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Maximum entropy classification for record linkage 

Danhyang Lee, Li-Chun Zhang and Jae Kwang Kim1 

Abstract 

By record linkage one joins records residing in separate files which are believed to be related to the same 

entity. In this paper we approach record linkage as a classification problem, and adapt the maximum entropy 

classification method in machine learning to record linkage, both in the supervised and unsupervised settings 

of machine learning. The set of links will be chosen according to the associated uncertainty. On the one hand, 

our framework overcomes some persistent theoretical flaws of the classical approach pioneered by Fellegi and 

Sunter (1969); on the other hand, the proposed algorithm is fully automatic, unlike the classical approach that 

generally requires clerical review to resolve the undecided cases. 

 

Key Words: Probabilistic linkage; Density ratio; False link; Missing match; Survey sampling. 

 

 

1. Introduction 
 

Combining information from multiple sources of data is a frequently encountered problem in many 

disciplines. To combine information from different sources, one assumes that it is possible to identify the 

records associated with the same entity, which is not always the case in practice. The entity may be 

individual, company, crime, etc. If the data do not contain unique identification number, identifying 

records from the same entity becomes a challenging problem. Record linkage is the term describing the 

process of joining records that are believed to be related to the same entity. While record linkage may 

entail the linking of records within a single computer file to identify duplicate records, referred to as 

deduplication, we focus on linking of records across separate files. 

Record linkage (RL) has been employed for several decades in survey sampling producing official 

statistics. In particular, linking administrative files with survey sample data can greatly improve the 

quality and resolution of the official statistics. As applications, Jaro (1989) and Winkler and Thibaudeau 

(1991) merged post-enumeration survey and census data for census coverage evaluation. Zhang and 

Campbell (2012) linked population census data files over time, and Owen, Jones and Ralphs (2015) linked 

administrative registers to create a single statistical population dataset. The classical approach pioneered 

by Fellegi and Sunter (1969), which is the most popular method of RL in practice, has been successfully 

employed for these applications. 

The probabilistic decision rule of Fellegi and Sunter (1969) is based on the likelihood ratio test idea, by 

which we can determine how likely a particular record pair is a true match. In applying the likelihood ratio 

test idea, one needs to estimate the model parameters of the underlying model and determine the 

thresholds of the decision rule. Winkler (1988) and Jaro (1989) treat the matching status as an unobserved 

variable and propose an EM algorithm for parameter estimation, which we shall refer to as the 
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WJ-procedure. See Herzog, Scheuren and Winkler (2007), Christen (2012) and Binette and Steorts (2020) 

for overviews. However, as explained in Section 2, to motivate the WJ-procedure as an EM algorithm 

requires the crucial assumption that measures of agreement between the record pairs, called comparison 

vectors, are independent from one record pair to another, which is impossible to hold in reality. 

Newcombe, Kennedy, Axford and James (1959) address dependence between comparison vectors through 

data application. Also, see e.g. Tancredi and Liseo (2011), Sadinle (2017), and Binette and Steorts (2020) 

for discussions of this issue. Bayesian approaches to RL are also available in the literature (Steorts, 2015; 

Sadinle, 2017; Stringham, 2021). Bayesian approaches to RL problems allow us to quantify uncertainty on 

the matching decisions. However, the stochastic search using MCMC algorithm in the Bayesian approach 

involves extra computational burden. 

To develop an alternative approach, we first note that the RL problem is essentially a classification 

problem, where each record pair is classified into either “match” or “non-match” class. Various 

classification techniques based on machine learning approaches have been employed for record linkage 

(Hand and Christen, 2018; Christen, 2012, 2008; Sarawagi and Bhamidipaty, 2002). In this paper, we 

adapt the maximum entropy method for classification to record linkage. Specifically, we can view the 

likelihood ratio of the method proposed by Fellegi and Sunter (1969) as a special case of the density ratio 

and apply the maximum entropy method for density ratio estimation. For example, Nigam, Lafferty and 

McCallum (1999) use the maximum entropy for text classification and Nguyen, Wainwright and Jordan 

(2010) develop a more unified theory of maximum entropy method for density ratio estimation. There is, 

however, a key difference of record linkage to the standard setting of classification problems, in that the 

different record pairs are not distinct ‘units’ because the same record is part of many record pairs. 

We present our maximum entropy record linkage algorithm for both supervised and unsupervised 

settings, while our main contributions concern the unsupervised case. Supervised approaches need training 

data, i.e., record pairs with known true match and true non-match status. Such training data are often not 

available in real world situations, or have to be prepared manually, which is very expensive and time-

consuming (Christen, 2007). Thus, the unsupervised case is by far the most common in practice. In the 

unsupervised case, however, one cannot estimate the density ratio directly based on the observed true 

matches and non-matches, and it is troublesome to jointly model for the unobserved match status and the 

observed comparison scores over all the record pairs. We develop a new iterative algorithm to jointly 

estimate the density ratio as well as the maximum entropy classification set in the unsupervised setting 

and prove its convergence. The associated measures of the linkage uncertainty are also developed. 

Furthermore, we show that the WJ-procedure can be incorporated as a special case of our approach to 

estimation, but without the need of the independence assumption between the record pairs. This reveals 

that the WJ-procedure can be motivated without the independence assumption, and explains why it gives 

reasonable results in many situations. The choice of the set of links is guided by the uncertainty measures 

developed in this paper. This is an important practical improvement over the classical approach, which 

does not directly provide any uncertainty measure for the final set of links. Our procedure is fully 
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automatic, without the need for resource-demanding clerical review that is required under the classical 

approach. 

The paper is organised as follows. In Section 2, the basic setup and the classical approach are 

introduced. In Section 3, the proposed method is developed under the setting of supervised record linkage. 

In Section 4, we extend the proposed method to the more challenging case of the unsupervised record 

linkage. Discussions of some related estimation approaches and technical details are presented in 

Section 5 and the supplementary material. Results from an extensive simulation study are presented in 

Section 6. Some concluding remarks and comments on further works are given in Section 7. 

 
2. Problems with the classical approach 
 

Suppose that we have two data files A  and B  that are believed to have many common entities but no 

duplicates within each file. Any record in A  and another one in B  may or may not refer to the same 

entity. Our goal is to find the true matches among all possible pairs of the two data files. Let the bipartite 

comparison space = =A B M U    consist of matches M  and non-matches U  between the records 

in files A  and .B  For any pair of records ( ), ,a b   let abγ  be the comparison vector between a set of 

key variables associated with a A  and ,b B  respectively, such as name, sex, date of birth. The key 

variables and the comparison vector abγ  are fully observed over .  In cases where the key variables may 

be affected by errors, a match ( ),a b  may not have complete agreement in terms of ,abγ  and a non-match 

( ),a b  can nevertheless agree on some (even all) of the key variables. 

In the classical approach of Fellegi and Sunter (1969), one recognizes the probabilistic nature of abγ  

due to the perturbations that cause key-variable errors. The related methods are referred to as probabilistic 

record linkage. To explain the probabilistic record linkage method of Fellegi and Sunter (1969), let 

( ) ( )( )= ,ab abm f a b Mγ γ  be the probability mass function of the discrete values abγ  can take given 

( ), .a b M  Similarly, we can define ( ) ( )( )= , .ab abu f a b Uγ γ  The ratio  

 
( )

( )
=

ab

ab

ab

m
r

u

γ

γ
  

is then the basis of the likelihood ratio test (LRT) for ( )0: ,H a b M  vs. ( )1: , .H a b U  Let 

( ) * = , : ab MM a b r c  be the pairs classified as matches and ( ) * = , : ab UU a b r c  the non-matches, the 

remaining pairs are classified by clerical review, where ( ),M Uc c  are the thresholds related to the 

probabilities of false links (of pairs in )U  and false non-links (of pairs in ),M  respectively, defined as  

 ( ) ( )*= ;u M 
γ

γ γ    and   ( ) ( )*= ; ,m U 
γ

γ γ  (2.1) 

where ( )*; = 1M γ  if =abγ γ  means ( ) *,a b M  and 0 otherwise, similarly for ( )*; .U γ  



4 Lee, Zhang and Kim: Maximum entropy classification for record linkage 

 

 

Statistics Canada, Catalogue No. 12-001-X 

In practice the probabilities ( )m γ  and ( )u γ  are unknown. Neither is the prevalence of true matches, 

given by = := .MM n n   Let η  be the set containing   and the unknown parameters of ( )m γ  

and ( ).u γ  Let = 1abg  if ( ),a b M  and 0 if ( ), .a b U  Given the complete data 

( ) ( ) , : , ,ab abg a b γ  Winkler (1988) and Jaro (1989) assume the log-likelihood to be  

 ( )
( )

( )( ) ( )
( )

( ) ( )( )
, ,

= log 1 log 1 .ab ab ab ab

a b a b

h g m g u 
 

+ − − η γ γ  (2.2) 

An EM-algorithm follows by treating ( ) = : ,abg g a b   as the missing data. 

There are two fundamental problems with this classical approach.   

[Problem-I] Record linkage is not a direct application of the LRT, because one needs to evaluate all 

the pairs in   instead of any given pair. The classification of   into *M  and *U  is incoherent 

generally, since a given record can belong to multiple pairs in *.M  Post-classification 

deduplication of *M  would be necessary then, which is not part of the theoretical formulation 

above. In particular, there lacks an associated method for estimating the uncertainty 

surrounding the final linked set, such as the amount of false links in it or the remaining matches 

outside of it. 

[Problem-II] In reality the comparison vectors of any two pairs are not independent, as long as they 

share a record. For example, given ( ),a b M  and abγ  not subjected to errors, then abg   must 

be 0, for b b   and ,b B  as long as there are no duplicated records in either A  or ,B  and 

abγ  depends only on the key-variable errors of b  Whereas, marginally, = 1abg   with 

probability   and abγ  depends also on the key-variable errors of .a  It follows that ( )h η  in 

(2.2) does not correspond to the true joint-data distribution of ( ) = : , ,ab a b γ γ  even 

when the marginal m  and u -probabilities are correctly specified. Similarly, although one may 

define marginally ( ) ( )= Pr , ,a b M a b      for a randomly selected record pair from ,  

it does not follow that ( ) ( ) ( )log = log log 1M Mf g n n n  + − −  jointly as in (2.2). For both 

reasons, ( )h η  given by (2.2) cannot be the complete-data log-likelihood.  

 

In the next two sections, we develop maximum entropy classification to record linkage to avoid the 

problems above, after which more discussions of the classical approach will be given. 

 
3. Maximum entropy classification: Supervised 
 

As noted in Section 1, the record linkage problem is a classification problem. Maximum entropy 

classification has been used in image restoration or text analysis (Gull and Daniell, 1984; Berger, 

Della Pietra and Della Pietra, 1996). Maximum entropy classification (MEC) has been proposed for 

supervised learning (SL) to standard classification problems, where the units are known but the true 
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classes of the units are unknown apart from a sample of labelled units. Let  1, 0Y   be the true class and 

X  the random vector of features. Let the density ratio be  

 ( )
( )
( )

( )

( )
1

0

= 1; ;
; = := ,

;= 0;

f Y f
r

ff Y

x η x η
x η

x ηx η
  

where 1f  and 0f  are the conditional density functions given =1Y  or 0, respectively, and η  contains the 

unknown parameters. For MEC based on ( ),r x  one finds η̂  that maximises the Kullback-Leibler (KL) 

divergence from 0f  to 1f  subjected to a constraint, i.e.  

 ( ) ( )
1

1= ; log ;
S

D f r d x η x η x    subjected to   ( ) ( )
1

0
ˆ ˆ; ; =1,

S
f r d x η x η x   

where 1S  is the support of X  given =1,Y  and the normalisation constraint arises since ( ) ( )0
ˆ ˆ; ;r fx η x η  

is an estimate of ( )
1 .f x  Provided common support 1 0 ,S S=  where 0S  is the support of X  given = 0,Y  

one can use the empirical distribution function (EDF) of X  over  : =1i iyx  in place of 1f  for ,D  and 

that over  : = 0i iyx  in place of 0f  for the constraint. Having obtained ( )ˆˆ = ; ,r rx x η  one can classify any 

unit given the associated feature vector x  based on ( )ˆ ˆPr =1 ; , ,Y p rxx  where p̂  is an estimate of the 

prevalence ( )= Pr =1 .p Y  

We describe how the idea of MEC for supervised learning can be adapted to record linkage problem in 

the following subsections. 

 
3.1 Probability ratio for record linkage 
 

For supervised learning based MEC to record linkage, suppose M  is observed for the given ,  and 

the trained classifier is to be applied to the record pairs outside of .  To fix the idea, suppose B  is a non-

probability sample that overlaps with the population ,P  and A  is a probability sample from P  with 

known inclusion probabilities. While ( ) = : ,M ab a b Mγ γ  may be considered as an IID sample, since 

each ( ),a b  in M  refers to a distinct entity, this is not the case with ( ) : , ,ab a b Mγ  whose joint 

distribution is troublesome to model. 

