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Abstract

This Scientific Report examines the utility of regular sentinel testing for monitoring coronavirus
disease 2019 (COVID-19) activity in an office building or other similar setting where a group of
individuals congregate but also mix with the general population. This is different from traditional
sentinel testing where the objective is to understand the prevalence of a large region. Here, the goal
is to ascertain the health of the building population relative to that regional scale.

Two methods are considered. The first is known as Freedom from Disease (FFD), which was devel-
oped in veterinary medicine to examine livestock infections across a large region and was recently
suggested as a tool to demonstrate absence of COVID-19 on a military base. The second is an ex-
tension that accepts the virus may be within the group and, considering the effect of false positives,
provides insights on the point prevalence in the group relative to the background point prevalence
of the community. Both methods apply a Bayesian approach to make these inferences.

Due to the mixing of the group of interest with the general population, the probability of introduc-
tion of the virus between rounds of testing is quite high. As a result, unless testing is at extremely
high levels, it is not possible to get a high confidence that the point prevalence in the group is low.
As a result, neither method suggests sentinel testing will provide much protection for or information
about the group.

Additional investigation shows that the time-dependent aspect of testing, i.e., that an individual
must be tested in a timely manner for sentinel testing to be effective, further exacerbates the
problem. Ultimately, true positive tests from sentinel testing are likely to be overwhelmed both by
false positives and by individuals who are identified clinically after symptoms present.

Although exploring other options is beyond the scope if this work, mitigation measures that limit
spreading opportunities before an infection is known and aggressive contact tracing after an infec-
tion is identified are likely to be more effective at protecting the group from an outbreak than a
limited sentinel sampling strategy.

Significance for defence and security

Due to the need to work with classified or other guarded information or material, the requirement
for individuals working in military and defence establishments to work in close proximity may
be high. Whether this be on a base or in a headquarters building, many will live at home and
mix with the general population. Sentinel sampling has been and continues to be used at some
establishments. Understanding the limitations of a sentinel testing strategy can inform decisions on
how to best mitigate against COVID-19 in these environments, thereby applying limited resources
in a manner that best protects the Force and continuity of efforts.
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Résumeé

Ce rapport scientifique examine 1'utilité des tests sentinelles réguliers pour surveiller I'activité de
la maladie & coronavirus 2019 (COVID-19) dans un immeuble de bureaux ou autre lieu similaire
ou les personnes se regroupent, mais se mélangent aussi avec la population générale. Cela differe
des tests sentinelles traditionnels dont I'objectif est de comprendre la prévalence de la maladie dans
une grande région. Dans le présent document, ’objectif est de vérifier la santé de la population de
I'immeuble par rapport a celle de la population a I’échelle régionale.

Deux méthodes sont envisagées. La premiere méthode est connue sous le nom de validation de
I’absence de la maladie, qui a été élaborée en médecine vétérinaire pour examiner les infections du
bétail dans une grande région et a récemment été proposée comme outil pour démontrer ’absence
de COVID-19 dans une base militaire. La deuxieme méthode est une extension qui accepte que le
virus puisse se trouver dans le groupe et, compte tenu de 'effet des faux résultats positifs, donne
des indications sur la prévalence instantanée dans le groupe par rapport a la prévalence instantanée
de base de la communauté. Les deux méthodes appliquent une approche bayésienne pour faire ces
déductions.

En raison du mélange du groupe d’intérét avec la population générale, la probabilité d’introduction
du virus entre les séries de tests est assez élevée. Par conséquent, a moins que le nombre de tests
effectués soit extrémement élevé, il n’est pas possible d’obtenir une grande certitude que la préva-
lence instantanée dans le groupe est faible. Par conséquent, aucune des deux méthodes ne suggere
que les tests sentinelles apporteront une grande protection du groupe ou des renseignements sur le
groupe.

Une enquéte supplémentaire montre que ’aspect temporel des tests, c’est-a-dire qu’une personne
doit étre testée en temps utile pour que les tests sentinelles soient efficaces, aggrave encore le
probléme. En définitive, les vrais résultats positifs des tests sentinelles risquent d’étre dépassés a
la fois par les faux résultats positifs et par les personnes qui sont testées cliniquement apres la
présence des symptomes.

Bien que l'exploration d’autres options dépasse le cadre de ces travaux, les mesures d’atténuation,
qui limitent les possibilités de propagation avant qu’une infection ne soit connue et la recherche
agressive des contacts apres 'identification d’une infection, seront probablement plus efficaces pour
protéger le groupe contre une éclosion qu’une stratégie d’échantillonnage sentinelle limité.

Importance pour la défense et la sécurité

Etant donné qu'il leur faut travailler avec des informations ou du matériel classifiés ou protégés,
Iobligation pour les personnes travaillant dans les établissements militaires et de défense de tra-
vailler a proximité immédiate peut étre élevée. Que ce soit dans une base ou dans un batiment du
quartier général, beaucoup d’entre eux vivront chez eux et se méleront a la population générale.
L’échantillonnage sentinelle a été et continue d’étre utilisé dans certains établissements. La com-
préhension des limites d’une stratégie d’échantillonnage sentinelle peut éclairer les décisions sur
la meilleure facon d’atténuer les effets de la COVID-19 dans ces environnements, ce qui permet
d’utiliser des ressources limitées de maniere a protéger le mieux la Force et la continuité des efforts.

i DRDC-RDDC-2020-R127



Table of contents

Abstract . . . . . . i
Significance for defence and security . . . . . . .. ..o i
Résumé . . . . . . e ii
Importance pour la défense et la sécurité . . . . . . . ... ii
Table of contents . . . . . . . . . L iii
List of figures . . . . . . . .. e v
List of tables . . . . . . . . vii
Acknowledgements . . . . ..o L viii
1 Introduction . . . . . . . . . oL e e 1
1.1  Background . . . . . . . ... e 1
1.2 Problem description and scope of effort . . . . . . ... ... ... ... ... ... 2
1.3 Working example . . . . . . . Lo 4
1.4  Document structure . . . . . . . . . L e 6
2 Assumptions . . ... .. e e 7
2.1 Test characteristics . . . . . . . . . . 7
2.2 Sentinel sampling scenario . . . . . . ... L L 7

2.3 Properties of severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2)

infection . . . . . . L L 9

3 Freedom from Disease (FFD) . . . . . . . ... .. L 11
3.1 Mathematical description . . . . . . . . . . . ... 11
3.1.1  Probability of being free from disease . . . . . .. .. ... ... ... ... 11

3.1.2  Design prevalence and customizing the sample size . . . . . . .. ... ... 12

3.1.3  The probability of introduction and discounting the prior . . . . .. .. .. 13

3.2 Application . . . ... 14

DRDC-RDDC-2020-R127 iii



4 Extending the FFD concept to account for true and false positive tests . . . . . . . . . .. 17

4.1  Mathematical description . . . . . . . . .. Lo 17
4.1.1  Interpreting test results without considering background point prevalence . 17

4.1.2 A Bayesian estimation of point prevalence . . . . . . . .. ... L. 18

4.1.3  Discounting point prevalence estimates in time . . . . . .. . .. ... ... 18

4.2 Application . . . ... 19
4.3  Application to a regular sentinel testing plan . . . . . . .. ... ... 22

5 The probability of detecting an unknown infection in a timely manner . . . . .. .. ... 24
5.1  Defining the time window for testing . . . . . . . . .. ... . oL 24
5.2 Application to sentinel testing . . . . . . . .. ... L 24
5.3  Estimating the number of unknown cases . . . . . . . .. ... ... ... ...... 28
5.4  The predictive value of positive tests . . . . . . . . . . ... ... ... ... 29

6 Discussion . . . . . . .. e 30
6.1  Revisiting sensitivity . . . . . . . ... 30
6.2  Effect of altering specificity . . . . . . . .. . 32
6.3  Limitations and potential future work . . . . . . . . ... oo 33
6.4 Concluding remarks . . . . . . . .. L L e 34
References . . . . . . . e 35
List of symbols/abbreviations/acronyms/initialisms . . . . ... ... ... 000 37

iv DRDC-RDDC-2020-R127



List of figures

Figure 1:  Depiction of problem, where the goal is to use sentinel testing to ensure that
the disease is controlled within the subpopulation of interest. . . . . . ... ... 2

Figure 2:  Demonstration of confidence in sampling strategy given (a) sufficient testing;
and (b) insufficient testing. Testing requirements are based on background point
prevalence and group size. A—Initial belief/confidence; B/D/F/H—decrease in
confidence due to mixing with population; C/E/G—increase in confidence due
totesting. . . . . . oL 3

Figure 3:  Probability distributions (blue) and survival functions (orange) for
(a) pre-symptomatic period and infectious duration of asymptomatic cases
(b) Modelled distribution for the duration of infectivity in mildly infectious
cases; and (c) convolution of the distributions in (a) and (b) to produce the
distribution of asymptomatic infectious period. . . . . . . . ... ... ... ... 9

Figure 4: Box model used to relate prevalence and incidence rate. . . . . .. .. ... ... 13

Figure 5:  Relationship between group size, background point prevalence, and (a) daily or
(b) weekly probability of introduction to the group. . . . . . ... ... ... ... 14

Figure 6: Confidence in FFD after one set of tests, where the initial prior is set based on
the expected density of cases within a group of N = 500 individuals for the
design prevalence values stated. Tranches of tests are administered after one
week of mixing with the general population. Results assume a test with
sensitivity Se = 0.7, and the lines show results for different design prevalence
estimates. Panel b shows a close-up of the dotted black region in Panel a. . . .. 15

Figure 7:  Probability distributions of prevalence based on test results for (a) Sp =1 and
Se=0.7;and (b) Sp=0.99and Se=0.7. . . . .. ... L. 18

Figure 8:  (a) Distribution of point prevalence (assuming a beta distribution) with
7 =0.5% £ 0.125%. (b) Distribution of point prevalence within a group of
N = 500 individuals assuming random sampling from the distribution in (a). . . 20

Figure 9:  Probability distributions of point prevalence based on test results and
background belief that point prevalence matches Figure 8b. (a) Sp = 1 and
Se=0.7;and (b) Sp=0.99and Se=0.7. . . ... ... ... L. 20

Figure 10: Probability of an outbreak in the group for N = 500, 7 = 0.5% =% 0.125%, and
k = 50 individuals in the group tested at random. . . . . . . . . .. ... ... .. 21

Figure 11: Probability that the group is at or below background point prevalence for

