Proposed Re-evaluation Decision

PRVD2022-02

Flucarbazone (present as flucarbazone-sodium) and Its Associated Enduse Products

Consultation Document

(publié aussi en français)

This document is published by the Health Canada Pest Management Regulatory Agency. For further information, please contact:

Publications Pest Management Regulatory Agency Health Canada 2720 Riverside Drive A.L. 6607 D Ottawa, Ontario K1A 0K9 Internet: canada.ca/pesticides pmra.publications-arla@hc-sc.gc.ca Facsimile: 613-736-3758 Information Service: 1-800-267-6315 or 613-736-3799 pmra.info-arla@hc-sc.gc.ca

ISSN: 1925-0959 (print) 1925-0967 (online)

Catalogue number: H113-27/2022-2E (print) H113-27/2022-2E-PDF (PDF version)

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Health Canada, 2022

All rights reserved. No part of this information (publication or product) may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in a retrieval system, without prior written permission of Health Canada, Ottawa, Ontario K1A 0K9.

Table of Contents

Proposed re-evaluation decision for flucarbazone (present as flucarbazone-sodium) and	
associated end-use products	
Proposed re-evaluation decision for flucarbazone	1
Risk mitigation measures	2
International context	2
Next steps	
Additional scientific information	3
Science evaluation	4
1.0 Introduction	
2.0 Technical grade active ingredient	4
2.1 Identity	4
2.2 Physical and chemical properties	5
3.0 Human health assessment	5
3.1 Toxicology summary	
3.1.1 Pest Control Products Act hazard characterization	
3.2 Dietary exposure and risk assessment	
3.2.1 Determination of acute reference dose	11
3.2.2 Acute dietary exposure and risk assessment	11
3.2.3 Determination of acceptable daily intake	11
3.2.4 Chronic dietary exposure and risk assessment	12
3.2.5 Cancer assessment	
3.3 Exposure from drinking water	13
3.3.1 Concentrations in drinking water	13
3.3.2 Drinking water exposure and risk assessment	14
3.4 Occupational and non-occupational exposure and risk assessment	14
3.4.1 Toxicology endpoint selection for residential and occupational exposure	14
3.4.2 Non-occupational exposure and risk assessment	15
3.4.3 Occupational exposure and risk assessment	16
3.5 Aggregate exposure and risk assessment	17
3.6 Cumulative assessment	17
3.7 Health incident reports	
4.0 Environmental assessment	
4.1 Fate and behaviour in the environment	18
4.2 Environmental risk characterization	19
4.2.1 Risks to non-target organisms	20
4.3 Environmental incident reports	21
4.4 Toxic Substances Management Policy considerations	
4.4.1 Formulants and contaminants of health or environmental concern	21
5.0 Value assessment	22
List of abbreviations	
Appendix I Registered products containing flucarbazone in Canada	
Table 1 Products containing flucarbazone subject to proposed label amendments ¹	27

Appendix II Registered uses	. 29
Appendix II Registered uses Table 1 Registered commercial class uses of flucarbazone in Canada ^{1, 2}	. 29
Appendix III Toxicological information for health risk assessment	. 30
Table 1 Toxicity profile of technical flucarbazone	
Table 2 Toxicology reference values for use in health risk assessment for flucarbazone	
Appendix IV Dietary exposure and risk estimates	
Table 1 Summary of dietary exposure and risk from flucarbazone	
Appendix V Mixer/loader/applicator exposure and risk assessment	. 45
Table 1 Dermal, inhalation or combined (dermal plus inhalation) exposure and risk	
assessment for mixer/loader/applicators (M/L/A) using groundboom equipment	. 45
Table 2Dermal, inhalation and combined (dermal plus inhalation) exposure and risk	
assessment for mixer/loader and applicators (M/L/A) using aerial equipment	
Appendix VI Postapplication workers exposure and risk assessment	
Appendix VII Fate and behaviour in the environment	. 48
Table 1 Summary of fate and behaviour of flucarbazone and transformation products in	
terrestrial and aquatic environments	
Table 2 Summary of terrestrial and aquatic toxicity data for flucarbazone and transformati	ion
products	. 54
Table 3 Screening level risk for non-target organisms	. 57
Table 4 Refined assessment for non-target terrestrial plants using SSD endpoints and spra	у
drift exposure	. 60
Table 5Refined assessment for aquatic vascular plants (96 hr endpoint adjusted for	
uncertainty = 0.00011 mg a.e./L) using runoff and spray drift EECs	. 61
Table 6 Toxic Substances Management Policy Considerations – Comparison to TSMP	
Track 1 Criteria	. 61
Appendix VIII Proposed label amendments for products containing flucarbazone	. 63
References	. 70

Proposed re-evaluation decision for flucarbazone (present as flucarbazone-sodium) and associated end-use products

Under the authority of the *Pest Control Products Act*, all registered pesticides must be reevaluated by Health Canada's Pest Management Regulatory Agency (PMRA) to ensure that they continue to meet current health and environmental standards and continue to have value. The reevaluation considers data and information from pesticide manufacturers, published scientific reports and other regulatory agencies. Health Canada applies internationally accepted risk assessment methods as well as current risk management approaches and policies.

Flucarbazone (present as flucarbazone-sodium) is a selective herbicide used on wheat (spring, durum and winter) in Alberta, Manitoba, Saskatchewan, and Peace River region of British Columbia. It is used to control certain annual grasses and broadleaf weeds. Flucarbazone products are formulated as wettable granules, suspension or emulsifiable concentrate and can be applied using ground or aerial equipment. Currently registered products containing flucarbazone can be found in the <u>Pesticide Label Search</u> and in Appendix I.

This document presents the proposed re-evaluation decision for flucarbazone, including the proposed amendments (risk mitigation measures) to protect human health and the environment, as well as the science evaluation on which the proposed decision is based. All products containing flucarbazone that are registered in Canada are subject to this proposed re-evaluation decision. This document is subject to a 90-day public consultation period,¹ during which the public (including the pesticide manufacturers and stakeholders) may submit written comments and additional information to <u>PMRA Publications</u>. The final re-evaluation decision will be published after taking into consideration the comments and information received during the consultation period.

Proposed re-evaluation decision for flucarbazone

Under the authority of the *Pest Control Products Act* and based on an evaluation of available scientific information, Health Canada is proposing continued registration of flucarbazone and associated end-use products registered for sale and use in Canada.

With respect to human health, risks (occupational, dietary, residential/bystander) were shown to be acceptable when flucarbazone is used according to proposed conditions of registration, which include mitigation such as protective clothing and personal protective equipment for mixers, loaders, and applicators, a standard restricted entry interval, and a best practice label statement to minimize the potential for spray drift to limit bystander exposure.

The environmental risk assessment found that flucarbazone and major transformation products flucarbazone sulfonamide, NODT, and flucarbazone sulfonic are expected to be very highly mobile in soil, and may leach to groundwater. A label statement indicating the potential for leaching is proposed for product labels. Flucarbazone does not pose a risk to wild birds, mammals, bees, earthworms, freshwater fish, aquatic invertebrates or algae for the registered

¹

[&]quot;Consultation statement" as required by subsection 28(2) of the Pest Control Products Act.

uses. Potential risk to non-target terrestrial and aquatic vascular plants were identified during the re-evaluation. Spray buffer zones are required to mitigate potential risks to terrestrial and aquatic vascular plants. When used according to the revised label directions, the risks to the environment have been shown to be acceptable.

Flucarbazone has value as an important weed management tool for Western Canadian wheat growers.

Risk mitigation measures

Registered pesticide product labels include specific directions for use. Directions include risk mitigation measures to protect human health and the environment and must be followed by law. The proposed label amendments including any revised/updated label statements and/or mitigation measures, as a result of the re-evaluation of flucarbazone, are summarized below. Refer to Appendix XIII for details.

Human health

Risk mitigation:

To protect workers during mixing, loading and applying and postapplication exposure, the following risk-reduction measures are proposed:

- Protective clothing and personal protective equipment (PPE) requirements consisting of a long-sleeved shirt and long pants plus chemical-resistant gloves, socks and shoes.
- A standard restricted-entry interval (REI) of 12 hours.

To protect bystanders from agriculture application exposure, the following best practice statement is proposed:

• Standard drift statement.

Environment

Risk mitigation:

To protect the environment, the following risk-reduction measures are proposed:

- Precautionary leaching label statements.
- Terrestrial and freshwater aquatic buffer zones to mitigate risk from drift.

International context

Flucarbazone is currently acceptable for use in other Organisation for Economic Co-operation and Development (OECD) member countries, including the United States, Chile and Turkey. No decision by an OECD member country to prohibit all uses of flucarbazone for health or environmental reasons has been identified as of 7 May 2021.

Next steps

Upon publication of this proposed re-evaluation decision, the public, including the registrants and stakeholders are encouraged to submit additional information that could be used to refine risk assessments during the 90-day public consultation period.

All comments received during the 90-day public consultation period will be taken into consideration in preparation of re-evaluation decision document,² which could result in revised risk mitigation measures. The re-evaluation decision document will include the final re-evaluation decision, the reasons for it and a summary of comments received on the proposed re-evaluation decision with Health Canada's responses.

Refer to Appendix I and II for details on specific products and uses impacted by this proposed decision.

Other Information

2

The relevant confidential test data on which the proposed decision is based (see References section of this document) are available for public inspection, upon application, in Health Canada's Reading Room. For more information, please contact Health Canada's <u>Pest</u> <u>Management Information Service</u>.

Additional scientific information

No additional scientific data are required at this time.

[&]quot;Decision statement" as required by subsection 28(5) of the Pest Control Products Act.

Science evaluation

1.0 Introduction

Flucarbazone (present as flucarbazone-sodium) is used on wheat (spring, durum and winter) in Alberta, Manitoba, Saskatchewan, and Peace River region of British Columbia. It is used to control certain annual grasses and broadleaf weeds. There are three sources of flucarbazone technical grade active ingredient and fifteen commercial class end-use products containing flucarbazone currently registered in Canada. Flucarbazone products are formulated as wettable granules, suspension or emulsifiable concentrate and can be applied using ground or aerial equipment.

Flucarbazone is a sulfonyamino-carbonyl-triazolinone herbicide that dissociates to the anion form (flucarbazone) in the presence of moisture. As such, the re-evaluation assessment considered flucarbazone as the active ingredient and is referred to as such throughout the assessment.

2.0 Technical grade active ingredient

2.1 Identity

Comm	on name	Flucarbazone-sodium			
Function		Herbicide			
Chemi	cal Family	Sulfonylurea			
Chemi	cal name				
1	International Union of Pure and Applied Chemistry (IUPAC)	sodium [(4,5-dihydro-3-methoxy-4-methyl-5-oxo-1 <i>H</i> -1,2,4- triazol-1-yl)carbonyl]{[2- (trifluoromethoxy)phenyl]sulfonyl}azanide			
2	Chemical Abstracts Service (CAS)	1 <i>H</i> -1,2,4-triazole-1-carboxamide, 4,5-dihydro-3-methoxy- 4-methyl-5-oxo- <i>N</i> -[[2-(trifluoromethoxy)phenyl]sulfonyl]-, sodium salt			
CAS R	egistry Number	181274-17-9			
Molecu	ular Formula	$C_{12}H_{10}F_3N_4NaO_6S$			
Struct	ural Formula	$\begin{array}{c} Na^+ & O \\ O & N \\ O & N \\ O & N \\ H_3C - N \\ CH_3O \end{array}$			

Molecular Weight

418.3

Registration number of technical grade active ingredient	Purity as flucarbazone
26446	89.2%
33333	93.2%
34110	91.2%

2.2 Physical and chemical properties

Property	Result
Vapour pressure at 20°C	<1 × 10 ⁻⁶ mPa
Ultraviolet (UV) / visible spectrum	Not expected to absorb at $\lambda > 300 \text{ nm}$
Solubility in water at 20°C	44 g/L
n-Octanol/water partition coefficient at 20–25°C	Log <i>K</i> _{ow} for free acid: -2.85 (unbuffered), -1.88 (pH 9), -1.84 (pH 7), -0.89 (pH 4)
Dissociation constant	1.9 (for free acid)

3.0 Human health assessment

3.1 Toxicology summary

Flucarbazone also known as MKH 6562, is a selective herbicide belonging to the triazolone group of chemicals. A detailed review of the toxicological database for flucarbazone was conducted. The database is complete, consisting of the full array of toxicity studies currently required for hazard assessment purposes. The studies were carried out in accordance with currently accepted international testing protocols and Good Laboratory Practices. The toxicology assessment also considered information found in the published scientific literature and a newly submitted guideline short-term inhalation toxicity study. The scientific quality of the data is acceptable and the database is considered adequate to characterize the potential health hazards associated with flucarbazone.

Both triazolinone- and phenyl-radiolabelled flucarbazone-sodium resulted in rapid systemic absorption and distribution following oral gavage administration in rats. The peak plasma concentrations were achieved within 30 minutes of dosing. Tissue retention was minimal, with the liver and kidney showing the highest tissue concentrations for both radiolabels, followed by plasma and fat. The majority of the administered dose (AD) was excreted within the first day of dosing. Biliary excretion accounted for approximately 2% of the AD. The fecal route was the predominant route of excretion accounting for up to 75% and 85% of the AD in the low and high oral dose levels, respectively, while urinary excretion accounted for up to 30% and 15% of the AD in the low and high oral dose levels, respectively. Approximately 90% of the AD excreted in the urine and feces was unchanged flucarbazone. Overall, the low total biliary and urinary excretion and minimal tissue retention were indicative of poor oral absorption.

The main metabolites of flucarbazone, accounting for trace amounts of the AD, were identified as urazole, methylurethane (also known as methyl carbamate), N-methyltriazolinone, sulfonic acid, hydroxysulfonamide, sulfonamide-N-glucuronide, hydroxysulfonamide-O-glucuronide, N-acetylsulfonamide, carbomethoxy sulfonamide, and carboethoxy sulfonamide. The position of radiolabel, single or repeat dosing did not produce major differences in the kinetic profile and there were no sex-related differences in the absorption, distribution, metabolism or excretion of flucarbazone. Toxicokinetic studies conducted with two major plant metabolites of flucarbazone, MKH 6562 sulfonamide lactate and MKH 6562 sulfonamide alanine, were also considered. The toxicokinetic profiles of these metabolites were similar to that of the flucarbazone, but with higher (greater than 2-fold) absorption of MKH 6562 sulfonamide alanine.

Flucarbazone was of low acute oral, dermal and inhalation toxicity in rats. It was non-irritating to rabbit skin, minimally irritating to the rabbit eye, and did not cause skin sensitization in guinea pigs using the Maximization test method. Several plant metabolites of flucarbazone tested in acute oral toxicity studies in rats also exhibited low acute toxicity.

Administration of flucarbazone in repeat dose dietary toxicity studies revealed the liver, stomach, and immune system as the principal target sites of toxicity. With the exception of short-term toxicity studies in mice, decreased body weight and increased clinical signs of toxicity such as fecal changes were noted across several studies and species. Dogs were the most sensitive species to the toxicological effects induced by flucarbazone. However, there was no notable evidence of increased toxicity with increased duration of dosing in any test species. The most sensitive oral endpoints for risk assessment were reductions in body weight gain and body weight observed in the 12-month dietary toxicity study in dogs. Decreased T4 levels were also observed in short-term dietary toxicity studies in dogs. The induction of several liver enzymes and increased incidence of cytoplasmic changes in the liver were noted in the supplemental 28day and the guideline 90-day dietary toxicity studies in dogs, but not in the 12-month dietary toxicity study. Liver enzyme induction, which could cause increased hepatic clearance of T4 levels resulting in decreased circulating T4, was considered an adaptive response, as it was not seen in the 12-month dietary toxicity study. Thus, the level of concern was low for the decreased T4 levels, which was further supported by the absence of any effects on other thyroid biomarkers, such as triiodothyronine (T3), and thyroid-stimulating hormone (TSH), and a lack of corroborative histopathological findings in the thyroid gland.

Effects on the stomach included increased incidences of red discolouration or red areas in the gastric mucosa in both sexes at the mid- and higher dose levels in the 90-day dietary toxicity study in dogs. These findings were accompanied by increased incidences of glandular cell degeneration, round cell infiltrates, and foveolar hyperplasia of the stomach in females at the same dose level and in males at higher dose levels. These effects on the stomach in dogs were supported by evidence in rat dietary toxicity studies where increased incidence of vacuolation of the forestomach squamous epithelium or thickened mucosa of the glandular stomach were observed at or above limit doses in the 90-day dietary toxicity study and the dietary chronic toxicity/carcinogenicity studies. However, there were no treatment-related findings in the stomach in the 12-month dietary toxicity study in dogs. Overall, the effects on the stomach were suggestive of a local irritative effect of the test substance.

Within the standard short-term dietary toxicity studies and the dietary chronic toxicity/carcinogenicity study in rats, additional immunological investigations were conducted that are typically not required by the respective test guidelines for these studies. Evidence of treatment-related immunological changes were observed, consisting of decreased cell counts in the spleen and lymph nodes, decreased serum antibody titers of subclasses IgA and IgG, and altered responsiveness of spleen or lymph node cells (B cell, T cell, macrophage) to stimulation by various mitogens such as phorbol 12-myristate 13-acetate (PMA), and concavalin A (ConA). These findings occurred at similar dose levels across all studies, irrespective of the duration of the study and were noted in both sexes in the short-term toxicity studies. However, only minimal findings were observed at the end of the recovery period in the 90-day study. In addition, in the dietary chronic toxicity/oncogenicity study, the majority of the immunological changes were clustered in males reserved for the chronic toxicity/interim necropsy portion of the study. There was no evidence of durational or progression to more severe effects in these studies.

The immunotoxic potential of flucarbazone was further investigated in five (four guideline; one non-guideline) rat immunotoxicity studies which utilized assays examining immunization response (antibody-forming cell count (AFC)), splenic immune cell sub-populations, a cell-mediated immune response (anti-CD3 proliferation response), and natural killer (NK) cell function. At dose levels reaching or exceeding the limit dose of testing, decreased spleen weight and/or cellularity were observed across each of these studies. In addition, a decreased immunization response was noted in one study, and decreased T and B lymphocyte counts were noted in another study. Overall, clear indications of immunotoxicity were not observed in these assays at dose levels below the limit dose of testing and based on a weight of evidence assessment, there was a low level of concern for the immunotoxic potential of flucarbazone.

No treatment-related systemic effects were observed in the short-term dermal toxicity study in rats, which only tested a limit dose. In the short-term nose-only inhalation toxicity study in rats, treatment-related histopathological findings in the upper respiratory tract were observed in both sexes. These findings consisted of increased incidences of eosinophilic globules in the nasal cavity and focal inflammatory infiltration and squamous cell metaplasia in the larynx. Increased incidence of goblet cell hyperplasia in the nasal cavity was also observed at the same dose level in female animals. At the highest dose level, these effects were more pronounced; additionally an increased incidence of goblet cell hyperplasia in the nasal cavity of male animals and increased/hypertrophic mucous neck cells in the stomach were observed.

In the long-term rat and mouse dietary toxicity studies, there was no evidence of oncogenicity at any dose level and no evidence of systemic toxicity at doses below the limit dose. Flucarbazone was not genotoxic in a battery of in vitro genotoxicity studies that included a bacterial gene mutation assay, a chromosome aberration assay in Chinese hamster V79 cells, a mammalian gene mutation assay in hamster lung V79 cells, and an unscheduled DNA synthesis assay in rat hepatocytes. An in vivo mouse micronucleus test was also negative for genotoxicity. MKH 6562 sulfonic acid sodium salt, a metabolite of flucarbazone, also produced negative results when tested in a bacterial reverse mutation assay.

In the dietary 2-generation reproductive toxicity study in rats, systemic toxicity in the parental generations consisted of increased incidences of clinical signs of toxicity, such as diarrhea, discoloured faeces, and increased water intake observed at the highest dose level, which approached the limit dose of testing. Treatment-related decreased body weight and body weight gain were also observed at the highest dose level until this dose was adjusted to a lower level. Additional treatment-related findings at this dose level included decreased liver weights in males and increased incidence of severe cecal enlargement in F1 females. In the offspring, body weight was decreased on postnatal day (PND) 21 and incidences of air-filled stomach and marbled liver surface were increased in both generations. Decreased liver weight was also observed in F2 male pups. Histopathology was not conducted in the pups. There was no evidence of increased sensitivity of the young in this study. Effects on the reproductive system were limited to decreased uterine weight at the highest dose tested, that, in absence of any other findings, was not considered adverse on its own. In addition, no treatment-related effects were observed on ovarian follicle counts, estrous cycle length and periodicity, sperm parameters (motility and morphology), or on the reproductive indices.

In the rat gavage developmental toxicity study, there were no treatment-related maternal or developmental effects at dose levels up to and including the limit dose of testing. In the rabbit gavage developmental toxicity study, systemic toxicity was observed in both dams and offspring at the same dose level. Maternally, body weight loss and food consumption, as well as increased incidence and frequency of clinical signs of toxicity, such as cold ears and faecal changes, were noted. These effects were observed within the first few days of dosing and, at the higher dose levels, were accompanied by other clinical signs of toxicity, such as anal and vaginal prolapse and diarrhea. Hepatocytic cytoplasmic changes and fatty change in the liver, and gross pathological changes in the GI tract were also observed at the two higher dose levels. Abortions occurred at the limit dose of testing. Developmental toxicity consisted of decreased fetal body weight and increased incidences of incomplete skeletal ossification noted at maternally toxic dose levels. Overall, there was no evidence of treatment-related malformations or sensitivity of the young in either rat or rabbit developmental toxicity studies.

The neurotoxic potential of flucarbazone was examined in rats following acute or short-term exposures. In the acute gavage neurotoxicity study, decreased motor activity levels, as well as a decreased level of activity in the open field, were observed in both sexes above the limit dose of testing. While decreased activity levels may be suggestive of neurotoxicity, they are also commonly associated with general malaise following treatment with excessively high dose levels. In the dietary short-term neurotoxicity study, there were no signs of neurotoxicity. Systemic toxicity was only observed above the limit dose in the form of decreased body weight and food consumption. Overall, there was no evidence of selective neurotoxicity.

Results of the toxicology studies conducted on laboratory animals with flucarbazone are summarized in Appendix III, Table 3.1. The toxicology reference values for use in the human health risk assessment are summarized in Appendix III, Table 3.2.

3.1.1 Pest Control Products Act hazard characterization

For assessing risks from potential residues in food or from products used in or around homes or schools, the *Pest Control Products Act* requires the application of an additional 10-fold factor to threshold effects to take into account completeness of the data with respect to the exposure of, and toxicity to, infants and children, and potential prenatal and postnatal toxicity. A different factor may be determined to be appropriate on the basis of reliable scientific data.

With respect to the completeness of the toxicity database as it pertains to the toxicity to infants and children, the database contains the full complement of required studies including oral developmental toxicity studies in rats and rabbits and a dietary 2-generation reproductive toxicity study in rats.

With respect to potential prenatal and postnatal toxicity, there was no indication of increased sensitivity of offspring or fetuses compared to parental animals in the dietary 2-generation reproductive toxicity study and gavage developmental toxicity studies. There were no treatment-related developmental effects up to and including the limit dose of testing in the rat gavage developmental toxicity study. In the rat dietary 2-generation reproductive toxicity study, decreased pup body weights, as well as increased incidences of air-filled stomach and marbled liver, were observed in the offspring of both generations; however, these occurred in the presence of maternal toxicity study, all developmental effects, including decreased fetal weights observed at the lowest-observed-adverse-effect-level (LOAEL) and an increased incidence of incomplete skeletal ossification observed at higher dose levels, were observed in the presence of maternal toxicity. At the highest dose level, which was the limit dose of testing, abortions were noted in the presence of maternal toxicity.

Overall, the database is adequate for determining the sensitivity of the young. There is a low level of concern for sensitivity of the young as effects on the young are well characterized and occurred in the presence of maternal toxicity. The observed effects in the young, decreased body weight and delayed ossification in rabbit fetuses, and decreased body weight, stomach and liver effects in rat pups were not considered serious in nature. The level of concern for abortions in the rabbit, a serious effect, was tempered by the presence of significant maternal toxicity, the occurrence of these effects at the limit dose of testing, and an inherent 10-fold difference between the dose at which this effect occurred and the NOAEL selected for developmental effects in this study.

On the basis of this information, the *Pest Control Products Act* factor (PCPA factor) was reduced to onefold.

3.2 Dietary exposure and risk assessment

In a dietary exposure assessment, the PMRA determines how much of a pesticide residue, including residues in meat and milk, may be ingested with the daily diet. Exposure to flucarbazone from potentially treated imported foods is also included in the assessment. Dietary exposure assessments are age-specific and incorporate the different eating habits of the population at various stages of life (infants, children, adolescents, adults and seniors). For

example, the assessments take into account differences in children's eating patterns, such as food preferences and the greater consumption of food relative to their body weight when compared to adults. Dietary risk is then determined by the combination of the exposure and the toxicity assessments. High toxicity may not indicate high risk if the exposure is low. Similarly, there may be risk from a pesticide with low toxicity if the exposure is high.

Health Canada considers limiting use of a pesticide when exposure exceeds 100% of the reference dose. Health Canada's Science Policy Note SPN2003-03, *Assessing Exposure from Pesticides, A User's Guide*, presents detailed risk assessment procedures.

Residue estimates used in the dietary risk assessment may be based conservatively (in other words, are high-end estimates) on the maximum residue limits (MRLs) or the field trial data representing the residues that may remain on food after treatment at the maximum label rate. Surveillance data representative of the national food supply may also be used to derive a more accurate estimate of residues that may remain on food when it is purchased. These include the Canadian Food Inspection Agency's (CFIA) National Chemical Residue Monitoring Program and the United States Department of Agriculture Pesticide Data Program (USDA PDP). Specific and empirical processing factors as well as specific information regarding percent of crops treated may also be incorporated to the greatest extent possible.

