	0	NA	NA	954	153	NA	70	1,234
2013	1	5	0	0	0	NA	NA	171	2	NA	32	210
2013	2	0	0	0	0	NA	NA	595	128	NA	60	783
2014	1	0	3	0	0	NA	NA	103	0	NA	10	116
2014	2	13	38	0	0	NA	NA	120	46	NA	15	232
2015	1	0	0	0	0	NA	NA	14	6	NA	1	21
2015	2	0	1	0	0	NA	NA	24	0	NA	6	31

Table 4. US dogfish landings and discards in metric tons by fishery, year and time period (1 = November-April, $2=$ May-October). "NA" = data not available.

Year	Period	Directed longline landings	Otter trawl landings	Gillnet landings	Rec landings	Foreign otter trawl landings	Other gear landings	Directed Iongline discards	Otter trawl discards	Gillnet discards	Rec discards	Scallop dredge discards	Total
1922	1+2	NA											
1923	1+2	0	0	0	NA	NA	NA	0	0	0	NA	NA	0
1924	1+2	1	3	6	NA	NA	NA	66	2,305	17	NA	NA	2,398
1925	1+2	0	0	0	NA	NA	NA	0	0	0	NA	NA	0
1926	1+2	0	1	2	NA	NA	NA	20	709	5	NA	NA	738
1927	1+2	0	0	0	NA	NA	NA	0	0	0	NA	NA	0
1928	1+2	8	33	53	NA	NA	NA	623	21,662	160	NA	NA	22,539
1929	1+2	9	40	65	NA	NA	NA	760	26,451	196	NA	NA	27,521
1930	1+2	4	17	27	NA	NA	NA	320	11,118	82	NA	NA	11,568
1931	1+2	2	8	13	NA	NA	NA	148	5,158	38	NA	NA	5,367
1932	1+2	1	6	9	NA	NA	NA	106	3,695	27	NA	NA	3,844
1933	1+2	1	3	5	NA	NA	NA	61	2,118	16	NA	NA	2,203
1934	1+2	0	0	0	NA	NA	NA	0	0	0	NA	NA	0
1935	1+2	5	24	39	NA	NA	NA	455	15,834	117	NA	NA	16,475
1936	1+2	0	0	0	NA	NA	NA	0	0	0	NA	NA	0
1937	1+2	3	14	23	NA	NA	NA	270	9377	69	NA	NA	9,756
1938	1+2	5	24	38	NA	NA	NA	448	15,582	115	NA	NA	16,213
1939	1+2	5	21	35	NA	NA	NA	403	14,018	104	NA	NA	14,585
1940	1+2	23	100	163	NA	NA	NA	1,893	65,867	488	NA	NA	68,533
1941	1+2	23	100	163	NA	NA	NA	1,893	65,867	488	NA	NA	68,533
1942	1+2	5	20	33	NA	NA	NA	384	13,367	99	NA	NA	13,908
1943	1+2	5	22	35	NA	NA	NA	413	14,385	106	NA	NA	14,967
1944	1+2	2	10	16	NA	NA	NA	181	6,290	47	NA	NA	6,544
1945	1+2	2	10	16	NA	NA	NA	187	6,521	48	NA	NA	6,784
1946	1+2	6	26	42	NA	NA	NA	488	16,989	126	NA	NA	17,677
1947	1+2	2	7	12	NA	NA	NA	136	4,746	35	NA	NA	4,938
1948	1+2	2	9	15	NA	NA	NA	175	6,101	45	NA	NA	6,347
1949	1+2	25	108	176	NA	NA	NA	2,054	71,474	529	NA	NA	74,366

Year	Period	Directed longline landings	Otter trawl landings	Gillnet landings	Rec landings	Foreign otter trawl landings	Other gear landings	Directed longline discards	Otter trawl discards	Gillnet discards	Rec discards	Scallop dredge discards	Total
1950	1+2	5	24	38	NA	NA	NA	448	15,582	115	NA	NA	16,213
1951	1+2	4	16	27	NA	NA	NA	312	10,847	80	NA	NA	11,286
1952	1+2	2	9	14	NA	NA	NA	163	5,660	42	NA	NA	5,889
1953	1+2	3	12	19	NA	NA	NA	223	7,770	58	NA	NA	8,085
1954	1+2	2	10	16	NA	NA	NA	190	6,615	49	NA	NA	6,883
1955	1+2	3	15	24	NA	NA	NA	281	9,765	72	NA	NA	10,160
1956	1+2	20	87	141	NA	NA	NA	1,648	57,330	424	NA	NA	59,651
1957	1+2	49	214	348	NA	NA	NA	4,050	140,910	1,043	NA	NA	146,614
1958	1+2	34	150	244	NA	NA	NA	2,846	99,015	733	NA	NA	103,023
1959	1+2	30	133	216	NA	NA	NA	2,517	87,570	648	NA	NA	91,115
1960	1+2	30	133	216	NA	NA	NA	2,517	87,570	648	NA	NA	91,115
1961	1+2	30	133	216	NA	NA	NA	2,517	87,570	648	NA	NA	91,115
1962	1+2	19	78	129	NA	0	8	1,554	51,716	380	NA	937	54,822
1963	1+2	50	86	436	NA	1	39	1,554	51,716	380	NA	937	55,198
1964	1+2	13	75	619	NA	16	23	1,554	51,716	380	NA	937	55,333
1965	1+2	55	52	358	NA	198	22	1,554	50,908	345	NA	922	54,415
1966	1+2	85	95	358	NA	9,389	40	1,554	48,730	531	NA	883	61,665
1967	1+2	24	111	98	NA	2,436	45	1,554	44,018	516	NA	797	49,599
1968	1+2	3	78	54	NA	4,404	23	1,554	42,748	713	NA	774	50,351
1969	1+2	2	88	6	NA	9,190	17	1,554	39,654	500	NA	718	51,730
1970	1	0	32	0	NA	4,003	4	173	18,202	91	NA	264	22,769
1970	2	2	48	12	NA	1,637	7	3,278	18,202	365	NA	396	23,945
1971	1	0	21	0	NA	9,265	6	269	16,512	98	NA	239	26,411
1971	2	0	32	4	NA	2,301	10	5,119	16,512	391	NA	359	24,727
1972	1	0	21	0	NA	12,357	6	266	14,322	159	NA	208	27,337
1972	2	1	32	1	NA	11,634	9	5,048	14,322	636	NA	311	31,993
1973	1	0	31	0	NA	12,599	2	276	14,246	166	NA	206	27,526
1973	2	0	46	4	NA	6,194	3	5,241	14,246	663	NA	310	26,707
1974	1	0	32	3	NA	17,094	14	274	13,108	279	NA	190	30,993
1974	2	2	48	10	NA	7,419	21	5,212	13,108	1,115	NA	285	27,219

