

Proposed Re-evaluation Decision

PRVD2022-17

Quizalofop-p-ethyl and Its Associated End-use Products

Consultation Document

(publié aussi en français)

29 July 2022

This document is published by the Health Canada Pest Management Regulatory Agency. For further information, please contact:

Publications Pest Management Regulatory Agency Health Canada 2720 Riverside Drive A.L. 6607 D Ottawa, Ontario K1A 0K9 Internet: canada.ca/pesticides pmra.publications-arla@hc-sc.gc.ca Facsimile: 613-736-3758 Information Service: 1-800-267-6315 or 613-736-3799 pmra.info-arla@hc-sc.gc.ca

ISSN: 1925-0959 (print) 1925-0967 (online)

Catalogue number: H113-27/2022-17E (print) H113-27/2022-17E-PDF (PDF version)

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Health Canada, 2022

All rights reserved. No part of this information (publication or product) may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in a retrieval system, without prior written permission of Health Canada, Ottawa, Ontario K1A 0K9.

Table of Contents

Proposed re-evaluation decision for quizalofop-p-ethyl and associated end-use products	
Proposed re-evaluation decision for quizalofop-p-ethyl	
Risk mitigation measures	
International context	
Next steps	
Other information	
Additional scientific information	
Science evaluation	
1.0 Introduction	
2.0 Technical grade active ingredient	
2.1 Identity	5
2.2 Physical and chemical properties	6
3.0 Human Health Assessment	6
3.1 Toxicology Summary	6
3.1.1 Pest Control Products Act Hazard characterization	11
3.2 Dietary exposure and risk assessment	13
3.2.1 Determination of Acute Reference Dose (ARfD)	13
3.2.2 Determination of Acceptable Daily Intake (ADI)	
3.2.3 Chronic dietary exposure and risk assessment	
3.2.4 Cancer assessment	
3.3 Exposure from Drinking Water	15
3.3.1 Concentrations in Drinking Water	
3.3.2 Drinking water exposure and risk assessment	
3.4 Occupational and non-occupational exposure and risk assessment	
3.4.1 Toxicological reference values	16
3.4.2 Dermal Absorption Factor	
3.4.3 Non-Occupational Exposure and Risk Assessment	
3.4.4 Occupational Exposure and Risk Assessment	
3.5 Aggregate exposure and risk assessment	19
3.6 Cumulative assessment	
3.7 Health incident reports	
4.0 Environmental assessment	
4.1 Fate and behaviour in the environment	
4.2 Environmental risk characterization	
4.2.1 Risks to terrestrial organisms	
4.2.2 Risks to aquatic organisms	
4.2.3 Environmental incident reports	
4.3 Toxic substances management policy considerations	
4.3.1 Formulants and contaminants of health or environmental concern	
5.0 Value assessment	
List of abbreviations	
Appendix I Registered products containing quizalofop-p-ethyl in Canada ¹	
Appendix I Registered products containing quizatorop-p-ethyl in Canada as of October 12, 2021 ¹	
Appendix II Toxicology Information	
	50

Table 1	Toxicology reference values for the human health risk assessment of Quizalofop-	p-
	ethyl	. 36
Table 2	Identification of quizalofop-ethyl, quizalofop-p-ethyl and select metabolites of	
	quizalofop-p-ethyl in rats	. 36
Table 3	Toxicity profile for quizalofop-p-ethyl	. 38
Appendix Γ		
Table 1	Chronic dietary risk assessment for Quizalofop-p-ethyl	. 59
	7 Food residue chemistry summary	
Appendix V	/I Mixer/loader and applicator exposure and risk assessment	. 61
Table 1	Mixer/loader/applicators using groundboom equipment	. 61
Table 2	Mixer/loader and applicators using aerial equipment	. 62
Appendix V	/II Occupational postapplication exposure and risk assessment	. 63
Appendix V	VIII Environmental assessment	. 65
Table 1	Quizalofop-p-ethyl and its major transformation products	. 65
Table 2	Summary of fate and behaviour of quizalofop-p-ethyl in the environment	. 66
Table 3	Estimated environmental concentrations/exposures	. 84
Table 4	Summary of toxicity effects of quizalofop-p-ethyl and its major transformation	
	products on terrestrial organisms	. 86
Table 5	Summary of toxicity effects of quizalofop-p-ethyl technical and its major	
	transformation products on aquatic organisms	. 92
Table 6	Study endpoints, uncertainty factors and levels of concern (LOC) relevant for risk	5
	assessment	. 96
Table 7	Screening level risk quizalofop-p-ethyl, its transformation products and end-use	
	product to terrestrial organisms: Earthworms, Honey bees, Non-target arthropods	
	and Vascular plants	100
Table 8	Screening level risk assessment of quizalofop-p-ethyl for birds and mammals from	
	consumption of contaminated food sources based on maximum nomogram residue	es
	1	104
Table 9	Screening level risk of quizalofop-p-ethyl to aquatic organisms and risk assessment	
	for amphibians and off-field spray drift	105
Table 10	Toxic substances management policy considerations-comparison to TSMP track 1	l
	criteria for quizalofop-p-ethyl	108
Appendix D	X Proposed label amendment for products containing quizalofop-p-ethyl	110
References.	1	116

Proposed re-evaluation decision for quizalofop-p-ethyl and associated end-use products

Under the authority of the *Pest Control Products Act*, all registered pesticides must be reevaluated by Health Canada's Pest Management Regulatory Agency (PMRA) to ensure that they continue to meet current health and environmental standards and continue to have value. The reevaluation considers data and information from pesticide manufacturers, published scientific reports and other regulatory agencies, as well as comments received during public consultations. Health Canada applies internationally accepted risk assessment methods as well as current risk management approaches and policies.

Quizalofop-p-ethyl is a selective systemic, grass-controlling herbicide registered for postemergent control of annual and perennial grass weeds in a variety of crops such as major field crops, cucurbit vegetables, horticultural crops, forage crops for seed production and many minor specialty crops including industrial hemp grown for fibre, seed and oil. It is applied using ground or aerial equipment. Currently registered products containing quizalofop-p-ethyl can be found in the <u>Pesticide Product Information Database</u> and in Appendix I.

This document presents the proposed re-evaluation decision for quizalofop-p-ethyl including the proposed amendments (risk mitigation measures) to protect human health and the environment, as well as the science evaluation on which the proposed decision is based. All products containing quizalofop-p-ethyl that are registered in Canada are subject to this proposed re-evaluation decision. This document is subject to a 90-day public consultation period,¹ during which the public (including the pesticide manufacturers and stakeholders) may submit written comments and additional information to <u>PMRA Publications</u>. The final re-evaluation decision will be published after taking into consideration the comments and information received during the consultation period.

Proposed re-evaluation decision for quizalofop-p-ethyl

Under the authority of the *Pest Control Products Act* and based on an evaluation of available scientific information, Health Canada is proposing continued registration of all uses of quizalofop-p-ethyl and associated end-use products registered for sale and use in Canada.

With respect to human health, potential risks from dietary (food and drinking water), occupational, and non-occupational (bystander) exposure were shown to be acceptable when quizalofop-p-ethyl is used according to the proposed updated conditions of registration, which include label amendments to meet current standards such as updates to personal protective equipment for mixers, loaders and applicators, standard restricted-entry intervals, re-treatment and preharvest intervals (PHIs), and a best practice label statement to minimize the potential for spray drift.

¹

[&]quot;Consultation statement" as required by subsection 28(2) of the Pest Control Products Act.

The environmental risk assessment found that potential risks to the environment associated with the use of quizalofop-p-ethyl were shown to be acceptable when used according to proposed conditions of registration, which includes new mitigation measures, such as precautionary statements, and spray buffer zones for the protection of terrestrial and aquatic habitats.

Quizalofop-p-ethyl has value in providing effective control of perennial grass weeds and it is the only herbicide registered for use on hemp and Ethiopian mustard.

Risk mitigation measures

Registered pesticide product labels include specific directions for use. Directions include risk mitigation measures to protect human health and the environment and must be followed by law. The proposed label amendments including any revised/updated label statements and/or mitigation measures, as a result of the re-evaluation of quizalofop-p-ethyl, are summarized below. Refer to Appendix IX for details.

Human health

Risk mitigation:

To protect workers (mixer/loader/applicator) and those entering treated areas, and bystanders the following risk-reduction measures are proposed:

- Updates to personal protective equipment (PPE) label statements as per current labeling standards.
- A standard restricted-entry interval (REI) of 12 hours is required to protect workers entering treated areas, unless a more restrictive REI is specified on the labels.

Other label updates:

• A standard drift mitigation statement is required to minimize the potential for spray drift to bystanders.

Label improvements to meet current standards:

As a result of the re-evaluation of quizalofop-p-ethyl, Health Canada is proposing additional revisions to the quizalofop-p-ethyl labels to update label statements to current policies.

A re-treatment interval of 14 days is proposed for the use on sugarbeets. Additionally, the registered uses on Oriental mustard (including canola quality brassica juncea) (condiment and oilseed type), yellow mustard, brown mustard, crambe, and chickpeas do not have specified PHIs on all current labels. New PHIs are proposed for these uses based on registrant supplied information, and are indicated in Appendix IX.

Environment

Risk mitigation:

To protect the environment, the following risk-reduction measures are proposed:

- Precautionary statements are required to inform users of the toxicity of quizalofop-pethyl to aquatic organisms and terrestrial plants
- Updated spray buffer zones for the protection of non-target terrestrial and aquatic habitats
- Precautionary label statement to inform users of the presence of petroleum distillates in quizalofop-p-ethyl products, and their toxicity to aquatic organisms
- Precautionary label statements regarding the potential for runoff to adjacent aquatic habitats for sites with characteristics that may be conducive to runoff and when heavy rain is forecast

Label improvements to meet current standards:

- Updated discharge of effluent statements
- Updated disposal statements
- Updated use directions and use precautions

International context

Quizalofop-p-ethyl is currently acceptable for use in other Organisation for Economic Cooperation and Development (OECD) member countries, including the United States, the European Union, and Australia. No decision by an OECD member country to prohibit all uses of quizalofop-p-ethyl for health or environmental reasons has been identified as of 9 May 2022.

Next steps

Upon publication of this proposed re-evaluation decision, the public, including the registrants and stakeholders, are encouraged to submit additional information that could be used to refine risk assessments or comments during the 90-day public consultation period.

All comments received during the 90-day public consultation period will be taken into consideration in preparation of re-evaluation decision document,² which could result in revised risk mitigation measures. The re-evaluation decision document will include the final re-evaluation decision, the reasons for it and a summary of comments received on the proposed re-evaluation decision with Health Canada's responses.

Refer to Appendix I for details on specific products impacted by this proposed decision.

²

[&]quot;Decision statement" as required by subsection 28(5) of the Pest Control Products Act.

Other information

The relevant confidential test data on which the proposed decision is based (see References Section) are available for public inspection, upon application, in Health Canada's Reading Room. For more information, please contact Health Canada's <u>Pest Management Information</u> <u>Service</u>.

Additional scientific information

No additional scientific data are required at this time.

Science evaluation

1.0 Introduction

Quizalofop-p-ethyl is a selective systemic, grass-controlling herbicide registered for postemergent control of annual and perennial grass weeds in a variety of crops such as major field crops, cucurbit vegetables, horticultural crops, forage crops for seed production and many minor specialty crops including industrial hemp grown for fibre, seed and oil. Quizalofop-p-ethyl products are formulated as emulsifiable concentrate. It is typically applied once per year (except sugar beets for which two applications are allowed) using ground or aerial equipment. Currently registered products containing quizalofop-p-ethyl can be found in the Pesticide Product Information Database and in Appendix I.

2.0 Technical grade active ingredient

2.1 Identity

Common name	Quizalofop-P-ethyl
Function	Herbicide

runction	Therefore		

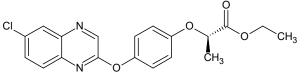
Chemical Family aryloxyphenoxypropioniate

Chemical name

1	International Union of Pure and Applied Chemistry (IUPAC)	ethyl (2R)-2-{4-[(6-chloroquinoxalin-2- yl)oxy]phenoxy}propanoate
2	Chemical Abstracts	ethyl (2R)-2-[4-[(6-chloro-2-

cts ethyl (2R)-2-[4-[(6-chloro-2quinoxalinyl)oxy]phenoxy]propanoate

CAS Registry Number


Service (CAS)

Molecular Formula

Structural Formula

 $C_{19}H_{17}ClN_2O_4$

100646-51-3

Molecular Weight

372.81

Registration number	Purity of the technical grade active
	ingredient
25461	98.0 %
29392	98.0 %
33269	95.7 %

Registration number	Purity of the technical grade active ingredient
33340	95.67 %
33374	98.8 %
33730	98.8 %

2.2 Physical and chemical properties

Property	Result
Vapour pressure at 20°C	1.1 × 10 ⁻⁷ Pa
Ultraviolet (UV) / visible spectrum	$\begin{array}{ccc} \underline{\lambda}_{max} & \underline{\epsilon} (\underline{M}^{-1} \underline{cm}^{-1}) \\ 209 & 2.70 \times 10^4 \\ 234 & 3.12 \times 10^4 \end{array}$
Solubility in water at 20–25°C	0.61 mg/L
<i>n</i> -Octanol-water partition coefficient (K_{ow})	$\log K_{\rm ow} = 4.61$
Dissociation constant (p <i>K</i> _a)	No dissociable moiety between pH 4–9

3.0 Human health assessment

3.1 Toxicology summary

Quizalofop-p-ethyl belongs to the class of aryloxyphenoxypropionic herbicides that inhibit the enzyme acetyl-CoA carboxylase. Quizalofop-p-ethyl is the purified R-isomer ((+)-enantiomer) of racemic quizalofop-ethyl, the use of which was discontinued in Canada in 2001. The PMRA established in 1997 that quizalofop-p-ethyl and quizalofop-ethyl are toxicologically equivalent, and that the available quizalofop-ethyl toxicology data could be used for hazard characterization and risk assessment for quizalofop-p-ethyl. Metabolism study results (PMRA# 3130959) predominantly showed that quizalofop-ethyl (racemic) preferentially generated quizalofop-p-ethyl acid, and other metabolites, over the (-)-enantiomer metabolites, reinforcing the conclusion that data from studies conducted with the racemic form is acceptable for bridging to the hazard assessment of quizalofop-p-ethyl. Toxicological equivalency of quizalofop-p-ethyl and quizalofop-ethyl and quizalofop-p-ethyl and quizalofop-p-ethyl and quizalofop-ethyl, including oral acute toxicity studies, and dietary 90-day mouse and rat toxicity studies. Additionally, noted effects were compared, at the time of setting the toxicity equivalence, to data from a 6-month dog toxicity study and a 2-generation rat reproductive toxicity study; both of these studies were conducted with racemic quizalofop-ethyl.

A detailed review of the combined toxicological database for quizalofop-ethyl and quizalofop-pethyl was conducted. The combined database is complete, consisting of the full array of toxicity studies currently required for hazard assessment purposes. The studies were carried out in accordance with accepted international testing protocols and Good Laboratory Practices at the time of conduct. The following studies in the database were conducted with quizalofop-p-ethyl: an acute oral toxicity study in rats, a 13-week oral toxicity study (dietary) with 4-week recovery period in mice, a 13-week oral toxicity study (dietary) in rats, a bacterial reverse mutation assay (in vitro), an unscheduled DNA synthesis study in rat hepatocyte cells, a mouse lymphoma forward mutation assay and a 28-day oral immunotoxicity study (enzyme-linked immunosorbent assay) (dietary) in CD-1 mice. A number of supplementary liver enzyme studies were also submitted. Several newly submitted studies were also reviewed, including acute toxicity studies, an immunotoxicity study, a short-term dermal toxicity study, and an addendum to the absorption, distribution, metabolism, and excretion study that focused on metabolite characterization. In addition, relevant information found in the published scientific literature was considered. The scientific quality of the data is acceptable and the database is considered adequate to characterize the potential health hazards associated with quizalofop-p-ethyl.

The metabolism of quizalofop-ethyl in rats was investigated using ¹⁴C-labelling at either the phenyl or quinoxaline ring, to improve characterization of metabolites. Animals were dosed by gavage with single low-, single high- or repeated low-doses of radiolabelled quizalofop-ethyl. Radiolabelled quizalofop-ethyl was rapidly absorbed and extensively metabolised following oral administration, regardless of the dosing regimen. Maximal plasma and tissue concentrations were achieved within 6 to 9 hours of a single low- or high-dose administration; except for adipose and adrenal tissues where concentration peaked after a high-dose, at 24 and 3 hours, respectively. Although there were minor differences due to dosing regimen and sex, the highest residual tissue radioactivity levels after seven days were found in the blood, gastrointestinal (GI) tract, skin, fur, liver, thyroid and kidneys. Tissue retention of radiolabel was low after seven days, regardless of the dosing regimen.

Quizalofop-ethyl was rapidly degraded to quizalofop-acid after oral administration, followed by cleavage of the quinoxaline-phenyl ether bond and β -glucuronide conjugation to produce additional metabolites. The radiolabel position had no impact on metabolism or excretion, with only small variations noted. The primary isolated urinary metabolites included quizalofop-acid, 2-(4-hydroxyphenoxy) propionic acid (PPA), dechlorinated hydroxylated analogs of quizalofopacid: HO1-quizalofop-acid and HO2-quizalofop-acid, the hydroxylated analog of quizalofopethyl, quizalofop-phenol, and quizalofop-acetate. Fecal metabolites were similar to those found in urine. Approximately a quarter of the administrated dose (AD) was excreted in the bile within 24 hours, increasing to approximately half of the AD within 48 hours, following a low dose. A slightly smaller portion of the AD was excreted in the bile within 24 hours of a single high dose. The elimination half-life was 32 to 36 hours in most tissues, with the exception of white adipose tissue (155 hours) and brown adipose tissue (61 hours) following a single high dose. The overall excretion was rapid with half-lives of 48–60 hours following a single low dose and 48–85 hours following a single high dose. The elimination half-lives were approximately 46 and 42 hours for a repeated low-dose regimen, in males and females, respectively. The concentrations of radioactivity in each tissue, including the fat, reached maximum levels after seven consecutive daily oral administrations, and decreased after additional low-dose administrations up until study termination at 28 days.

In each tissue, except fat, the rate of elimination was similar after 7, 14 or 28 days of dosing. At 120 hours post-final dose, only trace radioactivity was noted in intestines, blood, liver, fur and fat in the whole body autoradiograms, indicating the lack of significant accumulation following repeated administration.

The level of radioactivity detected in excreta (urine and feces combined) was similar in males and females after a single or repeated low dose. However, there were sex differences in the relative amount of radioactivity excreted via urine or feces. In males, there was 2 to 4.5-fold more radiolabel detected in feces than in urine. Following a single high dose, females excreted a higher proportion of radiolabel in their feces than males. The proportion of fecal elimination in males was similar following either a single low or single high dose.

In a published study (PMRA# 3130959), authors studied enantioselective metabolism of a single low dose of racemic quizalofop-ethyl in male Sprague-Dawley rats (gavage and intravenous routes), and confirmed that metabolism of racemic quizalofop-ethyl to racemic quizalofop-acid was rapid in vivo, but further metabolism of quizalofop-acid was slower. Both enantiomers of quizalofop-acid had similar calculated oral bioavailability (73% and 84%, for (+)- and (-)enantiomer, respectively). The concentration-time area under the curve (in blood, after gavage administration) was approximately 6.6-fold greater for quizalofop-p-acid ((+)-enantiomer) than the (-)-enantiomer. Quizalofop-p-acid ((+)-enantiomer) represented a higher proportion of tissue residues (in brain, kidney, lung and liver) than the (-)-enantiomer. The authors suggested that selective uptake, and elimination of enantiomers may be responsible for the enrichment of quizalofop-p-acid in tissues.

In acute oral toxicity studies in rats, quizalofop-p-ethyl, the (+)-enantiomer, was of slight acute toxicity, whereas the (-)-enantiomer was of moderate acute toxicity. Racemic quizalofop-ethyl was of low to slight acute oral toxicity, low acute dermal toxicity in rabbits and low acute inhalation toxicity in rats. Based on studies with quizalofop-ethyl, quizalofop-p-ethyl was considered to be minimally irritating to the rabbit eye, non-irritating to the rabbit skin and was not a dermal sensitizer in guinea pigs following testing by the Buehler method. Clinical signs following acute oral administration of racemic mix or separate enantiomers in rats included slower gait and ruffled fur, wet inguinal fur and redness around the eyes, and additionally tremors and hunched posture were noted with quizalofop-p-ethyl treatment.

Following short- and long-term repeated dietary exposure, the main target organ was the liver in mice, rats and dogs. In addition, mild anemia and testicular changes were observed in rats and mice. Liver effects included increased organ size and weight, changed colour, and increased serum enzyme levels (alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase). Liver histopathological changes included hypertrophy and hyperplasia, degeneration and necrosis of individual hepatocytes, and, in mice and rats, bile duct hyperplasia. Liver degeneration and/or necrosis was still observed at the high-dose level in male mice following 4 weeks of recovery in a 13-week dietary toxicity study, but liver hypertrophy and/or hyperplasia was reversible in both sexes of mice. Testicular changes noted in some toxicity studies in rats and mice included decreased testes weight, flaccid or atrophied testes, and/or suppression of spermatogenesis and atrophy of seminiferous tubules. The testicular effects were not reversible in rats following a 6-week recovery period. The testicular atrophy observed in the 13-week toxicity study in dogs was not replicated in a longer-term 12-month toxicity study; however these observed reductions in testicular and epididymal weights are noteworthy, as similar changes occurred in the rat, mouse and the dog. Blood clinical chemistry effects in rodents included increased levels of total protein, urea nitrogen, calcium, and serum albumin, and decreased cholesterol. Increased platelet counts were noted, as well as increased extramedullary hematopoiesis in the spleen, which was interpreted as regenerative hemolytic

anemia. Thyroid weights were increased in the chronic dietary toxicity study in rats. In mice, increased adrenal weights with notable cortical cell hypertrophy, increased thyroid weight with follicular hyperplasia, as well as increased kidney weight with granular, pitted or rough kidneys, and kidney cysts were noted in an 18-month dietary oncogenicity study. Additionally, a swollen abdomen and increased ovarian weight were noted following chronic treatment in mice.

Racemic quizalofop-ethyl did not cause any treatment-related pathological effects in rabbits in a supplemental 21-day dermal toxicity study with a two-week recovery period; however, limited parameters were examined in this study.

A standard genotoxicity battery was available, consisting of bacterial gene mutation studies with quizalofop-ethyl and quizalofop-p-ethyl, a chromosome aberration study with quizalofop-ethyl, and mammalian gene mutation assessed with quizalofop-p-ethyl in vitro, as well as an in vivo micronucleus study with quizalofop-ethyl and unscheduled DNA synthesis assays with quizalofop-ethyl and quizalofop-p-ethyl. Results from these studies indicated that quizalofop-p-ethyl was not genotoxic.

In an 18-month dietary oncogenicity study in mice with racemic quizalofop-ethyl, a single incidence of granulosa cell tumour and a slightly increased incidence of benign ovarian luteomas at the high dose level was not considered to be treatment-related since the incidence only marginally exceeded the historical control range. In addition, the lack of statistical significance to concurrent controls, no ovarian hyperplasia, lack of progression to malignancy, no clear dose-response, and no altered endocrine activity related to ovarian function, do not support a finding of treatment-related tumourigenicity. Two instances of luteal cell hyperplasia were also noted at the high dose-level, but these were not statistically significant (historical control was unavailable). There was an increased incidence of ovarian cysts noted at the high-dose level at the interim sacrifice (57 weeks), but in the absence of statistical significance and dose response at the terminal sacrifice, the effect was not considered treatment-related.

There were increased incidences of hepatocellular adenomas and carcinomas in the males at the high-dose level of the same 18-month oncogenicity study in mice. The increased incidence of hepatocellular adenomas and carcinomas in the high-dose males was within their respective historical control ranges. The incidence of liver tumours in male mice at the high-dose level exceeded the historical control range for hepatocellular adenomas and carcinomas defined by another, smaller set of historical control studies. The incidence of male liver adenomas in the concurrent controls of the study was at the upper end of the range from that less robust historical control data set. There were no statistically significant pairwise differences between dose groups with respect to tumour incidence, but the combined incidence of hepatocellular adenomas and carcinomas was statistically significantly increased at the high-dose level, when compared to concurrent controls. Treatment had no effect on the multiplicity or tumour latency. There were no treatment-related hepatocellular tumours in female mice. The highest dose level approached the maximum tolerated dose given that decreased survival of males was observed at week 78. Overall, the weight of evidence indicated a low level of concern for these tumours in mice.

In a 24-month dietary chronic toxicity/carcinogenicity study in rats with racemic quizalofopethyl, a slightly increased incidence of hepatocellular carcinomas in females at the high-dose level was not considered treatment-related since it was not statistically significant. The incidence was slightly higher than the historical control range, but no dose-response was observed with the combined incidence of liver adenomas and carcinomas. There were no treatment-related tumours in male rats.

Non-guideline liver enzyme studies indicated that quizalofop-ethyl is not an inducer of cytochrome P450 in rats and mice. Quizalofop-ethyl was regarded as a weak or a mild inducer of cytochrome b5 in only one study in mice.

In a 2-generation dietary reproductive toxicity study in rats with racemic quizalofop-ethyl, evidence for reproductive toxicity occurred only at the highest dose level tested and consisted of decreased F1 pup weight at birth, in the presence of parental toxicity. Sperm parameters were not measured, although these parameters were not required at the time of study conduct. Testicular effects noted in the 13-week rat study (decreased testes weight, small and flaccid testes, testicular atrophy and/or suppression of spermatogenesis) were not reversible following a 6-week recovery period. Decreased F2b testes weights were noted in the reproductive toxicity study in rats; however no adverse effects were noted on the reproductive performance in the 2-generation reproductive toxicity study or in the reproductive cohort from the modified developmental study in rats. Reproductive indices were not affected. Sensitivity of the young was observed as body weight and liver effects in the mid- and high-dose level, respectively, starting on postnatal day (PND) 21 in the absence of parental toxicity. Liver effects noted in offspring were increased liver weight and, at higher dose levels, liver histopathology (increased eosinophilic granular cytoplasm of hepatocytes, decreased cytoplasmic basophilia and glycogen accumulation). These liver effects were not considered adverse at the low-dose level, but progressed in incidence and severity of lesion at the mid- and high-dose levels (focal). During the third week of life, pups likely had increased exposure to quizalofop-p-ethyl due to consumption of both milk and treated feed, leading to treatment-related effects on PND 21. At the highest dose level tested, the following were observed: decreased pup body weight on PND 0-21 in the F1 generation and on PND 7-21 in the F2 generations, as well as decreased spleen, thymus, lung and testes weights and increased relative heart weight in the F2 generation, in the presence of parental toxicity. The parental treatment-related effects at the highest dose level included decreased body weights in males and decreased body-weight gains in both sexes.

In a modified gavage developmental toxicity study in rats with racemic quizalofop-ethyl, two sets of animals were used per treatment group. One group was sacrificed on gestational day (GD) 21, and a smaller group was retained as a nursing group set, with 2/sex from each litter retained to study the reproductive ability at 10 weeks (the remaining of nursing subgroup sacrificed at 8 weeks). In this study, minor foetal skeletal variations were noted in the presence of maternal toxicity at the highest dose level tested. These variations included increased incidences of accelerated ossification of the corpus of the cervical vertebrae and of diaphysis of metatarsus (1st digit), delayed ossification in the arcus of the 3rd coccygeal vertebra and of the phalanges proximales, and increased incidence of small 14th rib. In birthed pups that continued to nurse/feed until 8 weeks post-birth, no treatment-related skeletal variations were noted. There was no indication of treatment-related changes in learning or behaviour in performed functional tests (3–4 weeks post-birth) or in a learning test (swim maze at 5 weeks post-birth); however it should be noted that these animals were not treated post-organogenesis (treatment occurred on GD 5-16). Decreased body weight was noted in the high-dose offspring on PND 4, and at 5–8 weeks, with food consumption transiently decreased at 4–8 weeks. There were no treatment-

related effects on reproductive indices noted in rats in the reproductive subgroup in this modified developmental toxicity study in rats. Preputial separation was not measured, but vaginal patency was not affected by treatment. No treatment-related malformations were noted in rat fetuses or pups. In dams, the observed effects were limited to decreased body-weight gain and food consumption and an increased incidence of retained placentas, which were interpreted as late resorptions, in the absence of further information.

No maternal or developmental treatment-related effects were noted up to the high-dose level in two rabbit gavage developmental toxicity studies. In a dose range-finding study in rabbits, bodyweight loss and decreased body-weight gain were noted starting at the low dose-level, in addition to an increased incidence of abortions starting at the mid-dose level; however, these effects were not observed in the two main studies at a comparable dose level (high dose level). There was no evidence of sensitivity of the young or treatment-related malformations in rabbits.

The weight of evidence suggests that quizalofop-p-ethyl does not have potential to cause selective neurotoxicity.

The immunization response was not affected by the treatment with quizalofop-p-ethyl. There were no compound related effects on mortality, clinical signs, body weight, food consumption, organ weights, including spleen, gross pathology, histopathology or elevated immunoglobin counts in mice with quizalofop-p-ethyl treatment. However, some liver effects were noted at the high dose. Quizalofop-p-ethyl was not considered immunotoxic to mice.

Toxicology reference values for human health risk assessment are summarized in Appendix III, Table 1, and select metabolites are identified in Appendix III, Table 2. The results of toxicology studies conducted in laboratory animals with quizalofop-ethyl and quizalofop-p-ethyl are summarized in Appendix III, Table 3.

3.1.1 Pest Control Products Act hazard characterization

For assessing risks from potential residues in food or from products used in or around homes orschools, the *Pest Control Products Act* requires the application of an additional 10-fold factor to threshold effects to take into account completeness of the data with respect to the exposure of, and toxicity to, infants and children, and potential prenatal and postnatal toxicity. A different factor may be determined to be appropriate on the basis of reliable scientific data.

With respect to the completeness of the toxicity database, as it pertains to the toxicity to infants and children, the database contains the standard complement of required studies including a developmental toxicity study in rabbits, a modified developmental toxicity study in rats, and a multi-generation reproductive toxicity study in rats. An additional developmental toxicity study in rabbits and a supplemental developmental toxicity dose-range finding study in rabbits were also available.

With respect to potential prenatal and postnatal toxicity, sensitivity of the young was observed in the dietary 2-generation reproductive toxicity study in rats, but the level of concern for the observed effects is low. Liver effects in the young at the end of the lactation period, including increased liver weight and changes in histopathology, occurred at a dose level that did not cause

toxicity to the maternal animals. However, these liver effects were not considered adverse at the low-dose level. Decreased pup body weights in both generations, and some changes to organ weights in F2 generation pups were observed at the high-dose level, but the concern for these findings was tempered by the presence of parental toxicity. The pups were likely exposed to a higher dose than the maternal animals due to their consumption of both milk and treated feed in the last week pre-weaning. As a result, the amount of quizalofop-p-ethyl being consumed by the pups on a per kg/bw basis is assumed to be underestimated in comparison to the maternal dose level. Absolute testes weights were decreased in the F2 males at the high-dose level, where a decrease in offspring body weight also occurred. Sperm parameters were not measured in this study. Although some testicular changes were noted in the repeat-dose studies in rats and mice in the database, these effects were noted at a higher dose level in rats, and at a comparable dose level in mice following long-term treatment. Additionally, since there were no treatment-related changes to the reproductive indices, the residual concern for the lack of sperm parameter data is diminished. Reproductive toxicity occurred only at the highest dose tested and consisted of decreased F1 pup birth weights, with concern tempered by the presence of parental toxicity.

In a modified rat gavage developmental toxicity study, minor treatment-related skeletal variations noted in fetuses in the presence of maternal toxicity were not observed at 8 weeks post-birth. No treatment-related malformations were noted. In dams, the observed systemic toxicity was limited to decreased body-weight gain and food consumption and increased incidence of retained placenta (interpreted as late resorptions) at the high dose level. Some of the reserved pups in the nursing group were examined for neurotoxicity with no indication of treatment-related changes to learning or behaviour in functional tests 3–4 weeks post-birth, or in a learning test (swim maze 5 weeks post-birth). However these animals were not treated post-organogenesis (only on GD 6-15). Continual neuronal development in rats post GD 15 is expected according to predicted timing of neural events (PMRA# 3130950). Decreased body weight and food consumption were noted in high-dose level offspring.

In two rabbit gavage developmental toxicity studies, no maternal or developmental treatmentrelated effects were noted up to the highest dose tested. In a dose range-finding study in rabbits, an increased incidence of abortions, body-weight loss and decreased body-weight gain were noted, however these effects were not observed in the two main studies conducted at slightly lower dose levels. There was no evidence of sensitivity of the young or treatment-related malformations in rabbits.

Overall, the database is adequate for determining the sensitivity of the young and effects on the young are well-characterized. There is a low concern for sensitivity of the young. The noted serious effect of increased incidence of abortions in the supplementary dose-range finding study in rabbits is of low concern since abortion was not observed in the two main developmental toxicity studies in the rabbits at a slightly lower high dose level. The concern for the increased incidence of retained placenta in rats in the modified developmental toxicity study, interpreted as late resorptions, was tempered by the presence of parental toxicity. On the basis of this information, the *Pest Control Products Act* factor (PCPA factor) would be reduced to threefold if this endpoint was used for the point of departure for risk assessment. However, the toxicological reference values selected for risk assessment provide an intrinsic margin to the endpoint of the increased late resorptions in rats, and abortions in rabbits. Consequently, the PCPA factor was reduced to onefold.

3.2 Dietary exposure and risk assessment

In a dietary exposure assessment, Health Canada determines how much of a pesticide residue, including residues in milk and meat, may be ingested with the daily diet. Exposure to quizalofopp-ethyl from potentially treated imports is also included in the assessment. These dietary assessments are age-specific and incorporate the different eating habits of the population at various stages of life (infants, children, adolescents, adults and seniors). For example, the assessments take into account differences in children's eating patterns, such as food preferences and the greater consumption of food relative to their body weight when compared to adults. Dietary risk is then determined by the combination of the exposure and the toxicity assessments. High toxicity may not indicate high risk if the exposure is low. Similarly, there may be risk from a pesticide with low toxicity if the exposure is high.