 
Probability ratio (I) 
 

Let ( )qr γ  be the probability ratio given by  

 ( )
( )

( )
= ,q

m
r

q

γ
γ

γ
  

where ( )m γ  is the probability mass function of =abγ γ  given = 1,abg  and ( )q γ  is that over 

( ) = : , .ab a b γ γ  The KL divergence measure from ( )q γ  to ( )m γ  and the normalisation constraint 

are  
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 ( )
( )

( )= logf q

S M

D m r



γ

γ γ    and   ( )
( )

( )ˆ ˆ =1 ,q

S M

q r



γ

γ γ   

where ( )S M  is the support of abγ  given = 1.abg  This set-up allows ( )S M  to be a subset of ,S  where 

S  is the support of all possible .abγ  It follows that, based on the IID sample Mγ  of size = ,Mn M  the 

objective function to be minimized for qr  can be given by  

 
( )

( )( )

( ) ( )
( ), ,

1
= log ,

ab

f q ab q ab

a b M a b MM ab M

f
Q r r

n n 

− 
γ

γ γ
γ

 (3.1) 

where 𝑛𝑀(𝛄𝑎𝑏) = ( ),i j M 𝕀(𝛄𝑖𝑗 = 𝛄𝑎𝑏) based on the observed support ( ).S M  

 
Probability ratio (II) 
 

Provided ( ) ( ),S M S U  where ( )S U  is the support of abγ  over ,U  one can let the probability ratio 

be given by  

 ( )
( )

( )
=

m
r

u

γ
γ

γ
  

where ( )u γ  is the probability of =abγ γ  given = 0.abg  We have  

 ( )
( )

( )

( )

( ) ( ) ( )

( )

( )( )
= = =

1 1 1
q

m m r
r

q m u r  + − − +

γ γ γ
γ

γ γ γ γ
  

where ( ) ( ) ( ) ( )= 1 ,q m u + −γ γ γ  so that ( )qr γ  and ( )r γ  are one-to-one. Meanwhile, the KL 

divergence measure from ( )u γ  to ( )m γ  is given by  

 ( )
( )

( )= log
S M

D m r



γ

γ γ   

and the objective function to be minimized for r  can now be given by  

 
( )

( )( )

( ) ( )
( ), ,

1
= log .

ab

ab ab

a b M a b MM ab M

u
Q r r

n n 

− 
γ

γ γ
γ

 (3.2) 

Model of :γ  Under the multinomial model, one can simply use the EDF of γ  over γ  as ( ),f γ  for each 

distinct level of ,γ  as long as   is large compared to .S  Similarly for ( )m γ  over Mγ  and ( )u γ  over 

.U  For linkage outside of ,  the estimated ( )m γ  from ( )M   applies, if the selection of A  from P  is 

non-informative. 

For γ  made up of K  binary agreement indicators, = 0, 1k  for =1, , ,k K  there are up to 2K  

distinct levels of ,γ  which can sometimes be relatively large compared to .M  A more parsimonious 

model of ( );m γ θ  that is commonly used is given by  

 ( ) ( )
1

= 1

; = 1 kk

K

k k

k

m
 

−
−γ θ  (3.3) 
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where ( ),= Pr =1 =1 ,k ab k abg   and ,ab k  is the thk  component of .abγ  It is possible to model k  based 

on the distributions of the key variables that give rise to ,γ  which makes use of the differential 

frequencies of their values, such as the fact that some names are more common than others. Similarly, 

( );u γ ξ  can be modeled as in (3.3) with parameters k  instead of ,k  where ( ),= Pr =1 = 0 .k ab k abg   

Note that (3.3) implies conditional independence among agreement indicators. Winkler (1993) and 

Winkler (1994) demonstrated that even when the conditional independence assumption does not hold, 

results based on conditional independence assumption are quite robust. More complicated models that 

allow for correlated k  can also be considered. See Armstrong and Mayda (1993) and Larsen and Rubin 

(2001) for discussion of those models. See Xu, Li, Shen, Hui and Grannis (2019) for a recent study which 

compares models with or without correlated .k  

 
3.2 MEC sets for record linkage 
 

Provided there are no duplicated records in either A  or ,B  a classification set for record linkage, 

denoted by ˆ ,M  consists of record pairs from ,  where any record in A  or B  appears at most in one 

record pair in ˆ .M  Let the entropy of a classification set M̂  be given by  

 ( )
( )

ˆ
ˆ,

1
= log .

ˆ abM
a b M

D r
M 

 γ  (3.4) 

A MEC set of given size * ˆ=n M  is the first classification set that is of size 
* ,n  obtained by 

deduplication in the descending order of ( )abr γ  over .  It is possible to have ( ) ˆ,a b M   and 

( ) ( ),ab a br r  γ γ  for ( ) ˆ, ,a b M    if there exists ( ) ˆ,a b M  with ( ) ( ).ab abr r γ γ  

A MEC set of size *n  is not necessarily the largest possible classification set with the maximum 

entropy, to be referred to as a maximal MEC set, which is the largest classification set such that 

( ) ( )= maxabr rγγ γ  for every ( ),a b  in it. In practice, a maximal MEC set is given by the first pass of 

deterministic linkage, which only consists of the record pairs with perfect and unique agreement of all the 

key variables. 

Probabilistic linkage methods for MEC set are useful if one would like to allow for additional links, 

even though their key variables do not agree perfectly with each other. For the uncertainty associated with 

a given MEC set ˆ ,M  we consider two types of errors. First, we define the false link rate (FLR) among the 

links in M̂  to be  

 ( )
( ) ˆ,

1
= 1

ˆ ab

a b M

g
M




−  (3.5) 

which is different to   by (2.1) where the denominator is .U  Second, the missing match rate (MMR) of 

ˆ ,M  which is related to the false non-link probability   in (2.1), is given by  

 
( ) ˆ,

1
=1 .ab

a b MM

g
n




−   (3.6) 
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While   and   in (2.1) are theoretical probabilities, the FLR and MMR are actual errors. 

It is instructive to consider the situation, where one is asked to form MEC sets in   given all the 

necessary estimates related to the probability ratio ( ),r γ  which can be obtained under the SL setting, 

without being given ,Mn g  or M  directly. 

First, the perfect MEC set should have the size .Mn  Let 𝑛(𝛄) =
( ),a b  𝕀(𝛄𝑎𝑏 = 𝛄). One can obtain 

Mn  as the solution to the following fixed-point equation:  

 ( )
( )

( ) ( )
,

ˆ ˆ= =M ab

a b S

n g n g
 

 γ γ γ  (3.7) 

where  

 ( ) ( )
( )

( )( )
( )

( )( )
ˆ := Pr 1 =

1 1 1

M

ab ab

M

r n r
g g

r n r n




= = =

− + − +

γ γ
γ γ γ

γ γ
 (3.8) 

and the probability is defined with respect to completely random sampling of a single record pair from .  

To see that ( )ĝ γ  by (3.8) satisfies (3.7), notice ( ) ( ) ( )ˆ = Mg n m nγ γ γ  satisfies (3.7) for any well defined 

( ),m γ  and ( ) ( ) ( ) ( )1n n m u = + −γ γ γ  by definition. 

Next, apart from a maximal MEC set, one would need to accept discordant pairs. In the SL setting, one 

observes the EDF of γ  over ,M  giving rise to ( )ˆ = 1; ,k M Mn k n  where ( )1;Mn k  is the number of 

agreements on the thk  key variable over .M  The perfect MEC set M̂  should have these agreement rates. 

We have then, for =1, , ,k K  

 
( ) ˆ,

1ˆ =
ˆk

a b MM




 𝕀(𝛾𝑎𝑏,𝑘 = 1)   for   ˆ = .MM n  (3.9) 

Thus, no matter how one models ( ),m γ  the perfect MEC set should satisfy jointly the 1K +  equations 

defined by (3.7) and (3.9), given the knowledge of ( ).r γ  

 
4. MEC for unsupervised record linkage 
 

Let z  be the K -vector of key variables, which may be imperfect for two reasons: it is not rich enough 

if the true z -values are not unique for each distinct entity underlying the two files to be linked, or it may 

be subjected to errors if the observed z  is not equal to its true value. Let A  contain only the distinct z -

vectors from the first file, after removing any other record that has a duplicated z -vector to some record 

that is retained in .A  In other words, if the first file initially contains two or more records with exactly the 

same value of the combined key, then only one of them will be retained in A  for record linkage to the 

second file. Similarly let B  contain the unique records from the second file. The reason for separate 

deduplication of keys is that no comparisons between the two files can distinguish among the duplicated z  

in either file, which is an issue to be resolved otherwise. 
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Given A  and B  preprocessed as above, the maximal MEC set 1M  only consists of the record pairs 

with the perfect agreement of all the key variables. For probabilistic linkage beyond 1 ,M  one can follow 

the same scheme of MEC in the supervised setting, as long as one is able to obtain an estimate of the 

probability ratio, given which one can form the MEC set of any chosen size. Nevertheless, to estimate the 

associated FLR (3.5) and MMR (3.6), an estimate of Mn  is also needed. 

 
4.1 Algorithm of unsupervised MEC 
 

The idea now is to apply (3.7) and (3.9) jointly. Since setting 
1

ˆ =Mn M  and ˆ 1k   associated with 

the maximal MEC set satisfies (3.7) and (3.9) automatically, probabilistic linkage requires one to assume 

1Mn M  and 1k   for at least some of =1, , .k K  Moreover, unless there is external information 

that dictates it otherwise, one can only assume common support ( ) ( )=S M S U  in the unsupervised 

setting. Let  

 ( ) ( ) ( )= ; ;r m uγ γ θ γ ξ  (4.1) 

where the probability of observing γ  is ( );m γ θ  by (3.3) given that a randomly selected record pair from 

  belongs to ,M  and ( );u γ ξ  otherwise, similarly given by (3.3) with parameters k  instead of .k  An 

iterative algorithm of unsupervised MEC is given below.   

I. Set 
( ) ( ) ( )( )0 0 0

1= , , K θ  and 
( )0

1= ,Mn M  where 1M  is the maximal MEC set. 

II. For the tht  iteration, let 
( )

=1t

abg  if ( ) ( )
, ,ta b M  and 0 otherwise.   

i. Update 
( )( ); tu γ ξ  by using (4.4), which is discussed below, given 

( ) ( ) ( ) = : , ,t t

abg a b g  

and calculate  

 
( )

( )

( )

( ),

1
=t t

k abt
a b

g
M




 𝕀(𝛾𝑎𝑏,𝑘 = 1) ,  (4.2) 

which maximize MD  in (3.4) for given 
( )( ) ( ) ( ) ( ) ; , = , : =1t t t

abu M a b gγ ξ  and 
( ) ( )

( ),
= .t t

aba b
M g

  Once 
( )t
θ  and 

( )t
ξ  are obtained, we can update 

( ) ( ) ( ) ( )ˆ= ,t t

Mn n gγ
γ γ  where  

                                                  
( ) ( ) ( ) ( )( )

( ) ( ) ( )
( ) ( ) ( )( )

ˆ ˆ ; , = min , 1
1

t t

t t t

t t

M r
g g

M r n

  
  

− +  

γ
γ γ θ ξ

γ
  

                                                  
( ) ( ) ( ) ( )( )

( )( )
( )( )

;
; , = .

;

t

t t t

t

m
r r

u


γ θ
γ γ θ ξ

γ ξ
  

ii. For given 
( ) ( )

,t t
θ ξ  and 

( )
,t

Mn  we find the MEC set ( ) ( ) ( ) 1 1
= , : =1

t t

abM a b g
+ +

  such that 
( ) ( )1

=
t t

MM n
+

 by deduplication in the descending order of 
( ) ( )t

abr γ  over .  It maximizes 

the entropy denoted by 
( ) ( ) :tQ g  
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( ) ( ) ( )( ) ( )

( )

( ) ( )
,

1
= log ,t t t

ab abt
a bM

Q Q g r
n 

 g g ψ γ  (4.3) 

with respect to .g  

III. Iterate until 
( ) ( )1tt

M Mn n
+

=  or 
( ) ( )1tt +
− θ θ 𝜖, where 𝜖 is a small positive value.  

 

A theoretical convergence property of the proposed algorithm and its proof are presented in the 

supplementary materials. 

Notice that, insofar as = M U   is highly imbalanced, where the prevalence of = 1abg  is very close 

to 0, one could simply ignore the contributions from M  and use  

 
( ),

1ˆ
k

a bn




=  𝕀(𝛾(𝑎𝑏,𝑘) = 1) (4.4) 

under the model (3.3) of ( ); ,u γ ξ  in which case there is no updating of 
( )( ); .tu γ ξ  Other possibilities of 

estimating ( );u γ ξ  will be discussed in Section 5.2. 

Table 4.1 provides an overview of MEC for record linkage in the supervised or unsupervised setting. 

In the supervised setting, one observes γ  for the matched record pairs in ,M  so that the probability ( )m γ  

can be estimated from them directly. Whereas, for MEC in the unsupervised setting, one cannot separate 

the estimation of ( )m γ  and .Mn  

 
Table 4.1 

MEC for record linkage in supervised or unsupervised setting 
 

 Supervised Unsupervised 

= M U   Observed Unobserved 

Probability ratio ( )γqr  generally applicable ( )γr  generally 

( )γr  given ( ) ( )S M S U  assuming ( ) ( )S M S U=  

Model of γ  Multinomial if only discrete comparison scores 

Directly or via key variables and measurement errors 

MEC set Guided by FLR and MMR 

Require estimate of Mn  in addition 

Estimation ( );γ θm  from γM  in   ( );γ θm  and Mn  

Mn  by (3.7) outside   jointly by (3.7) and (3.9) 

 
4.2 Error rates 
 

MEC for record linkage should generally be guided by the error rates, FLR and MMR, without being 

restricted to the estimate of .Mn  

Note that ( ) ˆˆ : ,abg a b M  of any MEC set M̂  are among the largest ones over ,  because MEC 

follows the descending order of ˆ ,abr  except for necessary deduplication when there are multiple pairs 

involving a given record. To exercise greater control of the FLR, let   be the target FLR, and consider 

the following bisection procedure.   
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i. Choose a threshold value c  and form the corresponding MEC set ( )ˆ ,M c  where âbr c  for 

any ( ) ( )ˆ, .a b M c  

ii. Calculate the estimated FLR of the resulting MEC set M̂  as  

 ( )
( ) ˆ,

1
ˆ ˆ= 1 .