Year	Period	Directed longline landings	Otter trawl landings	Gillnet landings	Rec landings	Foreign otter trawl landings	Other gear landings	Directed longline discards	Otter trawl discards	Gillnet discards	Rec discards	Scallop dredge discards	Total
1975	1	0	36	1	NA	14,384	17	264	11,598	311	NA	168	26,779
1975	2	0	54	2	NA	8,139	26	5,022	11,598	1,246	NA	252	26,339
1976	1	0	29	13	NA	12,025	14	168	12,326	473	NA	179	25,225
1976	2	5	43	438	NA	4,763	21	3,191	12,326	1,890	NA	268	22,945
1977	1	0	41	0	NA	2,247	11	117	14,291	637	NA	207	17,551
1977	2	3	62	799	NA	4,952	16	2,224	14,291	2,550	NA	311	25,207
1978	1	0	49	0	NA	572	7	202	16,914	860	NA	245	18,848
1978	2	3	73	675	NA	50	10	3,840	16,914	3,439	NA	368	25,371
1979	1	1	1,407	12	NA	187	7	267	17,790	807	NA	258	20,736
1979	2	17	2,111	1,170	NA	0	11	5,065	17,790	3,230	NA	387	29,779
1980	1	1	1,348	30	NA	599	26	137	19,311	1,108	NA	280	22,840
1980	2	11	2,022	638	NA	0	39	2,610	19,311	4,432	NA	420	29,483
1981	1	0	2,515	0	597	936	3	93	18,180	1,072	118	263	23,778
1981	2	1	3,772	568	896	38	5	1,768	18,180	4,288	178	395	30,089
1982	1	0	2,026	1	28	338	9	59	21,455	891	140	311	25,257
1982	2	3	3,039	319	42	26	13	1,126	21,455	3,563	209	466	30,263
1983	1	0	1,347	0	27	452	2	82	21,094	808	216	306	24,334
1983	2	0	2,021	230	40	12	3	1,567	21,094	3,234	324	459	28,984
1984	1	0	994	1,294	36	391	3	38	19,813	984	170	287	24,010
1984	2	1	1,492	1,955	55	0	5	727	19,813	3,934	254	431	28,666
1985	1	8	1,138	0	36	823	3	57	16,677	908	386	242	20,276
1985	2	151	1,707	1,017	53	189	5	1,076	16,677	3,631	578	363	25,447
1986	1	0	503	8	73	368	7	58	15,873	977	475	230	18,570
1986	2	2	755	1,462	109	0	10	1,095	15,873	3,906	712	345	24,269
1987	1	0	739	0	122	129	13	111	14,525	973	422	211	17,247
1987	2	7	1,109	678	184	10	20	2,113	14,525	3,891	634	316	23,486
1988	1	0	636	137	144	647	4	90	14,476	1,026	350	210	17,719
1988	2	4	954	1,495	215	0	5	1,702	14,476	4,106	526	315	23,797
1989	1	7	195	23	167	256	8	83	14,143	1,072	538	205	16,697
1989	2	131	292	3,789	251	0	12	1,578	14,143	4,288	806	307	25,598

Year	Period	Directed Iongline landings	Otter trawl landings	Gillnet landings	Rec landings	Foreign otter trawl landings	Other gear landings	Directed longline discards	Otter trawl discards	Gillnet discards	Rec discards	Scallop dredge discards	Total
1990	1	1	2,804	174	72	393	1	57	17,121	1,212	468	248	22,551
1990	2	16	4,206	6,696	107	0	2	1,081	17,121	4,850	702	372	35,154
1991	1	2	2,083	3,194	52	234	9	89	9,661	2,206	540	13	18,084
1991	2	30	3,125	3,648	79	0	14	1,700	9,661	8,824	810	19	27,909
1992	1	0	1,914	6,413	86	67	101	30	16,309	1,191	408	331	26,849
1992	2	9	2,871	5,392	129	0	151	576	16,309	4,762	611	496	31,307
1993	1	13	2,040	6,505	48	27	9	0	8,642	1,963	444	84	19,774
1993	2	238	3,060	9,313	72	0	14	0	8,642	7,851	666	125	29,982
1994	1	41	1,198	6,453	62	2	55	160	6,954	577	387	289	16,179
1994	2	780	1,797	9,524	93	0	83	3,041	6,954	2,310	581	434	25,595
1995	1	84	952	5,243	27	14	135	187	8,499	1,346	262	151	16,901
1995	2	1,603	1,428	11,480	41	0	203	3,553	8,499	5,385	392	227	32,811
1996	1	80	1,341	8,986	10	236	40	174	4,701	778	132	48	16,527
1996	2	1,526	2,011	10,349	15	0	61	3,314	4,701	3,112	197	73	25,359
1997	1	70	711	11,535	26	214	40	235	3,352	465	335	79	17,062
1997	2	1,322	1,067	8,000	40	0	60	4,460	3,352	1,861	502	119	20,783
1998	1	74	1,043	7,219	16	607	46	49	2,634	393	244	48	12,373
1998	2	1,403	1,565	10,184	23	0	69	931	2,634	1,572	366	72	18,819
1999	1	88	897	6,938	21	554	106	267	3,843	401	213	16	13,344
1999	2	1,665	1,346	5,297	32	0	159	5,080	3,843	1,604	319	25	19,369
2000	1	89	1,270	2,117	2	402	30	192	1,364	937	274	6	6,683
2000	2	1,683	1,905	1,529	3	0	46	3,650	1,364	3,747	411	8	14,347
2001	1	66	96	199	11	677	10	119	2,460	1,441	840	12	5,930
2001	2	1,247	144	272	17	0	15	2,269	2,460	5,763	1,259	18	13,463
2002	1	52	95	464	82	474	12	578	2,770	999	669	23	6,219
2002	2	995	142	557	123	0	18	10,976	2,770	3,998	1,004	35	20,617
2003	1	32	15	291	16	643	31	16	1,927	1,083	1,195	41	5,290
2003	2	613	23	367	24	0	46	307	1,927	4,330	1,792	62	9,491
2004	1	1	60	379	42	330	20	130	4,150	806	1,396	21	7,335
2004	2	24	90	344	63	0	30	2,465	4,150	3,225	2,094	32	12,516

Year	Period	Directed Iongline landings	Otter trawl landings	Gillnet landings	Rec landings	Foreign otter trawl landings	Other gear landings	Directed Iongline discards	Otter trawl discards	Gillnet discards	Rec discards	Scallop dredge discards	Total
2005	1	3	100	137	18	330	59	29	3,758	668	1,404	6	6,510
2005	2	53	150	585	27	0	89	546	3,758	2,670	2,105	9	9,992
2006	1	7	188	120	38	0	120	177	3,887	674	1,536	6	6,751
2006	2	131	281	691	56	0	181	3,357	3,887	2,695	2,304	8	13,592
2007	1	8	83	1,524	34	0	269	104	4,058	1,027	1,720	24	8,850
2007	2	158	125	971	50	0	403	1,972	4,058	4,106	2,580	37	14,460
2008	1	0	3	1,068	24	0	175	31	2,672	973	1,246	95	6,287
2008	2	265	271	1,521	121	0	427	591	2,672	3,891	1,869	142	11,771
2009	1	0	1	1,417	42	0	188	117	3,727	2,334	437	146	8,409
2009	2	127	559	2,293	20	0	598	499	1,751	5,324	1,290	218	12,679
2010	1	32	247	1,403	8	0	143	613	4,118	3,374	485	143	10,566
2010	2	572	349	2,723	14	0	339	252	1,651	2,330	854	75	9,159
2011	1	4	531	1,857	1	0	86	34	963	602	119	24	4,221
2011	2	495	547	4,098	8	0	620	379	3,503	3,021	1,002	138	13,811
2012	1	34	363	2,656	12	0	270	68	3,990	2,851	338	255	10,837
2012	2	1,735	427	4,104	12	0	933	163	4,390	2,957	554	170	15,445
2013	1	22	514	4,271	7	0	143	70	2,845	2,385	270	44	10,571
2013	2	537	250	1,869	13	0	547	219	3,545	3,515	885	73	11,453
2014	1	80	198	3,813	2	0	129	23	3,885	2,402	382	45	10,959
2014	2	1,580	202	2,714	9	0	737	13	2,454	3,117	351	62	11,239
2015	1	114	332	4,564	11	0	103	2	3,484	769	2,824	16	12,219
2015	2	1,274	163	2,019	24	0	632	175	1,967	1,692	293	18	8,257

Table 5. Summary of fishing removals of dogfish since 1990. Grey shading encompasses the years for which Canadian catches were adequately sampled to reflect catch compositions. The US fishery has been adequately sampled since 1990. The commercial quota for the US is represented by the coast-wide allocation of dogfish reported by the Massachusetts Energy and Environmental Affairs website. Landings and discards are in tonnes. "NA" = data not available.