N =500, 7 = 0.5% + 0.125%, and k& = 50 individuals in the group tested at
random each week given (a) perfect specificity and (b) 99% specificity. . . . . . . 22

DRDC-RDDC-2020-R127 v



Figure 12:

Figure 13:

Figure 14:

Figure 15:

Figure 16:

Figure 17:
Figure 18:

Figure 19:

Figure 20:

Figure 21:

vi

Evolution of the probability that the group is at or below background point
prevalence, assuming no positive tests, for N = 500, = = 0.5% + 0.125%, and

k = 50 individuals in the group tested at random each week given. Panel a

shows the probability values while Panel b shows the improvement in

probability compared to the scenario with no testing. . . . . . .. ... ... ... 23

Window in time during which testing is likely to be effective for (a)
symptomatic cases; (b) asymptomatic cases; and (c) all cases. . . . . .. .. ... 25

Expected efficacy of a weekly testing regime for (a) testing a case in a

sufficiently timely manner; and (b) yielding a positive test result with Se =1

when inside the test window; and (c) yielding a positive test result when

Se = 0.7 when inside the test window. . . . . .. .. .. ... 0oL 27

The probability of detecting a single infection within a group as a function of
testing frequency and fraction of group tested. . . . . . . . . ... 27

(a) Incidence rate required to sustain point prevalence; (b) probability
distribution for the number of new cases daily in the subpopulation; and (c) the
resultant probability distribution of the number of unknown case within the

subpopulation. . . . . . ... e 28
Like Figure 6 except with sensitivity dropped from Se = 0.7 to Se=0.5.. . . . . 30
Like Figure 11 except with sensitivity dropped from Se = 0.7 to Se =0.5. . . . . 31

Probability of detecting an infected individual as a function how often the
individual is tested and sensitivity of the test administered. . . . . .. .. .. .. 32

Probability of an outbreak in a group with parameters like Figure 10, except for
a broader range of Sp-values. Orange and blue dots show Sp-values for orange
and blue bars in Figure 10. . . . . . . .. .. Lo o 32

Effect of specificity on (a) expected number of false positives per year; and (b)

positive predictive value of tests. The region in Panel b reflects the bounds
considered in Figures 14b and 14c. . . . . . . . . .. .. L oL 33

DRDC-RDDC-2020-R127



List of tables

Table 1:

Table 2:

Table 3:

Table 4:

Table 5:

Definitions of symbols and parameters used in main body of text. . . . . . . . .. 5

Relationship between weekly testing volume and FFD confidence for different

design prevalence values. . . . . . . ..o 15
Probability of an outbreak based on test results. . . .. .. .. ... ....... 21
Probability distributions for positive tests. . . . . .. ... o000 29
Reproduction of Table 3 but with an additional line for Sp =0.995.. . . . . . .. 33

DRDC-RDDC-2020-R127 Vi



Acknowledgements

The author would like to thank Jennifer Steele of United States European Command for early dis-
cussions about the sampling strategies used in veterinary medicine. Her understanding of Freedom
from Disease and its application was extremely helpful.

Steve Schofield of Canadian Forces Health Services participated in deep discussions about test
sensitivity, which helped shape the section considering the time-dependent aspect of the problem.

Discussions about this and related work with Francois Cazzolato, Peter Dobias, Steven Horn,
Andrew Sirjoosingh, David Waller, and others in DRDC — CORA have also been crucial for this
effort. In particular, however, interactions with Steve Guillouzic on the methodologies related to
point prevalence, incidence rate, and their relationship were instrumental in guiding the way forward
in understanding the time-dependent aspects of the problem and properly defining the probability
of new cases coming into the population.

Finally, the author thanks the anonymous peer reviewers who gave constructive comments that
further improved this work, helping to frame its place relative to the concerns in the public health
sphere.

viii DRDC-RDDC-2020-R127



1 Introduction
1.1 Background

With the coronavirus disease 2019 (COVID-19) epidemic enduring for almost a year so far and
with it forecast to last for many more months at least, long-term isolation has not been feasible
for all and it has been necessary for many individuals to return safely to work. While many are
encouraged to work from home where possible, others are unable to do so. Some tasks simply
require people to be present at their workplace, to be working collaboratively in relatively close
proximity for example. In defence and military settings, the need to work with classified or other
guarded information has limited the ability of many to work from home. This situation results in
a tension between the need to bring people back into the workplace and the risk of creating the
opportunity for a COVID-19 outbreak in that same workplace.

A number of behavioural changes in the workplace are known reduce the likelihood of an outbreak,
including: reducing the number of people working at any time, breaking the work place into zones,
restricting movement between zones, and limiting in-person meeting participation. While these
interventions have the potential to reduce the likelihood and magnitude of an outbreak should
an infected individual come into work, they are examined elsewhere [1, for example]. Similarly,
the impact of mask wearing will further reduce the probability of spread [2]. Together with contact
tracing, the above behaviours greatly reduce the viral transmission in the workplace [3, 4]. While the
above interventions are all important, however, they are by no means an exhaustive list of mitigation
measures and, in fact, remain beyond the scope of this report. Instead, this effort considers the
degree to which a sentinel sampling strategy might help to ensure workplace population health.

Sentinel testing is an important surveillance tool for tracking disease prevalence and spread. As
described by the World Health Organization (WHO), “[d]ata collected in a well-designed sentinel
system can be used to signal trends, identify outbreaks and monitor the burden of disease in a
community, providing a rapid, economical alternative to other surveillance methods.” [5] However,
this is not the entire story. Continuing, the WHO also includes a word of caution. Because the
testing program only looks at select locations, “sentinel surveillance...may not be as effective for
detecting rare diseases.” This leaves an open question: when might a disease be considered rare,
and where might the effectiveness of sentinel testing begin to weaken?

The focus of this effort is to examine what sentinel testing provides in terms of information on
COVID-19 prevalence in a small group such as an office building, and whether it provides an abil-
ity to mitigate the spread of COVID-19 in that workplace. Because the problem at hand considers
a relatively small population, the law of large numbers [6] that makes surveillance sampling infor-
mative starts to break down, and so the caveat of rare cases provided by the WHO [5] comes into
play. In addition to exploring the efficacy of sentinel testing, given that one will need to contact
trace and isolate individuals each time there is a positive test, the implications of false negatives
are also explored. This is an important factor for the problem at hand since, assuming individuals
are coming into work out of necessity, it affects how to best manage staff carrying out essential
duties in the workplace to ensure redundancy. The analysis in this report is explored for a specific
example scenario, where a workplace is comprised of individuals who are not isolated from but
rather mix with their community. There is a constant background disease prevalence within this
community, which in turn provides a constant risk of new infections for the group of interest.

DRDC-RDDC-2020-R127 1



1.2 Problem description and scope of effort

Figure 1 shows a depiction of the problem where a subset of individuals (beige stick figures) are
part of a subpopulation that is working in close quarters, such as an office building (beige circle).
As part of the broader community, these individuals are interacting with others and so remain
at an assumed constant risk of contracting a severe acute respiratory syndrome coronavirus 2
(SARS-Cov-2) infection. While people in the general population are not likely to be infected (grey
stick figures), a small fraction will be (red stick figures). Hence, an individual in the subpopulation
of interest could become infected and unknowingly bring the virus into the workplace, thereby
creating a potential to cause an outbreak there.

Figure 1: Depiction of problem, where the goal is to use sentinel testing to
ensure that the disease is controlled within the subpopulation of interest.

The problem here is to understand what sentinel testing does and does not provide in terms of
understanding the status of SARS-Cov-2 infections in the building at an instance in time, rather
than to understand the number of people who have been infected over time. This is an important
distinction as it affects how best to approach the problem. For example, if one wants to understand
the fraction of the population that has become infected, then one could track the number of in-
dividuals who test positive for the virus over time. From there, one can make assumptions about
the bias of testing towards a fraction of symptomatic individuals and thus infer the likely number
of people who have been infected in total [7]. Alternatively, if enough people are testing positive
within the population of interest, then one can infer the incidence rate and from that, the number
of unknown infected individuals [3]. However, in scenarios where one is looking at a smaller group
of people where few people are displaying symptoms over time, then these types of inferences may
be less applicable. It is this situation in particular that is of interest in this report, and the question
at hand is what sentinel testing brings to that problem under this circumstance. Sentinel testing is
not designed to detect symptomatic individuals, as they should self-identify, but rather those who
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are infected but not showing symptoms. Since one expects that there will be infections within the
population of interest over time, another question to consider is whether sentinel testing can help
to infer if there is spread within the population of interest.

Early in the pandemic, some proposed an approach to sentinel testing for military bases known as
Freedom from Disease (FFD) [8], which is born out of veterinary epidemiology [9, 10]. The approach
uses successive rounds of testing to demonstrate the probability that a group is free from disease.
As a result, the probability of introduction of the disease to the group between rounds of testing is
important. If tests give confidence that the point prevalence in the subpopulation of interest is low
but there is also a high degree of mixing with the general population, then the value of those test
results discounts quickly since the likelihood of people contracting the virus after testing increases
quickly. If testing levels are too low or too infrequent, the mixing effect shown in Figure 1 will
overwhelm test practices and testing will give little confidence A schematic showing the difference
between having sufficient and insufficient testing in a sampling strategy is shown in Figure 2. In
scenarios where testing is sufficient and the probability of the disease entering the group is low,
the testing regime used in FFD aims to ensure a high confidence that the disease is not within the
subpopulation of interest (Figure 2a). However, if testing is insufficient and the probability of the
disease entering the group is high, then the testing regime will not provide much utility (Figure 2b).

Sufficient testing Insufficient testing
G

@ o & ® (b)
8 8
: @ Fi\H : | @
< D <3
=) =
= B =
Q Q
O o ©O O B C

D¢ p a
o—g-H
Time Time

Figure 2: Demonstration of confidence in sampling strategy given
(a) sufficient testing; and (b) insufficient testing. Testing requirements are
based on background point prevalence and group size. A—Initial
belief/confidence; B/D/F /H—decrease in confidence due to mixing with
population; C/E/G—increase in confidence due to testing.

At the time that FFD was proposed [8] to monitor COVID-19 on a military base, the probability
of introduction was not well constrained and it was not clear whether it would be sufficiently low
for FFD to be a successful approach. Recently, other efforts [11, 12] have helped to estimate that
aspect of the problem, and the methods developed are applied to incorporate a realistic estimate
for the probability of introduction.