Health Canada considers limiting use of a pesticide when risk exceeds 100% of the reference dose. Health Canada's Science Policy Note SPN2003-03, *Assessing Exposure from Pesticides, A User's Guide*, presents detailed risk assessment procedures.

Residue estimates used in the dietary exposure assessment (DEA) may be based conservatively on the maximum residue limits (MRL) or the field trial data representing the residues that may remain on food after treatment at the maximum label rate. Surveillance data representative of the national food supply may also be used to derive a more accurate estimate of residues that may remain on food when it is purchased. These include the Canadian Food Inspection Agency's (CFIA) National Chemical Residue Monitoring Program and the United States Department of Agriculture Pesticide Data Program (USDA PDP). Specific and empirical processing factors as well as specific information regarding percent of crops treated may also be incorporated to the greatest extent possible.

Sufficient information was available to adequately assess the dietary risk from exposure to quizalofop-p-ethyl. Chronic dietary exposure and risk assessments were conducted using the Dietary Exposure Evaluation Model - Food Commodity Intake DatabaseTM (DEEM–FCIDTM, Version 4.02, 05-10-c) program, which incorporates food consumption data from the National Health and Nutrition Examination Survey/What We Eat in America (NHANES/WWEIA) for the years 2005-2010 available through the Centers for Disease Control and Prevention's (CDC) National Center for Health Statistics (NCHS). Further details on the consumption data are available in Health Canada's Science Policy Note SPN2014-01, *General Exposure Factor Inputs for Dietary, Occupational and Residential Exposure Assessments*. For more information on the dietary risk estimates or the residue chemistry information used in the dietary assessment, see Appendix IV and Appendix V.

The basic chronic dietary exposure estimates for quizalofop-p-ethyl were conducted using Canadian MRL/American tolerance level residues, and default processing factors as appropriate.

3.2.1 Determination of acute reference dose (ARfD)

Establishment of an acute reference dose is not required, as an endpoint of concern attributable to a single exposure was not identified in the oral toxicity studies.

3.2.2 Determination of acceptable daily intake (ADI)

To estimate risk from repeated dietary exposure, a NOAEL of 0.9 mg/kg bw/day from the 24month dietary chronic toxicity/carcinogenicity study in rats was selected. At the LOAEL of 3.7/4.6 mg/kg bw/day (males/females), liver histopathology and mild anemia were observed. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability were applied. As discussed in the *Pest Control Products Act* hazard characterization Section, the PCPA factor was reduced to onefold. The composite assessment factor (CAF) is thus 100.

The ADI is calculated according to the following formula:

 $ADI = \underline{NOAEL} = \underline{0.9 \text{ mg/kg bw/day}} = 0.01 \text{ mg/kg bw/day of quizalofop-p-ethyl}$ $CAF = \underline{100}$

The ADI provides a margin of 260 to the offspring NOAEL of 2.6 mg/kg bw/day for the liver and body weight effects in the 2-generation reproductive toxicity study in rats, a margin of 10 000 to the NOAEL of 100 mg/kg bw/day for the increased incidence of retained placenta (late resorptions) in the modified developmental toxicity study in rats, a margin of 800 to the NOAEL of 8 mg/kg bw/day for the testicular effects noted in 13-week dietary toxicity study in rats, and a margin of 150 to the NOAEL of 1.5 mg/kg bw/day for the testicular effects noted in 18-month dietary oncogenicity study in mice.

3.2.3 Chronic dietary exposure and risk assessment

The basic chronic dietary risk from food and drinking water was calculated using the average consumption of different foods and water, and the average residue values on those foods and water. The estimated exposure to quizalofop-p-ethyl and its metabolites was then compared to the ADI. When the estimated exposure is less than the ADI, the chronic dietary exposure is acceptable.

The chronic assessment was conducted using Canadian MRL/American tolerance level residues, and default processing factors as appropriate. Drinking water contribution to the exposure was accounted for by direct incorporation of the chronic estimated environmental concentration (EEC) value obtained from modelling (see Section 3.3) into DEEM. The chronic dietary (food and drinking water) exposure estimates were less than the ADI for the general population and all subpopulations (< 53% of the ADI). On this basis, a dietary exposure from food and drinking water, is considered acceptable under current conditions of use.

The dietary risk estimates are presented in Appendix IV.

3.2.4 Cancer assessment

Quizalofop-p-ethyl was not considered to be genotoxic in a battery of in vitro and in vivo genotoxicity assays.

In an 18-month dietary oncogenicity study in mice, an increased incidence of benign ovarian luteomas was not considered treatment-related since the incidence only marginally exceeded the historical control range, and there was no statistical significance, no pre-neoplastic lesions, no progression to malignancy, no clear dose-response, and no altered endocrine activity related to ovarian function. The increased incidences of hepatocellular adenomas and carcinomas in the males at the high-dose level, which approached the maximum tolerated dose in mice, was within the historical control range of a more robust historical control data set. Even though the combined incidence of hepatocellular adenomas and carcinomas was statistically significantly increased at the high-dose level compared to concurrent controls, there were no statistically significant pairwise differences with respect to adenoma or carcinoma incidence, treatment did not affect multiplicity or latency, and there were no treatment-related hepatocellular tumours in female mice. Overall, the weight of evidence indicated a low level of concern for these tumours in mice. Therefore, a threshold-based cancer risk assessment approach was considered appropriate for the liver tumours in male mice.

In a two-year dietary carcinogenicity/toxicity study in rats, a slightly increased incidence of hepatocellular carcinomas in females at the high-dose level was not considered treatment-related since it was not statistically significant, was within the historical control range, and no dose-response was observed. There were no treatment-related tumours in male rats. Overall, the weight of evidence indicated no evidence of oncogenicity in rats.

3.3 Exposure from drinking water

Residues of quizalofop-p-ethyl, quizalofop-p, hydroxy-quizalofop, dihydroxy-quinoxaline, and hydroxy-quinoxaline in potential drinking water sources were estimated from water modelling.

3.3.1 Concentrations in drinking water

Estimated environmental concentrations (EECs) for the combined residue of quizalofop-p-ethyl and its major transformation products quizalofop-p, hydroxy-quizalofop-p, hydroxy-quinoxaline and dihydroxy-quinoxaline in potential drinking water sources (groundwater and surface water) were generated using computer simulation model Pesticide in Water Calculator (PWC) Version 1.52. Modelling for surface water used a standard Level 1 scenario, a small reservoir adjacent to an agricultural field. EECs in groundwater were calculated by selecting the highest EEC from a set of standard scenarios representing different regions of Canada. Both the surface water and groundwater scenarios were run for 50 years.

Level 1 EECs are conservative values that are calculated using conservative inputs with respect to application rate, application timing, and geographic scenario. Level 1 EECs cover all regions of Canada. Modelling used initial application dates between May and July. The highest yearly EEC ($5.6 \mu g/L$) was used for the chronic assessment.

Table 3.3.1Level 1 Estimated environmental concentrations (EECs) of quizalofop-p-
ethyl in drinking water

Crop and Active annual Ingredient	Groundwater (µg a.i./L)		Surface Water (µg a.i./L) Reservoir		
application rate	(RD in water)	Acute ¹	Chronic ²	Acute ³	Chronic ⁴
Canola,	quizalofop-p-				
pumpkin,	ethyl +				
soybeans and	quizalofop-p +				
peas	hydroxy-				
	quizalofop-p +	5.6	5.6	2.7	0.80
72 g a.i./ha;	dihydroxy-				
1	quinoxaline +				
application/seas	hydroxy-				
on	quinoxaline				

¹ 90th percentile of daily average concentrations.

² 90th percentile of 365-day moving average concentrations.

³ 90th percentile of peak concentrations from each year.

⁴ 90th percentile of yearly average concentrations.

3.3.2 Drinking water exposure and risk assessment

Drinking water exposure estimates were combined with food exposure estimates, with EEC values incorporated directly in the chronic dietary (food and drinking water) assessments. Please refer to Section 3.2.4 for details and conclusions.

3.4 Occupational and non-occupational exposure and risk assessment

There is potential for occupational exposure to quizalofop-p-ethyl during mixing, loading, and/or applying the pesticide, and when entering a treated site to conduct postapplication activities, such as irrigation or scouting. There is a potential for non-occupational (bystander) exposure to quizalofop-p-ethyl residues from spray drift during commercial applications.

3.4.1 Toxicological reference values

Toxicology reference values used in the assessment are summarized in Appendix III.

3.4.1.1 Short-term dermal

For short-term occupational exposure via the dermal route, the offspring NOAEL of 2.6 mg/kg bw/day from the 2-generation dietary reproductive toxicity study in rats was selected for risk assessment, based on liver effects, and organ weight changes in offspring observed in the absence of maternal toxicity. The existing short-term dermal toxicity study in the rabbit was considered supplemental because it lacked information on such parameters as clinical signs, body weight, food consumption, hematology, clinical chemistry and organ weights. Further, the dermal study did not assess the endpoint of concern, namely body weight and liver effects in offspring following prenatal or post-natal exposure, thus necessitating the use of an oral toxicity

study to define the point of departure. Worker populations could include pregnant or lactating women and therefore these endpoints were considered appropriate for the occupational risk assessment. The target margin of exposure (MOE) is 100 and includes uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability. The selection of this study and target MOE is considered to be protective of all populations, including nursing infants and the unborn children of exposed female workers.

3.4.1.2 Short-term inhalation

For short-term occupational exposure via the inhalation route, a repeat-dose inhalation toxicity study was not available. In the absence of such a study, the offspring NOAEL of 2.6 mg/kg bw/day from the 2-generation dietary reproductive toxicity study in rats was selected for risk assessment. This was based on liver effects and organ weight changes noted in offspring in the absence of maternal toxicity. The target MOE is 100, which includes uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability. The selection of this study and target MOE is considered to be protective of all populations, including nursing infants and the unborn children of exposed female workers.

3.4.2 Dermal absorption factor

Based on the available information, it was determined that a dermal absorption factor (DAF) of 50% was considered appropriate for use in the risk assessment for quizalofop-p-ethyl, and is not expected to underestimate exposure.

3.4.3 Non-occupational exposure and risk assessment

Non-occupational (residential) risk assessment involves estimating risks to the general population, including the risks to youth and children, during or after pesticide application by the users. Domestic-class products containing quizalofop-p-ethyl are not registered in Canada; therefore, residential handler exposure is not anticipated. Commercial-class products containing this active ingredient are not expected to be used in residential settings. There is, however, a potential for non-occupational (bystander) exposure to quizalofop-p-ethyl residues from spray drift during agricultural applications.

The potential for bystander exposure is expected to be minimal and the risk is considered to be acceptable under current conditions of use. A standard label statement to minimize a spray drift potential is proposed to be included on labels of all end-use products containing quizalofop-p-ethyl.

The proposed label amendments are listed in Appendix IX.

3.4.4 Occupational exposure and risk assessment

Occupational risk is estimated by comparing potential exposures with the most relevant endpoint from toxicology studies to calculate a margin of exposure (MOE). This is compared to a target MOE incorporating uncertainty factors protective of the most sensitive subpopulation. If the calculated MOE is less than the target MOE, it does not necessarily mean that exposure will result in adverse effects, but mitigation measures to reduce risk would be required.

3.4.4.1 Mixer, loader, and applicator exposure and risk assessment

Based on the currently registered use pattern, potential exposure of mixers/loaders/applicators is expected to occur via dermal and inhalation routes and to be of a short-term duration.

The following exposure scenarios were assessed based on the currently registered use pattern:

- 1) Open mixing/loading of liquid formulation and application as a spray using open cab groundboom equipment
- 2) Open mixing/loading of liquid formulation for aerial applications
- 3) Aerial application

In the absence of chemical-specific data for quizalofop-p-ethyl, exposure of mixer/loader/ applicator (M/L/A) was assessed using exposure data from the Agricultural Handlers Exposure Task Force (AHETF) for an open cab groundboom or aerial application equipment scenario. Workers are assumed to wear personal protective equipment including coveralls plus chemicalresistant gloves. Additional assumptions included default area treated per day (ATPD) values, the maximum registered application rates, and an average worker body weight of 80 kg. Dermal exposure was adjusted for 50% dermal absorption.

The risk assessment for mixers/loaders/applicators are presented in Appendix VI. For all assessed scenarios, the estimated combined (dermal plus inhalation) MOEs are greater than the target MOEs of 100. On this basis, risks to mixers/loaders and applicators using ground or aerial application equipment are considered to be acceptable when workers wear coveralls over a long-sleeved shirt, long pants, chemical-resistant gloves, socks and shoes during mixing, loading, application, clean-up and repair. The proposed updates to PPE label statements to reflect current standard requirements for the mixer, loader and applicator are listed in Appendix IX.

3.4.4.2 Postapplication worker exposure and risk assessment

There is potential for postapplication exposure of workers to quizalofop-p-ethyl residues following postemergence application of quizalofop-p-ethyl. Exposure would be of a short-term duration and predominantly dermal for workers performing postapplication activities following spray application. Based on the vapour pressure of quizalofop-p-ethyl (1.1×10^{-7} Pa at 20°C), inhalation exposure is expected to be low, provided that the minimum restricted-entry interval is followed.

Restricted-entry interval are the duration of time that must elapse in order to allow residues to decline to a level where the risks are considered to be acceptable for postapplication worker activities.

Dermal exposure of workers entering treated sites was estimated using activity-specific transfer coefficient (TC) and dislodgeable foliar residue (DFR) values. The DFR refers to the amount of residue that can be dislodged or transferred from a surface, such as leaves of a plant, which is a measurement of pesticide residue on foliage that can be transferred to human skin and clothing. No chemical-specific DFR data was available for quizalofop-p-ethyl. Therefore, a standard DFR value of 25% of the application rate, with a dissipation rate of 10% per day and consideration of the current conditions of use, was used. For the sugarbeets use, a re-treatment interval (RTI) of

14 days was assumed. The TC is a measure of the relationship between exposure and DFR for individuals engaged in a specific activity, and is calculated from data generated in field exposure studies. The TCs are specific to a given crop and activity combination and reflect standard agricultural work clothing worn by workers. The TC values from the Agricultural Re-Entry Task Force (ARTF) were used for this risk assessment. Additional assumptions included an 8-hour workday for all activities, and an average worker body weight of 80 kg. Dermal exposure was adjusted for 50% dermal absorption factor. Toxicology reference values used in the assessment are summarized in Appendix III.

The risk assessment for workers conducting postapplication activities is summarized in Appendix VII. For workers entering treated sites to conduct postapplication activities, the calculated MOEs (ranging from ≥ 165 to ≥ 3210) are above the target MOE of 100 and risks were shown to be acceptable when products are used according to the current use directions. A standard 12-hour REI is proposed to be included on all commercial end-use product labels unless a more restrictive REI is currently listed on the product labels.

In addition, a 14-day RTI is proposed to be specified in the use directions for the sugarbeets use.

The proposed label amendments are listed in Appendix IX.

3.5 Aggregate exposure and risk assessment

Aggregate exposure is the total exposure to a single pesticide that may occur from dietary (food and drinking water), residential and other non-occupational sources, and from all known or plausible exposure routes (oral, dermal, and inhalation).

For quizalofop-p-ethyl, the aggregate assessment consisted of combining food and drinking water exposure only (see Section 3.2.3), since residential exposure is not expected, and is shown to be acceptable. No additional mitigation measures are proposed.

3.6 Cumulative assessment

The *Pest Control Products Act* requires that the PMRA consider the cumulative exposure to pesticides with a common mechanism of toxicity. Quizalofop-p-ethyl belongs to a group of chemicals classified as aryloxyphenoxypropionic herbicides that inhibit acetyl-CoA carboxylase enzyme. This enzyme catalyzes the first committed reaction in fatty acid biosynthesis in both plants and animals; however the mammalian enzyme is not affected by this class of herbicides (PMRA# 3187225, Burke et al. 2014). For the current evaluation, the PMRA did not identify information indicating that quizalofop-p-ethyl shares a common mechanism of toxicity with other pest control products. Quizalofop-p-ethyl does not appear to produce a toxic metabolite produced by other pest control products. At this time, a cumulative assessment is not required.

3.7 Health incident reports

As of 16 March 2022, two minor human incidents involving the active quizalofop-p-ethyl were submitted to the PMRA. In both the incidents, the individuals were inadvertently exposed to the product Assure II Herbicide (PCP Reg No. 25462) either during application or when loading the product. Reported signs in individuals include minor skin and respiratory irritation. The label of

the product does contain appropriate precautionary words as well as protective measures to minimize potential risks when mixing, loading or applying the product. Therefore, based on the reported circumstances of exposure as well as the minor nature of symptoms described in incidents, no additional mitigation measures are recommended based on the incident report review.

4.0 Environmental assessment

4.1 Fate and behaviour in the environment

Chemical structures, physico-chemical and environmental fate properties of quizalofop-p-ethyl (including its racemate, quizalofop-ethyl) and its transformation products are summarized in Appendix VIII, Tables 1–3. Quizalofop-p-ethyl is the active isomer (R(+) enantiomer) of quizalofop-ethyl (racemic mixture of R(+) and S(-) enantiomers). The supporting data for the assessment of the environmental fate and behaviour of quizalofop-p-ethyl consists of a series of laboratory and field studies conducted with the R(+) enantiomer, S(-) enantiomer or racemic mixture. For the purposes of this re-evaluation, the following discussion refers to the active ingredient as quizalofop-p-ethyl.

Terrestrial environment: Phototransformation and hydrolysis are not expected to be major routes of transformation of quizalofop-p-ethyl in soil.

Quizalofop-p-ethyl is non-persistent in soil under both aerobic and anaerobic conditions. The major transformation products (TP) formed in soil are quizalofop-acid, hydroxy-quizalofop, dihydroxy-quinoxaline and 2-(4-hydroxyphenoxy)propionic acid. Quizalofop-acid forms shortly after application of quizalofop-p-ethyl and is the predominant TP in soil. After its initial formation in soil, quizalofop-acid residues slowly decline and based on its dissipation times in soil, it would be classified as moderately persistent to persistent in soil. Quizalofop-acid is persistent. Observations from terrestrial field dissipation studies are consistent with the laboratory studies, showing that quizalofop-p-ethyl is not persistent and quizalofop-acid is the major TP under field conditions.

Quizalofop–p-ethyl is sparingly soluble in water. Laboratory experiments show that quizalofopp-ethyl has low to moderate mobility in soil. The major transformation products, quizalofopacid, hydroxy-quizalofop and dihydroxy-quinoxaline have similar mobility profiles as the parent, quizalofop-p-ethyl. A soil column leaching study showed that quizalofop-p-ethyl was mostly retained in the top 5 cm of soil and that quizalofop-acid was found to a depth of 30 cm. A lysimeter study showed that the majority of the recovered residues were in the upper 10 cm soil layer and that quizalofop-acid was the only transformation product formed. No detectable residues were found in the lysimeter leachate. Both quizalofop-p-ethyl and quizalofop-acid were also only found in the upper soil layer in the field. The leaching criteria of Cohen et al. (1984) indicates that both quizalofop-p-ethyl and quizalofop-acid are unlikely to be leachers while using physical properties, Gustafson's (Gustafson, 1989) groundwater ubiquity score (GUS) classifies quizalofop-p-acid as a non-leacher and quizalofop-acid as a non-leacher to leacher; based on the totality of available information, including field data, quizalofop-p-ethyl and its transformation products are unlikely to leach to groundwater. **Aquatic environment:** Quizalofop-p-ethyl is stable to hydrolysis at pH 5; however, rates of hydrolysis increase with increasing pH and may contribute to its transformation in the natural environment. Quizalofop-acid is the predominant transformation product, forming at greater than 10 percent. Quizalofop-acid is, however, stable to hydrolysis at pH 5, 7 and 9. Phototransformation of quizalofop-p-ethyl is not expected to be a major route of transformation in water.

Quizalofop-p-ethyl is not persistent in aerobic or anaerobic water and water/sediment systems. Major transformation products formed in test systems with water only include quizalofop-acid, hydroxyl-quizalofop, hydroxy-quinoxaline, dihydroxy-quinoxaline, 2-(4-hydroxyphenoxy)propionic acid and ethyl-phenoxy-acid. In aerobic water/sediment systems, quizalofop-acid was the only major transformation product formed. Partitioning of quizalofop-p-ethyl into the sediment occurred but not to a significant degree.

Air: Quizalofop-p-ethyl is sparingly soluble in water, has low vapour pressure and a low Henry's law constant. Volatilization of quizalofop-p-ethyl from plant surfaces and moist soil is expected to be minimal. The intrinsic physico-chemical properties, supported by laboratory volatilization tests using plant surfaces and a sandy soil as substrates, suggest that quizalofop-pethyl is not likely to volatilize from moist soil or water surfaces under field conditions.

Bioaccumulation: The log K_{ow} of 4.61 for quizalofop-p-ethyl suggests a potential for bioaccumulation, however, a whole body BCF of 290 and 380 shows that quizalofop-p-ethyl is not expected to bioaccumulate in fish. Therefore, bioaccumulation in biota is not expected.

4.2 Environmental risk characterization

The environmental risk assessment integrates the environmental exposure and ecotoxicology information to estimate the potential for adverse effects on non-target species. This integration is achieved by comparing estimated environmental concentrations (EECs) in various media (food, water, soil and air) with concentrations at which adverse effects occur. The EECs are estimated using standard models which take into consideration the application rate(s), chemical properties and environmental fate properties, including the dissipation of the pesticide between applications. The EECs are presented in Appendix VIII, Table 4.

Ecotoxicology information includes acute and chronic toxicity data for organisms (invertebrates, vertebrates and plants) from both terrestrial and aquatic habitats. Effects metrics are the toxicity study endpoints that have been adjusted by an uncertainty factor to account for potential differences in species sensitivity as well as varying protection goals (in other words, protection at the community, population, or individual level). A summary of effects metrics used in the risk assessment is presented in Appendix VIII, Tables 5 and 6.

Initially, a screening level risk assessment is performed to identify pesticides and/or specific uses that do not pose a risk to non-target organisms, and to identify those groups of organisms for which there may be a potential risk. The screening level risk assessment uses simple methods, conservative exposure scenarios (for example, direct application at a maximum cumulative application rate) and the relevant effects metric. A risk quotient (RQ) is calculated by dividing the exposure estimate by an appropriate effects metric, and the risk quotient is then compared to

the level of concern (LOC; Appendix VIII, Table 7). If the screening level RQ is below the LOC, the risk is considered negligible and no further risk characterization is necessary. If the screening level RQ is equal to or greater than the LOC, further characterization of the risk is conducted by taking into consideration more realistic exposure scenarios and effects metrics. These considerations may include additional exposure modelling, monitoring data, results from field or mesocosm studies, and probabilistic risk assessment methods.

The potential risk from the use of quizalofop-p-ethyl was assessed based on one application of 72.0 g a.i./ha, the maximum proposed rate per year (growing season). To calculate the EECs for the transformation products, the application rate for quizalofop-p-ethyl was multiplied by the ratio of the molecular weight of the transformation product and the parent, quizalofop-p-ethyl. This is a conservative estimate and assumes that quizalofop-p-ethyl completely transforms to that transformation product.

4.2.1 Risks to terrestrial organisms

Terrestrial organisms, such as earthworms, pollinators, beneficial arthropods, birds, small mammals, and terrestrial non-target vascular plants can be exposed to quizalofop-p-ethyl through direct contact with spray, spray drift, run-off, contact with sprayed surfaces, or from ingestion of contaminated food. The terrestrial risk assessment for quizalofop-p-ethyl is summarized in Appendix VIII,

Table 8 and 9.

Earthworms and other soil dwelling invertebrates: Quizalofop-p-ethyl and three of its major transformation products for which data are available, quizalofop acid, hydroxy-quizalofop and dihydroxy-quinoxaline, were not acutely or chronically toxic to earthworms and ground-dwelling predatory beetles, *Poecilus cupreus* and *Aleochara bilineata* up to the highest concentration tested or close to the highest concentration tested. The LOC of quizalofop-p-ethyl and its transformation products was not exceeded for earthworms and ground-dwelling predatory beetles (RQs < 0.73).

Bees (pollinators): No treatment-related effects were observed in adult honeybees based on acute oral or contact exposure to the technical grade active ingredient, quizalofop-p-ethyl. When adult honeybees were treated with a formulation containing quizalofop-p-ethyl in acute oral and contact studies, some mortalities were noted; however, RQs (< 0.1) did not exceed the LOC. Effects on chronic adult and larval exposure with quizalofop-p-ethyl were investigated. The LOC (LOC = 0.4) for chronic adult and single exposure (72-hr) honeybee larvae was also not exceeded (RQ = 0.1). In the repeated exposure larval study, honeybee larvae were exposed to quizalofop-p-ethyl over four consecutive days. The RQ (2.7) was just above the LOC (LOC = 1).

Of the available studies with bees, the LOC was exceeded for only one repeated exposure larval study (two studies were provided). No risks were identified for a single exposure to larvae, or acute and chronic effects to adults. The exposure estimate is based on estimated concentrations of the active ingredient in nectar and pollen directly following spray application, whereas some degradation of residues would be expected.

The highest larval food consumption rates are used to calculate risk, however this will also vary and could be lower. Therefore, as the RQ exceeds the LOC by only a small extent, and considering these conservatisms in estimating exposure and that effects were not observed in other life-stages and exposure scenarios, the risk to larvae is acceptable.

Beneficial arthropods: Acute exposure of beneficial arthropods to a quizalofop-p-ethyl formulated product when applied on glass plates did not affect the survival or fecundity of the parasitic wasp, Aphidius rhopalosiphi, in a screening study and the LOC (LOC =2) was not exceeded (RQ = 1.5). Acute exposure of quizalofop-p-ethyl formulated product affected the survival of the predatory mite, Typhlodromus pyri, in a screening study using glass plates and this resulted in marginally exceeding the LOC (LOC = 2.9). The risk to the predatory mite was further characterized by examining the off-field exposure from drift. To calculate off-field EECs, spray factors are applied to the in-field EECs. The drift factor is defined as the maximum percentage of spray drift deposition at 1 m downwind from the point of application. For quizalofop-p-ethyl, products should be applied using an ASAE medium spray quality (droplet size classification system of the American Society of Agricultural Engineers (ASAE) based on the volume medium diameter (VMD) of spray droplets). The corresponding spray drift factors of 6% for field sprayers and 23% for aerial sprayers, respectively, were used to determine estimated exposure due to spray drift. Based on the RQs calculated using the off-field EECs from spray drift, the LOC for predatory mite was not exceeded for either ground or aerial application (RQs < 0.66). In addition, an extended laboratory study conducted with the parasitic mite, *Typhlodromus* pyri, resulted in the mortality of some adult mites but it did not affect the fecundity. The LOC was not exceeded for the extended laboratory study for predatory mites (RQ = 0.67). Therefore, risks to predatory and parasitic arthropods is considered to be acceptable.

Non-target plants: The effect of quizalofop-p-ethyl to non-target plants was determined through a seedling emergence and vegetative vigour assay using standard crop species. A species sensitivity distribution (SSD) was prepared for quizalofop-p-ethyl using available ER_{50} data for seedling emergence. The SSD analyses were conducted using the publicly available software program ETX (version 2.2). The SSD was used to estimate a hazardous rate to 5% of species (HR₅), which theoretically is the concentration at which 95% of species do not have their acute median effects level (for example, ER_{50}) exceeded. Sufficient data were not available to calculate a SSD for vegetative vigour. As such, the most sensitive endpoint for vegetative vigour should be used in the risk assessment.

The calculated RQs for on-field risk exceeded the LOC at the screening level for seedling emergence (RQ = 1.3) and vegetative vigour (RQ = 124).

The risk to terrestrial non-target plants was further characterized by examining the off-field exposure from drift. Based on the RQs calculated using the off-field EECs from drift, the LOC for seedling emergence was not exceeded for either ground or aerial application (RQs < 0.31). The LOC was, however, exceeded for vegetative vigour for both ground (RQ = 7.4) and aerial (RQ = 28.6) application.

The risk to terrestrial plants is not unexpected as quizalofop-p-ethyl is a herbicide. Spray buffer zones will be required on product labels to protect terrestrial non-target plants.

Birds and mammals: Quizalofop-p-ethyl is practically non-toxic to birds on an acute basis; no treatment-related effects were observed. Some reproductive effects (in other words, hatchability) were seen in bobwhite quail (*Colinus virginianus*), however, no effects were observed in mallard duck (*Anas platyrhynchos*). The RQ for birds resulting from acute oral, dietary or reproductive exposure did not exceed the LOC at the screening level (RQs < 0.1).

The toxicity of quizalofop-p-ethyl to rats was used to determine the risk to small terrestrial mammals. No adverse effects were reported from acute exposure to quizalofop-p-ethyl on an acute basis. The RQ for small mammals resulting from acute exposure to quizalofop-p-ethyl did not exceed the LOC at the screening level (RQs < 0.07).

The multi-generational dietary reproductive exposure of quizalofop-p-ethyl to rats resulted in an decrease in pup body weight. The RQ calculated with the NOAEL resulting from the dietary reproductive exposure did not exceed the LOC at the screening level for small, medium and large sized mammals (RQs < 0.17).

4.2.2 Risks to aquatic organisms

Aquatic organisms, such as invertebrates, fish, amphibians, plants and algae can be exposed to quizalofop-p-ethyl through spray drift or run-off. A risk assessment of quizalofop-p-ethyl is presented in Appendix VIII, Table 0.

The screening level EECs from the use of quizalofop-p-ethyl were determined using the maximum annual foliar application rate of 72 g a.i./ha and assuming direct overspray and instantaneous and complete mixing in the water body accounting for degradation between applications.

Freshwater invertebrates: Quizalofop-p-ethyl, dihydroxy-quinoxaline and quizalofop acid were highly toxic, moderately toxic and slightly toxic, respectively, to *Daphnia magna* in acute toxicity studies. Reproduction was reduced and survival of first generation daphnids was reduced when daphnids were exposed to quizalofop-p-ethyl and quizalofop-acid on a chronic basis, respectively. However, the acute and chronic RQs of quizalofop-p-ethyl and its transformation products for toxicity to daphnids did not exceed the LOC (RQs < 0.39).

No adverse effects were observed when the freshwater midge, *Chironomus riparius*, was exposed to either quizalofop-acid or quizalofop-phenol (RQ < 0.01) at concentrations tested.

Freshwater fish and amphibians: Quizalofop-p-ethyl was highly toxic to rainbow trout and bluegill sunfish (acute studies). No adverse effects were observed in freshwater fish exposed to quizalofop-p-ethyl transformation products, quizalofop-acid and dihydroxy-quinoxaline, on an acute basis but adverse effects were seen when they were exposed to quizalofop-acid on a chronic basis.

The RQs for freshwater fish for both quizalofop-p-ethyl and its transformation products did not exceed the LOC on an acute or chronic basis (RQs < 0.43).

The risk to amphibians was assessed using the most sensitive fish toxicity value (bluegill sunfish for acute and rainbow trout for chronic exposure) as a surrogate endpoint. This resulted in an acute and chronic screening level RQ of 2.3 and 1.1, respectively, both of which marginally exceeded the LOC. When the risk was further characterized by examining the off-field exposure from drift, the LOC for amphibians was not exceeded for either ground or aerial application for both acute and chronic exposure (RQs < 0.53). Based on risks identified at the screening level, a 1 m buffer zone will be required for amphibian habitats. As the RQs marginally exceeded the LOC (maximum RQ of 2.3) it was determined that risks from runoff would be acceptable and that further characterization due to runoff was not needed. However, standard label statements for runoff will be required.

As quizalofop-p-ethyl is rapidly transformed to quizalofop-acid and as quizalofop-acid is more persistent than quizalofop-p-ethyl, the acute risk to quizalofop-acid would more appropriately characterize the risk of quizalofop-p-ethyl to amphibians.

The acute and chronic screening risk of amphibians, using rainbow trout data as surrogate, to quizalofop-acid did not exceed the LOC (RQs < 0.01). Therefore, exposure of quizalofop-p-ethyl and its transformation products is not expected to pose an unacceptable risk to freshwater fish and amphibians.

Freshwater algae and vascular plants: Quizalofop-p-ethyl and its major transformation products, quizalofop acid, hydroxy-quizalofop-p and dihydroxy-quinoxaline, were not acutely or chronically toxic to duckweed, *Lemna gibba*, and freshwater cyanobacterium ("blue-green alga"; *Anabaena flos-aquae*) up to the highest concentration tested. Exposure of the freshwater green algae (*Selenastrum capriconutum/Pseudokirchneriella subcapitata*) to quizalofop-p-ethyl and a formulated product resulted in some growth inhibition. The RQ of quizalofop-p-ethyl and quizalofop-acid to these indicator freshwater algae and vascular plant species did not exceed the screening level LOC (RQs < 0.86).

Marine/estuarine species: Quizalofop-p-ethyl was very highly toxic, based on the United States Environmental Protection Agency toxicity classification system, to Eastern oyster (*Crassostrea virginica*) based on acute shell deposition and embryo larvae at the highest test concentrations tested. The screening level LOC was not exceeded for shell deposition or larval toxicity for Eastern oyster (RQ < 0.23). Quizalofop-p-ethyl was highly toxic to mysid shrimp (*Mysidopsis bahia*) on an acute basis however the LOC was not exceeded (RQ = 0.12). Quizlofop-p-ethyl was moderately toxic to sheepshead minnow on an acute basis and the LOC was not exceeded (RQ = 0.05). The effects of quizalofop-p-ethyl to marine algal species was not assessed, however, based on the results from the freshwater algal species, quizalofop-p-ethyl is not expected to pose a risk to marine algal species.

Petroleum distillates:

Product formulations of quizalofop-p-ethyl contain solvesso-like petroleum distillates (SPDs). An assessment was conducted to determine if the SPD levels in products would pose a risk to aquatic organisms under conditions of use. Based on the levels of SPDs and the maximum application rate for the registered formulations, environmental risk mitigation measures are required.

A precautionary label statement and buffer zones to protect aquatic habitats will be required on all product labels.