Year	US Quota (tonnes)	us landings	us discards	US proportion discarded	US proportion discarded dead	US total male discards (millions)	US total female discards (millions)	Canadian TAC (tonnes)	Canadian landings	Canadian discards	Canadian proportion discarded	Canadian proportion discarded dead	Canadian total male discards (millions)	Canadian total female discards (millions)
1990	NA	14,472	43,232	0.75	0.83	9.396	13.407	NA	1,041	5,924	0.85	0.32	1.088	1.933
1991	NA	12,470	33,523	0.73	0.74	5.190	8.969	NA	395	6,113	0.94	0.7	0.474	0.915
1992	NA	17,133	41,023	0.71	0.79	8.773	13.423	NA	600	5,845	0.91	0.81	0.420	0.985
1993	NA	21,339	28,417	0.57	0.66	5.014	12.665	NA	757	4,213	0.85	0.74	0.310	0.830
1994	NA	20,088	21,687	0.52	0.57	4.203	11.820	NA	823	2,811	0.77	0.63	0.236	0.632
1995	NA	21,210	28,501	0.57	0.59	8.575	13.336	NA	397	2,344	0.86	0.79	0.234	0.554
1996	NA	24,655	17,230	0.41	0.44	6.150	16.253	NA	60	2,225	0.97	0.94	0.239	0.231
1997	NA	23,085	14,760	0.39	0.32	6.427	12.520	NA	277	2,840	0.91	0.75	0.329	0.529
1998	NA	22,249	8,943	0.29	0.18	9.386	14.510	NA	871	2,955	0.77	0.56	0.544	0.682
1999	NA	17,103	15,611	0.48	0.24	7.068	13.373	NA	1,890	2,081	0.52	0.26	0.198	1.259
2000	NA	9,076	1,1953	0.57	0.26	4.131	9.029	NA	2,539	1,974	0.44	0.2	0.215	1.577
2001	NA	2,754	1,6641	0.86	0.22	5.835	8.006	NA	3,578	2,029	0.36	0.14	0.987	1.561
2002	NA	3,014	23,822	0.89	0.3	4.271	6.940	NA	3,438	2,180	0.39	0.18	0.407	1.713
2003	NA	2,101	12,680	0.86	0.25	5.887	7.453	NA	1,293	2,056	0.61	0.36	0.286	0.778
2004	NA	1,383	18,469	0.93	0.45	3.883	5.558	2,500	2,290	1,991	0.47	0.24	0.578	1.095
2005	1,816	1,551	14,953	0.91	0.38	3.715	4.919	2,500	2,311	1,773	0.43	0.2	0.497	1.110
2006	1,816	1,813	18,531	0.91	0.85	1.627	2.987	2,500	2,442	1,306	0.35	0.15	0.507	1.040
2007	1,405	3,625	19,686	0.84	0.73	1.802	3.623	2,500	2,387	1,463	0.38	0.16	0.524	1.026
2008	3,632	3,875	14,182	0.79	0.75	2.282	4.007	2,500	1,546	1,405	0.48	0.22	0.401	0.702
2009	5,448	5,245	15,843	0.75	0.74	2.651	5.364	2,500	165	1,536	0.9	0.73	0.123	0.223
2010	3,756	5,830	13,895	0.7	0.68	2.656	4.491	2,500	5	1,513	1	0.99	0.107	0.158
2011	5,060	8,346	9,785	0.54	0.36	1.760	4.263	2,500	124	1,384	0.92	0.77	0.128	0.186
2012	7,788	10,545	15,736	0.6	0.45	1.822	5.990	2,500	65	1,493	0.96	0.86	0.123	0.173
2013	10,755	8,173	13,851	0.63	0.59	2.229	5.585	2,500	5	988	0.99	0.98	0.072	0.102
2014	13,000	9,464	12,734	0.57	0.55	2.513	5.924	2,500	54	294	0.84	0.86	0.035	0.050
2015	13,327	9,235	11,240	0.55	0.41	2.330	4.561	10,000	1	51	0.98	0.99	0.004	0.005

Table 6. Number of sampling tows undertaken in nine outer slope strata during the NMFS Spring survey since 1980.

Year	Outer Slope Strata								
	1040	1080	1120	1150	1180	1640	1680	1720	1760
1980	0	0	0	0	0	0	0	0	0
1981	1	1	3	2	0	1	2	1	2
1982	2	2	2	2	2	1	2	2	2
1983	3	1	2	1	1	1	2	2	2
1984	2	2	1	0	2	0	1	2	2
1985	1	2	2	2	2	0	2	2	2
1986	3	3	2	3	1	0	0	2	2
1987	2	1	2	1	1	2	1	2	2
1988	1	0	1	1	1	1	1	0	1
1989	1	1	1	1	1	1	1	1	1
1990	1	1	1	0	0	0	0	0	1
1991	1	0	1	1	1	0	0	1	1
1992	1	1	0	1	1	0	0	1	1
1993	1	0	0	1	1	0	1	1	1
1994	0	0	0	1	0	1	1	1	0
1995	0	0	0	1	0	1	0	0	1
1996	1	0	1	0	0	2	1	1	0
1997	0	0	0	1	2	0	1	0	0
1998	0	1	0	1	1	0	0	1	0
1999	0	0	0	0	0	1	1	0	0
2000	0	0	0	1	0	1	1	0	0
2001	1	1	0	0	1	1	1	1	1
2002	0	0	0	0	0	1	0	1	1
2003	1	0	1	1	1	1	1	1	1
2004	0	0	1	0	0	1	1	1	1
2005	1	0	0	1	1	1	1	1	1
2006	0	0	0	1	1	1	1	1	0
2007	3	0	0	1	1	1	3	3	3
2008	1	0	0	1	0	1	1	1	1
2009	3	2	1	0	0	2	2	2	2
2010	3	3	3	2	2	2	3	2	3
2011	3	3	2	3	0	1	3	3	3
2012	3	3	3	3	2	2	2	3	3
2013	3	3	3	3	1	3	3	3	3
2014	2	2	3	2	1	0	0	3	3
2015	3	3	3	2	0	2	3	2	3

Table 7. A comparison of the catchability coefficients and relative catchability (by life stage and diel period) given in Sagarese et al. (2016) with those that would result from alternate ways of partitioning the data (e.g., using the stock definition for Spiny Dogfish: Stock definition strata only), alternate length at maturity estimates for defining life stages (e.g., Demersal length cutpoints), and considering recent years (2009-2015) sampled by the Bigelow (Bigelow years). The coefficient (Estimate) represents the intercept from a quasibinomial Generalized Linear Model along with the standard errors (SE), and significance level (P). Values > 1 for the relative catchability ratio (relative catchability) represent life stages that are more likely to be caught during the day and vice versa for values < 1. The amount of data available for each life stage is shown (N); note the decrease in sample size in more recent years sampled by the Bigelow. "NA" = data not available.

Life stage	Method	Estimate	SE	P	Relative Catchability (day (night)	N
Adult Males	Sagarese et al. (2016)	0.70	NA	0.03	2.00	821
Adult Females	Sagarese et al. (2016)	NA	NA	NA	NA	NA
Juvenile Males	Sagarese et al. (2016)	NA	NA	NA	NA	NA
Juvenile Females	Sagarese et al. (2016)	0.40	NA	0.27	1.50	973
Pups	Sagarese et al. (2016)	NA	NA	NA	NA	NA
Adult Males	Stock definition strata only	0.09	0.06	0.16	1.09	710
Adult Females	Stock definition strata only	-0.08	0.07	0.26	0.92	725
Juvenile Males	Stock definition strata only	0.52	0.08	0	1.68	513
Juvenile Females	Stock definition strata only	0.24	0.06	0	1.27	750
Pups	Stock definition strata only	0.76	0.13	0	2.13	252
Adult Males	Demersal length cutpoints	0.09	0.06	0.16	1.09	710
Adult Females	Demersal length cutpoints	-0.08	0.06	0.19	0.92	786
Juvenile Males	Demersal length cutpoints	0.53	0.08	0	1.70	491
Juvenile Females	Demersal length cutpoints	0.43	0.07	0	1.54	610

