

Canada

Natural Resources Ressources naturelles Canada

GEOLOGICAL SURVEY OF CANADA OPEN FILE 8912

Comparing felt intensity patterns for crustal earthquakes in the Cascadia and Chilean subduction zones, offshore British Columbia, United States, and Chile

J. Rutherford and J.F. Cassidy

2022

Canada

ISSN 2816-7155 ISBN 978-0-660-44749-0 Catalogue No. M183-2/8912E-PDF

GEOLOGICAL SURVEY OF CANADA OPEN FILE 8912

Comparing felt intensity patterns for crustal earthquakes in the Cascadia and Chilean subduction zones, offshore British Columbia, United States, and Chile

J. Rutherford¹ and J.F. Cassidy²

¹Gyp-Sea Natural Science Consulting, Ucluelet, British Columbia ²Geological Survey of Canada, 9860 West Saanich Road, Sidney, British Columbia

2022

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2022

Information contained in this publication or product may be reproduced, in part or in whole, and by any means, for personal or public non-commercial purposes, without charge or further permission, unless otherwise specified. You are asked to:

- exercise due diligence in ensuring the accuracy of the materials reproduced;
- indicate the complete title of the materials reproduced, and the name of the author organization; and
- indicate that the reproduction is a copy of an official work that is published by Natural Resources Canada (NRCan) and that the reproduction has not been produced in affiliation with, or with the endorsement of, NRCan.

Commercial reproduction and distribution is prohibited except with written permission from NRCan. For more information, contact NRCan at <u>copyright-droitdauteur@nrcan-rncan.gc.ca</u>.

Permanent link: https://doi.org/10.4095/330475

This publication is available for free download through GEOSCAN (https://geoscan.nrcan.gc.ca/).

Recommended citation

Rutherford, J. and Cassidy, J.F., 2022. Comparing felt intensity patterns for crustal earthquakes in the Cascadia and Chilean subduction zones, offshore British Columbia, United States, and Chile; Geological Survey of Canada, Open File 8912, 40 p. <u>https://doi.org/10.4095/330475</u>

Publications in this series have not been edited; they are released as submitted by the author.

TABLE OF CONTENTS

Abstract1
Introduction1
Methods5
Identifying Earthquakes & Acquiring DYFI Data from ComCat5
ComCat Search for Crustal Earthquakes6
Acquiring Raw Data from the ComCat Catalog
Validation & Quality Control of the ComCat Search Results
Processing, Analytics & Plotting DYFI Data
Results11
ComCat Catalog Crustal Earthquake Search Results11
Results of Data Interrogation & Plotting
Combined by Magnitude Plots - Separate Earthquakes by USGS ID12
Combined by Magnitude Plots - Combined Earthquakes14
Combined by Magnitude Plots - Curve Fitting16
Conclusion & Future Research
Acknowledgments19
REFERENCES20
Appendix A23
Appendix B25
Appendix C
Appendix D40

ABSTRACT

In this study, we utilize US Geological Survey citizen science earthquake felt intensity data to investigate whether crustal earthquakes in the Chilean Subduction Zone show similar, "felt intensity" distributions to events of the same magnitude and depths within the Cascadia Subduction Zone (Quitoriano & Wald, 2020; USGS Earthquake Hazards Program, 2020). In a companion article (Rutherford & Cassidy, 2022) we examined intraslab (deep) earthquake intensity patterns for the Chile and Cascadia subduction zones. Building on the intraslab companion article, the goal of this comparison is to determine whether felt intensity information from several recent large (M8-8.8) subduction earthquakes in Chile can be applied to Cascadia, where no subduction earthquakes have been felt since 1700. This will provide a better understanding of shaking intensity patterns for future subduction earthquakes in Cascadia – critical information for scientists, engineers, and emergency management organizations.

For this research, we utilized 20 years of catalogued "Did You Feel It?" (DYFI) citizen science data from the US Geological Survey's (USGS) earthquake online catalogue, the *ANSS Comprehensive Earthquake Catalog (ComCat) Documentation* (USGS Earthquake Hazards Program, 2021). In total, we compared intensity patterns for fourteen magnitudes (M4.5-7.2) from 29 crustal earthquakes in Cascadia, to the intensity patterns from 114 earthquakes in Chile, with the same magnitudes as the Cascadia events.

Our analysis involved plotting and fitting the Chile and Cascadia earthquakes' DYFI responses to compare the intensity patterns for the two subduction zones. All plots show the expected downward trend for intensity with distance, and overall, we find good agreement between felt intensity patterns at all magnitude ranges in Chile and Cascadia. These results provide confidence that Chilean intensity data from recent megathrust earthquakes can act as a proxy for future megathrust earthquakes in Cascadia.

INTRODUCTION

The world's largest earthquakes occur along subduction interfaces. This is where denser oceanic plates are pushed (subducted) beneath lighter continental plates. Not only do subduction zones produce large (M~9) earthquakes, but they also produce large tsunamis (Di Menna & Flick, 2005; Staisch, Walton, & Witter, 2019). Figure 1 shows the three types of earthquakes that occur in subduction zones: 1) crustal earthquakes in the continental (overriding) plate; 2) deep, intraslab earthquakes within the subducting oceanic plate; and 3) plate interface (megathrust subduction) earthquakes that result from movement along the subduction fault.

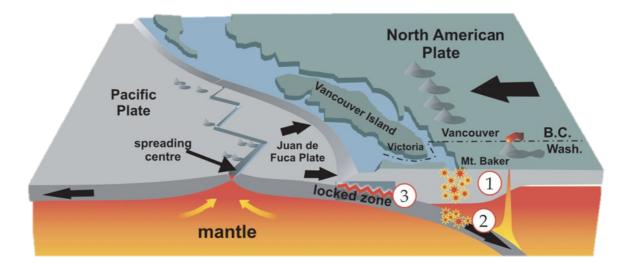


Figure 1: The Cascadia Subduction Zone has three types of earthquakes: Crustal earthquakes occur at a depth less than ~ 35 km (circle 1); Deep intraslab earthquakes occur at depths of ~40 to 60 kilometers below the surface (circle 2), and megathrust earthquakes occur along the boundary between the oceanic and continental plates (circle 3). (Government of Canada, 2011)

This study looked at two similar subduction zone regions, the Cascadia Subduction Zone (CSZ) in the Pacific Northwest (Figure 2) and the Chile Nazca Subduction Zone in South America (Figure 3). Both subduction zones have segments with a very young oceanic crust (< ~5 MY) and subduction rates of 2-8 cm/year (USGS Subduction Zone Science, 2020; Wang & Tréhu, 2016). Both subduction zones experience all three of these types of earthquakes; Cascadia has not experienced a major subduction earthquake since 1700, however, whereas Chile has experienced 3 major subduction earthquakes (M8.2-8.8) since 2010 (Government of Canada, 2021a; Staisch, Walton, & Witter, 2019).

The Cascadia Subduction Zone (Figure 2), is an 1,100 km-long tectonic boundary between the continental North American Plate and the oceanic Explorer, Juan De Fuca and Gorda plates, extending from northern Vancouver Island down to northern California (Government of Canada, 2021b; USGS Pacific Coastal Marine Science Center, 2021; Watt & Brothers, 2020). Here the oceanic plates are subducting beneath North America at approximately 2-5 cm/year (Government of Canada, 2021b). For a detailed description of this subduction zone, see, for example (Government of Canada, 2021b; USGS Pacific Coastal Marine Science Center, 2021; Wang & Tréhu, 2016).

The Chile Subduction Zone (Figure 3) is located along the coastal margin of Chile where the oceanic Nazca Plate is subducting beneath the western edge of the continental South American Plate along a 5,900-kilometer length of South America (Henig, Blackman, & German, 2010; Patton, Ammirati, Stein, & Sevilgen, 2019; Dura, et al., 2017; Cisternas, Garrett, Wesson, Dura, & Ely, 2017). Subduction rates vary from 6.5-8.0 cm/year along this margin. For a detailed description of this subduction, see, for example (IRIS, No date; Henig, Blackman, & German, 2010; Cisternas, Garrett, Wesson, Dura, & Ely, 2017). In this study, we considered earthquakes that occurred along the Chile portion of this margin.

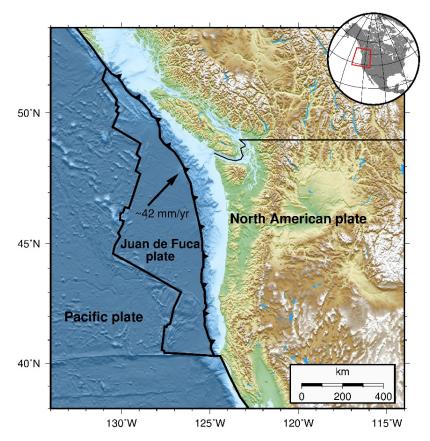


Figure 2: Black variegated line shows the ~1,100 km long Cascadia Subduction Zone, located between the Juan De Fuca and North American Plates, where the Juan de Fuca plate is subducting beneath the North American plate at ~42 mm/year.

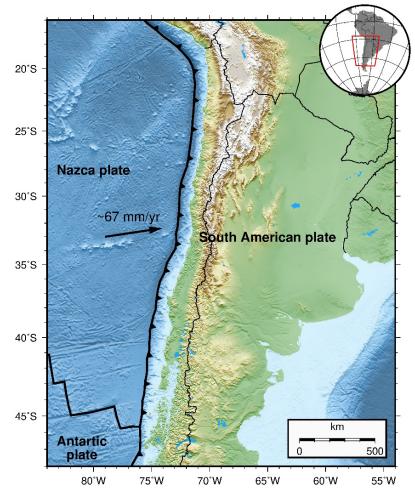


Figure 3: Black variegated line shows the ~5,900 km long Chile Subduction Zone, located between the Nazca and South American Plates, where the Nazca plate is subducting at approximately 67 mm/year beneath the South American plate.

Earthquake intensity is the qualitative measurable severity of ground shaking, controlled by several factors, with earthquake magnitude and distance from the epicenter generally being most dominant/influential; with higher intensities close to the rupture and lower values further from the earthquake (USGS Earthquake Hazards Program, 2020). Earthquake depth, surface geology, distance to a fault, as well as building characteristics are additional factors that influence the intensity people will experience (USGS Earthquake Hazards, 2022).

To gain a greater picture of this ground shaking, macroseismic intensities provide an estimate of the effect and impact of shaking that people experienced. The USGS uses a citizen science platform to capture this information through the "Did You Feel It?" (DYFI) website (USGS Earthquake Hazards Program, 2020). These macroseismic intensities people experience are assigned a numerical value based on, and calibrated to, the Modified Mercalli Intensity (MMI) scale, which is an increasing level of intensity ranging from not felt shaking (MM=1) to catastrophic destruction (MMI=10) (USGS Volcano Hazards, 2021). However, the USGS DYFI data is an intensity calculation based on the weighted sum of the eight various DYFI questionnaire indices aggregated (not the average) and is represented/captured as Community

Decimal Intensity (CDI) rating for either 1-kilometer or 10-kilometer block/grid area (USGS Earthquake Hazards Program, 2020). Details on the CDI rating calculation and additional information can be found on the USGS Earthquake Hazards Program webpage (USGS Earthquake Hazards Program, 2020).

In this article, we look at patterns in the DYFI Intensity vs. Distance data for crustal earthquakes greater than magnitude 4.5. Intensities used in the USGS's Intensity vs. Distance plots use an 'Intensity Prediction Equation' (IPE) that captures intensities from the DYFI questionnaire's responses and compares them against estimated intensities and distances from the reported magnitudes (USGS Earthquake Hazards Program, 2020).

The DYFI data have been collected since 2004, when the online USGS DYFI platform became available to users around the globe (Quitoriano & Wald, 2020). Although there are other earthquake intensity datasets, for example, NRCan in Canada and the Seismological Service of Chile for Chile, (Wald D. J., Quitoriano, Worden, Hopper, & Dewey, 2011), we only consider the USGS intensity data for consistency. The same data collection form is used in both areas, so the resulting intensity values will be directly comparable.

Increasing our understanding of how intensities from specific earthquake events affect people, infrastructure, and the environment contributes to earthquake scenario development, earthquake risk assessment, and community risk and emergency management planning. This research is part of the Canadian Government's Public Safety Geoscience Program; ultimately, our aim of this project is to contribute to better preparedness for future large earthquakes in Canada.

METHODS

This project uses the same approach conducted in the intraslab companion study (Rutherford & Cassidy, 2022), which involved three main components. First, a literature review of the USGS DYFI Scientific Background documents was conducted to determine how best to use the DYFI data (resolution, file format, etc) for this research. Second, felt earthquakes within search criteria were identified, and DYFI data from the USGS Search Earthquake Catalog (ComCat) were acquired for crustal (shallow) felt earthquakes that occurred within the overriding continental plates (North American in Cascadia, and South American in Chile) from January 1, 1960, to Jan 1, 2020. Most of the intensity data in this study are from 2004 onward, after the USGS DYFI portal became operational to global contributors (Quitoriano & Wald, 2020). A small number of significant historical events (going back to 1960) were added to the USGS DYFI database and are used in this study. The third component involved running conversion analytics and generating data visualization through plots created in MS Excel. The following provides a brief summary of the methodology, for more details see Rutherford & Cassidy (2022).