ˆ ab

a b M

g
M




−  (4.5) 

If ˆ ,   then increase ;c  if ˆ ,   then reduce .c  

 

Iteration between the two steps would eventually lead to a value of c  that makes ̂  as close as 

possible to ,  for the given probability ratio ( )ˆ .r γ  

The final MEC set M̂  can be chosen in light of the corresponding FLR estimate ˆ.  It is also possible 

to take into consideration the estimated MMR given by  

 
( ) ˆ,

ˆ ˆ ˆ=1 ab M

a b M

g n


−   (4.6) 

where ˆ
Mn  is given by unsupervised MEC algorithm. Note that if ˆ ˆ= ,MM n  then we shall have ˆ ˆ= ;   

but not if M̂  is guided by a given target value of FLR or MMR. 

In Section 6.2, we investigate the performance of the MEC sets guided by the error rates through 

simulations. 

 
5. Discussion 
 

Below we discuss and compare two other approaches in the unsupervised setting, including the ways 

by which some of their elements can be incorporated into the MEC approach. Other less practical 

approaches are discussed in the supplementary material. 

 
5.1 The classical approach 
 

Recall Problems I and II of the classical approach mentioned in Section 2. 

From a practical point of view, Problem I can be dealt with by any deduplication method of the set *M  

of classified records pairs, where ( )ˆ
abr γ  is above a threshold value for all ( ) *, .a b M  As “an advance 

over previous ad hoc assignment methods”, Jaro (1989) chooses the linked set * *ˆ ,M M  which 

maximises the sum of ( )ˆlog abr γ  subject to the constraint of one-one link. Since ˆ
abg  is a monotonic 

function of ( )ˆ ,abr γ  this amounts to choose *M̂  which maximises the expected number of matches in it, 

denoted by  

 
( ) *

*

ˆ,

ˆ=M ab

a b M

n g


   

But *

Mn  is still not connected to the probabilities of false links and non-links defined by (2.1). As 

illustrated below, neither does it directly control the errors of the linked 
*ˆ .M  
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Consider linking two files with 100 records each. Suppose Jaro’s assignment method yields 
*ˆ = 100M  on one occasion, where 80 links have ˆ 1abg   and 20 links have ˆ 0.75,abg   such that 

* 95.Mn   Suppose it yields 90 links with ˆ 1abg   and 10 links with ˆ 0.5abg   on another occasion, where 
* 95.Mn   Clearly, *

Mn  does not directly control the linkage errors in 
*ˆ .M  Moreover, there is no 

compelling reason to accept 100 links on both these occasions, simply because 100 one-one links are 

possible. 

In forming the MEC set one deals with Problem I directly, based on the concept of maximum entropy 

that has relevance in many areas of scientific investigation. The implementation is simple and fast for 

large datasets. The estimated error rates FLR (4.5) and MMR in (4.6) are directly defined for a given MEC 

set. 

Problem II concerns the parameter estimation. As explained earlier, applying the EM algorithm based 

on the objective function (2.2) proposed by Winkler (1988) and Jaro (1989) is not a valid approach of 

maximum likelihood estimation (MLE). One may easily compare this WJ-procedure to that given in 

Section 4.1, where both adopt the same model (3.3) and the same estimator of ( );u γ ξ  via ˆ
k  given by 

(4.4). It is then clear that the same formula is used for updating 
( )t

Mn  at each iteration, but a different 

formula is used for  

 
( )

( )

( )

( )
,

,

1
ˆ=t t

k ab ab kt
a bM

g
n

 


  (5.1) 

where the numerator is derived from all the pairs in ,  whereas 
( )t

k  given by (4.2) uses only the pairs in 

the MEC set 
( )

.tM  Notice that the two differ only in the unsupervised setting, but they would become the 

same in the supervised setting, where one can use the observed binary abg  instead of the estimated 

fractional ˆ .abg  

Thus, one may incorporate the WJ-procedure as a variation of the unsupervised MEC algorithm, where 

the formulae (5.1) and (4.4) are chosen specifically. This is the reason why it can give reasonable 

parameter estimates in many situations, despite its misconception as the MLE. Simulations will be used 

later to compare empirically the two formulae (4.2) and (5.1) for 
( )

.t

k  

 
5.2 An approach of MLE 
 

Below we derive another estimator of k  by the ML approach, which can be incorporated into the 

proposed MEC algorithm, instead of (4.4). This requires a model of the key variables, which explicates 

the assumptions of key-variable errors. Let kz  be the thk  key variable which takes value 1, , .kD  Copas 

and Hilton (1990) envisage a non-informative hit-miss generation process, where the observed kz  can take 

the true value despite the perturbation. Copas and Hilton (1990) demonstrate that the hit-miss model is 

plausible in the SL (Supervised Learning) setting based on labelled datasets. 

We adapt the hit-miss model to the unsupervised setting as follows. First, for any ( ), ,a b M  let 

( ),Pr 1 ,k ab ke = =  where , 1ab ke =  if the associated pair of key variables are subjected to any form of 
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perturbation that could potentially cause disagreement of the thk  key variable, and , = 0ab ke  otherwise. 

Let  

 ( ) 2 2

=1 =1

= 1 =1 1
k kD D

k k k kd k kd

d d

m m   
 

− + − − 
 

    

where we assume that k  must be positive for some =1, , ,k K  and  

 ( ) ( ), ,Pr =1, 1 Pr = =1, = 0kd ik ab ab k ik ab ab km z d g e z d g e= = = =   

for i a=  or .b  Next, for any record i  in either A  or ,B  let = 1i  if it has a match in the other file and 

0i =  otherwise. Given 0,i =  with or without perturbation, let ( )Pr 0 .ik i kdz d u= = =  We have 

:=kd kd kdm u   if i  is non-informative. A slightly more relaxed assumption is that i  is only non-

informative in one of the two files. To be more resilient against its potential failure, one can assume kdm  

to hold for all the records in the smaller file, and allow kdu  to differ for the records with = 0i  in the 

larger file. Suppose .A Bn n  Let  

 ( ) ( )Pr 1b M B Ap E n n n = = = =   

be the probability that a record in B  has a match in .A  One may assume  :A a a A= z z  to be 

independent over ,A  giving  

 
= 1

log
K

A ak

a A k

m


=    

where 
=1

kD

ak kdd
m m= 𝕀(𝑧𝑎𝑘 = 𝑑). The complete-data log-likelihood based on ( ),B B z  is  

 ( ) ( )
=1 =1

log 1 log 1
K K

B b bk b bk

b B b Bk k

p m p u 
 

   
= + − −   

   
    (5.2) 

where 
=1

=
kD

bk kdd
m m 𝕀(𝑧𝑏𝑘 = 𝑑) and 

=1
=

kD

bk kdd
u u 𝕀(𝑧𝑏𝑘 = 𝑑), based on an assumption of independent 

( ),b b z  across the entities in .B  

Under separate modelling of Az  and ( ), ,B Bz  let ˆ
kdm  be the MLE based on ,A  given which an EM-

algorithm for estimating p  and kdu  follows from (5.2) by treating B  as the missing data. However, the 

estimation is feasible only if  kdu  and  kdm  are not exactly the same; whereas the MLE of Mn  has a 

large variance, when  kdm  and  kdu  are close to each other, even if they are not exactly equal. 

Meanwhile, the closeness between  kdm  and  kdu  does not affect the MEC approach, where ˆ
Mn  is 

obtained from solving (3.7) given ( ) ( ) ( )ˆ ˆ ˆ= ,r m uγ γ γ  where ( )û γ  is indeed most reliably estimated 

when    .kd kdm u=  Moreover, one can incorporate a profile EM-algorithm, based on (5.2) given 
( )

,t

Mn  to 

update 
( )( ); tu γ ξ  in the unsupervised MEC algorithm of Section 4.1. At the tht  iteration, where 1,t   

given 
( ) ( ) ( )max ,t t

M A Bp n n n=  and ˆ
kdm  estimated from the smaller file ,A  obtain 

( )t

kdu  by  

 
( ) ( )( ) ( ) ( ) ( )( )2

= 1 = 1

1
ˆ ˆ1 1 1 .

k kD D
t t t t t

k kd kd kd A

d dA

p u m p m p n
n


  

= − + − −  
  

   (5.3) 
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6. Simulation study  

 
6.1 Set-up 
 

To explore the practical feasibility of the unsupervised MEC algorithm for record linkage, we conduct 

a simulation study based on the data sets listed in Table 6.1, which are disseminated by ESSnet-DI 

(McLeod, Heasman and Forbes, 2011) and freely available online. Each record in a data set has associated 

synthetic key variables, which may be distorted by missing values and typos when they are created, in 

ways that imitate real-life errors (McLeod et al., 2011). 

 
Table 6.1 

Data set description (size in parentheses) 
 

Data set Description 

Census (25,343)  A fictional data set to represent some observations from a decennial Census. 

CIS (24,613)  Fictional observations from Customer Information System, combined administrative data from the tax and 

benefit systems. 

PRD (24,750)  Fictional observations from Patient Register Data of the National Health Service. 

 
We consider the linkage keys forename, surname, sex, and date of birth (DOB). To model the key 

variables, we divide DOB into 3 key variables (Day, Month, Year). For text variables such as forename 

and surname, we divide them into 4 key variables by using the Soundex coding algorithm (Copas and 

Hilton, 1990, page 290), which reduces a name to a code consisting of the leading letter followed by three 

digits, e.g. CopasC120, HiltonH435. The twelve key variables for record linkage are presented in 

Table 6.2. 

 
Table 6.2 

Twelve key variables available in the three data sets 
 

Variable Description No. of Categories 

PERNAME1 1 First letter of forename 26 

2 First digit of Soundex code of forename 7 

3 Second digit of Soundex code of forename 7 

4 Third digit of Soundex code of forename 7 

PERNAME2 1 First letter of surname 26 

2 First digit of Soundex code of surname 7 

3 Second digit of Soundex code of surname 7 

4 Third digit of Soundex code of surname 7 

SEX Male/Female 2 

DOB DAY Day of birth 31 

MON Month of birth 12 

YEAR Year of birth (1910 ~  2012) 103 
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We set up two scenarios to generate linkage files. We use the unique identification variable (PERSON-

ID) for sampling, which are available in all the three data sets. We sample 500An =  and 1,000Bn =  

individuals from PRD and CIS, respectively. Let Ap  be the proportion of records in the smaller file (PRD) 

that are also selected in the larger file (CIS), by which we can vary the degree of overlap, i.e. the set of 

matched individuals ,AB  between A  and .B  We use 0.8, 0.5Ap =  or 0.3 under either scenario. 

 

Scenario-I (Non-informative) 
 

• Sample 0 B An n p=  individuals randomly from Census.  

• Sample An  randomly from these 0n  as the individuals of PRD, denoted by .A  

• Sample Bn  randomly from these 0n  as the individuals of CIS, denoted by .B  

 

Under this scenario both a  and b  are non-informative for the key-variable distribution. For any 

given ,Ap  we have ( )M A AE n n p=  and ( ) 0 ,ME n n =  where Mn  is the random number of matched 

individuals between the simulated files A  and .B  

 

Scenario-II (Informative) 
 

• Sample An  randomly from Census  PRD  CIS, denoted by A  from PRD.  

• Sample M A An n p=  randomly from A  as the matched individuals, denoted by .AB  

• Sample B Mn n−  randomly from CIS \ A  having SEX = ,F YEAR 1970,  and odd MON, 

denoted by 0 .B  Let 0B AB B=   be the sampled individuals of CIS.  

 

Under this scenario the key-variable distribution is the same in ,A  whether or not 1,a =  but it is 

different for the records 0 ,b B  or 0.b =  Hence, scenario-II is informative. For any given ,Ap  we have 

fixed M A An n p=  and .A Bp n =  

 
6.2 Results: Estimation 
 

For the unsupervised MEC algorithm given in Section 4.1, one can adopt (4.2) or (5.1) for updating 
( )

.t

k  Moreover, one can use (4.4) for ˆ
k  directly, or (5.3) for updating 

( )t

k  iteratively. In particular, 

choosing (5.1) and (4.4) effectively incorporates the procedure of Winkler (1988) and Jaro (1989) for 

parameter estimation. Note that the MEC approach still differs to that of Jaro (1989), with respect to the 

formation of the linked set ˆ .M  

Table 6.3 compares the performance of the unsupervised MEC algorithm, using different formulae for 
( )t

k  and 
( )

,t

k  where the size of M̂  is equal to the corresponding estimate ˆ .Mn  In addition, we include 

( )ˆ 1;k M Mn k n =  estimated directly from the matched pairs in ,M  as if M  were available for 

supervised learning, together with (4.4) for ˆ .k  The true parameters and error rates are given in addition to 

their estimates. 
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Table 6.3 

Parameters and averages of their estimates, averages of error rates and their estimates, over 200 simulations. 