Life stage	Method	Estimate	SE	P	Relative Catchability (day /night)	N
Pups	Demersal length cutpoints	NA	NA	NA	NA	NA
Adult Males	Demeral length cutpoints, drop 2009 (Bigelow)	0.10	0.06	0.13	1.10	696
Adult Females	Demeral length cutpoints, drop 2009 (Bigelow)	-0.05	0.06	0.47	0.96	751
Juvenile Males	Demeral length cutpoints, drop 2009 (Bigelow)	0.39	0.08	0	1.48	473
Juvenile Females	Demeral length cutpoints, drop 2009 (Bigelow)	0.29	0.07	0	1.34	586
Pups	Demeral length cutpoints, drop 2009 (Bigelow)	0.62	0.13	0	1.86	234
Adult Males	Bigelow years	-0.21	0.09	0	0.81	220
Adult Females	Bigelow years	-0.16	0.12	0.20	0.86	183
Juvenile Males	Bigelow years	1.64	0.15	0	5.16	201
Juvenile Females	Bigelow years	1.34	0.13	0	3.81	243
Pups	Bigelow years	2.44	0.18	0	11.45	128
Adult Males	Bigelow years; demersal cutpoints	-0.21	0.09	0.03	0.81	223
Adult Females	Bigelow years; demersal cutpoints	-0.17	0.11	0.12	0.84	220
Juvenile Males	Bigelow years; demersal cutpoints	1.78	0.16	0	5.93	199
Juvenile Females	Bigelow years; demersal cutpoints	1.82	0.16	0	6.14	217
Pups	Bigelow years; demersal cutpoints	NA	NA	NA	NA	NA

Table 8. Sensitivity of diel catchability estimates to the sampling scheme used in the Spring survey during three time periods (1980-20018, 1988-2008, and 1980-1987). "SE" is Standard Error (of the estimate in column 1), "P" is P-value (for the statistical test for day/night effect), and " N " is the number of observations.

Life stage	Method	Estimate	SE	Relative Catchability (day /night)	N	
Adult Males	Albatross Years 1980-2008	0.10	0.06	0.13	1.10	696
Adult Females	Albatross Years 1980-2008	-0.05	0.06	0.47	0.96	751
Juvenile Males	Albatross Years 1980-2008	0.39	0.08	0.00	1.48	473
Juvenile Females	Albatross Years 1980-2008	0.29	0.07	0.00	1.34	586
Pups	Albatross Years 1980-2008	0.62	0.13	0.00	1.86	234
Adult Males	Albatross Years 1988-2008	0.16	0.08	0.03	1.18	503
Adult Females	Albatross Years 1988-2008	-0.04	0.08	0.57	0.96	547
Juvenile Males	Albatross Years 1988-2008	0.18	0.09	0.05	1.20	328
Juvenile Females	Albatross Years 1988-2008	0.19	0.08	0.02	1.20	414
Pups	Albatross Years 1988-2008	0.43	0.16	0.01	1.53	160
Adult Males	Albatross Years 1980-1987	-0.18	0.11	0.10	0.84	187
Adult Females	Albatross Years 1980-1987	-0.05	0.12	0.65	0.95	204
Juvenile Males	Albatross Years 1980-1987	0.64	0.14	0.00	1.89	144
Juvenile Females	Albatross Years 1980-1987	0.44	0.13	0.00	1.55	172
Pups	Albatross Years 1980-1987	0.96	0.24	0.00	2.61	74

Table 9. Sensitivity runs of diel catchability models, comparing results for slope and non-slope data. "SE" is Standard Error (of the estimate in column 1), "P" is P-value (for the statistical test for day/night effect), and " N " is the number of observations. $A=$ Albatross data and $B=$ Bigelow data
A.

		Albatross All Strata						Albatross Slope Strata				Albatross Non-Slope Strata				
Year	Life Stage	Estimate	SE	P	Relative Catchability (day/night)	N	Estimate	SE	P	Relativ Catchab (day/nig	N	Estimate	SE	P	Relative Catchability (day/night)	N
1980-2008	Adult Males	0.1	0.06	0.13	1.1	696	0.17	0.15	0.28	1.18	119	0.06	0.07	0.39	1.06	571
	Adult Females	-0.05	0.06	0.47	0.96	751	0.24	0.2	0.24	1.27	101	-0.09	0.07	0.19	0.92	650
	Juvenile Males	0.39	0.08	0	1.48	473	0.52	0.17	0	1.69	101	0.2	0.08	0.02	1.22	372
	Juvenile Females	0.29	0.07	0	1.34	586	0.32	0.16	0.05	1.38	117	0.25	0.07	0	1.28	469
	Pups	0.62	0.13	0	1.86	234	0.38	0.27	0.16	1.47	55	0.81	0.16	0	2.25	179
1980-1987	Adult Males	-0.18	0.11	0.1	0.84	187	-0.69	0.24	0.01	0.5	51	0.14	0.12	0.26	1.14	140
	Adult Females	-0.05	0.12	0.65	0.95	204	-2.43	0.43	0	0.09	43	0.21	0.13	0.11	1.24	161
	Juvenile Males	0.64	0.14	0	1.89	144	0.81	0.26	0	2.24	52	0.36	0.15	0.02	1.44	92
	Juvenile Females	0.44	0.13	0	1.55	172	0.57	0.25	0.02	1.76	55	0.23	0.13	0.09	1.26	117
	Pups	0.96	0.24	0	2.61	74	1.71	0.54	0	5.51	26	0.69	0.27	0.01	1.99	48
1988-2008	Adult Males	0.16	0.08	0.03	1.18	503	0.58	0.19	0	1.79	68	0.04	0.08	0.64	1.04	431
	Adult Females	-0.04	0.08	0.57	0.96	547	0.86	0.27	0	2.36	58	-0.17	0.08	0.03	0.84	489
	Juvenile Males	0.18	0.09	0.05	1.2	328	0.26	0.24	0.27	1.3	49	0.07	0.1	0.5	1.07	280
	Juvenile Females	0.19	0.08	0.02	1.2	414	0.12	0.22	0.58	1.13	62	0.26	0.09	0	1.3	352
	Pups	0.43	0.16	0.01	1.53	160	-0.02	0.37	0.95	0.98	29	0.93	0.21	0	2.53	131

B.

Bigelow All Strata

Year	Life Stage	Estimate	SE	P	Relative Catchability (day/night)	N
2009-2015	Adult Males	-0.21	0.09	0.03	0.81	223
	Adult Females	-0.17	0.11	0.12	0.84	220
	Juvenile Males	1.78	0.16	0	5.93	199
	Juvenile Females	1.82	0.16	0	6.14	217
	Pups	2.44	0.18	0	11.45	128

Bigelow Slope Strata

Estimate	SE	P	Relative Catchability (day/night)	N
-0.57	0.16	0	0.57	72
0.75	0.2	0	2.11	63
1.87	0.27	0	6.47	78
1.78	0.25	0	5.95	83
3	0.44	0	20	64

Bigelow Non-Slope Strata

Estimate	SE	P	Relative Catchability (day/night)	N
0.08	0.12	0.5	1.08	151
-0.38	0.14	0.01	0.68	157
1.61	0.2	0	5	121
1.87	0.2	0	6.51	134
2.01	0.16	0	7.42	64

Table 10. Raw counts of dogfish at length and number of survey tow pairs contributing to counts.