Identifying Earthquakes & Acquiring DYFI Data from ComCat

Identifying crustal earthquakes of interest for this project involved searching the USGS ComCat (USGS Earthquake Hazards Program, 2021) database for earthquakes felt or experienced by people, of magnitude 4.5 and greater, within the North and South American Plates from 1960 to 2020.

The tectonic settings within the regions of interest (Figure 2 and Figure 3) control the earthquake depth (Hayes & Crone, 2021; Duo, McGuire, Liu, & Hardebeck, 2018; Cisternas, Garrett, Wesson, Dura, & Ely, 2017). Crustal events of depths less than 35 km primarily occur within the overriding continental plate, or unsubducted oceanic crust (as seen in Figure 1) (Adams & Halchuk, 2004; Hayes & Crone, 2021; Government of Canada, 2021b). Meanwhile, deeper (depth > 35 km) earthquakes are likely occurring within the subducting slab (Staisch, Walton, & Witter, 2019; USGS Subduction Zone Science, 2020). The mechanics and general effects of earthquakes in these two regimes differ, and therefore, we treated them separately. We therefore set the depth parameters in *ComCat* to separate the Intraslab from the Crustal earthquakes in our search.

ComCat Search for Crustal Earthquakes

For this project we identified crustal 'felt' earthquakes (at depth less than 35 kilometers) that occurred within the North American Plate in the Cascadia subduction zone (Figure 2 & Figure 4A) and in the South American Plate in the Chilean subduction zone (Figure 3 & Figure 4B). We reviewed the Cascadia crustal results to determine the lowest and highest magnitude earthquakes with 'felt' data for the Cascadia region, and this formed the basis for what Chile earthquakes we included in our comparison. In this case, our Chile search was for events between magnitudes of 4.5 and 7.2, as the Cascadia search results generate no earthquakes with 'felt' data above magnitude 7.2.

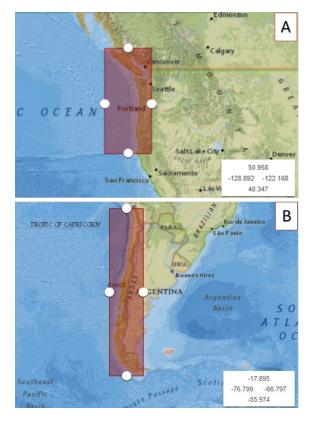


Figure 4: Geographic ComCat search areas capturing the boundaries of the Cascadia Subduction Zone (Image A) and the Chile Subduction Zone (Image B).

The images in Figure 5 show the results of this search for these two zones. Note the ComCat search shows some crustal earthquakes in the oceanic plates. These offshore events were not considered in this analysis. The results section of this document highlights the total number of events found, omitted, and used for this study.

The ComCat search results are summarized in Appendix A and Appendix B and contain the USGS source information for each earthquake. We include hyperlinks to the USGS webpage for each specific earthquake, based on their USGS earthquake ID. This allowed for quick access to each earthquake's specific webpage and was useful for the retrieval/downloading of the DYFI data associated with each event, and validating specific information associated with each earthquake.

The ComCat search engine provided high-quality felt intensity data. There were, however, some limitations with the ComCat search platform. For example, delineating the geographical search area in ComCat via a rectangular outline for both subduction regions, Cascadia (Figure 4A) and Chile (Figure 4B) caused the search to pick up earthquakes outside the region of interest, e.g., within Juan de Fuca Plate (Cascadia) and the Nazca Plate and bordering countries (Chile) (see Figure 5). We therefore filtered out events that did not occur within the North and South American plates. We then extracted for this study earthquakes based on 14 magnitudes found from the Cascadia search, e.g., magnitudes 4.5-4.9, 5.0, 5.2, 5.4-5.7, 6.4, 6.5 and 7.2. For example, we found ten M5.7 events at depths less than 35km that occurred from 1960 to 2020 within the Chile subduction zone.

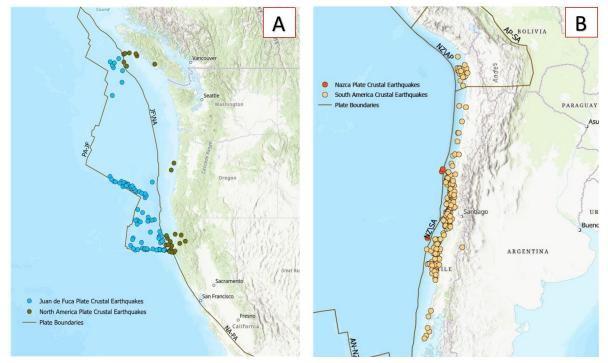


Figure 5: ComCat search results for all M>4.5 crustal (depth <35 km) earthquakes for Cascadia (Image A) and Chile (Image B) for the time period 1960-2020. Note that offshore earthquakes within the Juan de Fuca plate (Figure A) and the Nazca Plate (Figure B) were filtered out and not considered in this analysis.

Acquiring Raw Data from the ComCat Catalog

Acquiring raw data associated with each earthquake, based on their USGS ID, required sourcing, downloading, and processing the DYFI data from the USGS ComCat database (USGS Earthquake Hazards Program, 2021). For events which did not have readily downloadable intensity vs distance data, we sent a request to USGS database steward Vince Quitoriano, and he reran the files to produce relevant data, which were then available for download on the USGS website. The data were provided in three main formats, .PNG/.JPG (plots), CSV (raw DYFI), and JSON (intensity vs distance). All downloaded intensity versus distance data for each earthquake event have been archived, as detailed in Appendix D.

Validation & Quality Control of the ComCat Search Results

The DYFI data included intensity versus distance data, which were aggregated in blocks, binned into 10-km grids cells (USGS Earthquake Hazards Program, 2021; Quitoriano V., personal communication, June 15, 2021). We reviewed individual events by their USGS catalog and determined if they were suitable for use, by evaluating the quality and quantity of USGS DYFI responses, omitting events with limited or poor-quality (fewer than three DYFI responses) data. We discuss the details of filtering and removal of DYFI in the results section.

Processing, Analytics & Plotting DYFI Data

The process we used to investigate whether the felt intensity patterns between Cascadia and Chile subduction zones are comparable involved binning data by distance and plotting events of the same magnitude and depth on one graph. The following briefly outlines the procedures used to process, graph, and edit the acquired USGS ComCat DYFI intensity versus distance data. For more details, see Rutherford & Cassidy (2022).

1) Plotting values by Magnitude:

To get a first glance at the intensity versus distance data, we plotted all felt crustal earthquakes of a specific magnitude for events that occurred within Chile and Cascadia subduction zones as separate events, for each of the 14 magnitudes (4.5-4.9, 5.0, 5.2, 5.4-5.7, 6.4, 6.5 and 7.2) together on one plot. As one example, intensity data for each of the crustal M4.7 Chile and Cascadia events were plotted as separate earthquakes as seen in Figure 6.

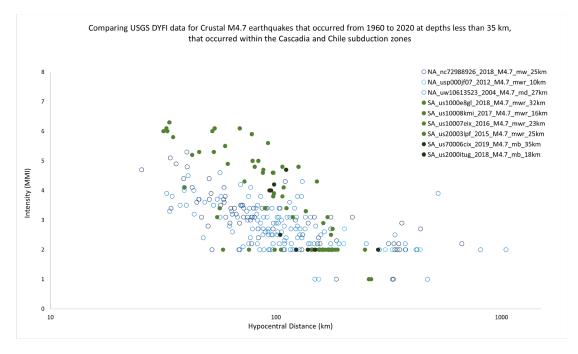


Figure 6: An example of one of the crustal combined plots with associated data, showing the magnitude 4.7 individual Chile & Cascadia earthquakes used in this study.

2) Combining Chile and Cascadia intensity and distance values by magnitude: In this next step, we combined the intensity vs distance values for the 14 magnitudes (e.g., 4.5..., 5.0..., 6.4...etc.) from Chile and Cascadia into a combined plot. For example, we plotted the DYFI intensities for M5.4 earthquakes in Chile and Cascadia as two separate series (Figure 7). The same plots also included the mean and median intensities for the entire Cascadia and Chile dataset (all distance values) and the related standard deviations (for details, see Rutherford & Cassidy, 2022). These plots provide a rough view of the felt intensity patterns across each magnitude for Chile and Cascadia subduction zones.

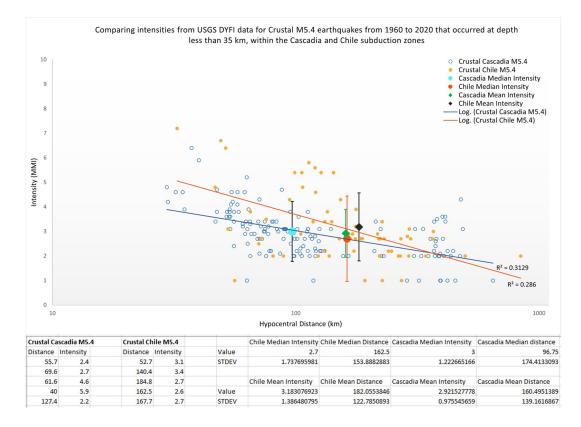


Figure 7: An example of a combined plot with associated data, showing all Chile & Cascadia earthquake response values combined on one graph. The table below the plot, shows the calculations use for the mean and median.

3) Curve fitting mean intensity over binned distance: Generating binned distance plots To get an estimate for the mean and median intensities, we binned intensity values into small distance ranges, which captured the average intensity for binned distances and generated a mean of intensities for each binned distance.

We created a combined binned distance plot for each magnitude by taking the values from the combined magnitude plots (Figure 7). Our first step in achieving this was to create a list of bin distance values that captured the range of distances for intensity values of each magnitude for both Cascadia and Chile events (Figure 8).

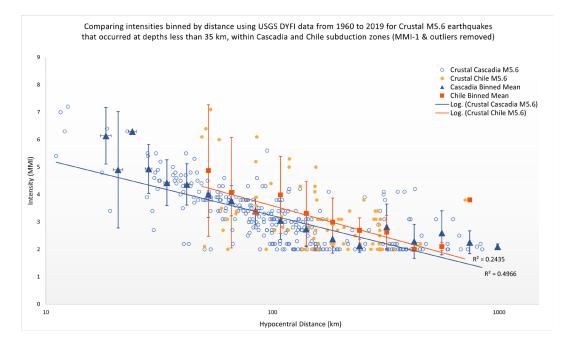


Figure 8: An example of a curve-fitting plot (with MMI and outliers removed), which combined DYFI data from the entire dataset of 9 Chile M5.6 earthquakes and the 2 Cascadia M5.6 earthquakes, where we binned intensity values by distance.

4) Remove outliers, MMI = 1 values and edit combine plots:

The final step in this study involved reviewing each plot to infer a comparison in intensities between the crustal earthquakes in the Cascadia and Chile subduction zones, and removing any significant outliers, (i.e., some extremely distal responses that give unrealistic intensity measures > 4 as an MMI = five at 1000 km)

Lastly, further review of the plots showed that MMI one values (not felt) in all plots influenced the overall trend. We noticed that these (not felt) values were more common in Cascadia, and not used as often in Chile. We removed all MMI 1 values, as they served no purpose in our analyses (Figure 8).

RESULTS

ComCat Catalog Crustal Earthquake Search Results

The USGS ComCat search provided (Figure 5) felt intensity information for 29 crustal earthquakes of magnitude > 4.5 within the North American Plate (Cascadia subduction zone), and more than 800 earthquakes within the South American Plate (Chile subduction zone).

For earthquakes that occurred within the North American Plate (Cascadia subduction zone), there were 14 different magnitudes, ranging from M4.5 to 7.2. There were five magnitudes for the 4.5-4.9 range, six magnitudes for the M5.0-5.9 range (e.g., 5.0, 5.2, 5.4, 5.5, 5.6, 5.7), two magnitudes (6.4 & 6.5) for the M6.0-6.9 range, and 1 magnitude (7.2) for the 7.0-7.9 range. The Cascadia crustal results formed the parameters of what magnitudes we could include in our

comparison. This meant that we only compared earthquakes of the same 14 Cascadia magnitudes.

Earthquakes with fewer than three felt responses and Chile events that did not have a corresponding magnitude with Cascadia earthquakes were omitted from the analysis. We removed 113 of the 142 Cascadia earthquake events and removed 769 of the 883 Chile events found in our ComCat search. Therefore, we used 114 Chile earthquakes and 29 Cascadia earthquakes in our analysis and generating the comparison plots.

The USGS ComCat documents are summarized in Appendix A and B, where Table 1 shows the number of aggregated responses values plotting for each magnitude. Far more earthquakes occurred within the Chilean subduction zone compared to the Cascadia subduction zone (Figure 5). In general, however, there were more felt response values for Cascadia earthquakes than for the Chile events.