4.2.3 Environmental incident reports

As of 16 March 2022, no environment incident reports involving quizalofop-p-ethyl have been submitted to Health Canada. The United States Ecological Incident Information System (EIIS) database was also queried for environment incident information. As of October 2015, three incidents were reported in plants. All three incidents were considered to be possibly related to the applied pesticide and involved plant damage and/or mortality in soybeans. A risk to terrestrial plants was identified in the risk assessment and will be mitigated through the requirement of spray buffer zones.

4.3 Toxic substances management policy considerations

The Toxic Substances Management Policy (TSMP) is a federal government policy developed to provide direction on the management of substances of concern that are released into the environment. The TSMP calls for the virtual elimination of Track 1 substances, in other words, those that meet all four criteria outlined in the policy: persistent (in air, soil, water and/or sediment), bio-accumulative, primarily a result of human activity and toxic as defined by the *Canadian Environmental Protection Act*. The *Pest Control Products Act* requires that the TSMP be given effect in evaluating the risks of a product.

During the review process, quizalofop-p-ethyl and its transformation products were assessed in accordance with the PMRA Regulatory Directive DIR99-03³ and evaluated against the Track 1 criteria. The PMRA has reached the conclusion that quizalofop-p-ethyl and its transformation products do not meet all of the TSMP Track 1 criteria. Please refer to Appendix VIII, Table 11, for further information on the TSMP assessment.

4.3.1 Formulants and contaminants of health or environmental concern

During the review process, contaminants in the technical grade active ingredient and formulants and contaminants in the end-use products are compared against Parts 1 and 3 of the *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern.*⁴ The list is used as described in the Health Canada's Science Policy Note SPN2020-01⁵ and is based on existing policies and regulations including the TSMPError! Bookmark not defined. and Formulants Policy,⁶ and taking into consideration the Ozone-depleting Substances and

³ DIR99-03, *The Pest Management Regulatory Agency's Strategy for Implementing the Toxic Substances Management Policy.*

⁴ SI/2005-114, last amended on June 24, 2020. See Justice Laws website, Consolidated Regulations, *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern.*

⁵ PMRA's Science Policy Note SPN2020-01, *Policy on the List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern* under paragraph 43(5)(b) of the *Pest Control Products Act.*

⁶ DIR2006-02, Formulants Policy and Implementation Guidance Document.

Halocarbon Alternatives Regulations under the *Canadian Environmental Protection Act*, 1999 (substances designated under the Montreal Protocol).

Health Canada has reached the conclusion that quizalofop-p-ethyl and its end-use products do not contain any formulants or contaminants identified in the *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern.*

The use of formulants in registered pest control products is assessed on an ongoing basis through PMRA formulant initiatives and Regulatory Directive DIR2006-02.

5.0 Value assessment

Quizalofop-p-ethyl has value to Canadian producers due to its selectivity for annual and perennial grasses along with its broadleaved crop tolerance. It is one of the broadest spectrum grass herbicides and one of few herbicides providing control of perennial grassy weeds available to Canadian growers. It has been reported as one of the most efficient herbicides at controlling quackgrass, which is troublesome and difficult to control. It is widely used in a variety of crops grown in Canada such as pulses, oilseeds and other specialty crops. It is the only herbicide registered for use on hemp and Ethiopian mustard. It is one of few herbicides registered for use in seed corn with a tolerance to other herbicides identified as having EnlistTM traits.

List of abbreviations

a.i.	active ingredient
abs.	absolute
AD	administered dose
ADI	acceptable daily intake
A/G	albumin/globulin ratio
AHETF	Agricultural Handlers Exposure Task Force
ALP	alkaline phosphatase
ALT	alanine aminotransferase
	Atmospheric Oxidation Program for Windows
AopWin AR	applied radioactivity
AR ARfD	acute reference dose
ARTF	Agricultural Re-Entry Task Force
ASAE	American Society of Agricultural Engineers
AST	aspartate aminotransferase
ATPD	area treated per day
BAF	bioaccumulation factor
BCF	bioconcentration factor
BUN	blood urea nitrogen
bw	body weight
bwg	body-weight gain
Ca	calcium
CAF	composite assessment factor
ChE	cholinesterase
CHL	Chinese hamster lung fibroblast cell
СНО	Chinese hamster ovary cell
Cl	chloride
cm	centimeter
cm ²	square centimeter
d	day
DAT	days after treatment
DFOP	First-Order in Parallel
DFR	dislodgeable foliar residue
DNA	deoxyribonucleic acid
DR	dose response
DT ₅₀	dissipation time 50% (time required to observe a 50% decline in concentration)
DT ₉₀	dissipation time 90% (time required to observe a 90% decline in concentration)
dw	dry weight
EC	emulsifiable concentrate
EC_{50}	effective concentration to 50% of the population
EDE	estimated daily exposure
EEC	estimated environmental concentration
EFSA	European Food and Safety Authority
EQP	racemic quizalofop-ethyl
F ₁	first generation
F_2	second generation
fc	food consumption
	1

fe	food efficiency
FIR	Food ingestion rate
FMOC	First-Order Multi-Compartment
g	gram(s)
GD	gestation day
GI	gastrointestinal
GLP	good laboratory practice
GUS	Groundwater Ubiquity Score
ha	hectare
Hb	hemoglobin
HC	historical control
HDT	highest dose tested
HGPRT	hypoxanthine-guanine phosphoribosyl transferase
hr(s)	hours
IORE	Indeterminate Order Rate Equation Model
i.v.	intravenous
kg	kilogram(s)
KOAWin	Octanol Air Partition Coefficient Program for Microsoft Windows
K_{oc}	organic carbon-water partition coefficient
$K_{\rm oc}$ $K_{\rm oc-ads}$	adsorption organic carbon-water partition coefficient
$K_{\rm oc-ads}$ $K_{\rm ow}$	octanol-water partition coefficient
κ _{ow} L	liter
LC_{50}	lethal concentration to 50%
LD	lactation day
LD_{50}	lethal dose to 50%
LDH	lactate dehydrogenase
LOAEL	Lowest Observed Adverse Effect Level
LOC	level of concern
$\log K_{\rm ow}$	n-octanol-water partition coefficient
LR_{50}	lethal rate 50%
m	meter
max	maximum
mg	milligram(s)
mL	millilitre
mМ	millimolar
MAS	maximum average score for 24, 48 and 72 hours
MCH	mean corpuscular hemoglobin
MCHC	mean corpuscular hemoglobin concentration
MCV	mean corpuscular volume
MIS	maximum irritation score
MOE	margin of exposure
MTD	Maximum tolerated dose
N/A	not applicable
Na	sodium
NOAED	No Observed Adverse Effect Dose
NOAEDD	No Observable Adverse Effect Distary Dose
NOAEL	No Observed Adverse Effect Level
NOALL	No Observed Effect Concentration
NULU	

NOEL	No Observed Effect Level
nss	not statistically significant
Р	parental generation
PCPA	Pest Control Product Act
PCV	packed cell volume
PHED	Pesticide Handlers Exposure Database
PMRA	Pest Management Regulatory Agency
PND	postnatal day
PPA	2-(4-hydroxyphenoxy) propionic acid
PPE	personal protective equipment
ppm	parts per million
QP	Quizalofop-acid
QPE	quizalofop-P-ethyl, the R-isomer of racemic quizalofop-ethyl (EQP)
RBC	red blood cell
REI	restricted-entry interval
rel.	relative
RfD	reference dose
RQ	risk quotient
RTI	retreatment interval
SFO	Single First-Order
SPD	solvesso-like petroleum distillate
SS	statistically significant
SU	Suspension
TC	transfer coefficient
TLC	thin layer chromatography
TP	transformation product
Tr	representative half-life
TSMP	Toxic Substances Management Policy
UE	unit exposure
UF	Uncertainty factor
UK	United Kingdom
USEPA	United States Environmental Protection Agency
wk(s)	week(s)
WP	wettable powder
wt	weight
°C	males
9	females
↑	increased
\downarrow	decreased
°C	degree(s) Celsius
%	percent
14C	carbon-14
μCi	microcurie
μg	microgram(s)

Appendix I Registered products containing quizalofop-p-ethyl in Canada¹

Registration Number	Marketing Class **	Registrant	Product Name	Formulation Type	Guarantee
25461	Т	AMVAC Canada ULC	Quizalofop-p- ethyl Technical Herbicide	solid	98%
29392	Т	Nissan Chemical Corporation	Quizalofop-p- ethyl MUP Herbicide	solid	98%
33269	Т	Sharda Cropchem Limited	Sharda Quizalofop-p- ethyl Technical Herbicide	solid	95.7%
33340	Т	Adama Agricultural Solutions Canada LTD.	Adama Quizalofop-p- ethyl Technical	solid	95.67%
33374	Т	NewAgco inc.	Newagco Quizalofop-p- ethyl Technical	solid	98%
33730	Т	Agrogill Chemicals Pty Ltd	Quizalofop-p- ethyl Agrogill Technical Grade Active Ingredient	solid	98.8%
30068	М	Nissan Chemical Corporation	Yuma™ Bulk Herbicide	emulsifiable concentrate	96 g/L
25462	С	AMVAC Canada ULC	Assure II Herbicide	emulsifiable concentrate	96 g/L
29134	C	Nissan Chemical Corporation	Yuma Herbicide	emulsifiable concentrate	96 g/L
30100	C	Nissan Chemical Corporation	Yuma ® GL Liquid EC Herbicide	emulsifiable concentrate	96 g/L
32091	С	Nissan Chemical Corporation	Ipco Contender Herbicide	emulsifiable concentrate	96 g/L
33481	С	NewAgco Inc.	Quiz Herbicide	emulsifiable concentrate	96 g/L
33617	С	Sharda Cropchem Limited	Elegant10 EC	emulsifiable concentrate	96 g/L

Appendix I

		Арронакт			
Registration Number	Marketing Class **	Registrant	Product Name	Formulation Type	Guarantee
33681	С	Nissan Chemical Corporation	Marshall	emulsifiable concentrate	96 g/L
33715	С	ADAMA Agricultural Solutions Canada Ltd	Leopard	emulsifiable concentrate	100g/L
33835	С	Agrogill Chemicals Pty Ltd	Agrogill Quizalofop-p- ethyl Herbicide	emulsifiable concentrate	96 g/L
33906	С	Nufarm Agriculture Inc	Idol Herbicide	emulsifiable concentrate	96 g/L
33960	C	Interprovincial Cooperative Ltd.	IPCO Contender II Herbicide	emulsifiable concentrate	96 g/L
33961	С	Interprovincial Cooperative Ltd.	Co-op Contender II Herbicide	emulsifiable concentrate	96 g/L
34034	С	NewAgco, Inc.	Quizalofop-p- ethyl 96 G/L Herbicide	emulsifiable concentrate	96 g/L
34282	С	BASF Canada Inc.	Caziva [™] Ultra Q	emulsifiable concentrate	96 g/L

* As of 4 January 2022, excluding discontinued products or products with a submission for discontinuation. ** T = Technical Grade Active Ingredient, C = Commercial, M = Manufacturing Concentrate

Appendix II Registered uses of Quizalofop-p-ethyl in Canada as of 12 October 2021¹

Use-site	Sites ²	Maximum application rate ³ (g a.i./ha)		Application method
categories	Sites-	Single	Cumulative per year	and equipment
7-	Canola (rapeseed)	36.5–72	72	Ground or aerial
Terrestria l Non- food and Non-feed	Glufosinate ammonium tolerant canola varieties (Liberty Link canola)	36.5–72 (in tankmix with Liberty 150 SN)	72 (in tankmix with Liberty 150 SN)	Ground or aerial
Seed and Fibre Crops 13 – Terrestrial	Soybeans (including varieties designated "STS") STS stands for Sulfonylurea Tolerant Soybean	36.5–72	72	Ground or aerial
Feed	Field and seed corn containing the Enlist TM corn herbicide trait	36.5–72	72	Ground
Crops 14 – Terrestrial Food Crops	Industrial hemp grown for fibre, seed and oil (Note: Products PCP# 29134, 29625 and 30100 are for fibre production only)	36.5–72	72	Ground
13 -	Camelina sativa	36.5–72	72	Ground
Terrestrial Feed	Flax (including low linolenic acid varieties)	36.5–72	72	Ground or aerial
Crops 14 – Terrestrial Food Crops	Narrow leaf lupin	36.5–72	72	Ground
	Lentils	36.5–72	72	Ground or aerial
	Peas (field and processing)	36.5–72	72	Ground or aerial
14 –	Chickpea (Western Canada only)	36.5–72	72	Ground
Terrestrial Food Crops	Oriental mustard (including canola quality <i>brassica juncea</i>) (condiment and oilseed type) (Western Canada only)	36.5–72	72	Ground or aerial
	Yellow and brown mustard (Western Canada only)	36.5–72	72	Ground or aerial
	Crambe (Western Canada only)	36.5–72	72	Ground or aerial

Use-site		Maximum application rate ³ (g a.i./ha)		Application method
categories	Sites ²	Single	Cumulative per year	and
	Ethiopian mustard (<i>Brassica carinata</i>) (Western Canada only)	36.5–48	48	Ground or aerial
	Saskatoon berries (Western Canada only)	36.5–72	72	Ground
	Sunflowers	36.5–72	72	Ground or aerial
	Tribenuron-methyl tolerant sunflowers	36.5–72 (in tank mix with tribenuron- methyl)	72 (in tank mix with tribenuron- methyl)	Ground or aerial
	Snap beans	36.5–72	72	Ground
	Sugarbeets	36.5–72	72	Ground
	All dry common beans of the species <i>Phaseolus vulgaris</i> including but not limited to all dry common bean types listed on the labels	36.5–72	72	Ground
	Pinto, navy, great northern, pink and small red beans (Western Canada only)	36.5–72	72	Ground
	Pinto, pink, great northern and small red beans (Western Canada only)	60.5 (in tank mix with Basagran)	60.5 (in tank mix with Basagran)	Ground
	White, white and red kidney, cranberry, black, brown and yellow eye, lima, mung, otebo and adzuki beans (Southern Ontario only)	36.5–72	72	Ground
	Dry faba beans (dry broad beans) and narrow leaf lupin	36.5–72	72	Ground
	Rutabagas (Ontario and Quebec only)	36.5–72	72	Ground
14 – Terrestrial Food Crops	Group 9 – Cucurbit vegetablesincluding: citron melon; cucumber; gherkin; edible gourd (hyotan, cucuzza); Chinese okra; Chinese cucumber; muskmelon hybrids and or cultivars of Cucumis melo including true cantaloupe, cantaloupe, casaba, crenshaw melon, golden pershaw melon,	36.5–72	72	Ground

Use-site	Sites ²	Maximum application rate ³ (g a.i./ha)		Application method
categories		Single	Cumulative per year	and equipment
	honeydew melon, honey balls, mango melon, Persian melon, pineapple melon, Santa Claus melon, and snake melon; pumpkin; summer squash including crookneck squash, scallop squash, straightneck squash, vegetable marrow, and zucchini; winter squash including butternut squash, calabaza, hubbard squash, acorn squash, spaghetti squash; watermelon including hybrids and/or varieties of Citrullus lanatus			
7 -	Seed alfalfa	36.5–72	72	Ground or aerial
Terrestria l Non- food and Non-feed	Seedling legumes for seed production (for bird's-foot trefoil, alsike, red, white and sweet clover and sainfoin)	48–72	72	Ground
Seed and	Established red and alsike clovers for seed production only	36.5–72	72	Ground
Fibre Crops	Seedling or established creeping red fescue for seed production only	48–72	72	Ground

1. Uses from discontinued products or products with a submission for discontinuation are excluded.

Weeds controlled:

Green foxtail, volunteer barley, volunteer corn, volunteer oats, volunteer wheat, wild oats, barnyard grass, wild oats, fall panicum, old witchgrass, proso millet, yellow foxtail, foxtail barley, downy brome, Japanese brome and quackgrass

2. Sites are either as stated on the product label or as interpreted by the PMRA so as to achieve consistency in naming.

3. Rates of active ingredient (a.i.) were calculated by the PMRA. Note that the maximum number of applications per year was not stated on registered end use product labels but was interpreted by PMRA based on the label instructions for each end use product. The maximum number of applications is once per year for all sites except sugarbeets where a second application can be applied for control of second flush of annual grasses or volunteer cereals.

Appendix III Toxicology information

Table 1	Toxicology reference values for the human health risk assessment of Quizalofop-
	p-ethyl

Exposure scenario	Study	Point of departure and endpoint	CAF ¹ or target MOE
Acute dietary All populations	An endpoint of concern attributable to a single exposure was not identified in the oral toxicity studies		
Repeated dietary All populations	chronic toxicity study in rats	NOAEL = 0.9/1.1 mg/kg bw/day $(\mathcal{O}/\mathcal{Q})$ based on liver histopathology and mild anemia	100
_	· ·	Offspring NOAEL= 2.6 mg/kg bw/day based on liver effects	100
Cancer Risk	A threshold-based cancer tumours in mice.	r risk assessment approach was used to a	address liver

¹ CAF (composite assessment factor) refers to a total of uncertainty and PCPA factors for dietary assessments; MOE refers to a target MOE for occupational assessments ² A dermal absorption factor of 50% was established

³ An inhalation absorption factor of 100% (default value) was used in route-to-route extrapolation

Identification of quizalofop-ethyl, quizalofop-p-ethyl and select metabolites of Table 2 quizalofop-p-ethyl in rats

Chemical name	Code/name	Structural diagram
Ethyl-2-[4-(6-	D(+) NC302 (QPE)	EQP:
chloroquinoxaline-2-yloxy)- phenoxy]propanoate		CI N CH3 CH3
(Quizolafop-ethyl, EQP) made of:	L(-) NC302 or FBC 32187	QPE (EQP R enantiomer):
Ethyl (R)-2-[4-(6- chloroquinoxaIin-2- yloxy)phenoxy] Propionate or (RS)- tetrahydrofurfuryl (R)-2-[4-(6- chloroquinoxalin-2-	or DPX-Y6202	EQP (S enantiomer) a = (a + b) +

	Appendix III			
Chemical name	Code/name	Structural diagram		
yloxy)phenoxy]propionate (Quizolafop-P-ethyl, QPE); Ethyl (S)-2-[4-(6- chIoroquinox~in-2- yloxy)phenoxy] propanoate 2-[4-(6-chIoroquinoxalin- 2- yloxy)phenoxy]propanoic acid	EQP-acid, QPE-acid IN-B6729 NC-302 acid or DPX-Y6202 acid Quizalofop acid	CI CH_3 CH_3 CH_3 CH_3 OH CH_3 CH_3 OH CH_3 OH OH CH_3 OH OH OH OH OH OH OH OH		
2-[4-(6-Chloro-3- hydroxyquinoxalin-2- yloxy)phenoxy]propionic acid	HO1-DPX-Y6202 acid and HO2-DPX-Y6202 acid Hydroxy-quizalofop QUIZ-OH Hydroxy-quizalofop acid 3-OH-Quizalofop-acid OH-Quizalofop Hydroxy propaquizafop acid	$Cl \downarrow \downarrow$		
2-(4- hydroxyphenoxy)propionic acid; 2-(4-hydroxyphenoxy)- propanoic acid; (R)-2-(4- hydroxyphenoxy)propionic acid	PPA Compound 6 Phenoxy acid Phenol 4 Phenol 3 acid	но СН ₃ СН ₃ но СН ₃ но СН ₃		
4-(6-chloroquinoxalin-2- yloxy)-phenol	NC-302 phenol (phenol 1) Quizalofop-phenol Phenol 1 Hydroxyl ether CQOP QHQ			

	~	
Chemical name	Code/name	Structural diagram
4-[(6-chloroquinoxalin-2- yl)oxy]phenyl acetate	EQP-acetate	CI N O OCCH3
Hydroxylated 2-Hydroxy-6- chloroquinoxaline	Dihydroxy-quinoxaline OH-QPE Phenol 2 CHQ	
2-Hydroxy-6- chloroquinoxaline	Hydroxy-quinoxaline QPE/EQP-Phenol 2	CI N OH
Ethyl-2-(4-hydroxyphenoxy)- propanoate	NC-302 phenoxy-acid EPP EQP-phenol 3 Compound 5 Ethyl-hydroxyphenoxy propionate Phenol 3	H ₃ C O O O H HO-O O CH ₃ CH ₃ CH ₃ CH ₃ CH ₃

Table 3 Toxicity profile for quizalofop-p-ethyl

Effects observed in both sexes are presented first followed by sex-specific effects in males, then females, each separated by semi-colons. Organ weight effects reflect both absolute organ weights and relative organ to body weights unless otherwise noted.

Study Type/Animal/PMRA#	Study results	
Toxicokinetic Studies		
Absorption,	¹⁴ C- EQP labelled at the phenyl ring dissolved in dimethyl acetamide at	
Distribution,	10 mg/kg bw (2-5 μCi/rat).	
Metabolism and		
Excretion	Absorption: Data on biological elimination half-lives in blood	
) indicated that even tissue distribution of the i.v. injected dose was attained within 0.4–0.5 hr.	
Quizalofop-ethyl (EQP)		
	Distribution: Tissue autoradiograms indicated that high concentrations	
1 0	of radioactivity occurred in the blood, liver, lungs, kidneys, intestines, teeth, and skin with very little in other tissues within 1 hr and in all	
PMRA# 1224042	these tissues except the teeth and skin at 3, 9 and 24 hr. By 72 and 168	
	hrs only small amounts of radioactivity were observed. After 7 days, radioactive residues in the body were 3.4% AD and 2.1% AD in 3 s	

Study Type/Animal/PMRA#	Study results
- V 1	and \bigcirc s, respectively with 0.8–0.9% AD in fur.
	Metabolism : Four metabolites were detected in urine, the major ones were 2-(4-(6-chloro-2-quinoxalyloxy)phenoxy) propionic acid (EQP acid) and PPA. Metabolites in feces were similar to those in urine but no unchanged EQP was detected in either feces or urine.
	Excretion : 87% AD (\bigcirc) and 90% AD (\bigcirc) was excreted in urine and feces during 7 day period with 27% (\bigcirc) and 29 (\bigcirc) excreted after 48 hrs; most excreted in feces (71% (\bigcirc) and 51% (\bigcirc)) with smaller amounts in urine (17% (\bigcirc) and 39% (\bigcirc)).
Absorption, Distribution, Metabolism and Excretion	¹⁴ C- EQP labelled at the phenyl ring, quinoxaline ring diluted with non- radioactive EQP and suspended in 1% Tween 80, at 160 mg/kg bw (approx. 5 μ Ci/mL/rat)
(single high dose) (gavage)	Absorption : The peak concentration in each tissue occurred at 6–9 hrs except in the fat and adrenal gland (24 and 3 hrs, respectively).
	Distribution : Highest concentrations occurred in plasma, liver, whole blood and kidneys with lowest levels in the brain. Peak levels in \Im s
Sprague-Dawley CD rat PMRA# 1224042	were somewhat higher than in \Im 's and the disappearance rates from tissues were higher (the biological half-life from the blood was 27 hr in \Im 's and 19 in \Im 's) up to 168 hrs after dosing. The biological half-life in fat was 155 hrs in \Im 's compared with 32 to 36 hrs in most other tissues and 60.5 hrs in brown fat.
	Whole body autoradiograms in 3° rats indicated that at 0.25 hr after dosing, high concentrations of radioactivity occurred in the gullet and small intestines, and after 6 hrs large amounts were seen in the intestines, followed by blood, liver, lungs, kidneys, marrow and teeth. Low levels occurred in the heart, tongue, fur salivary glands, brown fat, skin and testes with no radioactivity in the brain or spinal cord. By 120 hrs little radioactivity was seen in any tissue. Only 2.0 and 3.1% of the AD remained in tissues of 3° s and 2° s respectively 7 days after dosing.
	Excretion : Administration of ¹⁴ C-phenyl-EQP and ¹⁴ C-quinoxaline- EQP at 160 mg/kg bw to 3° rats resulted in 8% AD and 8% AD respectively in the urine and 85% AD and 81% AD, respectively of the ¹⁴ C-radiolabel in the feces. In \Im s, given 160 mg/kg bw ¹⁴ C-phenyl- EQP, 26% AD was excreted in the urine and 73% AD in the feces. Biliary excretion during 0–24 hrs in 3° rats receiving 160 mg/kg bw ¹⁴ C-phenyl-EQP was 22% of the AD.
Absorption,	¹⁴ C-EQP labelled at the quinoxaline ring, suspension in 1% Tween 80,

Study	Study posulto
Type/Animal/PMRA#	Study results
Distribution,	at 1.5 mg/kg bw/day (2 µCi) for 1, 7, 14 or 28 days
Metabolism and	
Excretion	Absorption: Concentrations in each tissue reached maximum levels
(repeat low dose)	after 7 consecutive daily doses and then decreased thereafter. After 14
(gavage)	days of dosing tissue levels of ¹⁴ C were only two to threefold those
	after a single dose and after 28 days were only one to twofold higher. It
Quizalofop-ethyl	is not known if this was due to a decline in absorption or to an increase in the rate of excretion.
Sprague-Dawley CD rat	
$(\vec{\Diamond})$	Distribution : In whole body autoradiographed rats, 24 hrs after final
	administration of ¹⁴ C-EQP, the highest levels of radioactivity were seen
PMRA# 1224042	in the intestines followed by blood, liver, kidney, lung, tooth > tongue, skin, marrow, fat > fur, heart, salivary glands, adrenal, brown fat > testis, thymus, and spleen. At 72 hrs high levels of radioactivity were seen in the intestines with low levels in other tissues and by 120 hrs only traces were seen in intestines, blood, liver, fur, fat, and brown fat. Bound residues in the liver increased from 3% AD after 1 day of dosing to 10% AD after 28 days indicating that covalent binding of EQP and/or its metabolites to liver tissue was not large.
	Excretion : In each tissue, except the fat, the rate of elimination was similar after 7, 14 or 28 days of dosing. With fat, the elimination rate was more prolonged after longer periods of dosing, although the concentrations in fat measured 24 hrs after the final dose for the 7-, 14- or 28-day dosing regimens were 1.71 (maximum concentration achieved), 1.21 and 0.87 μ g/g respectively. The radiolabelled concentrations in the fat measured 72 hrs after the final dose for the 7-, 14- or 28-day dosing regimens were: 1.00, 1.11, and 1.08 μ g/g respectively; at 120 hrs were: 0.63, 0.76, and 1.01 μ g/g respectively; and at 168 hrs were: 0.50, 0.69 and 0.92 μ g/g respectively, indicating a gradual decrease with time, albeit slow. It was concluded that uptake of ¹⁴ C into fat was saturated to a small degree.
Absorption,	¹⁴ C-EQP, labelled at the phenyl ring with 1% Tween 80, at 160 mg/kg
Distribution,	bw (approximately 5 μCi/mL/rat)
Metabolism and	
Excretion	Metabolism : Major urine metabolites of ¹⁴ C-phenyl-EQP were EQP
(single high dose)	acid and PPA, which accounted for 33% and 37%, respectively, of
(gavage)	urinary radioactivity 0–48 hrs after dosing in \bigcirc and 46 and 27.5%, respectively, in \bigcirc . In 0–48 hr feces of \bigcirc and \bigcirc , unchanged EQP
Quizalofop-ethyl	accounted for 44% (32% AD) and 38% (22.5% AD) of fecal radioactivity. Fecal metabolites were similar to those in urine with EQP
Sprague-Dawley CD rat	acid and PPA accounting for 24.1 and 8.7%, respectively, in \bigcirc and 23.5 and 15.1%, respectively, in \bigcirc , of fecal radioactivity. The major
PMRA# 1224042	metabolites in bile were the EQP acid and it β -glucuronide conjugate.

Study Type/Animal/PMRA#	Study results
	(approximately 30% of the bile radioactivity was EQP acid and the remainder at the origin when incubated with β -glucuronidase yielded about 50% EQP acid). EQP acid was a main metabolite in liver and accounted for 72–85% of liver radioactivity. Small amounts of other metabolites were also detected including EQP phenol (urine, feces, bile, liver) and EQP acetate (urine, feces, bile).
	Excretion : During the 0–48 hrs after the single oral dose of ${}^{14}C$ -phenyl-EQP, 5% and 73% AD were excreted in urine and feces of \Im rats, and 16.5% and 59% AD for \Im . \Im rats given ${}^{14}C$ -quinoxaline-EQP excreted 5% and 73% AD in urine and feces respectively.
Absorption, Distribution, Metabolism and	 ¹⁴C-EQP in 1% aqueous Tween 80 at 1.5 mg/kg bw/day (in 5 mL/kg bw) for 28 days followed by 8 day recovery period
Excretion (repeat low dose)	Absorption: Highest radiolabel was in blood after 3 days of dosing.
(gavage)	Distribution : Highest radioactivity levels were present in the liver, kidney, muscle and fat after 7 days of dosing. Levels in all tissues
Quizalofop-ethyl	declined during the 8 day withdrawal period to about 80–90% of the initial levels (measured on day 2 of recovery), except body fat which
	remained virtually unchanged; however upon closer examination, levels in fat spiked slightly on day 4 of recovery, and slowly declined
PMRA# 1224252	thereafter. Thus the radiolabelled residue level only seemed unchanged on day 8 of recovery when compared to initial measurement (on day 2 of recovery), which was already 30% lower than the measurement taken on the last day of dosing (day 28).
	Autoradiography showed highest levels in most tissues after 7 days of dosing, with the highest levels in the GI tract with lower levels in the liver, kidneys, blood, pulp cavities of the teeth, hair follicles, skin, fur, lungs and epimysium. Lowest levels were present in the muscle, fat, thymus, adrenals, pituitary, salivary glands, intra-orbital lachrymal gland, Harderian gland, nasal mucosa, lymph nodes, testis, epididymides, brown fat, seminal vesicles and prostate. Little change in distribution was noted thereafter except for a slight decline in concentration up to 28 days.
Absorption, Distribution, Metabolism and	¹⁴ C-EQP in 1% aqueous Tween 80 at 1.5 mg/kg bw/day (31.3 μCi/kg bw)
Excretion (single low dose) (gavage)	Absorption: Peak plasma level of 3% of the dose/mL occurred 6 hrs post-dosing and declined with a half-life of 31 hrs between 6 and 168 hrs. Based on radioactivity recovered in urine, feces and bile, it was calculated that 67% and 89% of a single oral low dose was absorbed in
Quizalofop-ethyl	δ and \bigcirc , respectively (24 hrs).