Sufficient information was available to adequately assess the dietary exposure and risk from flucarbazone. Acute and chronic dietary exposure and risk assessments were conducted using the Dietary Exposure Evaluation Model - Food Commodity Intake DatabaseTM (DEEM-FCIDTM, Version 4.02, 05-10-c) program which incorporates consumption data from the National Health and Nutrition Examination Survey/What We Eat in America (NHANES/WWEIA) for the years 2005-2010 available through the Centers for Disease Control and Prevention's (CDC) National Center for Health Statistics (NCHS). Further details on the consumption data are available in Health Canada's Science Policy Note SPN2014-01, *General Exposure Factor Inputs for Dietary, Occupational and Residential Exposure Assessments*. Information on the residue chemistry of flucarbazone is published in the Regulatory Note REG2000-09 and the Proposed Registration Decision PRD2008-13, *Flucarbazone*, and in subsequent Evaluation Reports for the use expansions since then. For more information on dietary risk estimates and the residue chemistry information used in the dietary assessment, see Appendix IV.

Canadian MRLs for flucarbazone are currently specified for plant and animal commodities at the limits of quantitation (LOQs) of the enforcement analytical methods. The current MRLs and enforcement residue definition for flucarbazone (that is flucarbazone per se) can be found on the <u>Pesticides</u> section of the Canada.ca website. No changes are being proposed as a result of this re-evaluation. The only registered food use is weed control in wheat.

The residue definition in drinking water (for risk assessment) is proposed to be expressed as the combined residue of parent flucarbazone and five of its major transformation products, assumed to be of equal toxicity to the parent.

3.2.1 Determination of acute reference dose

To estimate acute dietary risk, the maternal NOAEL of 100 mg/kg bw/day from the developmental toxicity study in the rabbit was selected for risk assessment. At the LOAEL of 300 mg/kg bw/day, effects on clinical signs of toxicity, such as cold ears, fecal changes, as well as body weight loss and decreased food consumption were observed. Given that these effects were observed during the first few days of dosing, they were considered relevant to an acute risk assessment. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability were applied. As discussed in the *Pest Control Products Act* hazard characterization Section (Section 3.1.1), the PCPA factor was reduced to onefold. **The composite assessment factor (CAF) is thus 100.**

The ARfD is calculated according to the following formula:

ARfD = NOAEL = 100 mg/kg bw = 1.0 mg/kg bw of flucarbazoneCAF 100

3.2.2 Acute dietary exposure and risk assessment

The acute dietary risk was calculated considering the highest ingestion of flucarbazone that would be likely on any one day, and using food and drinking water consumption and residue values. The expected intake of residues is compared to the ARfD, which is the dose at which an individual could be exposed on any given day and expect no adverse health effects. When the expected intake of residues is less than the ARfD, the acute dietary exposure has been shown to be acceptable.

Acute food residue estimates for flucarbazone were based on Canadian MRLs or American Tolerances. There are no Codex MRLs established for flucarbazone. Residues in drinking water were estimated using environmental concentrations from modelling discussed in Section 3.3. Default processing factors were applied for relevant processed commodities. The assessment considered all foods that may potentially be treated with flucarbazone including foods that may be treated in the United States and imported to Canada. All commodities were assumed to be 100% treated.

The acute dietary risk assessment was conducted for the general population and all population subgroups. The acute dietary (food and drinking water) exposure estimates for flucarbazone were shown to be acceptable for all populations, representing less than 1% of the ARfD. The dietary risk estimates are presented in Appendix IV.

3.2.3 Determination of acceptable daily intake

To estimate risk following repeated dietary exposure, the NOAEL of 36 mg/kg bw/day from the 12-month dietary toxicity study in the dog was selected. At the LOAEL of 183 mg/kg bw/day, reductions in body weight gain and body weight were observed in both sexes. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability were applied. As discussed in the *Pest Control Products Act* hazard characterization Section (Section 3.1.1), the PCPA factor was reduced to onefold. **The CAF is thus 100.**

The ADI is calculated according to the following formula:

$$ADI = \frac{NOAEL}{CAF} = \frac{36 \text{ mg/kg bw/day}}{100} = 0.4 \text{ mg/kg bw/day of flucarbazone}$$

The ADI provides a margin of 1250 to the NOAEL of 500 mg/kg bw/day for abortions noted at 1000 mg/kg bw/day in the rabbit developmental toxicity study.

3.2.4 Chronic dietary exposure and risk assessment

Generally, the chronic dietary risk (from food and drinking water) is calculated using average consumption of different foods and drinking water, and the average residue values on those foods and drinking water. For flucarbazone specifically, the average consumption values were used and the maximum potential residues in food as noted below were used. This would result in conservative (high-end) estimates of exposure from food. The estimated exposure was then compared to the ADI, which is an estimate of the level of daily exposure to a pesticide residue that, over a lifetime, is believed to have no significant harmful effects. When the estimated exposure is less than the ADI, the chronic dietary exposure is shown to be acceptable.

Chronic food residue estimates for flucarbazone were based on Canadian MRLs or American Tolerances. Residues in drinking water were estimated using environmental concentrations from modelling discussed in Section 3.3. Default processing factors were applied for processed commodities. The assessment considered all foods that may potentially be treated with flucarbazone including foods that may be treated in the United States and imported to Canada. All commodities were assumed to be 100% treated.

The chronic dietary risk assessment (from food and drinking water) was conducted for the general population and all population subgroups. The chronic exposure estimates were shown to be acceptable for all populations, representing less than 1% of the ADI. The dietary risk estimates are presented in Appendix IV.

3.2.5 Cancer assessment

There was no evidence of oncogenicity and therefore, a cancer risk assessment was not necessary for flucarbazone.

The USEPA recently used a linear, low-dose extrapolation method to quantify the cancer risk for methyl carbamate, which was identified as a residue of concern for flucarbazone in livestock commodities. The PMRA considered the USEPA cancer slope factor q_1^* of 2.88×10^{-3} (mg/kg bw/day)⁻¹ in conducting a cancer risk assessment for this metabolite within the context of all available information. A screen of published toxicity studies including genotoxicity studies and a cancer bioassay conducted by the National Toxicology Program (NTP) did not identify a genotoxic concern for methyl carbamate.

In their registration review of flucarbazone, the USEPA conducted a cancer risk assessment for methyl carbamate, which may occur at very low levels in animal commodities following consumption of feed commodities derived from crops treated with flucarbazone; cancer risks were shown to be acceptable ($\sim 1 \times 10^{-7}$).

In the Canadian context and assuming the same cancer slope factor as the USEPA, the potential cancer risk would be lower, given the smaller use pattern in Canada (that is, grazing of treated fields or using treated green crop for feed is prohibited in Canada).

3.3 Exposure from drinking water

Combined residues of flucarbazone and its major transformation products in potential sources of drinking water were estimated from modelling.

3.3.1 Concentrations in drinking water

The estimated environmental concentrations (EECs) in potential sources of drinking water were modelled for the combined residues of flucarbazone (development code name: MKH 6562) and five of its transformation products: MKH 6562 sulfonamide; MKH 6562 sulfonic acid; *O*-desmethyl MKH 6562; *N*,*O*-dimethyl triazolinone (NODT) and *N*-methyl triazolinone (NMT). The EECs were calculated for surface water and groundwater using the Pesticide Water Calculator model (PWC, version 1.52).

Modelling for surface water used a standard Level 1 scenario, a small reservoir adjacent to agricultural fields. EECs in groundwater were calculated by selecting the highest EEC from a set of standard Level 1 scenarios representing different regions of Western Canada. The scenario for surface water modelling was run for 50 years and scenarios for groundwater modelling were run for 100 years due to low throughputs.

Level 1 EECs are conservative values intended to screen out pesticides that are not expected to pose any concern related to drinking water. These are calculated using conservative inputs with respect to application rate, application timing, and geographic scenario. Given the currently registered use pattern of flucarbazone, the scenarios selected for the modelling cover uses in Western Canada only (Peace River Region in British Columbia, Alberta, Saskatchewan and Manitoba). The EECs are presented in Table 1. The groundwater EEC of 0.039 ppm (daily value = yearly value) were used in the acute and chronic dietary exposure assessments.

Table 1Level 1 EECs of the combined residue of flucarbazone in potential sources of
drinking water, reported as parent equivalent

Use pattern		dwater a.i./L)	Surface Water (µg a.i./L)		
	Daily ¹	Yearly ²	Daily ³	Yearly ⁴	Overall ⁵
A single application of 28.8 g a.i./ha per year	39	39	2.4	0.38	0.24

¹ 90th percentile of daily concentrations

² 90th percentile of 365-day moving average concentrations

³ 90th percentile of the highest 1-day average concentration from each year

⁴ 90th percentile of yearly average concentrations

⁵ Average of all yearly average concentrations

3.3.2 Drinking water exposure and risk assessment

Exposure from drinking water and food sources were combined to determine the total dietary exposure and risk. Refer to Sections 3.2.3 and 3.2.4 for the results of the acute and chronic dietary exposure and risk assessments.

3.4 Occupational and non-occupational exposure and risk assessment

Occupational and non-occupational (residential) risk is estimated by comparing potential exposures with the most relevant endpoint from toxicology studies to calculate a margin of exposure (MOE). This is compared to a target MOE incorporating uncertainty factors protective of the most sensitive subpopulation. If the calculated MOE is less than the target MOE, it does not necessarily mean that exposure will result in adverse effects, but mitigation measures to reduce risk would be required.

3.4.1 Toxicology endpoint selection for residential and occupational exposure

3.4.1.1 Short-term dermal

The available route-specific 28-day dermal toxicity study in rats was not used for risk assessment as the dog was considered the most sensitive species to the toxicological effects of flucarbazone. These effects in dogs included decreased body weight and histopathological findings in the stomach following repeated oral dosing. Furthermore, the target organs of toxicity, such as the stomach, were not examined histopathologically in the 28-day dermal toxicity study in rats in part due to the limit test study design. Thus, for short-term dermal risk assessment, an oral point of departure (POD) was selected for use in risk assessment. The 90-day and 12-month dietary toxicity studies in dogs were considered co-critical because they examined the most sensitive test species and primary target organ. The NOAEL of 36 mg/kg bw/day was selected. At the LOAEL of 162 mg/kg bw/day, an increased incidence of red discolouration/red areas in the gastric mucosa of the stomach in both sexes, as well as increased incidences of glandular cell degeneration, round cell infiltrates and foveolar hyperplasia in the stomach of the female animals was noted.

Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability were applied, resulting in a target Margin of Exposure (MOE) of 100. The selection of this study and MOE is considered to be protective of all populations, including nursing infants and the unborn children of exposed female workers.

The short-term dermal toxicological reference value provides a margin of 1250 to the NOAEL of 500 mg/kg bw/day for abortions noted at 1000 mg/kg bw/day in the rabbit developmental toxicity study.

3.4.1.2 Short-term inhalation

For short-term inhalation risk assessment, the NOAEC of 0.03 mg/L (equivalent to 8 mg/kg bw/day) from the 28-day inhalation toxicity study in rats was selected. At the LOAEC of 0.18 mg/L (equivalent to 48 mg/kg bw/day), treatment-related histopathological findings in the upper respiratory tract were observed including increased incidences of eosinophilic globules in the

nasal cavity and focal inflammation infiltrates and squamous cell metaplasia in the larynx. An increased incidence of goblet cell hyperplasia in the nasal cavity was also observed at this dose level in the female animals. Standard uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability were applied resulting in a target MOE of 100. The selection of this study and MOE is considered to be protective of all populations, including nursing infants and the unborn children of exposed female workers.

The short-term inhalation toxicological reference value provides a margin of 6250 to the NOAEL of 500 mg/kg bw/day for abortions noted at 1000 mg/kg bw/day in the rabbit developmental toxicity study.

3.4.1.3 Combined short-term dermal and short-term inhalation

Given that treatment-related histopathological findings in the stomach were noted in toxicity studies using different routes of administration, a combined short-term dermal and short-term inhalation risk assessment was undertaken. For the dermal component, the route-specific 28-day dermal toxicity study in rats was not considered appropriate since it was conducted using a limit test design and did not assess the stomach histopathologically. Thus, the short-term oral toxicity study in the dog was used as a surrogate since dogs were the most sensitive species for the manifestation of toxicity from the oral route. A NOAEL of 34 mg/kg bw/d from the 90-day dietary toxicity study in dogs was selected. At the LOAEL of 162 mg/kg bw/day, an increased incidence of red discolouration or red areas in the gastric mucosa of the stomach in both sexes as well as increased incidences of glandular cell degeneration, round cell infiltrates and foveolar hyperplasia in the stomach of the female animals were noted. For the inhalation component, a NOAEC of 0.18 mg/L (equivalent to 48 mg/kg bw/day) from the 28-day inhalation toxicity study in rats was selected. At the LOAEC of 0.5 mg/L (equivalent to 133 mg/kg bw/day), increased and/or hypertrophic mucus neck cells in the stomach was observed in both sexes. The target MOE for these scenarios is 100, which includes uncertainty factors of 10-fold for interspecies extrapolation and 10-fold for intraspecies variability. The selection of this study and MOE is considered to be protective of all populations, including nursing infants and the unborn children of exposed female workers.

3.4.2 Non-occupational exposure and risk assessment

Domestic-class products containing flucarbazone are not registered in Canada; therefore, residential handler exposure is not anticipated. Commercial-class products containing this active ingredient are not expected to be used in residential settings. Therefore, postapplication exposure to flucarbazone residues following commercial applications in residential settings is not anticipated.

There is, however, a potential for non-occupational and bystander exposure to spray drift during commercial applications. As such, a standard best practise label statement to minimize spray drift is proposed on all end-use product labels (Appendix VIII).

3.4.3 Occupational exposure and risk assessment

3.4.3.1 Mixer/loader/applicator exposure and risk assessment

For workers mixing/loading and applying flucarbazone, exposure is expected to occur via the dermal and inhalation routes and to be of a short-term duration.

The following exposure scenarios were assessed based on the currently registered use pattern:

- Open mixing/loading of dry formulation and applying as a spray using groundboom equipment.
- Mixing/loading of dry formulation using water-soluble packets (WSP), and applying as a spray using groundboom equipment.
- Open mixing/loading of liquid formulation and application as a spray using groundboom equipment.
- Open mixing/loading of liquid formulation and application using aerial equipment.

In the absence of chemical-specific data for flucarbazone, exposure of workers mixing/loading and applying flucarbazone was assessed using exposure data from the Agricultural Handlers Exposure Task Force (AHETF) or the Pesticide Handlers Exposure Database (PHED). Workers were assumed to be wearing a long-sleeved shirt, long pants, and chemical-resistant gloves. Additional assumptions included default area treated per day (ATPD) values, the maximum registered application rates, average worker body weight of 80 kg, and 100% dermal absorption.

The risk assessment for a mixer/loader and applicator is presented in Appendix V, Tables 1 and 2. The estimated dermal, inhalation, and combined (dermal plus inhalation) MOEs are above the target MOE (100) for all assessed scenarios.

On this basis, risks to mixers/loaders and applicators using ground or aerial equipment are considered to be acceptable when wearing a long-sleeved shirt, long pants, and chemical resistant gloves, socks and shoes. The proposed label amendment to reflect the clothing and PPE requirements for the mixer, loader and applicator are listed in Appendix VIII.

3.4.3.2 Postapplication exposure and risk assessment

There is a potential for postapplication exposure of workers to flucarbazone residues following post-emergence application of flucarbazone.

Exposure would be predominantly dermal for workers performing postapplication activities in crops following spray application. Based on the vapour pressure of flucarbazone ($<1 \times 10^{-6}$ mPa at 20°C) inhalation exposure would be low, provided the minimum restricted-entry interval (REI) of 12 hours is followed. Currently, not all end-use product labels specify a 12-hour REI.

For workers entering a treated site, REI are calculated to determine the minimum length of time required before workers can enter after application. The REI is the duration of time that must elapse in order to allow residues to decline to a level where risks are considered to be acceptable for postapplication worker activities (that is, performance of a specific activity that results in exposures at or above the target MOE).

Dermal exposure of workers entering treated sites was estimated using activity-specific transfer coefficient (TC) and default dislodgeable foliar residue (DFR) values. The DFR refers to the amount of residue that can be dislodged or transferred from a surface, such as leaves of a plant, which is a measurement of pesticide residue on foliage that can be transferred to human skin and clothing. No chemical-specific DFR data was available for flucarbazone; therefore, the risk assessment was based on assumptions; DFR of 25% of the application rate on the day of application and 10% of dissipation per day. The TC is a measure of the relationship between exposure and DFRs for individuals engaged in a specific activity, and is calculated from data generated in field exposure studies. The TCs are specific to a given crop and activity combination and reflect standard agricultural work clothing worn by adult workers. The activity-specific TC from the Agricultural Re-Entry Task Force (ARTF) was used for this risk assessment. Additional assumptions included an 8-hour workday, an average worker body weight of 80 kg, and 100% dermal absorption. Toxicology reference values used in the assessment are summarized in Appendix III. The risk assessment for workers conducting postapplication activities is summarized in Appendix VI. The calculated MOEs (≥4557) were above the target MOE of 100 and risks were shown to be acceptable for all postapplication activities at the minimum REI. A standard 12-hour REI is proposed to be included on all commercial end-use product labels (Appendix VIII).

3.5 Aggregate exposure and risk assessment

Aggregate exposure is the total exposure to a single pesticide that may occur from food, drinking water, residential, and other non-occupational sources, and from all known or plausible exposure routes (oral, dermal, and inhalation).

For flucarbazone, the aggregate assessment consisted of combining food and drinking water exposure, which is presented in Section 3.2 and is shown to be acceptable.

3.6 Cumulative assessment

Flucarbazone belongs to the triazolone herbicide group. Other Canadian registered triazolone herbicides include carfentrazone, sulfentrazone, thiencarbazone-methyl and propoxycarbazone-sodium. The *Pest Control Products Act* requires the Agency to consider the cumulative effects of pest control products that have a common mechanism of toxicity. Accordingly, an assessment of a potential common mechanism of toxicity with other pesticides was undertaken for flucarbazone.

Screening examination of the propoxycarbazone-sodium toxicity database revealed that it also produces gastric/forestomach irritation in rats that are similar to those observed in the flucarbazone toxicity database. The PMRA also gave consideration to the recently completed USEPA initial screening analysis of toxicological profiles of triazolones to consider whether a candidate common mechanism group (CMG) can be established. These chemicals were classified in three different subgroups based on similarities in their toxicological profiles and for further screening analysis to determine if a CMG could be determined. Based on common potential effects in thyroid and liver, the USEPA placed flucarbazone and amicarbazone in a subgroup called "triazolone-amides" for further screening analysis.

Overall, there were no mode of action data to establish a common mechanism of toxicity between flucarbazone and amicarbazone or between flucarbazone and propoxycarbazonesodium. The USEPA also recently published an interim registration review decision for nine acetolactate synthase (ALS) inhibiting herbicides, which included flucarbazone. However, this document did not identify any information that could be used for a cumulative risk assessment on the basis of this chemical grouping.

Therefore, for the current re-evaluation, the PMRA did not identify information indicating that flucarbazone shares a common mechanism of toxicity with other pest control products in this class. In turn, a cumulative risk assessment is not being conducted at this time. The cumulative risk assessment of this chemical class will be revisited when the re-evaluation of the other chemicals in this class are completed.

3.7 Health incident reports

As of 6 May 2021, no human or domestic animal incident reports involving flucarbazone have been submitted to the PMRA.

4.0 Environmental assessment

A summary of environmental fate and behaviour of flucarbazone and its transformation products is presented in Appendix VII, Table 1.

4.1 Fate and behaviour in the environment

In soil, flucarbazone is slightly to moderately persistent in aerobic soil (half-lives of 11–93 days), breaking down primarily through microbial processes to form four major transformation products: flucarbazone sulfonamide (41–84.7% AR), flucarbazone sulfonic acid (11% AR), *O*-desmethyl flucarbazone (15% AR) and NMT (14.4% AR).

Based on laboratory studies, the criteria of Cohen et. al. and the Groundwater Ubiquity Score (GUS), flucarbazone and the major transformation products flucarbazone sulfonamide, NODT, and flucarbazone sulfonic acid are expected to be moderately mobile to very highly mobile in soil, depending on soil type. Despite the fact that field studies did not detect flucarbazone and its transformation products below the 30 cm soil depth and Canadian water monitoring data indicates flucarbazone is rarely detected in groundwater, laboratory studies (adsorption, leaching), a lysimeter study and the physical/chemical properties of flucarbazone, flucarbazone sulfonamide and flucarbazone sulfonic acid indicate they have the potential to leach. A statement indicating potential for leaching to groundwater is proposed for product labels.

At the time of the initial registration of flucarbazone (REG2000-09), half-lives in aerobic aquatic systems were based on studies that had been conducted without using sediment in the test system. For the re-evaluation, additional data were available for aquatic test systems that included sediment. These data show that flucarbazone breaks down more quickly in aerobic aquatic systems than previously reported (half-lives of 71–405 days). Thus flucarbazone can be considered as moderately persistent to persistent in aerobic aquatic systems. Under anaerobic conditions, flucarbazone is considered moderately persistent (half-lives of 66 and 104 days).

Flucarbazone-sulfonamide was found to be the major transformation product in both aerobic and anaerobic test systems. NMT was also found to be a major transformation product under anaerobic conditions. Under both aerobic and anaerobic conditions, flucarbazone is broken down by microbes.

Flucarbazone is non-volatile (vapour pressure at 20° C $<1 \times 10^{-9}$ Pa) and is not expected to volatilise from moist soil or water surfaces (Henry's law Constant (1/H) of 2.48×10^{14}).

Flucarbazone is not expected to bioconcentrate/bioaccumulate in organisms (Log K_{ow} of -1.84 at pH 7).

4.2 Environmental risk characterization

A summary of ecotoxicity data for flucarbazone is presented in Appendix VII, Table 2.

The environmental risk assessment integrates the environmental exposure and ecotoxicology information to estimate the potential for adverse effects on non-target species. This integration is achieved by comparing exposure concentrations with concentrations at which adverse effects occur. Estimated environmental concentrations (EECs) are concentrations of pesticide in various environmental media, such as food, water, soil and air.

The EECs are estimated using standard models which take into consideration the application rate(s), chemical properties and environmental fate properties, including the dissipation of the pesticide between applications. The environmental risk assessment integrates the environmental exposure and ecotoxicology information to estimate the potential for adverse effects on non-target species.

Initially, a screening level risk assessment is performed to identify pesticides and/or specific uses that do not pose a risk to non-target organisms, and to identify those groups of organisms for which there may be a potential risk. The screening level risk assessment uses simple methods, conservative exposure scenarios (for example, direct application at a maximum cumulative application rate) and sensitive toxicity endpoints. A risk quotient is calculated by dividing the exposure estimate by an appropriate toxicity value (risk quotient = exposure/toxicity), and the risk quotient is then compared to the level of concern. If the screening level risk quotient is below the level of concern, the risk is considered negligible and no further risk characterization is necessary. If the screening level risk quotient is equal to or greater than the level of concern, a refined risk assessment is performed to further characterize the risk. A refined assessment takes into consideration more realistic exposure scenarios (such as drift to non-target habitats) and might consider different toxicity endpoints.

Refinements may include further characterization of risk based on exposure modelling, monitoring data, results from field or mesocosm studies, and probabilistic risk assessment methods. Refinements to the risk assessment may continue until the risk is adequately characterized or no further refinements are possible.

Where possible the analysis of toxicity data also includes the determination of the hazardous concentration to five percent of species (HC_5) from species sensitivity distributions (SSDs) or determination of the most sensitive endpoint in each taxonomic group and category. The HC_5 is

calculated for acute and chronic data sets using the LC_{50}/EC_{50} values and NOEC values as appropriate (EC₂₅ was also used for terrestrial plants when no other data was available). The HC₅ is the concentration which is assumed to be protective for 95% of species of the assessed taxonomic group or assemblage as related to the assessment endpoint and ecological protection goal. At an EEC equal to the HC₅, 95% of all species (within each taxonomic group) are not expected to be exposed to concentrations exceeding their threshold toxicity value (for example, LC_{50} , NOEC).

The software program ETX 2.0 was used with a log-logistic model to generate SSDs where sufficient toxicity endpoints were available for different taxa, using all available relevant information on toxicity. This reduces the uncertainty in risk estimates and provides endpoints that are scientifically robust as compared to single species toxicity test endpoints, as well as returning endpoints that are more ecologically relevant as compared to relying on the most sensitive species available. Median HC₅ values are reported for SSDs and where possible are used to determine risk and mitigation measures. The variability in the data sets is indicated by the upper and lower bound HC₅ estimates and the confidence limit of the fraction of species affected (FA), which indicates the minimum and maximum percent of species that could be affected when exposed to the HC₅ concentration.

The environmental risk assessment was conducted based on the maximum annual application rate for both groundboom and aerial application methods, using either medium or coarse ASABE spray quality where applicable.

4.2.1 Risks to non-target organisms

There were no exceedances identified at the screening level for earthworms, honeybees, birds, mammals, freshwater invertebrates, cold and warm water fish, amphibians, marine fish and invertebrates, or freshwater aquatic plants and algae or marine algae (Appendix VII, Table 3). Potential risks were identified at the screening level for terrestrial plants and aquatic vascular plants.

Risks to non-target terrestrial plants were further characterized by considering spray drift. The level of concern for terrestrial vascular plants was exceeded for both aerial application (risk quotients 3.3–5.9) and groundboom application methods (1.2–1.5) (Appendix VII, Table 4). To protect non-target terrestrial vascular plants, spray buffer zones are required (Appendix VIII).

Risks to aquatic vascular plants were further characterized by considering potential exposure from spray drift and runoff (Appendix VII, Table 5). The level of concern was exceeded for spray drift (risk quotients 0.5–3.1) and runoff (risk quotient =18.2). To protect aquatic vascular plants from spray drift at the time of application, spray buffer zones are required (Appendix VIII). Risk to aquatic plants from exposure to flucarbazone in runoff is based on conservative exposure modelling estimates. Although Canadian surface water monitoring data was not available, concentrations of flucarbazone in surface runoff are expected to be lower than predicted by modelling. Risks associated with runoff are considered to be acceptable when precautionary label statements are followed to reduce runoff from treated areas.