Length (cm)	Bigelow counts; males, night	Bigelow counts; males, day	Albatross counts; males, night	Albatross counts; males, day	Towpairs, night	Towpairs, day	Bigelow counts; females, night	Bigelow counts; females, day	Albatross counts; females, night	Albatross counts; females, day	Towpairs, night	Towpairs, day
21	1	1	0	0	1	1	0	0	0	0	0	0
22	1	2	0	0	1	2	2	1	0	1	2	2
23	3	1	0	3	2	2	2	2	0	5	2	3
24	5	3	1	5	4	3	6	8	0	2	3	6
25	6	14	0	12	4	6	6	19	0	12	4	10
26	15	16	1	30	5	9	8	20	0	19	6	10
27	12	37	2	50	6	11	18	53	0	46	8	13
28	15	42	1	50	6	13	4	49	2	55	5	13
29	2	37	0	44	2	10	8	49	0	45	7	8
30	5	22	0	25	4	4	5	25	1	36	4	6
31	1	7	0	9	1	3	1	6	0	3	1	2
32	1	2	0	1	1	1	2	1	0	0	1	1
33	4	0	0	0	1	0	1	0	0	1	1	1
34	8	1	0	0	1	1	2	1	1	2	1	1
35	6	0	1	1	1	1	11	0	1	1	2	1
36	7	2	0	1	1	1	3	1	1	4	2	3
37	6	1	1	0	1	1	5	2	0	1	1	2
38	1	0	0	1	1	1	6	2	1	2	1	1
39	3	0	1	1	1	1	1	0	1	0	1	0
40	0	0	0	0	0	0	2	1	0	0	1	1
41	1	0	0	1	1	1	0	1	0	0	0	1
42	0	0	0	0	0	0	1	1	0	0	1	1
43	0	0	0	0	0	0	0	0	0	0	0	0
44	0	0	0	0	0	0	1	0	0	2	1	2
45	1	0	0	0	1	0	1	0	0	0	1	0
46	0	0	0	0	0	0	0	2	0	4	0	3
47	0	0	0	3	0	2	0	1	0	0	0	1

$\left.\begin{array}{ccccccccccccc}\begin{array}{c}\text { Length } \\ \text { (cm) }\end{array} & \begin{array}{c}\text { Bigelow } \\ \text { counts; } \\ \text { males, } \\ \text { night }\end{array} & \begin{array}{c}\text { Bigelow } \\ \text { counts; } \\ \text { males, } \\ \text { day }\end{array} & \begin{array}{c}\text { Albatross } \\ \text { counts; } \\ \text { males, } \\ \text { night }\end{array} & \begin{array}{c}\text { Albatross } \\ \text { counts; } \\ \text { males, } \\ \text { day }\end{array} & \begin{array}{c}\text { Tow- } \\ \text { pairs, } \\ \text { night }\end{array} & \begin{array}{c}\text { Tow- } \\ \text { pairs, } \\ \text { day }\end{array} & \begin{array}{c}\text { Bigelow } \\ \text { counts; } \\ \text { females, } \\ \text { night }\end{array} & \begin{array}{c}\text { Bigelow } \\ \text { counts; } \\ \text { females, } \\ \text { day }\end{array} & \begin{array}{c}\text { Albatross } \\ \text { counts; } \\ \text { females, } \\ \text { night }\end{array} & \begin{array}{c}\text { Albatross } \\ \text { counts; } \\ \text { females, }\end{array} & \begin{array}{c}\text { Tow- } \\ \text { pairs, } \\ \text { day }\end{array} & \begin{array}{c}\text { Tow- } \\ \text { paight }\end{array} \\ \text { day }\end{array}\right]$

Length (cm)	Bigelow counts; males, night	Bigelow counts; males, day	Albatross counts; males, night	Albatross counts; males, day	Towpairs, night	Towpairs, day	Bigelow counts; females, night	Bigelow counts; females, day	Albatross counts; females, night	Albatross counts; females, day	Towpairs, night	Towpairs, day
77	117	167	142	144	20	37	44	49	31	47	19	23
78	89	99	86	86	17	28	38	53	45	66	17	26
79	76	99	59	95	17	30	60	62	69	73	18	23
80	41	61	49	55	16	23	38	60	70	69	19	25
81	31	42	21	33	16	21	54	68	58	82	21	24
82	19	27	12	27	12	19	64	81	87	71	21	26
83	5	5	3	7	7	8	64	58	50	66	17	21
84	4	6	7	3	8	7	88	90	64	57	21	21
85	3	2	1	4	4	5	37	51	64	55	16	25
86	0	1	1	1	1	2	54	38	61	46	17	18
87	0	0	0	0	0	0	40	58	56	36	15	18
88	0	0	0	0	0	0	31	30	60	31	19	16
89	0	0	0	0	0	0	27	22	29	34	15	17
90	0	0	0	0	0	0	17	26	24	28	17	16
91	0	0	0	0	0	0	16	13	19	20	14	12
92	0	0	0	0	0	0	17	18	15	14	14	13
93	0	1	0	0	0	1	12	8	9	9	10	7
94	0	0	0	0	0	0	7	6	5	8	7	5
95	0	0	0	0	0	0	2	1	3	6	5	6
96	0	0	0	0	0	0	2	3	4	3	4	4
97	0	0	0	0	0	0	5	2	5	2	7	4
98	0	0	0	0	0	0	4	3	2	1	5	3
99	0	0	0	0	0	0	0	1	0	2	0	3
100	0	0	0	0	0	0	0	0	1	0	1	0
101	0	0	0	0	0	0	0	1	0	0	0	1
102	0	0	0	0	0	0	1	2	0	0	1	2

Table 11. Catch at length of male and female Spiny Dogfish by the Bigelow during the calibration study in 2008, compared with the subsequent survey years (2009-2015).

Length (cm)	Male 2008	$\begin{aligned} & \text { Male } \\ & 2009 \end{aligned}$	Male 2010	$\begin{aligned} & \text { Male } \\ & 2011 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Male } \\ & 2012 \end{aligned}$	$\begin{aligned} & \text { Male } \\ & 2013 \end{aligned}$	$\begin{aligned} & \text { Male } \\ & 2014 \end{aligned}$	$\begin{aligned} & \text { Male } \\ & 2015 \end{aligned}$	$\begin{gathered} \text { Female } \\ 2008 \end{gathered}$	$\begin{gathered} \text { Female } \\ 2009 \end{gathered}$	$\begin{aligned} & \text { Female } \\ & 2010 \end{aligned}$	Female 2011	$\begin{gathered} \text { Female } \\ 2012 \\ \hline \end{gathered}$	$\begin{gathered} \text { Female } \\ 2013 \\ \hline \end{gathered}$	$\begin{gathered} \text { Female } \\ 2014 \\ \hline \end{gathered}$	$\begin{gathered} \text { Female } \\ 2015 \\ \hline \end{gathered}$
21	2	0	10	3	0	0	0	1	0	1	7	1	0	5	0	0
22	3	6	4	11	32	7	1	3	3	7	28	3	5	4	0	1
23	4	30	41	12	37	3	2	1	4	14	43	16	28	5	5	4
24	8	76	95	25	74	22	5	6	14	38	46	28	49	18	12	5
25	20	91	185	44	109	27	34	12	25	84	139	78	102	55	23	15
26	31	90	256	89	159	58	53	35	28	97	175	88	146	64	52	45
27	49	132	253	151	324	234	113	61	71	202	252	134	331	150	102	64
28	57	156	208	97	335	170	132	76	53	201	166	104	276	208	134	57
29	39	105	92	67	191	163	94	34	57	69	71	43	100	176	92	42
30	27	63	89	50	86	156	53	15	30	42	72	18	83	113	62	19
31	8	28	96	23	51	293	10	12	7	42	53	14	73	150	16	14
32	3	87	85	37	119	326	10	30	3	78	59	40	143	237	8	20
33	4	88	64	66	123	219	4	30	1	121	65	61	69	344	6	30
34	9	240	55	49	102	395	18	43	3	173	36	31	140	387	21	43
35	6	216	34	55	81	379	35	36	11	349	38	68	146	431	26	36
36	9	319	16	111	108	426	30	28	4	245	29	52	143	291	36	21
37	7	298	39	137	229	358	47	17	7	411	28	54	250	560	46	27
38	1	253	43	123	145	430	60	32	8	277	22	74	173	629	57	28
39	3	85	60	64	145	497	56	25	1	179	45	127	307	538	79	31
40	0	100	64	104	323	596	76	59	3	100	54	73	447	473	82	23
41	1	114	54	71	209	409	88	55	1	103	68	60	291	442	61	30
42	0	51	53	65	262	392	88	40	2	118	53	59	409	452	82	30
43	0	87	37	63	332	296	66	34	0	110	52	5	330	436	60	21
44	0	80	38	23	402	283	71	42	1	128	51	31	444	291	56	20
45	1	120	46	64	465	121	72	24	1	181	42	33	434	204	53	23
46	0	85	49	21	475	194	56	29	2	133	45	30	404	191	56	15
47	0	59	40	27	314	259	100	27	1	51	41	43	592	206	91	22
48	0	63	54	62	585	187	75	18	2	45	46	58	441	243	64	22
49	1	50	35	54	647	223	66	17	2	51	33	50	651	264	55	20
50	2	38	33	19	786	285	84	14	4	45	47	63	884	337	106	33
51	1	20	33	43	575	404	86	31	3	24	25	61	628	301	100	34
52	1	26	42	65	688	325	110	44	4	26	22	74	630	470	156	35
53	2	52	24	64	752	416	111	43	5	32	18	62	610	383	134	62
54	3	45	28	65	839	490	113	66	6	23	20	79	516	452	174	81
55	8	31	22	64	473	353	100	72	1	24	41	56	489	464	138	79
56	6	45	35	58	593	494	147	99	15	21	22	87	404	433	184	128