Results of Data Interrogation & Plotting

Here we provide a short discussion on each step of the data analysis and conclusions (following headings in the method section) to help facilitate similar research by others in the future. Overall, three main plots were generated for each of the fourteen magnitudes from 4.5 to 7.2. These plots allowed us to view and interrogate the trends and comparability of felt data for the two-subduction zones. In general, plots show good overall agreements between felt patterns in Chile and Cascadia. The following section shows the three plots generated for each magnitude. Appendix C contains the full suite of the four types of plots generated for the 14 magnitudes compared in this study.

Combined by Magnitude Plots - Separate Earthquakes by USGS ID

Figure 9, show six magnitudes (e.g., 4.5. 4.8, 5.2, 5.7, 6.5, and 7.2) for Cascadia and Chile earthquakes plotted separately, based on their event ID (USGS ComCat search ID). In these plots, we show the depth and magnitude type of each earthquake in the legends. All six plots in Figure 10 show the expected trend of decreasing intensity with distance. They also show minimal, yet similar clustering patterns that range from ~30 to 600 kilometers. Plots M4.5, M4.8, M5.2, M5.7, and M7.2 responses start around 15 kilometers and range to over 1000 kilometers. There is a slight discrepancy in M6.7 plot, where values cluster around a 300 to 700 kilometers, with responses starting at 60 kilometers and range up 1000 km. All plots show a plateau at intensity MMI-1, and as, 'not-felt' response; we removed these values in further analyses.

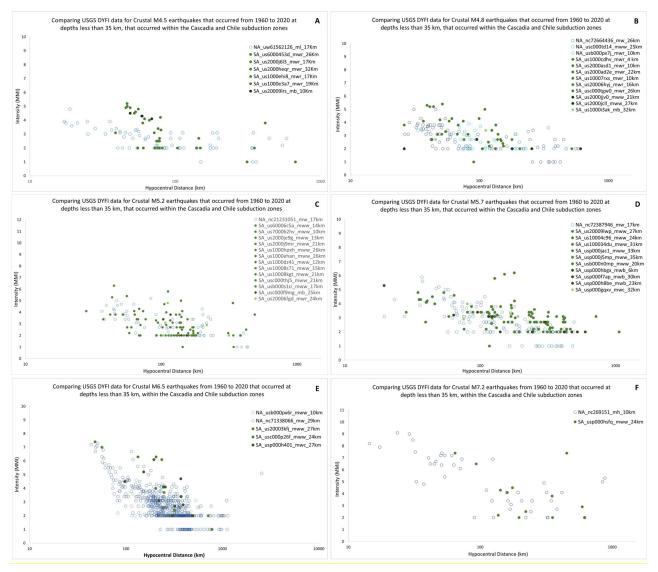


Figure 9: Combined DYFI intensity response data for earthquakes in Chile and Cascadia from 1960 to 2020; showing clustering patterns of the individual events for magnitude 4.5 (image A), 4.8 (image B), 5.2 (image C), 5.7 (image D), 6.5 (image E), and 7.2 (image F) indicating a comparable intensity pattern between the Chile and Cascadia subduction zones. Colour coded dots show the response values based on magnitude type (blue dots represent Cascadia (NA) and the different green coloured dots show Chile (SA) responses.

In Table 1, we can see the number of response values per magnitude earthquake for both Chile and Cascadia. For all magnitudes, there were more Chile earthquakes, yet fewer response values for each earthquake. We see this in all the magnitude plots, apart from magnitude 5.5 with Cascadia having 14 responses and Chile at 123 (Table 1).

Cascadia	Earthquakes	Plotted Response Values	Chile	Earthquakes	Plotted Response Values
M4.5	1	62	M4.5	6	39
M4.6	5	115	M4.6	7	28
M4.7	3	205	M4.7	6	76
M4.8	3	126	M4.8	9	43
M4.9	3	140	M4.9	9	43
M5.0	2	123	M5.0	8	72
M5.2	1	59	M5.2	13	86
M5.4	2	144	M5.4	9	65
M5.5	1	14	M5.5	17	123
M5.6	2	332	M5.6	9	97
M5.7	1	138	M5.7	10	97
M6.4	2	158	M6.4	5	78
M6.5	2	630	M6.5	3	27
M7.2	1	45	M7.2	1	13

Table 1: Highlighting the number of Chile and Cascadia earthquakes and response values plotted for the 14 magnitudes.

Combined by Magnitude Plots - Combined Earthquakes

Here, we combine all the response values for the Cascadia earthquakes and the Chile earthquakes for each of 14 magnitudes. We then plotted the combined data as two series, one for all Cascadia events and one for Chile events for each of the fourteen magnitudes. Figure 10 plots show the downward trend, have similar slopes, indicating that the data are comparable. For example, even though the R^2 values are low, the sloping trend in Figure 10B indicates consistent responses for both magnitude 4.8 Cascadia and Chile data, with Cascadia R^2 value of 0.4075 and Chile is at 0.2792. This slope comparability is evident in most of the fourteen magnitude plots.

Additionally, the mean and median intensity for all responses values was calculated and provided a general view of the distribution of intensities. In general, these distribution values for Chile and Cascadia data are similar. For example, we can see that for magnitude 5.2 earthquakes (Figure 10C), the mean and median values are relatively similar (Cascadia mean: 117 km, 3.1 MMI; Chile mean: 129 km, 2.7, and Cascadia median: 150 km, 3.0 MMI; Chile median: 140 km, 3.0 MMI). There is some variability in the mean and median for the other five magnitudes.

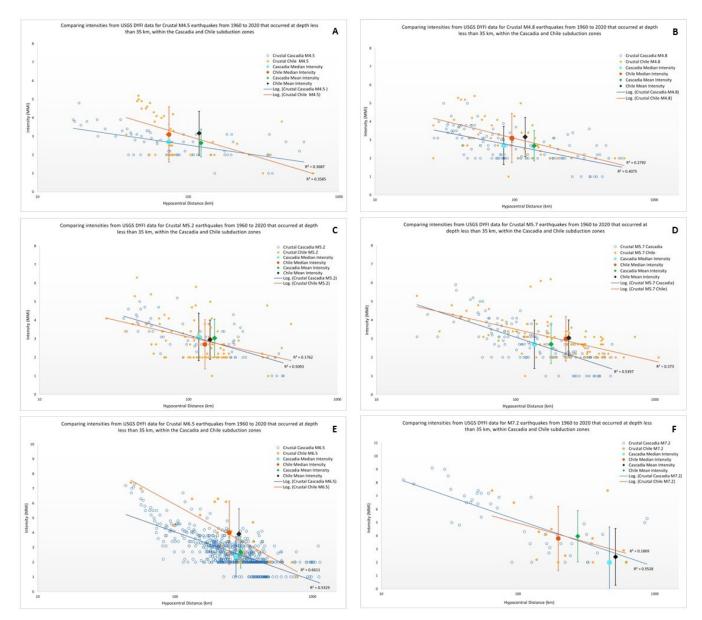


Figure 10: Combined plots for earthquakes in the Chile and Cascadia subduction zones; showing clustering patterns of all response values for events of magnitudes 4.5 (image A), 4.8 (image B), 5.2 (image C), 5.7 (image D), 6.5 (image E), and 7.2 (image F), and the mean and median of all response values, indicating comparable intensity patterns between Chile and Cascadia.

Combined by Magnitude Plots - Curve Fitting

45

M7.2

The curve-fitting plots were generated to provide a best-fit distribution. In these plots, we binned intensity values into smaller distance ranges, which captured the average intensity for binned distances and generated a mean intensity for each binned distance (Figure 11 and Figure 12). We also removed the values of insignificance, the MMI-1 (not-felt) values, and outliers (Table 2). We deemed outliers to be intensity values that appear unrealistic for the earthquake's documented magnitude. For example, in Figure 10D there are three intensities values over MMI 6 at distances greater than 150 km, for a 5.7 magnitude earthquake, and an intensity of MMI 7.4 at approximately 450 km for an M7.2 earthquake (Figure 10F). A complete set of plots without the outliers and MMI-1 values removed can be viewed in Appendix C. Twelve of the plots show good comparison, however, there are two smaller magnitudes, M4.5 and M4.7 (Figure 12) that do not show as good agreement.

Cascadia	Response Values	Values Removed	Chile	Response Values	Values Removed
M4.5	62	3	M4.5	39	3
M4.6	115	4	M4.6	28	3
M4.7	205	6	M4.7	76	5
M4.8	126	7	M4.8	43	1
M4.9	140	8	M4.9	43	5
M5.0	123	9	M5.0	72	2
M5.2	59	4	M5.2	86	21
M5.4	144	9	M5.4	65	24
M5.5	14	4	M5.5	123	9
M5.6	332	36	M5.6	97	20
M5.7	138	15	M5.7	97	4
M6.4	158	27	M6.4	78	0
M6.5	630	52	M6.5	27	1

M7.2

13

1

2

Response values are the aggregated 10-kilometer grid values plotted in our graphs

Table 2: Showing the number of response values plotted (before MMI=1 and outliers removed) and the number of response values removed (MMI=1 and outliers removed) for all 14 magnitudes.

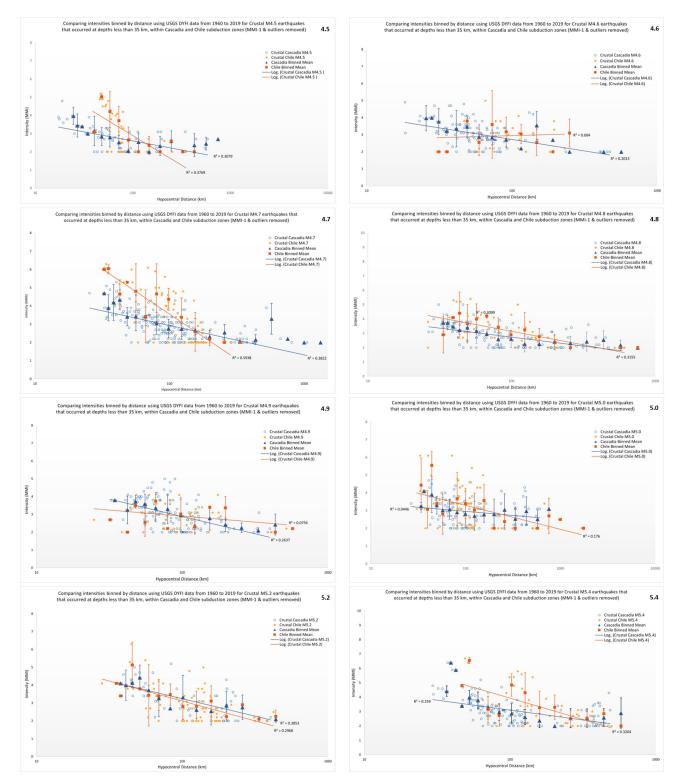


Figure 11: Curve fitting plots for 8 of the 14 magnitude earthquakes in the Chile and Cascadia subduction zones; showing clustering patterns of all response values for magnitudes 4.5 to 4.9, 5.0, 5.2 and 5.4, and the values for mean and median intensities binned by distance.

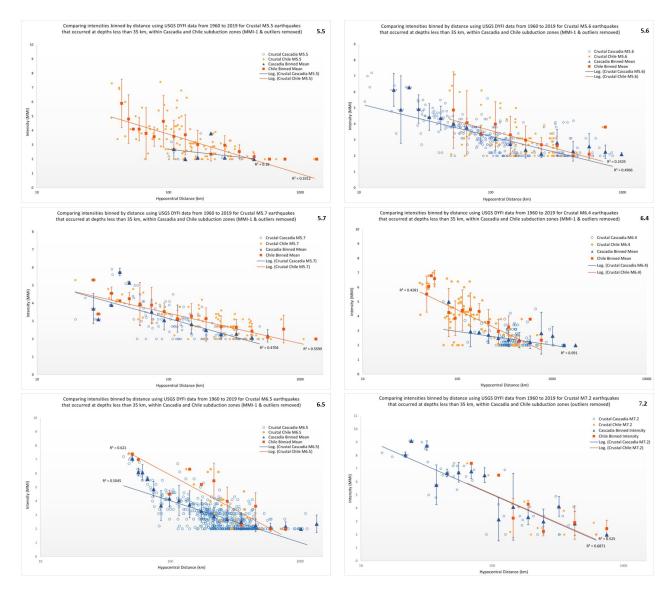


Figure 12: Curve fitting plots for 6 of the 14 magnitude earthquakes in the Chile and Cascadia subduction zones; showing clustering patterns of all response values and the values for mean and median intensities binned by distance, for magnitudes 5.5., 5.6, 5.7, 6.5, 6.6 and 7.2.

CONCLUSION & FUTURE RESEARCH

This study compared felt intensity information from crustal earthquakes in the Cascadia and Chilean subduction zones. The ultimate goal is to assess whether felt intensity information from large (M8-8.8) subduction earthquakes in Chile can be used as a proxy for similar events in Cascadia. Overall, the result of this study shows good agreement between felt patterns for crustal earthquakes in the two subduction zones, providing confidence that Chilean intensity data for megathrust earthquakes can be representative for those in Cascadia.

