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Executive Summary

The electricity sector is key to reducing greenhouse gas emissions: energy supply across

sectors is shifting towards electricity, and electricity production in turn is shifting towards

low carbon sources. Marginal greenhouse gas emission factors (MEFs) are needed to properly

quantify the impact on greenhouse gas emissions of policies and programs that modify

electricity demand. We compared different methods of estimating MEFs applied to the

Canadian provinces of Ontario and Alberta: a new method using artificial neural networks

and existing methods using simple and multiple linear regression. Models were developed

using hourly data from the independent electricity system operators of each province for

2017, 2018 and 2019. Models were trained on one year and tested on the following year with

respect to bias and root mean square error. Overall, multiple linear regression performed

over a full year was the most reliable model: it leads to consistently low bias and can be

used to calculate MEFs by hour or by month. While Alberta and Ontario do not provide

historical MEFs, indirect comparisons suggest our MEFs were within about 4% and 13%

of actual MEFs in Ontario and Alberta, respectively. Finally, we used the Ontario case to

explore a rule for determining when wind generators can be marginal. This question has

been neglected so far and is becoming important with the ramp-up of renewables worldwide.
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Chapter 1

Introduction

An important challenge in the fight against climate change is the expected surge in

electricity demand with the electrification of transportation and heat, and the growing use

of digitally connected devices and air conditioning. Before implementing demand response

or electric vehicle (EV) deployment programs, the associated changes in greenhouse gas

(GHG) emissions should be quantified. Depending on which electricity generator—wind or

gas, for example—responds to a change in load from a given program, the associated impact

on emissions can vary significantly.

The generator responding to an incremental change in electricity demand is referred to

as the marginal generator, the determination of which is not easy since electricity cannot be

traced from a specific generator to a specific consumer. A common practice for estimating

emissions linked to the production of electricity is to use average emission factors (AEFs),

the total emissions from supplying electricity divided by the total amount of electricity

supplied. AEFs are relatively easy to compute but do not reflect the emissions linked to an

incremental load change, since a marginal generator’s emissions can differ substantially from

the AEF. To quantify GHG impacts from programs that impact load, marginal emission

factors (MEFs) should be used. MEFs are the incremental changes in GHG emissions divided

by the incremental changes in load.

Unfortunately, electricity system operators do not typically provide information about

MEFs. A wide range of methods have therefore been developed for estimating MEFs (see

e.g. [6] for a review and comparison). There are two broad classes of methods: 1) methods
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based on historical data and 2) power system optimization methods. While power system

optimization methods can be more flexible and powerful than methods based on historical

data, they require detailed data concerning grid and generator geometry, characteristics

and dispatch mechanisms. In this study, we focus on methods based on historical data that

are publicly available. Such methods range from simple linear regressions to more complex

approaches using machine learning.

Hawkes [7] uses a simple linear regression between two vectors that represent the changes

(between hours t and t− 1) in the total load of the system and the changes in the total GHG

emissions of the system. Siler-Evans et al. [8] extend this method by looking at changes in

generation for each generator type vs. change in total generation to obtain the fraction of

time that each generator type is marginal. More recently, Gai et al. [4] use multiple linear

regression to estimate MEFs in Ontario based on the magnitude of changes in generation

and total generation. These authors omit generation from variable renewable sources (such

as wind and solar), assuming they are not dispatchable.

There are just a few studies that consider more complex machine learning approaches to

estimate MEFs. Tranberg et al. [9] apply a flow tracing algorithm using market, meteorolog-

ical, generation and consumption data. A support vector machine is used in [10] to estimate

MEFs from publicly available data, such as LMP or load data.

