Proposed Registration Decision

PRD2022-09

Trichoderma asperellum strain ICC 012, Trichoderma gamsii strain ICC 080, and Foretryx

(publié aussi en français)

12 August 2022

This document is published by the Health Canada Pest Management Regulatory Agency. For further information, please contact:

Publications Pest Management Regulatory Agency Health Canada 2720 Riverside Drive A.L. 6607 D Ottawa, Ontario K1A 0K9 Internet: canada.ca/pesticides pmra.publications-arla@hc-sc.gc.ca Facsimile: 613-736-3758 Information Service: 1-800-267-6315 or 613-736-3799 pmra.info-arla@hc-sc.gc.ca

ISSN: 1925-0878 (print) 1925-0886 (online)

Catalogue number: H113-9/2022-9E (print version) H113-9/2022-9E-PDF (PDF version)

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Health Canada, 2022

All rights reserved. No part of this information (publication or product) may be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, or stored in a retrieval system, without prior written permission of Health Canada, Ottawa, Ontario K1A 0K9.

Table of Contents

Overview	1
Proposed registration decision for Trichoderma asperellum strain ICC 012 and Trichoderma	l
gamsii strain ICC 080	
What does Health Canada consider when making a registration decision?	1
What are Trichoderma asperellum strain ICC 012 and Trichoderma gamsii strain ICC 080?.	
Health considerations	
Environmental considerations	
Value considerations	
Measures to minimize risk	
Next steps	
Other information	
Science evaluation	
1.0 The active ingredients, their properties and uses	
1.1 Identity of the active ingredient	
1.2 Physical and chemical properties of the active ingredients and end-use product	
1.3 Directions for use	
1.4 Mode of action	
2.0 Methods of analysis	
2.1 Methods for identification of the microorganisms	
2.2 Method for establishment of purity of seed stock	
2.3 Methods to define the content of the microorganism in the manufactured material use	
for the production of formulated products	9
2.4 Methods to determine and quantify residues (viable or non-viable) of the active	
microorganism and relevant metabolites	
2.5 Methods for determination of relevant impurities in the manufactured material	
2.6 Methods to determine storage stability, shelf-life of the microorganism	
3.0 Impact on human and animal health	
3.1 Toxicity and infectivity summary	
3.1.1 Testing	
3.1.2 Incident reports related to human and animal health	
3.1.3 Hazard analysis	
3.2 Occupational, residential and bystander risk assessment	
3.2.1 Occupational and post-application exposure and risk	
3.2.2 Residential and bystander exposure and risk	
3.3 Dietary exposure and risk assessment	
3.3.1 Food	
3.3.2 Drinking water	
3.3.3 Acute and chronic dietary risks for sensitive subpopulations	
3.3.4 Aggregate exposure and risk	
3.3.5 Maximum residue limits	
3.4 Cumulative assessment	. 17

4.0 Impact	t on the environment	. 17	
4.1 Fate	and behaviour in the environment	. 17	
4.2 Effe	4.2 Effects on non-target species		
4.2.1	Effects on terrestrial organisms		
4.2.2		. 22	
4.3 Incic	lent reports related to the environment	. 25	
	ontrol product policy considerations		
	c substances management policy considerations		
6.2 Form	nulants and contaminants of health or environmental concern	. 26	
	ed regulatory decision		
List of abbre	viations	. 27	
Appendix I	Tables and figures		
Table 1	Toxicity profile of Trichoderma asperellum ICC 012 Technical		
Table 2	Toxicity profile of Trichoderma gamsii ICC 080 Technical		
Table 3	Toxicity profile of Foretryx	. 29	
Table 4	Toxicity/pathogenicity of Trichoderma gamsii ICC 080 Technical to non-target		
	species		
Table 5	Toxicity/pathogenicity of trichoderma asperellum ICC 012 technical to non-targe		
	species		
Table 6	Toxicity/pathogenicity of Foretryx to non-target species		
Table 7	List of supported uses		
Appendix II Estimated environmental concentration			
References		. 38	

Overview

Proposed registration decision for *Trichoderma asperellum* strain ICC 012 and *Trichoderma gamsii* strain ICC 080

Health Canada's Pest Management Regulatory Agency (PMRA), under the authority of the *Pest Control Products Act*, is proposing registration for the sale and use of the microbial pest control agents (MCPAs) contained in Trichoderma asperellum ICC 012 Technical, Trichoderma gamsii ICC 080 Technical and Foretryx, containing the technical grade active ingredients *Trichoderma asperellum* strain ICC 012 and *Trichoderma gamsii* strain ICC 080, for the suppression and partial suppression of certain fungal diseases on field and greenhouse fruiting vegetables, squash, lettuce, field and greenhouse strawberries, greenhouse ornamentals and cannabis produced commercially indoors.

An evaluation of available scientific information found that, under the approved conditions of use, the health and environmental risks and the value of the pest control products are acceptable.

This Overview describes the key points of the evaluation, while the Science Evaluation provides detailed technical information on the human health, environmental and value assessments of *Trichoderma asperellum* strain ICC 012, *Trichoderma gamsii* strain ICC 080 and Foretryx.

What does Health Canada consider when making a registration decision?

The key objective of the *Pest Control Products Act* is to prevent unacceptable risks to people and the environment from the use of pest control products. Health or environmental risk is considered acceptable¹ if there is reasonable certainty that no harm to human health, future generations or the environment will result from use or exposure to the product under its proposed conditions of registration. The Act also requires that products have value² when used according to the label directions. Conditions of registration may include special precautionary measures on the product label to further reduce risk.

To reach its decisions, the PMRA applies modern, rigorous risk-assessment methods and policies. These methods consider the unique characteristics of sensitive subpopulations in humans (for example, children) as well as organisms in the environment. These methods and policies also consider the nature of the effects observed and the uncertainties when predicting the impact of pesticides.

¹ "Acceptable risks" as defined by subsection 2(2) of the *Pest Control Products Act*.

² "Value" as defined by subsection 2(1) of the *Pest Control Products Act*: "the product's actual or potential contribution to pest management, taking into account its conditions or proposed conditions of registration, and includes the product's (*a*) efficacy; (*b*) effect on host organisms in connection with which it is intended to be used; and (*c*) health, safety and environmental benefits and social and economic impact."

For more information on how the Health Canada regulates pesticides, the assessment process and risk-reduction programs, please visit the Pesticides section of the Canada.ca website.

Before making a final registration decision on *Trichoderma asperellum* strain ICC 012, *Trichoderma gamsii* strain ICC 080 and Foretryx, Health Canada's PMRA will consider any comments received from the public in response to this consultation document.³ Health Canada will then publish a Registration Decision⁴ on *Trichoderma asperellum* strain ICC 012, *Trichoderma gamsii* strain ICC 080 and Foretryx, which will include the decision, the reasons for it, a summary of comments received on the proposed registration decision and Health Canada's response to these comments.

For more details on the information presented in this Overview, please refer to the Science Evaluation of this consultation document.

What are Trichoderma asperellum strain ICC 012 and Trichoderma gamsii strain ICC 080?

Trichoderma is a genus of ubiquitous fungi that colonize rhizosphere soil and plant roots, rotting wood, and dead plant material. It is regarded as one of the most widely distributed of all soil fungi. It is found frequently in all types of natural or agricultural soils, including forest humus layers, and orchards. Some strains are able to parasitize plant pathogenic fungi.

Trichoderma asperellum strain ICC 012 and *Trichoderma gamsii* strain ICC 080 are new active ingredients for disease management on various field and greenhouse crops in Canada. These two active ingredients demonstrate fungicidal properties by competing with plant pathogens for space and nutrients on target crops and may also induce systemic resistance.

Health considerations

Can approved uses of *Trichoderma asperellum* strain ICC 012 and *Trichoderma gamsii* strain ICC 080 and Foretryx affect human health?

Trichoderma asperellum strain ICC 012 and *Trichoderma gamsii* strain ICC 080 are unlikely to affect your health when Foretryx is used according to the label directions.

Potential exposure to *T. asperellum* strain ICC 012 and *T. gamsii* strain ICC 080 may occur when handling and applying Foretryx. When assessing health risks, several key factors are considered:

- the microorganism's biological properties (for example, production of toxic by-products);
- reports of any adverse incidents;

³ "Consultation statement" as required by subsection 28(2) of the *Pest Control Products Act*.

⁴ "Decision statement" as required by subsection 28(5) of the *Pest Control Products Act*.

- its potential to cause disease or toxicity as determined in toxicological studies; and
- the level to which people may be exposed relative to exposures already encountered in nature to other isolates of this microorganism.

The levels used to assess risks are established to protect the most sensitive human population (for example children and nursing mothers). As such, sex and gender are taken into account in the risk assessment. Only uses that are determined as having no health risks of concern are considered acceptable for registration.

Studies in laboratory animals describe potential health effects from large doses of exposure to a microorganism and identify any pathogenicity, infectivity and toxicity concerns.

When Trichoderma asperellum ICC 012 Technical and Trichoderma gamsii ICC 080 Technical were tested on laboratory animals, there was low toxicity following oral, pulmonary instillation and dermal exposures. Foretryx is minimally irritating to the skin and is non-irritating to the eyes. Furthermore, there was no sign that the microbial pest control agents, *T. asperellum* strain ICC 012 and *T. gamsii* strain ICC 080, caused any disease.

Residues in water and food

Dietary risks from food and water are acceptable

Residues of *T. asperellum* strain ICC 012 and *T. gamsii* strain ICC 080 on treated crops are possible at the time of harvest. Agricultural practices of washing these crops following harvest are expected to reduce the potential for dietary exposure to residues of *T. asperellum* strain ICC 012 and *T. gamsii* strain ICC 080. Furthermore, no signs of infectivity or toxicity were observed when *T. asperellum* strain ICC 012 and *T. gamsii* strain ICC 080 were tested on laboratory animals, and significant levels of secondary metabolites are not expected to occur on edible portions of the crops. In addition, the likelihood of *T. asperellum* strain ICC 012 and *T. gamsii* strain ICC 080 contaminating drinking water is expected to be low as the label has the necessary mitigation measures to limit contamination of drinking water from the proposed uses of Foretryx. Consequently, dietary risks are acceptable.

Occupational risks from handling Foretryx

Occupational risks are acceptable when Foretryx is used according to label directions, which include protective measures

Workers handling Foretryx can come into direct contact with *T. asperellum* strain ICC 012 and *T. gamsii* strain ICC 080 on the skin, by inhalation, or in the eyes. To protect workers from exposure to Foretryx, the label states that workers must wear personal protective equipment, including waterproof gloves, long-sleeved shirt, long pants, a NIOSH-approved particulate filtering facepiece respirator, socks and shoes. The product label includes measures to restrict access to the treated area for 4 hours or until sprays have settled.

Risks in residential and other non-occupational environments

Estimated risk for non-occupational exposure is acceptable.

Foretryx is proposed for commercial use as a drip chemigation in greenhouses and diluted broadcast spray applications at planting to the soil surface in agricultural fields. The product label includes measures to prevent bystander exposure such as reducing spray drift. Residential and non-occupational exposure to Foretryx is therefore expected to be low when label directions are observed. Consequently, the risk to residents and the general public is acceptable.

Environmental considerations

What happens when *Trichoderma asperellum* strain ICC 012, *Trichoderma gamsii* strain ICC 080 and Foretryx are introduced into the environment?

Environmental risks are acceptable.

Information on the environmental fate of *T. gamsii* strain ICC 080 and *T. asperellum* strain ICC 012 suggests that, as a soil microorganism, they are likely to readily survive after applications of Foretryx to agricultural field crops, but that over time their populations should return to naturally sustainable levels.

There are no published reports of disease associated with natural populations of *Trichoderma gamsii* or *Trichoderma asperellum* in birds, wild mammals, fish, terrestrial and aquatic arthropods, terrestrial and aquatic non-arthropod invertebrates, or terrestrial and aquatic plants. Also, the applicant submitted studies designed to examine the effects of *T. gamsii* strain ICC 080 and *T. asperellum* strain ICC 012 to bees, earthworms, soil microorganisms, fish, aquatic arthropods, and aquatic plants. No adverse effects were observed in bees, earthworms, soil microorganisms, or fish. There were toxic effects noted in daphnids including reproductive effects for *T. gamsii* strain ICC 080. There were toxic effects to duckweed from *T. gamsii* strain ICC 080 and growth inhibition to algae from both strains; however, these effects occurred at levels that exceed estimated exposure levels when Foretryx is used according to the label.

Based on a critical review of data and published scientific literature submitted by the applicant, no significant effects to birds, bees, arthropods, wild mammals, soil microorganisms, fish, or plants are expected when Foretryx is applied according to directions on the label.

Value considerations

What is the value of Foretryx?

Foretryx is a soil-applied fungicide containing two strains of live fungi for the control of soil –borne pathogens. The registration of Foretryx will provide Canadian growers with an alternative fungicide product for use to manage certain diseases on a variety of field and greenhouse crops.

Foretryx is applied to soil as a broadcast spray or via chemigation to suppress or partially suppress certain diseases on various field and greenhouse crop.

Measures to minimize risk

Labels of registered pesticide products include specific instructions for use. Directions include risk-reduction measures to protect human and environmental health. These directions must be followed by law.

The key risk-reduction measures being proposed on the labels of Foretryx to address the potential risks identified in this assessment are as follows.

Key risk-reduction measures

Human health

All microorganisms, including *T. asperellum* strain ICC 012 and *T. gamsii* strain ICC 080, contain substances that are potential sensitizers and thus, sensitivity may possibly develop in individuals exposed to potentially large quantities of *T. asperellum* strain ICC 012 and *T. gamsii* strain ICC 080. In turn, workers handling or applying Foretryx must wear waterproof gloves, a long-sleeved shirt, long pants, a NIOSH-approved particulate filtering facepiece respirator, socks and shoes. Furthermore, all unprotected workers are restricted from entering treated areas during application and for 4 hours following application or until sprays have settled.

Environment

The Foretryx label will include environmental precaution statements to prohibit aerial application, limit drift, and reduce the potential for contamination of aquatic systems.

Next steps

Before making a final registration decision on Trichoderma asperellum ICC 012 Technical, Trichoderma gamsii ICC 080 Technical and Foretryx, Health Canada's PMRA will consider any comments received from the public in response to this consultation document. Health Canada will accept written comments on this proposal up to 45 days from the date of publication of this document. Please forward all comments to Publications (contact information on the cover page of this document). Health Canada will then publish a Registration Decision, which will include its decision, the reasons for it, a summary of comments received on the proposed decision and Health Canada's response to these comments.

Other information

When the Health Canada makes its registration decision, it will publish a Registration Decision on Trichoderma asperellum ICC 012 Technical, Trichoderma gamsii ICC 080 Technical and Foretryx (based on the Science Evaluation of this consultation document). In addition, the test data referenced in this consultation document will be available for public inspection, upon application, in the PMRA's Reading Room. For more information, please contact the PMRA's Pest Management Information Service.

Science evaluation

Trichoderma asperellum ICC 012 Technical, Trichoderma gamsii ICC 080 Technical and Foretryx

1.0 The active ingredients, their properties and uses

1.1 Identity of the active ingredient

Active microorganism	<i>Trichoderma gamsii</i> strain ICC 080	<i>Trichoderma asperellum</i> strain ICC 012
Function	Fungicide – for the suppression and partial suppression of certain fungal diseases on field and greenhouse fruiting vegetables, squash, lettuce, field and greenhouse strawberries, greenhouse ornamentals and cannabis	
	produced commercially indoors.	greemouse of namentals and cannaors
Binomial	<i>Trichoderma gamsii</i> strain ICC 080	<i>Trichoderma asperellum</i> strain ICC 012
Taxonomic designation ¹		
Kingdom	Fungi	
Phylum	Ascomycota	
Subphylum	Pezizomycotina	
Class	Sordariomycetes	
Order	Hypocreales	
Family	Hypocreaceae	
Genus	Trichoderma	
Species	gamsii	asperellum
Strain	ICC 080	ICC 012
Patent status	None	
information		
Minimum purity	Technical grade active	Technical grade active ingredient:
of active	ingredient: minimum of 1×10^9 colony forming units (CFU)/g	minimum of 1×10^9 CFU/g
	Foretryx end-use product: minimum of 5×10^6 CFU/g <i>T. gamsii</i> strain ICC 080 and minimum of 5×10^6 CFU/g <i>T. asperellum</i> strain ICC 012	

Identity of	The technical grade active ingredients do not contain any impurities or
relevant	microcontaminants known to be Toxic Substances Management Policy
impurities of	(TSMP) Track 1 substances. The products must meet microbiological
toxicological,	contaminant release standards. The end-use product may contain
and/or	antibiotic peptides collectively known as peptaibols. The absence of
environmental	toxic effects in mammalian acute toxicity studies (see Section 3.0)
significance	suggests that the manufacturing process either does not favour the
	production of these potentially toxic metabolites or that the levels
	produced are too low to elicit an effect in animals administered a high
	dose of these fungi.

National Center for Biotechnology Information - Taxonomy Browser (https://www.ncbi.nlm.nih.gov/taxonomy)

1.2 Physical and chemical properties of the active ingredients and end-use product

Technical Product–Trichoderma gamsii ICC 080 Technical

Property	Result
Colour	grey-green
Physical State	solid powder
Odour	slight
pH	6.66
Tap density	0.200 g/mL

Technical product – Trichoderma asperellum ICC 012 Technical

Property	Result
Colour	grey-green
Physical State	solid powder
Odour	slight
pH	6.21
Tap density	0.195 g/mL

End-Use product – Foretryx

Property	Result
Colour	light grey to greenish
Physical State	fine powder
Odour	typical
pH	5.48
Density	0.60–0.62 g/mL

1.3 Directions for use

Foretryx is used to treat labelled field crops via a diluted broadcast spray application to the soil surface at planting at rates between 2.8-5.6 kg product/ha. Foretryx is used to treat labelled greenhouse crops via chemigation at a rate of 2.8 kg product/ha following a re-application interval of 14-21 days.

1.4 Mode of action

Trichoderma asperellum strain ICC 012 and *Trichoderma gamsii* strain ICC 080 compete with plant pathogens for space and nutrients, induce systemic resistance, secrete cell wall degrading enzymes, and cause mycoparasitism.

2.0 Methods of analysis

2.1 Methods for identification of the microorganisms

Acceptable methodologies for detection, isolation and enumeration of the active ingredients, *T. gamsii* strain ICC 080 and *T. asperellum* strain ICC 012, were submitted by the applicant. The microbial pest control agents (MPCAs) have been fully characterized with respect to the origin of strain, natural occurrence and biological properties. *Trichoderma gamsii* strain ICC 080 and *T. asperellum* strain ICC 012 have been confirmed to be members of their respective species using multi-locus sequence analysis of the ITS1 and tef1 sequences. Sequences of tef1 (for *T. gamsii* strain ICC 080) or ITS1 and tef1 in combination (for *T. asperellum* strain ICC 012) can be used to definitively identify the MPCAs to the strain level.

2.2 Method for establishment of purity of seed stock

Trichoderma gamsii strain ICC 080 has been deposited into the CABI IMI Culture Collection under number 392151. *Trichoderma asperellum* strain ICC 012 has been deposited into the CABI IMI Culture Collection under number 392716. The strains are maintained by the manufacturer in a manner sufficient to maintain purity and stability.

Acceptable methods for the establishment of the purity, viability and genetic stability of the banks were described.