Another limitation of the FFD approach is that it assumes perfect specificity, i.e. no false positive
results. The premise of FFD is that once testing reveals a positive test, the assertion that the group
is free of disease is rejected. This causes two issues. First, it is unlikely that a group will remain
disease-free ad infinitum, so at some point FFD can provide no information except that the disease
is in the group. Second, a non-zero false positive rate is expected SARS-Cov-2, implying that the
assumptions linked to FFD may not fit the problem at hand. To address these issues, this report
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also develops an extension of the FFD approach where one accepts that the disease may be present
in the population of interest. This extension considers the effect of false positives and attempts
to estimate the prevalence in the group of interest relative to an estimate for the region. It will
be shown that both FFD and the proposed extension are unlikely to provide much information
concerning the status of COVID-19 infections in the workplace relative to the general population.

In spite of these shortcomings, some may still wish to push forward with a sampling strategy in
order to at least catch some infections before they have an opportunity to spread within the work-
place. Examining this question highlights another shortcoming of sentinel testing: not only does
an infected individual need to be caught but they need to be caught in a timely manner. Symp-
tomatic cases must be detected before symptoms present (otherwise the individual will presumably
self-identify and hopefully get tested outside of the sentinel program), while asymptomatic cases
must be detected while they are still infectious to minimize the chance of viral spread [13].! We
find that not only will a sentinel strategy have difficulty detecting these infections, but also that
even a mild false positive rate will dominate the signal. Assuming those in the workplace need to
be there for essential purposes, and assuming that contact tracing and isolation of contacts will
follow any positive tests, the implications of false positives also needs consideration. In particular,
one would want to develop schedules that permitted continuity of essential functions while being
prepared for multiple periods isolation.

1.3 Working example

Throughout this document, a generic example is used where testing is conducted for a building
with N = 500 workers who live in a region with a point prevalence of myp = 0.5%.? (Table 1 provides
definitions for all symbols used in the body of the document.) In some cases this prevalence is
prescribed as that exact value, while in others uncertainty is included and 7y = 0.5% 4 0.125%. In
Sections 3 and 4, the test sensitivity is set to Se = 0.7, or 70% [14, 15], meaning the false negative
rate is 30%. In Section 5, when considering a time-window during which sentinel testing is effective,
perfect sensitivity (given sufficient viral load) is also considered to give an upper bound. For cases
where specificity is imperfect, we assume a value of Sp = 0.99, meaning that 1% of negative cases
test positive.> While test specificity may indeed be higher than 0.99 in reality, this value is used as
a low bound to constrain the findings. Towards the end of the document in the discussion, some key
results are reviewed for a wider range of specificity values, covering the range between 0.98 and 1.

To demonstrate the efficacy of sentinel testing, we employ a sampling strategy where 10% of the sub-
population, that is k£ = 50 individuals, are selected randomly for each week for testing (7 = 7 days),
although the impact of varying k and 7 is considered in some scenarios.

1 Asymptomatic cases detected after they are still infectious may still provide an ability to contain the spread of the
disease through contact tracing. However, the degree to which this is likely to be effective is beyond the scope of the
current report.

2 This value is well below what has been witnessed El Paso County so far [7], but is well within the realm of realistic
values across North America. Note that other regions in the United States continue to be above this value at the
time of writing, and a second wave could well bring similar or higher values to urban centres in Canada.

3 Sensitivity is defined as Se = TP/(TP + FN) and specificity is defined as Sp = TN/(TN + FP) where TN, TP,
FN, and FP are the number of true negatives, true positives, false negatives and false positives, respectively.
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Table 1: Definitions of symbols and parameters used in main body of text.

Symbol  Definition

d Number of infections within a population

d* Expected number of infections within the population based on 7y

fo Cumulative density function of the probability of sufficient viral load for testing
h Probability of being within the time window for testing at time ¢

k Number of people tested

1 Indication that an infection is introduced to the group

N Group size

p(+) Probability distribution of (-)

Pt Fraction of population tested in a test period, i.e. k/N

Dtest Probability that an infected individual is tested

Pdetect Probability that an infected individual is detected by the sampling strategy
Da Probability that an individual case will be asymptomatic

Dg Probability of someone in a group becoming infected in the time period of interest
T Incidence rate for new infections per person

rg Incidence rate for new infections in the group

Se Test sensitivity

Ses Sensitivity of sentinel strategy

Sp Test specificity

Sp Survival function for the pre-symptomatic phase of symptomatic infections
S; Survival function for the infectious period of mild symptomatic cases

Se Survival function of all COVID-19 cases

S Survival function of the symptomatic phase of symptomatic cases

Sa Survival function of asymptomatic cases

t Time

T+ Number of positive tests

T ]ﬁ' Number of false positive tests

Y Number of infected individuals selected for sentinel testing

a, B Parameters describing the beta distribution

Loy To Centre and scale of f,

i Mean duration of a SARS-Cov-2 infection

g, Og Parameters of the gamma function defining S;

Hp, Op Parameters of the lognormal distribution defining S,

s, Os Parameters of the gamma function describing Sg;

T Point prevalence

T4 Design prevalence

T Inferred point prevalence in group

0 Inferred point prevalence in society

T Time period between tranches of sentinel testing
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1.4 Document structure

This document is organized as follows. First, assumptions pertaining to virus pathology, test char-
acteristics, and sentinel testing are outlined in Section 2. These assumptions underpin much of
the work derived in the following three sections. Next, an outline of the concept of FFD and its
limitations for the problem at hand are discussed in Section 3. As mentioned above, a limiting
factor of this approach is that it requires all tests to come back negative, which implicitly assumes
there are no false positives (i.e., perfect test specificity). To address this limitation, an alternative
approach that aims to use sentinel testing to estimate the likelihood that the point prevalence in
the population is at or below the background level is introduced in Section 4. This second approach
also has limited utility and, while it can handle imperfect specificity, the ability to infer information
from such a test is shown to be limited for the problem at hand.

Following presentation of these two methods, we examine the time-dependence aspect of the infec-
tion itself in Section 5 since, in order to be effective, the sampling strategy must catch infections
before they develop symptoms (for symptomatic cases) or before they cease to be infectious (for
asymptomatic cases). The report then finishes with a discussion in Section 6, which ties the results
from Section 5 to those in Sections 3 and 4, explores implications of higher and lower specificity
values, and outlines the author’s assessment of the implications of the findings.
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2 Assumptions

Estimating the daily probability of infection of individuals is an important parameter for estimating
the risk of infection to individuals or groups over time and there have been several recent efforts
to understand that problem, with each building on the previous [11, 12, 16]. In particular for the
efforts here, important factors about the disease are those that relate to the time after infection
before there is a sufficient viral load to test positive, the probability of different types of infections
(i.e., symptomatic versus asymptomatic), and the duration of those infections. In addition, one
must make assumptions with regards to the test characteristics, i.e., the sensitivity and specificity.

2.1 Test characteristics

1. When considering FFD in Section 3, test sensitivity is Se = 0.7 and test specificity is Sp = 1.
For the prevalence modelled (7 = 0.5%), this is equivalent to a positive predictive value (PPV)
of 1 and a negative predictive value (NPV) of 0.998.

2. When considering the probability of being at or below the background point prevalence in
Section 4, test sensitivity is Se = 0.7 and test specificity is either Sp = 0.99 or Sp = 1. For
the imperfect specificity, and for the prevalence modelled, this is equivalent to a PPV of 0.26
and a NPV of 0.998.

3. When considering the time-window for detecting an infection in Section 5, the ability to catch
an infection early depends on the viral load (discussed further in Assumption 13). It is not
entirely clear how this is factored into the sensitivity value used above, so bounds of Se = 0.7
and Se = 1 are both considered when including the window for testing. Specificity values of
Sp =0.99 and Sp = 1 are used and compared.

2.2 Sentinel sampling scenario

4. Sampling strategies are applied to an office building of N = 500 individuals, who are not
quarantined or sequestered, and mix regularly with the general population (Figure 1).

5. Sampling strategies are assumed to select individuals at random, meaning the possibility of
focused testing of specific potential high-risk individuals within the building is neglected.

6. Sentinel testing occurs weekly (7 = 7 days), although the parameter space for different testing
intervals is also explored.

7. In each round of sentinel testing, & = 50 individuals are selected randomly, although the
parameter space for different proportions of the population is also explored. Due to the random
nature of the strategy, testing someone in one round does not preclude them from being tested
in any following rounds.

8. Within the group, there are presumed to be d infected individuals, which is to say that the
point prevalence within the group is # = d/N.

In order to understand and interpret how a sampling strategy will play out, one must appreciate the
probability of having x positive tests result from testing the k individuals. Because the population
of interest N is relatively small, we apply a hypergeometric distribution rather than a binomial one
to determine the probabilities.

DRDC-RDDC-2020-R127 7



9. For a random sampling strategy, the likelihood of drawing y infected individuals out of the
population of N individuals follows:

()G
PN ko d) = NV W

()

10. For the FFD scenario with perfect specificity and imperfect sensitivity, the likelihood of
drawing z positive tests (T = z) builds on Equation (1) [17]:

where y < d.

()G)
d _
p(T* = 2N, k,d, Se, 5p—1) = 3" W\ Y/ (i) Se(1— Se)V, (2)

=

where x < y < d. The added terms on the right hand side of the equation give the binomial
distribution that considers the likelihood of x out of y individuals testing positive.

11. For scenarios that also consider specificity, we add another component except this time to
consider the possibility of a non-infected individual testing positive [17]:

d _ min(z,y)
I M () R R
j=0

= N x—j
k

We apply Equation (1) when considering the probability of testing a given number of infected
individuals and Equations (2) and (3) whenever considering probability of someone testing positive
given the point prevalence, the size of the group, and the number of people being tested.

To assess the number of true and false positives relative to the number of actual cases in Section 5, it
is necessary to identify the number of false positives and true positives. The number of true positives
can be identified using Equation 2, but false positives requires a modification of Equation 3 where
only false positives are considered.