Study Type/Animal/PMRA#	Study results
PMRA# 1224253	Distribution : After 5 days, approximately 6–8% of the AD remained, with 2.2%, 0.6% and 5.6% in the GI tract, liver and carcass of the \Im 's and 1.5%, 0.5% and 3.8%, respectively, in \Im s. Highest radioactivity concentrations were seen in plasma at 6 hrs in both sexes, except in fat. Next highest concentrations at 6 hrs (\Im) were whole blood, GI tract, thyroid, liver and kidneys and in \Im , in whole blood, GI tract, liver, kidneys, ovaries and thyroid. At 168 hrs, radiolabel in the fat was highest of all tissues in \Im s, versus third highest in \Im s, behind the GI tract and plasma.
	Metabolism : Metabolites were characterized by TLC only. At least five components were found in urine of both sexes. One of the components was more prevalent in \Im s (22% AD) than in \Im s (3% AD). The amounts of the other metabolites were similar in both sexes. In bile, one major component at RfD 0.5 in both sexes accounted for about half the radioactivity (the remaining activity was found at the origin). No unchanged parent material was detected in urine or bile. In feces unchanged parent material accounted for 5% of the extract. The majority of activity (66–72%) was found at RfD 0.5 with the remaining material in four bands (plus the origin) accounting for 1–11% of the AD.
	Excretion : Within 24 hrs, 25% of the AD in \Im s and 20% AD in \Im s was excreted in the urine and feces, respectively. During the 5 days post-dosing, \Im rats excreted 95.5% of the AD, 21% of which was in the urine and 74.5% in the feces. In \Im s, total excretion within 5 days accounted for 99% of the AD, with 50% in urine and 49% in feces. Within 24 hrs of dosing, 30%, and 22% of AD was excreted in the bile of \Im and \Im respectively (n=1); and within 48 hrs, 52% and 49% of AD was excreted in \Im s and \Im s respectively.
Absorption, Distribution,	Quinoxaline - ¹⁴ C EQP, labelled in the phenyl portion of the quinoxalinyl ring, diluted with unlabelled EQP in ethanol: corn oil
Metabolism and Excretion	(1:9) at 16 mg/kg bw (2 mL/kg bw)
(single low	Distribution: Organ and tissue retention of radioactivity was low, with
dose)(gavage)	highest concentrations in the skin and GI tract of 3° , and hide of 9° . Minimal levels were found in the brain, heart, muscle, spleen and
Quizalofop-ethyl	gonads of both sexes.
Charles River CD rat	Metabolism: The distribution of metabolites in the organs and tissues
PMRA# 1224185	showed that EQP acid was in the highest concentration (61–89% AD) followed by HO1-EQP acid, a dechlorinated hydroxylated analog of EQP acid (3–10% AD) and HO-EQP, a hydroxylated analog of EQP

Study Type/Animal/PMRA#	Study results
	(0–4% AD). Unchanged EQP was not detectable. Primary metabolites in urine and feces were EQP acid, two dechlorinated hydroxylated analogs of EQP (HO1 and HO2) and smaller amounts of the hydroxylated analog of EQP (HO). These metabolites accounted for 64–93% of the AD.
	Excretion : Fairly rapid excretion was noted with half-lives of 48 hrs (\Im) and 60 hrs (\Im). The amount of radioactivity in urine compared to the amount in the feces was similar in \Im s; however, in \Im s more than 4.5 times more radioactivity was found in the feces than in urine. Total excreted radioactivity was 88% AD (\Im) and 95% AD (\Im). Total recoveries from excreta (urine and feces), organs, tissues and cage washings were 98.5% AD (\Im) and 92% AD (\Im).
Distribution, Metabolism and Excretion (low oral dose with pre- conditioning: repeat dose)(dietary and gavage)	Unlabelled EQP at 100 ppm in the feed for 21 days, followed by a single oral gavage dose (Quinoxaline - ¹⁴ C EQP), labelled in the phenyl portion of the quinoxalinyl ring, diluted with unlabelled EQP, in ethanol: corn oil (1:9) at 16 mg/kg bw (2 mL/kg bw)
	Distribution : Organ and tissue retention of radioactivity was low, with highest concentrations in the 3 's in the liver (0.91 ppm), GI tract (0.89 ppm) and kidney (0.84 ppm), and in the 2 's in the kidney (0.62 ppm) and hide (0.49 ppm). Lowest levels (0.01–0.02 ppm) were found in the brain of both sexes.
Charles River CD rat PMRA# 1224185	Metabolism : The distribution of metabolites in the organs and tissues showed that DPX-Y6202 acid was in the highest concentration (17– 91% AD) followed by dechlorinated hydroxylated analogs HO1-EQP acid (03–4.8% AD) and HO-EQP acid (0–27.4% AD). Unchanged EQP was not detectable. Major metabolites in urine and feces were EQP acid and the two dechlorinated hydroxylated analogs of EQP (HO1 and HO2) which in total accounted for 70–86% of the AD.
	Excretion : Fairly rapid excretion was noted with half-lives of 46 hrs (\mathcal{J}) and 42 hrs (\mathcal{Q}) . The amount of radioactivity in urine compared to the amount in the feces was similar in \mathcal{Q} s; however, in \mathcal{J} s more than twice the amount of radioactivity was found in the feces than was found in the urine. Total excreted radioactivity was 84% AD (\mathcal{J}) and 90.5% AD (\mathcal{Q}). Total recoveries from excreta (urine and feces), organs, tissues and cage washings were greater than 91% AD in both sexes.
Absorption, Distribution, Metabolism and Excretion	Quinoxaline - ¹⁴ C-EQP, labelled in the phenyl portion of the quinoxalinyl ring, diluted with unlabelled EQP in ethanol: corn oil at 200 mg/kg bw (3 mL/kg bw)

Astribustion. One on a tigener of the state
Distribution : Organ and tissues contained high levels of radioactivity. In \Im s, greatest concentrations were in the skin (51.5 ppm), gonads (33 pm), and hide (28 ppm). In \Im s, greatest concentrations were in the onads (10 ppm), hide (9.5 ppm), and bones (9 ppm). The lowest level in both sexes was in the brain (0.2–0.5 ppm).
Metabolism: Metabolites in the organs and tissues included, EQP acid 4.6–39.2% AD, lowest levels occurring the fat), HO-EQP (6–22% AD), and HO1-EQP acid (2.8–24.6% AD). Unchanged EQP was dentified in the fat (21% AD) and in the GI tract (0.6% AD). Primary netabolites in urine and feces were EQP acid (31–67.5% AD), two echlorinated hydroxylated analogs of EQP (HO1 and HO2; (11.5– 4% AD and 8–22% AD, respectively) and the hydroxylated analog of CQP (HO; 14.9% AD). These metabolites accounted for 59–87% of the AD.
Excretion : Fairly rapid excretion with half of the dosed radioactivity xcreted within 48 hrs. The amount of radioactivity in urine compared to the amount in the feces was 1:2.5 in \Im 's and 1:4 in \Im 's. Total excreted adioactivity was 91% AD (\Im) and 103% AD (\Im). Total recoveries rom excreta (urine and feces), organs, tissues and cage washings were 6% AD (\Im) and 106% AD (\Im).
henyl - ¹⁴ C EQP, diluted with unlabelled EQP, in ethanol: corn oil at 00 mg/kg bw (3 mL/kg bw)
Distribution : Relatively high levels of radioactivity were retained in rgans and tissues: in the kidneys, skin and bones of the \Im s; and in the ide, kidney, and spleen and GI tract of the \Im s.
Aetabolism : The three primary metabolites identified in the urine and eces were EQP acid, HO1-EQP acid and HO2-EQP acid. No
adioactivity was detected as carbon dioxide or volatile metabolites in xpired air.
1
Excretion : Fairly rapid excretion was noted with a half-life of 76 hrs but closer to 85 hrs when derived from graphical representation of ata). The amount of radioactivity in urine compared to the amount in the feces was similar in \Im s; however, in \Im s approximately twice as buch radioactivity was found in the feces versus in urine. Total xcreted radioactivity was > 90% of the AD.
. Quinoxaline - ¹⁴ C EQP, labelled in the phenyl portion of the uinoxalinyl ring, diluted with unlabelled EQP, in ethanol: corn oil at
00 mg/kg bw, 700 mg/kg bw ; . Phenyl - ¹⁴ C EQP, diluted with unlabelled EQP, in ethanol: corn oil at
For 44.14 ne40.1 2x0 arce 10 Diri 4 sax 25 ann x-10

Study Type/Animal/PMRA#	Study results	
(single high	200 mg/kg bw	
dose)(gavage)		
aose)(gavage)	Metabolism: In this amendment to the previous study (PMRA#	
Quizalofop-ethyl	1224185), EQP pentanoic acid (PL-1) was identified in the liver of rats	
Quizaiorop-ettiyi	at a relatively low concentration ranging from 0.9 to 2.3% of the	
Charles Diver CD ret		
Charles River CD rat	radioactivity in the tissue. The major metabolite was EQP-acid which	
	was detected at concentrations of 62.8 to 69.1% of total liver	
PMRA# 2719113	radioactivity. Other metabolites included Phenol 1 (2.0–12.0%) and	
	unknowns (10.6–14.4%). Unextracted radioactivity ranged from 10.8–	
	20.5%.	
Acute Toxicity Studies		
Acute oral toxicity	LD ₅₀ = 2350 mg/kg bw (ථ)	
	$LD_{50} = 2360 \text{ mg/kg bw } (\bigcirc)$	
Quizalofop-ethyl		
Quizaiorop etilyr	Clinical signs: \geq 1800 mg/kg bw: \uparrow incidence of prone position, slow	
CD-1 mouse	gait, weak or slow respiration, \downarrow response to external stimuli,	
	disappearance of righting reflex, no lustre of hair coat and wasting.	
PMRA# 1184263,	disuppediance of fighting fellex, no fusite of han coat and wasting.	
1224167, 1224169,	Low acute toxicity	
1224707, 1224107, 1224107, 1224707,	Low acute toxicity	
1224/20		
Acute oral toxicity	LD ₅₀ = 1670 mg/kg bw (♂)	
reduce of all toxicity	$LD_{50} = 1480 \text{ mg/kg bw } (\bigcirc)$	
Quizalofop-ethyl	$LD_{30} 1400 \text{ mg/kg bw } (+)$	
Quizaiorop-euryr	Clinical Signs:	
Sprague-Dawley rat	≥833 mg/kg bw: slow gait and ruffled hair	
Sprague-Dawley lai	2055 hig/kg ow. slow gait and furried half	
DMD A # 1184262	51000 mg/kg buy inactivity and propagation within 24 hrs	
PMRA# 1184262, 1224168	≥1000 mg/kg bw: inactivity and prone position, within 24 hrs.	
1224108	Additional symptoms at 2–14 days included crouching, red tears and/or red stains around eyes, continuous prone position, weak and/or slow	
	respiration, decrease in response to external stimulation, ruffled hair	
	1 7 1	
	coat, disappearance of righting reflex and wasting	
	Slightly acutely toxic	
A		
Acute oral toxicity		
	$LD_{50} = 1088 \text{ mg/kg bw}(3)$	
Sprague-Dawley rat	$LD_{50} = 870 \text{ mg/kg bw } (\bigcirc)$	
	$LD_{50} = 952 mg/kg bw (combined 3/2)$	
L-enantiomer only from		
of quizalofop-ethyl	Signs observed (with no dose response): ↓ bw, lethargy, diarrhea, wet	
	inguinal fur, rough coat, redness around eyes	
PMRA# 1161268		

Study Type/Animal/PMRA#	Study results
	Moderately acutely toxic
Acute oral toxicity Sprague-Dawley rat Quizalofop-p-ethyl PMRA# 1161273	LD ₅₀ = 1209 mg/kg bw (\mathcal{C}) LD ₅₀ = 1182 mg/kg bw (\mathcal{Q}) LD ₅₀ = 1203 mg/kg bw combined (\mathcal{C}/\mathcal{Q}) Signs observed (with no dose response): \downarrow bw, lethargy, diarrhea, wet inguinal fur, rough coat, redness around eyes, tremors and hunched posture
	Slightly acutely toxic
Quizalofop-ethyl Sprague-Dawley rat	LD₅₀ > 5000 mg/kg bw (♂/♀) No mortality or clinical signs of toxicity Low acute toxicity
body) Quizalofop-ethyl Crl:CD [®] rat PMRA# 1184266,	LC ₅₀ \Im > 5.9 mg/L; \Im > 3.4 mg/L; Combined (\Im/\Im) = 5.8 mg/L Signs: hair loss, ruffled fur, wet and stained perineum, nasal discharge, hunched posture and pallor. In a dose-dependent manner, all exposed rats exhibited continuous slight to moderate weight loss for 2–9 days post-exposure.
1224172	Low acute toxicity
	MIS = $6/110 (1 \text{ hr})$ MAS = $1.67/110$ Irritation scores at 1, 24, 48, and 72 hrs and 7 days were 6 (5 ¹ / ₃), 1 ¹ / ₃ (2), 1 ¹ / ₃ (2), 2 ¹ / ₃ (2), 2 ¹ / ₃ (2 ² / ₃), 0 (0), respectively for unrinsed (rinsed) Irritation was limited to the conjunctivae, clearing by day 4: a diffuse,
PMRA# 1224173	crimson red colouration of the conjunctivae was accompanied by slight

Study Type/Animal/PMRA#	Study results
	swelling.
	Minimally irritating to the eye
Primary Skin Irritation Quizalofop-ethyl New Zealand White rabbit	MIS = 0/8 MAS = 0/8 Non-irritating to the skin
PMRA# 1224174	
Dermal sensitization (Buehler method)	The challenge dose did not cause a skin reaction in any of the animals, 24 and 48 hrs after the removal of the patch
Quizalofop-ethyl	Negative
Hartley-Dunkin Guinea pig	
PMRA# 1224180	
Short-Term Toxicity St	udies
21-day dermal toxicity study Quizalofop-ethyl	Supplemental Study Limitations: limited reporting of methods; no reporting of clinical signs, body weight, food consumption, hematology, clinical chemistry and organ weights.
New Zealand White rabbit PMRA# 2719116	No compound-related effects (pathology) were detected in the rabbits following a 21-day application or following a two week recovery period.
13-wk oral toxicity study (dietary) with 4-wk recovery period at high dose	NOAEL not established LOAEL = 15/25 mg/kg bw/day ≥ 15 mg/kg bw/day (100 ppm): ↑ rel. liver wt., histopathological changes: ↑ hypertrophy/hyperplasia, degeneration/necrosis of individual hepatocytes with DR in severity (♂/♀)
Quizalofop-ethyl CD-1 mouse	≥ 41/74 mg/kg bw/day (316 ppm): green-brown pigment, bile duct hyperplasia (no recovery at HDT at 4 wks) ($3/2$); ↑ swollen abdomens, ↑ incidence enlarged livers,↑ albumin, ↑ ALP, ↑ ALT, ↑ rel.

Study	Study results
Type/Animal/PMRA#	
PMRA# 1184249, 1224183	adrenals wt. (\circlearrowleft); \uparrow extramedullary hematopoiesis in spleen, $\downarrow \#$ corpora lutea (\updownarrow)
	174/258 mg/kg bw/day (1000 ppm): \uparrow swollen abdomens, \uparrow incidence enlarged livers and discoloured livers, or livers with tan areas or pin prick yellow areas, \uparrow rel. adrenals wt., \uparrow liver necrosis (not reversible at 4 wks recovery in \eth)(\eth / \clubsuit); \downarrow bwg, \uparrow fc, \downarrow abs. testes wt., \uparrow extramedullary hematopoiesis, \uparrow total protein, \uparrow AST, \uparrow Ca, \downarrow cholesterol (\eth); \downarrow platelet counts, \uparrow rel. thyroid wt. (\clubsuit)
13-wk oral toxicity study	NOAEL = 17/21 mg/kg bw/day (∂/ Q)
	\geq 56/67 mg/kg bw/day (316 ppm): \uparrow liver wt. (interim and terminal,
recovery period	restored at recovery except in high dose \Im), histopathological changes in hepatocytes: centrilobular and mid-zonal hepatocytic hypertrophy,
CD-1 mouse	liver necrosis (interim and terminal; mostly reversible in \Im s), \uparrow mitoses in liver and bile duct hyperplasia (reversible) (\Im/\Im)
Quizalofop-p-ethyl	
	175/205 mg/kg bw/day (1000 ppm):
PMRA# 1161277, 1161276	and degenerate cells (partial recovery 5/8), \uparrow terminal bile duct hyperplasia (reversing at recovery), \uparrow hepatic enzyme values and serum proteins (ALT, ALP, total protein, albumin, albumin/globulin ratio, and LDH) presence of pigment (\circlearrowleft/\square); \uparrow AST, \downarrow globulin (\circlearrowright)
	No treatment-related effects on mortality, clinical signs, bw, fc, haematological parameters or urinalysis
•	NOAEL = 8/10 mg/kg bw/day (♂/♀)
study (dietary) with 6 wk	82.0/02.6 mg/kg hy/day (1280 nnm); \pm hy/g (0, 12 y/kg) (1 in $\frac{1}{2}$ during
recovery period	82.9/93.6 mg/kg bw/day (1280 ppm): \downarrow bwg (0–13 wks) (\uparrow in \Diamond during recovery), \downarrow fc (both sexes, \heartsuit - nss), liver surface pitted (partial reversal), slight/minimal centrilobular and/or mid-zonal liver cell enlargement, enlarged livers, \uparrow rel. liver wt., \downarrow Hb (\Diamond/\heartsuit); \uparrow rel. heart
Quizalofop-ethyl	wt., \downarrow rel. testes wt., \downarrow rel. adrenal wt., small and flaccid testes, testicular atrophy and/or suppression of spermatogenesis,
	hematological effects (\downarrow RBC, \uparrow MCV, \uparrow MCH, \downarrow MCHC), \uparrow total
Dawley origin	protein , \uparrow A/G ratio \downarrow Ca (wk 4 and 12), focal inflammatory changes (\Diamond); \downarrow rel. pituitary wt., \uparrow urine pH (wk 3), \downarrow MCV (wk 12) (\bigcirc)
PMRA#	
1184250,	After 6 wks of recovery there were no treatment-related liver changes
1224184, 1224232	but testicular atrophy or suppression of spermatogenesis still occurred in 3/5 males

Study	Study results		
Type/Animal/PMRA#	NOAFL = $7.7/0.0$ mg/kg by/day ($\frac{1}{2}/0$)		
13-wk oral toxicity study	NOAEL = 7.7/9.0 mg/kg bw/day (∂/φ)		
(dietary)	82.4/91.6 mg/kg bw/day (1280 ppm): ↑ liver wt. (reversed at recovery), changes in clinical chemistry values, returned to normal at recovery: ↑		
Sprague-Dawley rat	ALP, \uparrow albumin, \uparrow A/G ratio, \uparrow BUN, \uparrow ChE \downarrow globulin (\eth/\square); \downarrow bw, \downarrow cholesterol, \downarrow triglycerides, testicular atrophy (1 \circlearrowright at termination, 3 \circlearrowright		
Quizalofop-p-ethyl	at recovery-not reversible) (♂)		
PMRA# 1161278	No treatment-related effects on mortality, clinical signs, fc, hematological parameters or urinalysis		
26-wk oral toxicity study (dietary)	NOAEL = 3.2/3.17 mg/kg bw/day (∂/φ)		
Quizalofop-ethyl	12.75/12.39 mg/kg bw/day (400 ppm): atrophy of the seminiferous tubules of the testis (2/6) ($\stackrel{\wedge}{\bigcirc}$); \uparrow BUN ($\stackrel{\bigcirc}{\ominus}$)		
Beagle dog			
PMRA# 1184251, 1224243			
52-week oral toxicity study (dietary)	NOAEL = 10 mg/kg bw/day (\mathcal{O}/\mathcal{Q})		
Quizalofop-ethyl	10 mg/kg bw/day (400 ppm): \uparrow rel. liver wt. (not adverse) (\eth/\diamondsuit)		
Beagle dog			
PMRA# 1184271,			
1224031, 1224163			
Chronic Toxicity/Onco	Chronic Toxicity/Oncogenicity Studies		
18-month chronic toxicity/oncogenicity	NOAEL = 1.5 mg/kg bw/day (\mathcal{O}/\mathcal{P})		
study	\geq 12 mg/kg bw/day (80 ppm): \uparrow pigmentation of hepatocytes,		
(dietary)	sinusoidal cells and focal pigmented macrophages, \uparrow ALP (\eth/ \clubsuit); bilateral testicular atrophy (\eth); \uparrow liver wt., \uparrow kidney wt. (\clubsuit)		
Quizalofop-ethyl			
CD-1 mouse	48 mg/kg bw/day (320 ppm): swollen abdomen, \uparrow incidence of enlarged and dark liver, \uparrow A/G ratio, \uparrow liver wt., diffuse hepatocytic enlargement (\Im/ \bigcirc); \downarrow survival (ss), \uparrow incidence of exophthalmus		
PMRA#	(median day of onset week 52), changes in serum proteins, single		
1184254,	incidences (52 wk) of interstitial Leydig cell hyperplasia, abnormal		

Study Type/Animal/BMDA#	Study results
Type/Animal/PMRA# 1222759,	sperm forms, testes atrophy and sperm stasis, \downarrow testes wt. (\Diamond); \uparrow pale
1222761,	kidneys (all animals), ↑ incidence granular/pitted/rough kidneys (all
1222762,	animals), \uparrow kidney cysts, \uparrow total cholesterol, \uparrow ovarian cyst (52 wk)(\bigcirc)
1222764,	(2.3)
1222766,	\uparrow incidence of benign ovarian luteomas (nss) (\bigcirc : 0/51, 0/51, 1/46, 0/53,
1222768,	3/50 (6%) slightly exceeding historical control upper range (0-5%),
1222770,	Granulosa cell 0/51, 0/51, 0/46, 0/53, 1/50 (2%) and 2/50 (4%)
1222772,	instances of luteal cell hyperplasia at the HDT (\mathcal{Q})
1222775,	
1224046,	↑ hepatocellular tumours (nss)
1224107,	Hepatocellular adenoma (3): 3/50 (6%), 4/49 (8%), 5/51 (10%), 6/52
1224151,	(12%), 8/51 (16%); Total (including all surviving satellite animals
1224159,	killed on wk 26 (n=10) and 52 (n=10), in addition to all surviving at
1224729,	week 78 (n=50): 3/70 (4%), 6/69 (9%), 5/69 (7%), 8/70 (11%).
1223697	Hepatocellular carcinoma (3): 4/50 (8%), 4/49 (8%), 2/51(4%), 1/52
	(2%), 10/51 (20%); Total (including all surviving satellite animals
	killed on wk 26 (n=10) and 52 (n=10), in addition to all surviving at
	week 78 (n=50): 4/70 (6%), 4/69 (6%), 2/69 (3%), 1/69 (1%), 10/70
	(14%)
	Combined hepatocellular adenoma and carcinoma (\circlearrowleft) (positive trend):
	7/50 (14%), 8/49 (16%), 6/51 (12%), 7/52 (14%), 15*/51 (29%);
	Total (including all surviving satellite animals killed on wk 26 (n=10)
	and 52 (n=10), in addition to all surviving at week 78 (n=50)): 7/70
	(10%), 10/69 (14%), 7/69 (10%), 8/69 (11%), 15*/70 (21%))
	Luteoma HC (\mathcal{Q}):
	Set 1 (78 weeks) Hazleton Labs
	range 0–0%; individual HC studies: 0/98 (0%), 0/51(0%), 0/45 (5%);
	total 0/194 (0%)
	Granulosa theca cell tumour HC:
	range (0–1%); individual HC studies: 1/98 (1%), 0/51, 0/45, 1/194
	(0.5%); total: 1/194 $(0.5%)$
	Set 2 (91–105 weeks) Hazleton Labs (Positive control)
	Luteoma HC Total 10 studies 0/293
	Granulosa theca cell tumour HC:
	range (0–15%); individual HC studies: 0/1/29 (3.4%), 4/26 (15.4%),
	1/27 (3.7%); total: 6/293 (2%)
	Set 3 (78 weeks) Haskell Labs (registrant provided, more recent studies
	using the same source of mice)
	Luteoma HC range (0-5%); individual studies: 0/73, 3/80 (4%), 4/76
	(5%), 1/80 (1%), total 8/309 (3%)
	Granulosa theca cell tumour HC:
L	

Study Type/Animal/PMRA#	Study results
	range (0–1%); individual HC studies: 0/73, 0/80, 1/76 (1%), 0/80; total 1/309 (0.3%)
	Set 4 (same source of mice; recent publication from Charles River with no further detail) Luteoma HC Total: 0–2%); total 2/486 (0.4%) Granulosa theca cell tumour HC range (0-2%); individual HC studies: 1/487 (0.2%)
	Hepatocellular HC set #1 (more robust Supplementary studies, Hazleton Labs) Range from 10 studies (91–105 weeks duration) hepatocellular adenomas:
	𝔅: 0-16% (mean 6.3%), $𝔅: 0-6%hepatocellular carcinomas 𝔅: 6-28\% (mean 14.4%), 𝔅: 0-12\%$
	Hepatocellular HC set #2 range from 3 studies (78 weeks duration, Hazleton labs) Adenomas: 8–18% Carcinomas: 3–7%
	The benign ovarian tumours were deemed unrelated to treatment because the incidence at the high dose did not reach statistical significance to concurrent negative control values, and it fell just above the upper range noted in the more recent historical control set that used the same source of animals.
	Evidence of carcinogenicity (liver tumours)
24 month chronic	NOAEL = 0.9/1.1 mg/kg bw/day $(3/2)$
toxicity/carcinogenicity	
study (dietary)	≥ 3.7/4.6 mg/kg bw/day (100 ppm): \uparrow thyroid wt., changes in serum proteins (\uparrow albumin (wk 12, 26, 52 - \bigcirc only this week), \downarrow globulin (wk 12, 26), \uparrow A/G ratio, changes in ions (\uparrow Na, Ca, P, Cl), fluctuations in
Quizalofop-ethyl	haematology parameters (\downarrow PCV, \downarrow Hb, \downarrow RBC, variable effects on MCHC and MCV with tendency for \downarrow), \uparrow liver wt, \uparrow hepatocellular
Sprague-Dawley rat	enlargement $(\mathcal{Z}/\mathcal{Q})$; \uparrow incidence of dark areas of liver (wk 78 and terminal kill) (\mathcal{Q})
PMRA#	
1184253,	15.5/18.6 mg/kg bw/day (400 ppm): ↑ kidney wt. (wk 105), ↑ incidence
1184272,	of cytoplasmic eosinophilia in liver, slight \uparrow incidence of
1222751,	dilated/congested sinusoids, \uparrow plasma ChE (\Im/\Im) ; \downarrow bw, \uparrow incidence of dark areas of liver (terminal kill) \uparrow ALP (consistent throughout
1222755,	dark areas of liver (terminal kill), \uparrow ALP (consistent throughout treatment approximately twofold)(\checkmark): heart wt (wk 105 ss)(\bigcirc)
1222757, 1223781,	treatment approximately twofold)(\Diamond); \downarrow heart wt (wk 105 ss)(\bigcirc)
1223781, 1224007,	\uparrow incidence (nss) of liver cell tumours was observed in the HDT \Im s
1224007,	II mendence (inse) of liver cell tuniours was observed in the HDT \pm s

Study Type/Animal/PMRA#	Study results
1224020, 1224034, 1224036, 1224038 1223697	(adenomas: 3/86, 1/83, 1/83, 1/83; carcinomas: 0/86, 0/83, 2/83, 4/83 (5%) (one \bigcirc with multiple tumours) when compared to both the concurrent and HC incidences (\bigcirc range of carcinomas: 0–2%, range for adenomas: 0–2%). Carcinomas were generally observed at the end of the study. Combined incidence of adenomas and carcinomas: 3/86, 1/83, 3/83, 5/83 (no DR).
	HC Studies: Hepatocellular carcinomas: ♂: 0/50, 1/50, 1/55, 1/50, 1/50, 1/50 (range 0–2% in 6 studies) ♀: 0/50, 0/55, 0/50, 0/50, 0/50, 1/51 (range 0–2% in 6 studies)
	Hepatocellular adenomas : ♂: 0/50, 0/50, 1/50, 1/50, 1/50, 2/55 (range 0–4% in 6 studies) ♀: 0/50, 0/51, 0/50, 1/55, 1/50, 1/50 (range 0–2% in 6 studies)
	No evidence of tumorigenicity
Developmental/reprodu	
2-generation reproductive toxicity (dietary) Quizalofop-ethyl	Parental NOAEL = 9.4/10.2 mg/kg bw/day (100 ppm) (\Im/ \Im) 37.8/42.1 mg/kg bw/day: F0 $\Im: \downarrow$ bw (days 63, 70, 84, 91), \downarrow bwg (days 0–70) F1 _a $\Im: \downarrow$ bwg (days 0–14) F1 _a $\Im: \downarrow$ bwg (days 0–7 premating)
Sprague-Dawley rat	Offspring NOAEL = 2.6 mg/kg bw/day (25 ppm)
Sprague-Dawley lat	$F1_b$ and $F2_a F_{2b}$ exposed in utero (sacrificed PND 21)
PMRA# 1224110, 1224148	\geq 10.2 mg/kg bw/day (100 ppm): \uparrow liver wt. (weanlings: F _{2b}), liver pathology: \uparrow eosinophilic granular cytoplasm in the hepatocytes and \downarrow cytoplasmic basophilia and glycogen accumulation (F _{2b} 10/10)
	37.8 mg/kg bw/day (400 ppm): \downarrow pup bw ss (PND 0-21, F1 _a and 1 _b , PND 7-21 F2 _a), PND 4-21 (F2 _b), \downarrow spleen wt. (F2 _b) (\Diamond/ \bigcirc); \downarrow thymus wt. (F2 _b), \downarrow lung wt. (F2 _b), \uparrow rel. heart wt. (F2 _b), \downarrow abs. testes wt. (F2 _b) (\Diamond)
	Reproductive NOAEL = 37.8/42.1 mg/kg bw/day (400 ppm) ($3/2$)
	37.8/42.1 mg/kg bw/day (400 ppm): ↓ pup bw (F1a, b on PND 0)
	In \Im s, no treatment related effects were observed in the fertility index, gestation index, 0–4 day viability, lactation index or on litter survival. In \Im s there was no biologically significant treatment-related effect on fertility at any dose level.
	No sperm parameters were measured

Study Type/Animal/PMRA#	Study results
	Evidence of sensitivity of the young
Modified developmental toxicity (gavage) Dosed GD 6-15 Quizalofop-ethyl Sprague-Dawley rat	Two sets of animals were used per treatment group. One group was sacrificed on gestational day (GD) 21, and a smaller group was retained as a nursing group set (culled on PND 4 to 4/sex/litter). General differentiation such as incisor budding, separation of eyelids, testes descent and vaginal opening were recorded in the nursing set, as well as functional tests (walking, spontaneous movement, postures, variety of reflexes, open field test and learning test via water labyrinth method). Reproductive ability was tested in F1 animals from the
PMRA# 1184255, 1224265, 1224736	nursing group (2/sex from each litter; with animals paired at 10 wks of age for 10 days to assess ability to induce pregnancy, with further breeding added as necessary for assessing any unsuccessfully mated rats).
	Maternal NOAEL = 100 mg/kg bw/day
	300 mg/kg bw/day: ↓ bwg (GD 6-16), ↓ fc, ↑ incidence of retained placenta
	Developmental NOAEL = 100 mg/kg bw/day
	300 mg/kg bw/day: \uparrow pancreas wt, \uparrow incidence of foetal skeletal variations/dams: \uparrow incidence of accelerated ossification corpus of cervical vertebra and diaphysis of metatarsus (#1), delayed ossification in the arcus of the 3 rd coccygeal vertebra and delayed ossification of digitus menus phalanx proximalis (#1 and 5), delayed ossification of digitus pedis phalanx proximalis (#2–5), \uparrow 14 th rib (predominantly small)
	Nursing subgroup: 300 mg/kg bw/day; offspring (8 wks of age): \downarrow bw (PND 4 to 5-8 wks), \downarrow fc (from 4–8 wks) \downarrow rel. kidney wt., preputial separation was not measured, vaginal patency was not affected (\Diamond/ \wp); \uparrow abs. liver wt., slight \uparrow abs. pancreas wt (\Diamond); \downarrow uterus wt. (\wp)
	No effects were noted in this study on reproduction in dams, offspring functionality including learning ability, or skeletal development in offspring (8 wks of age)
	Learning Test : no effect on time needed to complete swim maze on 3 trials at 5–6 wks of age
	Reproduction: No treatment-related effects
	Sperm parameters were not measured.

Study Type/Animal/PMRA#	Study results		
	No evidence of sensitivity of the young or treatment-related malformations		
Range-finding developmental toxicity (gavage)	Supplemental- range finding Maternal: ≥25 mg/kg bw/day: ↓ bwg and or bw loss (GD 7-29)		
Quizalofop-ethyl	≥60 mg/kg bw/day: ↑ abortions (0/6, 0/6, 0/6, 1/6, 3/6)		
Dosed GD 7-19 New Zealand White	75 mg/kg bw/day: ↓ bw (GD 29), ↓ fc, clear jelly-like anal discharge, ↑ soft feces, ↓ number of live foetuses/litter		
rabbit PMRA# 1222553	Developmental: 75 mg/kg bw/day: ↓ number of live foetuses/litter (driven by abort		
Developmental toxicity (gavage)	Maternal NOAEL = 60 mg/kg bw/day		
Dosed GD 7-19	No treatment-related effects.		
Quizalofop-ethyl	Developmental NOAEL = 60 mg/kg bw/day		
New Zealand White rabbit	No treatment-related effects.		
PMRA# 1222554	No evidence of sensitivity of the young or treatment-related malformations		
Developmental toxicity (gavage) Dosed GD 7-18	Maternal NOAEL = 60 mg/kg bw/day No treatment-related effects		
Quizalofop-ethyl	Developmental NOAEL = 60 mg/kg bw/day No treatment-related effects		
New Zealand White rabbit	No evidence of sensitivity of the young or treatment-related malformations		
PMRA# 1224266, 1224737			
Genotoxicity Studies			
Rec- assay / Bacterial Reverse Mutation Assay (in vitro)	Rec ^{+/-} -assay – negative (+/- metabolic activation) up to 2500 µg/plate		
. ,	Ames test – negative (+/- metabolic activation) up to 2500 µg/plate		

Study	Study results
Type/Animal/PMRA#	
rec ⁻ and H17 rec ⁺ (for	
DNA damaging ability); E. coli WP ² hcr ⁻ ; S.	
typhimurium TA98,	
TA100,	
TA1535, TA1537,	
TA1538	
Quizalofop-ethyl	
PMRA# 1184256, 1224268	
1224200	
Bacterial Reverse	
- · ·	Negative (+/-metabolic activation) up to 5000 µg/plate
vitro)	
S. typhimurium TA98,	
TA100, TA1535, TA	
1537, TA 1538 ± S-9.	
Quizalofop-p-ethyl	
PMRA# 1161247	
Micronucleus test	Negative up to 1200 mg/kg bw
CD-1 mouse	
Quizalofop-ethyl	
PMRA# 1184261,	
1224269	
	Negative up to 6 mM
synthesis	
Rat hepatocyte cells	
Quizalofop-ethyl	
PMRA# 1184260,	
1224270	

Study Tyme/A nimel/BMD A #	Study results
Type/Animal/PMRA#	
Unscheduled DNA synthesis	Negative up to 1000 μg/mL
Rat hepatocyte cells	
Quizalofop-p-ethyl	
PMRA# 1161250, 1161251	
In vitro chromosome aberration test	Negative up to 500 μg /mL
Chinese hamster lung fibroblast cell line (CHL)	Cytotoxicity noted at 500 μg/mL with activation.
Quizalofop-ethyl	
PMRA# 1184259, 1224233	
CHO/HGPRT gene mutation assay	Negative up to 1 mM
BH4 clone of the CHO- K1 cell line	The test material began to precipitate out at ≥ 0.25 mM and so 1.0 mM was the highest level tested. Slightly more toxicity with activation (about 10% more). Positive controls produced strong mutagenicity
Quizalofop-ethyl	
PMRA# 1184258, 1224234	
	Negative up to 500 or 1000 μg/mL, (+/- metabolic activation) , respectively
5178Y/TK ^{+/-} mouse lymphoma cells	
Quizalofop-p-ethyl	
PMRA# 1161248, 1161249	

Study	Study results
Type/Animal/PMRA#	
Immunotoxicity Studies	S
28-day oral immunotoxicity study	NOAEL = 55 mg/kg bw/day
(Enzyme-linked immunosorbent assay) (dietary)	103 mg/kg bw/day (600 ppm): liver effects [enlarged (4/10), focal tan discolouration (1/10)]
CD-1 mouse	There were no compound-related effects on mortality, clinical signs, body weight, food consumption, organ weights, gross pathology, histopathology, or immunotoxicity.
Quizalofop-p-ethyl	No evidence of immune system dysregulation.
PMRA# 2717605, 2719119	
Special Studies (non-gu	ideline)
Special Studies (non-gu	
Liver enzyme induction study	≥20 mg/kg bw/day (400 ppm): \uparrow rel. liver wt. ($3/$ \bigcirc); \uparrow DNA conc. (\bigcirc)
	64 mg/kg bw/day (1280 ppm): ↓ bwg (්); ↑ microsomal protein
Sprague-Dawley rat	concentration in liver, \downarrow rel. DNA concentration (µg DNA /g liver wt.) (\bigcirc)
Quizalofop-ethyl	No apparent dose-related trends observed in cytochrome P450 or b5
PMRA# 1224725	
	Phenobarbital 50 mg/kg bw/day: \downarrow bwg, \uparrow cytochrome P450 and b5, \uparrow microsomal protein concentration in liver (\Diamond/\Diamond); \uparrow rel. liver wt. (\Diamond)
Liver enzyme induction study	≥48 mg/kg bw/day (320 ppm): ↑ rel. liver wt. (↑ cytochrome b5 levels, ↑ microsomal protein concentration in liver
♂ Balb/c mouse	150 mg/kg bw/day (1000 ppm): ↓ cytochrome P450 levels
Quizalofop-ethyl	All NC-302 treated groups and the control mice had significantly lower cytochrome P450 and b5 levels compared to the phenobarbital-treated
PMRA# 1224724	mice.
	Phenobarbital 50 mg/kg bw/day: ↓ bwg, ↑ cytochrome P450 and b5, ↑ microsomal protein concentration in liver
Liver enzyme induction study	≥48 mg/kg bw/day (320 ppm): ↑ rel. liver wt., ↓ cytochrome P450 levels, ↑ microsomal protein concentration in liver
♀ Balb/c mouse	

Study	
Type/Animal/PMRA#	Study results
	All EQP treated groups and the control mice had significantly lower
Quizalofop-ethyl	cytochrome P450 and b5 levels compared to the phenobarbital-treated
	mice.
PMRA# 1224722	
	Phenobarbital
	50 mg/kg bw/day: \uparrow cytochrome P450 and b5, \uparrow microsomal protein concentration in liver
Effect on the mixed	100 mg/kg bw/day: ↑ rel. liver wt, ↓ cytochrome b5 levels, ↑
function oxidase system	microsomal protein concentration in liver, \downarrow aldrin epoxidase and 7- ethoxy-coumarin de-ethylase, \uparrow lauric acid hydroxylase
♂ CD-1 mouse	
	Phenobarbital
Quizalofop-ethyl	80 mg/kg bw/day: ↑ rel. liver wt., ↑ cytochrome P450 (x2), ↑ aldrin epoxidase and 7-ethoxy-coumarin de-ethylase
PMRA# 1224726	epoxiduse and / ethoxy countain de ethylase
Peroxisome proliferation	Supplemental
in the liver (gavage)	Limitation: protocol issues including the lack of adequate
in the liver (gavage)	characterization of morphological characteristics, no definition of
♂ CD-1 mouse	"normal" limits, and no attempt to demonstrate a possible DR
0	relationship. Enzyme activities associated with peroxisome
Quizalofop-ethyl	proliferation activity were not investigated. Characteristic differences
	between sex or interspecies sensitivities were not studied.
PMRA# 1224726	
	100 mg/kg bw/day: ↑ rel. liver wt.
	The authors state that the test material was shown to significantly
	increase the number of peroxisomes present in the liver confirming that the compound is a clofibrate-type peroxisome proliferator; however the study had several limitations.