2.3 Methods to define the content of the microorganism in the manufactured material used for the production of formulated products

The guarantees of the technical grade active ingredients and the end-use product are expressed in units of CFU/g. Representative data on five batches of each technical grade active ingredient and end-use product were submitted. The methods for determining CFU counts were adequately described.

2.4 Methods to determine and quantify residues (viable or non-viable) of the active microorganism and relevant metabolites

As noted above, acceptable methods are available to enumerate the microorganisms and to distinguish these MPCAs from other *Trichoderma* species.

2.5 Methods for determination of relevant impurities in the manufactured material

The quality assurance procedures used to limit contaminating microorganisms during the manufacture of Trichoderma gamsii ICC 080 Technical, Trichoderma asperellum ICC 012 Technical, and Foretryx are acceptable. These procedures include sterilization of all equipment and media as well as frequent sampling of the stock culture and production batches for purity and contamination.

The absence of human pathogens and below-threshold levels of contaminating microorganisms were shown in the microbial screening of batches of Foretryx using standard microbiological methods for detecting and enumerating microbial contaminants of concern. All batches of Foretryx conform to the limits set out in the Organisation for Economic Co-operation and Development (OECD) issue paper on microbial contaminants for microbial pest control products [ENV/JM/MONO(2011)43].

2.6 Methods to determine storage stability, shelf-life of the microorganism

Storage stability data were provided for Foretryx. Results support a storage period of 15 months when the end-use product is stored unopened at 25°C.

3.0 Impact on human and animal health

3.1 Toxicity and infectivity summary

3.1.1 Testing

A detailed review of the submitted toxicological studies was conducted in support of the two technical grade active ingredients, Trichoderma asperellum ICC 012 Technical and Trichoderma gamsii ICC 080 Technical, and the associated end-use product, Foretryx.

Trichoderma asperellum ICC 012 Technical

To address the health hazard requirements for Trichoderma asperellum ICC 012 Technical, the applicant submitted acute oral toxicity, acute pulmonary toxicity/infectivity, and acute intraperitoneal pathogenicity studies. These studies were performed with *T. harzianum* strain ICC 012 which was equivalent to Trichoderma asperellum ICC 012 Technical.

In the acute oral toxicity study, young Sprague Dawley CD rats (5/sex) were given a single oral dose of at least 1.41×10^9 CFU of *T. harzianum* ICC 012 in 0.9% aqueous NaCl. Animals were observed for up to 14 days. There were no mortalities, treatment-related clinical signs, necropsy findings or changes in body weight.

In the acute pulmonary infectivity and toxicity study, young Sprague Dawley CD rats (15/sex) were given a single dose of 1.1×10^7 CFU of *T. harzianum* ICC 012 in 0.1% Tween20 by intratracheal instillation. Another group of rats (6/sex) was exposed to a similar suspension of inactivated spores. Animals were then observed for up to 21 days with interim scheduled sacrifices on Days 1, 4, 7, 14, and 21. There were no mortalities, treatment-related clinical signs, or changes in body weight. Necropsy findings in the lungs of both the active and inactive test item groups indicated a low level of irritation, likely due to the presence of spore components. A pattern of clearance was established, with levels of the MPCA declining over the course of the study period.

In the acute intraperitoneal pathogenicity study, young Sprague Dawley CD rats (3/sex) were injected with 1.2×10^8 CFU *T. harzianum* ICC 012 in 0.9% NaCl. Animals were then observed for 21 days. There were no mortalities, treatment-related clinical signs, necropsy findings or changes in body weight.

Trichoderma gamsii ICC 080 Technical

To address the health hazard requirements for Trichoderma gamsii ICC 080 Technical, the applicant submitted acute oral toxicity, acute pulmonary toxicity/infectivity, and acute intraperitoneal pathogenicity studies. These studies were performed with *T. viride* strain ICC 080 which was equivalent to Trichoderma gamsii ICC 080 Technical.

In the acute oral toxicity study, young Sprague Dawley CD rats (5/sex) were given a single oral dose of at least 2.76×10^8 viable spores of *T. viride* strain ICC 080 in 0.9% aqueous NaCl. Animals were observed for up to 14 days. There were no mortalities, treatment-related clinical signs, necropsy findings or changes in body weight.

In the acute pulmonary infectivity and toxicity study, young Sprague Dawley CD rats (15/sex) were given a single dose of 2.5×10^6 CFU *T. viride* strain ICC 080 in 0.1% Tween20 by intratracheal instillation. Another group of rats (6/sex) was exposed to a similar suspension of inactivated spores. Animals were then observed for up to 21 days with interim scheduled sacrifices on Days 1, 4, 7, 14, and 21. There were no mortalities, treatment-related clinical signs, or changes in body weight. Necropsy findings in the lungs of both the active and inactive test item groups indicated a low level of irritation, likely due to the presence of spore components. A pattern of clearance was established, with the MPCA having cleared completely by the end of the study period.

In the acute intraperitoneal pathogenicity study, young Sprague Dawley CD rats (3/sex) were injected with at least 8.37×10^6 CFU *T. viride* strain ICC 080 in 0.9% NaCl. Animals were then observed for 21 days. Treatment-related symptoms of slightly reduced motility, slight ataxia,

slightly reduced muscle tone, slight dyspnea, mydriasis and writhing were observed in all animals dosed with the test item immediately following treatment. All clinical signs completely resolved within 24 hours. There were no mortalities, treatment-related necropsy findings or changes in body weight.

Foretryx

To address the health hazard requirements for the end-use product, Foretryx, the applicant submitted acute oral toxicity, acute inhalation toxicity, acute dermal toxicity, dermal sensitization, eye irritation, and dermal irritation studies. These studies were performed with Remedier WP (7.8×10^7 CFU/g *T. viride* strain ICC 080 and 7.8×10^7 CFU/g *T. harzianum* strain ICC 012), which is equivalent to Foretryx.

In the acute oral toxicity study, young Sprague Dawley CD rats (5/sex) were given a single oral dose of 2000 mg/kg bodyweight (bw) Remedier WP in 0.9% aqueous NaCl. Animals were observed for up to 14 days. There were no mortalities, treatment-related clinical signs, necropsy findings or changes in body weight.

In the acute inhalation toxicity study, young Sprague Dawley CD rats (5/sex) were exposed by nose-only inhalation to Remedier WP for 4 hours at a concentration of 5.20 mg/L air. Animals were observed for 14 days. There were no mortalities, treatment-related clinical signs, necropsy findings or changes in body weight.

In the acute dermal toxicity study, young Sprague Dawley CD rats (5/sex) were dermally exposed to 2000 mg/kg bw Remedier WP for 24 hours to an area of approximately 10% of body surface area. The animals were observed for a period of 14 days. There were no mortalities and no treatment-related clinical signs, necropsy findings or changes in body weight.

In a skin sensitization study, one group of 10 young adult male Duncan-Hartley guinea pigs was tested with Remedier WP in 0.9% NaCl, using the method of Magnusson and Kligman. There were no mortalities, treatment-related changes in animal behaviour or body weight. In the induction stage, erythema (discrete/patchy, and moderate/confluent) was observed in all animals. In the challenge stage, no dermal reactions were observed.

In the primary eye irritation study, 100 mg of Remedier WP was instilled neat into the conjunctival sac of right eyes of three young adult male Himalayan rabbits for 8 hours. Animals then were observed for 72 hours. Irritation was scored by the method of Draize. Conjunctival redness (grade 1) was observed in the treated eyes of all animals 1 hour after instillation, but conjunctivae returned to normal (grade 0) by the 24-hour observation time-point. The cornea and iris were not affected by instillation of the test item. All animals were free of ocular irritation by 24 hours. The maximum irritation score (MIS) was 1/110 (at 1 h) and the maximum average score (MAS) was 0/110 (at 24, 48, 72 h).

In the primary dermal irritation study, three young male Himalayan rabbits were dermally exposed to 500 mg of Remedier WP to a 6 cm² site. The test area was covered with a gauze patch and non-irritating tape during the exposure period. After 4 hours, the dressings were removed. Following exposure, the animals were observed for a period of 6 days. Irritation was scored by the method of Draize. A very slight erythema (grade 1) was observed in all three animals 24 hours to 5 days after patch removal. A very slight edema (grade 1) was observed in one animal 72 hours and 4 days after patch removal. All animals were symptom-free by Day 6. The MIS was 1.33/8 (at 72 h) and the MAS was 1.11/8 (at 24, 48, 72 h).

Test results are summarized in Appendix I, Tables 1, 2, and 3.

3.1.2 Incident reports related to human and animal health

Trichoderma asperellum ICC 012 and *T. gamsii* ICC 080 are new active ingredients pending registration for use in Canada, and as of November 12, 2021, no incident reports had been submitted to the PMRA.

3.1.3 Hazard analysis

The data package submitted in support of registering Trichoderma asperellum ICC 012 Technical and Trichoderma gamsii ICC 080 Technical, and the associated end-use product, Foretryx, was reviewed from the viewpoint of human health and safety and was determined to be acceptable.

Trichoderma asperellum ICC 012 Technical and Trichoderma gamsii ICC 080 Technical are of low toxicity by the oral and pulmonary routes and not pathogenic or infective by the pulmonary route. Trichoderma asperellum ICC 012 Technical and Trichoderma gamsii ICC 080 were not pathogenic by the intraperitoneal route. These MPCAs are considered to be potential sensitizers. Consequently, the hazard statements "POTENTIAL SENSITIZER" will appear on the principal display panel of the technical grade active ingredients. The statement, "May cause sensitization. Avoid contact with skin, eyes, and clothing. Avoid inhaling/breathing dust." is also required on the secondary panel of the labels under the "PRECAUTIONS" section.

The end-use product, Foretryx, is of low toxicity by the oral, dermal, and inhalation routes. Foretryx is non-irritating to the eyes and slightly irritating to the skin based on the MAS values. The dermal sensitization study indicated that Foretryx is not a dermal sensitizer; nevertheless, because all microorganisms contain substances that could elicit positive hypersensitivity reactions in humans, *T. gamsii* strain ICC 080 and *T. asperellum* strain ICC 012 are considered to be potential sensitizing agents. Thus, the hazard statement "POTENTIAL SENSITIZER" will appear on the principal display panel of the end-use product label. The statement, "May cause sensitization. Avoid contact with skin, eyes, and clothing. Avoid inhaling/breathing dust and spray mist." is also required on the secondary panel of the label under the "PRECAUTIONS" section. Higher tier subchronic and chronic toxicity studies were not required because the Tier I studies: a) did not indicate the technical grade active ingredients or end-use product to be acutely toxic by the oral, pulmonary or dermal routes of administration; and b) there were no indications of any infectivity or pathogenicity in any test animals tested with these MPCAs.

Within the available scientific literature, there are no reports that suggest *T. gamsii* and *T. asperellum* have the potential to cause adverse effects on the endocrine system of animals. Based on the weight of evidence of available data, no adverse effects to the endocrine or immune systems are anticipated for these MPCAs.

3.2 Occupational, residential and bystander risk assessment

3.2.1 Occupational and post-application exposure and risk

When handled according to the label instructions, the potential for dermal, eye and inhalation exposure for applicators, mixer/loaders, and handlers exists. Since unbroken skin is a natural barrier to microbial invasion of the human body, dermal absorption could occur only if the skin were cut, if the microbe was a pathogen equipped with mechanisms for entry through or infection of the skin, or if metabolites were produced that could be dermally absorbed. *Trichoderma gamsii* and *T. asperellum* have not frequently been identified as dermal wound pathogens and there is no indication that they could penetrate intact skin of healthy individuals. Furthermore, testing with Trichoderma gamsii ICC 080 Technical and Trichoderma asperellum ICC 012 showed low toxicity and no infectivity via the pulmonary route, and no toxicity via the oral route. Hazard testing with the end-use product showed that Foretryx is slightly irritating to the skin and non-irritating to the eyes.

Although Trichoderma gamsii ICC 080 Technical and Trichoderma asperellum ICC 012 Technical were of low toxicity via the oral, pulmonary, and dermal routes, and the formulants in the end-use products are not expected to contribute additional toxicity, the PMRA assumes that all microorganisms contain substances that can elicit positive hypersensitivity reactions, regardless of the outcome of sensitization testing. Consequently, risk mitigation measures, such as personal protective equipment (PPE), including chemical-resistant gloves, a long-sleeved shirt, long pants, a NIOSH-approved particulate filtering facepiece respirator, socks and shoes are required to minimize exposure and protect applicators, mixer/loaders, and handlers that are likely to be exposed. Furthermore, for the dilute broadcast spray application to the soil surface, all unprotected workers are prohibited from entering treated areas where Foretryx has been applied for 4 hours or until sprays have settled.

Label warnings, restrictions and risk mitigation measures are adequate to protect users of Foretryx. Overall, occupational risks to workers are acceptable when the precautionary statements on the labels are followed which include PPE.

3.2.2 Residential and bystander exposure and risk

The use of Foretryx as a broadcast spray application to the soil surface for outdoor field crops may result in bystander exposure due to drift. Bystander exposure will be mitigated by the inclusion of a spray drift statement on the label, advising against application to areas of human habitation unless consideration has been given to the wind speed, wind direction, temperature inversions, application equipment and sprayer settings. Also, Trichoderma asperellum ICC 012 Technical and Trichoderma gamsii ICC 080 Technical were of low toxicity and there were no signs that the MPCAs, *T. asperellum* strain ICC 012 and *T. gamsii* strain ICC 080, caused any disease in studies on laboratory animals. Consequently, the health risks to bystanders and individuals in residential areas are acceptable.

3.3 Dietary exposure and risk assessment

3.3.1 Food

While Foretryx is applied to soil, indirect contact with edible portions of crops may result in possible residues on agricultural commodities. The risks from consuming food crops treated with Foretryx are acceptable because T. asperellum strain ICC 012, T. gamsii strain ICC 080, demonstrated no toxicity, pathogenicity, or infectivity, and Foretryx demonstrated no toxicity in Tier I studies. While T. asperellum strain ICC 012 and T. gamsii strain ICC 080 have the potential to produce the secondary metabolites peptaibols, the proposed uses are not expected to result in a significant level of residues of these secondary metabolites on food commodities at the time of harvest. In general, secondary metabolites are produced when the MPCAs come into contact with the target pathogens (in this case, following application to the soil). Translocation of peptaibols to edible portions of the crop is expected to be negligible due to their poor solubility in water. While Trichoderma are ubiquitous and abundant in the rhizosphere, only low levels are reported in the phyllosphere and, therefore, the MPCAs are not expected to produce significant amounts of peptaibols on edible portions of the treated crops. Furthermore, peptaibols are proteinaceous in nature and are expected to have a short residency time due to a rapid denaturation under environmental conditions; and the metabolite residues may be further removed by washing, peeling, or processing of commodities, further minimizing the potential for exposure.

When the end-use product is applied as directed by the label to cannabis produced commercially indoors, consumer exposure to Foretryx is low and therefore the health risk is acceptable.

Consequently, there is no health risk to the general population, including infants and children, or domestic animals.

3.3.2 Drinking water

Dietary exposure from drinking water is expected to be low as the labels have the necessary mitigation measures to limit contamination of drinking water from the proposed uses of Foretryx. The end-use product is used to treat growing medium in greenhouses and soil in the field, and the

labels will instruct users not to contaminate irrigation or drinking water supplies or aquatic habitats through equipment cleaning or waste disposal. Municipal treatment of drinking water is also expected to further reduce the transfer of residues to drinking water. Furthermore, *T. asperellum* strain ICC 012 and *T. gamsii* strain ICC 080 demonstrated no pathogenicity or infectivity in Tier I studies. Health risks from residues of *T. asperellum* strain ICC 012 and *T. gamsii* strain acceptable due to the low toxicity/pathogenicity profiles of Trichoderma asperellum ICC 012 Technical and Trichoderma gamsii ICC 080 Technical, and their limited exposure following application of the end-use product.

3.3.3 Acute and chronic dietary risks for sensitive subpopulations

Calculations of acute reference doses and acceptable daily intakes are not usually possible for predicting acute and long-term effects of microbial agents in the general population or to potentially sensitive subpopulations, particularly infants and children. The single (maximum hazard) dose approach to testing MPCAs is sufficient for conducting a reasonable general assessment of risk if no significant adverse effects (in other words, no acute toxicity, infectivity or pathogenicity endpoints of concern) are noted in acute toxicity and infectivity tests. Based on all the available information and hazard data, the PMRA concludes that T. asperellum strain ICC 012 and T. gamsii strain ICC 080 are of low toxicity, are not pathogenic or infective to mammals, and that infants and children are likely to be no more sensitive to these MPCAs than the general population. Thus there are no threshold effects of concern and, as a result, there is no need to require definitive (multiple dose) testing or apply uncertainty factors to account for intraand interspecies variability, safety factors or margins of exposure. Further factoring of consumption patterns among infants and children, special susceptibility in these subpopulations to the effects of these MPCAs, including neurological effects from pre- or post-natal exposures, and cumulative effects on infants and children of the MPCAs and other registered microorganisms that have a common mechanism of toxicity, does not apply to these MPCAs. As a result, the PMRA has not used a margin of exposure (safety) approach to assess the risks of T. asperellum strain ICC 012 and T. gamsii strain ICC 080 to human health.

3.3.4 Aggregate exposure and risk

Aggregate exposure is the total exposure to a single pesticide that may occur from food, drinking water, residential and other non-occupational sources, and from all known or plausible exposure routes (oral, dermal and inhalation).

In an aggregate risk assessment, the combined potential risk associated with food, drinking water and various residential exposure pathways is assessed. A major consideration is the likelihood of co-occurrence of exposures. Additionally, only exposures from routes that share common toxicological endpoints can be aggregated.

Foretryx is considered to be of low toxicity by the oral, pulmonary and dermal routes and the end-use product will not be applied near or to drinking water. When the end-use product is used as labelled, there is reasonable certainty that no harm will result from aggregate exposure of residues of *T. asperellum* strain ICC 012 and *T. gamsii* strain ICC 080.

3.3.5 Maximum residue limits

As part of the assessment process prior to the registration of a pesticide, Health Canada must determine whether the consumption of the maximum amount of residues, that are expected to remain on food products when a pesticide is used according to label directions, will not be a concern to human health. This maximum amount of residues expected is then legally specified as a maximum residue limit (MRL) under the *Pest Control Products Act* for the purposes of the adulteration provision of the *Food and Drugs Act*. Health Canada specifies science-based MRLs to ensure the food Canadians eat is safe.

Residues of *T. asperellum* strain ICC 012 and *T. gamsii* strain ICC 080 on treated food crops are possible at the time of harvest. Dietary risk to humans from the proposed use of Foretryx is acceptable due to the low toxicity profile of Trichoderma asperellum ICC 012 Technical and Trichoderma gamsii ICC 080 Technical and that metabolites of toxicological significance (i.e., peptaibols) are not expected to be present on edible portions of the crops. In addition, the likelihood of residues contaminating drinking water supplies is negligible to non-existent. Therefore, the PMRA has determined that specification of an MRL under the *Pest Control Products Act* is not required for *T. asperellum* strain ICC 012 and *T. gamsii* strain ICC 080.