12. For the number of false positives, we remove the true positives from the group sampled and
explore the probability of getting false positives out of the remaining members of the group
being tested:

b))
d _
p(TF = z|N,k,d,Sp) = ARy (k ; y) (1 — Sp)*SpF—==¥, (4)

=0)

where T' f+ is the number of false positive test results.
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2.3 Properties of SARS-Cov-2 infection
The key assumptions as they relate to the behaviour of COVID-19 infections are:

13. At the onset of infection, an insufficient viral load will lead to a negative test. It is only after the
virus has had sufficient time to replicate in its host that one can expect a positive test. Results
from [18] suggest that one is unlikely to test positive until several days after contracting the
virus. For demonstration purposes here, and following the findings in Figure 3 from [18], we
assume it takes two to three days after infection for the viral load to be sufficiently high to test
positive. Modelling the probability of a sufficient viral load as a logistic function centred at
o = 2.5 d and with a scale of 0, = 0.25 d, the cumulative density function of the probability
of having a sufficient viral load to test positive is,

1
fv(t) = 1+ 6,@,“0)/00 . (5)

This assumption only comes into play in Section 5. To simplify the problem, we further assume
that f, is independent of the duration of the infection and of whether the case is symptomatic
or asymptomatic.
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Figure 3: Probability distributions (blue) and survival functions (orange) for
(a) pre-symptomatic period and infectious duration of asymptomatic cases
(b) Modelled distribution for the duration of infectivity in mildly infectious
cases; and (c) convolution of the distributions in (a) and (b) to produce the

distribution of asymptomatic infectious period.

14. Following exposure, a fraction of exposed individuals remains asymptomatic. Possible values
are based on estimates from the United States Centers for Disease Control and Prevention
(CDC) [19]:

e In the best case scenario, 10% of cases are asymptomatic;
e In the worst case scenario, 70% of cases are asymptomatic; and
e In the most likely scenario, 40% of cases are asymptomatic.
From these estimates, the probability distribution of the fraction of infections that are asymp-

tomatic is modelled as a symmetric triangular distribution centred at the most likely scenario.

15. For symptomatic cases, there is a pre-symptomatic period. Empirical results from [20] sug-
gest that the onset for the presentation of symptoms follows a lognormal distribution with

DRDC-RDDC-2020-R127 9



16.

17.

18.

19.

10

fp = 1.621 and o}, = 0.418. (This distribution gives a median period of 5.1 days.) The survival
function for this function is,

1 1 Int —pu
Sy(t) == — —erf | —=—2 |, 6
where erf(-) is the error function. Once symptomatic, individuals self-identify and are not a
concern for sentinel testing.

The duration of asymptomatic cases is more difficult to determine, particularly given that
the delineation between mild infections and asymptomatic infections is not always clear. For
example, some add an additional type of infection, pauci-symptomatic, where symptoms are
present but too subtle for the individual to think anything of them. While pauci-symptomatic
cases are not considered here, due to the fuzzy boundary between symptomatic and asymp-
tomatic cases and following [11], a conservative estimate for the duration of asymptomatic
infections is taken as the time it takes for a symptomatic case to present symptoms plus the
time that mild symptomatic cases are infectious. The latter is derived from [21], who related
their ability to grow an infectious culture of the virus from swabs to the likelihood of an
individual still being infectious. From there, they tie the probability of being infectious to the
time since symptom onset. Fitting the data from [21] to the survival function of their results
suggests a gamma function with parameters py = 4.6 d and oy = 1.7 d. The survival function
is described as,

5= 5() = 1= 5757 (5 (7)
where k = ,ug / 03, 0= 03 /g, T'(+) is the gamma function and ~(-) is the incomplete gamma
function.

The survival function for asymptomatic cases is then,
Sa = Sa(t) = Sp(t) = S;(t), (8)

where * is the convolution operator. Figure 3 shows the survival functions S, .5;, and S,, as
well as their associated probability density functions, in panels a, b, and c, respectively.

The survival function defining the limit of when testing will be effective is written as,
S = S(t) = paSa(t) + (1 _pa)ss(t)v (9)

where p, is the probability that a given case will be asymptomatic. Where one assumes
uncertainty in p, and its value is defined by a probability distribution p(p,), Equation (9)
becomes,

S=50)= [ p0h) 50+ (1 - p)5.] i, (10

Following Equation (10) we estimate the survival function for all infections to be,

5= 5u0) = [ p(BL) [ + (1L~ H)(Sy » Su)] dof (1)

where S,; is the survival function for the symptomatic phase of symptomatic cases, estimated
using a gamma distribution with s =10 d and o5 = 3 d.

Each individual has equal likelihood of infection, and a single infection in the group does not
change the likelihood of infection outside of the workplace for other individuals.
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3 Freedom from Disease (FFD)

The starting point for this work stems from methods used in veterinary medicine to test if a
population of livestock in a large region (e.g., a country) is free of a particular disease [9, 22].
Foddai et al. [8] recently proposed the application of these strategies to the problem of assessing
whether COVID-19 is present on a base, citing Epitools [23] as a resource for making the necessary
calculations. The text below describes the concept of FFD as it is used on the Epitools website
[24],% then describes its mechanics and limitations for the scenario shown in Figure 1.

For a population to be truly free from disease, every member of the population must not be infected
and to ensure this, every member of that population needs to be tested with a perfect test that
will not report any false positives or false negatives. Such tests do not exist for identifying a
SARS-Cov-2 infection. However, even if such a test existed and if it were possible to test everyone,
another problem arises: for a subpopulation mixing with a larger population in which the disease
exists, it is possible (if not likely) that someone who initially tests negative will become infected
later. This results in a need for constantly testing everyone, which is not realistic.

The FFD sentinel approach uses a series of random tests where, under the assumption of no false
positives, sentinel testing is carried out where, for each round of testing, k£ individuals are selected
randomly from the subpopulation.® If tests do come back positive, then the disease is present in
the group. The sampling strategy is thus aimed at providing a confidence that the point prevalence
is below some background level, or design prevalence [10]. The model applies a Bayesian approach
where previous confidence of freedom is increased by each tranche of testing. However, following
testing, the confidence drops because there is a probability of the virus being introduced to the
group over time (Figure 2). For the approach to be successful, the confidence gained by each tranche
of testing must be higher than or equal to the amount lost due to the probability of introduction
of the virus to the group between tranches, with results gravitating towards an acceptably high
confidence level. (For example, one may want to have 95% confidence that the point prevalence in
the subpopulation is at or below 0.5%.) Thus, if the prevalence and desired confidence levels are
known, one can design a sampling strategy to reach that confidence level.

3.1 Mathematical description
3.1.1 Probability of being free from disease

This section provides a mathematical formulation for FFD. To begin, we assume a prior belief for
the probability that the subpopulation is disease-free, i.e., that p(m = 0). Following a sequence of
tests, this belief can be updated using Bayes theorem:

p(T+ = Ol = O)p(x = 0)
p(T* =0|m =0)p(mr =0) + p(T*+ = 0|7 > 0)p(r > 0)

p(r =0Tt =0) = (12)

4 This information was not present on the website, but required significant review of the open literature.

5 Qenerally, it is assumed that false positives can be ruled out through means such as isolating and retesting, i.e., in
veterinary medicine removing an animal from the herd until the positive test is overturned [25]. This is a less-than-
ideal scenario when examining the situation for COVID-19 due to the mixing rate of the population of interest with
the background population. Too many false positives could send many people into self-isolation, and the timescales
for retesting may be slower than the timescale for making decisions about a potential outbreak.
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Under the assumption of perfect test specificity, p(T+ = 0| = 0) is unity, so this can be simplified

to
p(m =0)

plm = O = 0) = =G o = O > O pr = 0]

(13)

3.1.2 Design prevalence and customizing the sample size

An aspect of FFD is that, if a specific confidence level is desired, one can adjust the number of
tests in the next round of sampling. In Equation (13), the term p(T+ = 0|7 > 0) can be rewritten
as 1 — p(Tt > Olr > 0) = 1 — Se,, where Ses is the sensitivity of the sentinel strategy, i.e., the
probability that the testing strategy will return a positive test if there is a case in the population.
Equation (13) can thus be rearranged to give a relationship between the prior, p(r = 0), the desired
posterior, p(m = 0/T" = 0), and the sentinel sensitivity required to reach that desired posterior:

p(m =0) 1

e = T T =0) Lptr = 0T = 0)

—1/. (14)

For example, if the prior probability is 0.8 and the desired posterior probability is 0.9, then the
sentinel sensitivity must be 1 —0.8/0.2(1/0.9 — 1) = 0.5.

To customize the sample size, we must next determine how many individuals must be tested to
achieve the Seg-value prescribed by Equation (14). Assuming perfect specificity, if there is one
infected individual in the group, then the probability that the individual in the group will test
positive is Se k/N.

To move to the step of specifying k to reach a certain confidence of FFD, we must first introduce a
concept known as “design prevalence,” denoted as m4. This value is needed to reject the null hypoth-
esis that the disease is present in the group [10], and it comes into play because the higher/lower
the prevalence, the fewer/more the number of tests required to detect the presence of the virus.
For COVID-19 infections in our subpopulation, we set the design prevalence to the background
point prevalence for the population at large.® Based on our design prevalence, the expected number
of individuals in the subpopulation who would be infected is d* = Nmy (rounded to the nearest
integer) and so the probability of nobody in the group testing positive is (1 — Se k/N)4". Since the
sentinel sensitivity is the probability of getting a positive test,’
Sek\?
568_1—<1—N) . (15)

Hence, to identify the number of tests required to achieve a desired sentinel sensitivity, we rearrange
Equation (15) to get,
k= {Se 1 (1= Se) ], (16)

where [-] is the ceiling operator (e.g., [7.3] = 8).

6 If additional information about the group of interest relative the average of the population is known, then this
information can also factor into the value used for the design prevalence.

7 This is an approximation that speeds up the computation considerably and holds for a large populations where
N =~ N — d*. In cases where this approximation begins to break down the value can be estimated iteratively using
a hypergeometric distribution. The approach would be to evaluate Equation (2) for increasing k values with d = d*
and z = 0 until p(T" = 0| N, k,d*, Se, Sp = 1) < (1 — Ses).
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Figure 4: Box model used to relate prevalence and incidence rate.

3.1.3 The probability of introduction and discounting the prior

At the onset of the first round of testing, one must make an estimate for the prior probability of
an infection within it. (Note that starting with a prior of 0 is not a valid starting point as it does
not allow the posterior to move away from that value. A reasonable approach could be to apply a
Bernoulli trial to estimate the probability of no infections in the group based on the background
or design prevalence.) After the first round of testing, the probability of an infection in the group
shifts to the posterior probability following Equation (13).