Appendix IV Dietary exposure and risk assessments

Summary of Chronic No	Summary of Chronic Non-Cancer Dietary Risk for Quizalofop-p-ethyl ³								
	Food only	Food and drinking water ²							
Population subgroup	% ADI ¹ (Basic)	% ADI ¹ (Basic)							
General Population	13.9	15.0							
All Infants (<1 year old)	29.6	33.9							
Children 1–2 years old	51.2	52.7							
Children 3–5 years old	38.3	39.6							
Children 6–12 years old	22.8	23.7							
Youth 13–19 years old	13.0	13.8							
Adults 20–49 years old	10.2	11.4							
Adults 50+ years old	9.0	10.1							
Females 13–49 years old	10.2	11.3							

Table 1 Chronic dietary risk assessment for Quizalofop-p-ethyl

¹ Acceptable Daily Intake (ADI) of 0.01 mg/kg body weight/day applies to the general population and all population subgroups. Bolded values indicate population group with the highest exposures.

² Level 1 EEC in groundwater: 5.6 µg a.i./L

³ The established United States tolerances for Crop Group 11-09 (Pome Fruits), Crop Group 12-09 (Stone Fruits) and Crop Subgroup 13-07F (Small Fruits Vine Climbing, except Fuzzy Kiwifruit) were included in the DEA. The Canadian MRLs for these crops, which are consistent with the established American tolerances, are under promulgation as a result of review under URMULE program.

Appendix V Food residue chemistry summary

Quizalofop-p-ethyl is a selective postemergence herbicide belonging to the aryloxyphenoxypropionate chemical family. The initial registration of quizalofop-p-ethyl was largely based on data on file for quizalofop-ethyl, a 50:50 racemic mixture. Quizalofop-p-ethyl is the resolved D(+) isomer of quizalofop-ethyl.

In Canada, quizalofop-p-ethyl is registered for agricultural use on a wide variety of crops. The end-use products are formulated as emulsifiable concentrates. The maximum seasonal application rates range from 36.5–72 g a.i./ha.

The nature of the residue in plant and animal commodities is adequately understood. The residue definition in all plant and animal commodities for risk assessment and enforcement is quizalofop-ethyl (ethyl (RS) 2-[4-(6-chloroquinoxalin-2-yloxy)phenoxy]propionate), including the acid metabolites of (RS)2-[4-(6-chloroquinoxalin-2-yloxy)phenoxy] propanoic acid, all expressed as quizalofop-ethyl. Residues of the resolved isomer quizalofop-p-ethyl are covered by MRLs for quizalofop-ethyl, the unresolved isomeric mixture. There are no changes in residue definition proposed for these commodities. The residue definition for risk assessment in drinking water is being revised from quizalofop-p-ethyl and quizalofop-acid only to quizalofop-p-ethyl + quizalofop-p + hydroxy-quizalofop + dihydroxy-quinoxaline + hydroxy-quinoxaline with this re-evaluation.

Maximum Residue Limits (MRLs) have been established for residues of quizalofop-ethyl and its metabolites and published in Health Canada's List of MRLs Regulated under the *Pest Control Products Act* on the Maximum Residue Limits for Pesticides webpage. It is noted that the use expansion request under User Requested Minor Use Label Expansion (URMULE) program was jointly reviewed with the United States Environmental Protection Agency (USEPA) and the MRLs are proposed for Crop Group 11-09 (Pome Fruits), Crop Group 12-09 (Stone Fruits) and Crop Subgroup 13-07F (Small Fruits Vine Climbing, except Fuzzy Kiwifruit). At this time, the United States established the tolerances that are consistent with the proposed Canadian MRLs, but the MRLs are under promulgation in Canada. The DEA reported herein was conducted using the updated American tolerances.

Several analytical methods for quizalofop-ethyl and quizalofop-p-ethyl have been reviewed previously and were deemed acceptable for data collection in plant and animal commodities and enforcement in plant commodities. Since adequate methods are on file for the determination of residues of quizalofop-ethyl and its acid metabolites in animal commodities, the lack of an enforcement method for animal commodities will not be identified as a deficiency for the current re-evaluation. Quantitation of residues is performed by high performance liquid chromatography with UV detection (HPLC/UV), gas chromatography with mass selective detection (GC/MS), and HPLC with electrochemical detection.

Sufficient information was available to assess the dietary exposure and risk from exposure to quizalofop-p-ethyl and its metabolites. Residue field trial data were reviewed for the registered uses of quizalofop-p-ethyl and were determined to be adequate to support the current use patterns.

Appendix VI Mixer/loader and applicator exposure and risk assessment

Table 1 Mixer/loader/applicators using groundboom equipme	Table 1	Mixer/loader/applicator	s using groundboon	n equipment
---	---------	-------------------------	--------------------	-------------

	Donneson	M/L (µg/k			cator UE kg a.i.)	Maximu	ATP	-	exposure g bw/day)		MOE	
Сгор	Represen tative use	Dermal	Inhalati on	Derm al	Inhalati on	m ARª (kg a.i./ha)	D ^b (ha)	Derm al	Inhalatio n	Derm al	Inhalati on	Combined ^f
	Open mix/load liquids and open cab groundboom liquid application (AHETF); PPE: coveralls, chemical-resistant gloves								es			
Large field crops	Seed Alfalfa	31.32	0.63	14.19	1.68	0.072	360	0.0074	0.00075	351	3467	319
Vegetabl es and fruits	Saskatoon Berries	31.32	0.63	14.19	1.68	0.072	26	0.0005	0.00005	5200	52,000	4727

M/L = mixer/loader; UE = unit exposure; AR = application rate; ATPD = area treated per day; MOE = Margin of exposure; CF = Conversion factor

- ^a Maximum AR (kg a.i./ha) as per current product labels
- ^b ATPD (ha) PMRA default values
- ^c Dermal exposure (mg/kg bw/day) = Dermal UE (μ g/kg a.i.) × CF (1 mg/1000 μ g) × ATPD (ha) × Maximum AR (kg a.i./ha) × 50% dermal absorption / average worker body weight (80 kg)
- Inhalation exposure (mg/kg bw/day) = Inhalation UE (μ g/kg a.i.) × CF (1 mg/1000 μ g) × ATPD (ha) × Maximum AR (kg a.i./ha) / average worker body weight (80 kg)
- ^e Based on a dermal and inhalation NOAEL of 2.6 mg/kg bw/day; target MOE of 100 (Appendix III)
- ^f Combined MOE = 1/((1/MOE dermal) + (1/MOE inhalation))

Representative		1/L UEM/L UEMaximumDaily exposureg/kg a.i.)(µg/kg a.i.)AR ^a ATPD ^b (mg/kg bw/day)				·						MOE °		
use	Dermal	Inhalation	Dermal	Inhalation	(kg a.i./ha)	(ha)		Dermal ^c	Inhalation ^d	Dermal	Inhalation	Combined f		
Open mix/load Liquids (AHETF); PPE: coveralls, chemical-resistant gloves														
Seed Alfalfa	31.32	0.63	-	-	0.072	400	0.0056	0.000227	464	11464	446			
Closed Cockpit Aerial Liquid Application (AHETF); PPE: coveralls, chemical-resistant gloves*														
Seed Alfalfa	-	-	2.18	0.00969	0.072	400	0.0004	0.000003	6500	>100,000	6452			

Table 2 Mixer/loader and applicators using aerial equipment

M/L = mixer/loader; UE = unit exposure; AR = application rate; ATPD = area treated per day; MOE = Margin of Exposure; CF = Conversion factor *For closed cab/cockpit scenarios, chemical resistant gloves were only worn to perform activities outside of the cab/cockpit.

- ^a Maximum AR (kg a.i./ha) as per current product labels
- ^b ATPD (ha) PMRA default values
- ^c Dermal exposure (mg/kg bw/day) = Dermal UE (μ g/kg a.i.) × CF (1 mg/1000 μ g) × ATPD (ha) × Maximum AR (kg a.i./ha) × 50% dermal absorption / average worker body weight (80 kg)
- Inhalation exposure (mg/kg bw/day) = Inhalation UE (μ g/kg a.i.) × CF (1 mg/1000 μ g) × ATPD (ha) × Maximum AR (kg a.i./ha) / average worker body weight (80 kg)
- ^e Based on a dermal and inhalation NOAEL of 2.6 mg/kg bw/day; target MOE of 100 (Appendix III)
- ^f Combined MOE: = 1/((1/MOE dermal) + (1/MOE inhalation))

Appendix VII Occupational postapplication exposure and risk assessment

Сгор	Use directions ^a AR (g a.i./ha) (Number of applications)	Peak DFR ^b (μg a.i./cm ²)	Activity	TC ^c (cm ² /hr)	Dermal Exposure ^d (mg/kg bw/day)	MOE	REI (hours)
Seed alfalfa; Established red and alsike clovers for seed production only; Seedling or established creeping red fescue for seed production only: Seedling legumes for seed production (for bird's-foot trefoil, alsike, red, white and sweet clover and sainfoin); Industrial hemp grown for fibre, seed and oil; Rutabagas; Chickpeas; Field and seed corn; Lentils; Dry beans; Dry common beans; Peas (field and processing); Snap beans; Narrow leaf lupin; Cucurbit Vegetables; Saskatoon Berry; Crop, subgroup 13- 07F (Small fruits vine climbing, except fuzzy Kiwifruit);	72 (1×)	0.18	Irrigation (hand set)	1750	0.0158	165	12
Canola; Crambe ; Flax (including low linolenic acid varieties); Yellow, and brown mustard; Oriental mustard (including canola quality Brassica juncea) (condiment and oilseed type); Soybeans;			Scouting	1100	0.0099	263	
Sunflowers Tribenuron-methyl toleranct sunflowers			Scouting	90	0.0008	3210	
Crop, subgroup 13-07F (Small fruits vine climbing, except fuzzy Kiwifruit)			Scouting/ Weeding, Hand	640	0.0058	451	
Crop group 1-09 (Pome Fruit); and 12-09 (Stone Fruit)			Scouting	580	0.0052	498	
Ethiopian mustard (Brassica carinata);	48 (1×)	0.12	Scouting	1100	0.0066	394	
Sugarbeets	72 (1×)	0.18	Scouting	210	0.0019	1376	
	36 (2×, RTI 14 days)	0.11	Scouting	210	0.0012	2239	
Camelina sativa	72 (1×, REI of 4 days)	0.12	Scouting	1100	0.0065	400	4 (days)

AR = application rate; RTI = re-treatment interval; DFR = dislodgeable foliar residue; TC = transfer coefficient

MOE = margin of exposure; REI = restricted-entry interval; CF = conversion factor

- ^a Use directions as per current product labels
- ^b Peak DFR (μ g a.i./cm²) calculated assuming 25% of application rate with a 10% residue dissipation per day
- ^c TC (cm^2/hr) values from the Agricultural Re-entry Task Force (ARTF) database
- ^d Dermal Exposure (mg/kg bw/day) = TC (cm²/hr) × DFR (μ g a.i./cm²) × CF (1 mg/1000 μ g) × 50% dermal absorption × 8 hours/day / average worker body weight (80 kg)
- ^e Based on a NOAEL of 2.6 mg/kg bw/day, target MOE of 100 (Appendix III)

Appendix VIII Environmental assessment

Table 1	Quizalofop-p-ethyl and	l its major transforn	nation products
---------	------------------------	-----------------------	-----------------

Substance name	Structure
Quizalofop-p-ethyl (parent: currently registered active ingredient; R(+) enantiomer)	
Quizalofop-ethyl (previously registered active ingredient; 50/50 racemic mixture of R(+) and S(-) enantiomers)	
Quizalofop-acid	CI HIC OCH
Hydroxy-quizalofop	
Dihydroxy-quinoxaline	
2-(4-hydroxyphenoxy)-propanoic acid	новорон
Hydroxy-quinoxaline	CI N OH
Quizalofop-phenol	CI N O OH
Ethyl phenoxy acid	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
CO ₂	

	Test	DT/4	Transformation	Comments/	PMR			
Study type	material	DT ₅₀ / <i>t</i> _{1/2-rep} (days) ¹	products (Maximum % AR ²)	classification	A#			
Abiotic transformation								
Hydrolysis	Quizalofop- ethyl	25°C pH 5 = stable pH 7 = 29.4 d pH 9 = 0.93 d	Quizalofop-acid (pH 7: 43.4%; pH 9: 99%)	Not a major route of transformatio n	12242 38			
	Quizalofop- ethyl	25°C; sterilized buffer pH 2 = $7 - 14$ d pH 5 and 7 = 80% AR remained after 30 d pH 9 < 1 d	pH 7 and 9, Quizalofop-acid (21.1 % AR at day 30, pH 7 and 76.4 % AR at day 14, pH 9)	Not a major route of transformatio n	32810 18			
	Quizalofop- p-ethyl (purity: 99.6%)	50°C pH 4 = >1 year pH 7 = 3.7 pH 9 < 2.4 hours 40°C pH 7 = 10.7 25°C pH 7 = 59.8	Hydrolysis products were not identified for this study.	Not a major route of transformatio n under environmenta lly relevant conditions. Stable under acidic conditions; unstable under alkaline conditions (high temperatures)	32810 18			
	Quizalofop- acid	pH 5, 7 and 9 = stable	NA	Not a major route of transformatio n	32810 18			
Phototransform ation on Soil	Quizalofop- ethyl	(Combined labels) Woodstown Sandy Loam: $DT_{50} = 51.5$ Tr = 1830	Quizalofop-acid (7.2%), CO ₂ (22%)	Not a major route of transformatio n	12241 12			

 Table 2
 Summary of fate and behaviour of quizalofop-p-ethyl in the environment

~ ~	Test	DT50/t1/2-rep	Transformation	Comments/	PMR	
Study type	material	$(days)^1$	products	classification	A#	
		(uujs)	(Maximum % AR ²)	ciussilicution		
	Quizalofop-	(Quinoxaline	Quizalofop-acid	The study	12241	
	ethyl	label)	(75%),	was not	89	
		Woodstown	Quizalofop-Phenol	conducted		
		Sandy	(11%),	under sterile		
		Loam:	Dihydroxy-	conditions		
		$DT_{50} << 1$	quinoxaline (6%)	resulting in		
		Tr = 3.86		the dark		
		Flanagan Silt		controls		
		Loam:		degrading		
		$DT_{50} << 1$		almost as fast		
		Tr = 3.26		as the		
		11 - 3.20		irradiated		
	0 1 0	LODE DT		samples.	22010	
	Quizalofop-	-IORE DT ₅₀	Quizalofop-acid	Not a major	32810	
	ethyl	= 54	(7.2% AR; irradiated	route of	18	
		IORE $DT_{90} =$	conditions, day 15),	transformatio		
		11 120	CO ₂ (22.3% AR)	n		
		IORE Tr =				
		3 348				
Phototransform	Quizalofop-	Continuous	QP (4%)	Not a major	12241	
ation in Water	ethyl	Light:	Phenol 1 (5%)	route of	13	
		$DT_{50} = 62.5$	Phenol 2 (3%)	transformatio		
		to 72.7	CO ₂ (9%)	n		
	Quizalofop-	Continuous	CO ₂	Not a major	32810	
	p-ethyl	Light:		route of	18	
	1 5	$DT_{50} = 38.3$		transformatio		
		$DT_{90} = 127$		n		
Volatilization	Quizalofop-	Vapour	NA	Low volatility	14790	
Volutilization	p-ethyl	pressure: 1.1	1111	Low volutility	92	
	penny	$\times 10^{-7}$ Pa (8.3			12	
		$\times 10^{-10}$ × 10 ⁻¹⁰				
	0 1 1	mmHg)		T 1 / 1'/	22010	
	Quizalofop-	No	Not assessed	Low volatility	32810	
	p-ethyl	volatilization			18	
		observed				
		from plant				
		surface in 24h				
	Quizalofop-	Less than	Not assessed	Low volatility	32810	
	p-ethyl	0.3%			18	
		volatilized in				
		24h from				
		sandy soil				

Study type	Test material	DT50/ <i>t</i> 1/2-rep (days) ¹	Transformation products (Maximum % AR ²)	Comments/ classification	PMR A#
Biotransformati	on in soil				
Biotransformati	Quizalofop- ethyl	Woodstown Sandy Loam (0.1 ppm): IORE DT ₅₀ : 1.99 IORE Tr: 16.5 (1 ppm): DFOP DT ₅₀ : 1.65 DFOP Tr: 94.8 Flanagan silt Loam (0.1 ppm): IORE DT ₅₀ : 1.99 IORE DT ₅₀ : 1.99 IORE Tr: 55.3 (1 ppm): IORE DT ₅₀ : 0.599 IORE Tr: 18.4	Quizalofop-acid (87%, wk 3; the predominant TP in all treatments and sampling times), Quizalofop-phenol (6.8%), Hydroxy-quinoxaline (3.3%)	Non- persistent Study results were compiled after 16.5 weeks. Complete study, up to 50 weeks of sampling, reported in PMRA# 1224013. Bound residues were determined in full study.	12242 41

Study type	Test material	DT50/ <i>t</i> 1/2-rep (days) ¹	Transformation products (Maximum % AR ²)	Comments/ classification	PMR A#
	Quizalofop-	Woodstown	Quizalofop-acid	Non-	12240
	ethyl	Sandy Loam	(90%; wk 16.5; the	persistent	13
		(0.1 ppm):	predominant TP in all		
		IORE DT ₅₀ :	treatments and all	Bound	
		1.32	sampling times)	residues	
		IORE Tr:		ranged from	
		21.6	Quizalofop-phenol	12 to 25 %	
			(5%),	AR at week	
		(1 ppm):	Hydroxy-quinoxaline	50, the end of	
		IORE DT ₅₀ :	(7%),	the study.	
		0.5	Dihydroxy-		
		IORE Tr: 120	quinoxaline (43%)		
		T I ' I4	CO ₂ (6%)		
		Flanagan silt			
		Loam			
		(0.1 ppm): IORE DT ₅₀ :			
		2.26			
		IORE Tr:			
		48.2			
		40.2			
		(1 ppm):			
		IORE DT ₅₀ :			
		0.346			
		IORE Tr:			
		21.4			

	Test	DT50/ <i>t</i> 1/2-rep	Transformation	Comments/	PMR
Study type	material	$(days)^1$	products (Maximum % AR ²)	classification	A#
	Quizalofop-	Woodstown	Quizalofop-acid	Non-	12240
	ethyl	Sandy Loam	(78%),	persistent	14
		(0.1 ppm):			
		IORE DT ₅₀ : <	Quizalofop-phenol	TPs	
		0.1	(6%),	quizalofop-	
		IORE Tr:	Ethyl phenoxy acid	acid and 2-(4-	
		33.7	(2%),	hydroxy	
		(1 ppm):	2-(4-hydroxy phenoxy)-propanoic	phenoxy)- propanoic	
		IORE DT ₅₀ : <	acid (31.1 %),	acid reach	
		0.1	$CO_2 (38\%)$	maximum	
		IORE Tr:		levels by	
		2.41		weeks 3 to 5	
				and then	
		Flanagan silt		decline to <12	
		Loam		% AR by	
		(0.1 ppm):		study	
		IORE DT ₅₀ : <		termination	
		0.1		(53 weeks).	
		IORE Tr: <		Bound	
		0.1		radioactivity	
		(1 ppm):		gradually	
		IORE DT ₅₀ : <		increases to	
		0.1		19 to 38 %	
		IORE Tr:		AR by week	
		0.04		53.	
	Quizalofop-	Silty Loam:	Quizalofop acid (36	Non-	12240
	ethyl	IORE DT ₅₀ :	% AR, 15 d),	persistent	12
		0.9	Quizalofop-phenol	T T 1	
		IORE Tr: 17	(4.3%),	Unextracted	
			Ethyl phenoxy acid $(1, 294)$	radioactivity accounted for	
			(1.2%), 2-(4-hydroxy	39% AR by	
			phenoxy)-propanoic	day 30.	
			acid (6.4%),	auy 50.	
			Quizalofop-ethyl		
			acetate (1.8%),		
			CO ₂ (3%)		

Study type	Test material	DT50/ <i>t</i> 1/2-rep (days) ¹	Transformation products (Maximum % AR ²)	Comments/ classification	PMR A#
	Quizalofop- ethyl	Chiba Silty Loam: IORE DT ₅₀ : 0.9 IORE Tr: 18.6 Nagano Light Clay: IORE DT ₅₀ : 0.48 IORE Tr: 5.02	Quizalofop-ethyl (36%), Quizalofop-phenol (4.3%), Ethyl phenoxy acid (1.6%), 2-(4-hydroxy phenoxy)-propanoic acid (7%), CO ₂ (0.8%)	Non- persistent	12240 10
	Quizalofop- p-ethyl (radiochemic al purity >99 %)	DFOP DT ₅₀ : 2.76 DFOP Tr: 65.7 (f=0.654; χ^2 =0.8)	Quizalofop-acid (63%, 15 d), Hydroxy-quizalofop (21%, day 30 and 60), Quizalofop-phenol (2.3%), Hydroxy-quinoxaline (5%), Dihydroxy- quinoxaline (11%), CO ₂ (8%)	Non- persistent Quizalofop- acid was the dominant TP throughout the 91-day study, declining to 17 % AR by study termination. Bound residues increased to 23 to 27% AR by 91	11640 20

Study type	Test material	DT50/ <i>t</i> 1/2-rep (days) ¹	Transformation products (Maximum % AR ²)	Comments/ classification	PMR A#
	Quizalofop- p-ethyl (radiochemic al purity 99.5%)	UK Sandy Loam $IORE DT_{50} =$ 0.5 $IORE DT_{90} =$ 15 IORE Tr = 4	Quizalofop-acid (67.0% AR, day 7), Hydroxy-quizalofop (13.5% AR, d 184), Dihydroxy- quinoxaline (12.3% AR, day 184)	Non- persistent Quizalofop- acid declined to 38.5% AR on day 184. Bound residues were 23% AR after 184 days (mainly associated with humin fraction).	32810 18
	Quizalofop- ethyl (racemate) / Quizalofop- P-ethyl (R(+(enantiomer) and Quizalofop- ethyl (S(-) enantiomer) (radiochemic al purity >99%)	UK Sandy Loam Quizalofop- ethyl: IORE $DT_{50} <$ 0.1 IORE $DT_{90} =$ 1.5 IORE $Tr =$ 0.4 Quizalofop-P- ethyl: IORE $DT_{50} <$ 0.1 IORE $DT_{50} <$ 0.1 IORE $DT_{90} =$ 1.6 IORE $Tr =$ 0.5	Quizalofop-acid (84% AR, day 1), Hydroxyl-quizalofop (13.9% AR, day 60),	Non- persistent Quizalofop- acid peaked on day 1 and steadily declined to ≤12.4% by 120 days). All three forms of quizalofop transformed similarly.	32810 18

Study type	Test material	DT50/ <i>t</i> 1/2-rep (days) ¹	Transformation products (Maximum % AR ²)	Comments/ classification	PMR A#
	Quizalofop- p-ethyl (R(+(enantiomer) (radiochemic al purity 99.7%)	UK Silty Clay Loam: IORE $DT_{50} =$ 0.1 IORE $DT_{90} =$ 3 IORE $Tr =$ 0.9 UK Clay Loam: IORE $DT_{50} <$ 0.1 IORE $DT_{50} <$ 0.1 IORE $DT_{90} =$ 1.2 IORE $Tr =$	Quizalofop-acid (80% AR) Quizalofop phenol (3% AR) Hydroxy-quizalofop (15.7% AR) Phenoxy-acid (3.6% AR)	Non- persistent Quizalofop- acid peaked on day 1 and steadily declined to 6.4% by 153 days). Bound residues were 37.9% after 153 days.	32810 18
	Quizalofop- p-ethyl (R(+(enantiomer) (radiochemic al purity >97%) and Quizalofop- ethyl (racemate) / (radiochemic al purity >97%)	0.4 UK Abington Sandy Loam: EQP: IORE $DT_{50} <$ 0.1 IORE $DT_{90} =$ 1.2 IORE $Tr =$ 0.4 QPE: IORE $DT_{50} <$ 0.1 IORE $DT_{90} =$ 0.6 IORE $Tr =$ 0.2	Quizalofop-acid (85% AR) Quizalofop phenol (4.8% AR) Hydroxy-quizalofop (3.3% AR) CO2 (18.6% AR)	Non- persistent Quizalofop- acid peaked between days 1 and 3 before declining to 49.6 (quizalofop- ethyl) and 20.0% (quizalofop- p-ethyl) by day 100. Bound residues were 32% (quizalofop- ethyl) and 48% (quizalofop- p-ethyl) after 100 days.	32810 18

Study type	Test material	DT50/ <i>t</i> 1/2-rep (days) ¹	Transformation products (Maximum % AR ²)	Comments/ classification	PMR A#
	Quizalofop- p-ethyl (R(+(enantiomer) (radiochemic al purity 99.25%)	UK Sandy Loam: IORE $DT_{50} =$ 0.2 IORE $DT_{90} =$ 8 IORE $Tr =$ 2.4	Quizalofop-acid (76% AR) Hydroxy-quizalofop (11% AR)	Non- persistent Quizalofop- acid peaked on day 7 before declining to 26.7% by day 120.	32810 18
	6-Chloro-3- hydroxy quinoxaline- 2-one (dihydroxy- quinoxaline) (purity 98.8%)	UK Clay: SFO $DT_{50} =$ 102 SFO $DT_{90} =$ 338 UK Sandy Loam: SFO $DT_{50} =$ 53 SFO $DT_{90} =$ 175 UK Silty Clay Loam: SFO $DT_{50} =$ 42 SFO $DT_{90} =$ 140	Not assessed	Slightly to moderately persistent	32810 18

Study type	Test material	DT50/ <i>t</i> 1/2-rep (days) ¹	Transformation products (Maximum % AR ²)	Comments/ classification	PMR A#
	Quizalofop- p-ethyl	ErlenBach Loamy Sand FOMC DT_{50} = 21 Münchenbuc hsee Sandy Loam DFOP DT_{50} = 0.22 Müntschemi er Sandy Loam FOMC DT_{50} = 0.21 Crushed sand (loamy sand) FOMC DT_{50}	Quizalofop-acid (98–100%)	Non persistent to slightly persistent	32804 62
	Quizalofop- acid	= 0.69 ErlenBach Loamy Sand FOMC DT ₅₀ = 96 Münchenbuc hsee Sandy Loam DFOP DT ₅₀ = 113 Müntschemi er Sandy Loam FOMC ST50 > 1000 Crushed sand (loamy sand) FOMC DT ₅₀ = 371	None detected	Moderately persistent to Persistent	32804 62

Study type	Test material	DT50/ <i>t</i> 1/2-rep (days) ¹	Transformation products (Maximum % AR ²)	Comments/ classification	PMR A#
	Hydroxy- quizalofop	ErlenBach Loamy Sand SFO $DT_{50} =$ 37 Münchenbuc hsee Sandy Loam SFO $DT_{50} =$ 35 Müntschemi er Sandy Loam SFO $DT_{50} =$ 630 Crushed sand (loamy sand) SFO $DT_{50} =$	Dihydroxy- quinoxaline (29%)	Slightly persistent to Persistent	32804 62
	Dihydroxy- quinoxaline	BI O D T30189ErlenBachLoamy SandFOMC DT50= 335Münchenbuchsee SandyLoamFOMC DT50= 24Müntschemier SandyLoamSFO DT50= 445Crushedsand (loamysand)FOMC DT50= 474	None detected	Slightly persistent to persistent	32804 62

Study type	Test material	DT50/ <i>t</i> 1/2-rep (days) ¹	Transformation products (Maximum % AR ²)	Comments/ classification	PMR A#
	Quizalofop- p-ethyl	Sichuan Dazhou Sandy Loam 0.7; 1 Henan Xinxiang Sandy Loam 0.2; 0.3 Jiangxi Nanchang Clay 6.6 d, 8.7 d	Not assessed	Non- persistent	32804 80
Biotransformati on in anaerobic Soil	Quizalofop- ethyl	Silty Loam: DFOP DT ₅₀ : 1.08 DFOP Tr: 8.69	Quizalofop-acid (35% AR, 30 d), Quizalofop-phenol (1.7%), Ethyl phenoxy acid (1.2%), 2-(4-hydroxy phenoxy-propanoic acid (3%), Quizalofop-ethyl acetate (1.5%), CO ₂ (0.9%)	Non- persistent Unextracted radioacitivity accounted for 45% AR by day 30.	12240 12
	Quizalofop- ethyl	Chiba Silty Loam: IORE DT ₅₀ : 1.2 IORE Tr: 12.9	Quizalofop-acid (35% AR, day 30), CO ₂ (1.1% AR)	Non- persistent	12240 10

Study type	Test material Quizalofop- P-ethyl (R(+) enantiomer) (radiochemic al purity 97.49%) and	$\label{eq:transform} \begin{array}{c} \mathbf{DT}_{50}/t_{1/2\text{-rep}} \\ (\mathbf{days})^1 \end{array}$ $\begin{array}{c} \mathbf{UK \ Sandy} \\ \mathbf{Loam:} \\ \mathbf{DT}_{50} < 1 \end{array}$ $\begin{array}{c} \mathbf{Quizalofop-acid:} \\ \mathbf{DT}_{50} = 253 \ \mathrm{d}, \end{array}$	Transformation products(Maximum % AR²)Quizalofop-acid(92.7%),2-(4-hydroxy phenoxy) propanoic acid (7.7%)	Comments/ classification Non- persistent Quizalofop- acid peaked on day 7	PMR A# 32810 18
	Quizalofop- ethyl (S(-) enantiomer) (radiochemic al purity 97.77%)	persistent.; DT ₉₀ = 880 d		before declining to 71.0% on day 120. (DT50 = 253 d	
Mobility	1	I =	Γ	I = =	
Property	Test	Mean Kd/Koc	Comment	Mobility	PMR
Adsorption in	material Quizalofop	$\frac{(L/kg)}{Kd = 50}$	Four soils	classification Low to slight	A# 12240
soil	ethyl	$K_{\rm oc} = 1816$		mobility	12240
	Quizalofop- ethyl	$K_{\rm oc} = 17$ $K_{\rm oc} = 1309$	Four soils	Low mobility	12225 66
	Quizalofop- acid	$Kd = 20$ $K_{\rm oc} = 476$	Four soils	Low to moderate mobility	12240 10
	Quizalofop- acid	$Kd = 15$ $K_{\rm oc} = 293$	Four soils	Low to moderate mobility	12240 81
	Quizalofop- acid	$Kd = 38$ $K_{oc} = 1015$	Four soils	Low to moderate mobility	32810 18
	Hydroxy- quizalofop Dihydroxy-	Kd = 42 $K_{oc} = 666$ Kd = 13	Three soils	Low to high mobility Low to very	32810 18 32810
	quioxaline	$K_{\rm oc} = 371$		high mobility	18
	Quizalofop- p-ethyl	$Kd = 30$ $K_{oc} = 18124$	Four soils	Slight mobility to immobile	32804 62
	Quizalofop- acid	$Kd = 2$ $K_{oc} = 1451$	Four soils	Slight to moderate mobility	32804 62
	Hydroxy- quizalofop	$Kd = 1$ $K_{oc} = 813$	Four soils	Low to moderate mobility	32804 62

Study type	Test material	DT50/ <i>t</i> 1/2-rep (days) ¹	Transformation products (Maximum % AR ²)	Comments/ classification	PMR A#
	Dihydroxy- quinoxaline	$Kd = 1$ $K_{oc} = 946$	Four soils	Low mobility	32804 62
Soil leaching	Quizalofop- ethyl	(Four soils)		Moderate mobility	12241 90
Lysimeter	Quizalofop- ethyl	Two soils Quizalofop phenol (0% AR); hydroxy- quinozaline (0–6.8% AR) Two soils Quizalofop-acid (84% AR) and quizalofop phenol (6.4%) detected Majority of radioactivity was in the top 10 cm soil layer. Some radioactivity down to 30 cm. No residue detectable in leachate			32810 18
Field dissipatio	n	Γ	Γ	T	1
Test site	Test material	DT ₅₀ (days)	Transformation products (Maximum % AR)	Classificatio n/ comments	PMR A#
Iona, ON	Assure EC (96.8 g a.i./L,	22.8	Quizalofop-acid (2.4 ppm)	Non-persitent	11465 95
Hanley, SK	Quizalofop- p-ethyl).	6.1		to slightly persistent.	
Beaumont, AB	Applied at 500 g a.i./ha	4.8		500 g a.i./ha: Residues	
Iona, ON	Assure EC	4.7		detected	

			Tuonaformette		
Study type	Test material	DT50/ <i>t</i> 1/2-rep (days) ¹	Transformation products (Maximum % AR ²)	Comments/ classification	PMR A#
Hanley, SK	(96.8 g a.i./L,	14.3		down to 10 cm	
Beaumont, AB	Quizalofop- p-ethyl). Applied at 5000 g a.i./ha	18.0		5000 g a.i./ha : Residues detected down to 30 cm	
Illinois		156		Non-persitent to persistent.	12237 69
California	Assure EC (95.8 g a.i./L,	364	Dihydroxy-	DT50s based on	
North Carolina	Quizalofop- p-ethyl)	4.9	quinoxaline (0.07 ppm)	quizalofop- ethyl +	
Mississippi		138		Quizalofop- acid residues	
Illinois (silt loam)		DFOP $DT_{50} =$ 1.9d DFOP $DT_{90} =$ 6.7d DFOP $Tr =$ 2039d	Quizalofop-acid	Non-persitent to slightly	12240 47
North Carolina (Loamy sand)	¹⁴ C- Quizalofop- ethyl (99.4 to	$IORE DT_{50} =$ 0.19d $IORE DT_{90} =$ 4.8d IORE Tr = 1.4d	(66%), Quizalofop phenol (6.6%) Hydroxy-quinoxaline (3.3%) Ethyl-phenoxy-acid	persistent. Illinois, Mississippi, Delaware: Residues	
Mississippi (Silt loam)	99.9% purity). Applied at 280 g a.i./ha.	$DFOP DT_{50} =$ $1.5d$ $DFOP DT_{90} =$ $5.2d$ $DFOP Tr =$ $967d$	(2.3%) 2-(4- hydroyphenoxy)propi onic acid (9.6%) Dihydroxy- quinoxaline (27.4%)	detected down to 4" North Carolina: Residues	
DelawareE (Silt loam)		$IORE DT_{50} = 0.02d$ $IORE DT_{90} = 4.5 d$ IORE Tr = 1.3d		detected down to 8".	