3.4 Cumulative assessment

The *Pest Control Products Act* requires that the PMRA consider the cumulative exposure to pesticides with a common mechanism of toxicity. In its assessment of common mechanism of toxicity, PMRA considers both the taxonomy of MPCAs and the production of any potentially toxic metabolites. For the current evaluation, the PMRA has determined that *T. asperellum* strain ICC 012 and *T. gamsii* strain ICC 080 share a common mechanism of toxicity with the MPCAs *T. asperellum* strain T34, *T. harzianum* Rifai strain T-22, *T. harzianum* Rifai strain KRL-AG2, *T. virens* strain G-41 and *Gliocladium catenulatum* strain J1466. The potential health risks from cumulative exposure of *T. asperellum* strain ICC 012, *T. gamsii* strain ICC 080 and these other MPCAs are acceptable when used as labelled given their low toxicity and pathogenicity and the anticipated absence of secondary metabolites of toxicological concern on the harvested portion of crops treated with the end-use product.

4.0 Impact on the environment

4.1 Fate and behaviour in the environment

Environmental fate data are only triggered at Tier II/III if significant toxicological effects in non-target organisms are noted in Tier I testing.

Although significant toxicological effects were not noted in Tier I testing, scientific literature and test data was submitted by the applicant to address the environmental fate of *T. gamsii* strain ICC 080 and *T. asperellum* strain ICC 012 in soil. Following application of Foretryx, populations of *T. gamsii* strain ICC 080 and *T. asperellum* strain ICC 012 will initially increase in the area of application. This increase is expected to be temporary and localized, since studies characterizing

the mobility and persistence of other introduced *Trichoderma* species in soil over 6–18 weeks suggest that they decline over time. Mobility of *Trichoderma* spp. both vertically and horizontally in soil following application is limited, although watering of the soil contributes to movement to deeper soil layers. Overall, levels of these microorganisms are expected to eventually return to the natural background level.

While *Trichoderma* spp. have occasionally been isolated from air, this is not expected to be a significant environmental compartment for *T. gamsii* strain ICC 080 and *T. asperellum* strain ICC 012 given their natural occurrence in soil. Persistence and multiplication of *T. gamsii* strain ICC 080 and *T. asperellum* strain ICC 012 in water is unlikely, given the absence of literature reports of these species in aquatic environments. While not generally recognized as an aquatic fungus, growth of *T. gamsii* strain ICC 080 and T. *asperellum* strain ICC 080 and T. *asperellum* strain ICC 080 and T. *asperellum* strain ICC 012 could occur if sufficient nutrients were present in water (for example, in presence of decaying plant material).

Trichoderma spp. are common soil hyphomycetes found in all climate zones. *Trichoderma* species have been detected in various types of soil at concentrations ranging from 10^4 to 10^6 CFU/g. Based on the maximum application rate of Foretryx, the estimated environmental concentration (EEC) of both MPCAs in soil (to a depth of 15 cm) is 1.5×10^1 CFU/g soil (see Appendix II). Therefore, outdoor directed applications to soil are not expected to result in soil concentrations that are substantially above normal concentrations. Additionally, Foretryx is not proposed for applications to aquatic environments, and exposure in marine or estuarine environments resulting from runoff is expected to be similar to that which would occur as a result of naturally occurring background concentrations of *Trichoderma* species.

4.2 Effects on non-target species

The PMRA has a four-tiered approach to environmental testing of microbial pesticides. Tier I studies consist of acute studies on up to seven broad taxonomic groups of non-target organisms exposed to a maximum hazard or Maximum Challenge Concentration of the MPCA. The Maximum Challenge Concentration is generally derived from the amount of the MPCA, or its toxin, expected to be available following application at the maximum recommended label rate multiplied by a safety factor. Tier II studies consist of environmental fate (persistence and dispersal) studies as well as additional acute toxicity testing of MPCAs. Tier III studies consist of chronic toxicity studies (life cycle studies), as well as definitive toxicity testing (for example, LC₅₀, LD₅₀). Tier IV studies consist of experimental field studies on toxicity and fate, and are required to determine whether adverse effects are realized under actual use conditions.

The type of environmental risk assessment conducted on MPCAs varies depending on the tier level that was triggered during testing. For many MPCAs, Tier I studies are sufficient to conduct environmental risk assessments. Tier I studies are designed to represent "worst-case" scenarios where the exposure conditions greatly exceed the expected environmental concentrations. The absence of adverse effects in Tier I studies are interpreted as minimal risk to the group of nontarget organisms. However, higher tiered studies will be triggered if significant adverse effects on non-target organisms are identified in Tier I studies. These studies provide additional information that allows the PMRA to refine the environmental risk assessments. In the absence of adequate environmental fate and/or field studies, a screening level risk assessment can be performed to determine if the MPCA is likely to pose a risk to a group of non-target organisms.

The screening level risk assessment uses simple methods, conservative exposure scenarios (for example, direct application at a maximum application rate) and sensitive toxicity endpoints. A risk quotient (RQ) is calculated by dividing the exposure estimate by an appropriate toxicity value (RQ = exposure/toxicity), and the risk quotient is then compared to the level of concern (level of concern = 1 for most species, 0.4 for acute risk to pollinators, and 2 for glass plate studies using the standard beneficial arthropod test species, *Typhlodromus pyri* and *Aphidius rhopalosiphi*; level of concern = 1 is used for higher tier tests of the standard arthropod test species and for other arthropod test species).

If the screening level risk quotient is below the level of concern, the risk is considered negligible and no further risk characterization is necessary. If the screening level risk quotient is equal to or greater than the level of concern, then a refined risk assessment is performed to further characterize the risk. A refined assessment takes into consideration more realistic exposure scenarios (environmental fate and/or field testing results). Refinements may include further characterization of risk based on exposure modelling, monitoring data, results from field or mesocosm studies, and probabilistic risk assessment methods. Refinements to the risk assessment may continue until the risk is adequately characterized or no further refinements are possible.

4.2.1 Effects on terrestrial organisms

A detailed review of the terrestrial non-target studies and other supporting information was conducted in support of the two technical grade active ingredients, Trichoderma gamsii ICC 080 Technical and Trichoderma asperellum ICC 012 Technical, and the associated end-use product, Foretryx.

Trichoderma gamsii ICC 080 Technical

Three studies were submitted to address the hazards of Trichoderma gamsii ICC 080 Technical to honey bees, earthworms, and soil microflora. These studies were performed with *T. viride* strain ICC 080, which is equivalent to Trichoderma gamsii ICC 080 Technical. Data submitted under human and animal health toxicity testing were considered to assess the risk of harm to wild mammals.

In a 48-hour contact and dietary toxicity study, 50 honeybees (*Apis mellifera*) were exposed to *T. viride* strain ICC 080 via contact at 50 µg/bee (8.5×10^4 CFU/bee) and 50 honeybees were exposed to *T. viride* strain ICC 080 via the diet at 112.1 µg/bee (1.9×10^5 CFU/bee). There were no treatment-related effects. Pathogenicity was not assessed.

In a 14-day acute toxicity study, earthworms (*Eisenia fetida*) were exposed to *T. viride* strain ICC 080 at 1.70×10^9 , 1.13×10^9 , 7.55×10^8 , 5.03×10^8 , and 3.37×10^8 CFU/kg soil dry weight (sdw). There were no treatment-related effects observed.

The effect of *T. viride* strain ICC 080 on soil microorganisms was investigated by testing nitrogen and carbon turnover in soil, metabolic indicators of microbial soil community activity. In this study, *T. viride* strain ICC 080 was incorporated in field soil at concentrations of 0.07 mg/kg sdw (1.19×10^5 CFU/kg sdw) and 0.67 mg/kg sdw (1.14×10^6 CFU/kg sdw) and then assessed for nitrogen and carbon turnover over 28 days. Nitrogen turnover was assessed by measuring nitrate production, and carbon turnover was assessed by measuring carbon dioxide production. There was no impact on either nitrogen turnover or carbon turnover at both test concentrations.

Test results are summarized in Appendix I, Table 4.

Trichoderma gamsii strain ICC 080 is not considered to be a mammalian pathogen, and the data submitted under Section 3.1.1 demonstrated that Trichoderma gamsii ICC 080 Technical showed no toxicity to laboratory test animals via the oral and pulmonary routes, no signs of pathogenicity via the intraperitoneal injection and pulmonary installation routes, and no infectivity via the pulmonary instillation route. No additional data or information to characterize the hazard to wild mammals are required.

Trichoderma asperellum ICC 012 Technical

Three studies were submitted to address the hazards of Trichoderma asperellum ICC 012 Technical to honey bees, earthworms, and soil microflora. These studies were performed with *T*. *harzianum* strain ICC 012, which is equivalent to Trichoderma asperellum ICC 012 Technical. Data submitted under human and animal health toxicity testing were considered to assess the risk of harm to wild mammals.

In a 48-hour contact and dietary toxicity study, 50 honeybees (*Apis mellifera*) were exposed to *T. harzianum* strain ICC 012 via contact at 50 µg/bee (2.1×10^5 CFU/bee) and 50 honeybees were exposed to *T. harzianum* strain ICC 012 via the diet at 111.5 µg/bee (4.7×10^5 CFU/bee). There were no treatment-related effects. Pathogenicity was not assessed.

In a 14-day acute toxicity study, earthworms (*Eisenia fetida*) were exposed to *T. harzianum* strain ICC 012 at 4.20×10^9 , 2.80×10^9 , 1.86×10^9 , 1.24×10^9 , and 8.32×10^8 CFU/kg sdw. There were no treatment-related effects observed.

The effect of *T. harzianum* strain ICC 012 on soil microorganisms was investigated by testing nitrogen and carbon turnover in soil, metabolic indicators of microbial soil community activity. In this study, *T. harzianum* strain ICC 012 was incorporated in field soil at concentrations of 0.07 mg/kg sdw (2.94×10^5 CFU/kg sdw) and 0.67 mg/kg sdw (2.81×10^6 CFU/kg sdw) and then assessed for nitrogen and carbon turnover over 28 days.

Nitrogen turnover was assessed by measuring nitrate production, and carbon turnover was assessed by measuring carbon dioxide production. There was no impact on either nitrogen turnover or carbon turnover at both test concentrations.

Test results are summarized in Appendix I, Table 5.

Trichoderma asperellum strain ICC 012 is not considered to be a mammalian pathogen, and the data submitted under Section 3.1.1 demonstrated that Trichoderma asperellum ICC 012 Technical showed no toxicity to laboratory test animals via the oral and pulmonary routes, no signs of pathogenicity via the intraperitoneal injection and pulmonary installation routes, and no infectivity via the pulmonary instillation route. No additional data or information to characterize the hazard to wild mammals are required.

Foretryx

Two studies were submitted to address the hazards of Foretryx to honey bees and predatory mites. These studies were performed with Remedier WP (containing 1.2×10^8 CFU/g *Trichoderma* conidia) or Tellus WP (9.3×10^7 CFU/g *T. viride* strain ICC 080 and 7.6×10^7 CFU/g *T. harzianum* strain ICC 012), which are both equivalent to Foretryx. Acceptable information and published scientific literature were also provided in support of requests to waive further testing on birds and terrestrial plants.

In a 10-day dietary toxicity study, honey bees (*A. mellifera*) were exposed to Tellus WP via the diet (50% w/w sucrose solution) for ten days at measured concentrations of 222 μ g product/bee/day (6.95 × 10³ CFU/bee/day *T. asperellum* strain ICC 012 and 1.08 × 10⁴ CFU/bee/day *T. gamsii* strain ICC 080, or a total of 1.78×10^4 *Trichoderma* CFU/bee/day). Percent mortality in the test item, control and reference item (dimethoate) groups at Day 10 was 0%, 4% and 100%, respectively. There were no significant differences in feed consumption between the test item and control groups. There were no toxic or pathogenic effects observed.

In a 14-day non-guideline contact toxicity study, 60 (3 replicates of 20) predatory mite protonymphs (*Typhlodromus pyri*) were exposed to Remedier WP (1.2×10^8 CFU/g total *T.* gamsii ICC 080 and *T. asperellum* ICC 012) in a glass plate test at nominal concentrations of 61.8 g, 185 g, 556 g, 1.67 kg, and 5 kg/200L/ha. A toxic reference item (dimethoate) and a negative control (deionized water) were tested concurrently. There were no treatment-related effects on mortality. Although a dose-related response was not apparent from the reproductive indicators, there were statistically significant reductions in reproductive capacity at 61.8 g, 185 g, and 5 kg Remedier WP/ha relative to the untreated control. Soil-only applications of the end-use product will not result in sustained increased exposure to non-target arthropods in the phyllosphere and therefore the risk is acceptable.

The applicant provided a rationale to waive the requirement for avian toxicity/pathogenicity testing based on the fact that birds are frequently exposed to natural background levels of *Trichoderma* in the soil and that there were no relevant information found in the published scientific literature with respect to 'Trichoderma' and 'birds'. The use of the proposed end-use

product, Foretryx, is not expected to result in a sustained increase of *T. asperellum* ICC 012 and *T. gamsii* strain ICC 080 in treated soils. As well, an in vitro growth temperature study for the MPCAs demonstrated the inability of *T. asperellum* strain ICC 012 to grow at 37°C and *T. gamsii* strain ICC 080 to grow at 35°C. These temperatures are below the low end of the body temperature range of birds. This rationale is sufficient to warrant waiving the requirement for avian toxicity/pathogenicity testing for *T. asperellum* strain ICC 012 and *T. gamsii* strain ICC 080 for the use pattern of at-planting applications to soil for field crops.

Neither *T. asperellum* strain ICC 012 nor *T. gamsii* strain ICC 080 appear on authoritative lists of plant pathogens and pests. These MPCAs have been registered in the United States and in the European Union since 2010 and 2015, respectively, with no reports of adverse effects in plants. There were no reports of phytotoxicity or crop injury in any of the efficacy trials and Foretryx was observed to increase plant yield. Therefore, the proposed uses of Foretryx are not expected to result in adverse effects in non-target terrestrial plants. No additional data or information to characterize the hazard to non-target terrestrial plants are required.

Test results are summarized in Appendix I, Table 6.

Based on all the available data and information on the effects of *T. gamsii* strain ICC 080, *T. asperellum* strain ICC 012, and Foretryx to non-target terrestrial organisms, and the precautionary measures required on the Foretryx label, the risks to birds, wild mammals, arthropods (including honey bees), non-arthropod invertebrates, soil microorganisms and plants from the proposed use of Foretryx are acceptable.

4.2.2 Effects on aquatic organisms

A detailed review of the aquatic non-target studies and other supporting information was conducted in support of the two technical grade active ingredients, Trichoderma gamsii ICC 080 Technical and Trichoderma asperellum ICC 012 Technical, and the associated end-use product, Foretryx.

Trichoderma gamsii ICC 080 Technical

Four studies were submitted to address the hazards of Trichoderma gamsii ICC 080 Technical to rainbow trout, daphnids, green algae, and aquatic plants. These studies were performed with *T. viride* strain ICC 080, which is equivalent to the technical grade active ingredient, Trichoderma gamsii ICC 080 Technical.

In a 30-day toxicity/pathogenicity study, 50 rainbow trout (*Oncorhynchus mykiss*) were aquatically exposed to *T. viride* strain ICC 080 at nominal concentrations of 100, 50, 25, 12.5, and 6.25 mg/L (8.7×10^7 , 4.4×10^7 , 2.2×10^7 , 1.1×10^7 , and 5.4×10^6 CFU/L) under static renewal test conditions. The test item was not incorporated into the diet. There were no treatment-related toxicity or pathogenicity effects observed.

In a 21-day toxicity study, 5 groups of 20 daphnids (*Daphnia magna*) were exposed to *T. viride* strain ICC 080 under static renewal conditions at nominal concentrations of 100, 50, 25, 12.5, and 6.25 mg/L (8.7×10^7 , 4.4×10^7 , 2.2×10^7 , 1.1×10^7 , and 5.4×10^6 CFU/L). The percent mortality in the negative control, sterile filtrate, 100, 50, 25, 12.5, and 6.25 mg/L test groups was 0, 20, 50, 25, 15, 10, and 5, respectively. Reproductive output was statistically significantly reduced in the 8.7×10^7 CFU/L test item concentration, relative to the untreated control. The no observed effects concentration (NOEC) for reproduction in this study (4.4×10^7 CFU/L) is three orders of magnitude greater than the EEC in water (refer to Appendix II for aquatic EEC calculation).

The effect of *T. viride* strain ICC 080 on green algae (*Desmodesmus subspicatus*) was studied for 72 hours at nominal concentrations of 6.25, 12.5, 25, 50, and 100 mg/L (5.8×10^7 , 1.2×10^8 , 2.3×10^8 , 4.7×10^8 , and 9.3×10^8 CFU/L) under static conditions. The algal growth rate and biomass were significantly reduced compared to the control in the 9.3×10^8 CFU/L test item group at 24, 48, and 72 hours. The NOEC for growth in this study (4.7×10^8 CFU/L) is four orders of magnitude greater than the EEC in water.

The effect of *T. viride* strain ICC 080 Technical on the freshwater floating aquatic vascular plant, duckweed (*Lemna gibba*), was studied for 14 days at nominal concentrations of 62.5, 125, 250, 500, and 1000 mg/L (5.4×10^7 , 1.1×10^8 , 2.2×10^8 , 4.4×10^8 , and 8.8×10^8 CFU/L) under static renewal conditions. Statistically significant reduction of frond numbers, inhibition of biomass gain, and inhibition of growth were observed in the 2.2×10^8 , 4.4×10^8 , and 8.8×10^8 CFU/L test group compared to the untreated control. The NOEC for growth in this study (1.1×10^8 CFU/L) is four orders of magnitude greater than the EEC in water.

Test results are summarized in Appendix I, Table 4.

Trichoderma asperellum ICC 012 Technical

Four studies were submitted to address the hazards of Trichoderma asperellum ICC 012 Technical to rainbow trout, daphnids, green algae, and aquatic plants. These studies were performed with *T. harzianum* strain ICC 012, which is equivalent to the technical grade active ingredient.

In a 30-day toxicity/pathogenicity study, 50 rainbow trout (*Oncorhynchus mykiss*) were aquatically exposed to *T. harzianum* strain ICC 012 at nominal concentrations of 100, 50, 25, 12.5, and 6.25 mg/L (1.2×10^8 , 6.0×10^7 , 3.0×10^7 , 1.5×10^7 , and 7.5×10^6 CFU/L) under static renewal test conditions. At 100 mg/L, there was a statistically significant decrease in body weight gain relative to the untreated control. The no observed effects concentration (NOEC) for body weight gain in this study (6.0×10^7 CFU/L) is three orders of magnitude greater than the EEC in water (refer to Appendix II for aquatic EEC calculation). There were no treatment-related mortality or pathogenicity effects observed.

In a 21-day toxicity/pathogenicity study, 5 groups of 20 female daphnids (*Daphnia magna*) were exposed aquatically to *T. harzianum* strain ICC 012 at nominal concentrations of 100, 50, 25, 12.5, and 6.25 mg/L $(1.2 \times 10^8, 6.0 \times 10^7, 3.0 \times 10^7, 1.5 \times 10^7, and 7.5 \times 10^6$ CFU/L) under static renewal conditions. The percent mortality in the negative control, sterile filtrate, 100, 50, 25, 12.5, and 6.25 mg/L test groups was 0, 45, 35, 10, 25, 5, and 5, respectively. There were no statistically significant differences in offspring per surviving adult between any of the test item concentrations, the sterile filtrate, and the negative control. On Day 21, four daphnids from the 25 mg/L test group were reported to have spore agglomeration on the gills. The LC₅₀ in this study (>1.2 × 10⁸ CFU/L) is four orders of magnitude greater than the EEC in water.