Median of estimate of 
M

n  given as 
M

n  
 

Scenario I Scenario II 

Parameter Formulae Estimation Parameter Formulae Estimation 

  ( )M
E n  

( )t

k
  

( )t

k
  ̂  ˆ

M
n  

M
n  FLR MMR 𝐅𝐋𝐑̂ 𝐌𝐌𝐑̂   

M
n  

( )t

k
  

( )t

k
  ̂  ˆ

M
n  

M
n  FLR MMR 𝐅𝐋𝐑̂ 𝐌𝐌𝐑̂ 

0.0008 400 

ˆ
k  (4.4) 0.00080 400.0 397 0.0264 0.0266 0.0357 0.0357 

0.0008 400 

ˆ
k  (4.4) 0.00080 398.3 400 0.0230 0.0273 0.0326 0.0326 

(4.2) (5.3) 0.00082 407.9 405 0.0425 0.0257 0.0509 0.0509 (4.2) (5.3) 0.00080 401.4 401 0.0305 0.0277 0.0403 0.0403 

(4.2) (4.4) 0.00083 414.7 407 0.0549 0.0244 0.0620 0.0620 (4.2) (4.4) 0.00081 405.2 404 0.0379 0.0262 0.0467 0.0467 

(5.1) (4.4) 0.00081 406.0 405 0.0399 0.0269 0.0503 0.0503 (5.1) (4.4) 0.00080 401.4 401 0.0316 0.0286 0.0438 0.0438 

0.0005 250 

ˆ
k  (4.4) 0.00050 251.6 249 0.0340 0.0301 0.0370 0.0370 

0.0005 250 

ˆ
k  (4.4) 0.00050 249.6 250 0.0284 0.0302 0.0334 0.0334 

(4.2) (5.3) 0.00052 258.3 255 0.0559 0.0296 0.0533 0.0533 (4.2) (5.3) 0.00050 251.8 251 0.0383 0.0320 0.0410 0.0410 

(4.2) (4.4) 0.00053 266.9 256.5 0.0742 0.0277 0.0680 0.0680 (4.2) (4.4) 0.00052 257.7 253 0.0513 0.0295 0.0516 0.0516 

(5.1) (4.4) 0.00052 261.7 259 0.0676 0.0305 0.0636 0.0636 (5.1) (4.4) 0.00051 255.4 253.5 0.0510 0.0336 0.0520 0.0520 

0.0003 150 

ˆ
k  (4.4) 0.00030 152.3 151 0.0439 0.0356 0.0381 0.0381 

0.0003 150 

ˆ
k  (4.4) 0.00030 150.5 150 0.0382 0.0355 0.0350 0.0350 

(4.2) (5.3) 0.00033 165.9 156.5 0.0873 0.0244 0.0620 0.0620 (4.2) (5.3) 0.00031 153.0 153 0.0559 0.0377 0.0452 0.0452 

(4.2) (4.4) 0.00041 205.4 161 0.1632 0.0308 0.1251 0.1251 (4.2) (4.4) 0.00032 158.5 155 0.0708 0.0342 0.0558 0.0558 

(5.1) (4.4) 0.00054 271.4 169 0.3015 0.0785 0.1639 0.1639 (5.1) (4.4) 0.00038 189.3 156 0.1414 0.0524 0.0903 0.0903 

 
As expected, the best results are obtained when the parameter k  is estimated directly from the 

matched pairs in ,M  i.e., ( )ˆ 1; ,k M Mn k n =  together with (4.4) for ˆ ,k  despite ˆ
k  by (4.4) is not 

exactly unbiased. Nevertheless, the approximate estimator ˆ
k  can be improved, since the profile-EM 

estimator given by (5.3) is seen to perform better across all the set-ups, where both are combined with 

(4.2) for 
( )

.t

k  When it comes to the two formulae of 
( )t

k  by (4.2) and (5.1), and the resulting Mn -

estimators and the error rates FLR and MMR, we notice the followings.  
 

• Scenario-I: When the size of the matched set M  is relatively large at 0.8,Ap =  there are only 

small differences in terms of the average and median of the two estimators of ,Mn  and the 

difference is just a couple of false links in terms of the linkage errors. Figures 6.1 shows that 

(4.2) results in a few larger errors of ˆ
Mn  than (5.1) over the 200 simulations, when 0.8Ap =  or 

0.0008. =  As the size of the matched set M  decreases, the averages and medians of the 

estimators of Mn  resulting from (4.2) and (5.3) are closer to the true values than those of the 

other estimators. Especially when the matched set M  is relatively small, where 0.0003, =  

the formula (5.1) results in considerably worse estimation of Mn  in every respect. While this is 

partly due to the use of (4.4) instead of (5.3), most of the difference is down to the choice of 
( )

,t

k  which can be seen from intermediary comparisons to the results based on (4.2) and (4.4). 

• Scenario-II: The use of (4.2) and (5.3) for the unsupervised MEC algorithm performs better 

than using the other formulae in terms of both estimation of Mn  and error rates across the three 

sizes of the matched set (Figure 6.2). Relatively greater improvement is achieved by using (4.2) 

and (5.3) for the smaller matched sets.  

The results suggest that the unsupervised MEC algorithm tends to be more affected by the size of the 

matched set under Scenario-I than Scenario-II. Choosing (4.2) and (5.3), however, seems to yield the most 



Survey Methodology, June 2022 17 

 

 

Statistics Canada, Catalogue No. 12-001-X 

robust estimation of Mn  and error rates against the small size of the matched set ,M  regardless the 

informativeness of key-variable errors. The reason must be the fact that the numerator of 
( )t

k  is calculated 

in (5.1) over all the pairs in   instead of the MEC set 
( )

,tM  which seems more sensitive when the 

imbalance between M  and U  is aggravated, while the sizes of A  and B  remain fixed. 

 
Figure 6.1 Box plots of ˆ

M M
n n−  based on 200 Monte Carlo samples under Scenario I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Box plots of ˆ
M M

n n−  based on 200 Monte Carlo samples under Scenario II. 
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We also include the additional results obtained for 0.2, 0.15,Ap =  and 0.1 in the supplementary 

material. The estimate ˆ
Mn  (or ˆ )  gets worse as Ap  (or )  reduces, which is consistent with the previous 

findings of others, for example, Enamorado, Fifield and Imai (2019) showed that a greater degree of 

overlap between data sets leads to better merging results in terms of the error rates as well as the accuracy 

of their estimates. The problem is also highlighted by Sadinle (2017). Record linkage in cases of 

extremely low prevalence of true matches is a problem that needs to be studied more carefully on its own. 

 
6.3 Results: MEC set 
 

Aiming the MEC set M̂  at the estimated size ˆ
Mn  is generally not a reasonable approach to record 

linkage. Record linkage should be guided directly by the associated uncertainty, i.e. the error rates FLR 

and MMR, based on their estimates (4.5) and (4.6), as described in Section 4.2. Note that this does require 

the estimation of Mn  in addition to ( ).r γ  

We have FLR̂ = MMR̂ in Table 6.3, because ˆ ˆ
MM n=  here. It can be seen that these follow the true 

FLR more closely than the MMR, especially when ˆ
Mn  is estimated using the formulae (4.2) and (5.3). 

This is hardly surprising. Take e.g. the maximal MEC set 1M  that consists of the pairs whose key 

variables agree completely and uniquely. Provided reasonably rich key variables, as the setting here, one 

can expect the FLR of 1M  to be low, such that even a naïve estimate FLR̂ = 0 probably does not err 

much. Meanwhile, the true MMR has a much wider range from one application to another, because the 

difference between Mn  and 1M  is determined by the extent of key-variable errors, such that the estimate 

of MMR depends more critically on that of .Mn  The situation is similar for any MEC set beyond 1 ,M  as 

long as ˆ
abg  remains very high for any ( ) ˆ, .a b M  

Table 6.4 shows the performance of the MEC set using the bisection procedure described in 

Section 4.2, across the same set-ups as in Table 6.3. We use only (4.2) for 
( )t

k  and (5.3) for 
( )t

k  to obtain 

the corresponding ˆ .Mn  We let the target FLR be 0.05 =  or 0.03, where the latter is clearly lower than 

the true FLR of M̂  that is of the size ˆ
Mn  (Table 6.3), especially when the prevalence is relatively low (at 

0.0003) =  under either scenario. The resulting true (FLR, MMR) and their estimates are given in 

Table 6.4. 

 

Table 6.4 

Parameters and averages of their estimates, averages of error rates and their estimates, over 200 simulations, 

A B
n n n=  =  

 

Scenario I Scenario II 

Parameter Target 

FLR 

Estimation Parameter Target 

FLR 

Estimation 

  ( )M
E n  ˆ

M
n  M̂ n  M̂  FLR MMR 𝐅𝐋𝐑̂ 𝐌𝐌𝐑̂   M

n  ˆ
M

n  M̂ n  M̂  FLR MMR 𝐅𝐋𝐑̂ 𝐌𝐌𝐑̂ 

0.0008 400 
0.05 

407.9 
0.00080 401.9 0.0313 0.0280 0.0393 0.0527 

0.0008 400 
0.05 

401.4 
0.00080 397.8 0.0239 0.0294 0.0337 0.0418 

0.03 0.00079 395.0 0.0196 0.0328 0.0271 0.0568 0.03 0.00079 393.1 0.0164 0.0334 0.0256 0.0451 

0.0005 250 
0.05 

258.3 
0.00050 251.9 0.0396 0.0326 0.0385 0.0576 

0.0005 250 
0.05 

251.8 
0.00050 248.6 0.0305 0.0361 0.0328 0.0447 

0.03 0.00049 246.7 0.0246 0.0374 0.0264 0.0650 0.03 0.00049 245.2 0.0226 0.0416 0.0245 0.0497 

0.0003 150 
0.05 

165.9 
0.00031 153.4 0.0533 0.0403 0.0389 0.0783 

0.0003 150 
0.05 

153.0 
0.00030 150.1 0.0445 0.0443 0.0333 0.0514 

0.03 0.00030 149.3 0.0355 0.0483 0.0256 0.0905 0.03 0.00029 147.4 0.0322 0.0489 0.0238 0.0588 
 



Survey Methodology, June 2022 19 

 

 

Statistics Canada, Catalogue No. 12-001-X 

It can be seen that the MEC algorithm guided by the FLR yields the MEC set ˆ ,M  whose size M̂  is 

close to the true Mn  across all the set-ups. Indeed, under Scenario-I, the mean of M̂  is closer to Mn  

than the mean (or median) of ˆ
Mn  over all the simulations, which results directly from parameter 

estimation, especially when the match set is relatively small (at 0.0003) =  and the performance of ˆ
Mn  

is most sensitive. In other words, the fact that M̂  differs to the estimate ˆ
Mn  is not necessarily a cause of 

concern for the MEC algorithm guided by targeting the FLR. 

To estimate the MMR by (4.6), one can either use M̂  as the estimate of ,Mn  or one can use ˆ
Mn  

from parameter estimation based on (4.2) and (5.3). In the former case, one would obtain MMR̂ = FLR̂. 

While this MMR̂ is not unreasonable in absolute terms since M̂  is close to Mn  here, as can be seen from 

comparing the mean of FLR̂ with that of the true MMR in Table 6.4, it has a drawback a priori, in that it 

decreases as the target FLR decreases, although one is likely to miss out on more true matches when more 

links are excluded from the MEC set ˆ .M  Using ˆ
Mn  from parameter estimation directly makes sense in 

this respect, since the true Mn  must remain the same, regardless the target FLR. However, the estimator 

MMR̂ could then become less reliable given relatively low prevalence ,  where ˆ
Mn  could be sensitive in 

such situations. 

In short, the estimation of FLR tends to be more reliable than that of MMR, especially if the 

prevalence   is relatively low in its theoretical range ( )0 min , .A Bn n n   The following 

recommendations for unsupervised record linkage seem warranted.   

• When forming the MEC set M̂  according to the uncertainty of linkage, it is more robust to rely 

on the FLR, estimated by (4.5).  

• The estimate of MMR given by (4.6), derived from the parameter estimate ˆ
Mn  based on (4.2) 

and (5.3) provides an additional uncertainty measure. However, one should be aware that this 

measure can be sensitive when the prevalence   is relatively low.  

• Between two target values of the FLR,     more attention can be given to the estimate of 

additional missing matches in ( )M̂   compared to ( )ˆ ,M    given by  

 
( ) ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ, , , \

ˆ ˆ ˆ  .ab ab ab

a b M a b M a b M M

g g g
       

− =     

 
7. Final remarks 
 

We have developed an approach of maximum entropy classification to record linkage. This provides a 

unified probabilistic record linkage framework both in the supervised and unsupervised settings, where a 

coherent classification set of links are chosen explicitly with respect to the associated uncertainty. The 

theoretical formulation overcomes some persistent flaws of the classical approaches. Furthermore, the 

proposed MEC algorithm is fully automatic, unlike the classical approach that generally requires clerical 

review to resolve the undecided cases. 
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An important issue that is worth further research concerns the estimation of relevant parameters in the 

model of key-variable errors that cause problems for record linkage. First, as pointed out earlier, treating 

record linkage as a classification problem allows one to explore many modern machine learning 

techniques. A key challenge in this respect is the fact that the different record pairs are not distinct “units”, 

such that any powerful supervised learning technique needs to be adapted to the unsupervised setting, 

where it is impossible to estimate the relevant parameters based on the true matches and non-matches, 

including the number of matched entities. Next, the model of the key-variable errors or the comparison 

scores can be refined. Once these issues are resolved together, further improvements on the parameter 

estimation can hopefully be made, which will benefit both the classification of the set of links and the 

assessment of the associated uncertainty. 