There were a few limitations in our study, which included the availability and quantity of comparable data. There were limited earthquakes of the same magnitude, as well as an unequal

number of response values between Chile and Cascadia, and these factors contributed to our study's comparability limitations. The differences in the quantity of response data between Cascadia and Chile are seen in all plots. Nearly all magnitudes in this study had more response values per event for the Cascadia earthquakes compared to the Chile events. Having a more even distribution of response values between Chile and Cascadia would provide a more robust view of the intensity pattern. Furthermore, we were unable to compare all magnitudes ranging from 4.5 to 8.0, as there were (at this time) no comparable earthquakes found in the North American plate within the Cascadia zone, for magnitudes 5.1, 5.3, 5.8, 5.9, 6.0-6.3, 6.6-6.9, 7.0, 7.1, 7.3-8.0.

There is an opportunity to expand this research, by incorporating other earthquake intensity databases (e.g., NRCan in Canada and the Seismological Service of Chile for Chile). The data collection form or method for deriving intensity rating may differ between datasets, however, and thus data may not be directly comparable. Furthermore, expanding this study into looking at other subduction zones and global DYFI platforms (e.g., Japan) would be valuable addition to this research.

This project completes the two comparison studies, one on deep intraslab earthquakes (Rutherford & Cassidy, 2022) and this crustal earthquake study. The next step is to expand this research by investigating intensity patterns, using USGS DYFI data for earthquakes in the Japan subduction zone. We will apply the same process to investigate the intraslab and crustal earthquakes in both Cascadia and Japan subduction zones.

In conclusion, the results of this study indicate that ground shaking (felt intensity) patterns for crustal earthquakes in Chile and Cascadia are similar. This is useful information for the scientific, engineering and emergency management communities, and suggests that intensity information from large subduction earthquakes in Chile can be applied to Cascadia.

ACKNOWLEDGMENTS

Firstly, we would like to thank Vince Quitoriano (United States Geological Survey (USGS)) for assisting us in navigating the ComCat platform and working with us to acquire DFYI data for felt earthquakes used in this study. We also thank Collin Paul (Earthquake Seismologist with Natural Resources Canada) for developing scripts and analytics, as well as editing contributions to the method section of this report. We are grateful for the map images in Figure 2 and Figure 3 which Carlos Herrera (Ph.D. Candidate the University of Victoria) kindly produced all the while preparing for his Ph.D. Defense. Lastly, we thank Alison Bird (Earthquake Seismologist with Natural Resources Canada) for the thorough and thoughtful review of this manuscript.

REFERENCES

- Adams, J., & Halchuk, S. (2004). Fourth-generation seismic hazard maps for the 2005 national building code of Canada. *13th World Conference on Earthquake Engineering* (p. 12). Vancouver, B.C., Canada: Natural Resources Canada. doi:https://doi.org/10.4095/226357
- Cisternas, M., Garrett, E., Wesson, R., Dura, T., & Ely, L. L. (2017). Unusual geologic evidence of coeval seismic shaking and tsunamis shows variability in earthquake size and recurrence in the area of the giant 1960 Chile earthquake. *Marine Geology*, *385*, 101-113. doi:https://doi.org/10.1016/j.margeo.2016.12.007
- Di Menna, J., & Flick, S. (2005). *A'la carte: After shock.* Geological Survey of Canada, Natural Resources Canada. Canadian Geographic A'la carte. Retrieved December 15, 2021, from https://earthquakescanada.nrcan.gc.ca/zones/cascadia/Canadian_Geographic2005_CascadiaSumat ra.pdf
- Duo, L., McGuire, J., Liu, Y., & Hardebeck, J. (2018). Stress rotation across the Cascadia megathrust requires a weak subduction plate boundary at seismogenic depths. *Earth and Planetary Science Letters*, 485, 55-64. doi:https://doi.org/10.1016/j.epsl.2018.01.002
- Dura, T., Horton, B. P., Cisternas, M., Ely, L. L., Hong, I., Nelson, A. R., . . . Nikitina, D. (2017). Subduction zone slip variability during the last millennium, south-central Chile. *Quaternary Science Reviews*, 175, 112-137. doi:https://doi.org/10.1016/j.quascirev.2017.08.023
- Government of Canada. (2011). Natural Resources Canada: Earthquake Canada. Retrieved from Products, Publications, and Research: Earthquakes in southwestern British Columbia: https://earthquakescanada.nrcan.gc.ca/pprs-pprp/pubs/GF-GI/GEOFACT_earthquakes-SW-BC_e.pdf
- Government of Canada. (2021a, April 06). *Important Canadian Earthquakes*. Retrieved from Natural Resources Canada: Earthquakes Canada: https://earthquakescanada.nrcan.gc.ca/historic-historique/map-carte-en.php
- Government of Canada. (2021b). *Seismic Zones in Western Canada*. Retrieved January 4, 2022, from Natural Resources Canada, Earthquake Canada: https://earthquakescanada.nrcan.gc.ca/zones/westcan-en.php#Cascadia
- Hayes, G., & Crone, T. (2021). USGS Natural Hazards: At what depth do earthquakes occur? What is the significance of the depth? Retrieved July 18, 2021, from USGS science for a changing world: https://www.usgs.gov/faqs/what-depth-do-earthquakes-occur-what-significance-depth?qt-news_science_products=0#qt-news_science_products
- Henig, A., Blackman, D., & German, C. (2010). INSPIRE: Chile Margin 2010; Chile Margin and Triple Junction Geology. Retrieved January 4, 2022, from NOAA Ocean Exploration: https://oceanexplorer.noaa.gov/explorations/10chile/background/geology/geology.html
- IRIS. (No date). Incorporated Research Institutions for Seismology (IRIS): National Science Foundation. Retrieved January 10, 2022, from Peru-Chile Subduction Zone: Earthquakes & Tectonics: https://www.iris.edu/hq/inclass/animation/peruchile subduction zone earthquakes tectonics

- Patton, J. R., Ammirati, J. B., Stein, R., & Sevilgen, V. (2019). Strong shaking from central coastal Chile earthquake: What does it reveal about the next megathrust shock? (Tremblor) doi:http://doi.org/10.32858/temblor.012
- Quitoriano, V. (personal communication, June 15, 2021). US Geological Society (USGS).
- Quitoriano, V., & Wald, D. J. (2020). USGS "Did You Feel It?' Science and Lessons from 20 Years of Citizen Science-Based Macroseismology. *Frontiers in Earth Science*, 8, 120. doi:https://doi.org/10.3389/feart.2020.00120
- Rutherford, J., & Cassidy, J. F. (2022). Comparing Felt Intensity Patterns for Deep Intraslab Earthquakes in the Cascadia and Chilean Subduction Zones, offshore British Columbia, UNited States, and Chile. Geological Survey of Canada, Open File Report 8899, 24p. doi:https://doi.org/10.4095/330207
- Staisch, L., Walton, M., & Witter, R. (2019). Addressing Cascadia Subduction Zone Great Earthquake Recurrence. (Eos Science News by American Geophysical Union) doi:https://doi.org/10.1029/2019EO127531
- USGS Earthquake Hazards. (2022). *Earthquake Magnitude, Energy Release, and Shaking Intensity*. Retrieved April 19, 2022, from USGS science for a changing world: https://www.usgs.gov/programs/earthquake-hazards/earthquake-magnitude-energy-release-and-shaking-intensity
- USGS Earthquake Hazards Program. (2020). *Earthquake Hazards Program: DYFI Scientific Background*. Retrieved January 21, 2020, from USGS science for a changing world: https://earthquake.usgs.gov/data/dyfi/background.php
- USGS Earthquake Hazards Program. (2021). *Earthquake Hazards Program: Search Earthquake Catalog*. Retrieved January 15, 2021, from USGS Science for a changing world: https://earthquake.usgs.gov/earthquakes/search/
- USGS Pacific Coastal Marine Science Center. (2021). *Cascadia Subduction Zone Marine Geohazards*. Retrieved January 4, 2022, from USGS Science for a Changing World: Pacific Coastal and Marine Science Cente: https://www.usgs.gov/centers/pcmsc/science/cascadia-subduction-zonemarine-geohazards#overview
- USGS Subduction Zone Science. (2020). *Introduction to Subduction Zones: Amazing Events in Subduction Zones*. Retrieved January 6, 2022, from USGS Science for a Changing World: Subduction Zone Science: https://www.usgs.gov/special-topics/subduction-zone-science/science/introduction-subduction-zones-amazing-events
- USGS Volcano Hazards. (2021). *The Modified Mercalli Intensity (MMI) assigns intensities as...* Retrieved August 6, 2021, from USGS science for a changing world: https://www.usgs.gov/media/images/modified-mercalli-intensity-mmi-scale-assigns-intensities
- Wald, D. J., Quitoriano, V., Worden, C. B., Hopper, M., & Dewey, J. W. (2011). USGS "Did You Feel It?" Internet-based macroseismic intensity maps. (R. Bossu, & P. S. Earle, Eds.) Annals of Geophysics, 54(6). doi:https://doi.org/10.4401/ag-5354

- Wald, D., Quitoriano, V., Dengler, L., & Dewey, J. (1999). Utilization of the Internet for Rapid Community Intensity Maps. Seismological Research Letters, No. 6, pp. 680-697.
- Wang, K., & Tréhu, A. M. (2016). Invited review paper: Some outstanding issues in the study of great megathrust earthquakes-The Cascadia exmaple. *Journal of Geodynamics*, 98, 1-18. doi:https://doi.org/10.1016/j.jog.2016.03.010
- Watt, J. T., & Brothers, D. S. (2020). Systematic characterization of morphotectonic variability along the Cascadia convergent margin: Implications for shallow megathrust behavior and tsunami hazards. *Geosphere*, 17(1), 95-117. doi:https://doi.org/10.1130/GES02178.1

APPENDIX A

Thirty Cascadia earthquakes from 1960 to 2020 used in the Crustal intensity comparison study between Cascadia (North America) and Chile (South America) subduction zones.

USGS ID	Event Time	Latitude	Longitude	Depth (km)	Magnitude	Mag- Type	Location	Plate Location	Responses	s USGS Link
Magnitude 4	4.5 Earthquakes									
uw61562120	5 2019-11-30: T01:45:12	42.776	-124.477	16.7	4.5	ml	3km NNE of Port Orford, Oregon	North America	517	https://earthquake.usgs.gov/earthquakes/eventpage/uw61562126/executive
Magnitude 4	4.6 Earthquakes									
usc0001177	2013-12-15: T18:11:47	49.263	-127.811	5.0	4.6	mwr	139km W of Tofino, Canada	North America	5	https://earthquake.usgs.gov/earthquakes/eventpage/usc000ll77/executive
nc51211307	2008-11-16: T05:43:15	40.314	-124.603	18.9	4.6	mw	Offshore Northern California	North America	274	https://earthquake.usgs.gov/earthquakes/eventpage/nc51211307/executive
nc51207076	2008-08-17: T05:56:59	41.189	-124.216	15.7	4.6	mw	Offshore Northern California	North America	754	https://earthquake.usgs.gov/earthquakes/eventpage/nc51207076/executive
nc21510606	2006-03-26: T01:56:37	40.278	-124.449	22.3	4.6	mw	Offshore Northern California	North America	268	https://earthquake.usgs.gov/earthquakes/eventpage/nc21510606/executive
nc21223451	2002-04-29: T00:43:29	40.602	-124.450	28.7	4.6	mw	Offshore Northern California	North America	312	https://earthquake.usgs.gov/earthquakes/eventpage/nc21223451/executive
Magnitude	4.7 Earthquakes									
0	2018-03-23: T03:09:39	40.428	-124.511	25.2	4.7	mw	22km WNW of Petrolia, CA	North America	1441	https://earthquake.usgs.gov/earthquakes/eventpage/nc72988926/executive
usp000jf07	2012-02-16: T06:37:33	49.089	-127.617	10.0	4.7	mwr	Vancouver Island, Canada	North America	13	https://earthquake.usgs.gov/earthquakes/eventpage/usp000jf07/executive
uw1061352	3 2004-08-19: T06:06:03	44.665	-124.300	27.3	4.7	md	Offshore Oregon	North America	840	https://earthquake.usgs.gov/earthquakes/eventpage/uw10613523/executive
Magnitude	4.8 Earthquakes									
0	2016-07-21: T23:09:05	40.724	-123.892	26.2	4.8	mw	19km SSE of Blue Lake, CA	North America	1087	https://earthquake.usgs.gov/earthquakes/eventpage/nc72664436/executive
usc000td14	2015-01-08: T02:02:53	49.171	-125.647	24.6	4.8	mww	18km E of Tofino, Canada	North America	258	https://earthquake.usgs.gov/earthquakes/eventpage/usc000td14/executive
usb000px7j	2014-04-24: T03:44:17	49.610	-127.826	10.0	4.8	mwr	124km SSW of Port Hardy, Canada	North America	10	https://earthquake.usgs.gov/earthquakes/eventpage/usb000px7j/executive
Magnitude 4	4.9 Earthquakes									
nc72086051	2013-10-11: T23:05:37	40.984	-124.750	8.6	4.9	mw	53km WNW of Eureka, California	North America	717	https://earthquake.usgs.gov/earthquakes/eventpage/nc72086051/executive
nc71011617	2008-10-26: T09:27:22	40.337	-124.629	20.8	4.9	mw	Offshore Northern California	North America	141	https://earthquake.usgs.gov/earthquakes/eventpage/nc71011617/executive
uw1060920	8 2004-07-12: T16:45:00	44.334	-124.489	28.8	4.9	md	Offshore Oregon	North America	675	https://earthquake.usgs.gov/earthquakes/eventpage/uw10609208/executive
Magnitude !	5.0 Earthquakes									
nc51183469	2007-06-25: T02:32:24	41.116	-124.825	2.6	5.0	mw	Offshore Northern California	North America	1224	https://earthquake.usgs.gov/earthquakes/eventpage/nc51183469/executive
nc21527987		40.281	-124.433	20.1	5.0	mw	Offshore Northern California	North America	484	https://earthquake.usgs.gov/earthquakes/eventpage/nc21527987/executive