In this article, we present and compare estimations of MEFs using simple linear regression,

multiple linear regression and artificial neural networks (ANNs) based on historical data for

the Canadian provinces of Alberta and Ontario. The multiple linear regression approach is

based on the work of Gai et al. [4] while the ANN model is novel. Our work addresses two

significant gaps in the literature: First, there have been no comparisons of machine learning

approaches and approaches based on linear regression in the literature to date, making it

difficult to know which is most appropriate in a given context. Our work evaluates the two

types of approaches based on their predictive ability; the models are trained on data from

one year and tested on their ability to predict the MEFs of the following year. Second, the

literature to date has not developed methods to determine if and when variable renewables

(such as solar and wind) can be marginal. This is becoming increasingly relevant as the

renewable share of generation steadily increases. In particular, when variable renewables are
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curtailed, they can respond to increments in load by adjusting their production not only

down but also up. In our analysis, we develop a rule for determining when wind energy

generators in Ontario are curtailed, and thus can contribute to the marginal generation pool.

The article is structured as follows: In Section 2.1, we describe the data and the filtering

process used to remove generators that cannot be marginal from the analysis. Then, in

Section 2.2, we describe the different methods, the different partitions of the data, and our

performance test. In Sections 3.1 and 3.2, we compare the performance of the different

methods and contrast our MEF results with those from the independent system operators

(ISOs) of Alberta and Ontario and with results from literature. Finally, in Chapter 4 we

offer some concluding remarks and discuss the policy relevance of this work.
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Chapter 2

Data and Methodology

2.1 Data

2.1.1 Bulk electric system data

The data used in this study, described below, were obtained or derived from data provided

by the ISOs of Ontario ( [11]) and Alberta ( [12]) for the years 2017, 2018 and 2019.

Generator characteristics and output:

• Generator type, encompassing the fuel used (coal, gas, nuclear, hydro, wind, solar,

biofuel, or wasteheat) and, for gas generators, the technology (combined cycle (CC),

simple cycle (CT), or steam).

• Generator CO2 emissions factor (EF), noting that only CO2 emissions from fuel

combustion, i.e. gas and coal, were counted. (Emissions from biofuel were omitted

since biofuel generators were never marginal in our analysis, as described in Section

2.1.2).

The heat rate curves of coal and natural gas combined cycle and steam generators

were estimated by scaling their respective curves in [13] such that their full-load heat

rate values matched those in [14]. The resulting curves were then fitted to quadratic

functions whose coefficients are given in Table 2.2. For natural gas simple cycle

generators, a flat (constant) heat rate was used, corresponding to their full-load heat

rate in [14].

2021-089 (RP-TEC) – M.Pied et al. - 5 - November 30, 2021



The CO2 EF of each generator type, in kg/MWh, is given by its heat rate multiplied

by its fuel CO2 content:

EF (x) = (α0 + α1x+ α2x
2)× CO2Content (2.1)

where x = output/capacity. CO2 content and parameters α0, α1 and α2 are given in

Tables 2.1 and 2.2, respectively. The resulting EFs are shown in Figure 2.1.

Fuel CO2 Content (kg/MJ)

Gas 0.0503

Coal 0.0882

Table 2.1: CO2 content of different fuels [5]

Fuel Technology α0 α1 α2

Gas CT 12206 0 0

Gas CC 12616 -11058 6493

Gas STEAM 13585 -5132 2570

Coal 12388 -3199 1522

Table 2.2: Heat rate function coefficients (in MJ/MWh)

• Generator production for each hour of the year, extracted from Ontario’s “Output and

capability report” [11] and Alberta’s “Hourly Metered Volumes and Pool Price and

AIL data” [12].

Intertie characteristics and flows:

• Intertie GHG EFs associated with electricity imported through provincial interties,

extracted from [15] for Canadian provinces and [16] for U.S. states, as summarized in

Table 2.3.

• Intertie imports and exports, from [11] for Ontario and [12] for Alberta.