Now, consider a situation where testing is conducted at regular intervals 7 (e.g., if testing were
once a week, then 7 = 7 d). When the next round of testing begins, we have some information
and the new prior is informed by the posterior from the previous round of testing. However, this
posterior needs to be discounted due to the probability that the virus may have been introduced
to the group since the last round of tests. Considering a regular sentinel testing regime where tests
occur on days {0, 7, 27, ...}, the prior at time (n+ 1)7 is derived from the posterior at time nr as,

Prs1(m = 0) = po(m = 0|7 = 0)[1 —p(I|7)], (17)

where p(I|7) is the probability that an infection will have been introduced to the group between
tests separated by the time period 7.8

Determining the probability of introduction to the group depends on the rate of new infections,
or incidence rate r, within the region. The relationship between r and m depends on how quickly
cases resolve (Figure 4), and for constant 7, the incidence rate is equal to the rate at which cases
resolve. Assuming that initially at ¢ = 0 the prevalence is zero, then the point prevalence a time ¢
is defined as the sum of all infections that have not resolved,

(t) = /0 St — )t (18)

where S is the survival function for the duration of infections (that is to say S(At) is the fraction
of infections that will not have resolved at a time At after the onset of infection).

For constant prevalence, the relationship above simplifies to
o
T = 1“/ St"dt" = ru;, (19)
0
where u; denotes the average duration of an infection.

The probability of introduction to the group, p(I|7), can be estimated by taking the incidence
rate r and noting that, since 7 is the probability that any individual selected randomly from the

8 If the point prevalence is constant, then p(I|T) is constant, but if it is changing in time, then this term too will
have time dependence. Considering the situation for time-dependent prevalence is beyond the scope of this effort but
could be adapted from methods in [16].
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population may be infected, r is also the daily probability that an individual in the population will
contract the disease. For the population of interest, assuming that the probability that one might
get infected on any given day can be treated as a Bernoulli trial, the probability that the virus is
introduced to the group after a time 7 is,’

p(I|r,r,N)=1—(1— r)NT. (20)

3.2 Application

Due to the mixing rates with the general population, which are much harder to control with people
than livestock, it may never be possible to get a high degree of confidence that the population
is free from disease. In fact, for sufficiently low design prevalence and an imperfect test, applying
Equation (16) indicates that it may be impossible to reach an adequate degree of confidence that
the group is free from disease.

Based on current knowledge of COVID-19, it is possible to relate prevalence to the fraction of the
population that is likely to be infected each day and, from that, one can determine the likelihood
that somebody within the group of interest becomes infected over a given time period. Using
r = m/p from Equation (19) and applying Equation (20), Figure 5 shows the expected probability
of introduction to a group based on the background point prevalence.
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X 0.75 = 0.75
3] 3]
E 0.50 § 0.50
g g
& 0.25 & 0.25
A A
0.00 - 0.00
0 250 500 750 1000 1250 1500 0 250 500 750 1000 1250 1500
Size of group Size of group
I . !
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Probability of introduction (%)

Figure 5: Relationship between group size, background point prevalence, and
(a) daily or (b) weekly probability of introduction to the group.

The probability of introduction makes it very difficult to test at a level and frequency that can
assure FFD. For a building of N = 500, Figure 6 shows the relationship between the number of
tests per week and the confidence of being free from disease for different design prevalence values
ranging from 0.1% to 0.9%. When the number of tests is low, the confidence in freedom from disease
(at the design prevalence for the model) is higher for low values of design prevalence simply because,
due to the laws of probability, the group is more likely to be free from disease (Figure 6a). As testing
increases, the confidence increases for the high prevalence curves faster than the low prevalence ones
because it is more unlikely to have that many negative tests at high design prevalence (Figure 6b).

9 Methods for estimating p(I) with time-dependent point prevalence would require looking at the estimate for r each

day (or at time step):
(n+1)7

pIlr,m,N)=1- [ a-re)™.

t=n71+1
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Figure 6: Confidence in FFD after one set of tests, where the initial prior is
set based on the expected density of cases within a group of N = 500
individuals for the design prevalence values stated. Tranches of tests are
administered after one week of mixing with the general population. Results
assume a test with sensitivity Se = 0.7, and the lines show results for different
design prevalence estimates. Panel b shows a close-up of the dotted black
region in Panel a.

Based on these results and the fact that false positives may be difficult to rule out in a timely
manner, it may not be possible to confidently demonstrate FFD for a group of people that is
mixing regularly with the general population. For a group of N = 500 individuals and a prevalence
of mg = 0.5%, the weekly probability of introduction to the group is p(I|7 = 7) = 27%. For a test
with a 30% false negative rate (i.e., a sensitivity of Se = 0.7), maintaining that the building is free
from disease with 95% confidence given a design prevalence of our assumed background population
(i.e., mg = mo = 0.5%) would require testing 360 individuals each week (72% of the building) with
all tests coming back negative. If only 10% of the subpopulation is tested each week, then the
confidence that the group is FFD at the design prevalence is 51% (Table 2).

Table 2: Relationship between weekly testing volume and FFD confidence for
different design prevalence values.

Design prevalence Probability of introduction p(I)  Number of tests for ~FFD confidence

T4 Daily (1 =1) Weekly (1 =7) 95% FFD confidence  with 50 tests
0.1% 1.9% 6.1% 378 85%
0.3% 5.5% 17% 396 65%
0.5% 9.0% 27% 360 51%
0.7% 12% 36% 329 42%
0.9% 16% 43% 303 34%

Of further concern for this example is the fact that test results are not instantaneous. Assuming
a one-day delay from testing to test results, then for mg = 0.5% this delay would result in a
9% discount in the probability of being FFD. Hence, to have 95% confidence upon release of test
results is no longer possible, since having 100% confidence would have been discounted to 91% the
following day. Using the example of 50 tests per week, the initial 51% confidence described above
would be reduced to 46% the if reporting of test results occurs the day after testing.
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In summary, this approach may pose considerable difficulties when trying to consider a large popu-
lation during COVID-19. In the situation where the mixing of the population cannot be regulated,
the number of tests required may become infeasible (i.e., more tests than practical) or even im-
possible (i.e., more tests than the number of people in the subpopulation). In reality, tests do not
have perfect specificity, and decisions may be necessary prior to the ruling out of false positives
(see Footnote 5). In fact, for larger groups mixing with the population, the rate of introduction
might be sufficiently high that the value of an overturned false positive may be negated by the
time the false positive is recognized. This suggests that it is necessary to incorporate false positives
into the analysis, which is done in Section 4. Last, if one assumes that symptomatic individuals
will self-identify and that detecting asymptomatic individuals is only useful if it is done before they
are no longer infectious, then sentinel testing is limited in that it must identify infected individuals
who are either asymptomatic and still contagious or have not yet developed symptoms. This issue
has is not addressed above at all, but is discussed in Section 5.
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4 Extending the FFD concept to account for true and false
positive tests

Demonstrating FFD is ideal, but based on the analysis above it is not clear whether this is possible
for the problem at hand given disease prevalence and the probability of introduction of the virus
in time. Above, we showed that in a situation with N = 500 and a point prevalence of my = 0.5%,
it is difficult to ensure that FFD unless virtually the entire population is tested (e.g., Table 2).
In addition, the possibility of false positives adds to the challenge of making decisions using FFD
results in a timely manner since, by the time a false positive is ruled out, the results from that
round of testing may be significantly discounted due to mixing.

In this section, we next explore whether an alternate approach could be to design a sentinel sampling
strategy that, instead of aiming to demonstrate FFD, aims to catch an outbreak early. The premise
of the approach is that, if one accepts that there may be a few infections within the group due to
building occupants being part of with their community (Figure 1), the challenge then shifts from
trying to ensure that the virus is not in the building to instead trying to ensure that the building
environment itself is not causing a source of spreading, i.e., that the building and its occupants do
not create the conditions for an outbreak. The premise becomes that, so long as the prevalence in
the building is not above the background point prevalence, the work environment is unlikely to be
a source of spreading, and the question becomes whether this alternative is feasible.

When looking at the possibility of an outbreak, the focus is very similar to FFD except that now
the effort is to show the probability of being at below the community point prevalence. Two major
differences between the FFD model and this model are that the approach below incorporates the
implications of positive test results and considers non-perfect specificity (i.e., false positives are
possible).

In addition to these inclusions, uncertainty in the point prevalence is also considered while ex-
tending the FFD framework. This consideration could, in principle, be used for FFD as well but
that extension is not considered here. We include two sources of uncertainty in the point preva-
lence estimate. First, when looking at the point prevalence in a given region, there will be some
uncertainty about that value [7] so instead of using a single point prevalence value, we consider a
distribution, which for this effort is modelled simply as a beta distribution. Second, when drawing
the subpopulation of the building out of a larger population, one is conducting a Bernoulli trial in
which the resulting prevalence value could be above or below the background population, simply
by chance. Both additions lead to the same end result where the point prevalence in the group is
considered as a distribution rather than a single value.

4.1 Mathematical description
4.1.1 Interpreting test results without considering background point prevalence

The sentinel sampling strategies discussed here employ a Bayesian approach that considers the
background point prevalence. To outline the need to consider the background point prevalence
in interpreting test results, consider the challenge of interpreting test results without it. Figure 7
shows the probability distributions for the point prevalence in the group based on test results. The
figure shows the probability distributions of the background point prevalence when k£ = 50 out of
N = 500 individuals are randomly tested. Panel a considers the case with perfect specificity and
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Panel b considers the case with an assigned specificity of Sp = 0.99. If one does not use beliefs
about the background point prevalence then it can be extremely difficult to interpret test results.
For example, if a single test comes back positive, it is difficult to say with any certainty whether
the point prevalence is 0% or 5%, particularly for the case of imperfect specificity (Figure 7b).
Below, as the different methods are discussed, it will be demonstrated how consideration of the
background conditions, when combined with testing results, can improve result interpretation.

- 01007 () b 0-1009 (b) — 0 positive tests
= = 1 "t' tests
% 0.075 1 % 0.075 pOb? %Ve ests
< <3 —— 2 positive tests
E 0.050 E 0.050 4 —— 3 positive tests
2 2
2 2
S 0.025 1 S 0.025 A1 —
A ~ A
0.000 =" o0 f——
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.01 0.02 0.03 0.04 0.05
Point prevalence, 7 Point prevalence, 7

Figure 7: Probability distributions of prevalence based on test results for
(a) Sp=1 and Se = 0.7; and (b) Sp = 0.99 and Se = 0.7.