Another issue that is interesting to explore in practice is the various possible forms of informative key-

variable errors, insofar as the model pertaining to the matched entities in one way or another differs to that 

of the unmatched entities. Suitable variations of the MEC approach may need to be configured in different 

situations. 
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Supplementary material 
 

In the supplementary material (arXiv:2009.14797), we present the theoretical convergence property of 

the proposed algorithm and some special cases of MEC sets for record linkage, and discuss two less 

practical approaches that can be incorporated into the MEC algorithm. An additional simulation study 

with low levels of the files’ overlap is also presented. 
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The anchoring method: Estimation of interviewer effects in 

the absence of interpenetrated sample assignment 

Michael R. Elliott, Brady T. West, Xinyu Zhang and Stephanie Coffey1 

Abstract 

Methodological studies of the effects that human interviewers have on the quality of survey data have long 

been limited by a critical assumption: that interviewers in a given survey are assigned random subsets of the 

larger overall sample (also known as interpenetrated assignment). Absent this type of study design, estimates 

of interviewer effects on survey measures of interest may reflect differences between interviewers in the 

characteristics of their assigned sample members, rather than recruitment or measurement effects specifically 

introduced by the interviewers. Previous attempts to approximate interpenetrated assignment have typically 

used regression models to condition on factors that might be related to interviewer assignment. We introduce 

a new approach for overcoming this lack of interpenetrated assignment when estimating interviewer effects. 

This approach, which we refer to as the “anchoring” method, leverages correlations between observed 

variables that are unlikely to be affected by interviewers (“anchors”) and variables that may be prone to 

interviewer effects to remove components of within-interviewer correlations that lack of interpenetrated 

assignment may introduce. We consider both frequentist and Bayesian approaches, where the latter can make 

use of information about interviewer effect variances in previous waves of a study, if available. We evaluate 

this new methodology empirically using a simulation study, and then illustrate its application using real 

survey data from the Behavioral Risk Factor Surveillance System (BRFSS), where interviewer IDs are 

provided on public-use data files. While our proposed method shares some of the limitations of the traditional 

approach – namely the need for variables associated with the outcome of interest that are also free of 

measurement error – it avoids the need for conditional inference and thus has improved inferential qualities 

when the focus is on marginal estimates, and it shows evidence of further reducing overestimation of larger 

interviewer effects relative to the traditional approach. 

 

Key Words: Clustering; Intraclass correlation; Design effects; Behavioral Risk Factor Surveillance System. 

 

 

1. Introduction 
 

Despite the best efforts of survey organizations to standardize the training of both face-to-face and 

telephone survey interviewers (Fowler and Mangione, 1989), numerous researchers have shown that 

estimates of key population parameters tend to vary between interviewers (e.g., Groves, 2004; Schnell and 

Kreuter, 2005; West and Olson, 2010; West and Blom, 2017). This variability may be due to verbal or 

nonverbal signals sent (likely unintentionally) by different interviewers, or by demographic features of the 

interviewer that reveal interviewer preferences and expectations (West and Blom, 2017). Even simpler 

factual items and self-administered items have been found to show variation across interviewers, despite 

the random assignment of respondents to interviewers (e.g., Kish, 1962; Groves and Magilavy, 1986; 

O’Muircheartaigh and Campanelli, 1998).  

This intra-interviewer correlation, generally referred to as an interviewer effect, reduces the efficiency 

of survey estimates and decreases effective sample sizes given fixed survey costs in a manner similar to 
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cluster sampling, due to the presence of a common effect across subjects that induces correlation. It can be 

conceptualized in statistical terms as a random effect common to all observations obtained by a given 

interviewer, whose variance is termed “interviewer variance”. Accounting for this variance is critical to 

get correct statistical inference. In addition, as part of data collection monitoring, survey managers can use 

unbiased estimates of interviewer effects to identify interviewers that are having extreme effects on 

particular survey outcomes in real time and may need additional training to curb inappropriate behaviors.  

A key assumption in the estimation of interviewer variance ‒ whether via random effects models, or 

indirectly through use of generalized estimation equation/Taylor Series approaches – is interpenetrated 

sampling, or the random assignment of sampled cases to interviewers. Thus Schnell and Kreuter (2005) 

estimate interviewer effects in a face-to-face survey where interviewers are nested within PSUs and 

respondents within a PSU are randomly assigned to an interviewer, while O’Muircheartaigh and 

Campanelli (1998) use a cross-classified model in a design where respondents are randomly assigned to 

interviewers who worked in multiple PSUs. Interpenetrated sampling helps to ensure unbiased estimation 

of interviewer variance by ensuring there is no “spurious” variance introduced by certain types of 

respondents being more likely to be assigned to a given interviewer (e.g., older respondents being 

associated with interviewers working during the day), just as randomization ensures unbiased estimation 

of treatment effects in clinical trials. Unfortunately, interpenetrated sampling is logistically infeasible in 

many sample designs. 

Recent studies of interviewer variance have adopted ad-hoc analytic approaches to “adjusting” for the 

effects of selected covariates that may introduce spurious correlation within interviewers based on non-

interpenetrated sample designs (e.g., covariates describing features of sampling areas), claiming that any 

remaining variance in survey estimates across interviewers is mostly attributable to the interviewers (West 

and Blom, 2017). While this approach may in principle work to reduce spurious correlations between 

interviewers and outcomes if such covariates are available, it comes at the price of requiring conditional 

inference for the substantive variable of interest. This is particularly problematic if our goal is inference 

that properly accounts for interviewer effects in variance estimation without inappropriately adjusting for 

covariates that are not of interest. For example, if our interest is in the mean of a survey variable ,Y

( ) ,E Y =  while appropriately accounting for the additional variance introduced by “clustering” from 

multiple interviewers conducted by a single interviewer, adjusting for multiple covariates ( )1, , pX X  

yields an estimator of 0  under the model ( ) 0 1
.

p

k kk
E Y x 

=
= +  It is clear that 0   unless either 

1 0p = = =  (in which case there cannot be adjustment for spurious correlations between interviewers 

and outcome), ( ) ( )1 0,pE X E X= = =  or there is some extremely unlikely cancellation of regression 

components. (For readers familiar with causal inference, this is somewhat analogous to marginal structural 

models (MSMs), which avoid using confounders in a regression model while still accounting for 

confounding, Joffe, Ten Have, Feldman and Kimmel (2004), although our approach is fully model-based 

rather than model-assisted as in MSMs.) While centering the covariates can guarantee the second 

condition in the absence of interactions, this is not always desirable or noted, and even if doable may not 
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leave the remaining residuals with the desired distributional characteristics. With the present study, we 

aim to provide survey researchers with a means to estimate interviewer variance (either to improve the 

quality of estimates or inform survey operations) in the absence of interpenetration without conditioning 

on covariates in the traditional manner.  

Our approach, which we refer to as the “anchoring” method, leverages correlations between observed 

variables that are unlikely to be affected by interviewers (“anchors”) and variables that may be prone to 

interviewer effects (e.g., sensitive or complex factual questions) to statistically remove components of 

within-interviewer correlations that a lack of interpenetrated assignment may introduce. The improved 

estimates of interviewer effects on survey measures will increase the ability of survey analysts to correct 

estimates of interest for interviewer effects, and enable survey managers to adaptively manage a data 

collection in real time and intervene when particular interviewers are producing survey outcomes that vary 

substantially from expectations. 

In Section 2, we provide some background on the important problem of interviewer variance, as well 

as a discussion of its estimation and impact on inference. In Section 3, we introduce the anchoring method 

and its development in a frequentist and Bayesian framework, as well as the heuristic interpretation and 

issues related to choice of variables. In Section 4 we empirically evaluate the properties of this new 

method using a simulation study, and in Section 5 we illustrate the method using real data from the 

Behavioral Risk Factor Surveillance System (BRFSS). In Section 6 we provide concluding remarks as 

well as some discussion of implementation and monitoring of the method in practise. 

 
2. Background 
 

2.1 Interviewer variance 
 

Between-interviewer variance affects survey estimates in a manner similar to the design effects 

introduced by cluster sampling. One can estimate the multiplicative increase in the total variance of an 

estimated mean as ( )intdeff 1 1 ,m= + −  where m  is the average number of interviews conducted by 

individual interviewers and int  is the within-interviewer correlation in answers elicited to a particular 

survey question (Kish, 1965). Typical values of 35 respondents per interviewer and 0.03 for int  would 

therefore double the estimated variance of the mean, relative to the variance with int  equal to zero. 

Failure to account for the within-interviewer correlation introduced by interviewer effects leads to 

misspecification effects (Skinner, Holt and Smith, 1989), resulting in anti-conservative inference due to 

underestimation of standard errors.  

 

2.2 Estimation of interviewer variance 
 

Researchers may wish to estimate interviewer variance for correct statistical inference (Elliott and 

West, 2015), to identify interviewers having unusual effects on data collection outcomes for purposes of 

responsive survey design, or as the focus of a methodological study designed to reduce its impact by 
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understanding its causes (e.g., Brunton-Smith, Sturgis and Williams, 2012; Sakshaug, Tutz and Kreuter, 

2013). Interpenetrated designs, which assign sampled cases to interviewers at random, allow for 

interviewer variance to be accounted for using standard methods that account for clustering in the 

observed data: generalized estimating equations (Liang and Zeger, 1986) or mixed-effects models (Laird 

and Ware, 1982; Stiratelli, Laird and Ware, 1984). Temporarily ignoring sampling weights, a simple 

model for a normally-distributed variable of interest that accounts for interviewer variance is 

 ( ) ( ) ( )2 2 2, ~ 0, , ~ 0, , ~ 0, ,ijk i ij ijk i a ij b ijkY a b a N b N N     = + + +  (2.1) 

where i  indexes a primary sampling unit (PSU), j  indexes the interviewer within the thi  PSU, and k  the 

respondent associated with the thj  interviewer in the thi  PSU. Assuming that all of the error terms are 

independent, that there are an average of J  interviewers in each of the I  PSUs, and that there are an 

average of K  interviews per interviewer, the variance of the mean estimator ˆ y =  is approximately 

inflated by a factor of ( ) ( )1 1 1 ,a bJK K + − + −  where 
2

2 2 2

a

a b
a



  


+ +
=  and 

2

2 2 2 .b

a b
b



  


+ +
=  As a 

practical matter, when the variance of ̂  is the only quantity of interest, the second stage of clustering due 

to an interviewer can be ignored, as in an “ultimate cluster” design (Kalton, 1983). Treating the random 

effect of the PSU as 
1

J

i i ijj
a a b

=
= +  with variance 2 2 2 ,a a bJ  = +  the variance of the mean estimator 

̂  is inflated by a factor of ( )1 1 ,a JK+ −  where 
2

2 2 .a

a
a



 


+
=  

If multiple interviewers are nested within a single PSU as assumed in (2.1), interviewer variances can 

still be estimated for methodological purposes using multistage hierarchical linear models. However, for 

reasons of cost efficiency, many area probability samples require a given interviewer to restrict their 

efforts to a single sampling area (e.g., the U.S. National Survey of Family Growth; see Lepkowski, 

Mosher, Groves, West, Wagner and Gu, 2013), which completely aliases the components of variance due 

to interviewers and areas. Such designs preclude any type of direct estimation of interviewer variance, 

although from a purely analytic perspective, accounting for clustering using the PSU IDs in analysis will 

account for the additional interviewer variance introduced.  

For other types of surveys – and in particular telephone surveys – this “automatic” accommodation of 

interviewer effects at the variance estimation stage afforded by “ultimate cluster” approaches does not 

occur. A spectacular example of this is the Behavioral Risk Factor Surveillance System (BRFSS; Centers 

for Disease Control, 2013), a massive annual telephone survey sponsored by the Centers for Disease 

Control that is the only Federal health survey designed to provide state-level estimates of key health 

factors such as smoking rates, obesity measures, and cancer screening. Elliott and West (2015) found no 

evidence that any substantial proportion of the 1,000 + manuscripts published using BRFSS data 

accounted for interviewer effects when conducting variance estimation based on these data, despite 

variance inflation factors of 10 or more at the state level for estimates such as mean self-rated health. 

These authors found evidence of substantial interviewer effects for selected survey items, and variability 

in the variance of these effects themselves across states, when applying both model-based and design-

based approaches to estimate the variance (although this analysis used naïve estimators in contrast to 
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either the standard regression or the anchoring methods discussed here, and so may have overestimated 

this variance). 

Importantly, secondary analysts still do not know for sure if these components of variance are arising 

due to sampling variability, true measurement error introduced by the interviewers, or differential non-

response among the interviewers. Because of the design effect definition noted above, their impact on 

inference can still be large even if the intra-class correlation (ICC) is small or moderate, since interviewers 

typically conduct many interviews. Thus when Groves and Magilavy (1986) found mean ICCs between 

0.002 and 0.02 among 25 to 55 variables across each of nine telephone surveys of political, health, and 

economic issues, the design effect would range between 1.04 and 1.38 for studies in which interviewers 

average 20 interviews each, and between 1.10 and 1.98 if interviewers average 50 interviews each. Some 

outcomes can have much higher ICCs – Cernat and Sakshaug (2021) found ICCs on the order of 0.30 for 

biometric measures, which would yield design effects on the order of 15 if 50 interviews were conducted 

per interviewer. Although interviewer variance studies for face-to-face data collections tend to be rare 

because interpenetrated sample designs are more difficult to implement in such settings, Schnell and 

Kreuter (2005) found a median overall design effect of 2.0 in a multi-stage sample survey on fear of 

crime, which was mostly attributable to interviewer effects rather than spatial clustering. Thus the need for 

analysts to accommodate interviewer effects is clear.  