The effect of *T. harzianum* strain ICC 012 on the freshwater aquatic vascular plant, duckweed (*Lemna gibba*), was studied at a concentration of 1000 mg/L (1.2×10^9 CFU/L nominal) under static renewal conditions over a period of 7 days. There were no significant differences in frond number, biomass gain, or growth rate observed between the test group, sterile filtrate control, or untreated control throughout the study.

The effect of *T. harzianum* strain ICC 012 on algae (*Desmodesmus subspicatus*), was studied at nominal concentrations of 100, 50, 25, 12.5, and 6.25 mg/L (1.3×10^9 , 6.5×10^8 , 3.3×10^8 , 1.6×10^8 , 8.1×10^7 CFU/L) under static conditions over a period of 72 hours. There were significant differences in growth rate and biomass gain observed between both the 100 mg/L test group and sterile filtrate group, and the untreated control. The NOEC for growth in this study (6.5×10^8 CFU/L) is four orders of magnitude greater than the EEC in water.

Test results are summarized in Appendix I, Table 5.

Foretryx

One study was submitted to address the hazards of Foretryx to daphnids. This study was performed with Remedier WP (7.8×10^7 CFU/g *T. viride* strain ICC 080 and 7.8×10^7 CFU/g *T. harzianum* strain ICC 012), which is equivalent to the end-use product, Foretryx.

In a 48-hour acute immobilization study, daphnids (*Daphnia magna*) were exposed to Remedier WP under static conditions at a concentration of 3.2×10^8 CFU/L. There were no treatment-related immobilization effects observed.

Based on all the available data and information on the effects of *T. gamsii* strain ICC 080, *T. asperellum* strain ICC 012, and Foretryx to non-target aquatic organisms and the precautionary measures required on the Foretryx label, the risks to fish, aquatic arthropods, aquatic plants, and algae from the proposed use of Foretryx are acceptable.

Test results are summarized in Appendix I, Table 6.

4.3 Incident reports related to the environment

Trichoderma asperellum ICC 012 and *T. gamsii* ICC 080 are new active ingredients pending registration for use in Canada, and as of November 12, 2021, no incident reports had been submitted to the PMRA.

5.0 Value

Trichoderma asperellum strain ICC 012 and *Trichoderma gamsii* strain ICC 080 are new biological active ingredients for disease management in Canada. Foretryx provides growers with a new biofungicide for use in an integrated pest management program to manage certain diseases on labelled field and greenhouse crops. Foretryx also provides a new product to manage verticillium wilt on strawberries (field and greenhouse) and cannabis (greenhouse or indoors), for which there are no alternatives registered. While alternatives are available for many other labelled diseases, the availability of Foretryx may reduce the risk of resistance development to conventional active ingredients and is acceptable for use in organic production.

The reports of 30 efficacy trials provided evidence that Foretryx suppresses or partially suppresses diseases on various field and greenhouse crops when applied at labelled rates. Based on the reports of these trials, phytotoxicity is not expected when Foretryx is applied according to the label.

The supported use claims are summarized in Appendix I, Table 7.

6.0 Pest control product policy considerations

6.1 Toxic substances management policy considerations

The Toxic Substances Management Policy (TSMP) is a federal government policy developed to provide direction on the management of substances of concern that are released into the environment. The TSMP calls for the virtual elimination of Track 1 substances, in other words, those that meet all four criteria outlined in the policy: persistent (in air, soil, water and/or sediment), bio-accumulative, primarily a result of human activity and toxic as defined by the *Canadian Environmental Protection Act*. The *Pest Control Products Act* requires that the TSMP is given effect in evaluating the risks of a product.

During the review process, Trichoderma gamsii ICC 080 Technical and Trichoderma asperellum ICC 012 Technical, and Foretryx were assessed in accordance with the PMRA Regulatory Directive DIR99-03⁵ and evaluated against the Track 1 criteria. The PMRA has reached the conclusion that Trichoderma gamsii ICC 080 Technical and Trichoderma asperellum ICC 012 Technical, and Foretryx do not meet the Track 1 criteria because the active ingredients are

⁵ DIR99-03, The Pest Management Regulatory Agency's Strategy for Implementing the Toxic Substances Management Policy

biological organisms and hence are not subject to the criteria used to define persistence, bioaccumulation and toxicity properties of chemical control products.

6.2 Formulants and contaminants of health or environmental concern

During the review process, contaminants in the technicals as well as formulants and contaminants in the end-use product are compared against the *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern*.⁶ The list is used as described in the PMRA Notice of Intent NOI2005-01⁷ and is based on existing policies and regulations, including the Toxic Substances Management Policy and Formulants Policy⁸ and taking into consideration the Ozone-depleting Substance Regulations, 1998, of the *Canadian Environmental Protection Act* (substances designated under the Montreal Protocol). The PMRA has reached the following conclusions:

• Technical grade products Trichoderma gamsii ICC 080 Technical and Trichoderma asperellum ICC 012 Technical, and their end-use product, Foretryx, do not contain any formulants or contaminants identified in the *List of Pest Control Product Formulants of Health or Environmental Concern*.

The use of formulants in registered pest control products is assessed on an ongoing basis through PMRA formulant initiatives and Regulatory Directive DIR2006-02.

7.0 Proposed regulatory decision

Health Canada's PMRA, under the authority of the *Pest Control Products Act*, is proposing registration for the sale and use of Trichoderma asperellum ICC 012 Technical, Trichoderma gamsii ICC 080 Technical and Foretryx, containing the technical grade active ingredients *Trichoderma asperellum* strain ICC 012 and *Trichoderma gamsii* strain ICC 080, for the suppression and partial suppression of certain fungal diseases on field and greenhouse fruiting vegetables, squash, lettuce, field and greenhouse strawberries, greenhouse ornamentals and cannabis produced commercially indoors.

An evaluation of available scientific information found that, under the approved conditions of use, the health and environmental risks and the value of the pest control products are acceptable.

⁶ SI/2005-114, last amended on 25 June 2008. See Justice Laws website, Consolidated Regulations, *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern.*

⁷ PMRA's Notice of Intent NOI2005-01, *List of Pest Control Product Formulants and Contaminants of Health or Environmental Concern under the New Pest Control Product Act.*

⁸ DIR2006-02, Formulants Policy and Implementation Guidance Document.

List of abbreviations

°C %	degree(s) Celsius percent
μg	microgram
ADI	acceptable daily intake
ALS	acetolactate synthase
bw	body weight
CFU	colony forming units
cm	centimetre
DNA	deoxyribonucleic acid
EC50	effective concentration on 50% of the population
EEC	estimated environmental concentration
EP	End-use Product
g	gram
h	hour(s)
ha	hectare(s)
kg	kilogram
L	litre
LC_{50}	median lethal concentration
LD_{50}	median lethal dose
LOEC	low observed effect concentration
mg	milligram
mL	millilitre
MAS	maximum average score
MIS	Maximum Irritation Score
MPCA	microbial pest control agent
MRL	maximum residue limit
NaCl	sodium chloride
NIOSH	National Institute for Occupational Safety and Health
NOEC	no observed effect concentration
OECD	Organisation for Economic Co-operation and Development
PMRA	Pest Management Regulatory Agency
PPE	personal protective equipment
RQ	risk quotient
sdw	soil dry weight
TGAI	technical grade of the active ingredient
TSMP	Toxic Substances Management Policy
WP	wettable powder

Appendix I Tables and figures

Table 1 Toxicity profile of Trichoderma asperellum ICC 012 Technical

(Effects are known or assumed to occur in both sexes unless otherwise noted; in such cases, sexspecific effects are separated by semi-colons)

Study Type/Animal/PMRA#	Study Results
14-day acute oral toxicity ¹	Acute oral $LD_{50} > 1.41 \times 10^9$ CFU/rat (Limit Test)
Sprague Dawley (CD) rat	Low Toxicity via oral gavage.
PMRA No. 3119363	
21-day acute pulmonary	Acute pulmonary $LD_{50} > 1.1 \times 10^7$ CFU/rat (Limit Test)
toxicity and infectivity ¹	
	Low Toxicity and not infective or pathogenic via intratracheal gavage.
Sprague Dawley (CD) rat	
PMRA No. 3119365	
21-day acute intraperitoneal	Acute intraperitoneal $LD_{50} > 1.2 \times 10^8$ CFU/rat.
pathogenicity ¹	
	Not pathogenic via intraperitoneal injection.
Sprague Dawley (CD) rat	
PMRA No. 3119370	

The test substance was *T. harzianum* strain ICC 012 which is equivalent to Trichoderma asperellum ICC 012 Technical.

Table 2 Toxicity profile of Trichoderma gamsii ICC 080 Technical

(Effects are known or assumed to occur in both sexes unless otherwise noted; in such cases, sexspecific effects are separated by semi-colons)

Study	Study Results
Type/Animal/PMRA#	
14-day acute oral toxicity ¹	Acute oral $LD_{50} > 2.76 \times 10^8$ spores/rat (Limit Test)
Sprague Dawley (CD) rat	Low Toxicity via oral gavage.
PMRA No. 3118629	
21-day acute pulmonary	Acute pulmonary $LD_{50} > 2.5 \times 10^6$ CFU/rat (Limit Test)
toxicity and infectivity ¹	
	Low Toxicity and not infective or pathogenic via intratracheal gavage.
Sprague Dawley (CD) rat	
PMRA No. 3118630	

Study	Study Results
Type/Animal/PMRA#	
21-day acute intraperitoneal	Acute intraperitoneal $LD_{50} > 8.37 \times 10^6$ CFU/rat.
pathogenicity ¹	Not pathogenic via intraperitoneal injection.
Sprague Dawley (CD) rat	rot pathogenie via marapertonear injection.
PMRA No. 3118631	
¹ The test substance was <i>T. viride</i> strain ICC 080 which is equivalent to Trichoderma gamsii ICC 080 Technical.	

The test substance was T. viride strain ICC 080 which is equivalent to Trichoderma gamsii ICC 080 Technical.

Table 3Toxicity profile of Foretryx

(Effects are known or assumed to occur in both sexes unless otherwise noted; in such cases, sexspecific effects are separated by semi-colons)

Study Type/Animal/PMRA#	Study Results
14-day acute oral toxicity ¹	Acute oral LD ₅₀ >2000 mg/kg bw (Limit Test)
Sprague Dawley (CD) rat	Low Toxicity via oral gavage.
PMRA No. 3118521	
14-day acute dermal toxicity ¹	Acute dermal LD ₅₀ >2000 mg/kg bw (Limit Test)
Sprague Dawley (CD) rat	Low Toxicity via dermal exposure.
PMRA No. 3118523	
14-day acute inhalation toxicity ¹	Acute inhalation LC ₅₀ >5.20 mg/L air (Limit Test)
Sprague Dawley (CD) rat	Low Toxicity via inhalation.
PMRA No. 3118522	
72-hour dermal irritation ¹	Slightly irritating to the skin (MIS, 72h = 1.33/8; MAS=1.11/8).
Himalayan rabbit, male	
PMRA No. 3118524	
72-hour eye irritation ¹	Non-irritating to the eyes (MIS, $1h = 1/110$; MAS= $0/110$).
Himalayan rabbit, male	
PMRA No. 3118525	
72-hour dermal sensitization ¹	Not sensitizing via dermal exposure.
Duncan-Hartley guinea pig, male	
PMRA No. 3118526	

1 The test substance was Remedier WP, containing 7.8×10^7 CFU/g *T. viride* strain ICC 080 and 7.8×10^7 CFU/g *T. harzianum* strain ICC 012, which is equivalent to Foretryx.

Table 4	Toxicity/pathogenicity of Trichoderma gamsii ICC 080 Technical to non-target
	species

Organism	Exposure	Significant Effect,	Reference
Group	FF	Comments	
Terrestrial Organ	nisms		-
Invertebrates			
Arthropods			
Honeybee (<i>Apis mellifera</i>), adult worker ¹	48-hour – Contact exposure	There were no treatment-related effects on mortality or behaviour.	3118643
	48-hour – Dietary exposure	The 48-h contact LC_{50} was >8.5 × 10 ⁴ CFU/bee The 48-h dietary LC_{50} was >1.9 × 10 ⁵ CFU/bee	
Non-arthropods		LOW TOXICITY	
Earthworm (<i>Eisenia fetida</i>), adults ¹	14-day – Contact	No differences were observed between the control and treatment groups for mortality or body weight change. The 14-day LC_{50} was $>1.7 \times 10^9$ CFU/kg sdw LOW TOXICITY NOT PATHOGENIC	3118645
Soil microflora – metabolic activity ¹	28-day – Metabolic activity	No significant differences were observed in nitrogen turnover or carbon turnover between the treatment and the control.	3118646
Aquatic Organism	ns		
Vertebrates			2110612
Rainbow trout (Oncorhynchus mykiss) ¹	30-day – Aquatic	There were no mortalities, behavioural abnormalities, no difference in mean body weight, and no difference in growth rate.	3118642
		The 30-day LC ₅₀ was >8.70 × 10 ⁷ CFU/L of media LOW TOXICITY NOT PATHOGENIC	

Organism	Exposure	Significant Effect,	Reference
Group	1	Comments	
Invertebrates	•		•
Daphnids (<i>Daphnia</i> magna) ¹	21-day – Aquatic exposure	Mortality increased with test item concentration. Reproduction was reduced in the highest test concentration.	3118644
		50% mortality was observed at 8.7×10^7 CFU/L	
		The 21-day NOEC (reproduction) was 4.4×10^7 CFU/L	
		TOXIC REPRODUCTIVE EFFECTS	
Plants			
Green algae (Desmodesmus subspicatus) ¹	72-hour – Aquatic exposure	Growth rate and biomass were significantly reduced in the 9.3×10^8 CFU/L test group compared to the control.The 72-hour EC ₅₀ was > 9.3×10^8 CFU/L	3118647
		The 72-hour NOEC was 4.7×10^8 CFU/L	
		GROWTH INHIBITION	
Duckweed (<i>Lemna gibba</i>) ¹	14-day – Aquatic exposure	Significant reduction of frond numbers, inhibition of biomass gain, and inhibition of growth rate was observed in the 250, 500, and 1000 mg/L (2.2×10^8 , 4.4×10^8 , and 8.8×10^8 CFU/L) test groups compared to the untreated control. The 14-day EC ₅₀ (frond number) was 451.4 mg/L	3118649
		$\begin{array}{l} (4.0\times10^8~{\rm CFU/L})\\ {\rm The}~14\mbox{-}day~{\rm EC}_{50}~({\rm biomass~gain})~{\rm was}~669.7~{\rm mg/L}\\ (5.9\times10^8~{\rm CFU/L})\\ {\rm The}~14\mbox{-}day~{\rm EC}_{50}~({\rm growth~rate})~{\rm was}~849.3~{\rm mg/L} \end{array}$	
		(7.5 × 10 ⁸ CFU/L) The 14-day NOEC was 125 mg/L (1.1 × 10 ⁸ CFU/L) The 14-day LOEC was 250 mg/L (2.2 × 10 ⁸ CFU/L)	
		GROWTH INHIBITION	

The test substance was T. viride strain ICC 080 which is equivalent to Trichoderma gamsii ICC 080 Technical.

1

Organism	Exposure	Significant Effect,	Reference
Group		Comments	
Terrestrial Organ	nisms		
Invertebrates			
Arthropods			
Honeybee (<i>Apis</i> <i>mellifera</i>), adult worker ¹	48-hour – Contact exposure 48-hour – Dietary exposure	There were no treatment-related effects on mortality or behaviour. The 48-h contact LC_{50} was >2.1 × 10 ⁵ CFU/bee The 48-h dietary LC_{50} was >4.7 × 10 ⁵ CFU/bee LOW TOXICITY	3119396
Non-arthropods		l	1
Earthworm (<i>Eisenia fetida</i>), adults ¹	14-day – Contact	No differences were observed between the control and treatment groups for mortality or body weight change. The 14-day LC_{50} was >4.20 × 10 ⁹ CFU/kg sdw LOW TOXICITY NOT PATHOGENIC	3119405
Microorganisms	•		•
Soil microflora – metabolic activity ¹	28-day – Metabolic activity	No significant differences were observed in nitrogen turnover or carbon turnover between the treatment and the control.	3119409
Aquatic Organism	ns		
Vertebrates			
Rainbow trout (Oncorhynchus mykiss) ¹	30-day – Aquatic	Body weight gain was significantly reduced in the 100 mg/L test group compared to the untreated control.The 30-day NOEC (body weight gain) was 6.0×10^7 CFU/L of mediaThe 30-day LC ₅₀ was >1.2 × 108 CFU/L of mediaLOW TOXICITY NOT PATHOGENIC	3119392

Table 5 Toxicity/pathogenicity of trichoderma asperellum ICC 012 technical to nontarget species

Organism Group	Exposure	Significant Effect, Comments	Reference
Invertebrates			
Daphnids (<i>Daphnia</i> magna) ¹	21-day – Aquatic exposure	Mortality increased with test item concentration.The 21-day LC_{50} was >1.2 × 10 ⁸ CFU/LTOXIC	3119403
Plants			
Green algae (Desmodesmus subspicatus) ¹	72-hour – Aquatic exposure	Growth rate and biomass were significantly reduced in the 1.3×10^9 CFU/L test group compared to the control.The 72-hour EC_{50} was > 1.3×10^9 CFU/LThe 72-hour NOEC was 6.5×10^8 CFU/LGROWTH INHIBITION	3119413
Duckweed (<i>Lemna gibba</i>) ¹	7-day – Aquatic exposure	There were no significant differences in frond numbers, inhibition of biomass gain, or inhibition of growth rate observed.The 7-day EC_{50} was > 1.2×10^9 CFU/LLOW TOXICITY	3119412

¹The test substance was *T. harzianum* strain ICC 012 which is equivalent to Trichoderma asperellum ICC 012 Technical.

Table 6 Toxicity/pathogenicity of Foretryx to non-target species

Organism Group	Exposure	Significant Effect,	Reference
	-	Comments	
Terrestrial Organi	sms		-
Invertebrates			
Arthropods			
Honeybee (<i>Apis</i> <i>mellifera</i>), adult worker	10-day – Dietary exposure	There were no treatment-related mortalities, abnormal behaviour, or differences in food consumption, compared to the untreated control. The 10-day dietary LD ₅₀ was >222 μg/bee/day (6.95 × 10 ³ CFU/bee/day <i>T. asperellum</i> strain ICC 012, and 1.08 × 10 ⁴ CFU/bee/day <i>T. gamsii</i> strain ICC 080 or a total of 1.78 × 10 ⁴ Trichoderma CFU/bee/day) LOW TOXICITY NOT PATHOGENIC	

Organism Group	Exposure	Significant Effect, Comments	Reference
Predatory mite (<i>Typholodromus</i> <i>pyri</i>) ²	14-day – Surface contact	There were no treatment-related effects on mortality. There were reductions in reproduction of 32.7, 54.4, and 28.7% in the 61.8g, 185g, and 5 kg/ha test groups, respectively. REPRODUCTIVE EFFECTS	
Aquatic Organisms	8		
Invertebrates			
Daphnids	48 hour –	There were no treatment-related immobilization	
(Daphnia magna)	Aquatic	effects observed.	
	exposure		
	1	The 48-hour LC ₅₀ and EC ₅₀ were $>3.2 \times 10^8$ CFU/L	
		LOW TOXICITY	

The test substance was Tellus WP, containing 9.3×10^7 CFU/g *T. viride* strain ICC 080 and 7.6×10^7 CFU/g *T. harzianum* strain ICC 012, which is equivalent to Foretryx.