	Test	DT50/ <i>t</i> 1/2-rep	Transformation	Comments/	PMR
Study type	material	(days) ¹	products (Maximum % AR ²)	classification	A#
UK (Lawford Silty sand or Loamy Sand),		Quizalofop-p- ethyl: $DT_{50} = 1.75$ $DT_{90} = 5.83$ Quizalofop- acid: $DT_{50} = 14.9$ $DT_{90} = 49.4$ Hydroxy- quizalofop: $DT_{50} = 49.4$ $DT_{90} = 164$		Quizalofop-p- ethyl: Non-	32810 18
Spain (Robledino de la Valduerna Silty Loam Sand)	Targa Prestige EC (50 g a.i./L, Quizalofop- p-ethyl). Applied at 200 g a.i./ha	Quizalofop-p- ethyl: $DT_{50} = 8.2$ $DT_{90} = 27.4$ Quizalofop- acid: $DT_{50} = 37.6$ $DT_{90} = 125$ Hydroxy- quizalofop: $DT_{50} = 42.8$ $DT_{90} = 142.3$	Quizalofop-acid (60 ppb) Hydroxy-quizalofop (5.4 ppb)	persistent. Quizalofop- acid: Slightly persistent Hydroxy- quizalofop: Slightly to moderately persistentResi dues detected in the 0–10 cm soil	
Germany (Lentzke Loamy sand)		Quizalofop-p- ethyl: $DT_{50} = 1.16$ $DT_{90} = 3.84$ Quizalofop- acid: $DT_{50} = 39.8$ $DT_{90} = 132.1$ Hydroxy- quizalofop: $DT_{50} = 32.2$ $DT_{90} = 107.2$		profile	

Study type	Test material	DT50/ <i>t</i> 1/2-rep (days) ¹	Transformation products (Maximum % AR ²)	Comments/ classification	PMR A#
		Quizalofop-p- ethyl: $DT_{50} = 0.55$ $DT_{90} = 1.82$			
France (Moncrabeau Silty Clay Loam)		Quizalofop- acid: $DT_{50} = 33.6$ $DT_{90} = 111.5$			
		Hydroxy- quizalofop: $DT_{50} = 34.5$ $DT_{90} = 114.7$			
Biotransformat	ion in aquatic				
Test site	Test material	DT ₅₀ (days)	Transformation products (Maximum % AR)	Classificatio n/ comments	PMRA #
Aerobic Water	Quizalofop- ethyl at 25°C	DT ₅₀ = 0.1	Quizalofop-acid (109%) Hydroxy-quizalofop (23%) Hydroxyl-quinozaline (33%) Dihydroxy- quinoxaline (2%) CO ₂ (51%)	Non- persistent	116142 8
	Quizalofop- ethyl at 5°C	$DT_{50} = 0.2$	Quizalofop-acid (108%) Ethyl-phenoxy-acid (12%)		

Study type	Test material	DT50/ <i>t</i> 1/2-rep (days) ¹	Transformation products (Maximum % AR ²)	Comments/ classification	PMR A#
Aerobic Water/sediment	Quizalofop- p-acid at 10°C	Iron Hatch Stream Total System (sand) Quizalofop-p- ethyl: $DT_{50} = 1.9$ $DT_{90} = 6.3$ Quizalofop- acid: $DT_{50} = 88.2$ $DT_{90} = 144$ Mill Stream Pond Total System (silty clay loam) Quizalofop-p- ethyl: $DT_{50} = 1.2$ $DT_{90} = 3.9$ Quizalofop- acid: $DT_{50} = 119$ $DT_{90} = 181$	Quizalofop-acid (98% AR) Hydroxy-quizalofop (3.1% AR) Quizalofop-phenol (5.5% AR) 2-(4- hydroxyphenoxy)prop ionic acid (2.6% AR)	QPE: Non- persistent QP: Moderately persistent	328101
Anaerobic Water/Sedimen t	Quizalofop- ethyl	Bradenton, Florida: IORE $DT_{50} <$ 0.1 IORE $DT_{90} =$ 0.7 IORE $Tr =$ 0.2 Landenberg, Pennsylvania: IORE $DT_{50} <$ 0.1 IORE $DT_{90} <$ 0.1 IORE $Tr <$ 0.1	Quizalofop-acid (80% AR) Dihydroxy- quinoxaline (25.4% AR) Hydroxyl- quinoxaline (13.2% AR) 2-(4- hydroxyphenoxy)pr opionic acid (55.1% AR) Quizalofop-phenol (9.5% AR)	Non- persistent	122401 5

Study type	Test material	DT50/ <i>t</i> 1/2-rep (days) ¹	Transformation products (Maximum % AR ²)	Comments/ classification	PMR A#	
Bioconcentratio	n					
Bioconcentrati	Quizalofop- ethyl/Quizalo fop-p-ethyl	$\begin{array}{l} \text{Log } K_{ow} = 4.01 \text{ (suggests potential for} \\ \text{bioaccumulation)} \\ \hline \\ \text{Quizalofop-} \\ \begin{array}{l} \text{Whole fish BCF:} \\ 290 \text{ at } 0.004 \text{ mg/L} \\ 380 \text{ at } 0.04 \text{ mg/L} \end{array} \end{array}$				
on	Quizalofop- ethyl					

¹DT₅₀s and Tr were calculated by PMRA. ²Percent of applied radioactivity.

Table 3 Estimated environmental concentrations/exposures

Environmenta matrix	lApplication rate (g a.i./ha) ¹	Half-life (d)	Estimated environmental exposure (EEC ² /EDE ³ /EER ⁴ /ED ⁵)	Notes
Soil	72	90 th upper percentile of the mean of the aerobic soil representative half-life: 99.58		Assumes evenly distributed in the top 0–15 cm of soil with bulk density of 1.5 g/cm ³ Used in the earthworm risk assessment.
Soil surfaces	72	90 th upper percentile of the mean of the aerobic soil representative half-life: 99.58	EER: 72 g a.i/ha	Used for the terrestria l plant seedling emergence risk assessment
Plant surfaces	72	Foliar half- life: 10	EER: 72 g a.i./ha	Used for the terrestrial plant vegetative vigour and foliar dwelling beneficial arthropods risk assessment.
Contact for bees	72	Not applicable	ED: 0.173 μg a.i./bee	Conversion factor of 2.4 µg a.i./bee/day per kg a.i./ha

Environmental matrix	Application rate (g a.i./ha) ¹		Estimated environmental exposure (EEC ² /EDE ³ /EER ⁴ /ED ⁵)	Notes
Adult bee diet	72		ED: 2.06 μg a.i./bee/day	Conversion factor of 28.6 µg a.i./bee/day per kg a.i./ha
Bee larvae diet	72	11	EDE ⁶ : 0.875 μg a.i./bee/day	Conversion factor of 12 µg a.i./bee/day per kg a.i./ha
Diet of small birds: insects (BW = 20 g)	72		EDE: 5.84 mg a.i./kg bw/day	FIR = 5.1 g dw diet/day
Diet of medium birds: insects (BW = 100 g)	72	Foliar half-life: 10	EDE: 4.58 mg a.i./kg bw/ day	FIR = 19.9 g dw diet/day
Diet of large birds: short grass (BW = 1000 g)	72		EDE: 2.96 mg a.i./kg bw/ day	FIR = 58.1 g dw diet/day
Diet of small mammals: insects (BW = 15 g)	72		EDE: 3.34 mg a.i./kg bw/ day	FIR = 2.2 g dw diet/day
Diet of medium mammals: short grass (BW = 35 g)	72		EDE: 6.35 mg a.i./kg bw/ day	FIR = 4.5 g dw diet/day
Diet of large mammals: short grass (BW = 1000 g)	72	1.0	EDE: 3.49 mg a.i./kg bw/ day	FIR = 68.7 g dw diet/day
Water	72	ment whole system half-life: 0.3	EEC: 80 cm depth: 0.009 mg a.i./L EEC: 15 cm depth: 0.048 mg a.i./L	instantaneous and homogeneous mixing. 15 cm EEC used for amphibians 80 cm EEC used for all other aquatic orga nisms
			maximum single applicati a.i./kg or mg a.i./L) in soil	

Environmental	Application	Half-life (d)	Estimated	Notes
	rate (g a.i./ha) ¹		environmental	
matrix			exposure	
			(EEC ² /EDE ³ /EER ⁴ /ED ⁵)	

³EDE = Estimated Daily Exposure (mg a.i./kg bw/day) for birds and mammals, specialized feeding guilds are considered for each category of animal weight to help determine exposure (herbivore, frugivore, insectivore and granivore). At the screening level, relevant food items representing the most conservative EDE for each feeding guild are used (in other words, insects and small grasses). The EDE is calculated using the following formula: (FIR/BW) × EEC, where: BW = Body weight, FIR = Food ingestion rate: For generic birds with body weight less than or equal to 200 g, the "passerine" equation was used; for generic birds with body weight greater than 200 g, the "all birds" equation was used Passerine Equation: FIR (g dry weight/day) = 0.398(BW in g)^{0.850}. All birds Equation: FIR (g dry weight/day) = 0.648(BW in g)^{0.651}. For mammals, the "all mammals" equation was used: FIR (g dry weight/day) = 0.235(BW in g)^{0.822}

 $^{4}\text{EER} = \text{Estimated environmental rate (g a.i./ha)}$

 ${}^{5}\text{ED}$ = Estimated dose (µg a.i./bee) for bees is calculated by converting the maximum single application rate (44 g a.i./ha) by the conversion factor listed in the table.

 6 EDE = Estimated Daily Exposure (µg a.i./larvae/day) for bee larvae is calculated by converting the maximum single application rate (44 g a.i./ha) by the conversion factor listed in the table

Table 4Summary of toxicity effects of quizalofop-p-ethyl and its major transformation
products on terrestrial organisms

Organism	Test material	Exposure	Endpoint value	Effects/ Degree of toxicity ¹	PMRA#
Invertebrates					
Earthworm <i>(Eisenia</i>	Quizalofop- p-ethyl	14-d acute adult	14-d LC ₅₀ > 1000 mg a.i./kg dry soil	No treatment related effects	3281017
fetida)	Quizalofop- acid	14-d acute adult	14-d LC ₅₀ = 948 mg/kg dry soil	Treatment related effects in the highest test concentration	3281017
	Quizalofop- acid	28-d chronic	28-d NOEC = 50.0 mg/kg dry soil (maximum test concentration)	NA	3281017
	Hydroxyl- quizalofop	14-d acute adult	$14-d LC_{50} > 1000$ mg/kg dry soil	Practically non-toxic	3281017
	Dihydroxy- quinoxaline	14-d acute adult	14-d $LC_{50} > 1000$ mg/kg dry soil	Practically non-toxic	3281017
	EXP30650 (49.4 g/L, Quizalofop- p-ethyl)	14-d acute adult	14-d LC ₅₀ = 746 mg/kg dry soil	Practically non-toxic	3281017

Organism	Test material	Exposure	Endpoint value	Effects/ Degree of toxicity ¹	PMRA#
	Quizalofop- ethyl	72-h acute (paper contact screening test)	72-h LC ₅₀ = 108.5 μ g a.i./cm ²	NA	3080480
	Quizalofop- p-ethyl	72-h acute (paper contact screening test)	72-h LC ₅₀ = 412.4 μ g a.i./cm ²	NA	3080480
	Quizalofop- acid	72-h acute (paper contact screening test)	$72-h LC_{50} = 30.9$ $\mu g/cm^2$	NA	3080480
Honeybee (Apis mellifera)	Quizalofop- p-ethyl	48-h acute oral 48-h acute contact	48-h oral LD ₅₀ > 103 μg/bee 48-h contact LC ₅₀ > 100 μg/bee	Relatively non-toxic. No treatment related effects were observed.	3258161
		48-h acute oral 48-h acute contact	$48-h \text{ oral } LD_{50} >$ $103 \ \mu\text{g/bee}$ $48-h \text{ contact } LC_{50} >$ $100 \ \mu\text{g/bee}$	Relatively non-toxic. No treatment related effects were observed.	3281017
	EC formulation, 50 g a.i/L Quizalofop- p-ethyl (AE F132814 00 EC05 A201)	48-h acute oral	48-h oral LD ₅₀ = 10.4 μg a.i./bee (206 μg product/bee)	Relatively non-toxic. Some mortality observed in the three highest test concentrations.	3281017
	EC formulation, 50 g a.i/L Quizalofop- p-ethyl (AE F132814 00 EC05 A201)	48-h acute contact	48-h contact LC ₅₀ > 25 μg a.i./bee (> 493 μg product/bee)	Relatively non-toxic. Some mortality observed in the highest test concentration.	3281017

Organism	Test	Exposure	Endpoint value	Effects/ Degree of	PMRA#
8	material	•	-	toxicity ¹	
	5% EC	72-h acute	72-h oral LD ₅₀ =	Relatively	3258162
	formulation,	oral	18.6 µg/bee	non-toxic.	
	Quizalofop-	72-h acute		Some	
	p-ethyl (end-	contact	72-h contact $LC_{50} =$	mortality	
	use product)		56.9 µg/bee	observed in all	
				treatment and	
			10 1NOEDD 00 0	control groups.	2250150
	Quizalofop-	10-d chronic	10-d NOEDD = 39.2	NA	3258159
	p-ethyl	oral adult	μg/bee/day	NT A	2254994
		10-d chronic oral adult	10 -d NOEDD = 3.59	NA	3254884
		(limit test)	µg/bee/day		
		72-h single	$48-h LD_{50} = 16.1$	NA	3254882
		exposure,	$\mu g/larva$	1 1 1 1	5254002
		larva			
		22-d	22-d ED ₅₀ > 100 μg	NA	3258160
		repeated	a.i./larva		
		exposure,			
		larva	22-d NOED = 9.39		
			μg a.i./larva		
		22-d	$8-d ED_{50} = 7.51 \ \mu g$	NA	3254883
		repeated	a.i./larva		
		exposure,	8 - d NOED = 0.83		
		larva	µg a.i./larva		
			$22 - d ED_{50} = 2.93 \mu g$		
			a.i./larva		
			22 - d NOED = 0.33		
			µg a.i./larva		
Parasitoid	EC	48-h acute	$48-h LR_{50} = 48.5 g$	NA	3281017
wasp	formulation,	glass plate	a.i./ha		
(Aphidius	50 g a.i/L				
rhopalosiphi)	Quizalofop-				
	p-ethyl (AE				
	F132814 00				
	EC05 A201) Co-Pilot EC	48-h acute	$48 \text{ h I D}_{-0} > 200 \text{ m}$	NA	3281017
	(100 g/L)	glass plate	48-h LR ₅₀ > 200 g a.i./ha	INA	328101/
	Quizalofop-	glass plate	a.1./ 11a		
	p-ethyl)				
		1			

Organism	Test material	Exposure	Endpoint value	Effects/ Degree of toxicity ¹	PMRA#
	EC formulation, 50 g a.i/L Quizalofop- p-ethyl (AE F132814 00 EC05 A202)	48-h acute mortality and fecundity on potted barley plants	48-h LR ₅₀ > 200 g a.i./ha No reduction in fecundity	NA	3281017
Predatory mite (<i>Typhlodromus</i> <i>pyri</i>)	EC formulation, 50 g a.i./L Quizalofop- p-ethyl (AE F132814 00 EC05 A201)	7-d acute glass plate	7-d LR ₅₀ = 25 g a.i./ha	NA	3281017
	EXP30650B, EC (53.8 g/L Quizalofop- p-ethyl)	7-d acute glass plate	7-d LR ₅₀ was between 10.8 (27% mortality) and 215.2 (92% mortality) g a.i./ha	NA	3281017
	EC formulation, 50 g a.i/L Quizalofop- p-ethyl (AE F132814 00 EC05 A202)	7-d acute mortality and fecundity bean leaves	7-d LR ₅₀ = 106.9 g a.i./ha No reduction in fecundity	NA	3281017
Green lacewing (Crysoperla carnea)	EXP30650B, EC (53.8 g/L Quizalofop- p-ethyl)	7-d acute glass plate	7-d LR ₅₀ > 215.2 g a.i./ha	NA	3281017
Predatory ground beetle (<i>Poecilus</i> <i>cupreus</i>)	EXP30650 (49.0 g/L Quizalofop- p-ethyl)	16-d mortality sand substrate	16-d LR ₅₀ > 98 g a.i./ha	NA	3281017
Predatory beetle (<i>Aleochara</i> <i>bilineata</i>)	EXP30650 (49.0 g/L Quizalofop- p-ethyl)	22-d reproduction; sand substrate	16-d NOER ₅₀ > 98 g a.i./ha	NA	3281017
Birds					
Northern bobwhite quail (Colinus	Quizalofop- p-ethyl	Single dose oral	14-d acute LD ₅₀ > 2000 mg/kg bw	Practically non-toxic	3281017
virginianus)	Quizalofop- ethyl	Single dose oral	14-d acute LD ₅₀ > 2000 mg/kg bw	Practically non-toxic	3281017

Organism	Test material	Exposure	Endpoint value	Effects/ Degree of toxicity ¹	PMRA#	
	Quizalofop- ethyl	5-day Dietary	$5-d \text{ acute } LD_{50} > 5000 \text{ mg/kg feed}$	Practically non-toxic	3281017	
	Quizalofop- p-ethyl	21-week Reproduction	20-week repro NOEC = 1000 mg/kg feed or 87.6 mg/kg bw	No treatment related effects seen in all treatment levels.	3281017	
Mallard (Anas	Quizalofop- ethyl	Single dose oral	14-d acute $LD_{50} >$ 2000 mg/kg bw	Practically non-toxic	3281017	
platyrhynchos)	Quizalofop- ethyl	5-day Dietary	5-d acute LD ₅₀ > 5000 mg/kg feed	Practically non-toxic	3281017	
	Quizalofop- p-ethyl	20-week Reproduction	21-week repro NOEC = 500 mg/kg feed or 58.0 mg/kg bw	Treatment related effects on hatchability, hatchlings and 14-d old survivors at the highest test concentration.	3281017	
Small wild mar	nmals	•				
CD-1 mouse	Quizalofop- ethyl	Single dose oral (gavage)	LD ₅₀ = 2350 mg/kg bw (♂) LD ₅₀ = 2360 mg/kg bw (♀)	Practically non-toxic	1184263, 1224167, 1224169, 1224728	
Sprague Dawley rat (<i>Rattus</i> norvegicus	Quizalofop- ethyl		LD ₅₀ = 1670 mg/kg bw (♂) LD ₅₀ = 1480 mg/kg bw (♀)	Slightly toxic	1184262, 1224168	
domesticus)	L- anantiomer of Quizalofop- ethyl	Single dose oral (gavage)	LD ₅₀ = 1088 mg/kg bw (\Diamond) LD ₅₀ = 870 mg/kg bw (\bigcirc) LD ₅₀ = 952 mg/kg bw (combined \Diamond / \bigcirc)	Slightly toxic	1161268	
	Quizalofop- p-ethyl		LD ₅₀ = 1209 mg/kg bw (\Diamond) LD ₅₀ = 1182 mg/kg bw (\bigcirc) LD ₅₀ = 1203 mg/kg bw combined (\Diamond / \bigcirc)	Slightly toxic	1161273	

Organism	Test material	Exposure	Endpoint value	Effects/ Degree of toxicity ¹	PMRA#
	Quizalofop- ethyl	2 generation reproduction	Parental NOAEL = 9.4/10.2 mg/kg bw/day $(\hat{\Diamond}/\hat{\Box})$ Offspring NOAEL = 2.6 mg/kg bw/day Reproductive NOAEL = 37.8/ 42.1 mg/kg bw/day $(\hat{\Diamond}/\hat{\Box})$	NA	1224110, 1224148
Vascular plants					
Onion, corn, wheat, sorghum, sugar beet, soybean, pea, tomato, rape, cucumber	Quizalofop- p-ethyl	Vegetative vigour	21-d ER ₂₅ = 0.86 g a.i./ha (sorghum)	NA	1322640
Onion, corn, wheat, sorghum, sugar beet, soybean, pea, tomato, rape, cucumber	Quizalofop- p-ethyl	Vegetative vigour	21-d ER ₂₅ = 0.58 g a.i./ha (sorghum)	NA	1322641
Corn, oat, cabbage, carrot, flax, onion, cucumber, soybean, sunflower, cotton	EC formulation, 50 g/L Quizalofop- p-ethyl	Vegetative vigour	21-d ER ₂₅ = 5.46 g a.i./ha (corn)	NA	3281017
Oat, sorghum, carrot, cabbage, soybean, corn, onion and wheat	Quizalofop- p-ethyl on (1985), where a	Seedling emergence	HR ₅ = 53.6 g a.i./ha	Based on EC ₅₀ values for eight crop species	1322640, 1322641, 3181017

¹: USEPA classification (1985), where applicable. NA = not applicable

Table 5Summary of toxicity effects of quizalofop-p-ethyl technical and its major
transformation products on aquatic organisms

Test species	Test substance	Exposure	Endpoints	Degree of toxicity ¹ / comments	PMRA#
Freshwater inverteb	orates				
	Quizalofop- ethyl	48-h acute (semi- static)	48-h EC ₅₀ = 0.29 mg a.i./L	Highly toxic	1164022
	Quizalofop- p-ethyl	48-h acute (semi- static)	48-h EC ₅₀ = 0.29 mg a.i./L	Highly toxic	3281017
	Quizalofop- p-ethyl	48-h acute (static)	$\begin{array}{l} 48\text{-h EC}_{50} > \\ 0.79 \text{ mg a.i./L} \\ (\text{limit test}) \end{array}$	Highly toxic	3281017
	Quizalofop- p-ethyl	21-d chronic repro (semi- static)	21-d NOEC = 0.023 mg a.i./L (reproduction) 21-d NOEC = 0.080 mg a.i./L (immobility)	NA	3281017
Water Flea (Daphnia magna)	Quizalofop- acid	48-h acute (static)	48-h EC ₅₀ = 57.7 mg/L	Slightly toxic	3281017
	Dihydroxy- quinoxaline	48-h acute (static)	$\begin{array}{c} 48\text{-h EC}_{50} > 9.5 \\ mg/L \end{array}$	Moderately toxic	3281017
	Quizalofop- acid	21-d chronic repro (semi- static)	21-d NOEC = 0.823 mg/L	NA	3281017
	EC formulation, 50 g a.i/L Quizalofop- p-ethyl (AE F132814 00 EC05 A201)	48-h acute (static)	48-h EC ₅₀ = 0.348 mg/L	Highly toxic	3281017

Test species	Test substance	Exposure	Endpoints	Degree of toxicity ¹ / comments	PMRA#
Freshwater midge	Quizalofop-	28-d	28-d EC ₅₀ >	Exposure	3281017
(Chironomus	acid	chronic	35.7 mg a.i./L	through	
riparius)		(static)	(emergence and	overlaying	
			development	water; no	
			rate)	adverse	
			28 - d NOEC =	effects were observed	
			35.7 mg a.i./L (highest test	observed	
			concentration		
			tested)		
	Quizalofop-	28-d	$28 \text{-d EC}_{50} > 10$	Exposure	3281017
	phenol	chronic	mg a.i./kg dry	through	
	1	(static)	sediment	spiked	
			(emergence and	sediment; no	
			development	adverse	
			rate)	effects were	
			28-d NOEC =	observed	
			10 mg a.i./kg		
			dry sediment		
Freshwater fish					
	Quizalofop-	96-h	96-h LC ₅₀ >	Highly toxic	1164021
	p-ethyl	acute	0.50 mg a.i./L		
		(semi-			
		static)			
		96-h	96-h LC ₅₀ >	Highly toxic	3281017
		acute	0.48 mg a.i./L		
		(semi-			
		static) 96-h	96-h LC ₅₀ =	Ilighty toxic	3281017
		acute	0.72 mg a.i./L	Highly toxic	5281017
Rainbow Trout		(flow-	0.72 mg a.i.7L		
(Oncorhynchus		through)			
mykiss)		96-h	96-h LC ₅₀ =	Highly toxic	3281017
		acute	0.388 mg a.i./L	Tright y course	0201017
		(flow-	0		
		through)			
		21-d	21-d NOEC =	NA	3281017
		chronic	0.044 mg a.i./L		
		(semi-			
		static)			
	Quizalofop-	96-h	96-h LC ₅₀ >	Slightly toxic	3281017
	acid	acute	91.7 mg/L		

Test species	Test substance	Exposure	Endpoints	Degree of toxicity ^{1/} comments	PMRA#
		(semi- static)			
	Dihydroxy- quinoxaline	96-h acute (semi- static)	96-h LC ₅₀ > 97.2 mg/L	Slightly toxic	3281017
	Quizalofop- acid	28-d chronic (flow- through)	28-d NOEC = 46.2 mg/L	NA	3281017
	EC formulation, 50 g a.i/L Quizalofop- p-ethyl (AE F132814 00 EC05 A201)	96-h acute (static)	96-h LC ₅₀ > 10.0 mg a.i./L	Slightly toxic	3281017
Bluegill sunfish (<i>Lepomis</i> macrochirus)	Quizalofop- p-ethyl	96-h acute (flow- through)	96-h LC ₅₀ = 0.209 mg a.i./L	Highly toxic	3281017
Amphibians	<u> </u>				
		96 hour acute (static) (using bluegill sunfish data as a surrogate)	96-h LC ₅₀ = 0.209 mg a.i./L	NA	3281017
Amphibians	Quizalofop- p-ethyl	21-d chronic (semi- static) (using rainbow trout data as a surrogate)	21-d NOEC = 0.044 mg a.i./L	NA	3281017

Test species	Test substance	Exposure	Endpoints	Degree of toxicity ¹ / comments	PMRA#
Freshwater plants	<u>.</u>	<u>.</u>	•		
	Quizalofop- p-ethyl	7-d acute (semi- static)	7-d EC ₅₀ > 0.610 mg a.i./L		3281017
Duckweed (Lemna gibba)	Quizalofop- p-ethyl	14-d chronic (static)	14-d EC ₅₀ > 0.0828 mg a.i./L 14-d NOEC = 0.0828 mg a.i./L	The concentrations tested should have been expanded to determine an EC ₅₀	1164024
Freshwater algae					
Green algae (Selenastrum capriconutum)	Quizalofop- p-ethyl	72-h acute (static)	72-h EC ₅₀ > 9.45 mg a.i./L		1322645
	Quizalofop- p-ethyl	5-d acute (static)	5-d EC ₅₀ > 1.3 mg a.i./L	The concentrations tested should have been expanded to determine an EC ₅₀	1164023
	Quizalofop- acid	72-h acute (static)	$\begin{array}{l} 72 \ h \ E_b C_{50} = \\ 54.5 \ mg/L \\ 72 \ h \ E_r C_{50} > \\ 72.5 \ mg/L \end{array}$	NA	3281017
	Dihydroxy- quinoxaline	72-h acute (static)	$72 h E_bC_{50} > 102 mg/L 72 h E_rC_{50} > 102 mg/L 102 mg/L $	NA	3281017
Green algae (Pseudokirchneriella subcapitata)	Quizalofop- p-ethyl	72-h acute (static)	$72 h E_bC_{50} = 0.021 mg a.i./L 72 h E_rC_{50} = 0.069 mg a.i./L$	NA	3281017
	EC formulation, 50 g a.i/L Quizalofop- p-ethyl (AE F132814 00 EC05 A201)	72-h acute (static)	72 h $E_bC_{50} =$ 0.060 mg/L 72 h $E_rC_{50} =$ 0.024 mg/L	NA	3281017

Test species	Test substance	Exposure	Endpoints	Degree of toxicity ^{1/} comments	PMRA#
Cyanobacteria (Anabaena flos- aquae)	Quizalofop- p-ethyl	5-d acute (static)	5-d EC ₅₀ > 1.09 mg a.i./L	NA	3281017
Marine invertebrat	es				
Eastern oyster (Crassostrea virginica)	Quizalofop- ethyl Quizalofop- ethyl	96-h acute shell deposition (flow- through) 48-h acute embryo larva (static)	96-h EC ₅₀ = 0.59 mg/L 48-h EC ₅₀ = 0.079 mg a.i./L	Highly toxic Very highly toxic	3254887 1224142 3255289
Mysid shrimp (<i>Mysidopsis bahia</i>) Marine fish	Quizalofop- ethyl	96-h acute (static)	96-h EC ₅₀ = 0.15 mg/L	Highly toxic	1224139
Sheepshead minnow (<i>Cyprinodon</i> <i>variegatus</i>)	Quizalofop- ethyl	96-h acute (static)	96-h LC ₅₀ = 1.76 mg/L	Moderately toxic	3255292

NA = not applicable

Table 6 Study endpoints, uncertainty factors and levels of concern (LOC) relevant for risk assessment

Most sensitive representitive species	Test substance	Exposure	Endpoint value	Uncertainty factor applied	Effects metric	Level of concern (LOC)
Invertebrates						
Earthworm (<i>Eisenia fetida</i>)	Quizalofop- p-ethyl	14 d-LC ₅₀	> 1000 mg a.i./kg dry soil	2	500 mg a.i./kg dry soil	1
	Quizalofop- acid	14 d-LC ₅₀	948 mg a.i./kg dry soil	2	474 mg a.i./kg dry soil	1
	Hydroxy- quizalofop	14 d-LC ₅₀	> 1000 mg a.i./kg dry soil	2	500 mg a.i./kg dry soil	1
	Dihydroxy-	14 d-LC ₅₀	>1000 mg	2	500 mg	1

Most sensitive representitive species	Test substance	Exposure	Endpoint value	Uncertainty factor applied	Effects metric	Level of concern (LOC)		
	quinoxaline		a.i./kg dry soil		a.i./kg dry soil			
	Quizalofop- acid	28-d Reproduction NOAEC	50 mg a.i./kg dry soil	1	50 mg a.i./kg dry soil	1		
Predatory ground beetle (<i>Poecilus</i> <i>cupreus</i>)	EXP30650 (49.0 g/L Quizalofop- p-ethyl)	16-d LR ₅₀	> 98 g a.i./ha	1	98 g a.i./ha	1		
Predatory beetle (<i>Aleochara</i> <i>bilineata</i>)	EXP30650 (49.0 g/L Quizalofop- p-ethyl)	16-d NOER ₅₀	> 98 g a.i./ha	1	98 g a.i./ha	1		
Honeybee (Apis mellifera)	EC formulation, 50 g a.i/L Quizalofop- p-ethyl (AE F132814 00 EC05 A201)	48-h contact adult	> 25 μg a.i./bee	1	25 μg a.i./bee	0.4		
	EC formulation, 50 g a.i/L Quizalofop- p-ethyl (AE F132814 00 EC05 A201)	48-h acute oral adult	10.4 μg a.i./bee	1	10.4 μg a.i./bee	0.4		
	Quizalofop- p-ethyl	10-d diet adult NOAEDD	39.2 μg/bee/da y	1	39.2 μg/bee/day	1		
	Quizalofop- p-ethyl	72-h larvae LD ₅₀	16.1 μg/larva	1	16.1 μg/larva	0.4		
	Quizalofop- p-ethyl	22-d larvae NOAEDD _{emergence}	0.33 μg a.i./larva	1	0.33 μg a.i./larva	1		
Parasitoid wasp (Aphidius rhopalosiphi)	EC formulation, 50 g a.i/L Quizalofop- p-ethyl (AE F132814 00 EC05 A201)	48-h LR ₅₀ (glass plate)	48.5 g a.i./ha	1	48.5 g a.i./ha	2		