4.3 Environmental incident reports

Canadian incident reports

One minor environmental incident was reported to the PMRA in which an unspecified amount of Estaprop (Reg. 29660; dichlorprop and 2,4-D) and Everest Solupak 75 DF (Reg. No. 26448; containing flucarbazone) was applied to an outdoor agricultural site followed by leaf curling being observed on trees (mostly maple trees) and caragana shrubs approximately 800 m from the application site. It was determined that flucarbazone was unlikely to have caused this incident.

United States environmental incidents

The United States EIIS (Ecological Incident Information System) database was queried for environmental incidents involving flucarbazone that occurred in the United States. As of 2012, there were 23 incidents involving flucarbazone. All flucarbazone environmental incidents involved reports of plant damage (22) with the exception of 1 report which involved stunted plant growth. All of these incidents were assigned the certainty index of possible or higher. The plant species involved were mostly wheat (17) with the remainder being identified as potato (2) or corn (3). Two incidents indicated the route of exposure was due to carryover, although the type of use was undetermined in these incidents.

Otherwise the route of exposure was reported as direct treatment. In all cases where the application method was reported (16), broadcast application was used. Current labels includes label statements related to crop injury following application. No further mitigation measures are required.

4.4 Toxic Substances Management Policy considerations

In accordance with the PMRA Regulatory Directive DIR99-03,³ the assessment of flucarbazone against Track 1 criteria of Toxic Substances Management Policy (TSMP) under *Canadian Environmental Protection Act* was conducted. Health Canada has reached the conclusions that:

Flucarbazone does not meet all Track 1 criteria, and is not considered a Track 1 substance (Refer to Appendix VII, Table 6).

Flucarbazone does not form any transformation products that meet all Track 1 criteria.

4.4.1 Formulants and contaminants of health or environmental concern

During the review process, contaminants in the technical grade active ingredient and formulants and contaminants in the end-use products are compared against Parts 1 and 3 of the *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern.*⁴ The list is

³ DIR99-03, The Pest Management Regulatory Agency's Strategy for Implementing the Toxic Substances Management Policy

⁴ SI/2005-114, last amended on June 24, 2020. See Justice Laws website, Consolidated Regulations, *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern.*

used as described in the Health Canada's Science Policy Note SPN2020-01⁵ and is based on existing policies and regulations including the Toxic Substances Management Policy^{Error!} ^{Bookmark not defined.} and Formulants Policy,⁶ and taking into consideration the Ozone-depleting Substances and Halocarbon Alternatives Regulations under the *Canadian Environmental Protection Act*, 1999 (substances designated under the Montreal Protocol). Health Canada has reached the following conclusions:

Flucarbazone and its end-use products do not contain any formulants or contaminants identified in the *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern.*

The use of formulants in registered pest control products is assessed on an ongoing basis through PMRA formulant initiatives and Regulatory Directive DIR2006-02.⁶

5.0 Value assessment

Flucarbazone is an important weed management tool for Western Canadian wheat growers.

As a "universal" tank-mix partner, flucarbazone can be tank mixed with almost all broadleaf herbicides for use on wheat (currently up to 35 broadleaf herbicides) to broaden weed control spectrum. This provides growers greater flexibility to choose a weed control program that is based on their specific needs.

Flucarbazone is a tool to manage resistant weed biotypes including wild oat biotypes which have developed resistance to ACCase (Group 1) and triallate (Group 8) herbicides and green foxtail biotypes resistant to ACCase (Group 1) and dinitroaniline (Group 3) herbicides. These herbicide resistant wild oats and green foxtail populations are increasingly becoming issues to wheat growers.

⁵ PMRA's Science Policy Note SPN2020-01, Policy on the *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern* under paragraph 43(5)(b) of the *Pest Control Products Act*

⁶ DIR2006-02, Formulants Policy and Implementation Guidance Document

List of abbreviations

↑	Increased
	Decreased
* μg	Microgram
	Female
9 8	Male
14C	carbon-14
a.e.	acid equivalents
a.i.	active ingredient
Abs	Absolute
AD	administered dose
ADI	acceptable daily intake
AFC	antibody forming cell
AHETF	Agricultural Handlers Exposure Task Force
ALD	aldrin epoxidase
ALP	alkaline phosphatase
ALP	alkaline phosphatase
ALS	acetolactate synthase
AR	applied radioactivity
ARfD	acute reference dose
ARTF	Agricultural Re-Entry Task Force
ASABE	American Society of Agricultural and Biological Engineers
atm	atmospheres
ATPD	area treated per day
bw	body weight
bwg	body weight gain
CAF	composite assessment factor
CAS	Chemical Abstracts Society
CD	classification determinant or cluster of differentiation
CDC	United States Centers for Disease Control and Prevention
CFIA	Canadian Food Inspection Agency
cm	Centimeters
cm ²	square centimeter
Cmax	maximum concentration
CMG	common mechanism group
ConA	concavalin A
CYP	cytochrome P
d	day(s)
DA	dermal absorption
DAF	dermal absorption factor
DEEM	Dietary Exposure Evaluation Model
DFR	dislodgeable foliar residue

	Liston
DNA	deoxyribonucleic acid
DT ₅₀	dissipation time to 50%
EC ₅₀	effective concentration to 50%
ECOD	7-ethoxycoumarin deethylase
EDE	estimated daily exposure
EEC	estimated environmental concentration
EFED	Environmental Fate and Effects Division (USEPA)
EFSA	European Food Safety Authority
EH	epoxide hydrolase
EROD	7-ethoxyresorufin O-deethylase
F1	first generation
F2	second generation
FACS	fluorescence activated cell sorter
fc	food consumption
FCID TM	Food Commodity Intake Database TM
fe	food efficiency
FOB	functional observational battery
g	gram(s)
GC	gas chromatograph
GD	gestation day
GI	Gastrointestinal
GST	glutathione S-transferase
h	hour(s)
ha	Hectare
HPLC	high performance liquid chromatography
hr(s)	hour(s)
IgA	immunoglobulin A
IgG	immunoglobulin G
IgM	immunoglobulin M
IL-1a	interleukin 1 alpha
IUPAC	International Union of Pure and Applied Chemistry
JMPR	Joint FAO/WHO Meeting on Pesticide Residues
Κ	Henry's law constant
Kd	adsorption coefficient
kg	kilogram(s)
$K_{ m oc}$	organic carbon partition coefficient
$K_{ m ow}$	octanol-water partition coefficient
L	litre(s)
LC ₅₀	concentration estimated to be lethal to 50% of the test population
LD ₅₀	dose estimated to be lethal to 50% of the test population
LOAEC	lowest observed adverse effect concentration
LOAEL	lowest observed adverse effect level
LOD	limit of detection

LOEC	lowest observable effect concentration
LOEL	lowest observable dose level
LOQ	limit of quantitation
LPS	lipopolysaccharide
M/L	mixer/loader
MAS	maximum average score for 24, 48 and 72 hours
mg	milligram(s)
min	minute(s)
MIS	maximum irritation score
mL	millilitre(s)
mm Hg	millimetre mercury
MOE	margin of exposure
mol	moles
mPa	millipascal
MRL	maximum residue limit
MTD	maximum tolerated dose
NCHS	National Center for Health Statistics
N-DEM	N-demethylase
NHANES	National Health and Nutrition Examination Survey
NK	natural killer
nm	nanometre
NMRI	Naval Medical Research Institute
NOAEC	no observed adverse effect concentration
NOAEL	no observed adverse effect level
NOEC	no observed effect concentration
NOEL	no observed effect level
NTP	National Toxicology Program
OC	organic carbon
O-DEM	O-demethylase
OECD	Organisation for Economic Co-operation and Development
OM	organic matter
ORETF	Outdoor Residential Exposure Task Force
Р	parental generation
PCPA	Pest Control Product Act
PDP	Pesticide Data Program
pН	log10 hydrogen ion concentration
PHED	Pesticide Handlers Exposure Database
p <i>K</i> a	log10 acid dissociation constant
PMA	phorbol 12-myristate 13-acetate
PMRA	Pest Management Regulatory Agency
PND	postnatal day
POD	point of departure
ppb	parts per billion

PPE	personal protective equipment
ppm	parts per million
PWC	Pesticide Water Calculator model
q1*	cancer slope factor
REI	Restricted-entry interval
Rel	Relative
SMILES	Simplified Molecular Input Line Entry System (line notation describing structure of chemical species)
SRBC	sheep red blood cells
t1/2	first-order half-life
T3	triiodothyronine
T4	thyroxine
TBC	thyroxine binding capacity
TC	transfer coefficient
t.p.	transformation product
TRR	total radioactive residue
TSH	thyroid stimulating hormone
TSMP	Toxic Substance Management Policy
UDPGT	uridine diphosphate glucuronyltransferase
UDS	unscheduled DNA synthesis
UE	Unit exposure
USEPA	United States Environmental Protection Agency
USDA	United States Department of Agriculture
UV	Ultraviolet
vp	vapour pressure
wk	week(s)
WSP	water-soluble packets
wt	Weight
WWEIA	What We Eat in America

Appendix I Registered products containing flucarbazone in Canada

Registration Number	Marketing Class	Registrant	Product Name	Formulation Type	Guarantee
26447			Everest 70 WDG Herbicide	Wettable granules	66%
26448			Everest Solupak 70 DF	Wettable granules in water-soluble packets	66%
29500			Pre-Pare Herbicide	Wettable granules	66%
30342		Arysta	Everest 2.0 Herbicide		397.33 g/L
30580		LifeScience North America,	ARY 0548- 019 Herbicide	Suspension	36.3 g/L (+ 200 g/L fluroxypyr)
30663	Commercia 1	LLC	Inferno Duo	Wettable granules	45% (+ 23.9% tribenuron methyl)
32602			Everest 3.0 Herbicide	Suspension	200 g/L
33258			Everest 3.0 AG Herbicide	Suspension	200 g/L
33273			Inferno Trio Herbicide	Emulsifiable Concentrate or Emulsion	141 g/L (+50 g/L florasulam + 175 g/L carfentrazone-ehtyl)
33372			Batalium Suspension Concentrat e Herbicide	Suspension	20.4 g/L (+ 241 g/L MCPA ester + 90.5 g/L fluroxypyr + 241 g/L bromoxynil)
33370		New Agco Inc.	Mpower Himalaya Herbicide	Wettable granules	66%
29558	-		Sierra 70 WDG Herbicide	Wettable granules	66%
30430		Syngenta	Sierra® 2.0 Herbicide	Suspension	397.33 g/L
32941		Canada Inc.	Sierra® 3.0 Herbicide	Suspension	200 g/L
33538			Sierra® 3.0 AG Herbicide	Suspension	200 g/L

Table 1 Products containing flucarbazone subject to proposed label amendments¹

Appendix I

		Arysta			
26446		LifeScience	Everest Technical	Solid	89.20%
20440		North America,	Herbicide	Solid	89.20%
	Technical	LLC			
	Grade		Newagco		
33333	Active Ingredient	New Agco	Flucarbazo	Solid	93.20%
55555		Inc	ne	bolid	75.2070
			Technical		
			Flucarbazo		
34110		Albaugh	ne	Solid	91.2%
57110		LLC	Technical	Solid	<i>J</i> 1.270
			Herbicide		

¹ as of 7 January 2021, excluding discontinued products or products with a submission for discontinuation.

Appendix II Registered uses

Use Site Category	Sites ³	Weeds	Application Method and	Applic 4	aximum ation Rate (g a.i./ha) Cumulative
			Equipment	Single	Per Year
13 – Terrestrial Feed crops	Spring wheat (hard red spring, Canada Prairie spring, soft white spring and extra strong (utility) wheat) and durum wheat Alberta, Manitoba, Saskatchewan, and Interior of British Columbia (including Peace River region of British Columbia only)	Annual grass and broadleaf weeds	Ground or aerial	9.6– 28.8	28.8
14 – Terrestrial Food Crops	Winter wheat Alberta, Manitoba, Saskatchewan, and Interior of British Columbia (including Peace River region of British Columbia only)	Annual grass and broadleaf weeds	Ground or aerial	14.3– 28.8	28.8

Table 1	Registered commercia	l class uses of	f flucarbazone in	Canada ^{1, 2}
---------	----------------------	-----------------	-------------------	------------------------

1.

as of 7 January 2021. Uses from discontinued products or products with a submission for discontinuation are excluded. The maximum number of applications is once per year. Note that the maximum number of applications per year was not stated on 2.

registered end use product labels but was interpreted as such by PMRA based on the label instructions for each end use product. Sites are listed either as stated on the label or as interpreted by the PMRA so as to achieve consistency. 3.

Appendix IIIToxicological information for health risk assessment

Effects are known or assumed to occur in both sexes unless otherwise noted; in such cases, sexspecific effects are separated by semi-colons. Organ weight effects reflect both absolute organ weights and relative organ to bodyweights unless otherwise noted.

Study type/	Study results
Animal/PMRA#	
	Toxicokinetic Studies
Toxicokinetics – single dose, and repeated dose studies	Studies of blood kinetics, bile/urine/feces/tissue residue levels, enterohepatic recirculation, and metabolite identification and isolation were conducted with phenyl-UL- ¹⁴ C-labelled flucarbazone-sodium.
Wistar Rats PMRA# 1180196	Single low (5/sex) and high (5 3) dose experiments included dose levels of 5-17.5 and 400 mg/kg bw, respectively. Repeated dose experiment included 14 days of unlabeled flucarbazone-sodium followed by labelled dose levels of ~18 mg/kg bw/day (5 3). The percent AD was determined in the bile as well as in the plasma, expired air, urine and feces.
	Rate and extent of absorption and excretion : Following a single or repeat oral dose, [phenyl-UL- ¹⁴ C] flucarbazone-sodium was rapidly absorbed, with plasma concentrations reaching a maximum within 30 minutes. The low biliary and urinary excretion of [phenyl-UL- ¹⁴ C] flucarbazone-sodium suggests that oral absorption was low (approximately 25–30% at the low dose level and 15% at the high dose level). Flucarbazone-sodium residues were rapidly excreted, with 84–95% of the AD being excreted within 24 hours. Fecal excretion (64–78% of the AD) was greater than urinary excretion (15–30%). Urinary excretion was lower in the high dose experiment (15% of the AD) than in the low dose (24–30%). Biliary excreted in expired air. There were no sexrelated differences in the absorption, distribution, metabolism, or excretion of flucarbazone-sodium.
	Distribution and target organ(s) : The highest tissue residues were found in the liver. However, less than 1% of the AD remained in the carcass and tissues at necropsy (72 or 96 hours post-dosing). The low mean recovery of radioactivity levels in the tissues and carcass at necropsy indicate a lack of flucarbazone-sodium tissue retention. Approximately 89% of the AD was excreted in the urine and faeces as the unchanged flucarbazone-sodium. No other residue present in the faeces or urine comprised greater than 1% of the AD.
Toxicokinetics – single dose Wistar Rats	Studies of blood kinetics, bile/urine/faeces/tissue residue levels, and metabolite identification and isolation were conducted with single low dose levels of 5–18 mg/kg bw of triazolinone-3- ¹⁴ C-labelled flucarbazone-sodium.
PMRA# 1180208	Rate and extent of absorption and excretion : Following a single oral dose, [triazolinone-3- ¹⁴ C] flucarbazone-sodium was rapidly absorbed in 3° rats with maximal plasma concentrations being achieved within 15–30 minutes. The low urinary excretion (approximately 27% of AD) suggest that absorption was low. The major route of elimination was via the faeces, with approximately 70% of the AD (majority of which was unchanged flucarbazone-sodium). The majority of the radioactivity was eliminated via the faeces and urine within 24 and 6–12 hours, respectively. The total recovery was approximately 97% of the AD; the majority of this was eliminated within 24 hours (95% of the AD).

Table 1 Toxicity profile of technical flucarbazone

Study type/ Animal/PMRA#	Study results	
	Distribution and target organ(s) : The highest tissue residues were observed in the liver. The mean recovery of radioactivity in the tissues and carcass at necropsy was less than 1% of the AD indicating that the potential for tissue retention was low. The major component in both the urine and fecal extracts was identified as the unchanged flucarbazone-sodium (94% of the AD). Other metabolites identified in the excreta included urazole, methylurethane, N-methyltriazolinone, O-methyltriazolinone, and N,O-dimethyltriazolinone. Each of these metabolites represented less than 1% of the AD.	
Toxicokinetics for plant metabolite – single dose	Studies of tissue residue levels, metabolite identification and isolation, and urine/faeces excretion were conducted with single low dose levels of ~5 mg/kg bw of phenyl-UL- ¹⁴ C-labelled flucarbazone-sodium sulfonamide lactate (plant metabolite of flucarbazone-sodium).	
Flucarbazone-sodium sulfonamide lactate Wistar Rats PMRA# 1180215	 Rate and extent of absorption and excretion: The rapid excretion of [phenyl-UL-¹⁴C] flucarbazone-sodium sulfonamide lactate residues in the faeces and urine (99% of AD after 24 hrs) suggest that absorption of [phenyl-UL-¹⁴C] flucarbazone-sodium sulfonamide lactate is rapid. The fecal excretion was 65% of the AD. The urinary excretion rate was 35% of the AD. Unchanged flucarbazone-sodium sulfonamide lactate in faecal extracts accounted for 65% of the AD. On the basis of the radioactivity detected in the urine, approximately 35% of the AD was absorbed. Metabolism: Flucarbazone-sodium sulfonamide lactate was the major residue identified in both the urine (22% of the AD) and feces (65% of the AD). The metabolites 	
	 identified in the urine were sulfonamide (10% of the AD) and sulfonamide acetate (3% of the AD). No metabolite was identified in the feces. Distribution and target organ(s): Less than 1% of the AD remained in the carcass and tissues at necropsy (at 72 hours) indicating that the potential for tissue retention was low. 	
Toxicokinetics for plant metabolite – single dose	Studies of tissue residue levels, metabolite identification and isolation, and urine/faeces excretion levels were conducted with single low dose levels of ~5 mg/kg bw of phenyl-UL- ¹⁴ C-labelled flucarbazone-sodium sulfonamide alanine (plant metabolite of flucarbazone-sodium).	
MKH 6562 sulfonamide alanine Wistar Rats PMRA# 1180214	Approximately 70% of the AD was absorbed based on the urinary excretion data and 98% of the AD was recovered in urine and fecal extracts. Unchanged flucarbazone- sodium sulfonamide alanine accounted for 17% of the AD. Several metabolites were also isolated, but were not identified. Less than 1% of the AD was recovered in the carcass, tissues, expired air, and cage wash. Highest residue level was in the liver 96 hours post-dosing.	
Acute Toxicity Studies		
Acute oral toxicity (gavage)	LD ₅₀ > 5000 mg/kg bw Clinical observations included moist anus, lightly coloured and mucoid faeces.	
Wistar rats	Resolved by day 4.	
PMRA#: 1179287 Acute dermal toxicity	Low acute toxicity LD ₅₀ > 5000 mg/kg bw	
Wistar rats PMRA# 1179288	Low acute toxicity	

	Appendix III
Study type/ Animal/PMRA#	Study results
Acute inhalation	$LC_{50} > 5.13 \text{ mg/L}$
toxicity (nose-only)	
	Clinical observations included ungroomed coat, piloerection, 1 motility, and red
Wistar rats	encrustation of nose. Resolved by day 6.
PMRA# 1179289	Low acute toxicity
Skin irritation	MIS and MAS (at 24, 48, and 72 hours) = 0/8
New Zealand White	
rabbits	Non-irritating
	0
PMRA# 1179290	
Eye irritation	MIS = 5.0/110 at 1 hour
5	MAS (at 24, 48, and 72 hours) = 1.7/110
New Zealand White	
rabbits	
1000110	
PMRA# 1179290	Minimally irritating
Dermal sensitization	
(Maximization	
test)	Negative
	ingalive
Guinea pigs	
Sumed pigs	
PMRA# 1179291	
Acute oral toxicity	$LD_{50} > 2000 \text{ mg/kg bw}$
	$LD_{50} > 2000 \text{ mg/kg 0w}$
(gavage)	
Trifluoromethoxy	Low acute toxicity
sulfonamide	Low acute toxicity
(animal and plant	
metabolite of	
MKH 6562)	
Wistar rats	
wistal lats	
PMRA# 1180148	
Acute oral toxicity	$LD_{50} > 5000 \text{ mg/kg bw}$
(gavage)	2000 mg/kg 0w
(gavage)	
Flucarbazone-sodium	Low acute toxicity
lactate	LOW ACUIC IUXICILY
conjugate (plant metabolite of	
flucarbazone-sodium)	
nucarbazone-sourum)	
Wistar rats	
vv Istal Tats	
PMRA# 1179294	
Acute oral toxicity	$LD_{50} > 5000 \text{ mg/kg bw}$
•	DD00 ~ 2000 IIIg/kg DW
(gavage)	Clinical signs included lightly discoloured forces observed in all animals first amount 2
Elucarborano 1:	Clinical signs included lightly discoloured feces observed in all animals, first apparent 2
Flucarbazone-sodium	days after administration, completely resolved by day 7.
sulfonamide	Low coute torisity
alanine (plant	Low acute toxicity

Study type/ Animal/PMRA#	Study results
metabolite of flucarbazone-sodium)	
indearbazone souranij	
Wistar rats	
PMRA# 1179295	
Acute oral toxicity (gavage)	$LD_{50} > 5000 \text{ mg/kg bw}$
Flucarbazone-sodium sulfonic acid sodium salt (animal, plant, and soil metabolite of	Low acute toxicity
flucarbazone-sodium)	
Wistar rats	
PMRA# 1190314	
Acute oral toxicity (gavage)	LD ₅₀ > 2500 and < 5000 mg/kg bw
	At 2500 mg/kg bw, there were no deaths.
Non-guideline	At 5000 mg/kg bw, 3/5 \circ and 5/5 \circ died.
<i>O</i> -desmethyl flucarbazone-sodium (a soil	Clinical signs included laboured breathing, uncoordinated gait, piloerection, and narrow palpebral fissures were observed in both sexes at 2500 and 5000 mg/kg bw. These
metabolite of flucarbazone-sodium)	clinical signs were observed within an hour of dosing and lasted up to day 11.
Wistar rats	Low acute toxicity
PMRA# 1190316	
	Short-Term Toxicity Studies
28-day oral toxicity	Supplemental
(diet) – Non-guideline (dose-range finding)	There were no adverse treatment-related findings in either sex up to and including doses exceeding the limit dose.
B6C3F1 mice	exceeding the mint dose.
PMRA# 1180154	
90-day oral toxicity (diet)	NOAEL = 2083/3051 mg/kg bw/day (\mathcal{O}/\mathcal{P})
B6C3F1 mice	There were no adverse treatment-related findings.
PMRA# 1179296, 1180149	
28-day oral toxicity (diet)	NOAEL = $27/25 \text{ mg/kg bw/day} \left(\frac{3}{2} \right)$
Wistar rats	≥ 27/25 mg/kg bw/day: \downarrow splenic cell counts (♂); ↑ discoloured (white) faeces (♀) (non-adverse)
PMRA# 1179298	≥ 266/251 mg/kg bw/day: \downarrow IgA titer (\mathcal{J}/\mathcal{Q}); \uparrow macrophage activation in spleen (\mathcal{Q})

Study type/ Animal/PMRA#	Study results
	1134/1150 mg/kg bw/day : \downarrow surface markers for T lymphocytes (CD45) and B cells in lymph nodes (\Im/\Im); \uparrow macrophage activation in spleen (PMA stimulation), slight \downarrow macrophage activity in lymph node, slight \downarrow lymph node cell count, \uparrow water consumption, \uparrow discoloured (white) feces (\Im)
	 The following immunological investigation were conducted: FACS-analysis to determine sub-populations of spleen cells and lymph node cells Macrophage activity after PMA stimulation in spleen and lymph node cells Responsiveness of spleen and lymph node cells to stimulation with mitogen ConA or LPS was determined Antibody (IgG, IgM, and IgA) titers in sera were determined
90-day oral toxicity (diet) with 5-week recovery period	NOAEL = 74/102 mg/kg bw/d (♂/♀) ≥ 18/21 mg/kg bw/day: ↓ spleen wt (♂) (non-adverse)
Wistar rats	≥ 287/358 mg/kg bw/day: ↓ macrophage activity after PMA stimulation in mesenteric lymph cells (\Im/\Im); ↑ T-cell marker CD2 and T-cell stimulation ConA in lymph node (\Im); ↓ markers for B-cells (PanB) in the lymph node (\Im)
PMRA# 1179297, 1180150	1669/2314 mg/kg bw/day : \uparrow discoloured feces, \uparrow food and water consumption, \uparrow vacuolation of the fore-stomach squamous epithelium (\eth/ \uparrow); \uparrow cells positive for markers for T lymphocytes (CD4/CD45 ^{low}), antigen-presenting cells (IL-1 α), and T-cell (CD2) in spleen cells, \downarrow cells positive for markers for B-cells and lymphocytes (PanB and CD4/CD45 ^{low}) in lymph node cells, \downarrow serum antibody-titer of the subclasses IgA and IgG, \downarrow bone marrow cell count (\eth); \downarrow bw, \uparrow cells positive for markers for T-lymphocytes (CD4/CD45 ^{low}) in spleens, \uparrow B-cell/macrophage stimulation (LPS) in lymph nodes (\bigcirc)
	Immunological changes appeared to be reversible; only minimal findings were observed at the end of the recovery period in the satellite high dose and control rats.
	 The following immunological investigation were conducted: FACS-analysis to determine sub-populations of spleen cells and lymph node cells Macrophage activity after PMA stimulation in spleen and lymph node cells Responsiveness of spleen and lymph node cells to stimulation with mitogen ConA or LPS was determined Antibody (IgG, IgM, and IgA) titers in sera were determined
28-day oral toxicity (diet) – Non-guideline	Supplemental
(dose-range finding)	1614/1319 mg/kg bw/day : \downarrow bwg and fc, \downarrow T4, induction of microsomal liver enzymes Phases I and II, "cytoplasmic changes" in centrilobular cells of liver (\eth/\diamondsuit)
Beagle dogs PMRA# 1179300, 1191197	
90-day oral toxicity (diet)	NOAEL= 34/35 mg/kg bw/day ($3/2$)
Beagle dogs	≥ 34/35 mg/kg bw/day: induction of microsomal liver enzymes Phases I and II (↑ N-DEM, ↑ CYP450, ↑ ECOD, ↑ ALD, ↑ EH, ↑ GST, ↑ UDPGT), ↓ T4 (secondary to liver enzyme induction; non-adverse) ($3/2$)
PMRA# 1180157 1179307	≥ 162/170 mg/kg bw/day: \uparrow eosinophilic cytoplasmic changes in the liver, \uparrow gross