² The test substance was Remedier WP, containing 1.2×10^8 CFU/g *Trichoderma* conidia, which is equivalent to Foretryx.

Table 7List of supported uses

Supported use claim for Foretryx

Crop: field and greenhouse fruiting vegetables (crop group 8)

Disease: suppression of post-emergence damping-off (Phytophthora capsici)

Application method: chemigation (greenhouse) or a diluted broadcast spray application to the soil surface at planting (field)

Rate: 2.8 kg product/ha

Crop: greenhouse ornamentals

Disease: partial suppression of post-emergence damping-off (*Phytophthora* spp.)

Application method: chemigation

Rate: 2.8 kg product/ha

Crop: field squash (summer and winter)

Disease: suppression of phytophthora blight (*Phytophthora capsici*)

Application method: a diluted broadcast spray application to the soil surface at planting

Rate: 2.8-5.6 kg product/ha

Supported use claim for Foretryx
Crop: field and greenhouse strawberries
Disease: partial suppression of post-emergence damping-off (<i>Phytophthora cactorum</i>)
Application method: chemigation (greenhouse) or a diluted broadcast spray application to the soil surface at planting (field)
Rate: 2.8 kg product/ha
Crop: greenhouse and indoor grown cannabis
Disease: partial suppression of post-emergence damping-off (Phytophthora spp.)
Application method: chemigation
Rate: 2.8 kg product/ha
Crop: field lettuce
Disease: partial suppression of sclerotinia drop/white mould (Sclerotinia sclerotiorum, S. minor)
Application method: a diluted broadcast spray application to the soil surface at planting
Rate: 2.8-3.4 kg product/ha
Crop: field and greenhouse fruiting vegetables (crop group 8)
Disease: suppression of verticillium wilt (Verticillium dahliae)
Application method: chemigation (greenhouse) or a diluted broadcast spray application to the soil surface at planting (field)
Rate: 2.8 kg product/ha
Crop: field and greenhouse strawberries
Disease: suppression of verticillium wilt (Verticillium dahliae)
Application method: chemigation (greenhouse) or a diluted broadcast spray application to the soil surface at planting (field)
Rate: 2.8 kg product/ha
Crop: greenhouse ornamentals
Disease: suppression of verticillium wilt (Verticillium dahliae)
Application method: chemigation
Rate: 2.8 kg product/ha

Supported use claim for Foretryx

Crop: greenhouse and indoor grown cannabis

Disease: suppression of verticillium wilt (*Verticillium dahliae*)

Application method: chemigation

Rate: 2.8 kg product/ha

Appendix II Estimated environmental concentration

Aquatic

The maximum proposed application rate of Foretryx is 5.6 kg/ha or 5.6×10^{10} CFU (*T. gamsii* strain ICC 080 and *T. asperellum* strain ICC 012 combined)/ha. There are 1.5×10^{6} L of water in the top 15 cm of 1 ha. Therefore, assuming that the maximum application rate was applied to surface water, the EEC is 3.7×10^{4} CFU/L in the top 15 cm of water.

Soil

The maximum proposed application rate of Foretryx is 5.6 kg/ha or 5.6×10^{10} CFU (*T. gamsii* strain ICC 080 and *T. asperellum* strain ICC 012 combined)/ha. There are 1.5×10^9 mL of soil in the top 15 cm of 1 ha. Therefore, assuming a specific gravity of 2.5 g/mL for soil, the EEC is 1.5×10^1 CFU/g in the top 15 cm of soil.

References

A. List of studies/information submitted by registrant

1.0 Product characterization and analysis

3118469	2016, Remedier (<i>Trichoderma asperellum</i> ICC 012 and <i>Trichoderma gamsii</i> ICC 080) Document M-MP, Section 1 Identity of the Plant Protection Product, DACO: M1.2, M1.3, M2.1, M2.4, M2.5, M2.7.1, M2.7.2, M2.9.1
3118509	2016, <i>Trichoderma asperellum</i> ICC 012 / Remedier Document J (Manufacturing Process), DACO: M2.10.1, M2.10.2, M2.10.3, M2.2, M2.8, M2.9, M2.9.2, M2.9.3 CBI
3118510	2020, Shelf-Life AT 25°C for 15 Months on Remedier - Draft Report, DACO: M2.11 CBI
3118511	2005, <i>Trichoderma harzianum</i> and <i>Trichoderma viride</i> Wettable Powder Determination of Accelerated Storage Stability and Corrosion Characteristics, DACO: M2.11
3118512	2005, <i>Trichoderma harzianum</i> and <i>Trichoderma viride</i> Wettable Powder Determination of the Bulk (TAP) Density, DACO: M2.12
3118513	2005, <i>Trichoderma harzianum</i> and <i>Trichoderma viride</i> Wettable Powder Determination of the Colour, Odour and Physical State, DACO: M2.12
3118514	2005, <i>Trichoderma harzianum</i> and <i>Trichoderma viride</i> wettable powder determination of the pH, DACO: M2.12
3118515	2005, <i>Trichoderma harzianum</i> and <i>Trichoderma viride</i> wettable powder determination of the Suspensibility, DACO: M2.12
3118516	2005, <i>Trichoderma harzianum</i> and <i>Trichoderma viride</i> wettable powder determination of the Wettability, DACO: M2.12
3118517	2016, Remedier (<i>Trichoderma asperellum</i> ICC 012 and <i>Trichoderma gamsii</i> ICC 080) Document M-MP, Section 2 Physical; Chemical and Technical Properties of the Plant Protection Product, DACO: M2.11, M2.12
3118518	2016, Remedier (<i>Trichoderma asperellum</i> ICC 012 and <i>Trichoderma gamsii</i> ICC 080) Document M-MP, Section 5 Analytical Methods, DACO: M2.10.1, M2.10.2, M2.10.3, M2.13
3118519	2020, DACO M2.6 Patent Status, DACO: M2.6
3118616	2016, Document J - <i>Trichoderma gamsii</i> ICC 080 / Remedier, DACO: M2.1, M2.10.1, M2.10.2, M2.10.3, M2.2, M2.4, M2.5, M2.7, M2.8, M2.9.1, M2.9.2, M2.9.3, M8.2.1 CBI
3118617	2016, <i>Trichoderma gamsii</i> ICC 080 Document M-MA, Section 1 Identity OF the Micro-Organism, DACO: M2.1, M2.10.1, M2.10.2, M2.2, M2.4, M2.5, M2.7.1
3118618	2016, <i>Trichoderma gamsii</i> ICC 080 DOCUMENT M-MA, Section 4 Analytical Methods, DACO: M2.10.1, M2.10.2, M2.10.3, M7.0
3118619	2020, Patent Status and Storage Stability, DACO: M2.11, M2.6
3118620	2007, <i>Trichoderma viride</i> : Determination of the Physico-Chemical Properties, DACO: M2.12
3118621	Razinger, J., Lutz, M., Schroers, H J., Palmisano, M., Wohler, C., Urek, G., Grunder, J., 2014, Direct plantlet inoculation with soil or insect-associated fungi may control cabbage root fly maggots, J Invertebr Pathol. 2014 Jul; 120:59-66. doi: 10.1016/j.jip.2014.05.006. Epub 2014 Jun 4. PMID: 24907449, DACO: M2.7.2
3118622	Martins, F., Pereira, J.A., Bota, P., Bento, A., Baptista, P., 2014, Fungal endophyte communities in above- and belowground olive tree organs and the effect of season and geographic location on their structures, Fungal Ecology. 20. 193-201. 10.1016/j.funeco.2016.01.005., DACO: M2.7.2

3118623	2016, Literature review on <i>Trichoderma gamsii</i> ICC080: Biological properties, DACO: M2.7.2
3118624	Rinu, K., Sati, P., Pandey, A., 2012, <i>Trichoderma gamsii</i> (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain, J Basic Microbiol. 2014 May; 54(5):408-17. doi: 10.1002/jobm.201200579. Epub 2013 Apr 8. PMID: 23564225, DACO: M2.7.1,M2.7.2
3118625	2016, <i>Trichoderma gamsii</i> ICC 080 Document M-MA, Section 2 Biological Properties of the Microorganism, DACO: M2.12, M2.7.1, M2.7.2
3118626	2007, <i>Trichoderma viride</i> : Complete Analysis of Five Batch Samples, DACO: M2.9.1, M2.9.2, M2.9.3 CBI
3118664	Qualhato, T.F., Alvares Cardoso Lopes, F., Stecca Steinhoff, A., Silva Brandao, R., Santos Amorim Jesuino, R., Ulhoa, C.J., 2013, Mycoparasitism studies of <i>Trichoderma</i> species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production, Biotechnol Lett. 2013 Sep; 35(9):1461-8. doi: 10.1007/s10529-013- 1225-3. Epub 2013 May 21. PMID: 23690037, DACO: M10.2.1,M2.7.2
3118668	2016, <i>Trichoderma asperellum</i> ICC 012 Document M-MA, Section 4 Analytical Methods, DACO: M2.10.1
3118669	2016, <i>Trichoderma asperellum</i> ICC 012 Document M-MA, Section 1 Identity of the Micro-Organism, DACO: M2.1, M2.10.1, M2.4, M2.5, M2.7.1, M2.7.2
3118670	2020, Patent Status and Storage Stability, DACO: M2.11, M2.6
3118671	2007, <i>Trichoderma harzianum</i> : Determination of the Physico-Chemical Properties, DACO: M2.12
3118672	2016, <i>Trichoderma asperellum</i> ICC 012 / Remedier Document J Confidential Information, DACO: M2.10.1, M2.10.2, M2.10.3, M2.2, M2.3, M2.5, M2.7.1, M2.8, M2.9.1, M2.9.2, M2.9.3, M8.2.1 CBI
3118673	Lieckfeldt, E., Samuels, G.J., Nirenberg, H., Petrini, O., 1999, A morphological and molecular perspective of <i>Trichoderma viride</i> : is it one or two species? Appl Environ Microbiol. 1999; 65(6):2418-2428. doi:10.1128/AEM.65.6.2418-2428.1999, DACO: M2.5
3118674	Bissett, J., 1983, A revision of the genus <i>Trichoderma</i> . I. Section Longibrachiatum sect. nov., Canadian Journal of Botany Vol. 62, No. 5 May 1984, DACO: M2.5
3118675	Bissett, J., 1991, A revision of the genus <i>Trichoderma</i> . III. Section Pachybasium, Canadian Journal of Botany Vol. 69, No. 11 November 1991, DACO: M2.5
3118676	Bissett, J., 1991, A revision of the genus <i>Trichoderma</i> . IV. Additional notes on section Longibrachiatum, Canadian Journal of Botany Vol. 69 No. 11 November 1991, DACO: M2.5
3118677	Bissett, J. et al., 2015, Accepted <i>Trichoderma</i> names in the year 2015, IMA Fungus. 2015 Dec; 6(2):263-95. doi: 10.5598/imafungus.2015.06.02.02. Epub 2015 Sep 29. PMID: 26734542; PMCID: PMC4681254, DACO: M2.5
3118678	Jaklitsch, W.M., Samuels, G.J., Dodd, S.L., Lu, BS., Druzhinina, I.S., 2006, Hypocrea rufa/ <i>Trichoderma viride</i> : a reassessment, and description of five closely related species with and without warted conidia, Stud Mycol. 2006; 56:135-77. doi: 10.3114/sim.2006.56.04. PMID: 18490991; PMCID: PMC2104735, DACO: M2.5
3118679	Hawksworth, D.L., et al, 2011, The Amsterdam declaration on fungal nomenclature. IMA Fungus, 2011 Jun; 2(1):105-12. doi: 10.5598/imafungus.2011.02.01.14. Epub 2011 Jun 7. PMID: 22679594; PMCID: PMC3317370, DACO: M2.5
3118680	Samuels, G.J., Ismaiel, A., Mulaw, T.B., Szakacs, G., Druzhinina, I.S., Kubicek, C.P., Jaklitsch, W.M., 2012, The Longibrachiatum Clade of <i>Trichoderma</i> : a revision with new species, Fungal Diversity 55, 77-108 (2012). https://doi.org/10.1007/s13225-012-0152-2, DACO: M2.5

3119300	Jaklitsch, W.M., Voglmayr, H., 2015, Biodiversity of <i>Trichoderma</i> (Hypocreaceae) in Southern Europe and Macaronesia, Studies in Mycology, Volume 80, 2015, Pages 1-87, ISSN 0166-0616, https://doi.org/10.1016/j.simyco.2014.11.001, DACO: M2.7.1
3119302	Xia, X., Lie, T.K., Qian, X., Zheng, Z., Huang, Y., Shen, Y., 2010, Species Diversity, Distribution, and Genetic Structure of Endophytic and Epiphytic <i>Trichoderma</i> Associated with Banana Roots., Microb Ecol 61, 619625 (2011). https://doi.org/10.1007/s00248- 010-9770-y, DACO: M2.7.1
3119303	2016, Strain Identification and Phylogeny - <i>Trichoderma</i> strains ICC 012, ICC 080, T11, T25 and TV1, DACO: M2.7.1 CBI
3119304	Samuels, G.J., Lieckfeldt, E., Nirenberg, H.I., 1999, <i>Trichoderma asperellum</i> , a new species with warted conidia, and redescription of <i>T. viride</i> , Sydowia, 1999, Vol. 51, pgs. 71-88, DACO: M2.7.1
3119305	Chaverri, P., Branco-Rocha, F., Jaklitsch, W., Gazis, R., Degenkolb, T., Samuels, G.J., 2015, Systematics of the <i>Trichoderma harzianum</i> species complex and the re- identification of commercial biocontrol strains, Mycologia. 2015 May-Jun; 107(3):558- 590. doi: 10.3852/14-147. Epub 2015 Feb 6. PMID: 25661720; PMCID: PMC4885665, DACO: M2.7.1, M2.7.2
3119306	Bailey, B.A., Bae, H., Strem, M.D., Crozier, J., Thomas, S.E., Samuels, G.J., Vinyard, B.T., Holmes, K.A., 2008, Antibiosis, mycoparasitism, and colonization success for endophytic <i>Trichoderma</i> isolates with biological control potential in <i>Theobroma cacao</i> , Biological Control, Volume 46, Issue 1, 2008, Pages 24-35, ISSN 1049-9644, https://doi.org/10.1016/j.biocontrol.2008.01.003, DACO: M2.7.2
3119307	Rosa, L.H., Tabanca, N., Techen, N., Pan, Z., Wedge, D.E., Moraes, R.M., 2012, Antifungal activity of extracts from endophytic fungi associated with <i>Smallanthus</i> maintained in vitro as autotrophic cultures and as pot plants in the greenhouse, Canadian Journal of Microbiology, Vol. 58, No. 10, October 2012, DACO: M2.7.2
3119308	Strasser, H., Vey, A., Butt, T.M., 2000, Are There any Risks in Using Entomopathogenic Fungi for Pest Control, with Particular Reference to the Bioactive Metabolites of Metarhizium, Tolypocladium and Beauveria species?, Biocontrol Science and Technology, 10:6, 717-735, DOI: 10.1080/09583150020011690, DACO: M2.7.2
3119309	Ren, J., Xue, C., Tian, L., Xu, M., Chen, J., Deng, Z., Proksch, P., Lin, W., 2009, Asperelines A-F, Peptaibols from the Marine-Derived Fungus <i>Trichoderma asperellum</i> , Journal of Natural Products 2009 72 (6), 1036-1044, DACO: M2.7.2
3119310	Chen, L., Zhang, Q.Q., Zhong, P., Fang, Z.X., 2013, Asperelines G and H, Two New Peptaibols from the Marine-Derived Fungus <i>Trichoderma asperellum</i> , Heterocycles. 87. 645. 10.3987/COM-12-12644, DACO: M2.7.2
3119311	Muskhazli, M., Salifah, H.A.B., Nor Azwady, A.A., Rusea, G., 2013, Assessing the Interaction of Orchid Seed and Mychorrhiza Isolated from Cultivated <i>Grammatophyllum</i> <i>stapeliiflorum</i> (Teijsm. and Mann.) S.S. Smith based on In-Vitro Symbiotic Seed Germination, Thai Journal of Agricultural Science. 45. 89-97DACO: M2.7.2
3119313	Schuster, A., Schmoll, M., 2010, Biology and biotechnology of <i>Trichoderma</i> , Appl Microbiol Biotechnol. 2010 Jul; 87(3):787-99. doi: 10.1007/s00253-010-2632-1. Epub 2010 May 12. PMID: 20461510; PMCID: PMC2886115, DACO: M2.7.2
3119314	Thangavelu, R., Gopi, M., 2015, Combined application of native <i>Trichoderma</i> isolates possessing multiple functions for the control of <i>Fusarium</i> wilt disease in banana cv. Grand Naine, Biocontrol Science and Technology, 25:10, 1147-1164, DOI: 10.1080/09583157.2015.1036727, DACO: M2.7.2
3119315	Fesel, P.H., Zuccaro, A., 2016, Dissecting endophytic lifestyle along the parasitism/mutualism continuum in <i>Arabidopsis</i> , Curr Opin Microbiol. 2016 Aug;

	32:103-112. doi: 10.1016/j.mib.2016.05.008. Epub 2016 Jun 6. PMID: 27280851, DACO: M2.7.2
3119316	Sim, C.S.F., Tan, W.S., Ting, A.S.Y., 2015, Endophytes from Phragmites for metal removal: evaluating their metal tolerance, adaptive tolerance behaviour and biosorption efficacy, Desalination and Water Treatment, 57:15, 6959-6966, DOI: 10.1080/19443994.2015.1013507, DACO: M2.7.2
3119317	Weaver, M., Vedenyapina, E., Kenerley, C.M., 2004, Fitness, persistence, and responsiveness of a genetically engineered strain of <i>Trichoderma virens</i> in soil mesocosms, Applied Soil Ecology - Appl Soil Ecol. 29. 10.1016/j.apsoil.2004.11.006, DACO: M2.7.2
3119318	Carroll, G., 1988, Fungal Endophytes in Stems and Leaves: From Latent Pathogen to Mutualistic Symbiont, Ecology, vol. 69, no. 1, 1988, pp. 2-9, https://doi.org/10.2307/1943154. Accessed 11 May 2022, DACO: M2.7.2
3119319	Rodriguez, R.J., White Jr., J.F., Arnold, A.E., Redman, R.S., 2008, Fungal endophytes: diversity and functional roles, New Phytol. 2009; 182(2):314-330. doi: 10.1111/j.1469-8137.2009.02773.x. Epub 2009 Feb 19. PMID: 19236579, DACO: M2.7.2
3119320	Daguerre, A., Siegel, K., Edel-Hermann, V., Steinberg, C., 2014, Fungal proteins and genes associated with biocontrol mechanisms of soil-borne pathogens: a review, Fungal Biology Reviews, Volume 28, Issue 4, 2014, Pages 97-125, ISSN 1749-4613, https://doi.org/10.1016/j.fbr.2014.11.001, DACO: M2.7.2
3119321	Bogner, C.W., Kariuki, G.M., Elashry, A., Sichtermann, G., Buch, A K., Mishra, B., Thines, M., Grundler, F.M.W., Schouten, A., 2015, Fungal root endophytes of tomato from Kenya and their nematode biocontrol potential, Mycol Progress 15, 30 (2016). https://doi.org/10.1007/s11557-016-1169-9, DACO: M2.7.2
3119322	Osono, T., Ishii, Y., Takeda, H., Seramethakum, T., Khamyong, S., To-Anun, C., Hirose, D., Tokumasu, S., Kakishima, M., 2009, Fungal succession and lignin decomposition on <i>Shorea obtusa</i> leaves in a tropical seasonal forest in northern Thailand, Fungal Diversity 36: 101-119, DACO: M2.7.2
3119324	Lehner, S.M., Atanasova, L., Neumann, N.K.N., Krska, R., Lemmens, M., Druzhinina, I.S., Schuhmacher, R., 2013, Isotope-assisted screening for iron-containing metabolites reveals a high degree of diversity among known and unknown siderophores produced by <i>Trichoderma</i> spp, Appl Environ Microbiol. 2013 Jan; 79(1):18-31. doi: 10.1128/AEM.02339-12. Epub 2012 Oct 12. PMID: 23064341; PMCID: PMC3536107,
3119325	DACO: M2.7.2 Kusari, S., Spiteller, M., 2016, Metabolomics of Endophytic Fungi Producing Associated Plant Secondary Metabolites: Progress, Challenges and Opportunities, In: Roessner, U., editor. Metabolomics [Internet]. London: IntechOpen; 2012 [cited 2022 May 10]. doi: 10.5772/31596, DACO: M2.7.2
3119326	Watanabe, S., Kumakura, K., Izuawa, N., Nagayama, K., Mitachi, T., Kanamori, M. Teraoka, T., Arie, T., 2007, Mode of action of <i>Trichoderma asperellum</i> SKT-1, a biocontrol agent against <i>Gibberella fujikuroi</i> , Journal of Pesticide Science, 2007, Volume
3119327	32, Issue 3, Pages 222-228, ISSN 1348-589X, DACO: M2.7.2 Brito, J.PC., Ramada, M.HS., de Magalhaes, M.TQ., Silva, L.P., Ulhoa, C.J., 2014, Peptaibols from <i>Trichoderma asperellum</i> TR356 strain isolated from Brazilian soil, SpringerPlus 3, 600 (2014). https://doi.org/10.1186/2193-1801-3-600, DACO: M2.7.2
3119328	Steyaert, J.M., Weld, R.J., Mendoza- Mendoza, A., Stewart, A., 2010, Reproduction without sex: Conidiation in the filamentous fungus <i>Trichoderma</i> , Microbiology (Reading, England). 156. 2887-900. 10.1099/mic.0.041715-0, DACO: M2.7.2