Length (cm)	$\begin{aligned} & \text { Male } \\ & 2008 \end{aligned}$	Male 2009	Male 2010	Male 2011	$\begin{aligned} & \text { Male } \\ & 2012 \end{aligned}$	Male 2013	Male 2014	$\begin{aligned} & \text { Male } \\ & 2015 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Female } \\ & 2008 \end{aligned}$	$\begin{gathered} \text { Female } \\ 2009 \end{gathered}$	$\begin{aligned} & \text { Female } \\ & 2010 \end{aligned}$	$\begin{gathered} \text { Female } \\ 2011 \end{gathered}$	$\begin{aligned} & \text { Female } \\ & 2012 \end{aligned}$	$\begin{gathered} \text { Female } \\ 2013 \end{gathered}$	$\begin{aligned} & \text { Female } \\ & 2014 \end{aligned}$	$\begin{gathered} \text { Female } \\ 2015 \end{gathered}$
57	7	26	16	78	268	473	154	96	7	27	24	60	269	504	150	108
58	10	26	27	72	352	416	155	119	16	19	30	79	137	421	146	116
59	8	58	60	103	146	406	201	140	24	26	22	66	283	330	160	153
60	8	38	68	103	129	462	182	175	24	27	13	62	286	416	144	141
61	11	63	102	98	121	258	130	194	18	20	22	56	132	144	151	126
62	18	28	88	80	146	220	141	158	29	19	30	52	131	230	117	104
63	14	40	60	109	94	117	178	145	24	23	23	60	101	112	76	110
64	9	42	45	118	92	162	158	134	37	22	38	56	68	77	63	80
65	18	46	60	124	48	101	111	133	26	20	36	24	40	72	64	52
66	30	72	70	112	246	141	124	134	35	42	30	69	70	54	46	40
67	39	106	238	154	151	119	166	146	32	12	46	39	44	96	26	32
68	72	153	368	200	246	168	148	182	22	22	28	26	54	38	19	36
69	111	350	802	376	260	212	234	203	28	34	40	30	54	34	26	43
70	222	694	1,006	655	586	448	448	284	44	27	48	23	57	28	12	22
71	210	774	1,453	827	649	516	584	326	33	29	42	34	40	16	17	34
72	304	1,142	1,896	1,100	1,101	683	727	532	45	70	62	55	30	22	8	9
73	341	1,412	2,608	1,340	1,310	912	998	648	49	52	66	22	29	23	5	10
74	403	1,322	2,006	1,620	1,258	1,047	1,289	837	48	47	70	37	56	23	8	21
75	386	1,254	1,960	1,563	1,366	1,026	1,192	746	60	64	77	46	52	23	10	24
76	344	1,072	1,788	1,372	1,378	982	1,284	845	63	131	92	216	42	22	12	18
77	284	856	1,287	1,120	1,036	754	886	524	93	66	142	142	124	24	15	6
78	188	579	1,158	761	621	500	625	450	91	96	180	122	84	32	14	44
79	175	432	544	518	476	394	444	310	122	165	289	227	120	53	32	16
80	102	226	460	262	320	252	299	182	98	138	252	212	239	88	30	58
81	73	120	182	125	142	139	180	78	122	168	258	304	174	32	44	50
82	46	46	112	136	96	81	113	50	145	204	326	364	230	92	52	103
83	10	24	58	46	18	22	54	30	122	155	360	290	346	100	46	106
84	10	8	35	14	8	20	26	5	178	232	422	696	325	128	110	124
85	5	6	8	13	12	3	2	2	88	208	378	480	320	94	80	92
86	1	6	0	2	0	4	4	0	92	146	318	420	352	106	92	82
87	0	4	4	4	1	2	0	0	98	134	236	438	299	120	96	84
88	0	0	0	3	0	0	0	0	61	72	248	258	307	84	50	68
89	0	3	0	0	0	0	0	0	49	62	195	188	216	68	70	92
90	0	0	0	0	0	0	0	0	43	58	152	295	162	72	42	40
91	0	0	0	0	0	0	0	0	29	91	58	94	124	48	36	46
92	0	0	0	0	0	0	0	3	35	28	96	117	70	30	25	38
93	1	0	0	0	0	0	0	0	20	27	34	74	45	28	12	10
94	0	0	0	0	0	0	0	0	13	14	49	8	30	10	8	5

Length (cm)	$\begin{aligned} & \text { Male } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Male } \\ & 2009 \end{aligned}$	$\begin{aligned} & \text { Male } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Male } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Male } \\ & 2012 \end{aligned}$	$\begin{aligned} & \text { Male } \\ & 2013 \end{aligned}$	$\begin{aligned} & \text { Male } \\ & 2014 \end{aligned}$	$\begin{aligned} & \text { Male } \\ & 2015 \end{aligned}$	$\begin{gathered} \text { Female } \\ 2008 \end{gathered}$	$\begin{gathered} \text { Female } \\ 2009 \end{gathered}$	$\begin{aligned} & \text { Female } \\ & 2010 \end{aligned}$	$\begin{gathered} \text { Female } \\ 2011 \end{gathered}$	$\begin{gathered} \text { Female } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Female } \\ 2013 \end{gathered}$	$\begin{aligned} & \text { Female } \\ & 2014 \end{aligned}$	$\begin{gathered} \text { Female } \\ 2015 \end{gathered}$
95	0	0	0	0	0	0	0	0	3	6	46	8	19	12	10	1
96	0	0	0	0	0	0	0	0	5	8	14	34	10	2	2	14
97	0	0	0	0	0	0	0	0	7	2	8	14	8	0	0	22
98	0	0	0	0	0	0	0	0	7	2	6	35	3	0	2	2
99	0	0	0	0	0	0	0	0	1	2	1	0	0	2	0	0
100	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
101	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
102	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	0

Table 12. Bigelow catches of Spiny Dogfish pelagic lengths ($32-58 \mathrm{~cm}$ males or $32-64 \mathrm{~cm}$ females) by day and night for National Marine Fisheries Services (NMFS) Spring survey years 2009 to 2015 and the calibration study (2008). Outer slope strata are identified by a bold font, and inner slope strata by italics. "NA" = data not available.