0	5.2 Earthquakes 2002-06-17: T16:55:07	40.810	-124.552	17.2	5.2	mw	Offshore Northern California	North America	951	https://earthquake.usgs.gov/earthquakes/eventpage/nc21231051/executive
Magnitude 5	5.4 Earthquakes									
0	2008-04-30: T03:03:06	40.836	-123.497	27.8	5.4	mw	Northern California	North America	1782	https://earthquake.usgs.gov/earthquakes/eventpage/nc40216664/executive
nc40193932	2007-02-26: T12:19:54	40.643	-124.863	-0.5	5.4	mw	Offshore Northern California	North America	1023	https://earthquake.usgs.gov/earthquakes/eventpage/nc40193932/executive
Magnitude	5.5 Earthquakes									
usb000iv7t	•	49.661	-127.429	10.0	5.5	mwb	115km S of Port Hardy, Canada	a North America	33	https://earthquake.usgs.gov/earthquakes/eventpage/usb000iv7t/executive
Magnituda	5.6 Earthquakes									
0	2019-06-23: T03:53:02	40.274	-124.300	9.4	5.6	mw	6km SSW of Petrolia, CA	North America	1778	https://earthquake.usgs.gov/earthquakes/eventpage/nc73201181/executive
nc71734741	2012-02-13: T21:07:02	41.143	-123.790	27.4	5.6	mw	Northern California	North America	3011	https://earthquake.usgs.gov/earthquakes/eventpage/nc71734741/executive
Manultuda										
0	5.7 Earthquakes 2015-01-28:	40.318	-124.607	16.9	5.7	mw	40km SW of Ferndale.	North America	1007	https://earthquake.usgs.gov/earthquakes/eventpage/nc72387946/executive
11072387940	T21:08:53	40.318	-124.007	10.9	5.7	IIIvv	California	North America	1007	https://earthquake.usgs.gov/earthquakes/eventpage/htt/2307940/executive
Magnitude (5.4 Earthquakes									
usp000j7ur	•	49.535	-126.893	22	6.4	mww	Vancouver Island, Canada	North America	3782	https://earthquake.usgs.gov/earthquakes/eventpage/usp000j7ur/executive
	T19:41:34									
usp000d0fx	2004-07-19:	49.623	-126.967	23.7	6.4	mwb	Vancouver Island, Canada	North America	49	https://earthquake.usgs.gov/earthquakes/eventpage/usp000d0fx/executive
	T08:01:49									
Magnitude 6	5.5 Earthquakes									
usb000px6r	2014-04-24:	49.639	-127.732	10	6.5	mww	120km S of Port Hardy, Canada	a North America	952	https://earthquake.usgs.gov/earthquakes/eventpage/usb000px6r/executive
	T03:10:10									
nc71338066	2010-01-10:	40.652	-124.693	28.7	6.5	mw	Offshore Northern California	North America	9027	https://earthquake.usgs.gov/earthquakes/eventpage/nc71338066/executive
Manultuda	T00:27:39									
0	7.2 Earthquakes	40.225	124 220	0.0	7 2	mb	20km SSW of Rio Doll	North Amorica	110	https://earthousko.usos.gou/earthouskos/euentpage/ps260151/sussuitius
nc269151	1992-04-25: T18:06:05	40.335	-124.229	9.9	7.2	mh	20km SSW of Rio Dell, California	North America	110	https://earthquake.usgs.gov/earthquakes/eventpage/nc269151/executive

APPENDIX B

One hundred and fourteen Chile earthquakes from 1960 to 2020 used in the Crustal intensity comparison study between Cascadia (North America) and Chile (South America) subduction zones.

USGS ID	Event Time		Longitude	Depth (km)	•	Mag- Type	Location	Plate Locatior	n Responses	USGS Link
Magnitude 4	1.5 Earthquakes	5								
us6000453d	2019-06-24: T04:42:41	-38.635	-73.377	26.5	4.5	mwr	19km WNW of Carahue, Chile	South America	6	https://earthquake.usgs.gov/earthquakes/eventpage/us6000453d/executive
us2000j6l3	2019-01-20: T09:23:32	-29.882	-71.989	17.0	4.5	mwr	62km W of Coquimbo, Chile	South America	7	https://earthquake.usgs.gov/earthquakes/eventpage/us2000j6l3/executive
us2000heqr		-32.545	-71.604	32.5	4.5	mwr	36km WSW of La Ligua, Chile	South America	6	https://earthquake.usgs.gov/earthquakes/eventpage/us2000heqr/executive
us1000ehi8	2018-06-02	-20.266	-70.828	17.0	4.5	mwr	71km W of Iquique, Chile	South America	4	https://earthquake.usgs.gov/earthquakes/eventpage/us1000ehi8/executive
us1000e3a7	T19:58:16 2018-05-11	-32.757	-71.957	19.1	4.5	mwr	43km NW of Valparaiso, Chile	South America	77	https://earthquake.usgs.gov/earthquakes/eventpage/us1000e3a7/executive
us20009lrs	T21:57:40 2017-06-10: T16:09:21	-33.063	-72.258	10.0	4.5	mb	58km W of Valparaiso, Chile	South America	7	https://earthquake.usgs.gov/earthquakes/eventpage/us20009lrs/executive
Magnitude 4	I.6 Earthquakes									
0	2019-04-28:		-72.078	22.3	4.6	mwr	84km WNW of La Ligua, Chile	South America	7	https://earthquake.usgs.gov/earthquakes/eventpage/us70003ddw/executive
us1000f1ue		-32.150	-71.885	23.5	4.6	mwr	70km WNW of La Ligua, Chile	South America	5	https://earthquake.usgs.gov/earthquakes/eventpage/us1000f1ue/executive
us1000e4fm	T02:05:18. 2018-05-14:	-42.829	-74.001	30.2	4.6	mwr	28km SSW of Chonchi, Chile	South America	9	https://earthquake.usgs.gov/earthquakes/eventpage/us1000e4fm/executive
us2000cz50	T02:58:06 2018-02-08: T21:37:06	-37.437	-74.064	10.0	4.6	mb	41km WNW of Lebu, Chile	South America	6	https://earthquake.usgs.gov/earthquakes/eventpage/us2000cz50/executive
us2000cm4u		-36.016	-73.419	7.5	4.6	mb	78km NNW of Tome, Chile	South America	3	https://earthquake.usgs.gov/earthquakes/eventpage/us2000cm4u/executive
us2000atse		-27.878	-71.318	31.9	4.6	mwr	94km NW of Vallenar, Chile	South America	3	https://earthquake.usgs.gov/earthquakes/eventpage/us2000atse/executive
usc000stvc	2014-11-04: T11:44:51	-41.227	-73.831	25.4	4.6	mwr	65km WSW of Purranque Chile	, South America	7	https://earthquake.usgs.gov/earthquakes/eventpage/usc000stvc/executive
Magnitude 4	I.7 Earthquakes	;								
us70006cix	2019-11-24: T21:18:25	-31.799	-71.486	35.0	4.7	mb	35km WSW of Illapel, Chile	South America	22	https://earthquake.usgs.gov/earthquakes/eventpage/us70006cix/executive
us2000itug		-19.976	-70.959	18.3	4.7	mb	89km WNW of Iquique, Chile	South America	19	https://earthquake.usgs.gov/earthquakes/eventpage/us2000itug/executive
us1000e8gl	2018-05-19: T06:43:40	-32.183	-71.486	31.6	4.7	mwr	38km NW of La Ligua, Chile	South America	110	https://earthquake.usgs.gov/earthquakes/eventpage/us1000e8gl/executive
us10008kmi		-33.123	-72.213	16.3	4.7	mwr	55km W of Valparaiso, Chile	South America	5	https://earthquake.usgs.gov/earthquakes/eventpage/us10008kmi/executive