4.1.2 A Bayesian estimation of point prevalence

Assume for a moment that we believe the point prevalence in the region fits some distribution
p(mp). Armed with this belief, we can revisit results above using Bayes rule. Given the prior belief
regarding the prevalence mg, the posterior probability that prevalence is 7 given x positive tests is,

T+ — 2|N — d/N
p(ﬂ‘T+:x>: Np( z|N,k,d, Se, Sp) p(m = d/N) ' (21)

Sp (T+ = 2|N, k,d, Se, Sp) p(n=d/N)
d=0

Initially, the prior probability for 7 is based on the background point prevalence, but is updated to
the posterior of Equation (21). Just as there was a probability of introduction of the virus above,
the same dynamics cause the posterior point prevalence to relax in time. However, since we are
not trying to demonstrate FFD but rather that the local point prevalence of the subpopulation of
interest is at or below regional point prevalence, the distribution relaxes back to the regional point
prevalence over time. The approach for determining this relaxation is outlined below.

4.1.3 Discounting point prevalence estimates in time

Discounting point prevalence estimates in time builds on the approach used to estimate the prob-
ability of introduction in the methods defining the FFD approach. Consider the situation where,
after testing, we assume a background point prevalence in the subpopulation to be 7, while our
understanding of the regional point prevalence may suggest a different value 7(.'Y Here, we treat the
10 The background point prevalence need not be ezactly the regional point prevalence. For example, one could account

for demographics of the workforce or other factors to presuppose a background value that is some modification of the
regional point prevalence.
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problem as one where the incidence rate prior to testing was constant and achieved a steady point
prevalence value #, meaning that r = #/u, as per Equation (19). However, given our knowledge
of the background point prevalence, then similar to the probability of introduction, the incidence
rate following testing relates to the background point prevalence r = my/u. Hence, if we consider
a situation where sentinel testing at a time g suggests a point prevalence © but where we are
now estimating the point prevalence at some time ¢t > ¢y, extending Equation (18) for the current
problem gives, . .
7t >tg) = 1 [w ’ St —t)dt' +m [ S(t— t’)dt’} . (22)
1 0 to
Applying this result to probability distributions for the local and background point prevalence after
sampling gives

[p(ﬁ) [ s(t ~ )it + p(ro) ttS(t—t')dt’}, (23)

where p(#) and p(my) are the probability distributions for # and 7, respectively.

In the situation where the group of interest is being more careful than the general population, the
point prevalence in the group is likely below the background point prevalence so relaxing to the
background point prevalence is a cautious approach. When point prevalence in the group is likely
above background, however, relaxing to the background may provide an incorrect suggestion that
the point prevalence in the group drops after testing. While there is a possibility that there are extra
cases by chance, in which case relaxing to a lower value may be justified, it is also possible that the
work environment is contributing to the spread and sentinel testing alone cannot identify which
case is taking place. Once the virus is spreading in the workplace and an outbreak is taking place,
the sentinel sampling strategy would provide little utility for monitoring. The approach, therefore,
requires the perceived point prevalence in the group to be below the background point prevalence,
and should not be used once the perceived group point prevalence raises above background levels.

4.2 Application

Instead of trying to determine that the group is FFD, we now attempt to estimate the likelihood
that the point prevalence in the group matches what we would expect based on the background
point prevalence. Again, we consider a building with NV = 500 individuals but now assume a point
prevalence 7 = 0.5 + 0.125, fit to a beta distribution, and estimate the prevalence in our group
of individuals based this estimate of the regional point prevalence and the fact that we are drawing
N people randomly from it.'* Figure 8 shows the resultant distributions for the general population
(panel a) and for the subpopulation (panel b). The discrete values shown in panel b are due to the
fact that there are only N = 500 individuals in the subpopulation, so there are only 501 possible
values for the point prevalence in the group. Only the first 11 are shown, since the values are almost
zero beyond 7 = 2%, which would be equivalent to 10 infections in the group of 500.

' For a mean p and a standard deviation &, the parameters for a beta distribution are o = p/o and 8 = (1 — p)/o.
Drawing 500 samples randomly from the beta distribution in Figure 8a gives the beta-binomial distribution shown
in Figure 8b.
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Figure 8: (a) Distribution of point prevalence (assuming a beta distribution)
with m = 0.5% +0.125%. (b) Distribution of point prevalence within a group of
N =500 individuals assuming random sampling from the distribution in (a).

For this model, we consider two examples:
e Perfect specificity and 70% sensitivity (Sp =1 and Se = 0.7); and
e 99% specificity and 70% sensitivity (Sp = 0.99 and Se = 0.7).

The purpose of these examples is to show how a test with imperfect specificity affects the outcome
for the model. Comparing the examples underlines the importance of being able to rule out false
positives, if possible, and of applying caution in interpreting results when one cannot rule out false

positives.

As noted in Section 4.1.1, if one does not use beliefs about the background point prevalence then
it can be extremely difficult to interpret test results (Figure 7). Accounting for the background
distribution (Figure 8b) and applying Equation (23) helps to recast the results and improve inter-
pretability (Figure 9). In this figure, the grey filled distribution shows the expected background
distribution (prior) and the lines show the posterior distribution based on the likelihoods shown in

Figure 7 and the background distribution.
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Figure 9: Probability distributions of point prevalence based on test results
and background belief that point prevalence matches Figure 8b.
(a) Sp =1 and Se = 0.7; and (b) Sp = 0.99 and Se = 0.7.
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Comparing the two panels of Figure 9 shows the effect of imperfect specificity on interpreting
the results. In the case with perfect/imperfect specificity, the outcomes for different numbers of
tests are more separated/clustered. If one characterizes an outbreak as a situation where the point
prevalence for the group is above the expected background point prevalence, we can quantify the
effect of this separation/clustering of results by estimating the probability of an outbreak in the
group.'? The premise of this approach is that, if testing suggests cases are above what would be
expected given the background point prevalence, there is an increased likelihood that the group is
experiencing an outbreak and further investigation is recommended.

The resultant probability of being above background levels, for the perfect and imperfect specificity
examples are presented in Figure 10 and Table 3. In the best case scenario of no positive tests, the
likelihood of an outbreak sits at 38%. For perfect specificity, the likelihood increases dramatically as
tests increase, growing to 90% by the time three tests come back positive. However, interpretation
is much more difficult for the case with a 99% specificity. While the outlook is the same for no
positive tests, at three positive tests the likelihood of an outbreak is 56% (rather than 90% for
perfect specificity) and five positive tests still gives only a 68% probability of an outbreak. This
result may give pause to consider how one might interpret a set of positive test results, particularly
if one assumes the test has imperfect sensitivity.

Table 3: Probability of an outbreak based on test results.

Test Number of positive tests
specificity 0 1 2 3 4 5

Sp=0.99 38% 44% 50% 56% 62% 68%
Sp=1.00 38% 62% 80% 90% 96% 98%

B Sp=0.99
mm Sp=1

Probability of
outbreak in group

e e I e =

o b N ~ o

S St S ot S
| 1 1 1 1

0 1 2 3 4 5
Positive tests

Figure 10: Probability of an outbreak in the group for N = 500,
7 =0.5% £ 0.125%, and k = 50 individuals in the group tested at random.

12 This is achieved by looking at the joint distribution of the background point prevalence and the posterior estimate
of the prevalence and determining the probability that the latter is greater than the former. Given two distributions
X and Y with a joint probability distribution f(z,y) the probability that X is greater than Y is,

p(X>Y)= /: /yoo f(z,y)dzdy.
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4.3 Application to a regular sentinel testing plan

Like the FFD approach above, this extension runs into the same difficulties due to the constant
probability of introduction of new cases. However, because we are beginning from an assumption
where the disease is already in the group, determining how to alter the distribution in time is
slightly more complex.

Figure 11 shows the probability that the population in the group is above background point preva-
lence given the testing regime where once each week, k = 50 of the N = 500 individuals are randomly
selected for sentinel testing. The figure shows a scenario where tests take place on Days 1, 8, 15,
and 22. In the initial weeks, all tests come back negative but various outcomes are presented for the
testing on Day 22. Initially a saw-tooth pattern is present because, while getting no positive tests
decreases the likelihood of being above background point prevalence, the constant probability of
introduction slowly raises the risk back up to the levels one would expect if no testing were taking
place. After the next two subsequent sets of tests, the risk decreases again as we have assumed
no positive tests. After each of those sets of tests, the probability again relaxes back towards the
background level. However, the possible outcomes diverge for the fourth test on Day 22, with the
different curves inferring different probabilities of being above the background point prevalence
based on different numbers of positive tests. Note that, if the probability of being above back-
ground is now greater than what it would have been without testing, the curves no longer relax
back towards that background expectation. At this point, if the prevalence in the building is above
background, then there is a chance the building environment is contributing to the spread and it
makes little sense to relax back to a state where that is not the case. Panel a shows the result for
a test for perfect specificity and Panel b shows the result for a test with Sp = 0.99. In both cases,
the sensitivity is Se = 0.7.
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Figure 11: Probability that the group is at or below background point
prevalence for N = 500, # = 0.5% + 0.125%, and k = 50
individuals in the group tested at random each week given
(a) perfect specificity and (b) 99% specificity.
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Figure 12: Evolution of the probability that the group is at or below
background point prevalence, assuming no positive tests, for N = 500,
7 = 0.5% £ 0.125%, and k = 50 individuals in the group tested at random
each week given. Panel a shows the probability values while Panel b shows the
improvement in probability compared to the scenario with no testing.

Like Table 3 and Figure 10, Figure 11 again presents the challenge of interpreting results given
imperfect test specificity. However, careful inspection reveals that the numbers shown after testing
in Figure 11 are slightly below those shown in Table 3. This difference is because the saw tooth
pattern seen in the figure has a slight downward trend, due to the time required for the testing
strategy to equilibrate to a state where the weekly increase balances the weekly drawdown due to
testing. The time required to reach this equilibrium state is shown in Figure 12, which shows time
series for the state of knowledge before and after testing, the state of knowledge assuming a one-day
delay between testing and getting results, and finally an average probability for the week.'

While Figure 12 may suggest that testing (in the absence of positive tests) could increase certainty
that prevalence in the group is below the background level, as soon as one gets a positive test,
the difficulty of interpreting the results given imperfect specificity will enhance the difficulty in
determining how to act (Figures 10 and 11, Table 3).

One may choose to retest those who test positive, but by the time the second set of test results
come back the values from the first test will have discounted considerably. In addition, one would
isolate those who did test positive and initiate a contact tracing effort in order to reduce the risk of
the virus spreading. Omitting these actions would compromise the reason for sentinel testing in the
first place. At the time of writing, the test specificities for SARS-Cov-2 tests is excellent, but this
may change with the advancement of rapid testing technologies the application of pooled testing
and as such it is an important factor to consider.