Study type/	Study results
Animal/PMRA#	pathological findings in the stomach (red discolouration or red areas in the gastric
	mucosa) $(3/2)$; \uparrow glandular cell degeneration in the stomach, \uparrow round cell infiltrates in
	the stomach, \uparrow foveolar hyperplasia in the stomach (\bigcirc)
	1674/1750 mg/kg bw/day : \downarrow fc, \downarrow serum protein, \downarrow albumen, \uparrow ALP, \uparrow vacuolation of
	surface epithelium of the stomach, \uparrow slight vacuolation of inner cortex of adrenals, \uparrow
	slight lipofuscin storage in proximal tubular epithelia of kidneys, \uparrow condensed and
	homogenous cytoplasmic structure in the liver (∂/φ) ; \uparrow liver triglycerides level, \uparrow liver wt, \uparrow adrenal wt, \uparrow glandular cell degeneration in the stomach, \uparrow round cell infiltrates in
	the stomach, \uparrow foveolar hyperplasia in the stomach (\Diamond)
	the stomach, tovestal hyperplasta in the stomach (0)
	There were no treatment-related effects on TBC or T3 levels in either sex.
12-month oral toxicity	NOAEL= $36/37 \text{ mg/kg bw/day} \left(\frac{3}{4} \right)$
(diet)	(27.27.27.1)
Beagle dogs	\geq 36/37 mg/kg bw/day: ↓ bwg (non-adverse) (∂/Q)
Deagle dogs	183/187 mg/kg bw/day : \downarrow bw, \uparrow N-DEM, \downarrow T4 levels ($\circlearrowleft/\bigcirc$); \uparrow liver wt (\bigcirc)
PMRA# 1180151,	
1180152, 1180153	N-DEM levels were elevated with no change in the O-DEM levels or triglyceride levels
	or CYP450 content. No treatment-related effects were noted on the activities of the
	CYP450 dependent monooxygenases (ECOD, EROD, and ALD), EH and the
	conjugation enzymes (GST, and UDPGT).
	There were no treatment-related effects on TBC, TSH or T3 levels in either sex.
28-day dermal toxicity	NOAEL (systemic) \geq 1000 mg/kg bw/day
(limit test)	
Wistar rats	There were no treatment-related systemic findings in either sex.
Wistar Tats	1000 mg/kg bw/day : \uparrow skin-fold thickness ($3/2$); \uparrow minimal to slight acanthosis
PMRA# 1179299	characterized by thickening of the stratum spinosum and corneum (\Diamond)
	Limited histopathology was conducted. Spleen was examined histopathologically.
	Congestion in spleen was noted in all animals except one control $arrow d$ animal. Stomach was not examined.
28-day inhalation	NOAEC = 0.03 mg/L (NOAEL approximately equivalent to $8.0/8.7 \text{ mg/kg bw/day in}$
toxicity (nose-only)	$\partial/2$)
Wistar rats	\geq 0.03 mg/L: \uparrow eosinophilic globules in the nasal cavity (non-adverse) (\bigcirc)
PMRA# 2801451	\geq 0.18 mg/L: \uparrow squamous cell metaplasia of the larynx, \uparrow focal inflammation infiltrates
	in the larynx $(\mathcal{O}/\mathcal{P})$; eosinophilic globules in the nasal cavity (\mathcal{O}) ; \uparrow goblet cell
	hyperplasia in the nasal cavity (\bigcirc)
	0.5 mg/L: \uparrow increased/hypertrophic mucous neck cells in the stomach $(\mathcal{Z}/\mathcal{Q})$; \uparrow goblet
	cell hyperplasia in the nasal cavity (δ)
	Examination of N-DEM, O-DEM, P450 and triglycerides did not reveal any treatment-
	related effects. There were no treatment-related histopathological findings in spleen or
	thymus

Study type/ Animal/PMRA#	Study results
	Chronic Toxicity/Oncogenicity Studies
18-month oncogenicity (diet)	NOAEL = 275/459 mg/kg bw/day (\mathcal{O}/\mathcal{P})
B6C3F1 mice	2066/3212 mg/kg bw/d : \downarrow bw, \uparrow fc (\eth/\diamondsuit)
PMRA# 1180169, 1180174, 1180185, 1180186, 1191196, 1191198	No evidence of oncogenicity
24-month chronic toxicity/oncogenicity	NOAEL = 125 mg/kg bw/day
(diet) Wistar rats PMRA# 1180158, 1180166, 1180167, 1180168, 1191199	1000 mg/kg bw/day: \uparrow fc, \uparrow thickened mucosa of the glandular stomach (terminal necropsy) ($\circlearrowleft/\mathbb{G}/\mathbb{Q}$); slight \uparrow incidence of inflammatory infiltrates in the stomach (interim necropsy), immunotoxicological findings observed at interim (but not terminal) necropsy: $\downarrow \#$ of splenic T-helper cells (CD4, CD45 ^{low, high}), \downarrow lymphocytes (CD45), \downarrow T-cells (CD2, CD5, CD8), \downarrow interleukin-2 receptor expressing cells (CD25), and \uparrow serum IgM titers, immunotoxicological findings observed in both interim and terminal necropsy: \downarrow response to mitogen stimulation in splenic cells and \downarrow serum IgG titers (\circlearrowright); \uparrow mild vacuolation of the fore-stomach epithelium (terminal necropsy), \downarrow bw, \downarrow bwg (\heartsuit)
	No evidence of oncogenicity
	 The following immunological investigation were conducted: FACS-analysis to determine sub-populations of spleen cells and lymph node cells Macrophage activity after PMA stimulation in spleen and lymph node cells Responsiveness of spleen and lymph node cells to stimulation with mitogen ConA or LPS was determined Antibody (IgG, IgM, and IgA) titers in sera were determined
	Developmental/Reproductive Toxicity Studies
2-generation reproductive toxicity (diet)	Parental Toxicity NOAEL = 287/340 mg/kg bw/day (♂/♀) ≥ 287/340 mg/kg bw/day: ↑ incidence of cecal enlargement (F1♀) (non-adverse)
Wistar rats PMRA# 1180187, 1180189, 1180190,	800/991 mg/kg bw/day (dose level was adjusted from 2242/3130 mg/kg bw/day after week 5 premating): \uparrow incidences of clinical signs of toxicity (water intake, discoloured faeces, and diarrhea in both generations), \downarrow bw, \downarrow bwg, \uparrow fc during wk 1-5 period in P generation only (\eth/ \wp); \downarrow liver wt (P and F1) (\eth); \uparrow incidence of severe cecal enlargement (F1 \wp)
	Offspring Toxicity NOAEL = 340 mg/kg bw/day
	Histopathology was not conducted in pups
	991 mg/kg bw/day: \downarrow pup bw (PND 21), \downarrow litter wt, \uparrow incidences of marbled liver surface (F1 and F2 pups), air-filled stomach (F1 pups) (\mathcal{E}/\mathcal{Q}); \downarrow rel. liver wt (F2 \mathcal{E})
	Reproductive Toxicity NOAEL = 800/991 mg/kg bw/day (\mathcal{O}/\mathcal{Q})
	No adverse treatment-related effects on reproductive parameters

Study type/ Animal/PMRA#	Study results
	991 mg/kg bw/day: \downarrow uterus wt (P and F1) ($\stackrel{\bigcirc}{+}$)(non-adverse)
	No evidence of sensitivity of the young
Developmental	Maternal toxicity
toxicity (gavage)	$NOAEL \ge 1000 \text{ mg/kg bw/day}$
Sprague-Dawley rats	No treatment-related effects
PMRA# 1179318,	Developmental toxicity
1179320, 1179321, 1180191, 1180193	NOAEL $\geq 1000 \text{ mg/kg bw/day}$
	No treatment-related effects
	No evidence of treatment-related malformations or sensitivity of the young
Developmental	Maternal toxicity
toxicity (gavage)	NOAEL = 100 mg/kg bw/day
Himalayan	\geq 300 mg/kg bw/day: \downarrow bw loss (observed immediately post-dosing), \downarrow fc, \uparrow incidence
Rabbits	and frequency of clinical signs of toxicity (alopecia, cold ears, reduced feces, soft faeces, discoloured urine, light coloured feces), ↓ gravid uterine wt
PMRA# 1179322,	
1179323, 1180194,	\geq 500 mg/kg bw/day: \uparrow incidence and frequency of other clinical signs of toxicity (diarrhea, vaginal and anal prolapse) \uparrow cecal enlargement, \uparrow cytoplasmic changes and fatty change in the liver
	1000 mg/kg bw/day: One treatment-related mortality, ↓ bw, ↓ placental wt, ↑ incidence
	of coarse grained and light discoloured placentas, \uparrow number of abortions occurring late in gestation, \uparrow gross pathological changes (enlarged, discoloured areas, and contents gaseous) in the liver and GI tract, \uparrow vacuolation of the hepatocytes
	Developmental toxicity
	NOAEL = 100 mg/kg bw/day
	\geq 300 mg/kg bw/day: \downarrow fetal bw
	\geq 500 mg/kg bw/day: \uparrow incidence of incomplete skeletal ossification at the following sites: medial phalanx digits and toes (5 th right and left), metacarpals (1 st right and left), calcaneus (bilateral), 6 th sternebrae, caudal vertebral bodies (10 th and 13 th), frontal bone (bilateral)
	1000 mg/kg bw/day: \uparrow number of abortions occurring late in gestation
	No evidence of treatment-related malformations or sensitivity of the young

Study type/ Animal/PMRA#	Study results
	Genotoxicity Studies
Bacterial Reverse Mutation Assay	Negative ± metabolic activation
Salmonella typhimurium (TA98, TA100, TA1535 and TA 1537)	Tested up to a limit concentration
PMRA# 1179324 In Vitro Mammalian	Negative ± metabolic activation
Clastogenicity	
Chinese hamster V79 cells	Tested up to a limit concentration
PMRA# 1179326	
Mammalian chromosomal	Negative \pm metabolic activation
aberration (in vitro)	Tested up to a limit concentration
Chinese hamster V79 cells	
PMRA# 1179325	
Micronucleus assay (in vivo)	Negative
NMRI Mice PMRA# 1179308	Tested up to limit dose
UDS in vitro	Negative
Rat primary hepatocytes	Tested up to a limit concentration
PMRA# 1179309	
Bacterial Reverse Mutation Assay	Negative ± metabolic activation
Salmonella typhimurium (TA98, TA100, TA102, TA1535, and TA 1537)	Tested up to a limit concentration
MKH 6562 sulfonic acid sodium salt (a major plant and soil metabolite of MKH 6562)	
PMRA# 1190317	

Study type/	Study results
Animal/PMRA#	Neurotoxicity Studies
Acute oral	NOAEL = 500 mg/kg bw
neurotoxicity (gavage)	NOAEL – 500 mg/kg bw
neurotoxienty (gavage)	2000 mg/kg bw: \downarrow motor activity on day of dosing, \downarrow locomotor activity on day of
Fischer rats	dosing, \downarrow level of activity in open field assessed during FOB (\eth/ \square); \uparrow perineal staining
PMRA# 1180175	
	No evidence of selective neurotoxicity
90-day oral	NOAEL = $147/174 \text{ mg/kg bw/day} (3/2)$
neurotoxicity (diet)	1482/1736 mg/kg bw/day: ↓ bw, ↓ bwg (♂/♀); ↓ fc (♂)
Fischer rats	1402/1750 mg/kg bw/day: \downarrow bw, \downarrow bwg (\bigcirc / \updownarrow), \downarrow ic (\bigcirc)
	No evidence of neurotoxicity
PMRA# 1180176	
	Immunotoxicity Studies
28-day oral	NOAEL \geq 966 mg/kg bw/day
immunotoxicity (diet)	
• • •	A splenic AFC assay was used to determine the response to antigen administration (T
\bigcirc Wistar rats	cell-dependent, sRBC)
D (D) // 1100010	
PMRA# 1190319	No treatment-related findings were noted in the AFC assay based on lack of dose-
	related trends or patterns, however, the antibody-forming cell response data were highly variable
	Valiable
	\geq 134 mg/kg bw/day: \downarrow bwg (non-adverse)
	966 mg/kg bw/day: ↓ spleen wt, ↓ spleen cells (non-adverse)
28-day oral	NOAEL = 157 mg/kg bw/day
immunotoxicity (diet)	A galaxie AEC associates used to determine the second sector administration (T
♂ Wistar rats	A splenic AFC assay was used to determine the response to antigen administration (T cell-dependent, sRBC)
	cen-dependent, skde)
PMRA# 1190318	\geq 157 mg/kg bw/day: \downarrow bwg, \downarrow IgM AFC/10 ⁶ spleen cells (non-adverse)
	1116 mg/kg bw/day: \downarrow bw, \downarrow IgM AFC/spleen cells (10 ³), \downarrow spleen cells
20 11	Evidence of immune dysregulation at limit dose
28-day oral immunotoxicity (diet)	NOAEL \geq 1131 mg/kg bw/day
minunoioxicity (diet)	Assays investigating enumeration of total spleen cells, total T and B cell populations
\bigcirc Wistar rats	and T-cell subsets (CD4+ and CD8+), a spleen cell proliferation assay (anti-CD3
	mediated T cell proliferation) and NK assay (YAC-1 target cell cytotoxic activity of NK
PMRA# 1190321	cell) were conducted.
	Treatment did not influence splenic cell population as indicated by spleen cell, B cell, total T cell, T helper cell, or T suppressor/cytotoxic cell numbers. No treatment-related
	findings were noted in the anti-CD3 T-cell proliferation assay in both the stimulated and
	unstimulated spleen cell cultures or in the NK cell assay.
	1 5
	\geq 167 mg/kg bw/day: \uparrow liver wt (non-adverse)
	1131 mg/kg bw/day : ↓ spleen wt (non-adverse)

Study type/ Animal/PMRA#	Study results
28-day oral	NOAEL = 177 mg/kg bw/day
immunotoxicity (diet)	
♂ Wistar rats	Assays investigating enumeration of total spleen cells, total T and B cell populations and T-cell subsets (CD4+ and CD8+), a spleen cell proliferation assay (anti-CD3
PMRA# 1190320	mediated T cell proliferation) and NK assay (YAC-1 target cell cytotoxic activity of NK cell) were conducted.
	≥ 18 mg/kg bw/day: ↓ bwg (non-adverse)
	1222 mg/kg bw/day: ↓ bw, ↓ spleen wt, ↓ spleen cells, ↓ B lymphocytes (CD45+), ↓ T helper cells (CD4+/CD5+)
	Evidence of immune dysregulation at limit dose
28-day oral	Supplemental
immunotoxicity (diet)	
– Non-guideline	No treatment-related findings in the AFC assay based on lack of dose-related trends or
TT 7'	patterns.
Wistar rats	
D. (D.). // 1150011	\geq 612 mg/kg bw/day: \uparrow discoloured feces (\bigcirc)
PMRA# 1179311	2205 mg/kg bw/day: ↑ discoloured feces, ↓ bwg (♂)

Table 2 Toxicology reference values for use in health risk assessment for flucarbazone

Exposure Scenario	Study	Point of Departure and Endpoint						
Acute dietary (all populations	Developmental toxicity study in rabbits	Maternal toxicity NOAEL = 100 mg/kg bw/day Increased incidences of clinical signs of toxicity, decreased food consumption and body weight loss observed within the first few days of dosing	100					
	ARfD = 1.0 mg/kg bw							
Repeated dietary (all	12-month dietary toxicity study in dogs	NOAEL = 36 mg/kg bw/day Decreased body weight and body weight gain	100					
populations)	ADI = 0.4 mg/kg bw/da							
Short-term inhalation	28-day inhalation toxicity study in rats	NOAEC = 0.03 mg/L (approximately equivalent to NOAEL = 8.0 mg/kg bw/day) Increased incidences of eosinophilic globules in the nasal cavity, and squamous metaplasia and focal inflammation infiltration in the larynx as well as increased goblet cell hyperplasia in the nasal cavity in females	100					
Short-term dermal ²	Co-critical studies: 90- day and 12-month dietary toxicity studies in dogs	NOAEL = 36 mg/kg bw/day Increased incidence of red discolouration or red areas in the gastric mucosa of the stomach in both sexes as well as increased incidences of glandular cell degeneration, round cell infiltrates and foveolar	100					

Exposure Scenario	Study	Point of Departure and Endpoint	CAF or target MOE ¹					
		hyperplasia in the stomach of the female animals						
Combined short-term	Dermal: 90-day dietary toxicity study in dogs	Common endpoint: Treatment-related pathological findings in the stomach	Dermal: 100					
dermal ² and inhalation	Inhalation: 28-day inhalation toxicity study in ratsDermal NOAEL = 34 mg/kg bw/dayInhalation NOAEC = 0.18 mg/L (approximately equivalent NOAEL to 48 mg/kg bw/day)		Inhalation: 100					
Cancer	No evidence of oncogen	No evidence of oncogenicity						

¹ CAF (composite assessment factor) refers to a total of uncertainty and PCPA factors for dietary assessments; MOE refers to a target MOE for occupational assessments ² Since an oral NOAEL was selected, a dermal absorption factor of 100% was used in a route-to-route extrapolation

Appendix IV Dietary exposure and risk estimates

	MRL/Tolerance-level								
Population Subgroup	Acute I	Dietary (95 th percen	tile) ¹	Chronic Dietary ²				
	Food C	Only	Food + V	Water	Food (Only	Food + Water		
	Exposur e (mg/kg/ day)	%AR fD	Exposur e (mg/kg/ day)	%AR fD	Exposur e (mg/kg/ day)	%AD I	Exposur e (mg/kg/ day)	%ADI	
General Population	0.000211	0.02	0.002173	0.22	0.000073	0.0	0.000861	0.2	
All Infants (<1 year old)	0.000370	0.04	0.007153	0.72	0.000079	0.0	0.003022	0.8	
Children 1–2 years old	0.000593	0.06	0.003326	0.33	0.000309	0.1	0.001393	0.3	
Children 3–5 years old	0.000385	0.04	0.002589	0.26	0.000204	0.1	0.001085	0.3	
Children 6–12 years old	0.000255	0.03	0.002001	0.20	0.000123	0.0	0.000778	0.2	
Youth 13–19 years old	0.000148	0.01	0.001828	0.18	0.000067	0.0	0.000622	0.2	
Adults 20–49 years old	0.000109	0.01	0.002098	0.21	0.000053	0.0	0.000836	0.2	
Adults 50–99 years old	0.000094	0.01	0.001833	0.18	0.000048	0.0	0.000809	0.2	
Females 13–49 years old	0.000107	0.01	0.002114	0.21	0.000051	0.0	0.000820	0.2	

Table 1 Summary of dietary exposure and risk from flucarbazone

¹Acute Reference Dose (ARfD) of 1 mg/kg bw applies to the general population and all population subgroups.

²Acceptable Daily Intake (ADI) of 0.4 mg/kg bw/day applies to the general population and all population subgroups.

Food residue chemistry summary

Flucarbazone is an acetolactate synthase (ALS) or acetohydroxy acid synthase (AHAS) inhibiting herbicide. ALS and AHAS are key enzymes in the pathway of biosynthesis of the branched-chain amino acids isoleucine, leucine, and valine; their inhibition results in plant death. The currently registered food use of flucarbazone in Canada is grass and broadleaf weed control in winter wheat, spring wheat and durum wheat at a maximum rate of 30 g a.i./ha per growing season with a preharvest interval (PHI) of 80 days. Grazing treated fields or using treated green crop for feed is prohibited but wheat grain or straw harvested from treated fields may be fed to livestock. Treatment of wheat underseeded to legumes is not allowed. A plantback interval (PBI) of 11 months has been established for specific crops in zones with specific soil characteristics.

The first dietary risk assessment for flucarbazone was conducted under PMRA-USEPA Joint Review in support of the Regulatory Note (REG) document REG2000-09, *Flucarbazone-sodium*, published on 25 September 2000 for a temporary registration on spring wheat, pending submission of additional data (in other words, analytical method for residues in animal commodities and freezer storage stability data) for a full registration. Following submission and review of the requested data, a full registration (and addition of durum wheat on the label) was granted in 2009 after consultation under the Proposed Registration Decision (PRD) document PRD2008-13, *Flucarbazone-sodium*, published on 18 July 2008. The Registration Decision document RD2009-02, *Flucarbazone-sodium* was published on 1 April 2009. Winter wheat was added on the label in 2014, supported by the existing (same) data previously submitted for the registration of spring and durum wheat. MRLs were established for residues of flucarbazone in/on wheat grain, eggs, meat and meat byproducts of cattle, goats, hogs, horses, poultry and sheep at the limit of quantitation (LOQ) of 0.01 ppm; in milk at 0.0025 ppm (LOQ); and in liver of cattle, goats, hogs, horses and sheep at 0.05 ppm.

The residue chemistry database for flucarbazone is complete and up-to-date for the registered uses (in other words, grass and broadleaf weed control in wheat). The residue definition (RD) was first determined by the PMRA-USEPA Joint Review (REG2000-09) to be the sum of flucarbazone and the metabolite *N*-desmethyl flucarbazone, calculated as the stoichiometric equivalent of flucarbazone, in plant commodities and only flucarbazone in animal commodities, for enforcement and dietary risk assessment. Later on, taking into account that the metabolite *N*-desmethyl flucarbazone was only found in animal feedstuffs and not in edible plant commodities, the PMRA revised the residue definition to exclude the metabolite. The rationale for excluding the metabolite was based on the following: the wheat metabolism study indicated that no residues of flucarbazone were identified in grain, but *N*-desmethyl residues accounted for up to 22% of the total radioactive residues (TRRs). However, supervised residue trials indicated that residues of parent flucarbazone and *N*-desmethyl were <0.01 ppm (<LOQ) in grain, even at exaggerated rates. Residues of the metabolite *N*-desmethyl were found to be detectable only in wheat feedstuffs (forage, hay and straw).

The Canadian residue definition is therefore flucarbazone per se for both plant and animal commodities, for enforcement and dietary risk assessment [see PRD2008-13]. The USEPA did not follow this path and maintained the previous PMRA-USEPA Joint Review residue definition. There are no JMPR evaluations and no Codex MRLs established for residues of flucarbazone. Flucarbazone is not approved for use in European Union countries.

The RD in drinking water (for risk assessment) is proposed to be expressed as the combined residue of flucarbazone (development code name: MKH 6562) and five of its transformation products: MKH 6562 sulfonamide; MKH 6562 sulfonic acid; *O*-desmethyl MKH 6562; N,O-dimethyl triazolinone (NODT) and *N*-methyl triazolinone (NMT). Inclusion of these transformation products in the RD is due to their concentration levels in environmental media (soil and/or water) and their predicted mobility based on water solubility and/or detections in terrestrial field dissipation studies. Concerning MKH 6562 sulfonamide, in addition to preceding reasons, its inclusion in the RD is also due to the evidence of its existence via multiple transformation pathways. Based on lack or limited availability of toxicity data, all these transformation products are assumed to be of equal toxicity to the unchanged (parent) flucarbazone.

Adequately validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) analytical methods were provided in previous petitions for both data gathering and enforcement of flucarbazone residues in plant and animal commodities with LOQs of 0.01 ppm for plant matrices and animal tissues and 0.0025 ppm for milk. Flucarbazone residues in foods (other than cereals) are monitored by the CFIA monitoring program but not by the USDA PDP, except in heavy cream. All samples in the 2008–2017 CFIA monitoring data and in the 2009–2018 PDP data (for heavy cream) were practically non-detects.

Appendix V Mixer/loader/applicator exposure and risk assessment

Table 1Dermal, inhalation or combined (dermal plus inhalation) exposure and risk assessment for mixer/loader/applicators (M/L/A) using
groundboom equipment

Сгор		/L UE /kg a.i.)		cator UE kg a.i.)	Maximum AR ^a	ATPD ^b	Dermal exposure	Dermal	Inhalation exposure ^e	Inhalation	Combined
	Dermal	Inhalation	Dermal	Inhalation	(kg a.i./ha)	(ha)	(mg/kg bw/day)°	MOE ^d	(mg/kg bw/day)	MOE ^f	MOE ^g
			Open mix:		•	-	•		olication (AHET	CF);	
				PPE: long	sleeved-shirt	and long]	pants, chemical	-resistant g	gloves		
Spring wheat and/or	84.14	21.8	25.40	1.68	0.0284	360	0.0140	2571	0.0030	2667	2109
excluding	Mixing	g/loading wate	er-soluble	packets (PHE	D) and open of	cab groun	dboom liquids a	application	(AHETF); PPE	: long sleeved	l-shirt and
Durum	_	_			long pants	s, chemica	ll-resistant glov	es		-	
wheat;	21.61	0.18	25.40	1.68	0.0284	360	0.0060	6000	0.0002	40,000	5536
Winter	Open mi	xing/loading	liquid and	open cab gro	undboom liqu	iids applic	ation (AHETF)	; PPE: lon	g sleeved-shirt a	and long pants	s, chemical-
wheat	resistant gloves										
	58.50	0.63	25.40	1.68	0.0288	360	0.0109	3303	0.0003	26,667	3060

AR = application rate; ATPD = area treated per day; MOE = Margin of Exposure; UE = Unit Exposure.