Electricity market prices:

• Average hourly marginal prices, from [11] for Ontario and [12] for Alberta.
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Figure 2.1: Emission factor curves

Intertie Emission factor (kg CO2/MWh)

Québec 1.5

Manitoba 2.1

Michigan 525.15

Minnesota 479.7

New York 208.8

British Columbia 9.1

Saskatchewan 710

Montana 548.1

Table 2.3: Intertie emission factors

2.1.2 Output data filtering process

Before estimating MEFs, we filtered hourly output and intertie level data to detect and

remove generators that we knew could not be marginal, as they would otherwise add noise

to the MEF estimates. This type of filtering has been performed previously in analyses
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of MEFs for Ontario by Farhat and Ugursal [17] and The Atmospheric Fund [3]. First,

generators for which their hourly change in generation was not of the same sign as the change

in total generation were removed, since by definition these cannot be marginal (they are not

responding to the increment in load). To simplify our analysis, we also excluded generators

of types that have been marginal less than 1% of the time, based on data from IESO and

AESO as illustrated in Figure 2.2 and Figure 2.3. Based on this process, wasteheat, biofuel

and solar generators were filtered out for both provinces and wind generators were filtered

out for Alberta.

The treatment of wind generation deserves additional consideration. Wind is a zero or,

with financial incentive such as feed-in-tariff, a negative marginal cost generator. Ignoring

transmission congestion and other system operational constraints such as stability (complex

to consider and beyond the scope of this paper), they will operate at max capacity (as

wind resource allows) when market prices are above zero, as it is economically in their best

interest. Only when prices fall to zero or below may they constrain their output and be

considered the marginal generator.

In Alberta, low/zero marginal cost generators (hydro, wind, solar) make up only a small

fraction of generation capacity and thus they have little opportunity to set marginal prices;

thus prices are rarely at or near zero and wind is almost never marginal. On the other

hand, Ontario has a large fleet of zero/near-zero/negative marginal cost generators; wind

(with already a large presence) shares this space with hydro, nuclear, and solar units. There

are enough of these generators to provide the capacity Ontario needs during low-demand

periods, thus driving market prices to zero or below and giving wind the opportunity to be

on the margin, as shown in Figure 2.2.

Given that significant wind curtailment generally occurs only when the marginal price is

less than or equal to zero, as seen in Figure 2.4 and discussed in [18] and [19] (p. 81), we

set a rule such that a wind generator can be considered marginal only if the average hourly

marginal price is zero or negative.
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Figure 2.2: Share of generator type setting the market clearing price from May 2017 to

April 2019 in Ontario [1].

Figure 2.3: AESO 2019 Annual Market Statistics report, page 15 [2]
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Figure 2.4: Wind generation in MW versus average hourly marginal price in Ontario
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2.2 Regression models

2.2.1 Variables used to perform the study

We used a number of variables to estimate MEFs and the share of marginal generation

for each generator type. Gt is the total generation in the province at time t (including

imports, if part of the analysis) and ∆Gt−y is its change over the previous y hours. Et is

the total CO2 emissions from electricity production at time t and ∆Et−y is its change over

the previous y hours. Et is computed according to (2.2), where Gg,t is the output level of

the generator g at time t, Gi,t is the import level of intertie i at time t, EFg,t is defined in

equation (2.1), and AEFi is the emission factor of imports from intertie i as given in Table

2.3.

Et =
∑

g∈Generators
EFg,t ×Gg,t +

∑
i∈Interties

AEFi ×Gi,t (2.2)

Note that our calculations estimate MEFs associated with electricity generation rather

than electricity consumption. To estimate MEFs per MWh consumed, transmission and

distribution losses should be included.

To compute shares of marginal generation, we used the variable Gk for generation and

∆Gk for its change over the previous hour for generators of type k.

2.2.2 Different partitions of the data set

We applied regressions to different partitions of our dataset, inspired by [4]. The regression

classes are summarized in Table 2.4, where RegLin stands for simple linear regression,

MultiRegLin stands for multiple linear regression and ANN designates an artificial neural

network approach (explained in Section 2.2.4).