3119329	Lee, J.M., Tan, W.S., Ting, A.S.Y., 2014, Revealing the antimicrobial and enzymatic potentials of culturable fungal endophytes from tropical pitcher plants (<i>Nepenthes</i> spp.), Mycosphere. 5. 364-377. 10.5943/mycosphere/5/2/10, DACO: M2.7.2
3119330	Diba, F., Alam, F., Talukder, A.A., 2015, Screening of Acetic Acid Producing Microorganisms from Decomposed Fruits for Vinegar Production, Advances in Microbiology, 5, 291-297. doi: 10.4236/aim.2015.55028, DACO: M2.7.2
3119331	Hermosa, R., Cardoza, R.E., Belén Rubio, M., Gutiérrez, S., Monte, E., 2014, Chapter 10 - Secondary Metabolism and Antimicrobial Metabolites of <i>Trichoderma</i> ., Biotechnology and Biology of Trichoderma, Elsevier, 2014, Pages 125-137, ISBN 9780444595768, https://doi.org/10.1016/B978-0-444-59576-8.00010-2, DACO: M2.7.2
3119332	Ren, J., Yang, Y., Liu, D., Chen, W., Proksch, P., Shao, B., Lin, W., 2013, Sequential determination of new peptaibols asperelines G-Z12 produced by marine-derived fungus <i>Trichoderma asperellum</i> using ultrahigh pressure liquid chromatography combined with electrospray-ionization tandem mass spectrometry, J Chromatogr A. 2013 Sep 27;1309:90-5. doi: 10.1016/j.chroma.2013.08.026. Epub 2013 Aug 14. PMID: 23973015, DACO: M2.7.2
3119333	Seidl, V., Seibel, C., Kubicek, C.P., Schmoll, M., 2009, Sexual development in the industrial workhorse <i>Trichoderma reesei</i> , Proceedings of the National Academy of Sciences of the United States of America.106. 13909-14. 10.1073/pnas.0904936106, DACO: M2.7.2
3119334	Taylor, A., 1986, Some aspects of the chemistry and biology of the genus Hypocrea and its anamorphs, <i>Trichoderma</i> and <i>Gliocladium</i> , Proceedings of the Nova Scotian Institute of Science, 36(1), 27-58, DACO: M2.7.2
3119335	Rodriguez, R.J., Henson, J., van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., Kim, YO., Redman, R.S., 2008, Stress tolerance in plants via habitat-adapted symbiosis, ISME J 2, 404416 (2008). https://doi.org/10.1038/ismej.2007.106, DACO: M2.7.2
3119337	Chutrakul, C., Alcocer, M., Bailey, K., Peberdy, J.F., 2008, The Production and Characterisation of Trichotoxin Peptaibols, by <i>Trichoderma asperellum</i> , Chemistry & biodiversity. 5. 2464. 10.1002/cbdv.200890212, DACO: M2.7.2
3119338	Favilla, M., Macchia, L., Gallo, A., Altomare, C., 2006, Toxicity assessment of metabolites of fungal biocontrol agents using two different (<i>Artemia salina</i> and <i>Daphnia magna</i>) invertebrate bioassays, Food Chem Toxicol. 2006 Nov; 44(11):1922-31. doi: 10.1016/j.fct.2006.06.024. Epub 2006 Jul 13. PMID: 16935403, DACO: M2.7.2
3119339	Rosmana, A., Samuels, G.J., Ismaeiel, A., Ibrahim, E.S., Chaverri, P., Herawati, Y., Asman, A., 2015, <i>Trichoderma asperellum</i> : A Dominant Endophyte Species in Cacao Grown in Sulawesi with Potential for Controlling Vascular Streak Dieback Disease, Tropical Plant Pathology. 40. 10.1007/s40858-015-0004-1, DACO: M2.7.2
3119340	Bailey, B.A., Strem, M.D., Wood, D., 2009, <i>Trichoderma</i> species form endophytic associations within <i>Theobroma cacao</i> trichomes, Mycological Research, Volume 113, Issue 12, 2009, Pages 1365-1376, ISSN 0953-7562, https://doi.org/10.1016/j.mycres.2009.09.004, DACO: M2.7.2
3119341	Woo, S.L., Ruocco, M., Vinale, F., Nigro, M., Marra, R., N. Lombardi, N., Pascale, A., Lanzuise, S., Manganiello, G., Lorito, M., 2014, Trichoderma-based Products and their Widespread Use in Agriculture, The Open Mycology Journal, 2014, 8: 71-126, DOI: 10.2174/1874437001408010071, DACO: M2.7.2
3119344	Druzhinina, I.S., Seidl- Seiboth, V., Herrera- Estrella, A., Horwitz, B.A., Kenerly, C.M., Monte, E., Mukherjee, P.K., Zeilinger, S., Grigoriev, I.V., Kubicek, C.P., 2011, <i>Trichoderma</i> : the genomics of opportunistic success, Nat Rev Microbiol 9, 749-759 (2011). https://doi.org/10.1038/nrmicro2637, DACO: M2.7.2

3119345	2016, <i>Trichoderma asperellum</i> ICC 012 Document M-MA, Section 2 Biological Properties of the Microorganism, DACO: M1.2, M1.3, M2.7.2, M4.8
3119346	2016, Literature Review on <i>Trichoderma asperellum</i> ICC 012 Biological Properties, DACO: M2.0, M2.7.2
3119347	Degenkolb, T., Dieckmann, R., Fog Nielsen, K., Gräfenhan, T., Tfheis, C., Zafari, D., Chaverri, P., Ismaiel, A., Bruckner, H., von Döhren, H., Thrande, U., Petrini, O., Samuels, G.J., 2008, The <i>Trichoderma brevicompactum</i> clade: a separate lineage with new species, new peptaibiotics, and mycotoxins., Mycol Progress 7, 177-219 (2008). https://doi.org/10.1007/s11557-008-0563-3, DACO: M2.5, M2.7.2
3119348	Samuels, G.J., 2005, <i>Trichoderma</i> : systematics, the sexual state, and ecology, Phytopathology. 2006 Feb; 96(2):195-206. doi: 10.1094/PHYTO-96-0195. PMID: 18943925, DACO: M2.5, M2.7.1, M2.7.2
3119349	Kredics, L., Hatvani, L., Naeimi, S., Körmöczi, P., Manczinger, L., Vágvölgyi, C., Druzhinina, I., 2014, Chapter 1 - Biodiversity of the Genus <i>Hypocrea/Trichoderma</i> in Different Habitats, Biotechnology and Biology of <i>Trichoderma</i> , Elsevier, 2014, Pages 3- 24, ISBN 9780444595768, https://doi.org/10.1016/B978-0-444-59576-8.00001-1, DACO: M2.7.1, M2.7.2
3119354	Cummings, N.J., Ambrose, A., Braithwaite, M., Bissett, J., Roslan, H.A., Abdullah, J., Stewart, A., Abgayani, F.V., Steyaert, J., Hill, R.A., 2016, Diversity of root-endophytic <i>Trichoderma</i> from Malaysian Borneo, Mycol Progress 15, 50 (2016). https://doi.org/10.1007/s11557-016-1192-x, DACO: M2.7.1, M2.7.2
3119355	Hoyos- Carvajal, L., Orduz, S., Bissett, J., 2009, Genetic and metabolic biodiversity of <i>Trichoderma</i> from Colombia and adjacent neotropic regions, Fungal Genet Biol. 2009 Sep; 46(9):615-31. doi: 10.1016/j.fgb.2009.04.006. Epub 2009 May 9. PMID: 19439189, DACO: M2.7.1, M2.7.2
3119356	Premalatha, K., Gokul, S., Kumar, A., Mishra, P., Mishra, P., Ravikumar, K., Kalra, A., 2014, Molecular profiling of fungal assemblages in the healthy and infected roots of <i>Decalepis arayalpathra</i> (J. Joseph & V. Chandras) Venter, an endemic and endangered ethnomedicinal plant from Western Ghats, India, Ann Microbiol 65, 785-797 (2015). https://doi.org/10.1007/s13213-014-0919-7, DACO: M2.7.1, M2.7.2
3119357	Zec-Vojinovic, M., Hokkanen, H.M.T., Buchs, W., Klukowski, K., Luik, A., Nilsson, C., Ulber, B., Williams, I.H., 2014, Natural occurrence of pathogens of oilseed rape pests in agricultural fields in Europe, Proceedings International Symposium on Integrated Pest Management in Oilseed Rape, Gottingen, 3-5 April 2006. British Crop Protection Council (BCPC). pp. on CD-ROM, DACO: M2.7.1, M2.7.2
3119358	2007, <i>Trichoderma harzianum</i> : Complete Analysis of Five Batch Samples, DACO: M2.10.1, M2.10.2, M2.9.2, M2.9.3 CBI
3202906	Jaleed S. Ahmad and Ralph Baker., 1987, Implications of rhizosphere competence of <i>Trichoderma harzianum</i> , Canadian Journal of Microbiology. 34(3): 229-234. https://doi.org/10.1139/m88-043, DACO: M2.12, M2.7.1, M2.7.2
3202908	Benedicte R. Albrectsen, Lars Björkén, Akkamahadevi Varad, Asa Hagner, Mats Wedin, Jan Karlsson, Stefan Jansson, 2010, Endophytic fungi in European aspen (<i>Populus tremula</i>) leaves - Diversity, detection, and a suggested correlation with herbivory resistance, Fungal diversity. 41. 17-28. 10.1007/s13225-009-0011-y, DACO: M2.12, M2.7.1, M2.7.2
3202909	Antal Z, Kredics L, Pakarinen J, Dóczi I, Andersson M, Salkinoja-Salonen M, Manczinger L, Szekeres A, Hatvani L, Vágvölgyi C, Nagy E., 2005, Comparative study of potential virulence factors in human pathogenic and saprophytic <i>Trichoderma</i> <i>longibrachiatum</i> strains, Acta Microbiol Immunol Hung. 2005; 52(3-4):341-50. doi: 10.1556/AMicr.52.2005.3-4.6. PMID: 16400874, DACO: M2.12, M2.7.1, M2.7.2

3202911	Benítez T, Rincón AM, Limón MC, Codón AC., 2004, Biocontrol mechanisms of <i>Trichoderma</i> strains, Int Microbiol. 2004 Dec; 7(4):249-60. PMID: 15666245, DACO: M2.12, M2.7.1, M2.7.2
3202914	Ya-Chun Chang, Yih-Chang Chang, Ralph Baker, 2021, Increased Growth of Plants in the Presence of the Biological Control Agent <i>Trichoderma harzianum</i> , Plant-disease (USA). (Feb 1986).v. 70(2) p. 145-148, DACO: M2.12, M2.7.1, M2.7.2
3202915	Priscila Chaverri, RicaFabiano Branco-Rocha, Walter Jaklitsch, Romina Gazis, Thomas Degenkolb, Gary J. Samuels, 2016, Systematics of the <i>Trichoderma harzianum</i> species complex and the re-identification of commercial biocontrol strains, Mycologia. 2015 May-Jun; 107(3):558-590. doi: 10.3852/14-147. Epub 2015 Feb 6. PMID: 25661720; PMCID: PMC4885665, DACO: M2.12, M2.7.1, M2.7.2
3202916	J.M. Cooney and D.R. Lauren, 1998, <i>Trichoderma</i> /pathogen interactions: measurement of antagonistic chemicals produced at the antagonist/pathogen interface using a tubular bioassay, Lett Appl Microbiol. 1998 Nov;27(5):283-6. doi: 10.1046/j.1472-765x.1998.t01-9-00449.x. PMID: 9830146, DACO: M2.12, M2.7.1, M2.7.2
3202917	Charles R. Howell, 2005, Understanding the Mechanisms Employed by <i>Trichoderma virens</i> to Effect Biological Control of Cotton Diseases, Phytopathology. 2006 Feb; 96(2):178-80. doi: 10.1094/PHYTO-96-0178. PMID: 18943921, DACO: M2.12, M2.7.1, M2.7.2
3202918	Geert De Meyer, Joseph Bigirimana, Yigal Elad, Monica Hofte, 1998, Induced systemic resistance in <i>Trichoderma harzianum</i> T39 biocontrol of <i>Botrytis cinerea</i> , European Journal of Plant Pathology 104, 279-286 (1998). https://doi.org/10.1023/A:1008628806616, DACO: M2.12, M2.7.1, M2.7.2
3202919	Gustavo H. Goldman, Christopher Hayes, Gary E. Harman, 1994, Molecular and cellular biology of biocontrol by <i>Trichoderma</i> spp., Trends Biotechnol. 1994 Dec; 12(12):478-82. doi: 10.1016/0167-7799(94)90055-8. PMID: 7765647, DACO: M2.12, M2.7.1, M2.7.2
3202920	B. Guo, Y. Wang, X. Sun, K. Tang, 2006, Bioactive Natural Products from Endophytes: A Review, Appl Biochem Microbiol 44, 136-142 (2008). https://doi.org/10.1134/S0003683808020026, DACO: M2.12, M2.7.1, M2.7.2
3202921	Gary E. Harman, Charles R. Howell, Ada Viterbo, Ilan Chet and Matteo Lorito, 2004, <i>Trichoderma species</i> - opportunistic, avirulent plant symbionts, Nat Rev Microbiol 2, 43-56 (2004). https://doi.org/10.1038/nrmicro797, DACO: M2.12, M2.7.1, M2.7.2
3202922	M. Rosa Hermosa, Emma Keck, Isabel Chamorro, Belen Rubio, Luis Sanz, Juan A. Vizcaino, Isabel Grondona and Enrique Monte, 2004, Genetic diversity shown in <i>Trichoderma</i> biocontrol isolates., Mycol Res. 2004 Aug; 108(Pt 8):897-906. doi: 10.1017/s0953756204000358. PMID: 15449594, DACO: M2.12, M2.7.1, M2.7.2
3202923	M. R. Hermosa, I. Grondona, E. A. Iturriaga, J. M. Diaz-Minguez, C. Castro, E. Monte, and I. Garcia-Acha, 2000, Molecular Characterization and Identification of Biocontrol Isolates of <i>Trichoderma</i> spp., Hermosa MR, Grondona I, Iturriaga EA, et al. Molecular characterization and identification of biocontrol isolates of <i>Trichoderma</i> spp. Appl Environ Microbiol. 2000; 66(5):1890-1898. doi:10.1128/AEM.66.5.1890-1898.2000, DACO: M2.12, M2.7.1, M2.7.2
3202924	Kredics L, Antal Z, Dóczi I, Manczinger L, Kevei F, Nagy E., 2003, Clinical importance of the genus <i>Trichoderma</i> . A review, Acta Microbiol Immunol Hung. 2003; 50(2-3):105-17. doi: 10.1556/AMicr.50.2003.2-3.1. PMID: 12894482, DACO: M2.12, M2.7.1, M2.7.2
3202925	C.P. Kubicek, R.L. Mach, C.K. Peterbauer and M. Lorito, 2001, Trichoderma: From Genes to Biocontrol, Journal of Plant Pathology 83 (2001): 11-23. http://www.jstor.org/stable/41998018, DACO: M2.12, M2.7.1, M2.7.2

3202926	K. Kuhls, E. Lieckfeldt, T. Borner & E. Gueho, 1998, Molecular reidentification of human pathogenic <i>Trichoderma</i> isolates as <i>Trichoderma longibrachiatum</i> and <i>Trichoderma citrinoviride</i> , Medical Mycology, Volume 37, Issue 1, January 1999, Pages 25-33, https://doi.org/10.1080/02681219980000041, DACO: M2.12, M2.7.1, M2.7.2
3202927	Cornelia Kullnig, Robert L. Mach, Matteo Lorito, and Christian P. Kubicek, 2000, Enzyme Diffusion from <i>Trichoderma atroviride</i> (5 <i>T. harzianum</i> P1) to <i>Rhizoctonia</i> <i>solani</i> Is a Prerequisite for Triggering of <i>Trichoderma</i> ech42 Gene Expression before Mycoparasitic Contact, Appl Environ Microbiol. 2000 May; 66(5):2232-4. doi: 10.1128/AEM.66.5.2232-2234.2000. PMID: 10788407; PMCID: PMC101480, DACO: M2.12, M2.7.1, M2.7.2
3202928	J.A. Lewis and G.C. Papvizas, 1984, A new Approach to Stimulate Population Proliferation of <i>Trichoderma</i> species an Other Potential Biocontrol Fungi Introduced into Natural Soils, Phytopathology (USA). (Oct 1984). v. 74(10) p. 1240-1244, DACO: M2.12, M2.7.1, M2.7.2
3202929	E. Monte and A. Llobell, 2003, Trichoderma in Organic Agriculture, Proceedings V World Avocado Congress (Actas v Congreso Mundial del Aguacate) 2003. pp. 725-733, DACO: M2.12, M2.7.1, M2.7.2
3202930	E. Monte, 2001, Understanding <i>Trichoderma</i> : Between biotechnology and microbial ecology, Int Microbiol. 2001 Mar; 4(1):1-4. doi: 10.1007/s101230100001. PMID: 11770814, DACO: M2.12, M2.7.1, M2.7.2
3202931	Maria E Morán-Diez, Naomi Trushina, Netta Li Lamdan, Lea Rosenfelder, Prasun K Mukherjee, Charles M Kenerley and Benjamin A Horwitz, 2015, Host-specific transcriptomic pattern of <i>Trichoderma virens</i> during interaction with maize or tomato roots, BMC Genomics 16, 8 (2015). https://doi.org/10.1186/s12864-014-1208-3, DACO: M2.12, M2.7.1, M2.7.2
3202932	Shailendra Mudgal, Arianna De Toni, Clément Tostivint, Heikki Hokkanen, David Chandler, 2013, Scientific support, literature review and data collection and analysis for risk assessment on microbial organisms used as active substance in plant protection products - Lot 1 Environmental Risk characterisation, EFSA Supporting Publications 2013; 10(12):EN-518. [149 pp.]. doi:10.2903/sp.efsa.2013.EN-518, DACO: M2.12, M2.7.1, M2.7.2
3202933	G.C Papvizas and R.D. Lumsden, 2002, Improved Medium for Isolation of <i>Trichoderma</i> spp. from Soil, Phytoparasitica. 11. 55-58. 10.1007/BF02980712, DACO: M2.12, M2.7.1, M2.7.2
3202934	Partida-Martinez Laila P., Heil Martin, 2011, The microbe-free plant: fact or artifact?, Frontiers in Plant Science, Vol. 2, 2011, https://www.frontiersin.org/article/10.3389/fpls.2011.00100, DACO: M2.12, M2.7.1, M2.7.2
3202935	Gary J. Samuels, 2011, <i>Trichoderma</i> : a review of biology and systematics of the genus, Mycological Research, Vol. 100, Issue 8, 1996, Pages 923-935, ISSN 0953-7562, <u>https://doi.org/10.1016/S0953-7562</u> (96)80043-8., DACO: M2.12, M2.7.1, M2.7.2
3202936	Gary J. Samuels, Sarah L. Dodd, Walter Gams, Lisa A. Castlebury & Orlando Petrini, 2017, <i>Trichoderma</i> species associated with the green mold epidemic of commercially grown <i>Agaricus bisporus</i> , Mycologia. 2002 Jan-Feb; 94(1):146-70. PMID: 21156486, DACO: M2.12, M2.7.1, M2.7.2
3202937	Marcelo Sandoval-Denis, Deanna A. Sutton, José F. Cano-Lira, Josepa Gené, Annette W. Fothergill, Nathan P. Wiederhold, Josep Guarroa, 2014, Phylogeny of the Clinically Relevant Species of the Emerging Fungus <i>Trichoderma</i> and Their Antifungal Susceptibilities, J Clin Microbiol. 2014 Jun; 52(6):2112-25. doi: 10.1128/JCM.00429-14.