- ^a Maximum AR (kg a.i./ha) as per current product labels
- ^b ATPD (ha) area treated per day (default values)
- ^c Dermal exposure (mg/kg bw/day) = Dermal unit exposure (μ g/kg a.i.) × CF (1 mg/1000 μ g) × ATPD (ha) × Maximum AR (kg a.i./ha) × 100% dermal absorption / average worker body weight (80 kg)
- ^d Based on a short-term dermal NOAEL of 36 mg/kg bw/day; target MOE of 100 (Appendix III)
- Inhalation exposure (mg/kg bw/day) = Inhalation unit exposure (µg/kg a.i.) × CF (1 mg/1000 µg) × ATPD (ha) × Maximum AR (kg a.i./ha) / average worker body weight (80 kg)
- ^f Based on a short-term inhalation NOAEL of 8 mg/kg bw/day; target MOE of 100 (Appendix III),
- ^g Based on a combined dermal NOAEL of 34 mg/kg bw/day and inhalation NOAEL of 48 mg/kg bw/day, target MOE of 100 (Appendix III), and the combined MOE = 1/ ((1/MOE-dermal)+(1/MOE-inhalation)).

Table 2Dermal, inhalation and combined (dermal plus inhalation) exposure and risk assessment for mixer/loader and applicators (M/L/A)
using aerial equipment

Crop	-	'L UE kg a.i.)		cator UE kg a.i.)	Maximum AR ^a	ATPD	Dermal exposure	Dermal	Inhalation exposure ^e	Inhalation	Combined
Сгор		Inhalation	Dermal	Inhalation	(kg a.i./ha)	^ь (ha)	(mg/kg bw/day) °	MOE ^d	(mg/kg bw/day)	MOE ^f	MOE ^g
	Open mixing/loading liquid (AHETF); PPE: a long sleeved-shirt and long pants, chemical-resistant gloves;										
Wheat Spring and	58.50	0.63	-	-	0.0288	400	0.0084	4286	0.000091	87,912	4017
Durum; Wheat	Closed cockpit aerial liquid application (AHETF); PPE: a long sleeved-shirt and long pants, chemical-resistant gloves*;										
winter	-	-	2.67	0.00969	0.0288	400	0.0004	90,000	0.0000014	>100,000	84,790

AR = application rate; ATPD = area treated per day; MOE = Margin of Exposure; UE = Unit Exposure. * Chemical-resistant gloves only worn to perform activities outside of the cockpit.

^a Maximum AR (kg a.i./ha), as per current product labels,

 b ATPD (ha) – area treated per day. (default values).

Dermal exposure (mg/kg bw/day) = Dermal unit exposure (µg/kg a.i.) × CF (1 mg/1000 µg) × ATPD (ha) × Maximum AR (kg a.i./ha) × 100% dermal absorption / average worker body weight (80 kg).

^d Based on a short-term dermal NOAEL of 36 mg/kg bw/day; target MOE of 100 (Appendix III)

^c Inhalation exposure (mg/kg bw/day) = Inhalation unit exposure (μ g/kg a.i.) × CF (1 mg/1000 μ g) × ATPD (ha) × Maximum AR (kg a.i./ha) / average worker body weight (80 kg).

^f Based on a short-term inhalation NOAEL of 8 mg/kg bw/day; target MOE of 100 (Appendix III),

^g Based on a combined dermal NOAEL of 34 mg/kg bw/day and inhalation NOAEL of 48 mg/kg bw/day, target MOE of 100 (Appendix III), and the combined MOE = 1/((1/MOE-dermal) + (1/MOE-inhalation)).

Appendix VIPostapplication workers exposure and risk assessment

	Use directions ^a					Dermal			
Сгор	Maximum AR (µg a.i./ha)	No. of application s	Peak DFR ^ь (μg a.i./cm²)	Activity	TC [°] (cm²/hr)	Exposure ^d (mg/kg bw/day)	MOE °	REI (hours)	
Spring wheat, Durum wheat	0.288	1	0.072	Scoutin g	1100	0.0079	4557	12	
and Winter wheat,	0.288	1	0.072	Weedin g, hand	70	0.0005	72,000	12	

AR = application rate; DFR = dislodgeable foliar residue; TC = transferable residues; MOE = margin of exposure; REI = Restricted-entry interval

^a Use directions as per current product labels

^b Peak DFR (μg a.i./cm²) – calculated assuming 25% residue deposition residue following the application at the indicated application rate

^c TC (cm²/hr) -TC value for a given crop (ARTF, 2019)

^d Dermal Exposure (mg/kg bw/day) = TC (cm²/hr) × DFR (μg a.i./cm²) × CF (1 mg/1000 μg) × DAF (100%) × 8 hours/day / average worker body weight (80kg)

^e Based on the short term dermal, NOAEL of 36 mg/kg bw/day/ daily dermal exposure (mg/kg bw/day); target MOE of 100.

Appendix VII Fate and behaviour in the environment

Study Type	Endpoint	Endpoint Value	Comments
Hydrolysis (PMRA# 1179373)	Half-life	pH 5: 525 d pH 7: 521 d pH 9: 753 d	Minor transformation product: Flucarbazone sulfonamide acid maximum of 4.2%, 3.9% and 4.0% of the applied radioactivity at pH 5, pH 7 and pH 9, respectively, all at 30 days (end of test) Not an important route of
			transformation at environmentally relevant pH PMRA# 1179328 – half-life calculated
Phototransformation in water (PMRA# 1179328)	Half-life	82.4 d	based on maximum irradiation for June in Edmonton, Alberta
(1 WIXA# 11/9326)		02. 4 u	One major transformation product: Flucarbazone sulfonamide max 22.6% AR at 30 days (end of test)
(PMRA# 1179329)			PMRA# 1179329 is a supplemental, laboratory UV-VIS absorbance study that demonstrates no absorbance by flucarbazone in various buffer solutions (pH 5, 7 and 9) at wavelengths >286 nm
			May be an important route of transformation
Phototransformation on soil (PMRA# 1179374)	Half-life	287 d	Half-life calculated based on maximum global irradiation for June in Edmonton, Alberta
			Not an important route of transformation
			Not an important route of transformation.
Phototransformation in air	Half-life	1.8 d (21 hr)	AopWin v1.92 estimate based on overall OH radical rate constant of 5.9847 E-12 cm ³ /molecule-sec
Aerobic biotransformation in water/sediment Phenyl label (PMRA# 3139544)	DT ₅₀	Brandywine Creek $DT_{50} = 75.6 \text{ d}$ $DT_{90} = 251 \text{ d}$	Brandywine Creek: Major transformation product Flucarbazone sulfonamide 31.8.9% AR (Day 100)
	DT ₉₀	Choptank River $DT_{50} = 335 d$ $DT_{90} = 1112 d$	Choptank River: Major transformation product Flucarbazone sulfonamide 9.7% AR (Day 100)

Table 1Summary of fate and behaviour of flucarbazone and transformation products in
terrestrial and aquatic environments

Study Type	Endpoint	Endpoint Value	Comments
			Moderately persistent to persistent, depending on aquatic system
			May be an important route of transformation
Anaerobic biotransformation in water/sediment Phenyl label (PMRA# 1180203) Phenyl label (PMRA# 1179335)	DT ₅₀	PMRA# 1180203 $DT_{50} = 104 \text{ d}$ (DFOP) PMRA 1179335 $DT_{50} = 73 \text{ d}$ (SFO)	PMRA# 1180203 – study conducted at 5°C : Major transformation product Flucarbazone sulfonamide 49.0% AR (Day 275) -excess of glucose added to test systems (~500-fold greater than oxygen concentration)
			PMRA# 1179335 – study conducted at 20°C: Major transformation product Flucarbazone sulfonamide 88.8%AR (Day 367) -Excess of glucose added to test systems (~500-fold greater than oxygen concentration)
			Moderately persistent. May be an important route of transformation but glucose enriched test systems may not reflect naturally occurring anaerobic environments.
Aerobic biotransformation in soil Phenyl label (2734406)	DT ₅₀	$\begin{array}{l} PMRA\#\ 2734406\\ Sandy\ clay\ loam\\ DT_{50}=11.4\ d\\ (IORE)\\ clay\ loam\\ DT_{50}=12.1\ d\ (SFO) \end{array}$	PMRA# 2734406: Major transformation product Flucarbazone sulfonamide max 84.7% AR (Day 123)
Phenyl label (PMRA# 1179331)		PMRA 1179331 Sandy loam $DT_{50} = 92.5$ (DFOP)	PMRA# 1179331: Major transformation product Flucarbazone sulfonamide max 41% AR (Day 366)
Phenyl label (PMRA# 1179330)		PMRA# 1179330 Sandy loam $DT_{50} = 25.1 d$ (IORE)	PMRA# 1179330: Two major transformation products - Flucarbazone sulfonamide 69% AR and Flucarbazone sulfonic acid 11% AR
Triazolinone label (PMRA# 1180202)		PMRA# 1180202 Sandy loam DT ₅₀ = 29.6 d (SFO)	(Day 272) PMRA# 1180202: Two major transformation products <i>O</i> -desmethyl Flucarbazone at 15% AR NMT at 14.4% AR (Day 60)
			Slightly to moderately persistent Important route of transformation.

Study Type	Endpoint	Endpoint Value	Comments
Adsorption/Desorption	-	L.	Parent: Very high mobility
Parent (PMRA# 1179337) N,O-dimethyltriazolinone (PMRA# 118020)	Koc	Sandy loam = 10 Silty loam = 18 Sandy clay loam = 14 Silt clay loam = 10 Sand = 15 Loamy sand = 27 Loam = 33 Loam = 24 Sandy loam = 25	N,O-dimethyltriazolinone: Very high mobility
NMT (PMRA# 1180204)		Loamy sand = 1202 Loam = 580 Loam = 2756 Sandy loam = 574	NMT: low mobility
Flucarbazone Sulfonamide (PMRA# 1180210) N,O-Dimethyltriazolinone (PMRA# 1180210) NMT (1180210)		Sandy loam soil: Flucarbazone Sulfonamide = 13 N,O- Dimethyltriazolinon e = 8 NMT = 242	Sandy loam soil: Flucarbazone Sulfonamide: Very high mobility N,O-Dimethyltriazolinone: Very high mobility NMT: moderate mobility
		Sand: NMT = 4	Sand: NMT: Very high mobility
Flucarbazone Sulfonamide (PMRA# 1180206)		Loamy sand = 37 Loam = 49 Loam = 37 Sandy loam = 39 N/A	Flucarbazone: Very high mobility
Flucarbazone Sulfonic acid (PMRA# 1180207)			K_{oc} values could not be calculated as <1% applied test substance was adsorbed to soils used (loamy sand, loam, sandy loam)
			Adsorption processes not expected to contribute to dissipation in the environment
Aged soil leaching (PMRA# 2347640)	K _{oc}	Parent: 10 Flucarbazone sulfonamide: 36 Flucarbazone sulfonic acid: no adsorption to soil	Adsorption processes not expected to contribute to dissipation in the environment
Outdoor lysimeter (PMRA# 1179341)	N/A	Maximum residues in soil (0–23 cm depths) and	Flucarbazone reached maximum of 16.9% AR at 10–23 cm soil depth (30

Study Type	Endpoint	Endpoint Value	Comments
		cumulative residues	DAT)
		in leachate:	
		Soil	Flucarbazone sulfonamide reached maximum of 12.7% AR at 10–23 cm
		Parent:	soil depth (30 DAT)
		32.9% AR (30 d);	son depui (so brit)
		13.4% AR (91 d)	Flucarbazone sulfonic acid reached
		9.1% AR (180 d)	maximum of 2.33% AR at 10–23 cm soil depth (180 DAT)
		Flucarbazone sulfonamide:	
		27.4%,AR (30 d);	Flucarbazone and transformation
		20.2% AR (91 d) 19.1% AR (180 d)	products, flucarbazone sulfonamide and flucarbazone sulfonic acid, can be avpacted to migrate to groundwater
		Flucarbazone	expected to migrate to groundwater
		sulfonic acid:	
		2.7% AR (30 d);	
		4.0% AR (91 d)	
		5.7% AR (180 d)	
		Leachate	
		Parent:	
		17.0% AR (30 d);	
		24.5% AR (91 d) 26.5% AR (180 d)	
		Cumulative total:	
		68.0% AR	
		Flucarbazone	
		sulfonamide:	
		2.8% AR (30 d);	
		6.0% AR (91 d)	
		7.2% AR (180 d) Cumulative total:	
		15.9% AR	
		Flucarbazone	
		sulfonic acid:	
		1.3% AR (30 d);	
		4.9% AR (91 d)	
		7.3% AR (180 d) Cumulative total:	
		13.6% AR	
Volatilization	Henry's law	2.48E+14	Flucarbazone is not expected to be
	Constant (atm		volatile from water and moist surfaces
	m ³ /mol at		Volatilization not expected to
	20°C)		contribute to dissipation in the
			environment
Terrestrial Field Dissipation Soil	DT ₅₀	13–14 d	Lacombe, Alberta: bare loam soil
Lacombe, Alberta (PMRA#			Major transformation products
1180128)			Flucarbazone sulfonamide: 22% AR

Study Type	Endpoint	Endpoint Value	Comments
			 (59 DAT) and 24% AR (332 DAT) 18% AR at end of study (505 DAT) O-desmethyl Flucarbazone: 28% AR (28 DAT) <lod (59="" dat)<="" li=""> Flucarbazone sulfonic acid (detected only in one sample at 4% AR in surface layer Low potential to carryover </lod>
 Outlook, Saskatchewan (PMRA# 1180129)		 17–19 d	Outlook, Saskatchewan, bare clay loam soil major transformation products Flucarbazone sulfonamide: 17% AR (28 DAT) and 15% AR (138 DAT) 5% AR at end of study (505 DAT) O-desmethyl Flucarbazone: 10% AR (1 DAT) <lod (28="" dat)<br="">Flucarbazone sulfonic acid (detected only in one sample at 7% AR in surface layer NODT detected in 1 sample 3% AR (10 DAT) Low potential to carryover</lod>
Saskatoon, Saskatchewan (PMRA# 1180130)		 16–31 d	Saskatoon, Saskatchewan, bare clay loam soil Major transformation products Flucarbazone sulfonamide: 14.5% AR (402 DAT) and 13% AR (28 DAT) 5% AR at end of study (505 DAT) O-desmethyl Flucarbazone: 13% AR (3 DAT) 10% AR (3 DAT) <lod (61="" dat)<br="">Flucarbazone sulfonic acid 9% AR (91DAT) in surface layer and 7% AR (505 DAT) NODT detected in 1 sample 1% AR (10 DAT)</lod>

Study Type	Endpoint	Endpoint Value	Comments
		 26 d	Low potential to carryover
Northwood, North Dakota (PMRA# 1180131)		20 0	Northwood, North Dakota bare loam soil
			Major transformation products Flucarbazone sulfonamide: 28% AR (28 DAT) 4% AR at end of study (367 DAT)
			O-desmethyl Flucarbazone: 7% AR (28 DAT) <lod (367="" at="" dat)<="" end="" of="" study="" td=""></lod>
			Flucarbazone sulfonic acid 3.4% AR (63 DAT) in <lod at="" end="" of="" study<br="">(367 DAT)</lod>
			Low potential to carryover
Ephrata, Washington (PMRA#		15 d	Ephrata, Washington bare loamy sand
1180132)			Major transformation products Flucarbazone sulfonamide: 6.7%AR (14DAT) <lod (456="" at="" dat)<="" end="" of="" study="" td=""></lod>
			Low potential to carryover
Bioaccumulation (PMRA# 2897123)	log K _{ow}	Log K_{ow} for free acid:	Limited potential for bioaccumulation
		-2.85 (unbuffered),	
		-1.88 (pH 9),	
		-1.84 (pH 7),	
		-0.89 (pH 4)	

Table 2Summary of terrestrial and aquatic toxicity data for flucarbazone and
transformation products

PMRA#	Species	Type of test	Toxicity endpoint*	Comments
Terrestrial	Organisms			
1179342	Earthworm	acute	945 mg a.e./kg soil	No adverse effects reported
1180225	Earthworm	acute	>1000 mg NMT/kg soil	weight gain was affected by NMT (<i>N</i> - methyltriazolinone) at concentrations >32 mg NMT/kg soil)
1180237	Honey bee (<i>Apis mellifera</i>)	48 hr Acute contact	LD ₅₀ >189 µg a.e./bee	not toxic
1180237	Honey bee (Apis mellifera)	48-hr Acute Oral	LD ₅₀ >420.5 µg a.e./bee	not toxic
1179347	Bobwhite quail (<i>Colinus</i> virginianus)	Acute oral	LD ₅₀ >1890 mg a.e./kg bw/day	practically non-toxic
1179348 1180255	Bobwhite quail	Acute dietary	LC ₅₀ > 4646 mg a.i./kg diet	Practically non-toxic
	(Colinus virginianus)		>1065.9 mg a.e./kg bw/day	
1180258	Bobwhite quail (Colinus virginianus)	Reproductive	NOEC = 1311 mg a.i./kg diet	No adverse effects reported
1179350 1180256	Mallard duck (Anas platyrhynchos)	Acute dietary	LC ₅₀ > 4969 mg a.i./kg diet	Practically non-toxic
1180257	Mallard duck (Anas platyrhynchos)	Reproductive	NOEC = 223 mg a.i./kg diet NOEL = 20.6 mg a.e./kg bw/day	NOEC based on reproductive performance and reduction in adult body weight
2703322	Rat	Acute oral	>4725 mg a.e./kg bw	Practically non-toxic
2703322	Rat	Reproductive	NOAEC = 3780 mg a.e./kg bw/day NOAEL = 548.6 mg a.e/kg bw/day LOAEL = 2950mg a.e./kg bw/day	NOAEL based offspring toxicity
				LOAEL (2-gen reproductive endpoint) based on weight reduction in off-spring (male and female F1 pups)
1180134	Terrestrial plants	Seedling emergence	$EC_{25} (dry weight) = 0.30 g a.e./ha$	Canola

rial plants azone mide (a lite of azone 6562) il, Oat, and cet. rial plants azone	Vegetative vigour Seedling emergence	Toxicity endpoint* EC ₂₅ (dry weight) = 0.39 g a.i./ha EC>0.3 g t.p./ha	Onion Flucarbazone sulfonamide is a major transformation product 3 test species: Lentil, Oat, and Sugarbeet
rial plants azone mide (a lite of azone 6562) il, Oat, and eet. rial plants	vigour Seedling emergence	0.39 g a.i./ha	Flucarbazone sulfonamide is a major transformation product 3 test species: Lentil, Oat,
azone mide (a lite of azone 6562) il, Oat, and cet. rial plants	emergence		is a major transformationproduct3 test species: Lentil, Oat,
-			
mide (a lite of azone 6562) il, Oat, and eet.	Vegetative vigour	EC>0.3 g t.p./ha	Flucarbazone sulfonamide is a major transformation product 3 test species: Lentil, Oat, and Sugarbeet
rial plants: nental Data ort Number : Tier 2 g nce and ive Vigor: get xicity Study ARBAZONE 0% WG	Seedling emergence/Ve getative vigour	EC ₂₅ (dry weight) = 0.30 g a.i./ha	
– Freshwater			
a magna	48-hr Acute	LC ₅₀ > 109 mg a.i./L	Practically non-toxic
a magna	21-d Chronic	NOEC = 114.6 mg a.i./L	No adverse effects reported
w trout hynchus	96-hr Acute	96hr LC ₅₀ > 96.7 mg a.i./L	Practically non-toxic
l sunfish	96-hr Acute	$LC_{50} > 99.3 \text{ mg a.i./L}$	Practically non-toxic
w trout hynchus	97-d Early Life Cycle	NOEC = 2.75 mg a.i./L	NOEC is based on scoliosis or kyphoscoliosis on off-spring
	14-day static renewal	$EC_{25} = 0.0094 \text{ mg a.e./L}$ $EC_{50} = 0.0123 \text{ mg a.e./L}$	based on biomass
1	sunfish v trout	sunfish 96-hr Acute v trout 97-d Early hynchus Life Cycle ced (Lemna 14-day static	hynchusLC50 > 99.3 mg a.i./Lsunfish96-hr AcuteLC50 > 99.3 mg a.i./Lw trout97-d EarlyNOEC = 2.75 mg a.i./LhynchusLife Cycle $EC_{25} = 0.0094$ mg a.e./L

PMRA#	Species	Type of test	Toxicity endpoint*	Comments	
1179355	Duckweed (<i>Lemna</i>	7-day – spray	$EC_5 = 1.12E-05 \text{ mg a.e./L}$	Based on frond dry weight	
1175555	gibba)	application of 70 WG (68%	(90 mg a.e./ha)	Dused on Hond dry weight	
		a.i.)	$EC_{25} = 6.63E-05 \text{ mg a.e./L}$ (530 mg a.e./ha)		
			$EC_{50} = 2.2E-04 \text{ mg a.e./L}$ (1760 mg a.e./ha)		
3139548	Duckweed (Lemna gibba) Flucarbazone Sulfonamide	7-day static renewal	$EC_{25} > 4.58 \text{ mg t.p./L}$ $EC_{50} > 4.58 \text{ mg t.p./L}$	Flucarbazone sulfonamide is a major transformation product	
1179351	Freshwater Green Alga, (Selenastrum capricornutum)	96-hr	$EC_{50} = 6.4 \text{ mg a.i./L}$ $EC_{25} = 3.8 \text{ mg a.i./L}$	Based on cell density (growth inhibition)	
1179352	Freshwater Cyanobacteria (Anabaena flos- aquae)	96-hr	$EC_{50} = 12 \text{ mg a.i./L}$ $EC_{25} = 9.1 \text{ mg a.i./L}$	Based on biomass	
1179353	Freshwater Diatom (Navicula	96-hr	EC ₅₀ > 115 mg a.i./L	Based on growth inhibition (cell density)	
A grantin Or	pelliculosa)		EC ₂₅ > 115 mg a.i./L		
1180259	rganisms – Marine Saltwater Diatom (Skeletonema costatum)	96-hr Acute	$EC_{50} > 89.2 \text{ mg a.i./L}$ $EC_{25} > 89.2 \text{ mg a.i./L}$	Based on growth inhibition (cell density)	
	costatum)				
3139550	Sheepshead minnow (Cyprinodon variegatus)	96-hr Acute	EC ₅₀ > 141 mg a.e./L		
3139549	Marine invertebrate Saltwater Mysid (<i>Americamysis</i> bahia)	96-hr Acute	96-h LC ₅₀ > 120 mg a.e./L		
3139547	Marine bivalve: Eastern Oyster (<i>Crassostrea</i> <i>virginica</i>)	Acute – shell deposition	96-h LC ₅₀ > 83 mg a.e./L		

* Unless indicated otherwise, endpoints were reported as flucarbazone-sodium, thus were converted to acid equivalents for risk assessment and when endpoints were based on mean measured test concentrations and/or analytical method used would result in conversion to acid form and as such, results were considered to have been reported as flucarbazone and not flucarbazone-sodium, thus no need to convert to acid equivalents and if insufficient information available to determine whether conversion of active ingredient to acid equivalents was required, as such, it was assumed that conversion was required.