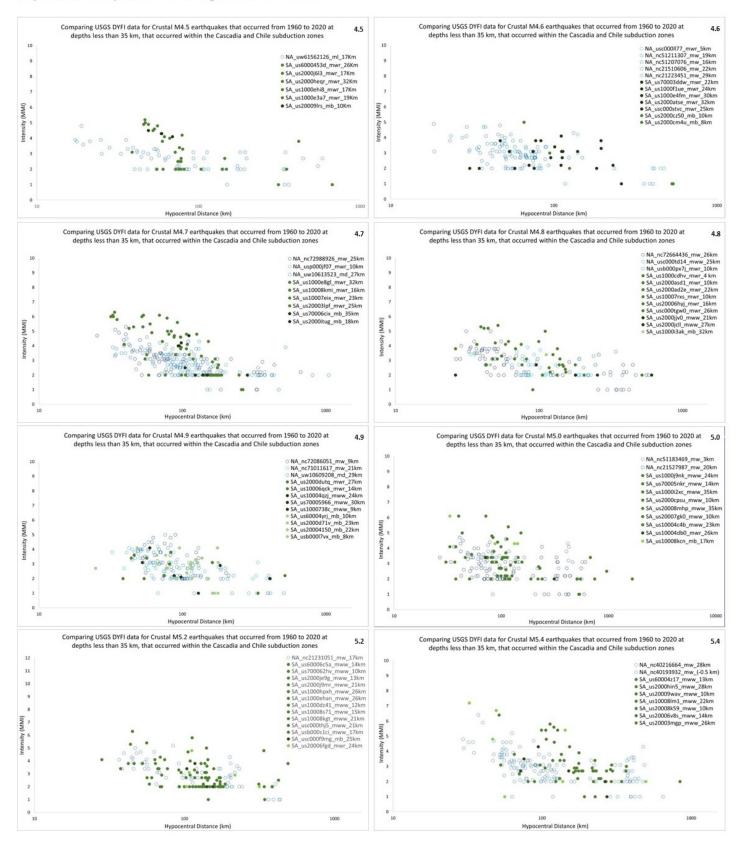
us10007eix	2016-12-03: T04:30:58	-32.178	-71.979	22.5	4.7 r	nwr	76km WNW of La Ligua, Chile	South America	2	https://earthquake.usgs.gov/earthquakes/eventpage/us10007eix/executive
us20003lpf	2015-09-19:	-31.498	-71.890	25.1	4.7 r	nwr	70km WNW of Illapel, Chile	South America	5	https://earthquake.usgs.gov/earthquakes/eventpage/us20003lpf/executive
Magnitude 4	T02:49:40 1.8 Earthquakes									
U	•		74 520	24 5	4.0			Could Arrestor		
us2000jjv0	2019-02-19: T05:09:42	-28.014	-71.530	21.5	4.8 n	nww	97km NW of Vallenar, Chile	South America	4	https://earthquake.usgs.gov/earthquakes/eventpage/us2000jjv0/executive
us2000jcll	2019-02-03: T02:56:43	-31.367	-71.813	27.3	4.8 n	nww	68km WNW of Illapel, Chile	South America	2	https://earthquake.usgs.gov/earthquakes/eventpage/us2000jcll/executive
us1000i3ak	2018-12-06: T05:24:14	-30.725	-71.418	32.2	4.8	mb	25km SW of Ovalle, Chile	South America	2	https://earthquake.usgs.gov/earthquakes/eventpage/us1000i3ak/executive
us1000cdhv	2018-02-01:	-37.486	-74.160	4.2	4.8 r	nwr	47km WNW of Lebu, Chile	South America	2	https://earthquake.usgs.gov/earthquakes/eventpage/us1000i3ak/executive
	T00:12:54									
us2000asd1	2017-09-21: T07:12:40	-37.899	-73.696	10.0	4.8 r	nwr	28km WSW of Canete, Chile	South America	2	https://earthquake.usgs.gov/earthquakes/eventpage/us2000asd1/executive
us2000ad2e	2017-08-30:	-37.350	-73.558	21.6	4.8 r	nwr	22km NW of Curanilahue,	South America	5	https://earthquake.usgs.gov/earthquakes/eventpage/us2000ad2e/executive
	T03:15:36.						Chile			
us10007rxs	2017-01-08:	-30.150	-72.187	10.0	4.8 r	nwr	84km WSW of Coquimbo,	South America	3	https://earthquake.usgs.gov/earthquakes/eventpage/us10007rxs/executive
222251	T00:33:48		74.040				Chile	C 11 A 1	- 4	
us20006hyj	2016-07-26: T23:00:21	-32.633	-71.842	16.4	4.8 r	nwr	49km NNW of Valparaiso, Chile	South America	51	https://earthquake.usgs.gov/earthquakes/eventpage/us20006hyj/executive
usc000tgw0	2015-01-18:	-32.703	-71.703	25.8	4.8 r	nwr	37km N of Valparaiso, Chile	South America	20	https://earthquake.usgs.gov/earthquakes/eventpage/usc000tgw0/executive
	T03:59:59									
Magnitude 4	1.9 Earthquakes									
us70005966	2019-08-28: T15:53:02	-20.582	-70.390	29.8	4.9 n	nww	47km SSW of Iquique, Chile	South America	2	https://earthquake.usgs.gov/earthquakes/eventpage/us70005966/executive
us60004yrj	2019-08-01:	-34.188	-72.191	10.0	4.9	mb	84km SW of San Antonio, Chile	South America	2	https://earthquake.usgs.gov/earthquakes/eventpage/us60004yrj/executive
	T19:36:25									
us2000dutq	2018-04-05:	-42.555	-74.171	26.7	4.9 r	nwr	30km WNW of Chonchi, Chile	South America	8	https://earthquake.usgs.gov/earthquakes/eventpage/us2000dutq/executive
	T06:32:40									
us2000d71v		-34.505	-72.222	23.1	4.9	mb	79km W of Santa Cruz, Chile	South America	6	https://earthquake.usgs.gov/earthquakes/eventpage/us2000d71v/executive
4000720	T18:49:21	22 700	72 544	0.4	4.0			Could America	-	
us1000738c	2016-10-31: T11:15:47	-33.760	-72.511	9.4	4.9 n	nww	84km WSW of San Antonio, Chile	South America	5	https://earthquake.usgs.gov/earthquakes/eventpage/us1000738c/executive
us10006ack	2016-09-17:	-37 282	-73.724	13.5	4.9 r	nwr	36km W of Arauco, Chile	South America	7	https://earthquake.usgs.gov/earthquakes/eventpage/us10006qck/executive
USIOOOOQCK	T03:55:57	-37.202	-75.724	15.5	4.5 1	11001	Sokin w of Aladeo, enne	Journ America	,	https://earthquake.usgs.gov/earthquakes/eventpage/us10000qck/executive
us10004qzj		-30.593	-71.593	23.6	4.9 n	nww	37km W of Ovalle. Chile	South America	5	https://earthquake.usgs.gov/earthquakes/eventpage/us10004qzj/executive
431000442j	T05:33:08	30.333	/1.555	25.0	4.5 11	10000	Sykin W of Ovalle, enile	South America	5	mtps.//eurinquake.usgs.gov/eurinquakes/evenipage/astooo-qz//executive
us20004150	2015-11-01:	-38 783	-73.368	22.0	4.9	mb	19km WSW of Carahue, Chile	South America	23	https://earthquake.usgs.gov/earthquakes/eventpage/us20004150/executive
432000 1130	T01:28:38	30.703	/ 3.300	22.0	1.5			South America	23	mps// eurnquake.usps.gov/eurnquakes/eventpage/us2000/150/executive
usb000l7vx	2013-11-29:	-33,377	-72.266	8.1	4.9	mb	64km WNW of San Antonio,	South America	8	https://earthquake.usgs.gov/earthquakes/eventpage/usb000l7vx/executive
	T05:21:29		> •				Chile		-	
Magnitude 5	5.0 Earthquakes	;								
_ us70005nkr	2019-09-29:	-35.517	-72.988	13.9	5 m	nww	55km WSW of Constitucion,	South America	3	https://earthquake.usgs.gov/earthquakes/eventpage/us70005nkr/executive
	T20:11:58	20.01	. 2.000		- "		Chile		5	
us1000j9nk	2019-03-01:	-30.588	-71.634	24.0	5 n	nww	41km W of Ovalle, Chile	South America	7	https://earthquake.usgs.gov/earthquakes/eventpage/us1000j9nk/executive
,	T22:43:26									

us1000i2xc	2018-12-05:	-33.658	-71.632	34.8	5	mww	7km S of San Antonio, Chile	South America	139	https://earthquake.usgs.gov/earthquakes/eventpage/us1000i2xc/executive
us2000cpsu	T17:12:13 2018-01-26:	-37.447	-73.981	10.0	5	mww	34km WNW of Lebu, Chile	South America	11	https://earthquake.usgs.gov/earthquakes/eventpage/us2000cpsu/executive
us10008kcn	T13:27:06 2017-04-24:	-33.135	-72.038	17.1	5	mb	39km WSW of Valparaiso, S	South America	4	https://earthquake.usgs.gov/earthquakes/eventpage/us10008kcn/executive
us20008mhp	T21:58:31 2017-02-26:	-28.960	-71.588	34.7	5	mww	Chile 91km WSW of Vallenar, Chile	South America	5	https://earthquake.usgs.gov/earthquakes/eventpage/us20008mhp/executive
us20007gk0	T08:59:16 2016-10-25:	-26.701	-71.069	10.0	5	mww	103km NW of Copiapo, Chile	South America	4	https://earthquake.usgs.gov/earthquakes/eventpage/us20007gk0/executive
	T07:18:20									
us10004db0	2016-01-10: T13:33:35	-31.327	-71.755	26.2	5	mwr	65km WNW of Illapel, Chile	South America	2	https://earthquake.usgs.gov/earthquakes/eventpage/us10004db0/executive
us10004c4b	2016-01-07: T15:40:42	-41.665	-74.089	22.6	5	mww	31km NW of Ancud, Chile	South America	20	https://earthquake.usgs.gov/earthquakes/eventpage/us10004c4b/executive
Magnitude 5	5.2 Earthquakes	5								
us60006c5a	2019-11-15: T17:16:42	-34.003	-72.246	13.7	5.2	mww	73km SW of San Antonio, Chile S	South America	12	https://earthquake.usgs.gov/earthquakes/eventpage/us60006c5a/executive
us700062hv	2019-11-03: T08:06:10	-30.643	-72.117	10.0	5.2	mww	87km W of Ovalle, Chile	South America	3	https://earthquake.usgs.gov/earthquakes/eventpage/us700062hv/executive
us2000je9g		-19.891	-71.044	13.0	5.2	mww	101km WNW of Iquique, Chile	South America	11	https://earthquake.usgs.gov/earthquakes/eventpage/us2000je9g/executive
us2000j9mr	2019-01-28: T09:00:47	-35.589	-72.960	21.0	5.2	mww	56km WSW of Constitucion, S Chile	South America	10	https://earthquake.usgs.gov/earthquakes/eventpage/us2000j9mr/executive
us1000hpxh	2018-11-09: T18:54:10	-30.629	-71.711	25.8	5.2	mww		South America	5	https://earthquake.usgs.gov/earthquakes/eventpage/us1000hpxh/executive
us1000ehan	2018-06-02: T06:17:19	-38.246	-73.707	26.2	5.2	mww	56km SSW of Canete, Chile	South America	8	https://earthquake.usgs.gov/earthquakes/eventpage/us1000ehan/executive
us1000dz41	2018-05-06: T02:44:20	-34.269	-72.268	12.1	5.2	mww	92km WNW of Santa Cruz, S Chile	South America	27	https://earthquake.usgs.gov/earthquakes/eventpage/us1000dz41/executive
us10008s71	2017-05-13: T16:54:45	-32.928	-72.031	15.0	5.2	mww	39km WNW of Valparaiso, 9 Chile	South America	12	https://earthquake.usgs.gov/earthquakes/eventpage/us10008s71/executive
us10008kgt		-33.144	-72.028	21.4	5.2	mww	39km WSW of Valparaiso, 9 Chile	South America	22	https://earthquake.usgs.gov/earthquakes/eventpage/us10008kgt/executive
us20006fgd		-30.754	-71.794	24.0	5.2	mwr		South America	5	https://earthquake.usgs.gov/earthquakes/eventpage/us20006fgd/executive
usc000thj5	2015-01-20: T17:34:41	-23.354	-70.883	20.6	5.2	mww	59km WNW of Antofagasta, S Chile	South America	14	https://earthquake.usgs.gov/earthquakes/eventpage/usc000thj5/executive
usb000s1ci	2014-08-08: T04:10:15	-33.777	-72.203	16.5	5.2	mww	57km WSW of San Antonio, S Chile	South America	7	https://earthquake.usgs.gov/earthquakes/eventpage/usb000s1ci/executive
usc000f9mg	2013-02-18: T10:00:11	-33.954	-72.051	25.4	5.2	mb	56km SW of San Antonio, Chile S	South America	16	https://earthquake.usgs.gov/earthquakes/eventpage/usc000f9mg/executive
Magnitude 5	5.4 Earthquakes	5								
•	•	-34.183	-72.196	13.2	5.4	mww	84km SW of San Antonio, Chile S	South America	19	https://earthquake.usgs.gov/earthquakes/eventpage/us60004z17/executive
us2000hin5	2018-09-22: T13:13:59	-25.900	-70.938	28.4	5.4	mww	71km SW of Taltal, Chile	South America	3	https://earthquake.usgs.gov/earthquakes/eventpage/us2000hin5/executive
us20009wav		-33.723	-72.518	10.0	5.4	mww	84km W of San Antonio, Chile	South America	17	https://earthquake.usgs.gov/earthquakes/eventpage/us20009wav/executive