The following partitions were used:

1. Partition 1: by year

2. Partition 2: by year and month (12 data subsets per year)

3. Partition 3: by year and hour of day (24 data subsets per year)
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ID Type Data partition

ANN ANN Full Year

LR1 RegLin Full Year

LR2 RegLin Monthly

LR3 RegLin Hourly

LR4 RegLin GenBins

LR5 RegLin Hour,Month

LR6 RegLin GenBins,Month

MLR1 MultiRegLin Full Year

MLR2 MultiRegLin Monthly

MLR3 MultiRegLin Hourly

MLR4 MultiRegLin GenBins

MLR5 MultiRegLin Hour,Month

MLR6 MultiRegLin GenBins,Month

Table 2.4: Different classes of regressions used and associated partitioning of the data

4. Partition 4: by year and level of generation. For each year, we computed the maximum

and minimum generation levels and sorted the data into 20 bins of increasing generation

levels with equal numbers of points per bin, as in Figure 2.5.

5. Partition 5: by year, month and hour of day (12×24=288 data subsets per year)

6. Partition 6: by year, month and level of generation (12×20=240 data subsets per year,

corresponding to 20 generation level bins as in Figure 2.5).
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Number of Data Points
min(Generation)

Bin n°1

Bin n°2

Generation

Bin n°19

Bin n°20

max(Generation)

Figure 2.5: Diagram of the disaggregation into bins with increasing generation levels,

where each bin contains the same number of data points

2.2.3 Regression models

We used various regression models to estimate MEFs: simple and multiple linear regres-

sions are described in this section, and ANNs in the next. We also computed the fraction

of time, γk, for which generators of type k operated as marginal by performing regressions

predicting the change in generation of type k generators from the total change in generation.

The following equations were used to estimate MEFs and γk:

Simple linear regression:

∆E = MEF ×∆G+ β0 (2.3a)

∆Gk = γk ×∆G+ ε0,k (2.3b)

Multiple linear regression :

∆E =
MEF︷ ︸︸ ︷

(β1 + β2G+ β3∆G)×∆G+ β0 (2.4a)

∆Gk =
γk︷ ︸︸ ︷

(ε1,k + ε2,kG+ ε3,k∆G)×∆G+ ε0,k (2.4b)
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The expression for MEFs in the multiple linear regression was developed by Gai et al. [4]

in their study of MEFs in Ontario. The only difference is the inclusion of the constant term

β0.

2.2.4 Artificial neural network regression

Regressions for predicting ∆E were also developed using ANNs to test whether using

additional predictors or non-linear regressions could improve model performance. The ANN

regression problem was set up to predict ∆Et+1 = Et+1 − Et given ∆Gt+1 = Gt+1 − Gt

and variables available at times up to and including t. Note that ∆Gt+1 is allowed since,

by definition, we are interested in predicting the change in emissions for a given change in

generation. We considered all province-wide variables from t to t− 2:

• ∆Gt+1,∆Gt,∆Gt−1

• Gt, Gt−1, Gt−2

• ∆Gk,t,∆Gk,t−1,∆Gk,t−2

• Gk,t, Gk,t−1, Gk,t−2

• Pricet, P ricet−1, P ricet−2

• Et, Et−1, Et−2

• ∆Et,∆Et−1,∆Et−2

• TimeOfDayt, T imeOfDayt−1, T imeOfDayt−2

• TimeOfY eart, T imeOfY eart−1, T imeOfY eart−2

Price is the average marginal hourly price and TimeOfDay and TimeOfY ear are

proxies for the hour of day and month and take into account the periodic nature of these

variables. They are defined as

TimeOfDay = cos
(2π(mod(Hour, 24) + 1)

24

)
(2.5a)

TimeOfY ear = cos
(2πHour

8760

)
, (2.5b)
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where Hour runs from 1 to 8760 for each year.

The Pearson correlation coefficients between each variable and the output variable ∆Et+1

were computed for 2017 and used to select input features to the ANN regressions. Table 2.5

shows the features that were selected for each province, namely those features with Pearson

correlation coefficients of 0.3 or more for Ontario and 0.5 or more for Alberta. Note that the

correlations between ∆Et+1 and ∆Gt+1 are much stronger in Alberta than in Ontario.