Most sensitive representitive species	Test substance	Exposure	Endpoint value	Uncertainty factor applied	Effects metric	Level of concern (LOC)
Predatory mite (<i>Typhlodromus pyri</i>)	EC formulation, 50 g a.i/L Quizalofop- p-ethyl (AE F132814 00 EC05 A201)	7-d LR50 (glass plate)	25 g a.i./ha	1	25 g a.i./ha	2
	EC formulation, 50 g a.i/L Quizalofop- p-ethyl (AE F132814 00 EC05 A202)	7-d LR ₅₀ (leaf surface)	106.9 g a.i./ha	1	106.9 g a.i./ha	2
Birds						
Mallard (Anas	Quizalofop- ethyl	Single dose Oral LD ₅₀	> 2000 mg/kg bw	10	200 mg/kg bw	1
platyrhynchos)	Quizalofop- p-ethyl	20-w Reproduction NOAED	87.6 mg/kg bw	1	87.6 mg/kg bw	1
Northern Bobwhite quail	Quizalofop- ethyl	Single dose Oral LD ₅₀	> 2000 mg/kg bw	10	200 mg/kg bw	1
(Colinus virginianus)	Quizalofop- p-ethyl	21-w Reproduction NOAED	58.0 mg/kg bw	1	58.0 mg/kg bw	1
Mammals						
Sprague Dawley rat (<i>Rattus norvegicus</i>	Quizalofop-	Single dose Oral LD ₅₀	952 mg/kg bw (combined sexes)	10	95.2 mg/kg bw (combined ♂/♀)	1
domesticus)	ethyl	2 Generation Reproductive NOAED	37.8 mg/kg bw/day	1	37.8 mg/kg bw/day	1
Vascular plants						
All species tested	Quizalofop-	Vegetative vigour ER ₂₅	0.58 g a.i./ha	1	0.58 g a.i./ha	1
	p-ethyl	Seedling emergence ER ₅	53.6 g a.i./ha	1	53.6 g a.i./ha	1

				T T (•)		
Most sensitive representitive species	Test substance	Exposure	Endpoint value	Uncertainty factor applied	Effects metric	Level of concern (LOC)
Freshwater inverteb	rates			•		
Water flea (<i>Daphnia magna</i>)	Quizalofop-	48-h EC ₅₀	0.29 mg a.i./L	2	0.145 mg a.i./L	1
	p-ethyl	21-d chronic life- cycle	0.023 mg a.i./L	1	0.023 mg a.i./L	1
	Quizalofop- acid	48-h EC ₅₀	57.7 mg a.i./L	2	28.85 mg a.i./L	1
	Dihydroxy- quinozaline	48-h EC ₅₀	> 9.5 mg a.i./L	2	4.75 mg a.i./L	1
	Quizalofop- acid	21-d NOEC	0.823 mg a.i./L	1	0.823 mg a.i./L	1
	EC formulation, 50 g a.i/L Quizalofop- p-ethyl (AE F132814 00 EC05 A201)	48-h EC ₅₀	0.348 mg a.i./L	2	0.174 mg a.i./L	1
Midge (Chironomus riparius)	Quizalofop- acid	28-d NOEC	35.7 mg a.i./L	1	35.7 mg a.i./L	1
Freshwater fish						
	Quizalofop- p-ethyl	96-h LC ₅₀	0.388 mg a.i./L	10	0.0388 mg a.i./L	1
	Quizalofop- p-ethyl	21-d chronic NOEC	0.044 mg a.i./L	1	0.044 mg a.i./L	1
Rainbow Trout (Oncorhynchus mykiss)	Quizalofop- acid	96-h LC ₅₀	> 91.7 mg a.i./L	10	9.17 mg a.i./L	1
myniss)	Dihydroxy- quinoxaline	96-h LC ₅₀	> 97.2 mg a.i./L	10	9.72 mg a.i./L	1
	Quizalofop- acid	28-d chronic NOEC	> 46.2 mg a.i./L	1	46.2 mg a.i./L	1
Bluegill sunfish (<i>Lepomis</i> <i>macrochirus</i>)	Quizalofop- p-ethyl	96-h LC ₅₀	0.209 mg a.i./L	10	0.0209 mg a.i./L	1
Amphibians						
Amphibians	Quizalofop- p-ethyl	96-h LC ₅₀ (using bluegill sunfish data as a surrogate)	0.209 mg a.i./L	10	0.0209 mg a.i./L	1

Most sensitive representitive species	Test substance	Exposure	Endpoint value	Uncertainty factor applied	Effects metric	Level of concern (LOC)
		21-d chronic (semi-static) (using rainbow trout data as a surrogate)	21-d NOEC = 44 µg a.i./L	1	44 μg a.i./L	1
Freshwater vascular	plants					
Duckweed	Quizalofop-	7-d EC ₅₀	> 0.610 mg a.i./L	2	0.305 mg a.i./L	1
	p-ethyl	14-d chronic NOEC	0.0828 mg a.i./L	1	0.0828 mg a.i./L	1
Freshwater algae			•			
Green algae (<i>Pseudokirchneriell</i> <i>a subcapitata</i>)	Quizalofop- p-ethyl	72-h E _b C ₅₀	0.021 mg/L	2	0.0105 mg/L	1
Cyanobacteria (Anabaena flos- aquae)	Quizalofop- p-ethyl	5-d EC ₅₀	> 1.09 mg/L	2	0.545 mg/L	1
Marine fish and inve	ertebrates	•		•	•	
Sheepshead minnow (<i>Cyprinodon</i> <i>variegatus</i>)	Quizalofop- ethyl	96-h LC ₅₀	= 1.76 mg a.i./L	10	0.176 mg a.i./L	1
Eastern oyster (Crassostrea	Quizalofop- ethyl	96-h EC ₅₀	0.59 mg/L	2	0.295 mg/L	1
(Crassostrea virginica)	Quizalofop- ethyl	48-h embryo larva EC ₅₀	0.079 mg a.i./L	2	0.0395 mg/L	1

Table 7Screening level risk quizalofop-p-ethyl, its transformation products and end-use
product to terrestrial organisms: Earthworms, honey bees, Non-target
arthropods and Vascular plants

Organism	Test substance	Exposure	Effects metric for risk assessment ¹	EEC ²	RQ ³	Level of exceeded? ⁴
Invertebrates	5					
Earthworm (Eisenia fetida)	Quizalofop- p-ethyl	14 d-LC ₅₀	> 500 mg a.i./kg dry soil	0.032 mg a.i./kg soil ⁵	<0.01	No
	Quizalofop- acid	14 d-LC ₅₀	474 mg a.i./kg dry soil	0.030 mg a.i./kg	<0.01	No

Organism	Test substance	Exposure	Effects metric for risk assessment ¹	EEC ²	RQ ³	Level of exceeded? ⁴
				soil		
	Hydroxy- quizalofop	14 d-LC ₅₀	> 500 mg a.i./kg dry soil	0.031 mg a.i./kg soil	<0.01	No
	Dihydroxy- quinoxaline	14 d-LC ₅₀	> 500 mg a.i./kg dry soil	0.017 mg a.i./kg soil	<0.01	No
	Quizalofop- acid	28-d Reproductio n NOAEC	50 mg a.i./kg dry soil	0.030 mg a.i./kg soil	<0.01	No
Predatory	EXP30650	16-d LR ₅₀	>98 g a.i./ha			
ground beetle (<i>Poecilus</i> <i>cupreus</i>)	(49.0 g/L QPE)			72.0 g a.i./ha ⁹	<0.73	No
Predatory beetle (Aleochara bilineata)	EXP30650 (49.0 g/L Quizalofop- p-ethyl)	16-d NOER ₅₀	> 98 g a.i./ha	72.0 g a.i./ha	<0.73	No
Honeybee (<i>Apis</i> <i>mellifera</i>)	EC formulation, 50 g a.i/L Quizalofop- p-ethyl (AE F132814 00 EC05 A201)	48-h contact adult	> 25 μg a.i./bee	0.173 µg a.i./bee/ day ⁶	<0.01	No
	EC formulation 50 g a.i/L Quizalofop- p-ethyl (AE F132814 00 EC05 A201)	48-h acute oral adult	10.4 µg a.i./bee	2.060 μg a.i./bee ⁷	0.2	No
	Quizalofop- p-ethyl	10-d diet adult NOAEDD	39.2 μg a.i./bee/day	2.060 µg a.i./bee/ day	0.1	No
	Quizalofop- p-ethyl	72-h larvae LD ₅₀	16.1 μg a.i./larva	0.875 µg a.i./larv a/day ⁸	0.1	No

Organism	Test substance	Exposure	Effects metric for risk assessment ¹	EEC ²	RQ ³	Level of exceeded? ⁴
	Quizalofop- p-ethyl	22-d larvae NOAEDDe mergence	0.33 μg a.i./larva	0.875 µg a.i./larv a/day	2.7	Yes
Parasitoid wasp (<i>Aphidius</i> <i>rhopalosiphi</i>)	EC formulation, 50 g a.i/L Quizalofop- p-ethyl (AE F132814 00 EC05 A201)	48-h LR50 (glass plate)	48.5 g a.i./ha	72.0 g a.i./ha	1.5	No
Predatory mite (<i>Typhlodrom</i>	EC formulation, 50 g a.i/L Ouizalofon- 7-d LR ₅₀	7-d LR ₅₀ (glass plate)	25 g a.i./ha	72.0 g a.i./ha	2.9	Yes
us pyri)				Off- field (ground appl., 6% drift): 4.32 g a.i./ha	0.17	No
				Off- field (aerial appl., 23% drift): 16.56 g a.i./ha	0.66	No
	EC formulation, 50 g a.i/L Quizalofop- p-ethyl (AE F132814 00 EC05 A202)	7-d LR ₅₀ (leaf surface)	106.9 g a.i./ha	72.0 g a.i./ha	0.67	No
Vascular pla		•	•			
Vascular plant	Quizalofop- p-ethyl emergence	U	HR ₅ = 53.6 g a.i./ha	In- field: 72.0 g a.i./ha ¹⁰	1.3	Yes
				Off- field	0.08	No

Organism	Test substance	Exposure	Effects metric for risk assessment ¹	EEC ²	RQ ³	Level of exceeded? ⁴
				(ground appl., 6% drift): 4.32 g a.i./ha ¹¹ Off- field (aerial		
				appl., 23% drift): 16.56 g a.i./ha ¹¹	0.31	No
		Vegetative vigour		In- field: 72.0 g a.i./ha	124	Yes
			ER ₂₅ = 0.58 g a.i./ha	Off- field (ground appl., 6% drift): 4.32 g a.i./ha	7.4	Yes
INOAEC				Off- field (aerial appl., 23% drift): 16.56 g a.i./ha	28.6	Yes

INOAEC

² EEC = Estimated Environmental Concentration.

³ RQ = Risk Quotient. The RQ is calculated by dividing the EEC by the endpoint effects metric value (RQ = EEC/effects metric endpoint value) ⁴Level of concern. The RQ is compared to the level of concern.

⁵ The soil EEC of 0.032 mg a.i./kg soil was calculated based on the proposed maximum application rate of 72.0 g a.i./ha and accounting for soil degradation using the 90th upper percentile on the mean of the aerobic soil representative half-lives of 99.6 days. This concentration was calculated assuming that the product is evenly distributed in the top 0 to 15 cm depth of soil with a bulk density of 1.5 g/cm³.

⁶ The contact EEC for adult bees was determined to be 0.173 µg a.i./bee, based on the single maximum application rate of 72.0 g a.i./ha proposed for use and multiplied by a conversion factor of 2.4 µg a.i./bee per kg a.i./ha in order to convert the application rate from kg a.i/ha to µg a.i./bee.

⁷ The dietary EEC for adult honey bees of 2.060 µg a.i./bee/day was calculated based on the single maximum proposed application rate (72.0 g

a.i./ha) multiplied by a conversion factor of 29 µg a.i./bee/day per kg a.i./ha in order to convert the application rate from kg a.i/ha to µg a.i./bee/day.

⁸ The screening level dietary EEC for honey bee larvae of 0.875 μg a.i./bee/day was calculated based on the single maximum proposed application rate (72.0 g a.i./ha) multiplied by a conversion factor of 12 µg a.i./larva/day per kg a.i./ha in order to convert the application rate from kg a.i/ha to μg a.i./bee/day. ⁹ The screening level plant and soil surfaces EEC of 72.0 g a.i./ha was calculated using the proposed maximum annual application rate of 72.0 g

a.i./ha and the 90th upper percentile on the mean of the aerobic soil representative half-lives of 99.58 days.

¹⁰ When considering the effects on seedling emergence, the estimated environmental rate (EER) of 72.0 g a.i./ha was calculated based on the proposed maximum cumulative application rate of 72.0 g a.i./ha and accounting for soil degradation using the 90th upper percentile on the mean of the aerobic soil representative half-lives of 99.58 days.

¹¹The further characterized EECs for off-field exposure to non-target terrestrial plants accounted for a 6% drift factor for ground application and 23% drift factor for aerial applications using an ASAE fine spray quality. When considering the effects on vegetative vigour, the estimated environmental rate (EER) of 72.0 g a.i./ha was calculated based on the proposed maximum cumulative application rate of 72.0 g a.i./ha and accounting for run-off from foliage using a foliar half-life of 10 days.

Table 8Screening level risk assessment of quizalofop-p-ethyl for birds and mammals
from consumption of contaminated food sources based on maximum nomogram
residues

	Feeding guild (food item) ¹	Effects metric (mg a.i./kg bw/d)	EDE ² (mg a.i./kg bw)	RQ ³	Level of concern ⁴
Small Bird (0.02 kg)					
Acute	Insectivore	>200	5.86	< 0.03	No
Reproduction	Insectivore	58	5.86	0.10	No
Medium Sized Bird (0.1	kg)		L	1	
Acute	Insectivore	>200	4.57	< 0.02	No
Reproduction	Insectivore	58	4.57	0.08	No
Large Sized Bird (1 kg)					
Acute	Herbivore (short grass)	>200	2.95	< 0.01	No
Reproduction	Herbivore (short grass)	58	2.95	0.05	No
Small Mammal (0.015 kg)			1	
Acute	Insectivore	95.2	3.37	0.04	No
Reproduction	Insectivore	37.8	3.37	0.09	No
Medium Sized Mammal ((0.035 kg)				
Acute	Herbivore (short grass)	95.2	6.54	0.07	No
Reproduction	Herbivore (short grass)	37.8	6.54	0.17	No
Large Sized Mammal (1	kg)		·	· · · · ·	
Acute	Herbivore (short grass)	95.2	3.49	0.04	No
Reproduction	Herbivore (short grass)	37.8	3.49	0.09	No

¹Specialized feeding guilds are considered for each category of animal weights to help determine exposure (herbivore and insectivore). ²EDE = Estimated dietary exposure. Screening level EDEs were calculated based on using maximum residues expected following applications on field crops (72.0 g a.i./ha). At the screening level, relevant food items representing the most conservative EDE for each feeding guild are used. The EDE is calculated using the following formula: (FIR/BW) × EEC, where: FIR = Food Ingestion Rate and BW = Body weight. For generic birds with body weight less than or equal to 200 g, the "passerine" equation was used; for generic birds with body weight greater than 200 g, the "all birds" equation was used: Passerine Equation (body weight < or = 200 g): FIR (g dry weight/day) = 0.398(BW in g)^{0.850}. All birds Equation (body weight > 200 g): FIR (g dry weight/day) = 0.648(BW in g)^{0.651}. For mammals, the "all mammals" equation was used: FIR (g dry weight/day) = 0.235(BW in g)^{0.822}

 3 RQ = Risk Quotient

⁴ Level of concern. The RQ is compared to the level of concern.

Table 9Screening level risk of quizalofop-p-ethyl to aquatic organisms and risk
assessment for amphibians and off-field spray drift

Organism	Test substance	Exposure	Effects metric for risk assessment 1	EEC ²	Risk quotient 3	Level of concern 4
Freshwater Inv	ertebrates					
Water flea (Daphnia magna)	Quizalofop-p-	48-h flow through	0.145 mg a.i./L	0.009 mg a.i./L	0.06	No
	ethyl	21 day life- cycle static renewal	0.023 mg a.i./L	0.009 mg a.i./L	0.39	No
	Quizalofop- acid	48-h EC ₅₀	28.85 mg a.i./L	0.008 mg a.i./L	<0.01	No
	Dihydroxy- quinoxaline	48-h EC ₅₀	4.75 mg a.i./L	0.005 mg a.i./L	<0.01	No
	Quizalofop- acid	21-d NOEC	0.823 mg a.i./L	0.008 mg a.i./L	0.01	No
	EC formulation, 50 g a.i/L Quizalofop-p- ethyl (AE F132814 00 EC05 A201)	48-h acute	0.174 mg a.i./L	0.009 mg a.i./L	0.05	No
Midge (Chironomus riparius)	Quizalofop- acid	28-d NOEC	37.5 mg a.i./L	0.008 mg a.i./L	<0.01	No
Freshwater Fis	h	1	I	T _	1	
Rainbow Trout (Oncorhynchus mykiss)	Quizalofop-p-	96-h LC ₅₀	0.0388 mg a.i./L	0.009 mg a.i./L	0.23	No
	ethyl	21-d chronic NOEC	0.044 mg a.i./L	0.009 mg a.i./L	0.2	No
	Quizalofop- acid	96-h LC ₅₀	>9.17 mg a.i./L	0.008 mg a.i./L	<0.01	No
	Dihydroxy- quinoxaline	96-h LC ₅₀	>9.72 mg a.i./L	0.005 mg a.i./L	<0.01	No

Organism	Test substance	Exposure	Effects metric for risk assessment	EEC ²	Risk quotient 3	Level of concern 4
	Quizalofop- acid	28-d chronic NOEC	46.2 mg a.i./L	0.008 mg a.i./L	<0.01	No
Bluegill sunfish (<i>Lepomis</i> macrochirus)	Quizalofop-p- ethyl	96-h LC ₅₀	0.0209 mg a.i./L	0.009 mg a.i./L	0.43	No
			0.0209 mg a.i./L	0.048 mg a.i./L	2.3	Yes
Amphibians		96-h LC ₅₀ (using bluegill sunfish data as a	$ \begin{array}{c} 0 \end{array} \begin{array}{ c c c c c } \hline 0.0209 \text{ mg} \\ a.i./L \end{array} \begin{array}{ c c c } field \\ (groun \\ d \text{ appl.,} \\ 6\% \\ 0.0029 \\ mg \\ a.i./L \end{array} \begin{array}{ c c } 0.014 \\ drift \\ 0.0029 \\ mg \\ a.i./L \end{array} \end{array} $	(groun d appl., 6% drift): 0.0029 mg	0.14	No
	Quizalofop-p- ethyl	surrogate)		0.53	No	
			0.044 mg a.i./L	0.048 mg a.i./L	1.1	Yes
	21-d chronic NOEC (using rainbow trout data as a surrogate)	0.044 mg a.i./L	Off- field (groun d appl., 6% drift): 0.0029 mg a.i./L	0.07	No	
			0.044 mg a.i./L	Off- field	0.25	No

Organism	Test substance	Exposure	Effects metric for risk assessment	EEC ²	Risk quotient 3	Level of concern 4
				(aerial appl., 23% drift): 0.0110 mg a.i./L		
	Quizalofop- acid	96-h LC ₅₀ (using rainbow trout data as a surrogate)	>9.17 mg a.i./L	0.044 mg a.i./L	<0.01	No
		28-d chronic NOEC (using rainbow trout data as a surrogate)	46.2 mg a.i./L	0.044 mg a.i./L	<0.01	No
Freshwater vas	cular plants					
Duck weed (<i>Lemna gibba</i>)	Quizalofop-p-	7-d EC ₅₀	>0.305 mg a.i./L	0.009 mg a.i./L	<0.03	No
	ethyl	14-d chronic NOEC	0.0828 mg a.i./L	0.009 mg a.i./L	0.11	No
Freshwater Alg	· · · · · · · · · · · · · · · · · · ·	1		1		
Green algae (<i>Pseudokirchn</i> <i>eriella</i> <i>subcapitata</i>)	Quizalofop-p- ethyl	72-h E _b C ₅₀	0.0105 mg a.i./L	0.009 mg a.i./L	0.86	No
Cyanobacteria (Anabaena flos-aquae)	Quizalofop-p- ethyl	5-d EC ₅₀	0.545 mg a.i./L	0.009 mg a.i./L	0.02	No
Marine fish and			0.176			
Sheepshead minnow (<i>Cyprinodon</i> <i>variegatus</i>)	Quizalofop- ethyl	96-h LC ₅₀	0.176 mg a.i./L	0.009 mg a.i./L	0.05	No
Eastern oyster	Quizalofop-	96-h Flow-	0.295 mg	0.009	0.03	No

Organism	Test substance	Exposure	Effects metric for risk assessment	EEC ²	Risk quotient 3	Level of concern 4
(Crassostrea virginica)	ethyl	through	a.i./L	mg a.i./L		
		48-h embryo larva static	0.0395 mg a.i./L	0.009 mg a.i./L	0.23	No
Mysid shrimp (<i>Mysidopsis</i> bahia)	Quizalofop- ethyl	96-h LC ₅₀	0.075 mg a.i./L	0.009 mg a.i./L	0.12	No

¹NOAEC

¹NOAEC ² EEC = Estimated Environmental Concentration. ³ RQ = Risk Quotient. The RQ is calculated by dividing the EEC by the endpoint effects metric value (RQ = EEC/effects metric endpoint value) ⁴Level of concern. The RQ is compared to the level of concern.

Table 10 Toxic substances management policy considerations-comparison to TSMP track 1 criteria for quizalofop-p-ethyl

TSMP Track 1 Criteria	TSMP Track 1 Criterion value		Active Ingredient: Quizalofop-p-ethyl	Major transformation products ¹
CEPA toxic or CEPA toxic equivalent ²	Yes		Yes	Yes
Predominantly anthropogenic ³		Yes	Yes	Yes
	Soil	Half-life ≥182 days	No (<1–21 days)	Yes (24 -> 1000 days)
Persistence ⁴ :	Water/Sed iment Whole System	Half-life ≥ 182 days (water) ≥ 365 days (sediment)	<2 days	N/A
	Air	Half-life ≥ 2 days or evidence of long range transport	No (AopWIN: 0.4 days)	No/Yes ⁵ (AopWIN: 0.3 – 2.6 days)
	Lo	$g K_{ow} \ge 5$	No (4.61)	No (KOAWIN: <0 – 3.6)
Bioaccumulation ⁶	BC	$F \ge 5000$	No (380)	N/A
	BA	$F \ge 5000$	N/A	N/A
Is the chemical a TSMP Track 1 substance (all four criteria must be met)?		No, does not meet all TSMP Track 1 criteria.	No, does not meet all TSMP Track 1 criteria.	
¹ Major transformation products; quizalofop-acid, hydroxyl-quizalofop, dihydroxy-quinoxaline and 2- (4-hydroxyphenoxy)propionic acid				

²All pesticides will be considered CEPA-toxic or CEPA toxic equivalent for the purpose of initially assessing a pesticide against the TSMP criteria. Assessment of the CEPA toxicity criteria may be refined if required (in other words, all other TSMP criteria are met).

³ The policy considers a substance "predominantly anthropogenic" if, based on expert judgement, its concentration in the environment medium is largely due to human activity, rather than to natural sources or releases.

⁴ If the pesticide and/or the transformation product(s) meet one persistence criterion identified for one media (soil, water, sediment or air) than the criterion for persistence is considered to be met.

⁵Atmospheric oxidation half-life for dihydroxy-quinoxaline was 2.6 days

⁶ Field data (for example, BAFs) are preferred over laboratory data (for example, BCFs) which, in turn, are preferred over chemical properties (for example, $\log K_{ow}$).

BCF = bioconcentration factor; BAF = bioaccumulation factor

Appendix IX Proposed label amendment for products containing quizalofop-p-ethyl

The label amendments proposed below do not include all label requirements for individual products, such as first aid statements, disposal statements, precautionary statements, and supplementary protective equipment. Information on labels of currently registered products should not be removed unless it contradicts the label statements provided below.

1.0 Label amendments for quizalofop-p-ethyl technical products

The following statements are proposed to be added under ENVIRONMENTAL PRECAUTIONS for all technical grade products:

TOXIC to aquatic organisms.

DO NOT discharge effluent containing this product into sewer systems, lakes, streams, ponds, estuaries, oceans or other waters.

Disposal:

Canadian manufacturers should dispose of unwanted active ingredients and containers in accordance with municipal and provincial regulations. For additional details and clean up of spills, contact the manufacturer and the provincial regulatory agency.

2.0 Label amendments for quizalofop-p-ethyl commercial end-use products

1) For all end-use products, under the section entitled **PRECAUTIONS**:

Wear coveralls over a long-sleeved shirt, long pants, chemical-resistant gloves, socks and shoes during mixing, loading, application, clean-up and repair. Gloves are not required during application within a closed cab and/or cockpit.

2) For all end-use products, under the section entitled **PRECAUTIONS**, add the following statement unless a more restrictive REI is specified on the product label:

DO NOT enter or allow worker entry into treated areas during the restricted-entry interval (REI) of 12 hours.

3) For all end-use products, under the section entitled **PRECAUTIONS**, add or update the following statement:

Apply only to agricultural crops when the potential for drift to areas of human habitation and human activity, such as houses, cottages, schools and recreational areas is minimal. Take into consideration wind speed, wind direction, temperature inversions, application equipment, and sprayer settings. 4) For CAZIVA ULTRA Q, PCP no. 34282 only, add the following statement:

DO NOT apply by air.

5) For all end-use products, under the section entitled **ENVIRONMENTAL PRECAUTIONS**, add the following statements:

Toxic to aquatic organisms and non-target terrestrial plants. Observe spray buffer zones specified under DIRECTIONS FOR USE.

This product contains an active ingredient and aromatic petroleum distillates, which are toxic to aquatic organisms.

To reduce runoff from treated areas into aquatic habitats avoid application to areas with a moderate to steep slope, compacted soil, or clay.

Avoid application when heavy rain is forecast.

Contamination of aquatic areas as a result of runoff may be reduced by including a vegetative filter strip between the treated area and the edge of the water body.

As this product is not registered for the control of pests in aquatic systems, DO NOT use to control aquatic pests.

DO NOT contaminate irrigation or drinking water supplies or aquatic habitats by cleaning of equipment or disposal of wastes.

Store this product away from food or feed.

6) For all end-use products except CAZIVA ULTRA Q, PCP no. 34282, add to **DIRECTIONS FOR USE**:

<u>Field sprayer application</u>: DO NOT apply during periods of dead calm. Avoid application of this product when winds are gusty. DO NOT apply with spray droplets smaller than the American Society of Agricultural Engineers (ASAE S572.1) medium classification. Boom height must be 60 cm or less above the crop or ground.

<u>Aerial application</u>: DO NOT apply during periods of dead calm. Avoid application of this product when winds are gusty. DO NOT apply when wind speed is greater than 16 km/h at flying height at the site of application. DO NOT apply with spray droplets smaller than the American Society of Agricultural Engineers (ASAE S572.1) medium classification. Reduce drift caused by turbulent wingtip vortices. Nozzle distribution along the spray boom length MUST NOT exceed 65% of the wing- or rotorspan.

Apply only by fixed-wing or rotary aircraft equipment which has been functionally and operationally calibrated for the atmospheric conditions of the area and the application rates and conditions of this label.

Label rates, conditions and precautions are product specific. Read and understand the entire label before opening this product. Apply only at the rate recommended for aerial application on this label. Where no rate for aerial application appears for the specific use, this product cannot be applied by any type of aerial equipment.

Ensure uniform application. To avoid streaked, uneven or overlapped application, use appropriate marking devices.

Use precautions

Apply only when meteorological conditions at the treatment site allow for complete and even crop coverage. Apply only under conditions of good practice specific to aerial application as outlined in the National Aerial Pesticide Application Manual, developed by the Federal/Provincial/Territorial Committee on Pest Management and Pesticides.

Product specific precautions

Read and understand the entire label before opening this product. If you have questions, call the manufacturer at (XXX) YYY-ZZZZ or obtain technical advice from the distributor or your provincial agricultural representative. Application of this specific product must meet and/or conform to the following:

Volume: Apply the recommended rate in a minimum spray volume of 55 litres per hectare.

SPRAY BUFFER ZONES

A spray buffer zone is NOT required for:

• low-clearance hooded or shielded sprayers that prevent spray contact with crop, fruit or foliage,

The spray buffer zones specified in the table below are required between the point of direct application and the closest downwind edge of sensitive terrestrial habitats (such as grasslands, forested areas, shelter belts, woodlots, hedgerows, riparian areas and shrublands) and sensitive freshwater habitats (such as lakes, rivers, sloughs, ponds, prairie potholes, creeks, marshes, streams, reservoirs and wetlands).

	Сгор		Spray buf	tres) required for on of:		
Method of application			Freshwater habitat of depths:		Terrestrial	
			Less than 1 m	Greater than 1 m	habitat:	
Field	Field crops at 0.38–0.5 L/ha		1	0	3	
sprayer	Field crops at 0.75 L/ha		1	0	5	
	Field crops at 0.38 L/ha	Fixed wing	1	0	85	
		Rotary wing	1	0	70	
	Field crops at 0.5 L/ha	Fixed wing	1	0	100	
Aerial		Rotary wing	1	0	85	
		Fixed wing	1	0	150	
	Field crops at 0.75 L/ha Rotary wing		1	0	125	

When tank mixes are permitted, consult the labels of the tank-mix partners and observe the largest (most restrictive) spray buffer zone of the products involved in the tank mixture and apply using the coarsest spray (ASAE) category indicated on the labels for those tank mix partners.

The spray buffer zones for this product can be modified based on weather conditions and spray equipment configuration by accessing the Spray Buffer Zone Calculator on the Pesticides portion of the Canada.ca website.

7) For CAZIVA ULTRA Q, PCP no. 34282, add to DIRECTIONS FOR USE:

<u>Field sprayer application</u>: DO NOT apply during periods of dead calm. Avoid application of this product when winds are gusty. DO NOT apply with spray droplets smaller than the American Society of Agricultural Engineers (ASAE S572.1) medium classification. Boom height must be 60 cm or less above the crop or ground.

DO NOT apply by air.

Product specific precautions

Read and understand the entire label before opening this product. If you have questions, call the manufacturer at (XXX) YYY-ZZZZ or obtain technical advice from the distributor or your provincial agricultural representative. Application of this specific product must meet and/or conform to the following:

Volume: Apply the recommended rate in a minimum spray volume of 55 litres per hectare.

SPRAY BUFFER ZONES

A spray buffer zone is NOT required for:

• low-clearance hooded or shielded sprayers that prevent spray contact with crop, fruit or foliage,

The spray buffer zones specified in the table below are required between the point of direct application and the closest downwind edge of sensitive terrestrial habitats (such as grasslands, forested areas, shelter belts, woodlots, hedgerows, riparian areas and shrublands) and sensitive freshwater habitats (such as lakes, rivers, sloughs, ponds, prairie potholes, creeks, marshes, streams, reservoirs and wetlands).

		Spray bu	ffer zones (m the protect	etres) required for ion of:	
Method of application	Сгор		er habitat of pths:	Terrestrial	
		Less than 1 m	Greater than 1 m	habitat:	
Field	Field crops at 0.38–0.5 L/ha	1	0	3	
sprayer	Field crops at 0.75 L/ha	1	0	5	

When tank mixes are permitted, consult the labels of the tank-mix partners and observe the largest (most restrictive) spray buffer zone of the products involved in the tank mixture and apply using the coarsest spray (ASAE) category indicated on the labels for those tank mix partners.

The spray buffer zones for this product can be modified based on weather conditions and spray equipment configuration by accessing the Spray Buffer Zone Calculator on the Pesticides portion of the Canada.ca website.

3.0 Additional label amendments

For all end-use products registered for use on sugarbeets, under the sub-section of "Sugarbeets" or "FOR SALE FOR USE ON SUGARBEETS IN CANADA" in the DIRECTIONS FOR USE section corresponding to the use on sugarbeets, add:

The minimal re-treatment interval (RTI) is 14 days.

Not all labels have the required preharvest intervals (PHIs), therefore, all end-use product labels must be updated to include the following PHIs:

- The PHI is 64 days for Oriental mustard (including canola quality *brassica juncea*) (condiment and oilseed type) (Western Canada only), yellow and brown mustard, and crambe.
- The PHI is 85 days for chickpeas.
- When tank mix partners are used, the most restricted PHIs must be observed.