 
2.3 Accounting for interviewer variance in inference in the absence of 

interpenetration 
 

As noted in Section 2.2, when interviewers are nested within PSUs, standard methods of variance 

estimation based on “ultimate clusters” (Kalton, 1983) that account for the dependence of observations 

within a PSU will “automatically” absorb measurement error due to interviewers into the within-PSU 

correlation. However, whenever interviewers are not nested within PSUs ‒ as can occur in some area 

probability samples where interviewers cross sampling unit segments (e.g., O’Muircheartaigh and 

Campanelli, 1998; Vassallo, Durrant and Smith, 2017) ‒ clustering induced by interviewer effects must be 

accounted for directly. In such situations, cross-classified random effects models (Rasbash and Goldstein, 

1994) of the form 

 ( ) ( ) ( )2 2, ~ 0, , ~ 0,hij h i h a i bE Y a b a N b N  = + +  (2.2) 

may be employed, where h  indexes PSUs, i  indexes interviewers, and j  indexes interviews conducted 

by the thi  interviewer (e.g., O’Muircheartaigh and Campanelli, 1998; Schnell and Kreuter, 2005; Biemer, 

2010; Durrant, Groves, Staetsky and Steele, 2010). Extensions of these models are also possible for non-

linear link functions using generalized linear mixed models (e.g., Vassallo et al., 2017).  

Unfortunately, interpenetration can fail, either due to differential non-response error among 

interviewers (West and Olson, 2010; West, Kreuter and Jaenichen, 2013), non-random shift assignment 

(e.g., with daytime interviewers more likely to interview non-working respondents), or other common 
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practices used to increase response rates, such as assigning experienced interviewers to more difficult 

respondents (Brunton-Smith et al., 2012). In the absence of interpenetration, standard methods to account 

for interviewer variance may lead to “spurious” correlations within interviewers that have nothing to do 

with interviewer-induced measurement error.  

The literature is not completely devoid of approaches for estimating (and accommodating) interviewer 

variance in non-interpenetrated sample designs. Fellegi (1974), Biemer and Stokes (1985), Kleffe, Prasad 

and Rao (1991), and Gao and Smith (1998) developed statistical methods for area probability samples that 

assumed interpenetration for a random subset of PSUs, and a single interviewer in each of the remaining 

PSUs. More recent work has considered methods for estimation of interviewer variance in binary survey 

variables in related settings of partial interpenetration (von Sanden and Steel, 2008). Rohm, Carstensen, 

Fischer and Gnambs (2021) used a two-parameter item response theory model to separate area and 

interviewer effects under this assumption, which de-confounds interviewer and area effects to the extent 

that each interviewer recruits in multiple areas and vice versa (although lack of random assignment within 

an area can still yield some degree of variance component bias). These methods are useful for obtaining 

estimates of interviewer variance separate from area homogeneity for purposes of assessing the 

independent impact of such variance. However, they are not relevant for our more general setting of 

interest, where interviewers may not cross PSUs and are not working random subsamples of the full 

sample (i.e., no interpenetration).  

Another common method found in the literature for grappling with the problem of non-interpenetrated 

sample designs when estimating interviewer variance is adjustment for the effects of respondent- and area- 

or interviewer-level covariates in multilevel models (Hox, 1994; Schaeffer, Dykema and Maynard, 2010; 

West, Kreuter and Jaenichen, 2013). These methods are largely ad-hoc, and rely on the assumption that 

the included covariates adequately account for all sources of variability that arise from the areas (and 

would thus be attributed to the interviewers if the covariates were not accounted for). This approach 

suffers from two major shortcomings. First, many studies, and especially those relying on publicly 

available data, may not contain sufficient area- or interviewer-level covariate information to adequately 

account for the lack of randomization in interviewer assignment. Second, the resulting estimators 

condition on these covariates, and these conditional estimators are typically not of interest, with the focus 

being on either marginal estimates of descriptive parameters, such as means or totals, or parameters in 

models that typically do not condition on (or include) covariates.  

 
3. The anchoring method 
 

As noted in Section 2.3, existing methods adjust for possible interviewer effects introduced at the 

recruitment and measurement stages of data collection by including respondent- and area- or interviewer-

level covariates in multilevel models (Hox, 1994), but such adjustment may be erroneous if part of the 

interviewer variance is simply arising due to non-interpenetrated sampling. As noted by Elliott and West 
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(2015), if subjects with similar values on a variable of interest are assigned to interviewers in a non-

random fashion – for example, if a telephone interviewer working day shifts tends to interview older 

respondents, where age may be correlated with main variables of interest – these variables will be 

correlated with specific interviewers. However, we are just re-ordering the random sample, not 

introducing measurement error in the manner described in Section 1, e.g., West and Blom (2017). Thus 

the actual data are not being altered, and there are no true interviewer effects: we term the resulting 

within-interviewer correlation “spurious” from a variance inflation perspective. Thus estimating 

interviewer effects while failing to account for differential sample assignment can lead to conservative 

inferences, resulting in misleadingly large estimates of interviewer variance, p -values and confidence 

intervals that are too wide, and incorrect operational decisions based on predicted effects for individual 

interviewers.  

To address this important gap in the literature, we describe an “anchoring” method that analysts can 

use to estimate the unique components of variance due to interviewer effects on selection and 

measurement. The method aims to leverage correlations between variables where interviewer 

measurement error is of concern and variables known ‒ or reasonably believed ‒ to be free of 

measurement error to remove the fraction of the within-interviewer correlation that is due to non-

interpenetrated sample assignment. In the simplest case, if we have two variables, one ( )1Y  treated as 

measurement error-free (the “anchor”) and one ( )2Y  treated as possibly having interviewer-induced 

measurement error, and our objective is to estimate a mean of 2 ,Y  we fit a multilevel model to the 

observed data for the two variables that includes a random interviewer effect only for the variable subject 

to measurement error: 

 ( )2 .ijk k i ijky I k b = + = +  (3.1) 

In (3.1), 1, ,i I=  indexes interviewers, 1, , ij J=  indexes respondents within interviewers, 

1, 2k =  indexes the variable (1 = anchor, 2 = variable of interest), ( )2~ 0,i bb N   is the interviewer effect, 

and 

 
2

1 1 12

2
2 12 2

0
~ , .

0

ij

ij

N
  

  

     
      
     

  

Our focus of inference in this manuscript is 2 ,  although 2

b  or ib  may also be of interest if the focus is 

on interviewer variance or determining individual interviewers who are contributing to that variance.  

To provide a heuristic explanation of why this proposed “anchoring” approach works, assume that 1ijy  

and 2ijy  net of ib  are almost perfectly correlated. Since 1ijy  lacks measurement error, it can serve as a 

proxy for the non-measurement error component of 2 ,ijy  absorbing artificial error in 2ijy  induced in the 

ordering of the data. Lack of interpenetration means that estimating a linear mixed model using 2ijy  only 

will yield an upwardly biased estimate of 2.b  If 12 0,   information will be available to reduce the bias 

in 2ˆ ,b  with large samples and high correlations between 1ij  and 2ij  yielding increasingly accurate 

estimates of 2

b  and thus of the true impact of the interviewer-induced measurement error on the variance 

of 2
ˆ .  
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This approach easily extends to the setting where 1 2K −   “anchoring” variables free from 

measurement error are available: 

 ( ) 0 , 1, , , 1, , , 1, , .ijk k iK ijk iy I k K b i I j J k K = + = + = = =  (3.2) 

In this case, the first 1K −  variables are assumed to be free of interviewer measurement error and the 
thK  variable is the variable of interest, ( )2

0 ~ 0, ,iKb N   and ( ) ( )1 ~ 0, ,
T

ij ijK KN    where   is an 

unstructured K K  covariance matrix. Alternatively, instead of using (3.2) directly, we can reduce (3.2) 

back to the bivariate setting in (3.1) by replacing 1iY  with the best linear predictor of KiY  using the 

anchoring variables: ( )1 1,
ˆˆ , , T

Ki Ki i K i iY E Y Y Y −= = β X  where ( )1 1,
ˆ , ,

T

i i K iY Y −=X  and ˆ =β  

( )
1

.T T

K

−

X X X Y  

 
3.1 Estimation remarks 
 

One can use standard linear mixed model software (e.g., SAS PROC MIXED) to fit the models in (3.1) 

or (3.2) and obtain a restricted maximum likelihood (REML) point estimate 2̂  together with an 

associated variance estimate. We have provided an annotated example of such code in the supplemental 

materials. Weights used to account for unequal probabilities of selection, non-response adjustment, and 

calibration to known population values can be incorporated using pseudo-maximum likelihood estimation 

(PML; Pfeffermann, Skinner, Holmes, Goldstein and Rasbash, 1998; Rabe-Hesketh and Skrondal, 2006) 

when fitting the models in (3.1) or (3.2). We would generally recommend that interviewers be assigned a 

weight of 1 when fitting weighted multilevel models of these forms, to mimic the notion of simple random 

sampling of interviewers from a hypothetical population of interviewers. The weights for respondents 

should be rescaled to sum to the final respondent count for each interviewer (Carle, 2009), and extensions 

of the PML method outlined by Veiga, Smith and Brown (2014) and Heeringa, West and Berglund (2017, 

Chapter 11) can be used to incorporate the rescaled weights in estimation of the residual covariance 

structure in (3.1) or (3.2). In multistage samples where interviewers cross geographic areas, cross-

classified random effects models (Rasbash and Goldstein, 1994) can also be utilized. 

 
3.2 The Bayesian anchoring method 
 

In the presence of prior information on the parameters of interest in this model (e.g., in a repeated 

cross-sectional survey using interviewer administration), the models in (3.1) or (3.2) can also be fitted 

using a Bayesian approach to incorporate the prior information. In repeated surveys that carefully monitor 

interviewer performance, good predictions of individual interviewer effects based on the estimated 

variance component are important. Given historical data from a survey with the same essential design 

conditions, one can estimate the parameters of interest in (3.1) using this historical data, and then define 

informative prior distributions for these parameters. (Examples of these types of surveys would include 

high-quality government sponsored surveys with repeated cross-sectional data collections, such as the 

National Health Interview Survey or, for the example considered in this paper, the Behavioral Risk Factor 
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Surveillance System.) Specifically, we consider a prior distribution on the interview effect standard 

deviation b  that follows a half t  distribution (Gelman, 2006) with degrees of freedom   and standard 

deviation :s  

 ( )
( )

( )

1

2
1 2

2

22

2

2
, 1 , 0.b

b
v

p s
ss





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

+
−+

  
= +  
  

 (3.3) 

Following Gelman, we assume 3, =  and we estimate s  based on prior estimates of interviewer 

effects. We consider standard weak priors for the fixed effect means: ( ) ( )ind 6~ 0,10kp N  and for the 

residual variance:  

 ( )
2

1 12

2

12 2

~ INV WISHART 2, .p I
 

 

 
− 

 
  

This approach offers advantages relative to likelihood ratio testing approaches that rely on asymptotic 

theory, particularly for smaller samples. By using prior information to constrain the resulting posterior 

distribution for the interviewer variance components, it generally prevents extremely large draws of the 

variance component while not constraining the means or residual variances. It also constrains posterior 

draws of variance components to be greater than zero, enabling inference based on small components of 

variance, while frequentist model-fitting procedures generally fix such estimates of variance components 

to be exactly zero (which equates to a rather unreasonable assumption that each interviewer produces 

exactly the same survey estimate; West and Elliott, 2014). In such cases, the effects of interviewers (even 

if they are small) would be ignored completely; the Bayesian approach would still enable small effects to 

be integrated into the inference. The Bayesian approach also yields credible intervals for the interviewer 

variance components based on posterior draws. 

 

3.3 Choosing anchoring variables  
 

A key assumption underlying both the standard regression-based approach and the “anchoring” method 

is that selected variables are free from interviewer-induced error. Like the “missing at random” 

assumption in the missing data literature, we do not expect that there will often be cases where we can be 

certain of this, but that approximations may be available based on simple demographic measures (e.g., 

age) or other factual questions with simple response options (e.g., current employment) and little room for 

the introduction of interviewer error. The identification of error-free covariates in advance of data 

collection is an important substantive and methodological component of this approach, and prior 

methodological literature on the variables most prone to interviewer effects (West and Blom, 2017) can be 

consulted for this component of the approach. 

As we note above, if we have multiple error-free covariates measured on the respondents, we can 

preserve their predictive power (and thus the correlation of the anchor’s residuals with the residuals of the 

variable of interest) by computing a linear predictor of the variable of interest from a linear model that 

includes fixed effects of all of the error-free covariates. We consider such an approach in our simulation 
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studies and applications, and compare it with the “standard” approach of simply adjusting for these 

covariates in a multilevel model in an effort to improve the estimate of the interviewer variance 

component (Hox, 1994). 

Finally, the anchoring approach employs mixed-effects models that should yield correct estimates with 

a sufficient amount of data. However, these models may be more difficult to fit, especially for smaller 

samples, and we therefore also consider alternative Bayesian approaches when evaluating the anchoring 

approach.  