Ontario Alberta

Feature Correlation coefficient Feature Correlation coefficient

∆Gt+1 0.6 ∆Gt+1 0.98

∆Ggas,t 0.5 ∆Gt 0.6

∆Et 0.5 ∆Et 0.6

∆Gt 0.4 ∆Gcoal,t 0.5

TimeOfDayt 0.3 TimeOfDayt 0.5

Et−2 0.3

∆Ggas,t−1 0.3

Ggas,t−2 0.3

∆Et−1 0.3

∆Ghydro,t 0.3

Ghydro,t−2 0.3

TimeOfDayt−1 0.3

Gt−2 0.3

Table 2.5: Pearson correlation coefficients with ∆Et+1 in Ontario and Alberta

The train function in MATLAB R2019a was used to train the networks. Default

parameters were used, including assignment of 70%, 15% and 15% of the data randomly

to training, validation and test subsets, respectively. Single hidden layer networks were

considered and the number of neurons in the hidden layer was optimized to yield the best

performance (lowest mean square error) on the test subset of the training data.
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2.2.5 Model testing protocol

We adopted the following testing protocol to evaluate the performance of all models in

deriving MEFs:

• Step 1: Train the model with data from year y to predict hourly changes in emissions

(∆E) for each hour from the model features (inputs).

• Step 2: Predict ∆E values for year y + 1 with the model trained in Step 1.

• Step 3: Compare this prediction with the actual ∆E values of year y + 1.

Two train-test pairs were used: 1) Models were trained on 2017 data and tested on 2018

data and 2) Models were trained on 2018 data and tested on 2019 data. We used two metrics

to evaluate performance: root mean square error (RMSE) and mean bias error (Bias). These

two metrics are defined as follows:

RMSE =

√√√√ 1
n

n∑
i=1

(∆Ei − ∆̂Ei)2 (2.6a)

Bias = 1
n

n∑
i=1

(∆Ei − ∆̂Ei) (2.6b)

where n is the number of data points, ∆Ei is the actual value of the change in emissions at

time i and ∆̂Ei is the predicted corresponding value. In the next section, we present the

RMSE and bias as percentages of the mean of the absolute value of the change in emissions,

i.e. 1
n

n∑
i=1
|∆Ei|.
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Chapter 3

Results and Discussion

3.1 Comparison of methods for determining marginal emis-

sion factors

Figure 3.1 shows the RMSE and the absolute value of the bias of the predicted hourly

changes in GHG emissions, averaged over the test years 2018 and 2019, as a percentage of

the mean of the absolute value of the hourly change in emissions. The simple and multiple

regressions with data partitions 3, 5 and 6 tend to do comparatively poorly in terms of bias

and, to a lesser extent, RMSE. Data partitions 3 and 5 both involve binning the data by

hour; their poor performance suggests that hour of day is a poor predictor of MEFs. Data

partition 6 involves binning by month and load level; since data partitions 2 (binning by

month) and 4 (binning by load level) perform relatively well, data partition 6 may simply

be overfitting the data.

Relative performance of the ANN and the linear regression methods using data partitions

1, 2 and 4 varies by metric and province. The linear regressions LR1 and MLR1, where

MEFs are computed over the full year, do best in terms of bias, whereas the ANN approach

has the lowest RMSE for Ontario and MLR4 has the lowest RMSE for Alberta. The lowest

biases for both provinces are less than 2%. Meanwhile, RMSEs for Alberta, with a minimum

of 24%, are much lower than for Ontario, with a minimum of 81%.

The ANN method was included in part to investigate whether adding more predictors or
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(a) RMSE - Ontario (b) abs(Bias) - Ontario

(c) RMSE - Alberta (d) abs(Bias) - Alberta

Figure 3.1: RMSE and absolute value of bias of the different methods tested averaged

over 2018 and 2019

non-linear regressions could help reduce the RMSEs. This method does indeed have lower

RMSEs for Ontario (81% vs. 98% for the next best performer), but this is associated with a

higher bias of about 5% averaged over both years (and 7% for 2017). During model training

for Ontario, we found that the bias varied considerably as the model parameters were varied,

suggesting that the ANN approach will not consistently lead to low bias. Meanwhile, for

Alberta, the ANN method had a higher RMSE than the best linear regressions, possibly due

to overfitting since ∆Gt+1 is very strongly correlated with ∆Et+1 (see Table 2.5).