PMRA#	Species	Type of test	Toxicity endpoint	Uncert ainty factor	Toxicity endpoint adjusted for uncertainty factor	EECs	Risk quotient
1179342	Earthworm	acute	945 mg a.e./kg soil	2	472.5 mg a.e./kg soil	0.013 mg a.e./kg soil	0.00003
1180225	Earthworm (conducted with NMT)	Acute	>1000 mg t.p./kg soil	2	>500 mg a.e./kg soil	0.013 mg a.e./kg soil	< 0.00003
1180237	Honey bee (Apis mellifera)	48 hr Acute contact	>188.5 μg a.e./bee	1	LC ₅₀ > 188.5 μg a.e./bee	0.067 μg a.e./bee	< 0.0004
1180237	Honey bee (<i>Apis</i> <i>mellifera</i>)	48-hr Acute Oral	>420.5 μg a.e./bee	1	LC ₅₀ >420.5 μg a.e./bee	0.812 μg a.e./bee	<0.0019
1179347	Bobwhite quail (Colinus virginianus)	Acute oral	>1890 mg a.e./kg bw/day	10	LD ₅₀ > 189.0 mg a.e./kg bw/day	EDE (mg a.i./kg bw) Small: 2.30 Med: 1.80 Large: 1.16	<0.01 <0.01 <0.01
1180257	Mallard duck (Anas platyrhynchos)	Reproductiv e	NOEC = 210 mg a.e./kg diet NOEL = 20.6 mg a.e./kg bw/day	1	NOEL = 20.6 mg a.e./kg bw/day	EDE (mg a.i./kg bw) Small: 2.30 Med: 1.80 Large:1.16	0.11 0.09 0.06
2703322	Rat	Acute oral	>4725 mg a.e./kg bw	10	LD ₅₀ > 472.5 mg a.e./kg bw	EDE (mg a.i./kg bw) Small: 1.33 Med: 2.57 Large:1.38	0 < 0.01 0

Table 3Screening level risk for non-target organisms

PMRA#	Species	Type of test	Toxicity endpoint	Uncert ainty factor	Toxicity endpoint adjusted for uncertainty factor	EECs	Risk quotient
2703322	Rat	Reproductiv e	3780 mg a.e./kg/diet 548.5 mg	1	548.5 mg a.e./kg bw/day	EDE (mg a.i./kg bw)	
			a.e./kg bw/day			Small: 1.32 Med: 2.57	0 0 0
1180134 1180135	Terrestrial plants	Seedling emergence (canola)	$EC_{25} = 0.30 g$ a.e./ha	1	0.30 g a.i./ha	Large: 1.37 28.35 g a.e./ha	94.5
1180134 1180135	Terrestrial plants	Vegetative vigour (oinion)	EC ₂₅ = 0.39 g a.e./ha	1	0.39 g a.e./ha	28.35 g a.e./ha	72.7
3139545	Terrestrial plants Flucarbazone sulfonamide (transformatio n product)	Seedling emergence (lentil, oat, sugarbeet)	EC ₅₀ > 0.3 g t.p.ha	1	>0.3 g t.p./ha	28.35 g t.p./ha	<94.3
3139545	Terrestrial plants Flucarbazone sulfonamide (transformatio n product)	Vegetative vigour (lentil, oat, sugarbeet)	EC ₅₀ > 0.3 g t.p.ha	1	>0.3 g t.p./ha	28.35 g t.p./ha	<94.3
1179343	Daphnia magna	48-hr Acute	>109 mg a.e./L	10	>10.9 mg a.e./L	0.004 mg a.e./L	< 0.0001
1179344	Daphnia magna	21-d Chronic	114.6 mg a.e./L	1	114.6 mg a.e./L	0.004 mg a.e./L	0.00003
1179345	Rainbow trout (<i>Oncorhynchu</i> <i>s mykiss</i>)	96-hr Acute	>96.7 mg a.e./L	10	>9.67 mg a.e./L	0.004 mg a.e./L	< 0.0004
1179345	amphibians	96-hr Acute	>96.7 mg a.e./L	10	>9.67 mg a.e./L	0.019 mg a.e./L	< 0.002
1179346	Bluegill sunfish	96-hr Acute	>99.3 mg a.e./L	10	>9.93 mg a.e./L	0.004 mg a.e./L	< 0.0004
1180248	Rainbow trout (Oncorhynchu s mykiss)	97-d Early Life Cycle	2.75 mg a.e./L	1	2.75 mg a.e./L	0.004 mg a.e./L	0.0015
1180248	amphibians	chronic	2.75 mg a.e./L	1	2.75 mg a.e./L	0.019 mg a.e./L	0.007

PMRA#	Species	Type of test	Toxicity endpoint	Uncert ainty factor	Toxicity endpoint adjusted for uncertainty factor	EECs	Risk quotient
1179354	Duckweed (<i>Lemna gibba</i>)	14-day static renewal	0.012 mg a.e./L	2	0.006 mg a.e./L	0.004 mg a.e./L	0.65
1179355	Duckweed (Lemna gibba)	7-day – spray application of 70 WG (68% a.i.)	2.2E-04 mg a.e./L (*1.76 g a.e./ha Applicatio n rate)	2	0.00011 mg a.e./L	0.004 mg a.e./L	36.4
3139548	Duckweed (<i>Lemna gibba</i>) Flucarabazone sulfonamide	7-day static renewal	EC ₅₀ >4580 4.58 mg t.p./L	2	>2.29 mg t.p./L	0.004 mg a.e./L (assuming 100% conversion of parent to transformati on product)	<0.0000
1179351	Freshwater Green Alga, (Selenastrum capricornutum)	96-hr	6.4 mg a.e./L	2	3.2 g a.e./ha	0.004 mg a.e./L	0.0013
1179352	Freshwater Cyanobacteria (Anabaena flos-aquae)	96-hr	9.1 mg a.e./L	2	4.55 mg a.e./L	0.004 mg a.e./L	0.0009
1179353	Freshwater Diatom (<i>Navicula</i> <i>pelliculosa</i>)	96-hr	>115 mg a.e./L	2	>57.5 mg a.e./L	0.004 mg a.e./L	<0.0001
1180259	Saltwater Diatom (Skeletonema costatum)	96-hr Acute toxicity	>89.2 mg a.e./L	2	44.6 mg a.e./L	0.004 mg a.e./L	<0.0001

PMRA#	Species	Type of test	Toxicity endpoint	Uncert ainty factor	Toxicity endpoint adjusted for uncertainty factor	EECs	Risk quotient
3139550	Marine fish Sheepshead Minnow (<i>Cyprinodon</i> <i>variegatus</i>)	96-hr Acute toxicity - flow-through	>141 mg a.e./L	10	>14.1 mg a.e./L	0.004 mg a.e./L	<0.0003
3139549	Saltwater Mysid (Americamysis bahia)	96-hr Acute toxicity - flow-through	>120 mg a.e./L	10	>60 mg a.e./L	0.004 mg a.e./L	<0.0001
3139547	Marine bivalve: Eastern Oyster (<i>Crassostrea</i> <i>virginica</i>).	96-hr Acute toxicity - flow-through	> 83 mg a.e./L	10	>8.3 mg a.e./L	0.004 mg a.e./L	<0.0001

* As water concentrations of flucarbazone were not reported in the study, the EEC for this risk quotient calculation was based on the application rate reported in the study, in terms of a.i./ha, converted to g a.e./ha and then using this value as the application rate, converted into a screening level concentration.

Table 4Refined assessment for non-target terrestrial plants using SSD endpoints and
spray drift exposure

Species sensitivity distribution (SSD) endpoint (g a.e./ha)	Application method	Spray droplet quality (ASABE)	Spray drift (% application)	Risk quotient*
Seedling emergenc	e			
1.47	Ground	Medium	6	1.2
	Aerial	Medium	23	4.4
	Ground	Coarse	3	0.6
	Aerial	Coarse	17	3.3
Vegetative vigour				
1.10	Ground	Medium	6	1.5
	Aerial	Medium	23	5.9
	Ground	Coarse	3	0.8
	Aerial	Coarse	17	4.4

*bold text indicates exceedance of the level of concern

Table 5Refined assessment for aquatic vascular plants (96 hr endpoint adjusted for
uncertainty = 0.00011 mg a.e./L) using runoff and spray drift EECs

Runoff EEC for 80 cm depth (mg a.i./L)	Spray drift (% application)	Application method/ASABE Spray droplet quality	Spray drift EECs for 80 cm depth (mg a.i./L)	Risk quotient
0.002	N/A	N/A	N/A	18.2
N/A	3	Ground/coarse	0.00006	0.5
	17	Aerial/coarse	0.00034	3.1
	6	Ground/medium	0.00012	1.1
	23	Aerial/medium	0.00046	4.2

*bold text indicates exceedance of the level of concern

Table 6Toxic Substances Management Policy Considerations – Comparison to TSMPTrack 1 Criteria

TSMP Track 1	TSMP Tra		Active ingredient	Transformation products
Criteria	Criterion	value	endpoints*	endpoints
CEPA toxic or CEPA toxic equivalent	Yes		Flucarbazone can be considered toxic to terrestrial invertebrates and aquatic organsims	Limited toxicity information is available for major transformation products. One ecotoxicity study available for effects of NMT on earthworms indicates NMT is not considered toxic to these organisms
Predominantly	Yes		-	-
anthropogenic				
Persistence	Soil	Half-life ≥ 182 days	Half-life = 11.4 – 92.5 days Flucarbazone does not meet the aquatic persistence criteria	No soil degradation information is available for major transformation products of flucarbazone
	Water	Half-life ≥ 182 days	Half-life = 873 - 1275 days Flucarbazone meets the aquatic persistence criteria	No aquatic degradation information is available for major transformation products of flucarbazone
	Sediment	Half-life ≥ 365 days	No data were available for the fate of flucarbazone in sediment	No sediment degradation information was available for major transformation products of flucarbazone

	Air	Half-life ≥ 2 days or evidence of long range transport	1.8 days (21 hrs) Not expected to persist in air thus not expected to undergo long range atmospheric transport	No air degradation information was available for major transformation products of flucarbazone
Bioaccumulation	Log K _{ow} ≥ 5		$\log K_{ow} = -2.85$ Flucarbazone is not expected to bioaccumulate	Log K_{ow} estimates for major transformation products of flucarbazone are listed as follows: Flucarbazone sulfonamide =1.42 Flucarbazone sulfonic acid = -0.12 <i>O</i> -desmethyl flucarbazone = 2.83 NMT = -0.22 NODT = -1.24 These transformation products are not expected to bioaccumulate.
	BCF ≥ 5000		Not available, based on Log K_{ow} , flucarbazone is not expected to bioaccumulate	Not available
T 1 1 1 1 1	$BAF \ge 500$		Not available	Not available
Is the chemical a TSMP Track 1 substance (all			No	No
four criteria must be me	et)?			

¹ All pesticides will be considered CEPA-toxic or CEPA toxic equivalent for the purpose of initially assessing a pesticide against the TSMP criteria. Assessment of the CEPA toxicity criteria may be refined if required (in other words, all other TSMP criteria are met).

² The policy considers a substance "predominantly anthropogenic" if, based on expert judgement, its concentration in the environment medium is largely due to human activity, rather than to natural sources or releases.

³ If the pesticide and/or the transformation product(s) meet one persistence criterion identified for one media (soil, water, sediment or air) than the criterion for persistence is considered to be met.

⁴ Field data (for example, BAFs) are preferred over laboratory data (for example, BCFs) which, in turn, are preferred over chemical properties (for example, $\log K_{ow}$).

Appendix VIII Proposed label amendments for products containing flucarbazone

The label amendments presented below do not include all label requirements for individual enduse products, such as first aid statements, disposal statements, precautionary statements, and supplementary protective equipment. Information on labels of currently registered products should not be removed unless it contradicts the label statements provided below.

Label amendments for technical class products

On the primary display panel, replace "GUARANTEE" with "ACTIVE INGREDIENT".

The following label statements are proposed to be included under the heading **ENVIRONMENTAL PRECAUTIONS** for all registered flucarbazone technical grade active ingredients:

"TOXIC to aquatic organisms."

"DO NOT discharge effluent containing this product into sewer systems, lakes, streams, ponds, estuaries, oceans or other waters."

Label Amendments for Commercial Class Products

On the primary display panel, replace "GUARANTEE" with "ACTIVE INGREDIENT".

Add to **DIRECTIONS FOR USE** for **Water-Soluble Packages**

Using Water-Soluble Packages Dissolved Directly in Spray tanks:

Water-Soluble Packages (WSPs) are designed to dissolve in water. Agitation may be used, if necessary, to help dissolve the WSP. Failure to follow handling and mixing instructions can increase your exposure to the pesticide products in WSPs.

"Handling Instructions

Follow these steps when handling pesticide products in WSPs.

- 1. Mix in spray tank only.
- Handle WSP(s) in a manner that protects package from breakage and/or unintended release of contents. If package is broken, put on a minimum of coveralls, chemicalresistant gloves, chemical-resistant footwear, and a NIOSH-approved N95 (minimum) filtering facepiece respirator (dust mask) that is properly fit tested and then continue with mixing instructions.
- 3. Keep the WSP(s) in outer packaging until just before use.
- 4. Keep the WSP dry prior to adding to the spray tank.

- 5. Handle with dry gloves and according to the label instructions for PPE.
- 6. Keep WSP intact. Do not cut or puncture WSP.
- 7. Reseal the WSP outer packaging to protect any unused WSP(s).

Mixing Instructions

Follow the steps below when mixing this product, including if tank mixed with other pesticide products. If being tank mixed, the mixing directions 1 through 9 below take precedence over the mixing directions of the other tank mix products. All other directions for use of all tank mixed products should be followed provided they do not conflict. Do not tank mix this product with products that prohibit tank mixing or have conflicting mixing directions.

- 1. If a basket or strainer is present in the tank hatch, remove prior to adding the WSP to the tank.
- 2. Fill tank with water to approximately one-third to one-half of the desired final volume of spray.
- 3. Stop adding water and stop any agitation.
- 4. Place intact/unopened WSP(s) into the tank.
- 5. Do not spray water from a hose or fill pipe to break or dissolve the WSP(s).
- 6. Start mechanical and recirculation agitation from the bottom of tank without using any overhead recirculation, if possible. If overhead recirculation cannot be turned off, close the hatch before starting agitation.
- 7. Dissolving the WSP(s) may take up to 5 minutes or longer, depending on water temperature, water hardness and intensity of agitation.
- 8. Stop agitation before tank lid is opened.
- 9. Open the lid to the tank, exercising caution to avoid contact with dusts or spray mix, to verify that the WSPs have fully dissolved and the contents have been thoroughly mixed into the solution.
- 10. Do not add other allowed products or complete filling the tank until the bags have fully dissolved and pesticide is thoroughly mixed.
- 11. Once the WSP have fully dissolved and any other products have been added to the tank, resume filling the tank with water to the desired level, close the tank lid, and resume agitation.
- 12. Use the spray solution when mixing is complete.
- 13. Maintain agitation of the diluted pesticide mix during transport and application.
- 14. It is unlawful to use any registered pesticide, including WSPs, in a manner inconsistent with its label."

Based on the current occupational exposure and risk assessment, the following label statements are proposed to be included under the **PRECAUTIONS** section, and sub-section **PROTECTIVE CLOTHING** or **PERSONAL PROTECTIVE EQUIPMENT:**

For labels with use directions for ground application only:

"Wear a long-sleeved shirt, long pants, chemical-resistant gloves, socks and shoes during mixing, loading, application, clean-up and repair. Gloves are not required during application within a closed cab."

For labels with use directions for both ground and aerial application:

"Wear a long-sleeved shirt, long pants, chemical-resistant gloves, socks and shoes during mixing, loading, application, clean-up and repair. Gloves are not required during application within a closed cab and/or cockpit."

The following label statements are proposed to be included under the section of **PRECAUTIONS** of all end use products:

"**DO NOT** enter or allow worker entry into treated areas during the restricted entry interval (REI) of 12 hours."

"Apply only to agricultural crops when the potential for drift to areas of human habitation and human activity, such as houses, cottages, schools and recreational areas is minimal. Take into consideration wind speed, wind direction, temperature inversions, application equipment, and sprayer settings."

Add to ENVIRONMENTAL PRECAUTIONS:

"Toxic to aquatic plants and non-target terrestrial plants. Observe spray buffer zones specified under **DIRECTIONS FOR USE**.

This product demonstrates the properties and characteristics associated with chemicals detected in groundwater. The use of this product in areas where soils are permeable, particularly where the water table is shallow, may result in groundwater contamination.

To reduce runoff from treated areas into aquatic habitats avoid application to areas with a moderate to steep slope, compacted soil, or clay.

Avoid application when heavy rain is forecast.

Contamination of aquatic areas as a result of runoff may be reduced by including a vegetative filter strip between the treated area and the edge of the water body."

Add to **DIRECTIONS FOR USE** (For PCP Numbers: 26447, 26448, 29500, 30342, 30580, 30663, 32602, 29558):

"Field sprayer application: DO NOT apply during periods of dead calm. Avoid application of this product when winds are gusty. **DO NOT** apply with spray droplets smaller than the American Society of Agricultural Engineers (ASAE S572.1) medium classification. Boom height must be 60 cm or less above the crop or ground.

Aerial application: **DO NOT** apply during periods of dead calm. Avoid application of this product when winds are gusty. **DO NOT** apply when wind speed is greater than 16 km/h at flying height at the site of application. **DO NOT** apply with spray droplets smaller than the American Society of Agricultural Engineers (ASAE S572.1) coarse classification. Reduce drift caused by turbulent wingtip vortices. Nozzle distribution along the spray boom length **MUST NOT** exceed 65% of the wing- or rotorspan.

Apply only by fixed-wing or rotary aircraft equipment which has been functionally and operationally calibrated for the atmospheric conditions of the area and the application rates and conditions of this label.

Label rates, conditions and precautions are product specific. Read and understand the entire label before opening this product. Apply only at the rate recommended for aerial application on this label. Where no rate for aerial application appears for the specific use, this product cannot be applied by any type of aerial equipment.

Ensure uniform application. To avoid streaked, uneven or overlapped application, use appropriate marking devices."

Add to **DIRECTIONS FOR USE** for all commercial products

"As this product is not registered for the control of pests in aquatic systems, **DO NOT** use to control aquatic pests.

DO NOT contaminate irrigation or drinking water supplies or aquatic habitats by cleaning of equipment or disposal of wastes."

Add to **DIRECTIONS FOR USE** (PCP Number 30430 - Sierra® 2.0 Herbicide):

"Field sprayer application: DO NOT apply during periods of dead calm. Avoid application of this product when winds are gusty. **DO NOT** apply with spray droplets smaller than the American Society of Agricultural Engineers (ASAE S572.1) medium classification. Boom height must be 60 cm or less above the crop or ground.

Aerial application: **DO NOT** apply during periods of dead calm. Avoid application of this product when winds are gusty. **DO NOT** apply when wind speed is greater than 16 km/h at flying height at the site of application. **DO NOT** apply with spray droplets smaller than the American Society of Agricultural Engineers (ASAE S572.1) medium classification. Reduce drift caused by turbulent wingtip vortices. Nozzle distribution along the spray boom length **MUST NOT** exceed 65% of the wing- or rotorspan.

Apply only by fixed-wing or rotary aircraft equipment which has been functionally and operationally calibrated for the atmospheric conditions of the area and the application rates and conditions of this label.

Label rates, conditions and precautions are product specific. Read and understand the entire label before opening this product. Apply only at the rate recommended for aerial application on this label. Where no rate for aerial application appears for the specific use, this product cannot be applied by any type of aerial equipment.

Ensure uniform application. To avoid streaked, uneven or overlapped application, use appropriate marking devices.

Use Precautions

Apply only when meteorological conditions at the treatment site allow for complete and even crop coverage. Apply only under conditions of good practice specific to aerial application as outlined in the National Aerial Pesticide Application Manual, developed by the Federal/Provincial/Territorial Committee on Pest Management and Pesticides.

Product Specific Precautions

Read and understand the entire label before opening this product. If you have questions, call the manufacturer listed on the product label or obtain technical advice from the distributor or your provincial agricultural representative. Application of this specific product must meet and/or conform to the following:

Volume: Apply the recommended rate in a minimum spray volume of 28 litres per hectare."

Spray buffer zones

The spray buffer zones specified in the table below are required between the point of direct application and the closest downwind edge of sensitive terrestrial habitats (such as grasslands, forested areas, shelter belts, woodlots, hedgerows, riparian areas and shrublands), sensitive freshwater habitats (such as lakes, rivers, sloughs, ponds, prairie potholes, creeks, marshes, streams, reservoirs and wetlands).

			Spray Buffer Zones (metres) Required for the Protection of:		
Method of application	Crop)	Freshwater Ha	bitat of Depths:	
					Terrestrial Habitat:
Field sprayer	Spring and winter wheat		2	1	1
Aerial	Spring and winter wheat Rotary wing		5	1	20
(ASABE coarse spray quality			5	2	25

Aerial		Fixed wing	15	3	40
(ASABE medium spray quality)	Spring and winter wheat	Rotary wing	15	4	35

The spray buffer zones presented in this table are for flucarbazone. As spray buffer zones are active specific, for coformulated products care must be taken to ensure the correct spray buffer zones remain on the label. For all non-coformulated products, the spray buffer zones for flucarbazone apply for both aquatic and terrestrial habitats.

For tank mixes, consult the labels of the tank-mix partners and observe the largest (most restrictive) spray buffer zone of the products involved in the tank mixture and apply using the coarsest spray (ASABE) category indicated on the labels for those tank mix partners.

The spray buffer zones for this product can be modified based on weather conditions and spray equipment configuration by accessing the Spray Buffer Zone Calculator on the Pest Management Regulatory Agency web site.

Add under **STORAGE** for all commercial products:

"Store this product away from food or feed."

Add under **DISPOSAL**:

For recyclable Containers:

"Disposal of Container:

DO NOT reuse this container for any purpose. This is a recyclable container, and is to be disposed of at a container collection site. Contact your local distributor/dealer or municipality for the location of the nearest collection site. Before taking the container to the collection site:

- 1. Triple- or pressure-rinse the empty container. Add the rinsings to the spray mixture in the tank.
- 2. Make the empty, rinsed container unsuitable for further use.

If there is no container collection site in your area, dispose of the container in accordance with provincial requirements."

For returnable containers:

"Disposal of Container:

DO NOT reuse this container for any purpose. For disposal, this empty container may be returned to the point of purchase (distributor/dealer)."

For containers that can be refilled for the user by the distributor/dealer:

"Disposal of Container:

For disposal, this container may be returned to the point of purchase (distributor/dealer). It must be refilled by the distributor/dealer with the same product. **DO NOT** reuse this container for any other purpose."

For all commercial products, add:

"Disposal of unused, unwanted product

For information on disposal of unused, unwanted product, contact the manufacturer or the provincial regulatory agency. Contact the manufacturer and the provincial regulatory agency in case of a spill, and for clean-up of spills."

References

A. Information considered in the chemistry assessment

Studies/Information submitted by registrant

PMRA	Reference
document	
number	
1266867	1998, Chemistry Requirements for the Registration of MKH 6562 Technical,
	DACO: 2.1, 2.11, 2.12.1, 2.13, 2.14, 2.15, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9
1266870	2004, USEPA Product Properties Test Guidelines - Group A and B of Everest
	technical Herbicide., DACO: 2.12.1, 2.13.1, 2.13.2, 2.13.3, 2.13.4, 2.14, 2.7, 2.8,
1.0.000	2.9
1266867	1998, Chemistry Requirements for the Registration of MKH 6562 Technical,
0000076	DACO: 2.1, 2.11, 2.12.1, 2.13, 2.14, 2.15, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9
2232376	2012, Everest Technical: Description of Manufacturing Process, DACO: 2.0, 2.1,
	2.11, 2.11.1, 2.11.2, 2.11.3, 2.11.4, 2.12, 2.12.1, 2.13, 2.13.1, 2.13.2, 2.13.3,
2294853	2.13.4, 2.14, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 2011, Impurity Structure: Addendum for Flucarbazone sodium-Formation,
2294033	DACO: 3.0,3.2.3,3.4
1431380	2007, Flucarbazone-Sodium Coupling Process Description, DACO: 2.11.1
1431378	2007, Product Chemistry Data to Support the Registration of New Sources of
1451570	Everest Technical Herbicide, DACO: 2.1, 2.11.1, 2.11.2, 2.11.3, 2.11.4, 2.12,
	2.12.1, 2.13.4, 2.14.1, 2.14.10, 2.14.11, 2.14.12, 2.14.13, 2.14.14, 2.14.2, 2.14.3,
	2.14.4, 2.14.5, 2.14.6, 2.14.7, 2.14.8, 2.14.9, 2.2, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9
1621465	2008, Product Chemistry Data to Support the Registration of New Sources of
	Everest Technical Herbicide - Volume 2, DACO: 2.11.2, 2.13.3, 2.13.4, 2.15
1266867	1998, Chemistry Requirements for the Registration of MKH 6562 Technical.,
	DACO: 2.1, 2.11, 2.12.1, 2.13, 2.14, 2.15, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9
2232369	2012, Flucarbazone-sodium: Product Chemistry Analysis Volume 1, DACO: 2.0,
	2.12.1, 2.13, 2.13.1, 2.13.2, 2.16
2232372	2012, Flucarbazone-sodium: Product Chemistry Analysis Volume 2, DACO: 2.0,
1071040	2.12.1, 2.13, 2.13.1, 2.13.2, 2.16
1971948	2010, Group A Product Chemistry Analysis for Flucarbazone-sodium Final
	Report Preliminary Analysis Enforcement Analytical Method, DACO: 2.0, 2.13,
2766148	2.13.2, 2.13.3, 2.13.4, 2.2 2017, Basic Chemistry Requirements, DACO: 2.1, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6,
2700148	2.7, 2.8, 2.9
2766149	2016, Manufacturing Process and Quality Control of Flucarbazone-sodium
	Technical, DACO: 2.11.1, 2.11.3
2766150	2016, Discussion of the presence impurities in Flucarbazone-sodium Technical,
	DACO: 2.11.4
2766153	2016, Flucarbazone-Sodium technical Material Analytical profile of five batches,
	DACO: 2.12.1, 2.13.1, 2.13.2, 2.13.3