 
4. Simulation study 
 

We first consider an empirical simulation study of the proposed “anchoring” approach. We repeatedly 

simulated samples of data from a quadrivariate normal distribution, ( ) ( )* * *

1 2 3 4~ , ,ij ij ij ijY Y Y Z N μ  where 

1, , 30j J= =  indexes hypothetical respondents nested within 1, , 30i I= =  interviewers, 

( ) ( ) ( )* 3 ikij z kij z
Y Y I k b= + =  for ( )2~ 0, ,i bb N   and 

( )
*

kij z
Y  is ordered by the values of ijZ  prior to 

assignment of respondents to the 30 interviewers. ( )1ij z
Y  and ( )2ij z

Y  are the observed values without 

interviewer-induced measurement error, while ( )3ij z
Y  is observed with interviewer-induced measurement 

error, and ijZ  is a (nuisance and unobserved) covariate that induces extraneous variability when the design 

is treated as interpenetrated. (One might think of 1Y  and 2Y  as measurement-error free demographic 

variables and 3Y  as a continuous self-reported overall health measure, which is potentially prone to 

interviewer effects, and Z  as amount of time spent at home, which is associated with interviewer 

scheduling by shift.)  

Given this data generating model, we note that a higher correlation of Z  with the other measurements 

will introduce what appears to be interviewer variance because of the ordering of 
( )

*

kij z
Y  by the values of 

ijZ  above and beyond the true random interviewer effects on 2Y  (given by ).ib  This is the lack of 

interpenetrated assignment that we wish to adjust for with the proposed anchoring method, which aims to 

isolate the unique interviewer variance 2

b  that does not arise from simple assignment of cases to 

interviewers. For simplicity, we assume that 
1 2 3

,Y Y Y z    = = = =
1 2 3

2 2 2 2 1Y Y Y Z   = = = =  and 

1 2 1 3 1 2 3 2 3
.Y Y Y Y Y Z Y Y Y Z Y Z      = = = = = =  

We consider four models used to estimate the mean of 3Y  and the associated interviewer effect 

variance: 

Unadjusted: ( )2

3 3 3~ ,ij iY N b +  

Adjusted: ( )2

3 3 1 1 2 2 3~ ,ij ij ij iY N y y b   + + +  

Anchoring: 

1 1

2 3 2

3 3

~ ,

ij

ij

ij i

Y

Y N

Y b







    
    

    
    +   
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Anchoring-Linear Predictor: 
13

2

23

ˆ
~ ,ij

iij

Y
N

bY





    
      +   

 

where kijy  is the observed realization of ,kijY ( )2~ 0, ,i bb N   and, in the anchoring-linear predictor model, 

3 0 1 1 2 2
ˆ ˆ ˆˆ

ij ij ijY y y  = + +  where β̂  is obtained from the linear regression of 3Y  on 1Y  and 2 .Y  We estimate 

the mean of 3Y  as the REML estimator of 3  and similarly the associated interviewer effect variance as 

the REML estimator of 2.b  

We consider the power to reject the null hypothesis that the mean of the observed variables is zero (at 

the 0.05 level) and the empirical bias in the estimation of the variance of the random interviewer effects,
2.b  We evaluated the empirical bias by computing the difference between the mean of the simulated 

estimates of the variance component and the true value of the variance component specific to a given 

simulation scenario. Our simulation study design considers a full factorial design where  0, 0.5 , =  

 0.25, 0.5, 0.75 , =  and  2 0.1, 0.5, 0.9 .b =  We generated 200 independent simulations for each of the 

18 cross-classifications of values on these parameters. Table 4.1 presents the results of the simulation 

study. 

 
Table 4.1 

Results of the empirical simulation study. Best performing method italicized (note that when 0, =  ideal 

power if 0.05) 
 

True values of model 

parameters 

Power: 
0

: 0 . : 0
A

H vs H =   Empirical Bias of 2ˆ
b

  

    2

b
  Unadjusted Adjusted Anchor Anchor-Linear 

Predictor 

Unadjusted Adjusted Anchor Anchor-Linear 

Predictor 

0 0.25 0.1 0.03 0.04 0.04 0.04 0.063 0.029 0.027 0.027 

0 0.25 0.5 0.03 0.08 0.04 0.04 0.070 0.022 0.033 0.032 

0 0.25 0.9 0.07 0.04 0.06 0.06 0.078 0.037 0.044 0.043 

0 0.5 0.1 0.00 0.03 0.02 0.02 0.255 0.061 0.056 0.056 

0 0.5 0.5 0.01 0.04 0.03 0.03 0.247 0.058 0.054 0.053 

0 0.5 0.9 0.02 0.04 0.04 0.04 0.251 0.049 0.061 0.061 

0 0.75 0.1 0.00 0.02 0.01 0.01 0.568 0.074 0.078 0.076 

0 0.75 0.5 0.00 0.04 0.05 0.05 0.555 0.098 0.084 0.084 

0 0.75 0.9 0.04 0.04 0.06 0.06 0.602 0.099 0.103 0.103 

0.5 0.25 0.1 1.00 1.00 1.00 1.00 0.069 0.025 0.032 0.032 

0.5 0.25 0.5 0.96 0.68 0.96 0.96 0.072 0.044 0.034 0.034 

0.5 0.25 0.9 0.76 0.48 0.75 0.75 0.075 0.040 0.039 0.037 

0.5 0.5 0.1 1.00 0.87 1.00 1.00 0.261 0.062 0.062 0.061 

0.5 0.5 0.5 0.92 0.44 0.96 0.96 0.269 0.062 0.067 0.067 

0.5 0.5 0.9 0.75 0.24 0.80 0.80 0.248 0.068 0.064 0.063 

0.5 0.75 0.1 1.00 0.62 1.00 1.00 0.567 0.079 0.078 0.077 

0.5 0.75 0.5 0.81 0.27 0.96 0.96 0.507 0.103 0.082 0.082 

0.5 0.75 0.9 0.58 0.22 0.70 0.70 0.598 0.100 0.106 0.106 
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Several notable patterns emerge from the simulation results in Table 4.1. First, as the values of   

increase, the anchoring method produces larger reductions in the overestimation of interviewer variance 

relative to the unadjusted model. Recall that this was expected by design, given the initial ordering of the 

observations by Z  prior to assignment to interviewers, which introduces artificial variance among the 

interviewers. Similarly, as anticipated, estimation of the interviewer variance using covariate adjustment is 

similar to the anchoring method when this variance is not large, although there is evidence of a somewhat 

larger reduction in bias when the variance is large.  

In addition, for the non-zero values of ,  higher values of   yield larger improvements in power 

when using the anchoring method when compared with the unadjusted estimator, since more of the 

extraneous variance is correctly allocated. Both the unadjusted and an anchoring method yield higher 

power than the adjusted estimator, since the adjusted estimator is biased for non-zero means of 1ijY  and 

2ijY  when they are correlated with 3 .ijY  Smaller values of   approximate an interpenetrated design, and as 

a result, the unadjusted estimation approach does not produce substantially different results from the 

adjusted or anchoring approach. The empirical bias in the estimation of 2

b  is unrelated to the value of 2

b  

but is entirely a function of ,  since that drives the spurious within-interviewer correlation due to the 

unobserved .Z  Finally, we note that replacing the actual values of 1ijY  and 2ijY  with a summary measure 

based on their linear prediction of 3ijY  yields virtually identical results to their direct use in the anchoring 

method. This is partly a function of their common normality; we discuss this limitation in the Discussion 

section below. 

 
5. Application to the Behavioral risk factor surveillance system 
 

To further illustrate the implementation of our proposed approach, we analyze data from the 2011 and 

2012 Behavioral Risk Factor Surveillance System (BRFSS; https://www.cdc.gov/brfss/index.html). The 

BRFSS is a major national health survey in the U.S. that employs interviewer administration via the 

telephone, and is one of the few national surveys that provides data users with interviewer identification 

variables in the public-use versions of its data sets (Elliott and West, 2015). This enables the estimation of 

interviewer variance components for any BRFSS measures. We only use data from the publicly available 

data files for these two years in this study.  

For illustration purposes, we consider the case where the variable of interest ( )2Y  is perceived health 

status (1 = poor, , 5 = excellent). We define an “anchoring” variable ( )1Y  as the linear predictor of 

perceived health status from a linear regression model fitted using OLS that includes age, an indicator of 

obtaining a college degree, an indicator of being a female, and an indicator of white race/ethnicity as 

covariates. We chose these respondent-level covariates for this application for three reasons: 1) we believe 

that they are likely to be reported with minimal differential measurement error among interviewers (West 

and Blom, 2017); 2) they are associated with interviewer assignment, as telephone interviewers tend to 

work calling shifts at different times of the day, and interview time of day is associated with age and 
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education (e.g., older respondents and respondents with lower levels of education may be more likely to 

be interviewed during the day); and 3) they also tend to be correlated with perceived health status (Franks, 

Gold and Fiscella, 2003).  

As part of the application, we also compare the ability of the anchoring method based on this linear 

predictor to reduce estimates of variance components to that of the more “standard” method that is often 

used in practice: simply adjusting for these respondent-level covariates in a multilevel model, in an effort 

to adjust for the fixed effects of these covariates when evaluating the interviewer variance component 

(Hox, 1994). We make two remarks about this approach, specifically with respect to this application: 

1. Centering of the covariates at their means (whether they are binary or continuous) is critical to 

this approach if inference is focused on the mean of 2 ,Y  as a failure to do this will lead to 

biased “conditional” estimates of the mean on that variable that depend on the values of the 

covariates (rather than the overall mean). This is not relevant for the anchoring method. 

2. In some cases interviewer-level covariates could be expected to explain more of the artificial 

interviewer variance due to non-interpenetrated assignment than respondent-level covariates 

(e.g., area-level socio-demographic information; Hox, 1994; West and Blom, 2017). However, 

the BRFSS does not provide any interviewer-level covariates.  

 
5.1 Frequentist approach 
 

We considered both frequentist and Bayesian approaches in our analysis, and performed separate 

analyses of the BRFSS data from each of the 50 states and the District of Columbia for each approach. We 

only retained cases with complete data on all analysis variables of interest to ensure a common case base 

no matter the type of analysis being performed. First, in the frequentist approach, we started by estimating 

means of self-reported health from a given state that assumed independent and identically distributed 

(i.i.d.) data (i.e., ignoring random interviewer effects): 

 ( )2

2 2 2 2 2, ~ 0, .ij ij ijY N   = +  (5.1) 

We then fit a “naïve” mixed-effects model including random interviewer effects (of the form in (2.1) 

but without random PSU effects, given the absence of PSUs in the BRFSS design) to the self-reported 

health data (ignoring the other covariates), assuming interpenetrated sample assignment within each state: 

 ( )2

2 2 2 , ~ 0, .ij i ij i bY b b N  = + +  (5.2) 

We estimated the interviewer variance component based on this model and tested the variance 

component for significance using a mixture-based likelihood ratio test (West and Olson, 2010). We also 

evaluated the ratio of the estimated variance of mean self-reported health when naively accounting for the 

interviewer effects to the variance of the mean assuming simple random sampling (i.e., i.i.d. data). The 
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literature generally refers to this ratio, shown in (5.3), as an “interviewer effect” on a particular descriptive 

estimate: 

 
( )

( )
naive 2

naive

iid 2

ˆvar
IntEff .

ˆvar




=  (5.3) 

Next, after fitting a linear regression model to the perceived health status variable and computing the 

linear predictor of perceived health status based on the estimated coefficients (denoted in (5.4) by 1),ijy  

we fit the model in (3.1) to implement the anchoring approach: 

 ( )

1 1 1

2 2 2

2

2
1 1 12

2
2 12 2

~ 0,

0
~ , .

0

ij ij

ij i ij

i b

ij

ij

y

y b

b N

N

 

 



  

  

= +

= + +

     
      
       

(5.4)

 

Here 1 0
ˆ ˆ ,ij p ipp

Y x = +  where β̂  is obtained from the linear regression of the p  anchoring 

covariates (of which there are four in this application). We then computed the same ratio in (5.3) based on 

the anchoring approach, where anchoring would be expected to reduce the bias in the estimate of the 

interviewer effect that would be arising from the naïve approach. 

Next, we fitted a model representing the “standard” adjustment approach (Hox, 1994) as follows: 

 ( )2

2 2 2 , ~ 0, .ij p p i ij i b

p

Y x b b N   = + + +  (5.5) 

In (5.5), the px  represent the centered respondent-level covariates indexed by p  (the same four 

anchoring covariates as in (5.4)), with corresponding fixed effects. We once again computed the ratio in 

(5.3) representing the estimated interviewer effect for comparison with the other approaches. To keep the 

focus on the potential reduction in bias in the estimation of the interviewer effect, we ignored sampling 

weights in these analyses. 

 
5.2 Bayesian approach 
 

Next, in the Bayesian approach, we applied the same types of comparative analyses to evaluate the 

anchoring method, varying whether prior information about the interviewer variance component from the 

2011 BRFSS was used (yes or no). This prior information came from implementing the anchoring 

approach with the same linear predictor in 2011 to determine a prior estimate of the interviewer variance 

component. In all cases, we assumed non-informative prior distributions for the fixed effects (which recall 

from (3.1) define the means of the two variables) and the residual variances and covariances in the 

models.  
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We defined an informative prior distribution for the standard deviation of the random interviewer 

effects using (3.3), where the standard deviation s  is given by the estimated standard deviation of the 

random interviewer effects for the same state in 2011, and used the weak priors on   and   defined in 

Section 2.3. We implemented the Bayesian approach using PROC MCMC in the SAS software, and 

annotated examples of the code used are available in the supplemental materials. 