One open question was whether the intercepts in (2.3) and (2.4) should be set to zero, i.e.

whether change in emissions should be zero when change in generation is zero. In principle,

if the data filtering described in Section 2.1.2 were perfect, the intercept should be zero since

the filtering is supposed to remove all emission changes that are not related to a change

in total generation. In practice, allowing a non-zero intercept generally leads to slightly
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lower biases, so we used non-zero intercepts. However, setting the intercept of the linear

regression to 0 should not significantly impact the results; when it did, this acted as a red

flag that a method may be inappropriate. For instance, the goodness of fit of regressions

with partitions 3 and 5 was sometimes quite sensitive to whether or not the intercept was

forced to 0, even leading to incoherent results (negative MEFs) in some cases unless the

intercept was forced to 0.

For use cases where changes in annual emissions are the main interest, bias is key, so

methods LR1 and MLR1 may be the most appropriate. We selected MLR1 for the remainder

of our analysis since its MEFs depend on generation level, which allows it to generate MEF

profiles by hour and by month (for instance), while LR1 provides a single value for the entire

year. The coefficients of MLR1 for Ontario and Alberta for 2019, along with the calculated

MEFs by month and hour, are provided in Appendix A. It is important to note, however,

that recent inter-comparisons of methods to compute MEFs of electricity generation in

Alberta suggest that MLR1 strongly underestimates the variability of MEFs across hours

and months, at least for that province [20].

3.2 Benchmarking results against ISO data and literature

As noted earlier, the ISOs of Ontario and Alberta report how often each generator type

sets the market clearing price ( [19], [1], [2]). We compare this to our results using method

MLR1 in Figures 3.2 and 3.3. In Ontario, our method estimates the fraction of time that

gas is marginal quite accurately, but it underestimates the marginal contribution of wind

and overestimates that of hydroelectric generators. For Alberta, our analysis underestimates

the contribution of coal to marginal generation and overestimates the contributions of gas

and hydroelectric generation, as shown in Figure 3.3. The differences observed with the

IESO and AESO data reflect the limitations of the data filtering methods we used to try to

isolate the marginal generators for each hour. More sophisticated methods that more closely

reflect how generators are dispatched may be needed to improve the accuracy of the MEF

estimates.

Table 3.1 shows the annual AEFs and MEFs for both provinces in 2017, 2018, 2019, with
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(a) IESO

(b) Our analysis

Figure 3.2: Fraction of time that different generator types are marginal based on IESO

data (a) and our analysis (b)
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(a) AESO

(b) Our analysis

Figure 3.3: Fraction of time that different generator types are marginal based on AESO

data (a) and our analysis (b)
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MEFs computed using the MLR1 method. Since IESO and AESO do not provide historical

MEFs, the “MEF-AESO” and “MEF-IESO” columns in Table 3.1 were estimated instead by

multiplying the fraction of time different generator types are marginal according to AESO

and IESO with average emission factors by generator type from our analysis (note that the

needed IESO data for all of 2019 were not available for our analysis, so this year was left

out). On average, our estimated MEFs are 4% lower in Ontario and 13% lower in Alberta

than those estimated from ISO data.

Alberta Ontario

AEF MEF MEF-AESO AEF MEF MEF-IESO

2017 710 697 803 18 78 83

2018 654 693 853 27 150 153

2019 657 682 853 26 144 N/A

Table 3.1: Annual AEF and MEF for Ontario and Alberta in kg of CO2 per MWh

Comparing the two provinces, both MEFs and AEFs are much lower for Ontario than

for Alberta, reflecting their different generation fleets. Alberta’s fleet is dominated by fossil

fuel based generation both on average and at the margin, while Ontario’s is dominated by

clean and renewable generation. For Alberta, AEFs and MEFs are comparable, while for

Ontario, MEFs are significantly higher than AEFs. This reflects the fact that for the latter,

gas meets 6% of annual electricity demand but provides 20% of marginal generation (based

on 2019 data).