 2766154 2016, Physical chemical properties test of Flucarbazone sodium TC - Active Ingredient Content, DACO: 2.13.2, 2.13.3 2766155 2016, Physical chemical properties test of Flucarbazone sodium TC - Dissociation constant, DACO: 2.14.10 2766156 2015, Physical chemical properties test of Flucarbazone sodium TC - Density, DACO: 2.14.6 2766157 2016, Physical chemical properties test of Flucarbazone sodium TC - Melting point, DACO: 2.14.4 2766158 2015, Physical chemical properties test of Flucarbazone sodium TC - Melting point, DACO: 2.14.4 2766159 2016, Physical chemical properties test of Flucarbazone sodium TC - W-VIS absorption spectra, DACO: 2.14.1, 2.14.2, 2.14.3 2766160 2015, Physical chemical properties test of Flucarbazone sodium TC - UV-VIS absorption spectra, DACO: 2.14.1, 2.14.2, 2.14.3 2766162 2015, Physical chemical properties test of Flucarbazone sodium TC - Physical state, Color and Odor, DACO: 2.14.1, 2.14.2, 2.14.3 2766163 2017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.14.5, 2.14.7, 2.14.8, 2.14.9 2811433 2017, Basic Chemistry Requirements, DACO: 2.1, 2.2 2853526 2018, Manufacturing Process and Quality Control of Flucarbazone-sodium Technical – UPDATED, DACO: 2.11.3 2876807 2018, BPLSMPL17000371 Integration, DACO: 2.13.3 2876811 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000374 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, MB Integration, DACO: 2.14.3 		
 2766155 2016, Physical chemical properties test of Flucarbazone sodium TC - Dissociation constant, DACO: 2.14.10 2766156 2015, Physical chemical properties test of Flucarbazone sodium TC - Density, DACO: 2.14.6 2766157 2016, Physical chemical properties test of Flucarbazone sodium TC, DACO: 2.14.13, 2.14.14 2766158 2015, Physical chemical properties test of Flucarbazone sodium TC - Melting point, DACO: 2.14.4 2766159 2016, Physical chemical properties test of Flucarbazone sodium TC - Welving absorption spectra, DACO: 2.14.12 2766160 2015, Physical chemical properties test of Flucarbazone sodium TC - Physical state, Color and Odor, DACO: 2.14.1, 2.14.2, 2.14.3 2766162 2015, Physical chemical properties test of Flucarbazone sodium TC - pH value, DACO: 2.14.15,830.7000 2766163 2017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.14.5, 2.14.7, 2.14.8, 2.14.9 2811433 2017, Basic Chemistry Requirements, DACO: 2.1, 2.2 2853526 2018, Manufacturing Location Confirmation, DACO: 2.13.3 2853527 2018, Determination of in Flucarbazone-Sodium, DACO: 2.13.4 2018, Betermination of in Flucarbazone-Sodium Technical – UPDATED, DACO: 2.11.3 2876810 2018, BPLSMPL17000371 Integration, DACO: 2.13.3 2876811 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876814 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 2033489 2014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3, 1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830,7000 	2766154	2016, Physical chemical properties test of Flucarbazone sodium TC - Active
Dissociation constant, DACO: 2.14.1027661562015, Physical chemical properties test of Flucarbazone sodium TC - Density, DACO: 2.14.627661572016, Physical chemical properties test of Flucarbazone sodium TC, DACO: 2.14.13, 2.14.1427661582015, Physical chemical properties test of Flucarbazone sodium TC - Melting point, DACO: 2.14.427661592016, Physical chemical properties test of Flucarbazone sodium TC - UV-VIS absorption spectra, DACO: 2.14.1227661602015, Physical chemical properties test of Flucarbazone sodium TC - Physical state, Color and Odor, DACO: 2.14.1, 2.14.2, 2.14.327661622015, Physical chemical properties test of Flucarbazone sodium TC - pH value, DACO: 2.14.15,830.700027661632017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.14.5, 2.14.7, 2.14.8, 2.14.928114332017, Basic Chemistry Requirements, DACO: 2.1, 2.228535262018, Manufacturing Location Confirmation, DACO: 2.13.328768072018, Butermination of in Flucarbazone-Sodium, DACO: 2.13.428768072018, BPLSMPL17000371 Detection, DACO: 2.13.328768102018, BPLSMPL17000372 Integration, DACO: 2.13.328768112018, BPLSMPL17000375 Integration, DACO: 2.13.328768122018, BPLSMPL17000375 Integration, DACO: 2.1530334892014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone-sodium Tc-hnical, DACO: 2.1.2.13.328768142018, BPLSMPL17000375 Integration, DACO: 2.1530334902018, Recipt for Standard Requested, DACO: 2.1530334902018, Recipt for Standard Requested, DACO: 2.1530334902018, Recipt for St		Ingredient Content, DACO: 2.13.2, 2.13.3
 2766156 2015, Physical chemical properties test of Flucarbazone sodium TC - Density, DACO: 2.14.6 2766157 2016, Physical chemical properties test of Flucarbazone sodium TC, DACO: 2.14.13, 2.14.14 2766158 2015, Physical chemical properties test of Flucarbazone sodium TC - Melting point, DACO: 2.14.4 2766159 2016, Physical chemical properties test of Flucarbazone sodium TC - UV-VIS absorption spectra, DACO: 2.14.12 2766160 2015, Physical chemical properties test of Flucarbazone sodium TC - Physical state, Color and Odor, DACO: 2.14.1, 2.14.2, 2.14.3 2766162 2015, Physical chemical properties test of Flucarbazone sodium TC - PH value, DACO: 2.14.15,830.7000 2766163 2017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.14.5, 2.14.7, 2.14.8, 2.14.9 2811433 2017, Basic Chemistry Requirements, DACO: 2.1, 2.2 2853526 2018, Manufacturing Location Confirmation, DACO: 2.13.3 2876807 2018, Manufacturing Process and Quality Control of Flucarbazone-sodium Tc-hnical – UPDATED, DACO: 2.11.3 2876810 2018, BPLSMPL17000371 Integration, DACO: 2.13.3 2876811 2018, BPLSMPL17000372 Integration, DACO: 2.13.3 2876812 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 3033489 2014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone-sodium Tc-hnical, DACO: 2.13.4 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4 	2766155	2016, Physical chemical properties test of Flucarbazone sodium TC -
DACO: 2.14.627661572016, Physical chemical properties test of Flucarbazone sodium TC, DACO: 2.14.13, 2.14.1427661582015, Physical chemical properties test of Flucarbazone sodium TC - Melting point, DACO: 2.14.427661592016, Physical chemical properties test of Flucarbazone sodium TC - UV-VIS absorption spectra, DACO: 2.14.1227661602015, Physical chemical properties test of Flucarbazone sodium TC - Physical state, Color and Odor, DACO: 2.14.1, 2.14.2, 2.14.327661622015, Physical chemical properties test of Flucarbazone sodium TC - pH value, DACO: 2.14.15,830.700027661632017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.14.5, 2.14.7, 2.14.8, 2.14.928114332017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.14.5, 2.14.7, 2.14.8, 2.14.928114332017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.13.328535272018, Manufacturing Location Confirmation, DACO: 2.13.328535272018, Manufacturing Process and Quality Control of Flucarbazone-sodium Technical - UPDATED, DACO: 2.11.328768092018, BPLSMPL17000371 Integration, DACO: 2.13.328768102018, BPLSMPL17000372 Integration, DACO: 2.13.328768112018, BPLSMPL17000373 Integration, DACO: 2.13.328768122018, BPLSMPL17000373 Integration, DACO: 2.13.328768132018, BPLSMPL17000374 Integration, DACO: 2.13.328768142018, BPLSMPL17000375 Integration, DACO: 2.13.328768152018, BPLSMPL17000375 Integration, DACO: 2.1530334892014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone- sodium TC, DACO: 2.13303		Dissociation constant, DACO: 2.14.10
 2766157 2016, Physical chemical properties test of Flucarbazone sodium TC, DACO: 2.14.13, 2.14.14 2766158 2015, Physical chemical properties test of Flucarbazone sodium TC - Melting point, DACO: 2.14.4 2766159 2016, Physical chemical properties test of Flucarbazone sodium TC - UV-VIS absorption spectra, DACO: 2.14.12 2766160 2015, Physical chemical properties test of Flucarbazone sodium TC - Physical state, Color and Odor, DACO: 2.14.1, 2.14.2, 2.14.3 2766162 2015, Physical chemical properties test of Flucarbazone sodium TC - PH value, DACO: 2.14.1, 5.830.7000 2766163 2017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.14.5, 2.14.7, 2.14.8, 2.14.9 2811433 2017, Basic Chemistry Requirements, DACO: 2.1, 2.2 2853526 2018, Manufacturing Location Confirmation, DACO: 2.13.3 2876807 2018, Determination of in Flucarbazone-Sodium, DACO: 2.13.4 2876809 2018, BPLSMPL17000371 Integration, DACO: 2.13.3 2876810 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876812 2018, BPLSMPL17000374 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 3033488 2019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1.1, 2.12, 2.2, 2.3, 2.3, 1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3033489 2014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone-sodium TC, DACO: 2.13.4 3033490 2018, Rescipt of in Flucarbazone-sodium Technical, DACO: 2.1.3, 4033491 2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.1.3, 4033491 2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.1.3, 4033491 2018, Receipt of in Flucarbazone-sodium Technical, DACO: 2.1.3, 4	2766156	2015, Physical chemical properties test of Flucarbazone sodium TC - Density,
2.14.13, 2.14.1427661582015, Physical chemical properties test of Flucarbazone sodium TC - Melting point, DACO: 2.14.427661592016, Physical chemical properties test of Flucarbazone sodium TC - UV-VIS absorption spectra, DACO: 2.14.1227661602015, Physical chemical properties test of Flucarbazone sodium TC - Physical state, Color and Odor, DACO: 2.14.1, 2.14.2, 2.14.327661622015, Physical chemical properties test of Flucarbazone sodium TC - pH value, DACO: 2.14.15,830.700027661632017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.14.5, 2.14.7, 2.14.8, 2.14.928114332017, Basic Chemistry Requirements, DACO: 2.1, 2.228535262018, Manufacturing Location Confirmation, DACO: 2.13.328535272018, Determination of in Flucarbazone-Sodium, DACO: 2.13.428768072018, BPLSMPL17000371 Detection, DACO: 2.13.328768102018, BPLSMPL17000372 Integration, DACO: 2.13.328768112018, BPLSMPL17000373 Integration, DACO: 2.13.328768122018, BPLSMPL17000374 Integration, DACO: 2.13.328768152018, Receipt for Standard Requested, DACO: 2.1530334892019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1.328768152018, Receipt for Standard Requested, DACO: 2.1530334892014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone- sodium TC, DACO: 2.1330334902018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.430334912017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830		
 2766158 2015, Physical chemical properties test of Flucarbazone sodium TC - Melting point, DACO: 2.14.4 2766159 2016, Physical chemical properties test of Flucarbazone sodium TC - UV-VIS absorption spectra, DACO: 2.14.12 2766160 2015, Physical chemical properties test of Flucarbazone sodium TC - Physical state, Color and Odor, DACO: 2.14.1, 2.14.2, 2.14.3 2766162 2015, Physical chemical properties test of Flucarbazone sodium TC - pH value, DACO: 2.14.15,830.7000 2766163 2017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.14.5, 2.14.7, 2.14.8, 2.14.9 2811433 2017, Basic Chemistry Requirements, DACO: 2.1, 2.2 2853526 2018, Manufacturing Location Confirmation, DACO: 2.13.3 2876807 2018, Determination of in Flucarbazone-Sodium, DACO: 2.13.4 2876809 2018, BPLSMPL17000371 Detection, DACO: 2.13.3 2876810 2018, BPLSMPL17000372 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, MB Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 3033488 2019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.13.4 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical	2766157	2016, Physical chemical properties test of Flucarbazone sodium TC, DACO:
point, DACO: 2.14.427661592016, Physical chemical properties test of Flucarbazone sodium TC - UV-VIS absorption spectra, DACO: 2.14.1227661602015, Physical chemical properties test of Flucarbazone sodium TC - Physical state, Color and Odor, DACO: 2.14.1, 2.14.2, 2.14.327661622015, Physical chemical properties test of Flucarbazone sodium TC - pH value, DACO: 2.14.15,830.700027661632017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.14.5, 2.14.7, 2.14.8, 2.14.928114332017, Basic Chemistry Requirements, DACO: 2.1, 2.228535262018, Manufacturing Location Confirmation, DACO: 2.13.328768072018, Determination of in Flucarbazone-Sodium, DACO: 2.13.428768092018, BPLSMPL17000371 Detection, DACO: 2.13.328768102018, BPLSMPL17000372 Integration, DACO: 2.13.328768112018, BPLSMPL17000373 Integration, DACO: 2.13.328768122018, BPLSMPL17000375 Integration, DACO: 2.13.328768132018, BPLSMPL17000375 Integration, DACO: 2.13.328768142018, BPLSMPL17000375 Integration, DACO: 2.13.328768152018, Receipt for Standard Requested, DACO: 2.13.328768152018, Receipt for Standard Requested, DACO: 2.1530334892019, Product Identity and Composition of Flucarbazone-sodium Tcchnical, DACO: 2.1330334902018, Residual Content of in Flucarbazone-sodium Tcchnical, DACO: 2.13.430334902018, Residual Content of in Flucarbazone-sodium Tcchnical, DACO: 2.13.430334912017, Physico-chemical properties of Flucarbazone-sodium Tcchnical, DACO: 2.13.430334912018, Residual Content of in Flucarba		
 2766159 2016, Physical chemical properties test of Flucarbazone sodium TC - UV-VIS absorption spectra, DACO: 2.14.12 2766160 2015, Physical chemical properties test of Flucarbazone sodium TC - Physical state, Color and Odor, DACO: 2.14.1, 2.14.2, 2.14.3 2766162 2015, Physical chemical properties test of Flucarbazone sodium TC - pH value, DACO: 2.14.15,830.7000 2766163 2017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.14.5, 2.14.7, 2.14.8, 2.14.9 2811433 2017, Basic Chemistry Requirements, DACO: 2.1, 2.2 2853526 2018, Manufacturing Location Confirmation, DACO: 2.13.3 2853527 2018, Determination of in Flucarbazone-Sodium, DACO: 2.13.4 2876807 2018, Manufacturing Process and Quality Control of Flucarbazone-sodium Technical - UPDATED, DACO: 2.11.3 2876810 2018, BPLSMPL17000371 Dtetection, DACO: 2.13.3 2876811 2018, BPLSMPL17000372 Integration, DACO: 2.13.3 2876812 2018, BPLSMPL17000374 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 3033488 2019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.13 3033489 2014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone-sodium TC, DACO: 2.13 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.13.4 	2766158	2015, Physical chemical properties test of Flucarbazone sodium TC - Melting
absorption spectra, DACO: 2.14.1227661602015, Physical chemical properties test of Flucarbazone sodium TC - Physical state, Color and Odor, DACO: 2.14.1, 2.14.2, 2.14.327661622015, Physical chemical properties test of Flucarbazone sodium TC - pH value, DACO: 2.14.15,830.700027661632017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.14.5, 2.14.7, 2.14.8, 2.14.928114332017, Basic Chemistry Requirements, DACO: 2.1, 2.228535262018, Manufacturing Location Confirmation, DACO: 2.13.328535272018, Determination of in Flucarbazone-Sodium, DACO: 2.13.428768072018, Manufacturing Process and Quality Control of Flucarbazone-sodium Technical – UPDATED, DACO: 2.11.328768102018, BPLSMPL17000371 Detection, DACO: 2.13.328768112018, BPLSMPL17000372 Integration, DACO: 2.13.328768122018, BPLSMPL17000373 Integration, DACO: 2.13.328768132018, BPLSMPL17000375 Integration, DACO: 2.13.328768142018, MB Integration, DACO: 2.13.328768152018, Receipt for Standard Requested, DACO: 2.1530334882019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.930334892014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone- sodium TC, DACO: 2.1330334902018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.430334912017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.13.430334912017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.		
 2766160 2015, Physical chemical properties test of Flucarbazone sodium TC - Physical state, Color and Odor, DACO: 2.14.1, 2.14.2, 2.14.3 2766162 2015, Physical chemical properties test of Flucarbazone sodium TC - pH value, DACO: 2.14.15,830.7000 2766163 2017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.14.5, 2.14.7, 2.14.8, 2.14.9 2811433 2017, Basic Chemistry Requirements, DACO: 2.1, 2.2 2853526 2018, Manufacturing Location Confirmation, DACO: 2.13.3 2853527 2018, Determination of in Flucarbazone-Sodium, DACO: 2.13.4 2876807 2018, Manufacturing Process and Quality Control of Flucarbazone-sodium Technical – UPDATED, DACO: 2.11.3 2876809 2018, BPLSMPL17000371 Detection, DACO: 2.13.3 2876810 2018, BPLSMPL17000372 Integration, DACO: 2.13.3 2876811 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, MB Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 3033488 2019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.13 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13 3033491 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13 	2766159	2016, Physical chemical properties test of Flucarbazone sodium TC - UV-VIS
state, Color and Odor, DACO: 2.14.1, 2.14.2, 2.14.3 2766162 2015, Physical chemical properties test of Flucarbazone sodium TC - pH value, DACO: 2.14.15,830.7000 2766163 2017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.14.5, 2.14.7, 2.14.8, 2.14.9 2811433 2017, Basic Chemistry Requirements, DACO: 2.1, 2.2 2853526 2018, Manufacturing Location Confirmation, DACO: 2.13.3 2853527 2018, Determination of in Flucarbazone-Sodium, DACO: 2.13.4 2876807 2018, Manufacturing Process and Quality Control of Flucarbazone-sodium Technical – UPDATED, DACO: 2.11.3 2876809 2018, BPLSMPL17000371 Integration, DACO: 2.13.3 2876810 2018, BPLSMPL17000372 Integration, DACO: 2.13.3 2876812 2018, BPLSMPL17000374 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 3033488 2019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3, 1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3033489 2014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone- sodium TC, DACO: 2.13 3033490 2018, Residual Content of in Flucarbazone-sodium Technical,		
2766162 2015, Physical chemical properties test of Flucarbazone sodium TC - pH value, DACO: 2.14.15,830.7000 2766163 2017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.14.5, 2.14.7, 2.14.8, 2.14.9 2811433 2017, Basic Chemistry Requirements, DACO: 2.1, 2.2 2853526 2018, Manufacturing Location Confirmation, DACO: 2.13.3 2853527 2018, Determination of in Flucarbazone-Sodium, DACO: 2.13.4 2876807 2018, Manufacturing Process and Quality Control of Flucarbazone-sodium Technical – UPDATED, DACO: 2.11.3 2876809 2018, BPLSMPL17000371 Integration, DACO: 2.13.3 2876810 2018, BPLSMPL17000372 Integration, DACO: 2.13.3 2876812 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876815 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, MB Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 3033488 2019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3, 1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3033489 2014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone- sodium TC, DACO: 2.13	2766160	
DACO: 2.14.15,830.7000 2766163 2017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.14.5, 2.14.7, 2.14.8, 2.14.9 2811433 2017, Basic Chemistry Requirements, DACO: 2.1, 2.2 2853526 2018, Manufacturing Location Confirmation, DACO: 2.13.3 2853527 2018, Determination of in Flucarbazone-Sodium, DACO: 2.13.4 2876807 2018, Manufacturing Process and Quality Control of Flucarbazone-sodium Technical – UPDATED, DACO: 2.11.3 2876809 2018, BPLSMPL17000371 Detection, DACO: 2.13.3 2876810 2018, BPLSMPL17000372 Integration, DACO: 2.13.3 2876811 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876812 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, MB Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 3033488 2019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3033489 2014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone- sodium TC, DACO: 2.13 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical p		
2766163 2017, Boiling Point, Solubility and Vapour Pressure, DACO: 2.14.5, 2.14.7, 2.14.8, 2.14.9 2811433 2017, Basic Chemistry Requirements, DACO: 2.1, 2.2 2853526 2018, Manufacturing Location Confirmation, DACO: 2.13.3 2853527 2018, Determination of in Flucarbazone-Sodium, DACO: 2.13.4 2876807 2018, Manufacturing Process and Quality Control of Flucarbazone-sodium Technical – UPDATED, DACO: 2.11.3 2876809 2018, BPLSMPL17000371 Detection, DACO: 2.13.3 2876810 2018, BPLSMPL17000372 Integration, DACO: 2.13.3 2876811 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876812 2018, BPLSMPL17000374 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, Receipt for Standard Requested, DACO: 2.15 3033488 2019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3033489 2014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone-sodium TC, DACO: 2.13 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.13.4	2766162	
2.14.8, 2.14.9 2811433 2017, Basic Chemistry Requirements, DACO: 2.1, 2.2 2853526 2018, Manufacturing Location Confirmation, DACO: 2.13.3 2853527 2018, Determination of in Flucarbazone-Sodium, DACO: 2.13.4 2876807 2018, Manufacturing Process and Quality Control of Flucarbazone-sodium Technical – UPDATED, DACO: 2.11.3 2876809 2018, BPLSMPL17000371 Detection, DACO: 2.13.3 2876810 2018, BPLSMPL17000372 Integration, DACO: 2.13.3 2876811 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876812 2018, BPLSMPL17000374 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, MB Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 3033488 2019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3, 1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3033489 2014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone-sodium TC, DACO: 2.13 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical properties of Fluc		
28114332017, Basic Chemistry Requirements, DACO: 2.1, 2.228535262018, Manufacturing Location Confirmation, DACO: 2.13.328535272018, Determination of in Flucarbazone-Sodium, DACO: 2.13.428768072018, Manufacturing Process and Quality Control of Flucarbazone-sodium Technical – UPDATED, DACO: 2.11.328768092018, BPLSMPL17000371 Detection, DACO: 2.13.328768102018, BPLSMPL17000372 Integration, DACO: 2.13.328768112018, BPLSMPL17000373 Integration, DACO: 2.13.328768122018, BPLSMPL17000374 Integration, DACO: 2.13.328768132018, BPLSMPL17000375 Integration, DACO: 2.13.328768142018, MB Integration, DACO: 2.13.328768152018, Receipt for Standard Requested, DACO: 2.1530334882019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.930334902018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.430334912017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000	2766163	
 2853526 2018, Manufacturing Location Confirmation, DACO: 2.13.3 2853527 2018, Determination of in Flucarbazone-Sodium, DACO: 2.13.4 2876807 2018, Manufacturing Process and Quality Control of Flucarbazone-sodium Technical – UPDATED, DACO: 2.11.3 2876809 2018, BPLSMPL17000371 Detection, DACO: 2.13.3 2876810 2018, BPLSMPL17000372 Integration, DACO: 2.13.3 2876811 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876812 2018, BPLSMPL17000374 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, MB Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 3033488 2019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000 		
2853527 2018, Determination of in Flucarbazone-Sodium, DACO: 2.13.4 2876807 2018, Manufacturing Process and Quality Control of Flucarbazone-sodium Technical – UPDATED, DACO: 2.11.3 2876809 2018, BPLSMPL17000371 Detection, DACO: 2.13.3 2876810 2018, BPLSMPL17000372 Integration, DACO: 2.13.3 2876811 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876812 2018, BPLSMPL17000374 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 3033488 2019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3033489 2014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone- sodium TC, DACO: 2.13 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000	-	
2876807 2018, Manufacturing Process and Quality Control of Flucarbazone-sodium Technical – UPDATED, DACO: 2.11.3 2876809 2018, BPLSMPL17000371 Detection, DACO: 2.13.3 2876810 2018, BPLSMPL17000372 Integration, DACO: 2.13.3 2876811 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876812 2018, BPLSMPL17000374 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 3033488 2019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3033489 2014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone- sodium TC, DACO: 2.13 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000		
Technical – UPDATED, DACO: 2.11.3 2876809 2018, BPLSMPL17000371 Detection, DACO: 2.13.3 2876810 2018, BPLSMPL17000372 Integration, DACO: 2.13.3 2876811 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876812 2018, BPLSMPL17000374 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000374 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, MB Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 3033488 2019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3033489 2014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone-sodium TC, DACO: 2.13 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000		
2876809 2018, BPLSMPL17000371 Detection, DACO: 2.13.3 2876810 2018, BPLSMPL17000372 Integration, DACO: 2.13.3 2876811 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876812 2018, BPLSMPL17000374 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, MB Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 3033488 2019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3033489 2014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone-sodium TC, DACO: 2.13 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.13.4	2876807	
2876810 2018, BPLSMPL17000372 Integration, DACO: 2.13.3 2876811 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876812 2018, BPLSMPL17000374 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 3033488 2019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3033489 2014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone-sodium TC, DACO: 2.13 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000		
2876811 2018, BPLSMPL17000373 Integration, DACO: 2.13.3 2876812 2018, BPLSMPL17000374 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, MB Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 3033488 2019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3033489 2014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone-sodium TC, DACO: 2.13 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000	2876809	
2876812 2018, BPLSMPL17000374 Integration, DACO: 2.13.3 2876813 2018, BPLSMPL17000375 Integration, DACO: 2.13.3 2876814 2018, MB Integration, DACO: 2.13.3 2876815 2018, Receipt for Standard Requested, DACO: 2.15 3033488 2019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3033489 2014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone-sodium TC, DACO: 2.13 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000	2876810	
28768132018, BPLSMPL17000375 Integration, DACO: 2.13.328768142018, MB Integration, DACO: 2.13.328768152018, Receipt for Standard Requested, DACO: 2.1530334882019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.930334892014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone- sodium TC, DACO: 2.1330334902018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.430334912017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000	2876811	2018, BPLSMPL17000373 Integration, DACO: 2.13.3
28768142018, MB Integration, DACO: 2.13.328768152018, Receipt for Standard Requested, DACO: 2.1530334882019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.930334892014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone- sodium TC, DACO: 2.1330334902018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.430334912017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000	2876812	2018, BPLSMPL17000374 Integration, DACO: 2.13.3
28768152018, Receipt for Standard Requested, DACO: 2.1530334882019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.930334892014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone- sodium TC, DACO: 2.1330334902018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.430334912017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000	2876813	
30334882019, Product Identity and Composition of Flucarbazone-sodium Technical, DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.930334892014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone- sodium TC, DACO: 2.1330334902018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.430334912017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000	2876814	
DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9 3033489 2014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone- sodium TC, DACO: 2.13 3033490 2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4 3033491 2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000	2876815	2018, Receipt for Standard Requested, DACO: 2.15
30334892014, Five Batch Analysis of Active Ingredient and Impurities of Flucarbazone- sodium TC, DACO: 2.1330334902018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.430334912017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000	3033488	2019, Product Identity and Composition of Flucarbazone-sodium Technical,
sodium TC, DACO: 2.1330334902018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.430334912017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000		DACO: 2.1, 2.11, 2.12, 2.2, 2.3, 2.3.1, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9
30334902018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.430334912017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000	3033489	
30334912017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO: 2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000		
2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000	3033490	2018, Residual Content of in Flucarbazone-sodium Technical, DACO: 2.13.4
	3033491	2017, Physico-chemical properties of Flucarbazone-sodium Technical, DACO:
3110808 2020, Flucarbazone Tech Melting Point discussion, DACO: 2.14.4		2.14.1, 2.14.12, 2.14.14, 2.14.15, 2.14.2, 2.14.3, 2.14.4, 2.14.6, 830.7000
	3110808	2020, Flucarbazone Tech Melting Point discussion, DACO: 2.14.4