13 In Figure 12a, the top curve initially shows the probability of being above background point prevalence in the
absence of testing. The value sits at about 42%, rather than 50%. The reason for this is because, when comparing
the discrete distribution of background point prevalence (Figure 8b) to itself, there is an approximately 16% chance
that the values drawn from the distributions match (using the approach described in Footnote 12) and a 42% chance
that the draw from one of the distributions will be above or below a draw from the other.
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5 The probability of detecting an unknown infection in a
timely manner

The sections above provide a strong argument that it is unlikely that sentinel testing will provide an
adequate approach for ensuring FFD (Section 3) or providing much confidence that the group is at
or below the regional background point prevalence (Section 4). However, one may still be inclined
to use sentinel testing in hopes of catching some cases before they have sufficient time to spread the
disease. This section considers that problem, estimating the likelihood of testing and detecting an
infected individual before that person either presents symptoms if the case is symptomatic or ceases
being a risk to the group because she or he is no longer contagious if the case is asymptomatic. In
fact, as we find here, a weekly testing regime is still likely to miss a considerable number of cases,
even if everyone is tested each week using a test with perfect sensitivity.

The reason for this lowered performance compared to what one might expect is that there is a
time-window in which testing must be done. It is not enough to test an individual who is infected,
but they must be tested after they have a sufficient viral load for the test to work and before it is
too late for the test to provide useful information to protect the group. If a symptomatic case has
evolved to the point where the individual has developed symptoms, then we expect the person to at
least isolate themselves from the workplace and hopefully also to get themselves tested. Similarly,
if an asymptomatic individual has cleared the virus sufficiently that they are no longer infectious,
then there is decreased benefit to identifying them through sentinel testing as they are no longer a
risk.

5.1 Defining the time window for testing

As alluded to above, there are two factors to consider in defining the window: when it opens and
when it closes. Here, we assume that the time window opens when there is a sufficient viral load
for a test to be effective and closes when symptoms present themselves for symptomatic cases or
when the individual is no longer infectious for asymptomatic cases.

With the opening of the test window defined by the cumulative density function f,(t) (Assump-
tion 13) and the closing of the test window defined by the survival function S(¢) (Assumption 17),
the test window is defined as,

h = h(t) = f,S, (24)
with the symptomatic and asymptomatic components being hs = f,55 and hy, = f,S,, respectively.
The probability of being inside the time window for testing as a function of time, that is the function
h, is presented as the grey filled region in the panels of Figure 13. In each panel, f, is shown as the

blue curve and the survival functions Sy, S,, and S are shown as the orange, green, and red curves
in Panels a, b, and c, respectively.

5.2 Application to sentinel testing
If testing is infrequent, then there will be few opportunities to catch an infection in the test window.

If testing is more frequent, then there may be multiple opportunities. If one tests all individuals
every three days, and if each of those tests is independent of the previous, then there is a very high

24 DRDC-RDDC-2020-R127



1.00 1 Gy T 1.00 1 (_b_) e 1.00 1 ZCYV ___________ _ __ Sufficient viral load
‘f 'l \\ l“\ to test positive
.. 0.75 1 I .. 0.75 1 h \ .., 0.75 9 FE Symptomatic case still
= [ = I A = [ in presymptomatic phase
3 ! z [ \ 7 [
s 0501 I < 0509 | \ s 05090 I \\ _ __ Asymptomatic case
S : *é : \\ Qg : \ still infectious
054 i 054 i N P oo5d i A ___ Symptomatic and
,l ,l N 'l A presymptomatic, combined
0.004 =4 0.004 -4 S 0.00 4 =4 o Within test window
T T T T T T T T T
0 10 20 0 10 20 0 10 20
Days after infection Days after infection Days after infection

Figure 13: Window in time during which testing is likely to be effective for
(a) symptomatic cases; (b) asymptomatic cases; and (c) all cases.

likelihood of catching an infection before an infected individual shows symptoms (symptomatic) or
stops being infectious (asymptomatic) since each person is likely to be tested after the viral load
is sufficient but before the survival function starts to reduce considerably. By contrast, if testing
is only once every two weeks, then there is a good chance that the opportunity to catch infections

will be missed.

The probability of testing and detecting an individual depends not only on the testing frequency
7 but also the fraction of the group tested within each test period. If the probability of becoming
infected is constant in time and if an infected individual is tested on the next round of testing fol-
lowing their infection, then the timing of the test could be anywhere on the time interval [0, 7) after
infection with equal probability. Extending to consider multiple rounds of testing, and considering
that not everyone is tested within each testing cycle, the probability of being tested within the time
window for testing in the m'™ round of testing since infection is,
mT

Dtest = & h(t/)dt/, (25)
T Jim—-1)T

where p, = k/N is the fraction of the population tested in each test period.

Equation (25), however, is not complete as it only describes the probability of being tested if no
action follows a positive test. For example, if someone were to test positive during the (m — 1)th
testing period, that person would have been removed from the group and would not be part of
sentinel testing in the m'™ period.

To consider past test periods, we first consider a reasonable maximum limit 7;,,, after which the
test window is effectively 0. Using Figure 13 we set Tyq = 20 d. Then, the number of testing
windows that needs to be considered is T' = [T}/ 7]. Considering past testing windows, then we

get, o o
press(nr) = - /0 T {1 — i Se fo [(m — 1)7 + 1]} h(nr + t)dt, (26)
m=1

where the term f,(m7 + t) identifies the probability that an individual case had sufficient viral
load to have tested positive in the m™ round of tests since infection. We use f, in Equation (26)
because, due to the nature of the survival function, there is no way that a case that is within the
test window could have not been in the test window at an earlier time unless the viral load had

been insufficient.
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To include test sensitivity, we simply introduce pgetect = S€ prest as the probability of catching an
infected individual in a timely manner. Combining the probability of testing in each window then
yields the probability of a case being caught as,

T
Ddetect = Se Z Dtest (nT) . (27)

n=1

Figure 14 shows the efficacy of each testing window for a single individual (equivalent to p; = 1)
with 7 = 7 d. Panel (a) shows results using Equation (25) only showing the probability that an
individual would be tested in a specific test window, ignoring the fact that if someone tests positive
in a given window then they will have been removed from the group and will not be tested in
a subsequent round of tests. Panel (b) shows the same results but using Equation (26) with a
sensitivity of 1. Panel (c¢) shows the probability of catching the individual in each time window,
assuming a sensitivity of 0.7.

After discussions with subject matter experts [26], it was not clear exactly how the assumed sensitiv-
ity of Se = 0.7 incorporated the possibility of an initial test missing an infection due to insufficient
viral load, although there was suspicion that it was included in the value. Hence, we assume the
true value for the probability of catching an unknown infection with sentinel testing to rest be-
tween the results of Figures 14b and c, i.e., that for the model in Equation (26), we can treat Se as
being between 0.7 and 1. The results suggest that, if someone were to be tested every week, and at
some point in the testing regime they became infected, the sentinel tests would have a 33%-47%
chance of being positive on the first test, a 11%-13% chance on the second test, and a 0% chance
on the third test. Combining these probabilities allows one to calculate the risk of the detection
escaping sentinel undetected as 44%-60%, i.e., approximately 50%. It is unlikely, however, that
everyone will be tested every test period. Extending the findings in Figure 14, Figure 15 shows the
probability of detecting an individual assuming Se = 1 (Panel a) and Se = 0.7 (Panel b) when
different fractions of the population are tested at different time intervals. For the example used in
this report of a building with N = 500 individuals and a sampling strategy of k& = 50 the results
shown in Figure 15 suggest a 5% 7% chance of detecting them. This suggests that, should an indi-
vidual become infected, there is a roughly 1-in-17 chance that the individual will be detected by the
sentinel strategy of randomly testing 10% of the population each week. The remaining cases will
either develop symptoms or remain asymptomatic having not been detected before their infectious
period has passed.
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Figure 14: Expected efficacy of a weekly testing regime for (a) testing a case
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subpopulation; and (c) the resultant probability distribution of the number
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5.3 Estimating the number of unknown cases

The section above shows the likelihood of catching a case if it exists, based on the frequency of
testing and number of people tested in each round of testing (Figure 15). However, it is still not
clear how often this is likely to happen.

Returning to the prevalence model used in the last section (Figure 8), we can use Equation (19)
to estimate the rate of new cases as r = my/u;. Applying the relationship between r and 7y to
the distribution presented in Figure 8 gives a probability distribution for the incidence rate r
(Figure 16a). The distribution for the arrival rate of new cases within the group 74 is then derived
by drawing new cases daily from a binomial distribution (Figure 16b), i.e.,

Pl N) = [ plri=1) (N ) Pra(1— )N rdy, (28)

where p(r;) is the probability density function of the incidence rate r; (Figure 16a), and the arrival
rate of new cases in the group each day must be an integer value, i.e., 7y € {0,1,..., N}. For the
scenario considered here (N = 500, k = 50, 7 = 0.5% £ 0.125%), one would expect 0.19 new cases
daily, on average.

To estimate the number of infected individuals who could be targeted by sentinel testing, i.e., the
number who have an unknown infection, a Monte Carlo simulation was run over 10,000 days where
the number of new cases per day was derived from the probability distribution in Equation (28),
also shown in Figure 16b, and where each case left the testing window randomly based on the
survival function S(t) from Equation (10). The output from this model (ignoring the initial time to
ramp up) was then used to generate the probability distribution for the number of unknown cases
within the subpopulation at any time (Figure 16¢). This result suggests that, an any given time
there are very few unknown cases to detect within the population.
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5.4 The predictive value of positive tests

The information above allows us to consider how often one could anticipate a true positive test
result, relative to the number of positives (i.e., sensitivity of the sampling strategy), as well as
the fraction of positive tests that are true positives (i.e., positive predictive value of the sampling
strategy).

Combining the probability that an individual who is infected will be tested within a test window
(Figure 14) and relating that to the number of people in the subpopulation who carry an unknown
infection (Figure 16) allows one to estimate the probability that a positive test in fact reflects an
infected individual.

The probability of testing an infected individual can be estimated by first estimating the probability
of having an infected individual in your test group given the number of infected individuals in the
population of interest, d. (This value can be found using Equation (1).) Applying the resulting value
to Equations (26) and ultimately (27) provides an estimate of probability of having a true positive
given the number of infected individuals in the group and the size of the group being sampled.!* The
same approach can be used to determine the number of false positives using Equation (4). Finally,
performing a weighted average for various values of d using the probability of having d infected
individuals in your group (Figure 16¢) gives an estimate for the probability of having a true positive
or false positive. Table 4 shows the resulting probabilities. Similar to above, two sensitivity values
are considered: Se =1 (perfect sensitivity) and Se = 0.7.