	Epub 2014 Apr 9. PMID: 24719448; PMCID: PMC4042759, DACO: M2.12, M2.7.1, M2.7.2
3202938	Luis Sanz, Manuel Montero, Isabel Grondona, Antonio Llobell, Enrique Monte, 2002, In vitro antifungal activity of <i>Trichoderma harzianum</i> , <i>T. longibrachiatum</i> , <i>T. asperellum</i> and <i>T. atroviride</i> against <i>Botrytis cinerea</i> pathogenic to strawberry, Mol Plant Pathol. 2015; 16(4):400-412. doi:10.1111/mpp.12189., DACO: M2.12, M2.7.1, M2.7.2
3202939	Luis Sanz, Juan Antonio Vizcaino, Rosa Hermosa, Manuel Montero, Isabel Grandona, Antonio Llobell Enrique Monte, 2004, Cell wall-degrading isoenzyme profiles of <i>Trichoderma</i> biocontrol strains show correlation with rDNA taxonomic species, Curr Genet. 2004 Nov; 46(5):277-86. doi: 10.1007/s00294-004-0532-6. PMID: 15480677, DACO: M2.12, M2.7.1, M2.7.2
3202940	Schirmböck M, Lorito M, Wang YL, Hayes CK, Arisan-Atac I, Scala F, Harman GE, Kubicek CP, 1994, Parallel Formation and Synergism of Hydrolytic Enzymes and Peptaibol Antibiotics, Molecular Mechanisms Involved in the Antagonistic Action of <i>Trichoderma harzianum</i> against Phytopathogenic Fungi, Appl Environ Microbiol. 1994 Dec; 60(12):4364-70. doi: 10.1128/aem.60.12.4364-4370.1994. PMID: 7811076; PMCID: PMC201994, DACO: M2.12, M2.7.1, M2.7.2
3202941	E. Sharon, M. Bar-Eyal, I. Chet, A. Herrera-Estrella, O. Kleifeld and Y. Speigel, 2001, Biological Control of the Root-Knot Nematode <i>Meloidogyne javanica</i> by <i>Trichoderma</i> <i>harzianum</i> , Phytopathology. 2001 Jul; 91(7):687-93. doi: 10.1094/PHYTO.2001.91.7.687. PMID: 18942999, DACO: M2.12, M2.7.1, M2.7.2
3202942	Alex Sivan and Ilan Chet, 1988, Degradation of Fungal Cell Walls by Lytic Enzymes of <i>Trichoderma harzianum</i> , Microbiology-sgm. 135. 675-682. 10.1099/00221287-135-3-675, DACO: M2.12, M2.7.1, M2.7.2
3202943	Alex Sivan and Ilan Chet, 1989, The Possible Role of Competition between <i>Trichoderma harzianum</i> and <i>Fusarium oxysporum</i> on Rhizosphere Colonization, Phytopathology. 79. 10.1094/Phyto-79-198, DACO: M2.12, M2.7.1, M2.7.2
3202944	Ada Viterbo, Ofir Ramot, Leonid Chernin & Ilan Chet, 2002, Significance of lytic enzymes from <i>Trichoderma</i> spp. in the biocontrol of fungal plant pathogens, Antonie Van Leeuwenhoek. 81. 549-556. 10.1023/A: 1020553421740, DACO: M2.12, M2.7.1, M2.7.2
3202945	Windham, G.L., Windham, M.T., Pederson, G.A, 1993, Interaction of <i>Trichoderma harzianum</i> , <i>Meloidogyne incognita</i> , and <i>Meloidogyne arenaria</i> on <i>Trifolium repens</i> , Nematropica 23(1): 99-103, 1993, https://eurekamag.com/research/016/163/016163101.php, DACO: M2.12, M2.7.1, M2.7.2
3202946	M.t. Windham, Y. Elad and R Baker, 1985, A Mechanism for Increased Plant Growth Induced by <i>Trichoderma</i> spp., Phytopathology 76:518-521., DACO: M2.12, M2.7.1, M2.7.2
3202947	Iris Yedidia, Alok K Srivastva, Yoram Kapulnik & Ilan Chet, 2001, Effect of <i>Trichoderma harzianum</i> on microelement concentrations and increased growth of cucumber plants, Plant and Soil 235, 235-242 (2001). https://doi.org/10.1023/A:1011990013955, DACO: M2.12, M2.7.1, M2.7.2
3202948	Iris Yedidia, Michal Shoresh, Zohar Kerem, Nicole Benhamou, Yoram Kapulnik, and Ilan Chet, 2003, Concomitant Induction of Systemic Resistance to <i>Pseudomonas syringae</i> pv. <i>lachrymans</i> in Cucumber by <i>Trichoderma asperellum</i> (T-203) and Accumulation of Phytoalexins, ppl Environ Microbiol. 2003 Dec; 69(12):7343-53. doi: 10.1128/AEM.69.12.7343-7353.2003. PMID: 14660384; PMCID: PMC309998, DACO: M2.12, M2.7.1, M2.7.2

3206466	2021, Deficiency Response for Foretryx, containing Trichoderma asperellum ICC 012
5200400	and Trichoderma gamsii ICC 080, EP, Submission Number: 2020-1756, DACO: M2.8,
	M2.9.2
3206467	2021, Manufacturing Method for the production of Foretryx (Trichoderma gamsii $1.5 \times$
	10^7 + <i>Trichoderma asperellum</i> 1.5×10^7) WP formulation, DACO: M2.8 CBI
3206468	2007, Remedier Registration as Biological Antifungal Colony Forming Unit by Plate Method Procedure and Validation, DACO: M2.9.2 CBI
3209000	2017, 5-Batch Analysis Enumeration of Active Ingredient of Trichoderma gamsii
	ICC080, DACO: M2.10.1, M2.10.2, M2.10.3 CBI
3209001	2017, 5-Batch Analysis Enumeration of Active Ingredients and impurities on Remedier
	according to Sanco/12116/2012, DACO: M2.10.1, M2.10.2, M2.10.3 CBI
3209003	2021, Deficiency Response for Trichoderma gamsii ICC 080 Technical, containing
	Trichoderma gamsii ICC 080, TGAI, Submission Number: 2020-1765, DACO: M2.10.2,
	M2.10.3, M2.7.3, M2.8 CBI
3209004	2021, Deficiency Response for Trichoderma gamsii ICC 080 Technical, Manufacturing
	Method and Analytical Method, DACO: M2.10.2, M2.8 CBI
3209005	2004, Notification of Acceptance of a Deposit for the Purposes of Patent Procedure,
	DACO: M2.7.1
3209007	2021, Characterisation of Trichoderma asperellum ICC012 and T. gamsii ICC080:
	assembly, annotation, and secondary metabolite screen, DACO: M2.10.3 CBI
3209025	2016, Trichoderma asperellum ICC 012, DOCUMENT M-MA, Section 2 Biological
	Properties of the Microorganism, DACO: M2.7.2
3209026	2021, DACO M2.8 manufacturing method T. asperellum DACO M2.10.2 - analysis of
	microbial contaminants, DACO: M2.10.2, M2.8 CBI
3209027	2021, Deficiency Response for Trichoderma asperellum ICC 012 Technical, Submission
	Number: 2020-1767, DACO: M2.10.2, M2.10.3, M2.7.1, M2.7.2, M2.8
3209028	2017, 5-Batch Analysis Enumeration of Active Ingredients and impurities on Remedier
	according to Sanco/12116/2012, DACO: M2.10.1, M2.7.1 CBI
3209029	2017, 5-Batch Analysis Enumeration of Active Ingredient of Trichoderma asperellum
	ICC 012, DACO: M2.10.1,M2.7.1 CBI
3209030	2004, Viability Statement for the Purpose of Patent Procedure, DACO: M2.7.1 CBI
3259849	2021, Deficiencies Response for Foretryx, Submission Number: 2020-1756, DACO:
2250050	M2.8 CBI
3259858	2021, Deficiency Response for <i>Trichoderma gamsii</i> ICC 080 Technical, Submission Number: 2020-1765, DACO: M2.8 CBI
3259895	2021, Deficiencies Response for <i>Trichoderma asperellum</i> ICC 012 Technical,
2207070	Submission Number: 2020-1767, DACO: M2.8 CBI
3261819	2021, Deficiency Response for <i>Trichoderma gamsii</i> ICC 080 Technical, Submission
2201017	Number: 2020-1765, DACO: M2.8 CBI

2.0 Human and Animal Health

3118521	2004, Acute Toxicity Study of Remedier WP (<i>Trichoderma harzianum</i> and <i>Trichoderma viride</i> Wettable Powder) by Oral Administration to Rats, DACO: M4.2.2
3118522	2004, Acute Inhalation Toxicity Study of Remedier WP (Trichoderma harzianum and
	Trichoderma viride Wettable Powder) in Rats, DACO: M4.2.3
3118523	2004, Acute Dermal Toxicity Study of Remedier WP (Trichoderma harzianum and
	Trichoderma viride Wettable Powder) in Rats by Dermal Administration, DACO: M4.4
3118524	2004, Acute Skin Irritation Test (Patch Test) of Remedier WP (Trichoderma harzianum
	And Trichoderma viride Wettable Powder) in Rabbits, DACO: M4.5.2

3118525	2004, Acute Eye Irritation Study of Remedier WP (<i>Trichoderma harzianum</i> And <i>Trichoderma viride</i> Wettable Powder) by Instillation into the Conjunctival Sac of Rabbits, DACO: M4.9
3118526	2004, Examination of Remedier WP (<i>Trichoderma harzianum</i> And <i>Trichoderma viride</i> Wettable Powder) in a Skin Sensitisation Test in Guinea Pigs According to Magnusson and Kligman (Maximisation Test), DACO: M4.9
3118527	2016, Remedier (<i>Trichoderma asperellum</i> ICC012 and <i>Trichoderma gamsii</i> ICC080) Document M-MP, Section 8 Residues in or on Treated Products, Food and Feed, DACO: M7.0
3118627	2016, Literature review on human health of <i>Trichoderma gamsii</i> ICC080, DACO: M4.1, M4.2.1, M4.3.1, M4.5.1
3118628	2016, <i>Trichoderma gamsii</i> ICC080 Document M-MA, Section 5 Effects on Human Health, DACO: M4.1, M4.2.1, M4.3.1, M4.4, M4.5.1, M4.5.2, M4.8
3118629	2004, Acute Toxicity Study of <i>Trichoderma viride</i> strain ICC 080 by Oral Administration to Rats, DACO: M4.2.2
3118631	2004, Acute Toxicity Study of <i>Trichoderma Viride</i> by Intraperitoneal Administration to Rats, DACO: M4.3.3
3118632	2004, Analysis of the Occurrence of Test Substance <i>Trichoderma viride</i> Conidia in Animal Tissue, DACO: M4.9
3118633	2016, Literature review on <i>Trichoderma gamsii</i> ICC080 and metabolites: Residues in or on treated products, food and feed, DACO: M7.0
3118634	2016, Trichoderma gamsii ICC080 Document M-MA, Section 6 Residues in or on Treated Products, Food and Feed, DACO: M7.0
3297127	2004, Analysis of viable residues on eggplant, DACO: M9.2.1, M9.2.2
3119303	2016, Strain Identification and Phylogeny - <i>Trichoderma</i> strains ICC012, ICC080, T11, T25 and TV1, DACO: M2.7.1 CBI
3119361	2016, Literature Review on Effects on Human Health of <i>Trichoderma asperellum</i> ICC012, DACO: M4.1
3119362	2016, Trichoderma asperellum ICC012 Document M-MA, Section 5 Effects on Human Health, DACO: M4.1, M4.2.1, M4.3.1, M4.4, M4.5.1, M4.5.2, M4.6, M4.8
3119363	2004, Acute Toxicity Study of <i>Trichoderma harzianum</i> strain ICC 012 by Oral Administration to Rats, DACO: M4.2.2
3119364	I. Cardoso, et al., 2015, Non-Aspergillus Fungal Rhinosinusitis at a Tertiary Care Hospital and the First Report of Human Infection by <i>Trichoderma asperellum</i> , Rev Patol Trop Vol. 44(4): 395-408. doi:10.5216/rpt.v44i4.39232, DACO: M4.2.2
3119365	2004, Acute Pulmonary Toxicity/ Pathogenicity Study of <i>Trichoderma harzianum</i> ICC 012 by Intratracheal Administration to Rats, DACO: M4.2.3
3119366	Kredics, L., Antal, Z., Doczi, I., Manczinger, L., Kevei, F., Nagy, E., 2003, Clinical importance of the genus Trichoderma. A review, Acta Microbiol Immunol Hung. 2003; 50(2-3):105-17. doi: 10.1556/AMicr.50.2003.2-3.1. PMID: 12894482, DACO: M4.2.3
3119367	Antal, Z., Kredics, L., Pakarinen, J., Doczi, I., Andersson, M., Salkinoja- Salonen, M., Manczinger, L., Szekeres, A., Hatvani, L., Vogvolgyi, C., Nagy, E., 2005, Comparative study of potential virulence factors in human pathogenic and saprophytic Trichoderma longibrachiatum strains, Acta Microbiol Immunol Hung. 2005; 52(3-4):341-50. doi: 10.1556/AMicr.52.2005.3-4.6. PMID: 16400874, DACO: M4.2.3
3119368	Sandoval- Denis, M., Sutton, D.A., Cano-Lira, J.F., Gene, J., Fothergrill, A.W., Wiederhold, N.P., Guarro, J., 2014, Phylogeny of the clinically relevant species of the emerging fungus <i>Trichoderma</i> and their antifungal susceptibilities, J Clin Microbiol. 2014 Jun; 52(6):2112-25. doi: 10.1128/JCM.00429-14. Epub 2014 Apr 9. PMID: 24719448; PMCID: PMC4042759, DACO: M4.2.3

3119369	Hatvani, L., Manczinger, L., Vagvolgyi, C., Kredics, L., 2013, Trichoderma as a Human
	Pathogen, Trichoderma - Biology and Applications (pp.292-313), doi:
	10.1079/9781780642475.0292, DACO: M4.2.3
3119370	2004, Acute Toxicity Study of Trichoderma harzianum strain ICC 012 by Intraperitoneal
	Injection to Rats, DACO: M4.3.3
3119371	2004, Analysis of the Occurrence of Test Substance Trichoderma harzianum Strain ICC
	012 in Animal Tissue, DACO: M4.9
3119373	2016, Trichoderma asperellum ICC012 Document M-MA, Section 6 Residues in or on
	Treated Products, Food and Feed, DACO: M7.0

3.0 Environment

3118528	2016, Remedier (<i>Trichoderma asperellum</i> ICC 012 and <i>Trichoderma gamsii</i> ICC 080) Document M-MP, Section 9 Fate and Behaviour in the Environment, DACO: M8.1
3118529	2016, Remedier (Trichoderma asperellum ICC 012 and Trichoderma gamsii ICC 080)
3118530	Document M-MP, Section 10 Effects on Non-Target-Organisms, DACO: M9.1 2016, Remedier (<i>Trichoderma asperellum</i> ICC 012 and <i>Trichoderma gamsii</i> ICC 080) Document M-MP, Section 11 Summary and Evaluation of Environmental Impact, DACO: M9.1
3118531	2014, Chronic Oral Toxicity Test of <i>Trichoderma asperellum</i> and <i>Trichoderma gamsii</i> on the Honey Bee (<i>Apis mellifera</i> L.) in the Laboratory, DACO: M9.5.1
3118532	2004, Effects of Remedier WP on the Predatory Mite <i>Typhlodromus pyri</i> in the Laboratory - Dose Response Test-, DACO: M9.5.1
3118533	2004, Acute Toxicity of Remedier WP to <i>Daphnia magna</i> in a 48-hour Immobilization Test, DACO: M9.5.2
3118635	2016, <i>Trichoderma gamsii</i> ICC 080: Fate and behaviour in the environment, DACO: M8.1
3118636	2016, <i>Trichoderma gamsii</i> ICC 080 Document M-MA, Section 7 Fate and Behaviour in the Environment, DACO: M8.1, M8.2.2, M8.3, M8.4
3118638	2016, <i>Trichoderma gamsii</i> ICC 080 Document N-1 Overall Conclusions, DACO: M2.0, M4.1, M5.0, M7.0, M8.1, M9.1
3118639	2016, <i>Trichoderma gamsii</i> ICC 080 List of end points, DACO: M2.0, M4.1, M5.0, M7.0, M8.1, M9.1
3118640	2016, <i>Trichoderma gamsii</i> ICC 080 Document M-MA, Section 8 Effects on Non-Target Organisms, DACO: M9.1, M9.2, M9.2.1, M9.2.2, M9.3, M9.4.1, M9.4.2, M9.5.1, M9.5.2, M9.6, M9.7, M9.8.1, M9.8.2
3118641	2016, Literature review on <i>Trichoderma gamsii</i> ICC 080: Effects on non-target organisms, DACO: M9.1, M9.2.1, M9.2.2, M9.3, M9.4.1, M9.4.2, M9.5.1, M9.5.2, M9.6, M9.7, M9.8.1, M9.8.2
3118642	2004, Toxicity of <i>Trichoderma viride</i> Strain ICC 080 to Rainbow Trout (<i>Oncorhynchus mykiss</i>) in a Prolonged Toxicity Test, DACO: M9.4.1
3118643	2004, Effects of <i>Trichoderma viride</i> (Acute Contact and Oral) on Honey Bees (<i>Apis mellifera</i> L.) in the Laboratory, DACO: M9.5.1
3118644	2004, Influence of <i>Trichoderma viride</i> Strain ICC 080 to <i>Daphnia magna</i> in a Reproduction Test, DACO: M9.5.2
3118645	2004, Acute Toxicity (14 Days) of <i>Trichoderma viride</i> to the Earthworm <i>Eisenia fetida</i> in Artificial Soil, DACO: M9.6
3118646	2004, Effects of <i>Trichoderma viride</i> on the Activity of the Soil Microflora in the Laboratory, DACO: M9.7