References

A. Information considered in the updated chemistry assessment

PMRA Document Number	Title
1442074	2006, Quizalofop-P-Ethyl Technical (DPX-79376) Analysis of Product Ingredients for Quizalofop-P-Ethyl Technical Produced at DACO: 2.13, 2.13.1, 2.13.2, 2.13.3, 2.13.4
1479092	1995, Product Chemistry of Quizalofop-P-Ethyl (D(+) NC-302) Technical. I of II. DACO: 2.1, 2.10, 2.14.1, 2.14.10, 2.14.12, 2.14.13, 2.14.14, 2.14.2, 2.14.3, 2.14.4, 2.14.5, 2.14.6, 2.14.7, 2.14.8, 2.14.9, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9
1479161	1996, Submission of a Manufacturing Process Change for Quizalofop-P-Ethyl (D(+) NC-302) Technical, DACO: 2.11.1, 2.11.3, 2.12
2411581	2013, Technical grade quizalofop-p-ethyl (DPX-79396) manufacturing description and formation of impurities, DACO: 2.11.1, 2.11.2, 2.11.3, 2.11.4, 2.12.1
2413238	2013, Product Chemistry Of Quizalofop-P ethyl Technical Product, DACO: 2.11.1, 2.11.2, 2.11.3, 2.11.4, 2.12.1
2413239	2013, Determination of Active Content and Impurity Profile of Quizalofop-P- ethyl, DACO: 2.13.1, 2.13.2, 2.13.3, 2.13.4
2422715	2013, Batch Analysis of Quizalofop-p-ethyl (DPX-79376) technical, DACO: 2.13.3
2423132	2014, Technical grade quizalofop-p-ethyl (DPX-79376) manufacturing description and formation of impurities, DACO: 2.11.1, 2.11.2, 2.11.3, 2.11.4
2423146	2013, Batch Analysis of Quizalofop-p-ethyl (DPX-79376) Technical, DACO 2.13.3
2540373	2015, Quality control data, DACO: 2.12
2540365	2015, Quality control data, DACO: 2.12
2546173	2015, Batch analysis of Quizalofop-p-ethyl (DPX-79376) Technical, DACO: 2.13.3
2546148	2015, Batch analysis of Quizalofop-p-ethyl (DPX 79376) Technical, DACO: 2.13.3
2761226	2008, Preliminary Analysis and Enforcement Analytical Method of Quizalofop- p-ethyl TGAI, DACO: 2.13, 2.13.1, 2.13.3
2761228	2017, Quizalofop-p-ethyl: Determination of the Chemical and Physical Properties, DACO: 2.14, 2.14.1, 2.14.11, 2.14.12, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 2.14.7, 2.14.8, 2.14.9, 830.7000
2775688	2013, Establishing Certified Limits, DACO: 2.11.4, 2.12.1, 2.13.1, 2.13.2, 2.13.3
2775689	2014, Odour, DACO: 2.14.1,2.14.2,2.14.3
2775692	2014, Melting Point/Melting Range, DACO: 2.14.4
2775693	2014, Boiling Point/Boiling Range, DACO: 2.14.5
2775691	2014, Density Or Specific Gravity, DACO: 2.14.6
2775695	2014, Water Solubility (MG/L), DACO: 2.14.7

PMRA	Title
Document	The
Number	
2775696	2014, Solvent Solubility (MG/L), DACO: 2.14.8
2775698	2014, Vapour Pressure, DACO: 2.14.9
2775697	2014, Octanol/Water Partition Coefficient, DACO: 2.14.11
2775700	2014, UV/Visible Absorption Spectra, DACO: 2.14.12
2775701	2014, Storage Stability Data, DACO: 2.14.14
2775690	2014, Quizalofop-P-ethyl TC (Technical): Determination of the pH value, DACO: 2.14.15,830.7000
2822749	2017, Impurities of Toxicological Concern, DACO: 2.13.1,2.13.4
2832419	2017, Determination of in quizalofop-p-ethyl Technical, DACO: 2.13.4
2844540	2017, Confirmation of Identity, DACO: 2.13.1, 2.13.2, 2.13.3, 2.13.4
2844541	2017, Storage Stability and Corrosion Characteristics, DACO: 2.14.1, 2.14.13, 2.14.15, 2.14.2, 2.14.3, 830.7000
2844545	2008, Quizalofop-P-ethyl Determination of melting point/melting range, boiling point/ boiling range, DACO: 2.14.4, 2.14.5
2844546	2008, Density Or Specific Gravity, DACO: 2.14.6
2844547	2016, Quizalofop-p-ethyl (pure): Determination of the Water Solubility, DACO: 2.14.7
2844548	2016, Solvent Solubility (MG/L), DACO: 2.14.8
2844549	2016, Vapour Pressure, DACO: 2.14.9
2844542	2008, Dissociation Constant, DACO: 2.14.10
2844543	2016, Octanol/Water Partition Coefficient, DACO: 2.14.11
2844544	2008, UV/Visible Absorption Spectra, DACO: 2.14.12
2844551	2018, Chemical Abstracts Registry Number, DACO: 2.11.1, 2.11.2, 2.11.3, 2.11.4, 2.12.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9
2822748	2017, Manufacturing Methods For the TGAI, DACO: 2.11
2822749	2017, Impurities Of Toxicological Concern, DACO: 2.13.1, 2.13.4
2904385	2015, Manufacturing Process Synthesis Pathway: Quizalofop-P-ethyl Technical, DACO: 2.11, 2.11.1, 2.11.2, 2.11.3, 2.13.4
2950908	2013, 5Batch analysis of Quizalofop-p-Ethyl TC to meet international Regulatory Requirements, DACO: 2.13.1,2.13.2,2.13.3,2.13.4
2950909	2014, Quizalofop-P-Ethyl TC (Technical): Determination of the Colour, Odour and Physical State, DACO: 2.14.1,2.14.2,2.14.3
2950910	2014, Quizalofop-P-ethyl (Technical): Determination of Melting Point, DACO: 2.14.4
2950911	2014, Quizalofop-p-ethyl TC (Technical): Determination of Relative Density, DACO: 2.14.6
2950912	2014, Quizalofop-p-ethyl TC (Technical): Determination of the water solubility, DACO: 2.14.7
2950913	2014, Quizalofop-P-Ethyl TC (Technical): Determination of the solubility in Organic Solvents, DACO: 2.14.8
2950914	2014, Quizalofop-P-Ethyl TC (Technical): Determination of the Vapour Pressure, DACO: 2.14.9

PMRA	Title
Document	
Number	
2950916	2014, Quizalofop-P-ethyl TC (technical): Determination of the Partition
	coefficient (n-octanol/water), DACO: 2.14.11
2950917	2014, Quizalofop-P-Ethyl TC (Technical): UV/Vis Spectra, DACO: 2.14.12
2950918	2014, Quizalofop-P-Ethyl TC (Technical): Determination of the Accelerate
	Storage Stability and corrosion Characteristics, DACO: 2.14.13
2950919	2014, Quizalofop-P-Ethyl TC (Technical): Determination of the pH Value,
	DACO: 2.14.15, 830.7000
2967317	2019, Five batch analysis of quizalofop-P-ethyl technical product, DACO:
	2.12.1, 2.13.2, 2.13.3
2976236	2019, Manufacturing Process of Quizalofop-p-ethyl TC Revised, DACO: 2.11
2976238	2017, Five batch analysis of Quizalofop-p-ethyl TC: Quantification of
	Hyrdoquinone content, DACO: 2.13.4
3098983	2020, Manufacturing Process of Quizalofop-P-Ethyl in Manufacturing Plant,
	DACO: 2.11.1, 2.11.2, 2.11.3, 2.11.4, 2.12.1, 2.13.1, 2.13.2, 2.13.3
3098984	2019, Five Batch Analysis of quizalofop-P-ethyl Technical Product, DACO:
	2.12.1,2.13.2,2.13.3
3101530	2020, REVISED - Manufacturing Process of Quizalofop-P-Ethyl in Plant,
	DACO: 2.11.3
3263427	2018, Five Batch Analysis of Quizalofop-P-ethyl Technical Product, DACO:
	2.13.3,2.13.4
3263428	2016, Five Batch Analysis of Quizalofop-P-ethyl Technical Product, DACO:
	2.13.4
3267879	2021, Manufacturing Process For Quizalofop-P-Ethyl Technical, DACO: 2.11

B. Information considered for the updated toxicological assessment

PMRA Document	Title
Number	
1161247	1987. Ames Salmonella Mammalian Microsomal Reverse Mutation Test of D-NC 302. L 08156, DACO 4.5.4
1161250	1991. DNA Repair assay in primary rat hepatocyte cultures on D-NC 302,
1161251	DACO 4.5.8
1161268	1987. Acute oral toxicity study of NC-302 (Dextro plus R compound) in rats, DACO: 4.2.1
1161273	1987. Acute oral toxicity study of NC-302 (Dextro plus R compound) in rats, DACO: 4.2.1

PMRA Document Number	Title
1161274	1995. Primary dermal irritation study with in Y6202 D+ isomer in rabbits, DACO: 4.2.5
1161275	1995. Closed-patch repeated insult dermal sensitization study (Buehler method) with in Y6202 D+ isomer in guinea pigs. DACO: 4.2.6
1161277, 1161276	1995. 90-day oral (dietary) toxicity study of D-NC 302 in mice, DACO: 4.3.4
1161278	1995. 90-day oral (dietary) toxicity study of D-NC 302 in rats, DACO: 4.3.4
1165846	1996. Mouse and rat organ to body weight ratio tables, DACO: 4.4.1
1165848	1996. Eighteen-month oncogenicity studies in CD-1 mice. Glossary of Nomenclature, DACO: 4.4.2
1165849	1996. Combined chronic toxicity/oncogenicity study with male and female rats, DACO: 4.4.4
1184251, 1184272, 1222753, 1222755, 1222757, 1223781, 1224007, 1224020, 1224020, 1224034, 1224036, 1224038 1223697	1984. NC-302: Tumorigenicity/toxicity to rats by dietary administration, DACO: 4.4.2
1222753 1222759, 1222761, 1222762, 1222764, 1222766, 1222768, 1222770, 1222772, 1222775, 1224046, 1224107, 1224151, 1224159, 1224729 1184254	1985. Oncogenicity study in mice NC302 final report (all volumes), DACO: 4.4.3

PMRA	Title
Document	Title
Number	
1224031	1096 NG 202, 52 most and (distance administration) tonicity study in the
1184271	1986. NC-302: 52 week oral (dietary administration) toxicity study in the
1224163	beagle dog, DACO: 4.3.2
1224042	1983. Metabolism of NC-302 in rats, DACO: 4.5.9 (reported as 6.4)
1224110	1985. Two-generation reproduction study in rats with INY-6202, DACO:
1224148	4.5.1
1224167	1981. Acute oral toxicity of NC-302 in mice, DACO: 4.2.1
1224169	, , , , , , , , , , , , , , , , , , ,
1224728	
1184263	
1224168	1981. Acute oral toxicity of NC-302 in rats, DACO: 4.2.1
1184262	, , , , , , , , , , , , , , , , , , ,
1224171	1981. Acute dermal toxicity of NC-302 in rats, DACO: 4.2.2
1184264	
1224172	1983. Inhalation median lethal concentration (LC50) of INY-6202-15 by
1184266	EPA protocol, DACO: 4.2.3
1224173	1984. Irritant effects of NC-302 technical product on rabbit eye mucosa,
	DACO: 4.2.4
1224174	1984. Irritant effects of NC-302 technical product on rabbit skin, DACO:
1224175	4.2.5
1224180	1984. Screening test for delayed contact hypersensitivity with nc-302
	technical product in the albino guinea pig, DACO: 4.2.6
1224183	1984. Subchronic dietary toxicity study in mice, DACO: 4.3.1
1184249	
1224184	1984. NC-302 Potential toxicity to rats when administered in the diet for 13
1184250	weeks followed by a 6-week recovery period, DACO: 4.3.1
1224232	
1224185	1985. Metabolism of [quinoxaline- ¹⁴ C] and [phenyl- ¹⁴ C(U)] DPX-Y6202 in
2719113	rats, DACO: 6.4
1224233	1983. Chromosome test with NC302 on Chinese hamster cell in vitro,
1184259	DACO: 4.5.4
1224234	1984. CHO/HGPRT assay for gene mutation, DACO: 4.5.4
1184258	
1224243	1984. Subchronic toxicity study in dogs with NC-302 by oral administration
1184251	for 26 weeks, DACO: 4.3.1
1224252	1983. The accumulation of NC-302 and its metabolites in the tissues of rats
	during repeated oral administration, DACO: 6.4
1224253	1983. The biokinetics and metabolism of ¹⁴ C-NC 302 in the rat, DACO: 6.4
1224265	1983. Effect of NC-302 on reproduction (Experimental administration of
1184255	NC-302 to pregnant rats during the period of organ formation in embryos).
	DACO: 4.5.2
·	

PMRA Document	Title
Number	
1224266	1983. Effect of NC-302 on pregnancy of the New Zealand White rabbit
1224737	(experimental administration of NC-302 to pregnant rabbits during the period of organ formation of embryos), DACO: 4.5.2
1224268	1984. Mutagenicity testing on NC302 in microbial systems. DACO: 4.5.4
1184256	
1224269	1981. Micronucleus test with NC302 in mice, DACO: 4.5.4
1184261	
1224270	1984. Unscheduled DNA synthesis/rat hepatocytes in vitro, DACO: 4.5.4
1184260	
1224722	1984. Liver enzyme induction study of NC-302 in female mice, DACO: 4.3.8
1224724	1984. Liver enzyme induction study of NC-302 in male mice, DACO: 4.3.8
1224725	1984. Liver enzyme induction study of NC-302 in male and female rats,
	DACO: 4.3.8
1224726	1985. The effect of FBC 32197 (ethyl 2-[4-(6-chloro-2-quinoxzyloxy)-
	phenoxy] propionate) on the mixed function oxidase system of the male
	mouse, DACO: 6.4
2717605	2011. Quizalofop-P-Ethyl Technical: 28-Day Immunotoxicity Feeding Study in Mice, DACO: 4.8
2719113	1986. Metabolism of [quinoxaline- ¹⁴ C] and [phenyl- ¹⁴ C(U)] DPX-Y6202 in
	rats, DACO: 4.5.9
2719116	1983. Twenty-one day dermal toxicity of INY-6202-15 in male and female
1224069	rabbits, DACO: 4.3.4
1224181	
1224077	
2719119	2011. Quizalofop-P-ethyl technical: 28 day immunotoxicity feeding study in mice, DACO: 4.8
2719123	2010. Quizalofop-P-ethyl Immunotoxicity study: Justification for test species and dose selection, DACO: 4.8

Additional information considered

Published information

PMRA Document Number	Title
	Conclusion regarding the peer review of the pesticide risk assessment of the active substance quizalofop-P (considered variants quizalofop-P-ethyl and quizalofop-P-tefuryl). <i>EFSA Scientific Report</i> (2008) 205, 1-216. https://www.efsa.europa.eu/en/efsajournal/pub/rn-205

	Evidence on developmental and reproductive toxicity of quizalofop-ethyl:
	Reproductive and Cancer Hazard Assessment Section (RCHAS) Office of
	Environmental Health Hazard Assessment (OEHHA) California
	Environmental Protection Agency (CAL/EPA) DRAFT September, 1999
	James Donald, Ph.D.
	https://oehha.ca.gov/media/downloads/proposition-65/chemicals/hidquiz.pdf
	EPA: Quizalofop-P-ethyl. Human Health Risk Assessment in Support of the
	Proposed. New Use on Quizalofop-Tolerant Wheat. PC Code: 128709.
	December 13, 2017
	https://www.regulations.gov/document?D=EPA-HQ-OPP-2016-0360-0016
3130950	Clancy B, Darlington RB, Finlay BL. Translating developmental time across
5150950	mammalian species. Neuroscience. 2001;105(1):7-17. PMID: 11483296.
	DOI: 10.1016/s0306-4522(01)00171-3
3130959	Liang Y, Wang P, Liu D, Shen Z, Liu H, Jia Z, et al. (2014) Enantioselective
0100303	Metabolism of Quizalofop-Ethyl in Rat. PLoS ONE 9(6): e101052.
	https://doi.org/10.1371/journal.pone.0101052
	doi: 10.1371/journal.pone.0101052
	https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4071037/
3187225	Shaner, Dale L. (2004). Herbicide safety relative to common targets in plants
0107220	and mammals. Pest Management Science. 60(1):17-24.
	https://doi.org/10.1002/ps.782
	I.C. Burke, J.L. Bell, Encyclopedia of Agriculture and Food Systems, 2014.
	Plant Health Management: Herbicides.
	Acetyl-CoA Carboxylase Inhibitors (Group A) Pages 425-440.
	https://doi.org/10.1016/B978-0-444-52512-3.00181-9

C. Information considered in the updated dietary assessment

PMRA	Title
Document	
Number	
	1992. Metabolism of [Quinoxaline-Phenyl(U)-14C]-DPX-Y6202,
	[Phenyl(U)-14C]DPX-Y6202,[Quinoxaline-Phenyl(U)-14C]DPX-79376 and
1166178	[Phenyl(U)-14C]DPX-79376 in Soybean, DACO: 6.3
	1991. Metabolism of [Phenyl(U)-14C]DPX-79376 and [Quinoxaline-
1166179	Phenyl(U)-14C]DPX-79376 in Tomatoes, DACO: 6.3
	1986. Metabolism of 14C-Labelled DPX-Y6202 by Lactating Goats,
1223757	DACO: 6.4
	1987. The Metabolism of [Quinoxaline-Phenyl(U)-14C] DPX-Y6202 in
1223759	Laying Hens, DACO: 6.4,7.5
	1983. Metabolism of NC-302 Ethyl 2-[4-(6-Chloro-2-
1224039	Quinoxalyloxy)Phenoxy] Propionate in Plants, DACO: 6.3
1224040	1985. Metabolism of 14C-DPX-Y6202 in Field-Grown Cotton, DACO: 6.3
	1984. Metabolism of the Aqueous-Soluble Soybean Metabolites of 14C-
1224079	DPX-Y6202 in Dairy Cow Rumen Fluid, DACO: 6.4

PMRA	Title
Document	
Number	1085 Matcheligm of 14C DDY V6202 in Field Grown Southean Plants
1224182	1985. Metabolism of 14C-DPX-Y6202 in Field-Grown Soybean Plants, DACO: 6.3
1224102	1985. Extraction Characterization of 14C-Residues in Mature Seeds
	Collected from Soybean Plants Foliage-Treated with 14C-NC-302 at the
1234116	Early Reproductive Stage, DACO: 6.3
	1985. Absorption, Translocation and Metabolism of NC-302 in Potato
1234118	Plants. Final Report, DACO: 6.3
1234172	1985. 14C-DPX-Y6202 Residue Study in Soybeans DACO: 7.4.2
	1993. Validation Of Quizalofop P-Ethyl (DPX-79376), Quizalofop Acid
	(YE-945), Phenol 2 (IN-A6208), Phenol 3 (IN-G7057), and Phenol 4 (IN-
1161252	H8515) in Cottonseed, Beans, Peas, Canola, and Sugarbeets, DACO: 7.2.1
	1991, The Metabolism of [Quinoxaline-Phenyl(U)-14C]DPX-79376 and
1166180	[Phenyl(U)-14C]DPX-79376 in Sugar Beet, DACO: 6.3
	1997, Analytical Phase Report: Residues of Quizalofop-P-Ethyl and
1171107	Metabolites in Canola, Flax, Lentil and Peas Grown in Canada, DACO:
1171106	7.2.1
1223752	1984. Determination of Residues of DPX-Y6202 in Crops DACO: 7.2.1
1223753	Determination of Residues of DPX-Y6202 Acid Metabolite in Crops, DACO: 7.2.1
1223733	1983. Determination of Residues of DPX-Y6202 and DPX-Y6202 Acid in
1224044	Soybeans, DACO: 7.2.1
1224100	1986. Determination of Residues in Soybeans, DACO: 7.2.1
122.100	1986. Determination of Herbicide Candidate in Soybeans and Soybean
1224101	Fractions, DACO: 7.2.1
	1987. Determination of Residues in Soybeans and Soybean Fractions,
1224103	DACO: 7.2.1
1224187	1986. Determination of Residues in Soybeans, DACO: 7.2.1
	1990. Magnitude of DPX-Y6202 Residues in Canola Seeds & Processed
1234150	Fractions, DACO: 7.4.2,7.8
	1987. Determination of Residue of DPX-Y6202, DPX-Y6202 Acid, and
1024102	DPX-Y6202 Acid Conjugates in Soybeans & Soybean Fractions, DACO:
1234183	7.2.1
1234194	1982. Determination of Residue of DPX-Y6202, Metabolites Phenol I and Phenol 2 in Soybeans, DACO: 7.2.1
1234194	1993, Magnitude of Residues of Assure II Herbicide in Sugarbeets and Their
1166181	Processed Fractions, DACO: 7.4.6
1100101	1996. Freezer Storage Study of Quizalofop P-Ethyl (DPX-79376),
	Quizalofop Acid (YE-945), Phenol 2 (IN-A6208), Phenol 3 (IN-G7057), and
	Phenol 4 (IN-H8515) in Cottonseed, Beans, Peas, Sugarbeets, and Canola,
1168073	DACO: 7.3
1222559	1987. Determination of Residues in Tissues, DACO: 7.2.1,7.5
1222560	1987. Determination of Residues in Eggs, DACO: 7.2.1,7.5
	1987. Determination of Residues in Bovine and Poultry Fat, DACO:
1222561	7.2.1,7.4.2

PMRA	Title
Document	
Number	
1222562	1986. Determination of Residues in Milk, DACO: 7.2.1,7.4.2
1222563	1987. Determination of Residues in Cream, DACO: 7.2.1,7.4.2
1223762	1986. Accumulation Study of on Rotational Crops, DACO: 7.4.2
	1987. Determination of Residues of DPX-Y6202 and Metabolites in Tissues
1223764	and Eggs of Chickens, DACO: 7.2.1,7.5
	1984. Crop Rotation Study with 14C-DPX-Y6202 in the Greenhouse,
1224008	DACO: 7.4.2
	1987. Magnitude of Residue in Soybeans and Processed Soybean Fractions
1224104	After Treatment, DACO: 7.4.2
	1993. Magnitude of Residues of Assure II Herbicide in Canola Seed and its
1251312	Processed Fractions, DACO: 7.4.1
	1999. Independent Laboratory Validation of the Method for the
	Determination of Quizalofop-P-Ethyl and Quizalofop-P in Sunflower Seeds,
2113605	DACO: 7.2.3
	2008. Analytical Method for the Determination of Residues of Quizalofop-
	P-Ethyl and Quizalofop-P in Sunflower Seed, Mean And Oil, DACO:
2113606	7.2.1,7.2.2,7.2.4,7.2.5
	1998. Determination of Quizalofop-P-Ethyl and its Metabolites in Canola,
• • • • • • • •	Flax, Lentils, Peas, Dry and Succulent Beans and Sugar Beet Tops and
2486604	Roots, by Liquid Chromatography, DACO: 7.2.1
100000	2004. Magnitude of Residues of Quizalofop-P-Ethyl in Chick Peas
1009020	Following Application of Assure II Herbicide -Canada, 2002, DACO: 7.4.1
	1999. Magnitude of Residues of Quizalofop-P-Ethyl in Succulent Beans
107(007	Following Application of Assure II Herbicide at Maximum Label Rates,
1076097	DACO: 7.8
	1999. Magnitude of Residues of Quizalofop-P-Ethyl in Dry Beans
1076098	Following Application of Assure II Herbicide at Maximum Label Rates,
10/0098	DACO: 7.8 1993. Magnitude of Residues of D+ Isomer of Assure Herbicide when
1076469	-
1070409	Applied to Snap and Dry Beans, DACO: 7.4.6
100/302	2001. Minor Use Project - Quizalofop-P-Ethyl on Beans, DACO: 7.2.11993. Magnitude of Residues of Assure Herbicide in Lentils Grown in
1155422	Canada, DACO: 7.4.2
1133422	1993, Magnitude of Residues of Assure Herbicide in Field Peas Grown in
1155423	Canada, DACO: 7.4.2
1155425	1989, Magnitude of Residues of D+ Isomer of Assure Herbicide When
1161253	Applied to Soybeans (Analysis), DACO: 7.4.2
1101233	1990, Supplement No.1 to: Magnitude of Residues of D+ Isomer of Assure
1161254	Herbicide When Applied to Soybeans, DACO: 7.4.2
	1993, Magnitude of Residues of Assure II Herbicide When Applied to
1161255	Canola, DACO: 7.4.2
1101200	1997, Magnitude of Residue of Quizalofop-P-Ethyl (Assure II) in Peas, Flax,
	Canola and Lentils Following Post-Emergence Broadcast Application,
1171105	DACO: 7.4.2

PMRA	Title
Document	
Number	
	1987, Determination of the Residues of DPX-Y6202 and its Metabolites in
1223765	Cattle, DACO: 7.2.1,7.5
1224091	1983, Soybeans (Hulls, Meal, Flour, Soapstock) and Cotton, DACO: 7.4.2
	1989, Analysis Of DPX-Y6202 Parent & Acid Residue in Soybean Seeds,
1234138	DACO: 7.4.2
1311661	2001, Minor Use Project: Quizalofop-P-Ethyl on Rutabagas, DACO: 7.4.1
	2010, Quizalofop-P-Ethyl: Magnitude of the Residue on Cantaloupe,
1891358	DACO: 7.4.1
	2011, Quizalofop-P-Ethyl: Magnitude of the Residue on Zucchini, DACO:
2135434	7.4.1
	2011, Quizalofop-P-Ethyl: Magnitude of the Residue on Cucumber, DACO:
2135436	7.4.1
	2014, Quizalofop-P-Ethyl: Magnitude of the Residue on Saskatoon Berries,
2486605	DACO: 7.3,7.4.1,7.4.2

Additional information considered

Published information

PMRA	Title
Document	
Number	
2300691	2013. Evaluation Report for Category B, Subcategory 3.12 Application
2215264	2013. Evaluation Report for Category B, Subcategory 5.0 Application
2233982	2013. Evaluation Report for Category B, Subcategory 3.12 Application
2429518	2015. Evaluation Report for Category B, Subcategory 3.12 Application
	2014. US, Interim Registration Review Decision Case Number 7215, Docket
-	Number EPA-HQ-OPP-2007-1089-0043
	2017. EFSA Journal Reasoned Opinion. Review of the existing maximum
	residue levels for quizalofop-P-ethyl, quizalofop-P-tefuryl and propaquizafop
	according to Article 12 of Regulation (EC) No 396/2005. doi:
-	10.2903/j.efsa.2017.5050.

D. Information considered in the updated occupational and non-occupational assessment

PMRA Document Number	Title
2572745	2015. Agricultural Handlers Exposure Task Force (AHETF), Agricultural Handler Exposure Scenario Monograph: Open Pour Mixing and Loading of Liquid Formulations, DACO: 5.3, 5.4
1913109	2009. Agricultural Handlers Exposure Task Force (AHETF), Agricultural Handler Exposure Scenario Monograph: Open Cab Groundboom Application of Liquid Sprays, DACO: 5.3, 5.4
2172938	2012. Agricultural Handlers Exposure Task Force (AHETF), Agricultural Handler Exposure Scenario Monograph: Closed Cockpit Aerial Application of Liquid Sprays, DACO: 5.3, 5.4
2115788	2008. Data Submitted by the Agricultural Re-entry Task Force (ARTF) to Support Revision of Agricultural Transfer Coefficients., DACO: 5.6

Studies/Information submitted by task forces

E. Information considered in the updated environmental assessment

PMRA	Title
Document	
Number	
3254882	2019. Quizalofop-P-ethyl: Honey Bee(Apis mellifera) Larval Toxicity Test,
	Single Exposure, DACO: 9.2.4.3
3254883	2019. Quizalofop-P-ethyl Technical Honey Bee Larval (Apis mellifera L.)
	Toxicity Test following Repeated Exposure under laboratory conditions,
	DACO: 9.2.4.3
3254884	2019. Quizalofop-P-ethyl: Honey Bees (Apis mellifera L.) Chronic Oral
	Toxicity Test 10 Day Feeding in the Laboratory, DACO: 9.2.4.4
3254887	1985. Acute toxicity of Haskell sample #15,889 on the shell deposition rate of
	juvenile oysters (Crassostrea virginica), DACO: 9.4.4
3255289	1985. Acute Toxicity of Haskell #15,889 to Embryos and Larvae of the Eastern
	Oyster (Crassostrea Virginica), DACO: 9.4.3
3255292	1985. Acute Toxicity of Haskell #15,889 to the Sheepshead Minnow
	(Cyprinodon Variegatus), DACO: 9.5.2.4
3258159	2018. honey bees: chronic adult Toxicity Test (10 days feeding) with
	quizalofop-p-ethyl technical, DACO: 9.2.4.4
3258160	2020. effect of quizalofop-p-ethyl technical on Larvae of honey bee Apis
	Mellifera, DACO: 9.2.4.3

PMRA	Title
Document Number	
3258161	2007. QUIZALOFOP-P-ETHYL TECHNICAL: Acute Oral and Contact Toxicity to Honey Bees (Apis mellifera L.), DACO: 9.2.4.1,9.2.4.2
3258162	2007. QUIZALOFOP-P-ETHYL TECHNICAL: Acute Oral and Contact Toxicity to Honey Bees (Apis mellifera L.), DACO: 9.2.4.1,9.2.4.2
1223769	1987. Field Dissipation of DPX-Y6202, (ASSURE), DACO: 8.3.2.3
1224010	1983. Environmental Chemistry Of Nc-302, Hydrolysis, Photolysis, Degradation In Soils, Soil Adsorption, Soil Desorption And Mobility, DACO: 8.2.1
1224012	1983. Aerobic Soil Metabolism of [14C]-Phenyl-Labeled DPX-Y6202, DACO: 8.2.3.1
1224013	1984. Aerobic Soil Metabolism of [14C-Quinoxaline-Labeled]-DPX-Y6202, DACO: 8.2.3.1
1224014	1985. Aerobic Soil Metabolism of [Phenyl-14C(U)] DPX-Y6202, DACO: 8.2.3.1
1224015	1985. Anaerobic Aquatic Metabolism of [Quinoxaline-14C] DPX-Y6202 and [Phenyl-14C(U)] DPX-Y6202, DACO: 8.2.3.1
1224047	1985. Field Soil Dissipation [Phenyl-14C(U)] and [Quinoxaline-14C] DPX- Y6202 in Delaware, North Carolina Illinois and Mississippi, DACO: 8.3.2.3
1224081	1985. Batch Equilibrium (Adsorption/Desorption) and Soil Thin-Layer Chromatography Studies with [Quinoxaline-14C] 2-[4-(6-Chloroquinoxalin-2- yloxy)Phenoxy] Propanoic Acid ("DPX-Y6202 Acid"), DACO: 8.2.4.1
1224112	1986. Photodegradation Of [Phenyl(U)-14C] DPX-Y6202 and [Quinoxaline(U)-14C] DPX-Y6202 on Soil, DACO: 8.2.1
1224113	1984. Photolysis of 14C-DPX-Y6202 in Water, DACO: 8.2.1
1224189	1984. Photodegradation of [Quinoxaline-14C] DPX-Y6202 on Soil, DACO: 8.2.1
1224190	1985. Soil Column Leaching Behaviour of [Quinoxaline-14C] DPX-Y6202, DACO: 8.2.4.1
1224238	1983. Hydrolysis of [14C]-Quinoxaline-Labeled DPX-Y6202, DACO: 8.2.1
1224241	1983. Aerobic Soil Metabolism of 14C-DPX-Y6202, DACO: 8.2.3.1
1224139	1986. Acute Toxicity of Haskell Sample #15889 to Mysids, DACO: 9.3.1, 9.5.2.1
1164019	1991. 1-octanol/water partition coefficient of D(+) NCI-966831991, DACO: 8.2.1
1164020	1994. Aerobic Soil Metabolism of [Quinoxaline(U)-14C] Quizalofop-P-Ethyl, DACO: 8.2.3, 4.2

PMRA	Title
Document	
Number	
1164021	1994. Acute Toxicity Test on the Rainbow Trout Semistatic Test Procedure Test Substance: Quizalofop-P-Ethyl-ISO D+, DACO: 9.5.2.1
1164022	1994. Acute Immobilisation Test on Daphnia Magna (Semistatic Procedure) Test Substance: Quizalofop-P-Ethyl-ISO D+, DACO: 9.3.1
1164023	1994. Quizalofop-p-ethyl (DPX 79376): Toxicity To Selenastrum Capriocornutum, DACO: 9.8.2
1164024	1994. Quizalofop-P-Ethyl (DPX-79376): Influence on Growth and Reproduction of Lemna Gibba G3, DACO: 9.8.5
1322640	1994. Influence of quizalofop-p-ethyl on seed germination, seedling emergence, and vegetative vigour of several terrestrial plants, DACO: 9.8.4
1322645	1997. Quizalofop-p-ethyl: Determination of 72-hour EC50 to Slenastrum capricornutum, DACO: 9.8.2
1322641	1996. Influence of quizalofop-p-ethyl on seed germination, seedling emergence, and vegetative vigour of several terrestrial plants DACO: 9.8.4

Additional information considered

Published information

PMRA	Title
Document	
Number	
3281017	2007. EU Review Programme for Existing Acitve Substances Draft, Quizalofop-
	p-ethyl. Annex B.8, Draft Assessment Report (DAR) Quizalofop-p-ethyl,
	Volume 3, Annex B, part 4, B.8, Summary, Scientific Evaluation and
	Assessment, DACO: 8.6
3281018	2007. EU Review Programme for Existing Acitve Substances Draft, Quizalofop-
	p-ethyl. Annex B.9, Draft Assessment Report (DAR) Quizalofop-p-ethyl,
	Volume 3, Annex B, part 5, B.9, Summary, Scientific Evaluation and
	Assessment, DACO: 9.9
	2020. Buerge, I.J., Pavlova, P., Hanke, I., Bächli, A. & Poiger, T., "Degradation
	and sorption of the herbicides 2,4-D and quizalofop-P-ethyl and their metabolites
	in soils from railway tracks", Environmental sciences Europe, vol. 32, no. 1.
3280462	DACO: 8.2.3.4.2, 8.2.4.2
	2020. Buerge, I.J., Pavlova, P., Hanke, I., Bächli, A. & Poiger, T., "Degradation
	and sorption of the herbicides 2,4-D and quizalofop-P-ethyl and their metabolites
	in soils from railway tracks", Environmental sciences Europe, vol. 32, no. 1
3280467	Additional File, DACO: 8.2.3.4.2, 8.2.4.2
	2020. Buerge, I.J., Pavlova, P., Hanke, I., Bächli, A. & Poiger, T., "Degradation
	and sorption of the herbicides 2,4-D and quizalofop-P-ethyl and their metabolites
	in soils from railway tracks", Environmental sciences Europe, vol. 32, no. 1
3280473	Outputs of kinetic model DACO: 8.2.3.4.2, 8.2.4.2

	2016. Ma, L., Liu, H., Qu, H., Xu, Y., Wang, P., Sun, M., Zhou, Z. & Liu, D.,
	"Chiral quizalofop-ethyl and its metabolite quizalofop-acid in soils:
	Enantioselective degradation, enzymes interaction and toxicity to Eisenia
3280480	foetida", Chemosphere (Oxford), vol. 152, pp. 173-180. DACO: 8.2.3.4.2, 9.2.7
	2012. Elliott, J. et al., Groundwater vulnerability to pesticide contamination in
	the Assiniboine Delta Aquifer. Environment Canada Pesticide Science Fund,
2149078	DACO: 8.6

Unpublished information

PMRA	Title
Document	
Number	
	2017. Unpublished pesticide monitoring data from the Province of Manitoba
2893534	(2001-2016), DACO: 8.6
	2018. Prince Edward Island water and sediment monitoring data and ancillary
	information for neonicotinoids, glyphosate and other pesticides in 2018., DACO:
3169038	8.6