B. Information considered in the toxicological assessment

Studies/Information submitted by registrant

PMRA document number	Reference
1179287	1994, MKH 6562 study for acute oral toxicity study in rats, DACO: 4.2.1
1179288	1994, MKH 6562 study for acute dermal toxicity in rats, DACO: 4.2.2
1179289	1996, MKH 6562 study for acute inhalation toxicity in rats according to OECD No. 403, DACO: 4.2.3
1179290	1994, MKH 6562 study for skin and eye irritation/corrosion in rabbits, DACO: 4.2.4, 4.2.5
1179291	1994, MKH 6562 study for skin sensitization effect in guinea pigs (maximization test of Magnusson and Kligman), DACO: 4.2.6
1179292	1997, Trifluoromethoxysulfonamide (plant metabolite of MKH 6562) study for acute oral toxicity, DACO: 4.2.9
1179294	1997, MKH 6562 lactate conjugate (plant metabolite of MKH 6562) study for acute oral toxicity in rats, DACO: 4.2.9
1179295	1997, MKH 6562 sulfonamide alanine (plant metabolite of MKH 6562) study for acute oral toxicity in rats, DACO: 4.2.9
1179296	1998, MKH 6562 study on subchronic toxicity in B6C3F1 mice dietary administration over 3 months, DACO: 4.3.1
1179297	1998, MKH 6562 study for subchronic oral toxicity in rats (feeding study over 14 weeks and 5 weeks recovery period), DACO: 4.3.1
1179298	1996, MKH 6562 study for subacute oral toxicity in rats (feeding study), DACO: 4.3.3
1179299	1996, MKH 6562 study for subacute dermal toxicity in rats (four-week treatment), DACO: 4.3.5
1179300	1997, MKH 6562 subacute toxicity study in beagle dogs (4 week feeding study), DACO: 4.3.8
1179307	1998, MKH 6562 subchronic toxicity study in beagle dogs (13 week feeding study), DACO: 4.3.8
1179308	1995, MKH 6562 micronucleus test on the mouse, DACO: 4.5.7
1179309	1996, MKH 6562 test on unscheduled DNA synthesis in rat liver primary cell cultures in vitro, DACO: 4.5.8
1179311	1998, MKH 6562 plaque-forming-cell assay in rats (feeding study over 4 weeks), DACO: 4.8

1179312	1998, MKH 6562 plaque-forming-cell assay in rats (feeding study over 4 weeks), DACO: 4.8
1179313	1996, MKH 6562 a liquid chromatographic method for the determination of MKH 6562 in dose mixtures, DACO: 4.8
1179314	1997, a liquid chromatographic method for the determination of MKH 6562 in animal ration, DACO: 4.8
1179315	1998, the homogeneity and stability of MKH 6562 in rodent ration, DACO: 4.8
1179316	1995, MKH 6562 orientative toxicologic study in mice to clarify the immunotoxic potential subacute two-week feeding study, DACO: 4.8
1179317	1994, MKH 6562 orientative toxicologic studies in rats acute oral toxicity in non- fasted animals subacute oral toxicity, two-week gavage administration
1179318	1998, A development toxicity study with MKH 6562 technical in the Sprague- Dawley rat, DACO: 4.5.2
1179320	1998, A development toxicity study with MKH 6562 in the Sprague-Dawley rat, DACO: 4.5.2
1179321	1996, A dose range-finding development toxicity study with MKH 6562 technical in the Sprague-Dawley rat, DACO: 4.5.2
1179322	1997, MKH 6562 developmental toxicity study in rabbits after oral administration, DACO: 4.5.3
1179323	1998, MKH 6562 developmental toxicity study in rabbits after oral administration, DACO: 4.5.3
1179324	1993, MHK 6562 salmonella/microsome test, DACO: 4.5.4
1179325	1996, MKH 6562 mutagenicity study for the detection of induced forward mutations in the V79-HPRT assay in vitro, DACO: 4.5.5
1179326	1996, MKH 6562 in vitro mammalian chromosome aberration test with Chinese hamster V79 cells, DACO: 4.5.6
1180148	1998, Trifluoromethoxysulfonamide (animal and plant metabolite of MKH 6562) study for acute oral toxicity in rats, DACO: 4.2.1
1180149	1998, MKH 6562 study for subchronic oral toxicity in B6C3F1 mice dietary administration over 3 months. Supplemental submission to AC no. 108199, DACO: 4.3.1
1180150	1998, MKH 6562 study for subchronic oral toxicity in rats (feeding study over 14 weeks and 5 weeks recovery period) supplemental submission to AC No. 108197, DACO: 4.3.1
1180151	1998, MKH 6562 chronic toxicity study in beagle dogs (1 year feeding study), DACO: 4.3.2

1180152	1998, MKH 6562 chronic toxicity study in beagle dogs (1 year feeding study). Supplemental submission to AC No. 108399, DACO: 4.3.2
1180153	1998, MKH 6562 chronic toxicity study in beagle dogs (1 year feeding study), Supplemental submission to AC No. 108399, DACO: 4.3.2
1180154	1998, MKH 6562 study on subacute toxicity in B6C3F1 mice (dietary administration over 4 weeks), DACO: 4.3.3
1180156	1997, MKH 6562 subacute toxicity study in beagle dogs (4 week feeding study) supplemental submission to AC No. 108186, DACO: 4.3.3
1180157	1998, MKH 6562 subchronic toxicity study in beagle dogs (13 week feeding study) supplemental submission to AC No. 108198, DACO: 4.3.1
1180158	1998, MKH 6562 combined chronic toxicity/carcinogenicity study in Wistar rats (dietary administration over 2 years), DACO: 4.4.4
1180166	1998, MKH 6562 combined chronic toxicity/carcinogenicity study in Wistar rats (dietary administration over 2 years), DACO: 4.4.4
1180167	1998, MKH 6562 combined chronic toxicity/carcinogenicity study in Wistar rats (dietary administration over 2 years), supplemental submission to AC No. 108500. DACO: 4.4.4
1180168	1998, MKH 6562 combined chronic toxicity/carcinogenicity study in Wistar rats (dietary administration over 2 years), supplemental submission to AC No. 108500. DACO: 4.4.4
1180169	1997, MKH 6562 oncogenicity study in B6C3F1 mice (dietary administration over 2 years), DACO: 4.4.3
1180174	1998, MKH 6562 oncogenicity study in B6C3F1 mice (dietary administration over 2 years), DACO: 4.4.3
1180175	1998, An acute oral neurotoxicity study with technical grade MKH 6562 in Fischer 344 rats, DACO: 4.5.11
1180176	1998, A subchronic dietary neurotoxicity screening study with technical grade MKH 6562 in Fischer 344 rats, DACO: 4.5.11
1180185	1998, MKH 6562 oncogenicity study in B6C3F1 mice (dietary administration over 2 years) supplemental submission to AC No. 108398, DACO: 4.4.3
1180186	1998, MKH 6562 oncogenicity study in B6C3F1 mice (dietary administration over 2 years) supplemental submission to AC No. 108398, DACO: 4.4.3
1180187	1998, MKH 6562 two-generation study in Wistar rats, DACO: 4.5.1
1180189	1998, MKH 6562 two-generation study in Wistar rats, supplemental submission to AC No. 108382. DACO: 4.5.1
1180190	1998, MKH 6562 two-generation study in Wistar rats, supplemental submission to AC No. 108382, DACO: 4.5.1

1998, MKH 6562 pilot developmental toxicity study in rats after oral administration, DACO: 4.5.2
1998, MKH 6562 pilot developmental toxicity study in rats after oral administration, DACO: 4.5.2
1997, MKH 6562 developmental toxicity study in rabbits after oral administration, supplemental submission to AC No. 108182.
1998, The metabolism of [phenyl-UL-14C], DACO: 4.5.9
1998, The metabolism of [triazolinone-3-14C] MKH 6562 in rats, DACO: 4.5.9
1998, The metabolism of [phenyl-UL-14C] MKH6562 sulfonamide alanine in rats, DACO: 4.5.9
1998, The metabolism of [phenyl-UL-14C] MKH 6562 sulfonamide lactate in rats, DACO: 4.5.9
1998, MKH 6562 plaque-forming-cell assay in rats (feeding study over 4 weeks) supplemental submission to AC No. 108194, DACO: 4.8
1999, MKH 10868 (MKH 6562 sulfonic acid Na-salt) study for acute oral toxicity in rats, DACO: 4.2.1, 4.2.9
1999, O-desmethyl MKH 6562 (soil metabolite of MKH 6562) study for acute oral toxicity in rats, DACO: 4.2.1, 4.2.9
1999, MKH 10868 metabolite of MKH 6562 Salmonella/microsome test plate incorporation and precipitation method, DACO: 4.5.4, 4.5.8
1999, An immunotoxicity study with MKH 6562 technical in the male Wistar rat, antibody plaque-forming cell assay, DACO: 4.8
1999, An immunotoxicity study with MKH 6562 technical in the female Wistar rat, antibody plaque-forming cell assay, DACO: 4.8
1999, An immunotoxicity study with MKH 6562 technical in the male Wistar rat, splenic T-cells, B-cells, and NK-cell assay, DACO: 4.8
1999, An immunotoxicity study with MKH 6562 technical in the female Wistar rat, splenic T-cells, B-cells, and NK-cell assay
1998, Oncogenicity study in B6C3F1 mice (dietary administration over 2 years) additional historical data on histopathology, supplemental to AC No. 108398, DACO: 4.4.3
1997, MKH 6562, subacute toxicity study in beagle dogs (4 week feeding study), supplemental submission to AC No. 108186, DACO: 4.3.8
1998, MKH 6562, oncogenicity study in B6C3F1 mice (dietary administration over 2 years) additional historical data on histopathology, supplemental submission to AC No. 108398

1191199	1998, MKH 6562, combined chronic toxicity/carcinogenicity study in Wistar rats (dietary administration over 2 years), supplemental submission to AC No. 108500,
2801451	2003, MKH 6562 subacute inhalation toxicity on rats, DACO: 4.3.6

Additional information considered

Published information

PMRA document number	Reference
3227594	2017, USEPA triazolones (propoxycarbazone-sodium and thiencarbazone- methyl): screening analysis of toxicological profiles to consider whether a candidate common mechanism group can be established, DACO: 12.5.4
3227579	2009, USEPA flucarbazone-sodium. Human health risk assessment for application to turf, tree nurseries, and Christmas tree farms, golf courses and other non-food use sites, DACO: 12.5
3227529	2013, USEPA flucarbazone-sodium. Human health assessment scoping document in support of registration review, DACO: 12.5
3225232	1987, National Toxicology Program Technical Report Series No. 328. Toxicology and Carcinogenesis of methyl carbamate in F344/N rats and B6C3F1 mice (gavage studies), DACO: 12.5.4
3225239	2018, USEPA flucarbazone-sodium. Draft human health risk assessment for registration review, DACO: 12.5
3225249	2019, USEPA interim registration review decision for nine acetolactate synthase (ALS) inhibiting herbicides, DACO: 12.5

C. Information considered in the dietary assessment

Additional information considered

Published information

PMRA document number	Reference
649332	Health Canada, 2000. Regulatory Note (REG) document REG2000-09, Flucarbazone-sodium
1618157	Health Canada, 2008. Proposed Registration Decision (PRD) document PRD2008-13, Flucarbazone-sodium
1862472	Health Canada, 2009. Registration Decision (RD) document RD2009-02, Flucarbazone-sodium

3226458	United States Environmental Protection Agency, 2013, Flucarbazone-Sodium. Human Health Assessment Scoping Document in Support of Registration
	Review, DACO: 12.5
3226453	United States Environmental Protection Agency, 2018, Flucarbazone-sodium.
	Draft Human Health Risk Assessment for Registration Review, DACO: 12.5
3226459	United States Environmental Protection Agency, 2019, Interim Registration
	Review Decision for Nine Acetolactate Synthase (ALS) Inhibiting Herbicides,
	DACO: 12.5

D. Information considered in the occupational and non-occupational assessment

Studies/Information provided by task force

PMRA	Reference
document	
number	
2572745	2015, Agricultural Handler Exposure Scenario Monograph: Open Pour Mixing
	and Loading of Liquid Formulations, DACO: 5.3,5.4
1913109	2009, Agricultural Handler Exposure Scenario Monograph: Open Cab
	Groundboom Application of Liquid Sprays, DACO: 5.3,5.4
2172938	2012, Agricultural Handler Exposure Scenario Monograph: Closed Cockpit
	Aerial Application of Liquid Sprays, DACO: 5.3,5.4
2572744	2015, Agricultural Handler Exposure Scenario Monograph: Open Pour Mixing
	and Loading Dry Flowable Formulations, DACO: 5.3,5.4
2115788	2008, Data Submitted by the Agricultural Rentry Task Force (ARTF) to Support
	Revision of Agricultural Transfer Coefficients., DACO: 5.6

E. Information considered in the environmental assessment

Studies/Information submitted by registrant

PMRA	Reference
document	
number	
1179328	1996, Aqueous Photolysis of [Phenyl-U-14C]MKH 6562 in sterile buffer and
	Manitoba pond water, DACO: 8.2.3.3.2
1179330	1997, Aerobic Metabolism of [Phenyl-UL-14C]MKH 6562 in North Dakota
	Sandy Loam, DACO: 8.2.3.4.2
1179331	1998, Aerobic Metabolism of [Phenyl-UL-14C]MKH 6562 in Manitoba Sandy
	Loam, DACO: 8.2.3.4.2
1179332	1997, Degradation and Fate of [Phenyl-UL-14 C]MKH 6562 in Pond Water,
	DACO: 8.2.3.5.2
1179333	1998, Degradation and Fate of [Phenyl-UL-14 C]MKH 6562 in Pond Water,
	DACO: 8.2.3.5.2
1179334	1997, Aerobic Aquatic Biotransformation of [Triazolinon-3-14C] MKH6562,
	DACO: 8.2.3.5.2

1179335	1997, Anaerobic Aquatic Metabolism of [Phenyl-UL-14C] MKH 6562, DACO: 8.2.3.5.6
1179336	1998, Anaerobic Aquatic Metabolism of [Triazolinon-3-14C]MKH 6562, DACO: 8.2.3.5.6
1179337	1995, Soil adsorption/desorption of MKH 6562, DACO: 8.2.4.2
1179342	1997, Acute Toxicity of MKH 6562 (tech.) to Earthworms (Eisenia fetida), DACO: 9.2.3.1
1179343	1996, Acute Toxicity of MKH 6562 to the Water flea (Daphnia magna) Under Static Conditions, DACO: 9.3.2
1179344	1996, Acute Toxicity of MKH 6562 (tech.) to Earthworms (Eisenia fetida), DACO: 9.3.3
1179345	1995, Acute Toxicity of MKH 6562 Technical to the Rainbow trout (Oncorhynchus mykiss) Under Static-Renewal Conditions, DACO: 9.5.2.1
1179346	1995, Acute Toxicity of MKH 6562 Technical to the Bluegill (Lepomis macrochirus) Under Static-Renewal Conditions, DACO: 9.5.2.2
1179347	1995, Technical MKH 6562: An acute oral LD50 with Northern bobwhite (Colinus virginianus), DACO: 9.6.2.1
1179348	1997, Technical MKH 66562: A Subacute Dietary LC50 With Northern Bobwhite, DACO: 9.6.2.4
1179350	1997, Technical MKH 6562: A Subacute dietary LC50 with Mallard Duck, DACO: 9.6.2.5
1179351	1996, Toxicity of MKH 6562 Technical to the Freshwater Green Alga Selenastrum capricornutum, DACO: 9.8.2
1179352	1998, Toxicity of MKH 6562 Technical to the Blue-green Alga Anabaena flos- aquae, DACO: 9.8.2
1179353	1998, Toxicity of MKH 6562 Technical to the Blue-green Alga Anabaena flos- aquae, DACO: 9.8.2
1179354	1998, Toxicity of MKH 6562 Technical to Lemna gibba G3, DACO: 9.8.5
1179355	1997, Toxicity of MKH 6562 70WG to Lemna gibba G3 Under Spray Application Conditions, DACO: 9.8.6
1179373	1995, Aqueous Hydrolysis of [Phenyl U 14C]MKH 6562 in Sterile Buffer Solutions, DACO: 8.2.3.2
1179374	1997, Aqueous Hydrolysis of [Phenyl U 14C]MKH 6562 in Sterile Buffer Solutions, DACO: 8.2.3.3.1
1180128	1998, Terrestrial Field Dissipation of MKH 6562 on Bare Loam in Alberta, 1996, DACO: 8.3.2.1
1180129	1998, Terrestrial Field Dissipation of MKH 6562 on Orthic Brown Soil in Outlook, Saskatchewan, 1996, DACO: 8.3.2.1
1180130	1998, Terrestrial Field Dissipation of MKH 6562 on Dark Brown Soil in Saskatoon, Saskatchewan, 1996, DACO: 8.3.2.1
1180131	1998, Terrestrial Field Dissipation of MKH 6562 in North Dakota Soil, 1998, DACO: 8.3.2.2
1180132	1998, Terrestrial Field Dissipation of MKH 6562 in Washington Soil, 1996, DACO: 8.3.2.2
1180134	1998, Tier 2 Seedling Emergence and Vegetative Vigor: Non-target Phytotoxicity Study Using MKH 6562 70% WG, DACO: 9.8.4

1180135	1998, Supplemental Data for Report Number 108315: Tier 2 Seedling Emergence and Vegetative Vigor Nontarget Phytotoxicity Using MKH 6562 70% WG,
	DACO: 9.8.4
1180202	1998, Aerobic Metabolism of [Triazolinone-3-14C]MKH 6562 in North Dakota Sandy Loam, DACO: 8.2.3.4.2
1180203	1998, Anaerobic Aquatic Metabolism of [Phenyl-UL-14C] MKH 6562 at 5°C,
	DACO: 8.2.3.5.6
1180204	1998, Adsorption/Desorption of [14C]N-Methyltriazolinone, an [14C]MKH 6562 Metabolite, in Four Soil Types, DACO: 8.2.4.2
1180206	1998, Adsorption/Desorption of [14C]MKH 6562 Sulfonamide, an [14C] MKH 6562 Metabolite, in Four Soil Types, DACO: 8.2.4.2
1180207	1998, Adsorption/Desorption of [14C]Flucarbazone Sulfonic Acid, an
1180207	[14C]Flucarbazone Metabolite, in Four Soil Types, DACO: 8.2.4.2
1180209	1998, Adsorption/Desorption of [14C]Flucarbazone Sulfonic Acid, an [14C]Flucarbazone Metabolite, in Four Soil Types, DACO: 8.2.4.2
1180210	1998, Adsorption/Desorption of [14C]Flucarbazone Sulfonamide, [14C]MKH
1100210	6562 Sulfonic Acid, [14C]N, O-Dimethyltriazolinone, [14C]N-
	Methyltriazolinone, and [14C]O-Desmethyl MKH 6562 by Soil from Richland
	County, ND; and [14C]N-Methyltriazolinone by Sand, DACO: 8.2.4.2
1180211	1998, Leaching of Aged [Phenyl-UL-14C]MKH 6562 Residues Through Tiffany
	Sandy Loam, DACO: 8.2.4.3.2
1180212	1998, Leaching of Aged [Triazolinone-3-14C]MKH 6562 Residues Through
	Tiffany Sandy Loam, DACO: 8.2.4.3.2
1180225	1998, Acute Toxicity of 4-Methylurazole (a metabolite of MKH 6562) to
	Earthworms (Eisenia fetida), DACO: 9.2.3.1
1180237	1998, Laboratory Testing for Toxicity (Acute Contact and Oral LD50) of MKH
	6562 technical on Honey Bees (Apis mellifera L.) (Hymenoptera, Apidae),
	DACO: 9.2.4.1
1180248	1998, Early Life Stage Toxicity of MKH 6562 to the Rainbow Trout
	(Oncorhynchus mykiss) Under Flow Through Conditions, DACO: 9.5.3.1
1180255	1998, Technical MKH 6562: A Subacute Dietary LC50 With Northern
	Bobwhite, DACO: 9.6.2.4
1180256	1998, Technical MKH 6562: A subacute dietary LC50 with Mallards, DACO:
	9.6.2.5
1180257	1998, Effect of Technical MKH 6562 on Mallard Reproduction, DACO: 9.6.3.2
1180258	1998, Effect of Technical MKH 6562 on Northern Bobwhite Reproduction,
	DACO: 9.6.3.1
1180259	1998, Toxicity of MKH 6562 Technical to the Marine Diatom Skeletonema
	costatum, DACO: 9.8.3
1186150	1999, Final Report Addendum No. 1 Adsorption/Desorption of [14C] MKH 6562
	Metabolite, in Four Soil Types, DACO: 8.2.4.2
2734406	2016, Flucarbazone: Aerobic Transformation in Soil, DACO: 8.2.3.4.2
2833703	2017, Flucarbazone Waiver Request from Further Testing: Honeybees, Predators,
	and Parasitoids, DACO: 9.2.4.3,9.2.4.4,9.2.5,9.2.6
3139544	2011, Flucarbazone: Aerobic Aquatic Metabolism, DACO: 8.2.3.5.4
۱ <u> </u>	• · ·

3139545	2003, Tier 1 Seedling Emergence and Vegetative Vigor Nontarget Phytotoxicity
5159515	Study Using MKH 6562 sulfonamide (a metabolite of MKH 6562) on Lentil,
	Oat, and Sugarbeet, DACO: 9.8.4
3139546	2000, Tier 1 Seedling Emergence and Vegetative Vigor Nontarget Phytotoxicity
	Study Using MKH 6562 Sulfonamide (a Metabolite of MKH 6562), DACO:
	9.8.4
3139547	2011, Flucarbazone: A 96-hour shell deposition test with the Eastern oyster
	(Crassostrea virginica), DACO: 9.4.4
3139548	1999, Toxicity of MKH 6562 Sulfonamide, a Metabolite of MKH 6562, to
	Lemna gibba G3, DACO: 9.8.5
3139549	2011, Flucarbazone: A 96-Hour Flow-Through Acute Toxicity Test with
	Saltwater Mysid (Americamysis bahia), DACO: 9.4.2
3139550	2011, Flucarbazone: A 96-Hour Flow-Through Acute Toxicity Test with the
	Sheepshead Minnow (Cyprinodon variegatus), DACO: 9.5.2.4

Additional information considered

Published information

PMRA	Reference
document	
number	
3119557	William C Koskinen, Maria Jesus Calderon, Pamela J Rice and Juan Cornejo,
	2006, Sorption-desorption of flucarbazone and propoxycarbazone and their
	benzenesulfonamide and triazolinone metabolites in two soils Pest Management
	Science Pest Management Science, Volume 62, Pages 598 to 602, DACO:
	8.2.4.2
3119558	Koskinen, William, C. Jennifer A. Anhalt, Ona Sakaliene, Pamela J. Rice,
	Thomas B. Moorman and Ellen L. Arthur, 2003, Sorption–Desorption of Two
	"Aged" Sulfonylaminocarbonyltriazolinone Herbicide Metabolites in Soil -
	Journal of Agricultural Food Chemistry, Volume 51, Pages 3604 to 3608,
	DACO: 8.2.4.2
3119559	Vink, Jos P.M. et al, 1997, Pesticide Biotransformation in Surface Waters:
	Multivariate Analyses of Environmental Factors at Field Sites - Water Research,
	Volume 31, Number 11, Pages 2858 to 2868. ElsevierScience Ltd, DACO: 8.6
3119560	Kathrin Fenner, Mark Honti, Christian Stamm, Laura Varga, Fabian Bischoff,
	2016, Suitability of laboratory simulation tests for the identification of
	persistence in surface waters - Environmental Research of the Federal Ministry
	for the Environment, Nature Conservation, Building and Nuclear Safety Project
	number: FKZ 3715 65 415 3, DACO: 8.6
3119561	Eliason, R., Schoenau, J.J., Szmigielski, A.M. and Laverty, W.M., 2005,
	Phytotoxicity and persistence of flucarbazone-sodium in soil - Cambridge
	University Press: 20 January 2017. Volume 52, Issue 5, October 2004, Pages 857
	to 862. DOI:https://doi.org/10.1614/WS-03-047R2, DACO: 8.2.3.3.1
3119562	Elmarakby, S.A., Supplee, D., Cook, R., 2001, Degradation of 14C
	Carfentrazone-ethyl under Aerobic Aquatic Conditions -Journal of Agricultural
	and Food Chemistry, Volume 49, Pages 5285 to 5293, DACO: 8.2.3.5.4

3119563	United States Environmental Protection Agency, 2013, EFED Registration
	Review Problem Formulation for Flucarbazone Sodium - BEAD Chemical
	Profile for Registration Review: Flucarbazone-sodium 114009, DACO: 12.5
3119564	United States Environmental Protection Agency, 2018, Registration Review:
	Hazard Assessment for Eight Acetolactate Synthase ALS Inhibiting Herbicides:
	Bispyribac-Sodium, Diclosulam, Florasulam, Flucarbazone, Imazamox,
	Imazapic, Imazaquin, Imazethapyr - DP Barcode: 445321, DACO: 12.5
3225232	United States Department of Health and Human Services, 1987, National
	Toxicology Program Technical Report Series No. 328. Toxicology and
	Carcinogenesis of methyl carbamate in F344/N rats and B6C3F1 mice (gavage
	studies), DACO: 12.5.4
3225239	United States Environmental Protection Agency, 2013, Flucarbazone-Sodium.
	Draft Human Health Risk Assessment for Registration Review, DACO: 12.5
3225249	United States Environmental Protection Agency, 2019, Interim Registration
	Review Decision for Nine Acetolactate Synthase (ALS) Inhibiting Herbicides,
	DACO: 12.5
3226453	United States Environmental Protection Agency, 2018, Flucarbazone-sodium.
	Draft Human Health Risk Assessment for Registration Review, DACO: 12.5
3226458	United States Environmental Protection Agency, 2013, Flucarbazone-Sodium.
	Human Health Assessment Scoping Document in Support of Registration
	Review, DACO: 12.5
3226459	United States Environmental Protection Agency, 2019, Interim Registration
	Review Decision for Nine Acetolactate Synthase (ALS) Inhibiting Herbicides,
	DACO: 12.5
3227529	United States Environmental Protection Agency, 2013, Flucarbazone-Sodium.
	Human health assessment scoping document in support of registration review,
	DACO: 12.5
3227579	United States Environmental Protection Agency, 2009, Flucarbazone-Sodium.
	Human health risk assessment for application to turf, tree nurseries, and
	Christmas tree farms, golf courses and other non-food use sites, DACO: 12.5
3227594	United States Environmental Protection Agency, 2017, triazolones
	(propoxycarbazone-sodium and thiencarbazone-methyl): screening analysis of
	toxicological profiles to consider whether a candidate common mechanism group
	can be established, DACO: 12.5.4