Table 4: Probability distributions for positive tests.

Unknown cases Probability Probability of a true positive Probability of a false positive

Se=0.7 Se=1 Sp =0.99
0 34.8% 0.0% 0.0% 39.3%
1 36.2% 4.8% 6.8% 39.3%
2 19.0% 9.0% 12.8% 39.2%
3 7.1% 12.8% 18.1% 39.2%
4 2.2% 16.2% 22.7% 39.1%
) 0.7% 19.1% 26.8% 39.0%
6 0.1% 21.8% 30.5% 39.0%
Weighted average 4.9% 6.9% 39.3%

Findings in Table 4 suggest that, given a specificity of Sp = 0.99, then for the sampling strategy
considered here there would be a roughly 2-in-5 chance of a false positive. That is to say that a false
positive could be expected once every two-to-three weeks on average, equivalent to about 20 false
positives per year. By contrast, based on the percentages in the bottom row of the table, one would
expect a roughly 1-in-20 to 1-in-14 chance of a true positive, equivalent to about 3 to 4 positive
tests per year. Assuming one would isolate and contact trace for all positive tests, then essential
efforts that must continue will need to plan accordingly. For example, dividing workspaces into split
shifts will ensure that if a section of the workplace needs to isolate, there are others available to
fulfil the required duties.

4 While the approach uses the probability of having more than one case in your sample group when d > 1 to define py,
the methods developed for Equation (27) consider only a single infection in the group. Hence, the values presented in

Table 4 will slightly underrepresent the true values. However, as the probabilities of having more than one individual
in your test group are so small, the weighted values at the bottom of the table are underestimated by less than 2%.
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6 Discussion

This report considered the problem of applying random sentinel sampling strategies in hopes of
assuring COVID-19 is under control within a population of interest (e.g., an office building) that
is mixing with the general population. In Sections 3 and 4, it was shown that the fact that the
population of interest is constantly mixing with the broader community makes it very challenging to
derive assurances that there are few infections within the group. In Section 3, we consider the FFD
model, which requires all tests to come back negative and cannot account for false positives. Even
with these restrictions, the constant probability of introduction of the virus to the subpopulation

makes it virtually impossible to discern a with high confidence that the population is free from
disease.

The findings when considering the time-window for testing in Section 5 suggest that the estimates
in Sections 3 and 4 are optimistic, as the sensitivity used in those sections may misrepresent the
probability of catching a positive infection. Below, the effect of reducing sensitivity is considered.
Additionally, setting specificity to 0.99 affects findings in both Sections 4 and 5. The implications
for altering specificity are also considered below.

6.1 Revisiting sensitivity

Figure 17 shows results like those in Figure 6 except with a sensitivity of 0.5, midway through the
range proposed in Section 5. In this lower-bound scenario, even if everyone is tested weekly, it is
clear that the efficacy of testing is decreased.
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Figure 17: Like Figure 6 except with sensitivity dropped
from Se = 0.7 to Se = 0.5.

Given the expectation that positive results will occur, due either to true or false positives, Section 4
extended the FFD approach to consider imperfect specificity and positive test results, aiming to
develop an approach that instead considered the likelihood of an outbreak in the group of inter-
est. Given the scenario of imperfect specificity, the outcome of the model provided a relatively
marginal increase in assessing the likelihood of an outbreak as the number of positive tests in-
creased (Figure 11b). Re-evaluating results with the lower sensitivity suggested in Section 5 only
further decreases the ability to infer useful information from test results (Figure 18).

It is possible, despite the inability to assess the likelihood of point prevalence within the region of
interest, that one may still be interested in trying to catch unknown cases with sentinel testing.
This issue is examined in Section 5 and again, it is found that sentinel testing is likely of limited
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utility. For the scenario where everyone is tested weekly, there is still only an estimated 44%-60%
probability of catching an infection within the time window. (This result leads to the estimate of a
50% sensitivity in previous paragraphs of the discussion.) Looking at the scenario considered in this
report for where 10% of the population is tested each week, the probability of catching an infection
is an estimated 5%—7%. Based on the anticipated incidence rate, which suggests approximately one
new case in the building each week, the sampling strategy would likely catch 3—4 of the roughly
50 cases each year. This low success rate is exacerbated when considering that there may also
be false positive results. Assuming a specificity of Sp = 0.99, one could expect a false positive
approximately once every two-to-three weeks. Under these assumptions, approximately 85%-89%
of all positive tests are likely to be false positives.

An additional consideration is the interplay between test sensitivity and periodicity of testing. For
example, as new rapid testing becomes more available, this may come at a cost of the heightened
sensitivity that available from Polymerase Chain Reaction (PCR), often considered the “gold stan-
dard” for testing. The notion of frequent, low sensitivity testing has been proposed as the way
ahead to contain the virus, specifically by controlling the number of non-symptomatic individuals
[13]. With such tests, it may become possible to test large groups of individuals daily, but at the
expense of sensitivity.

The methods described in Section 5 can be applied to consider that problem (Figure 19) to the
trade-off between test sensitivity and test frequency if all individuals are tested. For Figure 19,
the test window shown in Figure 13c remains steady but the sensitivity of the test is varied from
0 (no probability of detection) to 1 (perfect probability of detection). This figure is identical to
Figure 15a, except that the label of the vertical axis is changed. This similarity is because in
Figure 15a the uncertainty came from whether or not the infected person is tested, while in Figure 19
the uncertainty stems from whether the test detects the infection. An alternative approach, not
considered in this report but aligned with the qualitative diagram in [13], would be have a time-
dependent test sensitivity that relates to the viral load. Test sensitivity, particularly for a rapid
test, is likely to have a greater—yet unknown—time dependence. Without having a good estimate
of this time-dependence, however, it is necessary to view the results in Figure 19 qualitatively.
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6.2 Effect of altering specificity

When considering imperfect specificity in this report, we have assumed an arbitrary value of
Sp = 0.99. For the results in Sections 4 and 5, consideration of other potential values could al-
ter findings.

Figure 10 and Table 3 show values for a single round of testing for Se = 0.7 and Sp = 0.99 or
Sp = 1. Figure 20 shows results similar to Figure 10 except that the probability of being above
background prevalence as a function of the number of positive tests shows continuous values ranging
from Sp = 1 (left end of area over each number of tests) to Sp = 0.98 (right end of area). The
leftmost values represent Sp = 1, are equivalent to the orange bars in Figure 10, and are depicted
with orange dots. The middle values represent Sp = 0.99, are equal to the blue bars in Figure 10,
and are depicted by blue dots. The rightmost values are equivalent to Sp = 0.98 and are lower than
those considered earlier in this report. Results for a specificity of Sp = 0.995 are shown in Table 5.

Figure 21 shows how altering specificity could alter expectations for the expected number of false
positive tests based on the scenario considered in this report (Panel a), and the positive predictive
value of tests (Panel b). For example, if specificity were in fact Sp = 0.995, one would expect
approximately 11 false positives per year (approximately one per month) and a 19%—24% chance
that a positive test would reflect an infected individual. Nonetheless, the number of missed infections
(93%-95%) would remain unchanged.
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Table 5: Reproduction of Table 3 but with an additional line for Sp = 0.995.

Test Number of positive tests
specificity 0 1 2 3 4 5

Sp=0.99 38% 44% 50% 56% 62% 68%
Sp=0.995 38% 48% 57% 66% 74% 81%
Sp=100 38% 62% 80% 90% 96% 98%
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Figure 21: Effect of specificity on (a) expected number of false positives per
year; and (b) positive predictive value of tests. The region in Panel b reflects
the bounds considered in Figures 14b and 14c.

Increasing specificity does decrease the number of false positives, but they will likely continue to
cloud results. In addition to any errors due to testing methodologies that could lead to false positives,
asymptomatic individuals who are no longer infectious, for example, may still test positive. However,
even in the case with no false positives, while there may be some possibility of catching an infection,
it will still be challenging to use the approach to screen the population for cases, as demonstrated
by the number of missed infections for a weekly testing strategy that tests 10% of the population.

While false positives may not be a major concern from a public health perspective, they are im-
portant from a building-management one. Presumably, individuals in the workplace at this time
are there because they cannot complete their tasks from home. If there will be an ongoing need
to quarantine and isolate not due to infected individuals but due to positive test results, then one
must plan and manage their workforce accordingly to ensure continuity of operations.

6.3 Limitations and potential future work

In this report, we have attempted to review an existing surveillance method initially reported as a
potential for tracking COVID-19 (Section 3), and to develop an extension to consider false positives
(Section 4), before proposing that most sentinel testing may not be effective screening approach for
an office building or other similarly sized group unless a large fraction of the population is tested
on a very regular bases (Section 5). Nonetheless, there remain a number of areas where this work
could be improved, including the following.
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First, the method developed in Section 4 would likely benefit from a stronger recursive Bayesian
filtering approach. The approach applies an admittedly simple approach, due primarily to the
limited resources available when developed. Revisiting the problem with a more robust Bayesian
approach would improve confidence in the results, and sentinel testing could potentially yield more
information with the application of more sophisticated methods.

Second, the assumptions presented in Section 2 provide rough estimates that likely provide results
at the appropriate order of magnitude, but could be refined. For example, the approach used to
estimate prevalence by Horn [7] provides Bayesian estimates of a number of parameters. Using
estimates from such a model could help to paint better uncertainty bounds on the results presented
herein.

Last, a full simulation combining incidence within the population, different spreading scenarios,
and application of a sentinel testing program could combine to provide another indicator of what
can and cannot be identified through such methods. This approach would allow one to start to
consider, e.g., variation in point prevalence over time and how this influenced variation in sentinel
testing efficacy through time.

6.4 Concluding remarks

Ultimately, for the problem of a small office building examined in this report, it seems unlikely
that sentinel testing will prove to be a worthwhile expenditure of resources given the assumed
prevalence, unless it becomes possible to test the entire population almost daily. (Testing everyone
weekly may still only catch 50% of infections, based on estimates derived in this report.) Instead,
focusing on other mitigating efforts such as limiting meetings and minimizing other opportunities
for contact are more likely to limit the probability of an outbreak within a building. Ensuring rapid
and effective contact tracing (study underway) is also likely to mitigate COVID-19-related risks in
the workplace more effectively than sentinel testing.
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