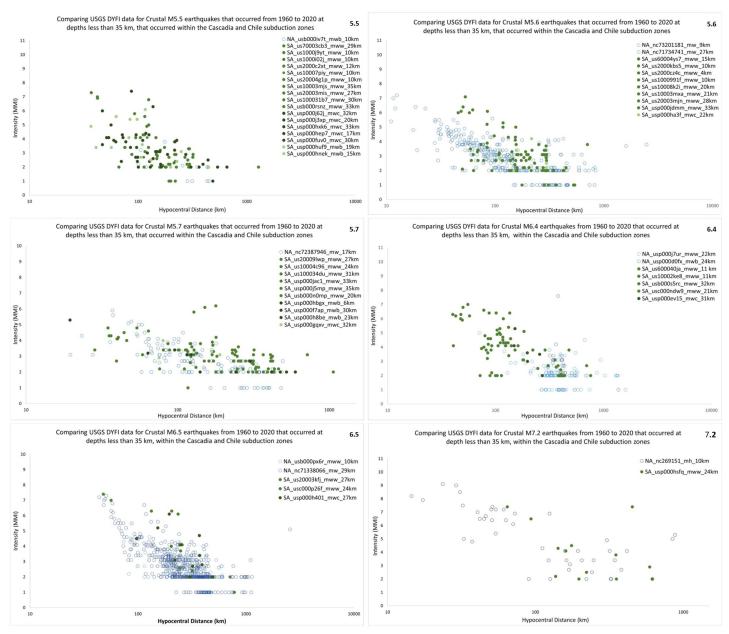
	2017-04-28: T15:58:33	-33.232	-72.048	22.5	5.4	mww	44km WSW of Valparaiso, Chile	South America	2	https://earthquake.usgs.gov/earthquakes/eventpage/us10008lm1/executive
us10008kcr	2017-04-24: T21:46:24	-32.931	-71.984	13.2	5.4	mb	35km WNW of Valparaiso, Chile	South America	8	https://earthquake.usgs.gov/earthquakes/eventpage/us10008kcr/executive
us20008k59	2017-02-16:	-30.168	-72.109	9.8	5.4	mww	77km WSW of Coquimbo,	South America	2	https://earthquake.usgs.gov/earthquakes/eventpage/us20008k59/executive
us20006v8s	T07:02:05 2016-08-30:	-34.896	-72.555	14.2	5.4	mww	Chile 50km NNW of Constitucion,	South America	25	https://earthquake.usgs.gov/earthquakes/eventpage/us20006v8s/executive
us20003mgp	T08:09:09 2015-09-21:	-31.024	-71.794	25.6	5.4	mww	Chile 73km SW of Ovalle, Chile	South America	29	https://earthquake.usgs.gov/earthquakes/eventpage/us20003mgp/executive
usb000k2e3	T15:37:08 2013-09-29:	-37.407	-73.394	15.5	5.4	mwb	7km NNW of Curanilahue,	South America	31	https://earthquake.usgs.gov/earthquakes/eventpage/usb000k2e3/executive
	T23:23:16						Chile			
•	.5 Earthquakes									
	2019-04-26: T06:22:34	-25.899	-71.017	29.0	5.5	mww	76km SW of Taltal, Chile	South America	5	https://earthquake.usgs.gov/earthquakes/eventpage/us70003cb3/executive
	2019-03-02: T20:21:52	-33.677	-72.595	10.4	5.5	mww	90km W of San Antonio, Chile	South America	16	https://earthquake.usgs.gov/earthquakes/eventpage/us1000j9yt/executive
	2018-12-01: T23:55:24	-33.922	-72.401	10.0	5.5	mww	80km WSW of San Antonio, Chile	South America	17	https://earthquake.usgs.gov/earthquakes/eventpage/us1000i02j/executive
	2017-12-11: T19:00:56	-19.708	-71.059	12.0	5.5	mww	111km WNW of Iquique, Chile	South America	10	https://earthquake.usgs.gov/earthquakes/eventpage/us2000c2xt/executive
	2017-01-03: T21:19:07	-43.353	-74.502	10.3	5.5	mww	76km WSW of Puerto Quellon, Chile	South America	4	https://earthquake.usgs.gov/earthquakes/eventpage/us10007piy/executive
us20004g1p		-35.884	-73.276	10.0	5.5	mww	· · · · · · · · · · · · · · · · · · ·	South America	15	https://earthquake.usgs.gov/earthquakes/eventpage/us20004g1p/executive
us10003mjs	2015-10-09: T18:27:36	-31.732	-71.733	35.0	5.5	mww	54km WSW of Illapel, Chile	South America	18	https://earthquake.usgs.gov/earthquakes/eventpage/us10003mjs/executive
us20003mis	2015-09-21: T18:36:53	-31.046	-71.820	27.0	5.5	mww	77km SW of Ovalle, Chile	South America	11	https://earthquake.usgs.gov/earthquakes/eventpage/us20003mis/executive
	2015-08-12: T00:14:40	-31.697	-71.623	30.0	5.5	mww	43km W of Illapel, Chile	South America	21	https://earthquake.usgs.gov/earthquakes/eventpage/us100031b7/executive
	2014-07-13: T20:54:14	-20.259	-70.348	33.1	5.5	mww	21km W of Iquique, Chile	South America	20	https://earthquake.usgs.gov/earthquakes/eventpage/usb000rsnz/executive
usp000j62j	2011-08-06: T13:22:34	-35.884	-73.334	31.9	5.5	mwc	offshore Bio-Bio, Chile	South America	8	https://earthquake.usgs.gov/earthquakes/eventpage/usp000j62j/executive
usp000j3xp	2011-06-29: T05:36:46	-33.906	-72.341	19.7	5.5	mwc	offshore Libertador O'Higgins, Chile	South America	45	https://earthquake.usgs.gov/earthquakes/eventpage/usp000j3xp/executive
usp000hxk6	2011-03-16: T22:36:16	-32.564	-71.726	32.7	5.5	mwc		South America	254	https://earthquake.usgs.gov/earthquakes/eventpage/usp000hxk6/executive
usp000huf9		-36.557	-73.275	18.9	5.5	mwb	offshore Bio-Bio, Chile	South America	8	https://earthquake.usgs.gov/earthquakes/eventpage/usp000huf9/executive
usp000hnek	2010-10-23: T05:58:27	-37.743	-73.362	15.0	5.5	mwb	Bio-Bio, Chile	South America	26	https://earthquake.usgs.gov/earthquakes/eventpage/usp000hnek/executive
usp000hep7	2010-06-29: T01:40:00	-37.836	-73.278	17.0	5.5	mwc	Bio-Bio, Chile	South America	128	https://earthquake.usgs.gov/earthquakes/eventpage/usp000hep7/executive
usp000fuv0		-32.713	-71.788	30.1	5.5	mwc	offshore Valparaiso, Chile	South America	48	https://earthquake.usgs.gov/earthquakes/eventpage/usp000fuv0/executive
	103.00.30									

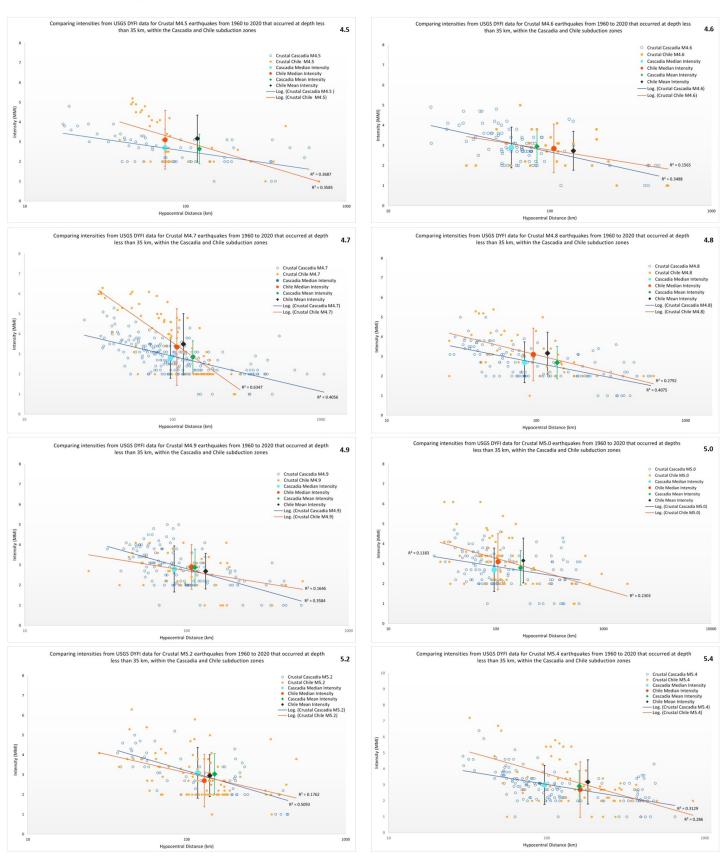
Magnitude 5.6 Earthquakes

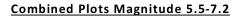
us60004ys7	2019-08-01: T20:01:28	-34.281	-72.373	15.4	5.6	mww	100km WNW of Santa Cruz, Chile	South America	15	https://earthquake.usgs.gov/earthquakes/eventpage/us60004ys7/executive
us2000kbs5	2019-04-07:	-33.759	-72.515	10.0	5.6	mww	84km WSW of San Antonio,	South America	11	https://earthquake.usgs.gov/earthquakes/eventpage/us2000kbs5/executive
us2000cz4c	T10:52:41 2018-02-08:	-37.439	-73.979	4.3	5.6	mww	Chile 35km NW of Lebu, Chile	South America	25	https://earthquake.usgs.gov/earthquakes/eventpage/us2000cz4c/executive
us1000991f	T21:19:24 2017-07-12:	-35.391	-73.265	10.0	5.6	mww	77km W of Constitucion, Chile	South America	12	https://earthquake.usgs.gov/earthquakes/eventpage/us1000991f/executive
	T09:08:17						· · · · · · · · · · · · · · · · · · ·			
us10008k2i		-33.015	-72.115	20.0	5.6	mww	45km W of Valparaiso, Chile	South America	60	https://earthquake.usgs.gov/earthquakes/eventpage/us10008k2i/executive
us10003mxa	2015-10-12:	-31.185	-71.823	21.0	5.6	mww	79km NW of Illapel, Chile	South America	8	https://earthquake.usgs.gov/earthquakes/eventpage/us10003mxa/executive
	T03:15:19									
us20003mjn	2015-09-21: T19:56:08	-31.782	-71.641	28.4	5.6	mww	48km WSW of Illapel, Chile	South America	43	https://earthquake.usgs.gov/earthquakes/eventpage/us20003mjn/executive
usp000jdmm	n 2012-01-17: T23:21:35	-31.655	-71.499	32.9	5.6	mww	Coquimbo, Chile	South America	350	https://earthquake.usgs.gov/earthquakes/eventpage/usp000jdmm/executive
usp000ha3f	2010-03-28:	-35.406	-72.897	21.5	5.6	mwc	offshore Maule, Chile	South America	16	https://earthquake.usgs.gov/earthquakes/eventpage/usp000ha3f/executive
	T21:43:13									
Magnitude 5	5.7 Earthquakes									
us20009lwp	2017-06-12: T02:43:26	-31.500	-71.760	27.0	5.7	mww	58km WNW of Illapel, Chile	South America	155	https://earthquake.usgs.gov/earthquakes/eventpage/us20009lwp/executive
us10004c96		-30.664	-71.638	24.0	5.7	mww	42km W of Ovalle, Chile	South America	28	https://earthquake.usgs.gov/earthquakes/eventpage/us10004c96/executive
us100034du	2015-08-23:	-29.719	-71.296	31.1	5.7	mww	21km N of La Serena, Chile	South America	49	https://earthquake.usgs.gov/earthquakes/eventpage/us100034du/executive
	T23:10:04	22.005	71 057	20.0	F 7		24 we W/ of Com Antonia Chila		00	
usbuuunump		-33.605	-71.957	20.0	5.7	mww	31km W of San Antonio, Chile	South America	80	https://earthquake.usgs.gov/earthquakes/eventpage/usb000n0mp/executive
	T10:51:15									
usp000jac1	2011-11-05:	-23.468	-70.199	33.0	5.7	mww	Antofagasta, Chile	South America	67	https://earthquake.usgs.gov/earthquakes/eventpage/usp000jac1/executive
	T07:13:57									
usp000j5mp		-35.770	-73.116	35.0	5.7	mww	offshore Maule, Chile	South America	18	https://earthquake.usgs.gov/earthquakes/eventpage/usp000j5mp/executive
	T19:50:20									
usp000hbgx	2010-04-16:	-37.460	-73.732	6.0	5.7	mwb	offshore Bio-Bio, Chile	South America	9	https://earthquake.usgs.gov/earthquakes/eventpage/usp000hbgx/executive
	T22:41:33									
usp000h8be		-35.039	-72.487	22.9	5.7	mwb	offshore Maule, Chile	South America	11	https://earthquake.usgs.gov/earthquakes/eventpage/usp000h8be/executive
	T02:44:42									
usp000gqxv	2008-12-19:	-32.458	-71.949	32.2	5.7	mwc	offshore Valparaiso, Chile	South America	44	https://earthquake.usgs.gov/earthquakes/eventpage/usp000gqxv/executive
	T09:36:04									
usp000f7ap	2007-03-24:	-19.722	-70.142	30.0	5.7	mwb	Tarapaca, Chile	South America	8	https://earthquake.usgs.gov/earthquakes/eventpage/usp000f7ap/executive
Manultuda	T19:13:50									
•	5.4 Earthquakes									
us600040ja	2019-06-14:	-30.056	-72.082	11.0	6.4	mww	72km W of Coquimbo, Chile	South America	34	https://earthquake.usgs.gov/earthquakes/eventpage/us600040ja/executive
	T00:19:12									
us10002ke8		-36.360	-73.812	11.0	6.4	mww	73km WNW of Talcahuano,	South America	54	https://earthquake.usgs.gov/earthquakes/eventpage/us10002ke8/executive
	T02:10:07						Chile			
usb000s5rc	2014-08-23:	-32.695	-71.442	32.0	6.4	mww	23km WNW of Hacienda La	South America	469	https://earthquake.usgs.gov/earthquakes/eventpage/usb000s5rc/executive
	T22:32:23						Calera, Chile			
usc000ndw9	2014-03-17:	-20.017	-70.884	21.0	6.4	mww	80km WNW of Iquique, Chile	South America	19	https://earthquake.usgs.gov/earthquakes/eventpage/usc000ndw9/executive
	T05:11:34									

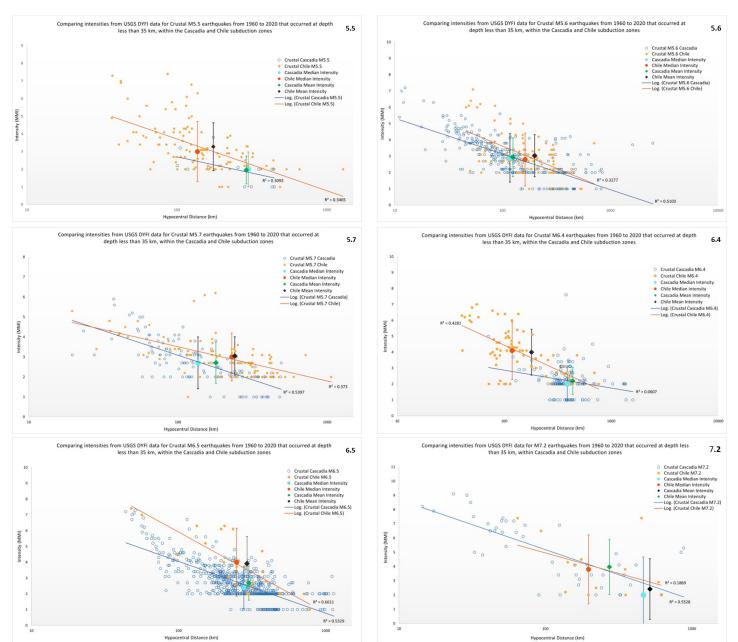

usp000ev15	2006-10-12: T18:05:56	-31.256	-71.368	31.0	6.4 m	wc	Coquimbo, Chile	South America	111	https://earthquake.usgs.gov/earthquakes/eventpage/usp000ev15/executive
Magnitude 6	.5 Earthquakes									
us20003kfj	2015-09-17: T03:55:15	-31.424	-71.688	27.0	6.5 m	ww	54km WNW of Illapel, Chile	South America	12	https://earthquake.usgs.gov/earthquakes/eventpage/us20003kfj/executive
usc000p26f	2014-04-03: T01:58:30	-20.311	-70.576	24.1	6.5 m	ww	46km WSW of Iquique, Chile	South America	30	https://earthquake.usgs.gov/earthquakes/eventpage/usc000p26f/executive
usp000h401	2009-11-13: T03:05:57	-19.394	-70.321	27.0	6.5 m	IWC	near the coast of Tarapaca, Chile	South America	77	https://earthquake.usgs.gov/earthquakes/eventpage/usp000h401/executive
Magnitude 7	.1 Earthquakes									
usp000hsfq	2011-01-02: T20:20:17	-38.355	-73.326	24.0	7.2 m	ww	Araucania, Chile	South America	341	https://earthquake.usgs.gov/earthquakes/eventpage/usp000hsfq/executive