3118647	2004, Toxicity of <i>Trichoderma viride</i> Strain ICC 080 to <i>Desmodesmus subspicatus</i> in an Algal Growth Inhibition Test, DACO: M9.8.2
3118648	2004, Toxicity of <i>Trichoderma viride</i> Strain ICC 080 to the Aquatic Plant <i>Lemna gibba</i> in a Growth Inhibition Test - Amendment 1, DACO: M9.8.2
2110640	
3118649	2004, Toxicity of <i>Trichoderma viride</i> Strain ICC 080 to the Aquatic Plant <i>Lemna gibba</i> in a Growth Inhibition Test, DACO: M9.8.2
3119374	2016, Literature Review on <i>Trichoderma asperellum</i> ICC 012: Fate and behaviour in the environment, DACO: M8.1
3119375	2016, <i>Trichoderma asperellum</i> ICC 012 Document M-MA, Section 7 Fate and Behaviour in the Environment, DACO: M8.1
3119376	Longa CM, Pertot I., 2009, An intact soil-core microcosm method to evaluate the survival and vertical dispersal of <i>Trichoderma atroviride</i> SC1, Lett Appl Microbiol. 2009 Nov; 49(5):609-14. doi: 10.1111/j.1472-765X.2009.02715.x. Epub 2009 Aug 18. PMID: 19780964, DACO: M8.2.2
3119377	A. Bennett and J. Whipps, 2007, Beneficial microorganism survival on seed, roots and in rhizosphere soil following application to seed during drum priming, Biological Control. 44. 349-361. 10.1016/j.biocontrol.2007.11.005, DACO: M8.3
3119378	C.M.O. Longa et al., 2008, Ecophysiological requirements and survival of a <i>Trichoderma atroviride</i> isolate with biocontrol potential, J Basic Microbiol. 2008 Aug; 48(4):269-77. doi: 10.1002/jobm.200700396. PMID: 18720503, DACO: M8.3
3119379	T.J. Paula Jr. & B. Hau, 2006, Effect of soil moisture on activity and dynamics of Rhizoctonia solani and Trichoderma harzianum, J Plant Dis Prot 114, 126-132 (2007). https://doi.org/10.1007/BF03356720, DACO: M8.3
3119380	C.M.O. Longa et al., 2007, Survival of <i>Trichoderma atroviride</i> 122F on strawberry phylloplane and in soil, Biological control of fungal and bacterial plant pathogens IOBC/wprs Bulletin Vol. 30 (6) 2007 pp. 297-302, DACO: M8.3
3119381	S. Pan and A. Das, 2011, Population proliferation and spread of <i>Trichoderma</i> spp. in soil under two different delivery systems, The Journal of Plant Protection Sciences 2011 Vol.3 No.1 pp.37-43 ref.18, DACO: M8.3, M8.4
3119382	M. Porras, C. Barrau, F. Romero, 2006, Effects of soil solarization and <i>Trichoderma</i> on strawberry production, Crop Protection. 26. 782-787. 10.1016/j.cropro.2006.07.005, DACO: M8.4
3119383	C.M.O. Longa et al., 2008, Evaluating the survival and environmental fate of the biocontrol agent <i>Trichoderma atroviride</i> SC1 in vineyards in northern Italy, J Appl Microbiol. 2009 May; 106(5):1549-57. doi: 10.1111/j.1365-2672.2008.04117.x. Epub 2009 Feb 4. PMID: 19210568, DACO: M8.4
3119384	L.F.S. Leandro, T. Guzman, L.M. Ferguson, G.E. Fernandez, F.J. Louws, 2006, Population dynamics of <i>Trichoderma</i> in fumigated and compost-amended soil and on strawberry roots, Applied Soil Ecology. 35. 237-246. 10.1016/j.apsoil.2006.04.008, DACO: M8.4
3119385	B. K. Nayak, 2009, A preliminary study of airborne fungal spores in few temples of Pondicherry, CODEN (USA): IJPRIF, ISSN: 0974-4304, Vol.8, No.6, pp 300-305, 2015, DACO: M8.5
3119386	T. B. Suerdem and I. Yildirim, 2009, Fungi in the atmospheric air of Canakkale province in Turkey, African Journal of Biotechnology, 2002, Vol. 8, pgs. 4450-4458, DACO: M8.5
3119387	K. Zielinska-Jankiewicz et al., 2008, Microbiological Contamination with Moulds in Work Environment in Libraries and Archive Storage Facilities, Ann Agric Environ Med. 2008; 15(1):71-8. PMID: 18581982, DACO: M8.5

3119388	Milica Ljaljevic-Grbic, et. al., 2013, Molds in Museum Environments: Biodeterioration of Art Photographs and Wooden Sculptures, Archives of Biological Sciences, 2013, Vol. 65, pgs. 955-962, DACO: M8.5
3119389	2016, <i>Trichoderma asperellum</i> ICC 012 Document M-MA, Section 9 Summary and Evaluation of Environmental IMPACT, DACO: M9.1
3119390	2016, Literature review on <i>Trichoderma asperellum</i> ICC 012: Effects on non-target organisms, DACO: M9.1, M9.2, M9.5.1, M9.5.2, M9.6, M9.7, M9.8.1
3119391	2016, <i>Trichoderma asperellum</i> ICC 012 Document M-MA, Section 8 EFFECTS on Non- Target Organisms, DACO: M9.1, M9.2.1, M9.2.2, M9.3, M9.4.2, M9.5.1, M9.8.1
3119392	2004, Toxicity of <i>Trichoderma harzianum</i> Strain ICC 012 to Rainbow Trout (<i>Oncorhynchus mykiss</i>) in a Prolonged Toxicity Test, DACO: M9.4.1
3119393	Veerle Mommaerts, Guido Sterk, Lucien Hoffmann and Guy Smagghe, 2009, A laboratory evaluation to determine the compatibility of microbiological control agents with the pollinator <i>Bombus terrestris</i> , Pest Manag Sci. 2009 Sep;65(9):949-55. doi: 10.1002/ps.1778. PMID: 19437453, DACO: M9.5.1
3119395	Abdel-Naieem I.M. Al-Assiuty, et. al., 2013, Effects of Fungicides and BioFungicides on Population Density and Community Structure of Soil Oribatid Mites, The Science of the total environment. 466-467C. 412-420. 10.1016/j.scitotenv.2013.07.063, DACO: M9.5.1
3119396	2004, Effects of <i>Trichoderma harzianum</i> (Acute Contact and Oral) on Honey Bees (<i>Apis mellifera</i> L.) in the Laboratory, DACO: M9.5.1
3119397	Goettel, M.S., Hajek, A.E., 2001, Evaluation of non-target effects of pathogens used for management of arthropods, dans Wajnberg, E., Scott, J.K., and Quimby, P.C. (dir.) - Evaluating Indirect Ecological Effects of Biological Control, CABI Publishing, p. 81-97, DACO: M9.5.1
3119398	Lynch, L.D., Thomas, M.B., 2000, Nontarget effects in the biocontrol of insects with insects, nematodes and microbial agents: The evidence, Biocontrol News and Information. 21. 117-130, DACO: M9.5.1
3119399	Vestergaard, S., Cherry, A., Keller, S., Goettel, M., 2003, Safety of Hyphomycete Fungi as Microbial Control Agents, Environmental Impacts of Microbial Insecticides (pp.35-62), doi: 10.1007/978-94-017-1441-9 3, DACO: M9.5.1
3119400	Goettel, M.S., Poprawski, T.J., Vandenberg, J.D., Li, Z., Roberts, D.W., 1990, Safety to nontarget invertebrates of fungal biocontrol agents., M. Laird, L.A. Lacey, E.M. Davidson, Safety of Microbial Insecticides, CRC Press, pp. 209-231, DACO: M9.5.1
3119401	Kottb, M., Gigolashvill, T., Grokinsky, D.K., Piechulla, B., 2015, Trichoderma volatiles effecting <i>Arabidopsis</i> : from inhibition to protection against phytopathogenic fungi, Frontiers in Microbiology, Vol. 6, 2015, DOI=10.3389/fmicb.2015.00995, ISSN=1664-302X, DACO: M9.5.1
3119402	Veerle Mommaerts, Geral Platteau, Jana Boulet, Guido Sterk, and Guy Smagghe, 2008, Trichoderma-based biological control agents are compatible with the pollinator <i>Bombus</i> <i>terrestris</i> : A laboratory study, Biological Control - Biol Control. 46. DOI: 10.1016/j.biocontrol.2008.05.007, DACO: M9.5.1
3119403	2004, Influence of <i>Trichoderma harzianum</i> Strain ICC 012 to <i>Daphnia magna</i> in a Reproduction Test, DACO: M9.5.2
3119404	Poirier, L., Quiniou, F., Ruiz, N., Montagu, M., Amiard, JC., Pouchus, Y.F., 2007, Toxicity assessment of peptaibols and contaminated sediments on <i>Crassostrea gigas</i> embryos, Aquat Toxicol. 2007 Aug 1; 83(4):254-62. doi: 10.1016/j.aquatox.2007.04.009. Epub 2007 May 10. PMID: 17582518, DACO: M9.5.2
3119405	2004, Acute Toxicity (14 Days) of <i>Trichoderma harzianum</i> to the Earthworm <i>Eisenia fetida</i> in Artificial Soil, DACO: M9.6

3119406	Bilej, M., et al., 2010, Earthworm Immunity, Adv Exp Med Biol. 2010; 708:66-79. doi:
	10.1007/978-1-4419-8059-5 4. PMID: 21528693, DACO: M9.6
3119407	Parthasarathi, K. et al., 2007, Diversity of microflora in the gut and casts of tropical composting earthworms reared on different substrates, J Environ Biol. 2007 Jan; 28(1):87-97. PMID: 17717992, DACO: M9.6, M9.7
3119408	J. W. A. Scheepmaker and J. van de Kassteele, 2012, Effects of chemical control agents and microbial biocontrol agents on numbers of non-target microbial soil organisms: a meta-analysis, Biocontrol Science and Technology, 21:10, 1225-1242, DOI: 10.1080/09583157.2011.594952, DACO: M9.7
3119409	2004, Effects of <i>Trichoderma harzianum</i> on the Activity of the Soil Microflora in the Laboratory, DACO: M9.7
3119410	Savazzini, F., Longa, C.M.O., Pertot, I., 2009, Impact of the biocontrol agent Trichoderma atroviride SC1 on soil microbial communities of a vineyard in northern Italy., Soil Biology and Biochemistry. 41. 1457-1465. 10.1016/j.soilbio.2009.03.027, DACO: M9.7
3119411	Gupta, R., et al., 2013, Non-target effects of bioinoculants on rhizospheric microbial communities of <i>Cajanus cajan</i> , Applied Soil Ecology. 76. 26-33. 10.1016/j.apsoil.2013.12.001. DACO: M9.7
3119412	2004, Toxicity of <i>Trichoderma harzianum</i> Strain ICC 012 to the Aquatic Plant <i>Lemna gibba</i> in a Growth Inhibition Test, DACO: M9.8.2
3119413	2004, Toxicity of <i>Trichoderma harzianum</i> Strain ICC 012 to <i>Desmodesmus subspicatus</i> in an Algal Growth Inhibition Test, DACO: M9.8.2
3174162	2020, Deficiency Response for Foretryx, containing <i>Trichoderma asperellum</i> ICC 012 and <i>Trichoderma gamsii</i> ICC 080, EP, DACO: 1.1.1, M10.1, M10.2, M10.4.3, M4.4, M4.5.2, M4.9, M9.5.1, M9.5.2
3297126	2004, Growth rate definition of two <i>Trichoderma</i> strains in ratio to temperature, pH and salt concentration, DACO: M9.2.1, M9.2.2
3297127	2004, Analysis of viable residues on eggplant, DACO: M9.2.1, M9.2.2
3297128	1989, <i>Trichoderma harzianum</i> - KRLAG2 - An Avian Oral Pathogenicity and Toxicity Study in the Bobwhite Quail, DACO: M9.2.1, M9.2.2
3297129	2021, Effects on Birds - <i>T. gamsii</i> ICC080 and <i>T. asperellum</i> ICC012 and the related formulated product, DACO: M9.2.1, M9.2.2
3297130	2021, Similarity of the Kopert strain in the Grimes and Jaber study with the "Company" strains, DACO: M9.2.1, M9.2.2
3297131	2021, Clarification Response for <i>Trichoderma</i> Cat A.1.1 submissions (2020-1756 and 2020-1765), DACO: M9.2.1, M9.2.2

4.0 Value

2,M10.4.
4.3,M10.
agement
-

3118490	2009, Appraisal of products for management of Sclerotinia drop of lettuce, 2009, DACO: M10.2.2
3118491	2011, Comparison of OMRI listed bio-pesticides for control of white mold of dry edible beans, 2011, DACO: M10.2.2
3118492	2007, Effect of biological controls on severity of Pythium root rot on geraniums, DACO: M10.2.2
3118493	2007, Effect of fungicides for control of Pythium root rot on snapdragons, DACO: M10.2.2
3118494	2006, Effect of "Company" products on severity of Phytophthora crown and root rot on poinsettias, DACO: M10.2.2
3118495	2008, Efficacy of Bioten and Ir5885 in Control of Phytophthora Capsici on Bell Pepper (2008), DACO: M10.2.2
3118496	2005, Efficacy of pre-plant applications for management of Phytophthora crown and root rot of pepper and their influence on fruit production, 2005, DACO: M10.2.2
3118497	2010, Evaluation of biopesticides and fungicides for management of Fusarium wilt and southern blight on tomato, spring 2010, DACO: M10.2.2
3118498	2010, Evaluation of biopesticides and fungicides for management of southern blight on tomato, spring 2010, DACO: M10.2.2
3118499	2012, Evaluation of biopesticides and fungicides for the management of southern blight on tomato, spring 2012, DACO: M10.2.2
3118500	2013, Evaluation of biopesticides for control of Phytophthora crown, fruit and root rot of squash, alone or in combination with Presidio, 2013., DACO: M10.2.2
3118501	2009, Evaluation of Bioten and Conventional Fungicides For Control of Phytophthora Blight on Summer Squash, DACO: M10.2.2
3118502	2006, Evaluation of fungicides for the management of Phytophthora blight of pepper, 2006, DACO: M10.2.2
3118503	2008, Evaluation of Ir5885 and Bioten for Control of Phytophthora Blight on Summer Squash, DACO: M10.2.2
3118504	2007, Evaluation of Kiralaxyl (IR6141) for Management of Phytophthora blight on Summer Squash, DACO: M10.2.2
3118505	2012, Evaluation of products for the control of charcoal rot in annual strawberry, 2011- 12., DACO: M10.2.2
3118506	2011, Influence of Drip Irrigation on Tomato Root Health, DACO: M10.2.2
3118507	2010, Multiyear evaluation of Remedier to prevent or delay Armillaria root rot (ARR) disease of peach, DACO: M10.2.2
3118508	2013, <i>Phytophthora capsici</i> management in butternut squash using a Trichoderma biocontrol, DACO: M10.2.2
3118534	2005, Efficacy of Remedier against Verticillium dahliae on eggplant, DACO: M10.2.2
3118535	2005, Efficacy of Remedier against root and crown rot of pepper incited by <i>Phytophthora capsici</i> , DACO: M10.2.2
3118536	2005, Efficacy of Remedier against Phytophthora sp. on potted sage, DACO: M10.2.2
3118537	2005, Efficacy of Remedier against soil pathogens of turf, DACO: M10.2.2
3118538	2006, Efficacy of Remedier against <i>Sclerotinia sclerotiorum</i> on lettuce, DACO: M10.2.2
3118539	2003, Efficacy of Remedier against <i>Selevound selevouorum</i> on reduce, DACO: MI0.2.2 2003, Efficacy of Remedier against <i>Pythium ultimum</i> on celery (nursery), DACO:
	M10.2.2
3118540	2004, Efficacy of Remedier against <i>Verticillium dahliae</i> on eggplant, DACO: M10.2.2
3118541	2004, Efficacy of Remedier against root and crown rot of pepper incited by <i>Phytophthora capsici</i> , DACO: M10.2.2
3118542	2004, Efficacy of Remedier against Rhizoctonia solani on basil, DACO: M10.2.2

3118543	2003, Efficacy of Remedier against root and crown rot of pepper incited by <i>Phytophthora capsici</i> , DACO: M10.2.2
3118544	2003, Efficacy of Remedier against <i>Sclerotinia homeocarpa</i> and <i>Rhizoctonia solani</i> on turf, DACO: M10.2.2
3118545	2003, Efficacy of Remedier against <i>Thielaviopsis basicola</i> on tomato (nursery), DACO: M10.2.2
3118546	2004, Efficacy of Remedier against <i>Phytophthora fragariae</i> on strawberry, DACO: M10.2.2
3118547	2006, Efficacy of Remedier against <i>Sclerotinia</i> on chrysanthemum, DACO: M10.2.2
3118549	2003, Evaluación del efecto del IBF 001 (<i>Trichoderma</i> sp.) en cultivos de pimiento en invernadero, DACO: M10.2.2
3118551	2004, Remedier trial report synthesis 2004, DACO: M10.2.2
3118553	2004, The effectiveness of Remedier (<i>Trichoderma viridae</i> + <i>Trichoderma harzianum</i>) used in 0,4% concentration in control of verticillium wilt (<i>Verticillium dahliae</i>), crown rot (<i>Phytophthra cactorum</i>) and anthracnose crown rot (<i>Colletotrichum acutatum</i>) in 2004 season I., DACO: M10.2.2
3118555	2009, To Verify the Activity of Remedier (<i>Trichoderma harzianum</i> ICC 012 2.00% and <i>Trichoderma viride</i> ICC 080 2.00%) For Protection of Fresh Pruning Wounds From ESCA, DACO: M10.2.2
3118557	2009, To Examine the Activity of Remedier (<i>Trichoderma harzianum</i> ICC 012 2.00% and <i>Trichoderma viride</i> ICC 080 2.00%) FOR the Protection of Fresh Pruning Wounds From ESCA, DACO: M10.2.2
3118560	2010, to Verify the Activity of Remedier (<i>Trichoderma asperellum</i> EX <i>harzianum</i> ICC 012 2.00% and <i>Trichoderma gamsii</i> EX <i>viride</i> ICC 080 2.00%) For the Protection of Fresh Pruning Wounds From ESCA Grapevine Disease, DACO: M10.2.2