Strata	$\begin{aligned} & \text { Night } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Night } \\ & 2009 \end{aligned}$	$\begin{aligned} & \text { Night } \\ & 2010 \end{aligned}$	$\begin{aligned} & \text { Night } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Night } \\ & 2012 \end{aligned}$	$\begin{aligned} & \text { Night } \\ & 2013 \end{aligned}$	$\begin{gathered} \text { Night } \\ 2014 \end{gathered}$	$\begin{aligned} & \text { Night } \\ & 2015 \end{aligned}$	$\begin{aligned} & \text { Day } \\ & 2008 \end{aligned}$	$\begin{gathered} \text { Day } \\ 2009 \end{gathered}$	$\begin{gathered} \text { Day } \\ 2010 \end{gathered}$	$\begin{gathered} \text { Day } \\ 2011 \end{gathered}$	$\begin{gathered} \text { Day } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Day } \\ 2013 \end{gathered}$	$\begin{gathered} \text { Day } \\ \mathbf{2 0 1 4} \end{gathered}$	$\begin{gathered} \text { Day } \\ 2015 \end{gathered}$	Total
1200	NA	0	0	0	0	0	0	0	NA	0	0	0	0	0	0	0	0
1390	NA	0	0	0	0	0	0	NA	NA	0	0	0	0	0	0	0	0
1210	NA	0	0	0	NA	0	NA	0	NA	0	0	0	0	NA	1	0	1
1230	NA	0	0	0	0	0	0	0	NA	0	0	0	0	1	1	0	2
1250	NA	0	0	NA	0	0	NA	0	NA	1	0	0	1	NA	0	0	2
1090	NA	0	0	0	0	0	0	0	NA	0	0	5	0	0	0	0	5
1300	NA	0	0	0	0	0	1	NA	1	0	NA	NA	5	NA	NA	0	6
1351	NA	0	0	NA	0	NA	1	NA	NA	0	0	5	0	0	0	1	7
1630	NA	NA	0	NA	NA	0	NA	0	3	NA	15	1	0	0	NA	0	16
1620	NA	0	NA	0	0	2	NA	3	0	0	8	1	0	0	NA	6	20
1670	6	0	1	0	0	3	NA	NA	9	NA	0	10	6	4	NA	0	24
1340	NA	0	0	0	0	0	0	0	NA	0	1	0	0	1	16	13	31
1660	1	0	0	0	NA	0	NA	1	NA	1	0	10	1	21	NA	NA	34
1010	0	0	0	0	1	0	2	0	4	7	5	14	12	0	2	9	52
1140	1	0	0	2	1	7	6	0	NA	0	0	2	NA	0	32	11	61
1380	NA	0	0	0	0	0	0	0	NA	0	22	7	11	0	17	4	61
1730	0	0	0	0	1	0	0	2	5	1	1	0	9	4	6	55	79
1650	0	0	0	0	0	0	NA	0	1	1	2	12	0	63	NA	6	84
1610	0	0	0	2	NA	1	NA	2	NA	0	2	2	1	22	NA	54	86
1180	NA	0	0	0	0	0	0	0	NA	0	100	0	29	22	0	0	151
1160	0	0	0	0	0	0	12	0	0	0	0	0	0	0	160	0	172
1690	1	0	0	0	NA	0	0	7	0	1	0	1	4	144	3	12	172
1750	2	NA	0	4	9	27	0	NA	NA	5	2	6	6	67	0	54	180
1710	NA	2	110	1	0	0	25	NA	0	0	8	2	2	13	NA	25	188
1220	0	0	0	0	NA	NA	NA	0	0	2	4	0	0	0	192	0	198
1190	0	0	0	0	0	0	0	0	0	0	0	1	0	0	305	0	306
1640	NA	2	6	31	3	0	NA	0	12	NA	15	NA	3	0	NA	268	328
1170	0	0	0	0	0	0	NA	0	NA	0	0	9	243	1	63	14	330
1260	NA	0	0	0	0	65	NA	0	NA	0	3	9	1	251	2	0	331
1050	NA	0	0	0	0	0	0	0	NA	0	0	0	343	0	0	0	343
1700	NA	0	2	0	0	7	NA	7	0	27	6	11	0	256	26	4	346
1360	1	4	1	0	0	0	21	3	NA	19	20	55	101	10	33	261	528
1280	NA	0	2	14	0	4	0	0	NA	411	54	40	27	20	9	4	585

Strata	$\begin{aligned} & \text { Night } \\ & 2008 \end{aligned}$	$\begin{aligned} & \text { Night } \\ & 2009 \end{aligned}$	$\begin{gathered} \text { Night } \\ 2010 \end{gathered}$	$\begin{aligned} & \text { Night } \\ & 2011 \end{aligned}$	$\begin{aligned} & \text { Night } \\ & 2012 \end{aligned}$	$\begin{aligned} & \text { Night } \\ & 2013 \end{aligned}$	$\begin{gathered} \text { Night } \\ 2014 \end{gathered}$	$\begin{aligned} & \text { Night } \\ & 2015 \end{aligned}$	$\begin{gathered} \text { Day } \\ 2008 \end{gathered}$	$\begin{gathered} \text { Day } \\ 2009 \end{gathered}$	$\begin{gathered} \text { Day } \\ 2010 \end{gathered}$	$\begin{gathered} \text { Day } \\ 2011 \end{gathered}$	$\begin{gathered} \text { Day } \\ 2012 \end{gathered}$	$\begin{gathered} \text { Day } \\ 2013 \end{gathered}$	$\begin{gathered} \text { Day } \\ 2014 \end{gathered}$	$\begin{gathered} \text { Day } \\ 2015 \end{gathered}$	Total
1740	0	3	1	0	60	0	0	0	3	18	42	13	6	87	62	302	594
1270	NA	0	0	NA	0	3	0	NA	NA	0	45	38	0	416	297	34	833
1400	NA	NA	0	0	0	0	0	0	NA	0	NA	NA	0	980	0	0	980
1240	0	0	0	0	2	0	3	0	0	0	15	9	911	1	145	0	1,086
1030	NA	24	3	5	0	20	64	6	4	121	3	222	504	97	22	125	1,216
1130	0	0	0	10	0	1	47	0	0	114	0	0	44	259	788	2	1,265
1020	2	3	3	6	299	10	2	0	14	92	273	87	192	23	69	220	1,279
1370	NA	0	1	0	1	2	0	0	NA	0	106	1,314	26	19	9	1	1,479
1720	NA	0	12	2	4	0	NA	0	80	1	646	62	187	315	354	7	1,590
1680	NA	0	16	18	1	31	NA	7	NA	33	414	5	1,036	4	NA	98	1,663
1070	NA	NA	0	158	4	NA	271	176	NA	34	44	NA	901	58	11	23	1,680
1290	1	0	0	0	0	2	5	1	29	185	8	4	133	899	466	42	1,745
1150	73	0	2	6	15	21	0	0	NA	0	NA	1,474	NA	14	9	493	2,034
1060	NA	27	0	14	36	18	0	NA	8	344	40	257	13	1,241	226	15	2,231
1100	NA	0	0	0	10	1,398	0	0	18	0	2	0	474	2	868	2	2,756
1040	NA	193	434	26	NA	211	7	87	39	56	NA	137	990	1,954	208	NA	4,303
1080	NA	59	284	NA	NA	121	4	152	NA	1	6	47	4,998	NA	35	471	6,178
1110	0	0	2	NA	NA	985	183	1	NA	5,040	21	88	868	44	266	108	7,606
1120	NA	0	6	NA	45	NA	30	19	NA	61	91	2	470	9,048	NA	49	9,821
1760	NA	NA	538	8	101	99	18	3	NA	58	190	18	10,406	3,676	353	63	15,531

Table 13. Relative vessel catchability estimates (Bigelow/Albatross) for Spiny Dogfish determined by quasibinomial modelling of paired-tow data, defining day and night according to the dusk-dawn cutpoints of Sagarese et al. (2016) (Cutpoint Diel), astronomical calculation of twilight as in Jacobson et al. (2011) (Twilight Diel). Significant estimates are shown in bold.

Size Class	Sex	Period	Cutpoint Diel	Twilight Diel
Pup	Both	Day	$\mathbf{1 . 5}$	2.9
Pelagic	Both	Day	1.3	0.8
Demersal	Male	Day	2.0	1.9
Demersal	Female	Day	2.1	2.2
Pup	Both	Night	29.8	1.6
Pelagic	Both	Night	13.5	6.6
Demersal	Male	Night	1.8	$\mathbf{2 . 0}$
Demersal	Female	Night	$\mathbf{2 . 0}$	$\mathbf{2 . 2}$

FIGURES

Figure 1. NAFO Areas 2-6 which encompass the Spiny Dogfish stock in the North West Atlantic Ocean.

Figure 2. Re-printed from DFO (2014). Landings of Spiny Dogfish reported to NAFO by country and year in NAFO Areas 2-6. At the time of printing, US data was not available after 2005.

Figure 3. Maturity ogives for Canadian (red lines) and US (blue lines) Spiny Dogfish for males (dashed lines) and females (solid lines). The dashed horizontal line intersects at $L_{50 \%}$, the length at 50% maturity.

Figure 4. Total landings and discards (blue lines) and dead discards red (lines) of Spiny Dogfish in thousands (000s) of metric tonnes from all fleets (foreign and domestic) operating in Canadian or US waters. Canadian catches for 1946-1961 are assumed equal to 1962, and earlier years are zero.