We also compared our MEFs for Ontario to those of The Atmospheric Fund (TAF) ( [3])

and the University of Toronto (UofT) ( [4]) for 2017, as shown in Figure 3.4. We compared

our results directly, Figure 3.4a, and also re-ran our analysis using the generation type GHG

EFs used by TAF and UofT, Figure 3.4b. On an annual basis, the NRCan and TAF values

are within 2% both for the original data and for the data with rescaled EFs. Meanwhile,

the annual MEFs for UofT are 16% above our values, but the difference reduces to about

2% when the same EFs are used. The diurnal patterns of the three methods differ to some

extent, but they all show lower values in the morning followed by a period of increase and a

final dip at the end of the day. For the case of Alberta, we did not find other MEF estimates
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covering the same years as in this study.

(a) NRCAN method using EFs from Table 2.2 (b) NRCAN method using EFs from The Atmo-

spheric Fund or The University of Toronto

Figure 3.4: Results of our method compared to The Atmospheric Fund [3] and The Uni-

versity of Toronto [4]

2021-089 (RP-TEC) – M.Pied et al. - 23 - November 30, 2021





Chapter 4

Conclusion

We considered a number of options for estimating marginal emission factors (MEFs)

of electricity generation based on historical data. Our results show promise with just a

slight underestimate, as evidenced through indirect comparisons with data from Ontario

(IESO) and Alberta (AESO). The comparisons between simple linear regressions, multiple

linear regressions and artificial neural network approaches suggest that the multiple linear

regression model based on a full year of data (MLR1) is the most reliable model. In particular,

this model has low bias, which means that it can be used reliably to predict the impacts of

policies and programs that modify electricity loads on annual greenhouse gas emissions. In

addition, the MLR1 model allows MEFs to be estimated for any time frame of interest, such

as by time of day and by month. This being said, recent inter-comparisons of methods for

deriving MEFs [20] indicate that MLR1 strongly underestimates the variability of MEFs

across hours and months, at least in the case of Alberta.

While the artificial neural networks had the lowest root mean square errors in Ontario,

this was not the case in Alberta, and in Ontario it was achieved at the expense of significantly

higher bias. This suggests that using more features or non-linear regressions is not key to

improving MEF estimates. Rather, it seems that the limiting factor in these approaches is

the simple set of rules used to exclude generators at each hour from the marginal generation

pool. More complex models based on power system optimization may be needed to further

improve MEF estimates. Such models are also more suitable to estimating MEFs decades

ahead by taking into account power system planning.
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Along these lines, it is worth noting that electricity system operators have the most

comprehensive data available about their own systems and are therefore in the best position

to provide information about MEFs. Such a practice among ISOs would certainly facilitate

policy and program development in line with greenhouse gas emissions reduction targets.

For instance, the IESO in Ontario has now begun providing MEF forecasts for the next

twenty years as part of its Annual Planning Outlook [21].
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Figure A.1: MEFs obtained with the MLR1 method for 2019 in Ontario
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Appendix A

MLR1 Results

  The distributions of MEFs by hour and by month according to MLR1 are provided 

below for Ontario and Alberta, along with the coefficients of the multiple linear regressions.

However, as mentioned in Section 3.1, recent inter-comparisons of methods to compute 

MEFs of electricity generation in Alberta suggest that MLR1 strongly underestimates the 

variability of MEFs across hours and months, at least for that province [20].

A.1 Ontario



MLR1

β0 6769.689928 kg

β1 -291.8180402 kg/MWh

β2 0.025920053 kg/MWh2

β3 -0.035565223 kg/MWh2

Table A.1: Regression coefficients (see equation (2.4)) for the MLR1 method

A.2 Alberta

Figure A.2: MEFs obtained with the MLR1 method for 2019 in Alberta

MLR1

β0 1062.090109 kg

β1 717.3722402 kg/MWh

β2 -0.005051087 kg/MWh2

β3 -0.025865943 kg/MWh2

Table A.2: Regression coefficients (see equation (2.4)) for the MLR1 method for Alberta

in 2019
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