APPENDIX C

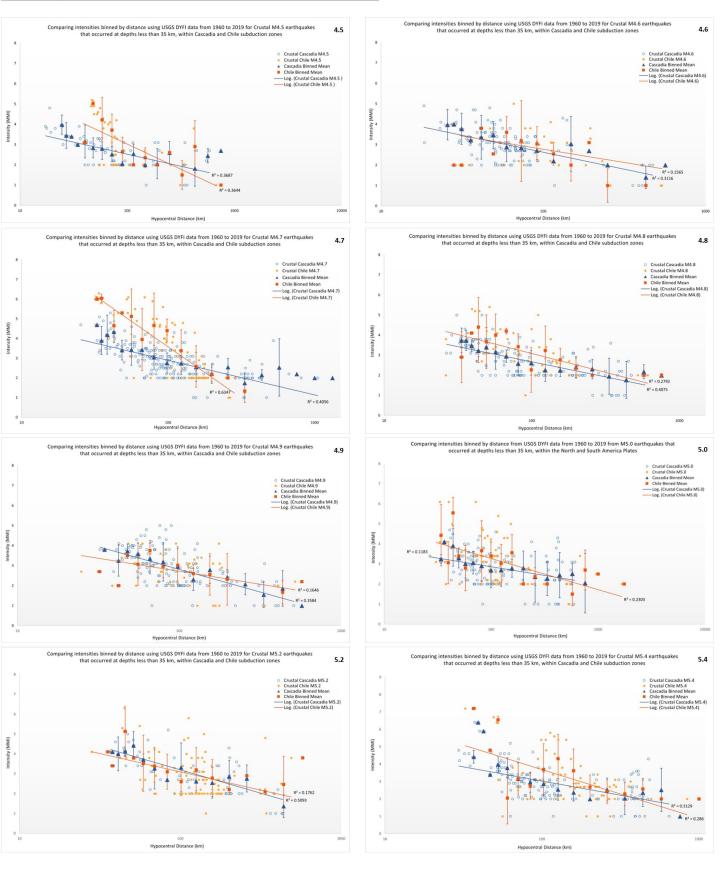

The 14 magnitude plots for this Crustal earthquake intensity comparison study for events from 1960 to 2020 that occurred within the Cascadia and Chile subduction zones.

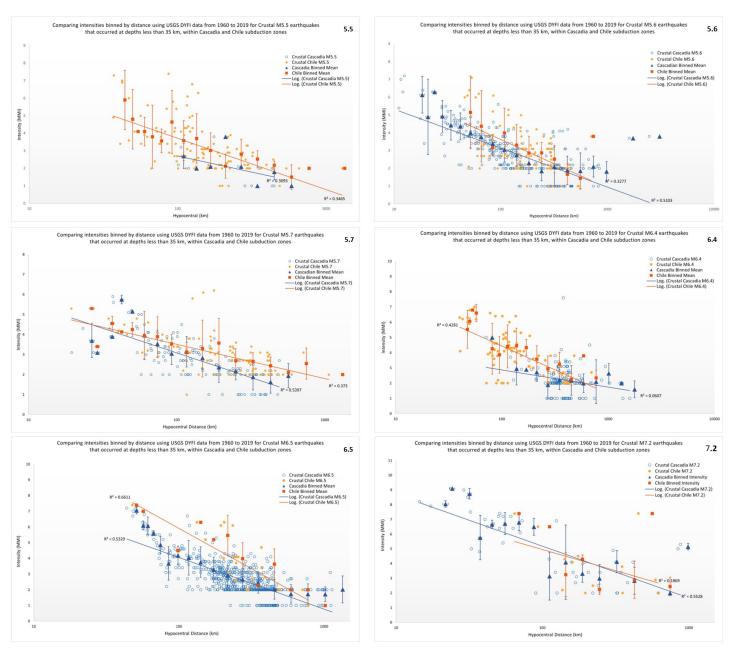

The following is a complete set of all four types of plots generated from the 29 Cascadia and 114 Chile Crustal earthquakes, for the 14 magnitudes used in this study. The sections are structure by the type of plot, e.g., Separate Earthquake Plots, Combined Chile and Cascadia Plots, Binned by Distance Plots and lastly, the curve fitting plots (binned by distance) with MMI 1 values and outliers removed. There are four plots for each of the 14 magnitudes and they are split in two images, with 8 images showing the plots for magnitudes 4.5 to 5.5 and the following six images showing plots for magnitudes 5.6 to 7.2.

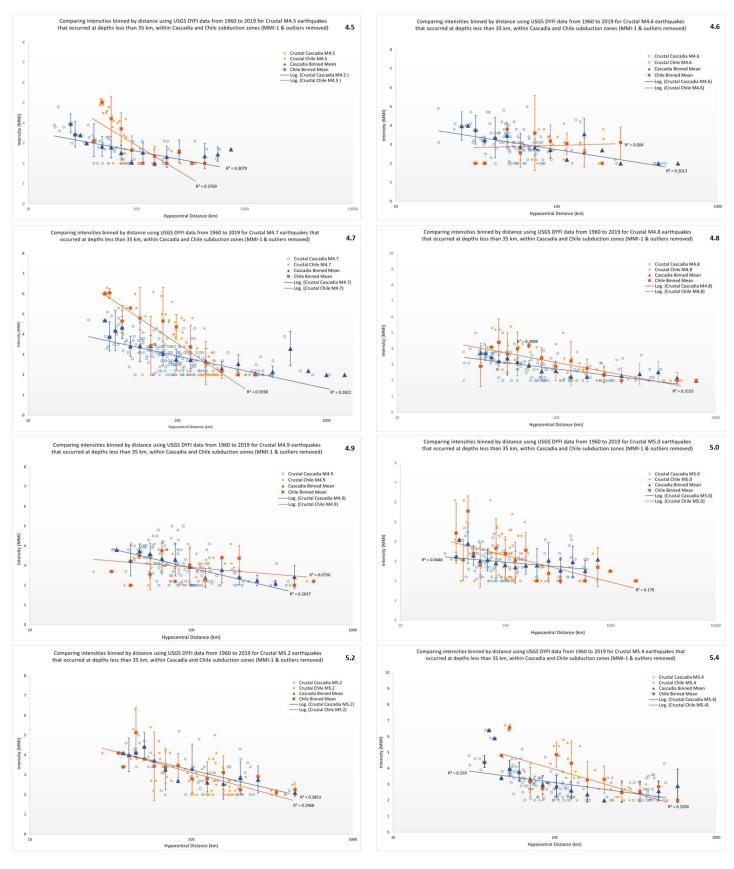

Separate Earthquake Plots: Magnitude 4.5 to 5.4

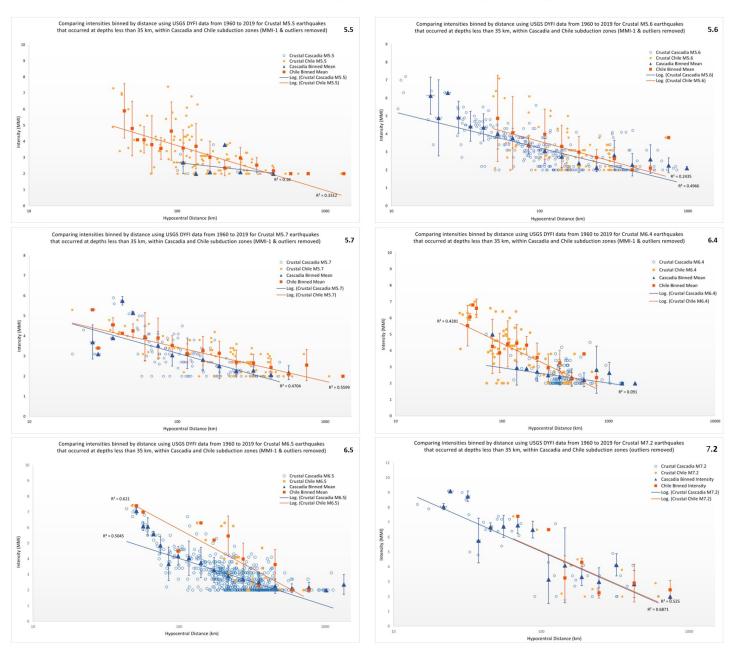


Separate Earthquake Plots Magnitude 5.5-7.2








Binned by Distance Curve Fitting Plots Magnitude 5.5-7.2

MMI Intensities & Outliers Removed from Binned by Distance Curve Fitting Plots Magnitude 4.5 to 5.4

38

MMI Intensities & Outliers Removed from Binned by Distance Curve Fitting Plots Magnitude 5.5-7.2

APPENDIX D

Folder locations documentation for the - Earthquake Intensity Comparison Study

All information and data belong to © Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2022.

Project database compiled by: Jessica Rutherford (Research Scientist Contractor with Gyp-Sea Natural Science Consulting). Email: jmr.rutherford@gmail.com

Data and information on this project have been transferred to the Pacific Geological Centre server. For specific information contact: Dr. John Cassidy at email address: john.cassidy@nrcan-rncan.gc.ca

Main Folder	Project Folders	Subfolders/Files	Content
Chile Cascadia Intensity Project (Rutherford & Cassidy, 2022)	Crustal Earthquake Intensity Study (Cascadia Chile)	Final Crustal Combined Plots Old Versions (Crustal Working Analysis Plots) USGS Data Crustal Cascadia Earthquakes USGS Data Crustal Chile Earthquakes Crustal_M4.5Plus_Plot_Images Crustal_M5.0Plus_Plot_Images Crustal_M5.0Combined_SeperatePlots Crustal_M5.0_Combined_SeperatePlots Crustal_M5.0_Combined_SeperatePlots Crustal_M6.0_Combined_SeperatePlots Crustal_M7.2Combined_SeperatePlots Crustal_M7.2Combined_SeperatePlots Crustal_M6.0_Combined_SeperatePlots Crustal_M6.0_Combined_SeperatePlots Crustal_M7.2_Combined_SeperatePlots Crustal_M7.2_Combined_SeperatePlots Crustal_M7.2_Combined_SeperatePlots Crustal_M7.2_Combined_SeperatePlots Crustal_Combined_M5.0Plus_Crustal Rerun_Combined_M5.0Plus_Crustal Crustal_Combined_M7.2Plus_Crustal Cascadia_M5.0_5.9 Cascadia_M5.0_5.9 Cascadia_M5.0_5.9 Cascadia_M5.0_5.9 Cascadia_M5.0_5.9 Cascadia Vork Progress and Notes_Cascadia Vork Progress and Notes_Cascadia Vork Progress and Notes_Cascadia Chile_M6.0_6.9 Chile_M6.0_6.9 Chile_M8.0_8.9 jon_to_ccv Chile_M8.0_8.9 jon_to_ccv Chile_Crustal_Cascadia Vork Progress and Notes_Chile Vork Progress and Notes_Chile	These folders contain all data, documents, and images used in the Crustal earthquake intensity comparison study. Information in these folders includes working and final plots, images, and documents. Raw data downloaded from the USGS COMCAT platform is in the folders (USGS Data Deep Cascadia/Chile Earthquakes). They also contain the raw data, JSON file conversion files, and scripts. 'Old Versions" folders with old plots and analytics have been left in these folders for future reference. There is also an ArcGIS folder "ArcPro_Project_CrustalMaps" which contains the crustal database used to create figure maps. Final Excel documents and images of plots for figures used in this Open File report are in the "NRCan Open File Publication Documents" folder (see below).
Chile Cascadia Intensity Project (Rutherford & Cassidy, 2022)	Chile Cascadia Intensity Study - NRCan Open File Documents	Crustal Earthquakes Open File Deep Earthquakes Open File Previous versions of Reports (2021) Reference Source Publications Documents for Appendix Figures for Crustal Open File Final Crustal Crustal Open File Final Crustal	The "Crustal Earthquakes" folder contains the drafts and final reports, images/figures, and appendix sections for the NRCan Open File report. There are previous drafts of the report sections, which highlight the edited and changes made for the final report.