Figure 5. Time series of total fishery removals (landings plus discards) of Spiny Dogfish in thousands of metric tonnes for Canadian (left panel) and US (right panel) territorial waters.

Catch Composition

Figure 6. Commercial catch composition in numbers of dogfish by region, sex, and maturity stage. Region 1 = Canada, 2 = US, Sex 1 = Male, Sex 2 = Female, Stage 1 = Juvenile, Stage 2 = Adult.

Figure 7. Canadian Summer and US Spring survey stratified abundance estimates of Spiny Dogfish by sex and maturity stage.

Survey Abundance Fits - Estimation Method

Figure 8. A comparison of stratified abundance at length of Spiny Dogfish calculated directly from the NMFS Spring survey (red lines), with estimates calculated from biomass at length (points) as in the previous dogfish framework.

Figure 9. An evaluation of variability in the length-weight relationship for Spiny Dogfish relative to the values reported in Nammack et al. (1985). Points represent predicted weights of a 65 cm dogfish from 1992-2015, while the 1980-1981 average is shown as a solid line.

Figure 10. The annual coefficient of variation (CV) for male (red lines) and female (blue lines) Spiny Dogfish for the NMFS Spring (left panel) and Canadian Summer RV (right panel) surveys.

Catch Composition in thousands

Figure 11. A comparison of US dogfish commercial catch composition from 2011-2015 (lines) with the values assumed from summary statistics for the last assessment framework (points). Region 1 = Canada, 2 = US, Sex 1 = Male, Sex 2 = Female, Stage 1 = Juvenile, Stage 2 = Adult.

Figure 12. Total counts at length of Spiny Dogfish from the NMFS Spring survey in strata sampled by the Albatross (red lines) and Bigelow (blue lines) during the paired-tow study in 2008.

Figure 13. Spiny Dogfish (numbers caught) by the Spring survey during 1980-1987, 1988-2008, and 2009-2015. Catches are averaged over 1 minute squares for each time period. The 200 m depth contour is shown as a dashed line.

Figure 14. A comparison of stratified survey abundance of Spiny Dogfish by sex and life stage calculated from sampling by the Bigelow (lines) during 2009-2015, with re-calculated estimates (points) from a randomization that selects fewer samples per strata to mimic the level of sampling done prior to 2008 by the Albatross.

Figure 15. The offshore strata sampled during the NMFS Spring survey, with those included in the dogfish stock definition coloured black. Re-printed from Figure 2 in NEFSC (2006).

Figure 16. Sampling strata for the Canadian Spring and Summer Research Vessel surveys, with the strata included in the Spiny Dogfish stock definition coloured grey.

spiny dogfish

Figure 17. Estimated mean (red line), 95\% Confidence Interval (dashed red lines), and station-specific (grey lines) relative catch efficiency at length for Spiny Dogfish from the chosen beta-binomial Generalized Linear Mixed Model from the Miller (2013) suite of models.

spiny dogfish - spring survey

Figure 18. Estimated mean (red line), 95\% Confidence Interval (dashed red lines) and station-specific (grey lines) relative catch efficiency at length for Spiny Dogfish from the chosen beta-binomial Generalized Linear Mixed Model, using paired-tow data from the Spring survey exclusively.

spiny dogfish - spring survey, $22-98 \mathrm{~cm}$

Figure 19. Estimated mean (red line), 95\% Confidence Interval (dashed red lines) and station-specific (grey lines) relative catch efficiency at length for Spiny Dogfish from the chosen beta-binomial Generalized Linear Mixed Model, using paired-tow data from the Spring survey exclusively and constraining the length range to sizes with a minimum of 10 fish caught by either vessel.

spiny dogfish males - spring survey, $24-85 \mathrm{~cm}$

Figure 20. Estimated mean (red line), 95\% Confidence Interval (dashed red lines) and station-specific (grey lines) relative catch efficiency at length for male Spiny Dogfish from the chosen beta-binomial Generalized Linear Mixed Model, using paired-tow data from the Spring survey exclusively and constraining the length range to sizes with a minimum of 10 fish caught by either vessel.

spiny dogfish females - spring survey, $23-98 \mathrm{~cm}$

Figure 21. Estimated mean (red line), 95\% Confidence Interval (dashed red lines) and station-specific (grey lines) relative catch efficiency at length for female Spiny Dogfish from the chosen beta-binomial Generalized Linear Mixed Model, using paired-tow data from the Spring survey exclusively and constraining the length range to sizes with a minimum of 10 fish caught by either vessel.

Figure 22. Total counts at length of Spiny Dogfish from the NMFS Spring survey in strata sampled by the Albatross during the day (blue lines) and night (red lines) during the paired-tow study in 2008.

Figure 23. Total counts at length of Spiny Dogfish from the NMFS Spring survey in strata sampled by the Bigelow during the day (blue lines) and night (red lines) during the paired-tow study in 2008.

Figure 24. Total catch at length of Spiny Dogfish by the Albatross (Alb) and Bigelow (Big) during the 2008 calibration study for tows completed during the day and those completed at night.

spiny dogfish males - spring survey day, $24-85 \mathrm{~cm}$

Figure 25. Estimated mean (red line), 95\% Confidence Interval (dashed red lines) and station-specific (grey lines) relative catch efficiency at length for male Spiny Dogfish from the chosen beta-binomial Generalized Linear Mixed Model, using paired-tow data collected during the day from the Spring survey exclusively and constraining the length range to sizes with a minimum of 10 fish caught by either vessel.
spiny dogfish females - spring survey day, $23-98 \mathrm{~cm}$

Figure 26. Estimated mean (red line), 95\% Confidence Interval (dashed red lines) and station-specific (grey lines) relative catch efficiency at length for female Spiny Dogfish from the chosen beta-binomial Generalized Linear Mixed Model, using paired-tow data collected during the day from the Spring survey exclusively and constraining the length range to sizes with a minimum of 10 fish caught by either vessel.

spiny dogfish males - spring survey night, $24-85 \mathrm{~cm}$

Figure 27. Estimated mean (red line), 95\% Confidence Interval (dashed red lines) and station-specific (grey lines) relative catch efficiency at length for male Spiny Dogfish from the chosen beta-binomial Generalized Linear Mixed Model, using paired-tow data collected at night from the Spring survey exclusively and constraining the length range to sizes with a minimum of 10 fish caught by either vessel.
spiny dogfish females - spring survey night, $23-98 \mathrm{~cm}$

Figure 28. Estimated mean (red line) and 95\% Confidence Interval (dashed red lines) for relative catch efficiency at length for male Spiny Dogfish from the chosen beta-binomial Generalized Linear Mixed Model, using paired-tow data collected at night from the Spring survey exclusively and constraining the length range to sizes with a minimum of 10 fish caught by either vessel.

Figure 29. Relative catchabilities between vessels of adult (demersal) Dogfish by sex and diel period as suggested using Miller et al. (2013) models and model selection protocol.

Figure 30. Annual estimates of the proportion of NMFS Spring survey sets that took place during the day.

Vessel-Calibrated Survey Abundance Estimates Separately by Diel Period (red) or Across Periods (green)

Figure 31. A comparison of two calibrations for the NMFS Spring survey for 2009-2015 by sex and life stage of Spiny Dogfish. The green line represents total abundance if life stage-specific calibration coefficients are applied, while the red line represents total abundance if calibration coefficients are conditional on life stage and diel period.

Figure 32. Comparison of uncalibrated (points) and vessel-calibrated (red line) survey abundances grouped by sex ($1=$ male, $2=$ female $)$ and maturity stage ($1=$ juveniles, $2=$ adults $)$ of Spiny Dogfish. The uncalibrated estimates include 7 instances of calibration between the Delaware and Albatross (1980-1982, 1989-1991, and 1994).

Figure 33. Spiny Dogfish length composition over time, summed over sets completed during the day and at night. Bubble size is proportional to abundance, with the maximum representing a count of 1817 and the minimum representing approximately 100 fish.