 
5.3 Results 
 

Figure 5.1 presents four scatter plots, enabling comparisons of the naïve estimates of the interviewer 

effects on the mean of perceived health status for each of the 50 states and the District of Columbia with 

the adjusted estimates based on the anchoring method, the “standard” adjustment method, and the two 

alternative Bayesian approaches to implementing the anchoring method. All estimates of interviewer 

effects were computed using (5.3).  

The plots vary in terms of the methods used to implement the estimation approaches. We first consider 

a plot of the adjusted estimates of the interviewer effects based on the anchoring method against the naïve 

estimates of the interviewer effects from (5.3), using the frequentist approach described above 

(Figure 5.1a). The next plot (Figure 5.1b) presents the adjusted estimates based on the “standard” 

adjustment approach of including the covariates in a multilevel model. The third plot (Figure 5.1c) 

considers the first Bayesian anchoring method with a non-informative prior. Finally, the fourth plot 

(Figure 5.1d) once again considers the Bayesian anchoring method, only this time with the 

aforementioned informative prior based on analyses of the 2011 BRFSS data. 

In general, we see that the anchoring method has a tendency to reduce estimates of the interviewer 

effects, regardless of the approach used. Data points below the 45-degree lines in each plot indicate states 

where a particular adjustment method reduced the estimates of the interviewer effects. In particular, the 

“standard” adjustment method will more often increase estimates of the interviewer effects in a non-trivial 

fashion relative to the naïve approach (Figure 5.1b). 

Table 5.1 presents mean estimates and ranges of the interviewer effects across the 50 states and D.C. 

under the different methods. The anchoring method tended to reduce the estimates relative to the naïve 

method more often than the adjustment method, with 88.2% and 72.5% of states seeing a reduction in the 

estimated interviewer effects when using the frequentist and informative Bayesian anchoring methods, 

respectively (compared to only 60.8% of states when using the adjustment method). There is evidence in 

Table 5.1 that the use of prior information helps when applying the Bayesian anchoring method, but the 

frequentist version of the anchoring method still has the best performance overall. In some cases these 

reductions in the interviewer effect relative to the naïve approach were substantial: five of the states had 

reductions in the estimated interviewer effect of at least 33% regardless of the type of anchoring method 

used. In some cases, the anchoring approach did lead to slight increases in the estimated interviewer 

effects. These were predominantly cases where the interviewer effects were very small (suggesting that 
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the proposed adjustment would not be necessary, and that any resulting increases in the estimates were 

simply noise). 

 

Figure 5.1 Scatter plots comparing the anchoring and naïve estimates of the interviewer effects for the 50 

states and the District of Columbia, by estimation approach (NI = non-informative prior; Inf = 

weakly informative prior, based on analyses of the 2011 BRFSS data). Points belowthe 45-degree 

lines in each plot indicate states where a particular adjustment method reduced the estimates of 

the interviewer effects below that of the naïve estimate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 5.1 

Means and ranges of interviewer effects across the 50 States and the District of Columbia under the 

competing approaches 
 

Estimation Approach Interviewer Effects: Mean (Range) Percentage of States with a Reduction 

Frequentist ‒ Naive 2.06 (1.00 – 8.45) - 

Frequentist ‒ Adjustment 1.85 (0.90 – 4.17) 60.8% 

Frequentist ‒ Anchoring 1.51 (1.00 – 3.72) 88.2% 

Bayesian ‒ Anchoring, Non-Informative 1.79 (1.03 – 5.16) 58.8% 

Bayesian ‒ Anchoring, Informative 1.70 (0.96 – 5.27) 72.5% 

 
When comparing the anchoring method with the “standard” adjustment method, we found consistent 

evidence of the anchoring method producing larger reductions in the estimated interviewer effects. 

                        Interviewer Effect: Naive                                                                   Interviewer Effect: Naive 

 
 

         Figure 5.1c: Bayesian - Anchoring (NI)                           Figure 5.1d: Bayesian - Anchoring (Inf) 

 I
n

te
rv

ie
w

er
 E

ff
ec

t:
 A

n
ch

o
ri

n
g

  
  

  
  

  
  
  

  
  

  
 I

n
te

rv
ie

w
er

 E
ff

ec
t:

 A
n

ch
o

ri
n

g
 

In
te

rv
ie

w
er

 E
ff

ec
t:

 A
n

ch
o

ri
n

g
  
  

  
  
  

  
  

  
  

  
  

In
te

rv
ie

w
er

 E
ff

ec
t:

 A
ju

st
m

en
t 

 

                      Interviewer Effect: Naive                                                                     Interviewer Effect: Naive 

 

          Figure 5.1a: Frequentist - Anchoring                              Figure 5.1b: Frequentist - Adjustment 
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Figure 5.2 compares the estimated interviewer effects for the 50 states and D.C. when using the anchoring 

method and the adjustment method, considering the frequentist results only. We see that the 

interviewer estimates based on the adjustment method tend to be larger than the estimates based 

on the anchoring approach. 

 

Figure 5.2 Scatter plot comparing the anchoring and adjusted estimates of the interviewer effects for the 50 

states and the District of Columbia. 
 

 

 

 

 

 

 

 

 

 

 

 

 

In general, we did not find significant benefits of using a Bayesian approach to implement the 

anchoring method in this application. We did find that for 92.5% of the states, the 95% credible interval 

for the interviewer variance component was smaller in width when using the informative prior than the 

credible interval based on the non-informative prior, as would be expected. However, the posterior 

medians of the interviewer variance components tended to be similar based on both Bayesian anchoring 

methods (Pearson correlation = 0.73). 

 

6. Discussion 
 

We have developed and evaluated a new method for estimating interviewer effects in the absence of 

interpenetrated assignment of sampled units to interviewers. Via a simulation study and applications using 

real survey data from the BRFSS, we have demonstrated the ability of the proposed anchoring method to 

improve estimates of interviewer effects in situations where interpenetrated assignment may not be 

feasible and interviewer variance may be arising from the underlying sample assignments. The anchoring 

method can also easily be applied in a Bayesian framework, leveraging prior information to improve the 

quality of predictions and inferences related to interviewer components of variance. 

In interviewer-administered survey data collections, interviewer effects should generally be monitored 

as part of an ongoing data collection to prevent excessive problems with interviewer variance in survey 

                                         Interviewer Effect: Ajustment 
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                          Figure 5.2: Anchoring vs. Adjustment 
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outcomes at the conclusion of the data collection. Survey managers responsible for this type of monitoring 

will likely benefit from the anchoring method, improving any real-time intervention decisions made for 

individual interviewers in a responsive survey design framework. Real-time interventions/re-trainings for 

interviewers who are found to have extreme effects on production outcomes or variables of scientific 

interest that in reality only reflect the features of the areas in which they are working and not actual 

interviewer performance will be at best inefficient and at worst could cause interviewers who are 

otherwise performing well to be inappropriately criticized and perhaps to leave a given study.  

When using the anchoring method in practice, we would suggest that it be described as a method that 

“adjusts estimates of interviewer variance components for spurious within-interviewer correlation in 

survey measures of interest that can arise due to non-random assignment of sampled units to 

interviewers.” We emphasize the importance of a sound theoretical selection of an anchoring variable (or 

variables) that ideally has the optimal properties described in this paper. In the absence of an anchoring 

variable with these optimal properties, we argue that “clean” estimation of interviewer variance in a non-

interpenetrated sample design may simply not be possible, and that analysts 1) adjust for as many 

respondent-, interviewer-, and area-level covariates as possible when attempting to estimate the 

interviewer variance, and 2) report estimates of uncertainty associated with the estimated variance 

components, preferably using Bayesian approaches. This will prevent over-estimation of interviewer 

variance components and possible attribution of lower data quality to interviewers that are already 

performing extremely challenging tasks in the field. 

There are several limitations to our proposed method. Perhaps the largest is the requirement for 

“anchoring” variables to not be subject to interviewer error and still be highly correlated with the 

substantive variable of interest. In our BRFSS example, we considered age, gender, race, and education as 

“anchoring” self-rated health. Although age is self-reported and thus possibly subject to some degree of 

measurement error (for example, reporting younger ages or rounding ages), we do not see an obvious 

mechanism by which this would be induced by the interviewer, although of course that possibility 

remains. A similar argument can be made for the other three factors, although the possibility of 

interviewer induced measurement error is slightly stronger due to issues such as “liking” between 

interviewers and respondents (West and Blom, 2017). In addition, the normality assumption that we make 

in the paper is highly restrictive. To deal with this in our application, we replaced the multivariate 

anchoring model (3.2) with a model that summarized the multiple anchors into a linear predictor that we 

then used in the bivariate anchoring model (3.1). While this linear predictor is effectively a sufficient 

statistic in the case where all of the anchoring variables are normal, as shown in the simulation study, it is 

more of an ad-hoc solution when some or all of the anchoring variables are non-normal, as was the setting 

in our application.  

A more principled solution when one or more of the components of Y  are dichotomous variable would 

be to consider extensions such as probit random effects models, replacing ijky  in (3.1) with a latent 
* ,ijky  

where the observed ( )* 0ijk ijky I y=   and the variance 2 1k =  for identifiability, for all values of k  where 
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ijky  is dichotomous. More ambitiously, we could use a Gaussian random effects copula model (Wu and 

de Leon, 2014) for arbitrary distributions for *.Y  Standard software will not accommodate such models, 

although methods that integrate over random effects or use fully Bayesian approaches could be 

considered. Next, while other sources of measurement error are potentially important to address in 

inference, our focus here is on measurement error variance introduced by interviewer effects and its 

estimation in the absence of interpenetration. Finally, we note that our approach, like its competitors, 

relies on observed data and is thus not a replacement for true interpenetration, which ensures that all forms 

of non-random assignment (observed and unobserved) are eliminated. 

In addition to extending the anchoring method to the case of regression coefficients and non-normal 

variables, future applications also need to consider contexts where the correlations of the anchoring 

variables with the survey variables of interest that may be prone to interviewer effects are modest at best. 

Our simulation study suggests that good anchoring variables having strong associations with the survey 

variables of interest are important for the effectiveness of this method, and future studies should also focus 

on the identification of sound anchoring variables (like age, education, etc.) that are unlikely to be affected 

by interviewers and could serve as useful anchors in other applications.  
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Supplemental materials 
 

SAS code implementing the different approaches 
 

The SAS code below can be used to implement the anchoring method using a standard frequentist 

approach. Implementing this approach requires the data to be in a “long” structure with two observations 

per subject (corresponding to the two variables), where the variable X2 is an indicator variable for the 

anchoring variable (1 = the observation on Y is the anchor, 0 = the observation on Y is the variable of 

interest), the variable X1 is an indicator for the variable of interest (1 = the observation on Y is the 

variable of interest, 0 = the observation on Y is the anchor), INTVID is the interviewer ID, and OBS is a 

subject ID: 

 
proc mixed data=yourlongdata; 

class INTVID; 

model y = x2 / solution; 

random x1 / sub=INTVID; 

repeated / sub=obs type=un r rcorr; 

run; 
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The SAS code below can be used to fit the naïve model using a Bayesian approach with a weakly 

informative prior. This approach requires the data to be in the same “long” format: 

 
proc mcmc data=yourlongdata seed=41279 nmc=20000 thin=25; 

where x1 = 1; /* only fit model to variable of interest */ 

parms B0 S2; 

parms Sigma 1; 

prior B: ~ normal(0, var=1e6); /* prior for means */ 

prior S2 ~ igamma(0.01, scale = 0.01); /* NI prior for resid. var. */ 

prior Sigma ~ t(0, sd=0.045, df=3, lower=0); /* informative prior for SD of 

interviewer effects, per Gelman (2006); SD of distribution is estimated SD 

of random interviewer effects from 2011, constrains posterior */ 

random Gamma ~ normal(0,sd=Sigma) subject=INTVID; 

Mu = B0 + Gamma; /* model with interviewer effects only for variable of 

interest */ 

model y ~ normal(Mu,var=S2); 

run; 

 
Finally, the SAS code below can be used to implement the anchoring method using a Bayesian 

approach with a weakly informative prior. Implementing this approach requires the data to be in a wide 

structure, with one row per case and interviewer IDs (INTVID): 

 
proc mcmc data=yourwidedata seed=41279 nmc=20000 thin=25; 

array y[2] genhlthmdd age10; /* var1=variable of interest, var2=anchor */ 

array Mu[2]; /* vector of two observations for each case */ 

array Cov[2,2]; /* residual covariance matrix */ 

array S[2,2]; /* for defining prior of COV */ 

array H[2] 0 H1; /* H1 = fixed effect for change in mean for anchor */ 

parms B0 Cov; /* intercept (mean of variable of interest) and residual 

covariance matrix */ 

parms H1 0; /* change in mean for anchor */ 

parms Sigma 1; 

prior B: H: ~ normal(0, var=1e6); /* normal prior for fixed effects */ 

prior Cov ~ iwish(2,S); /* prior for 2x2 residual covariance matrix */ 

prior Sigma ~ t(0, sd=0.045, df=3, lower=0); /* informative prior for SD of 

interviewer effects, per Gelman (2006); SD of distribution is estimated SD 

of random interviewer effects from 2011, constrains posterior */ 

begincnst; 

call identity(S); /* use identity matrix in defining prior for residual 

covariance matrix (non-informative) */ 

endcnst; 

random Gamma ~ normal(0,sd=Sigma) subject=INTVID; 

Mu[1] = B0 + Gamma; /* interviewer effect only applies to variable of 

interest */ 

Mu[2] = B0 + H1; /* mean for anchor (note: this parameterization used to 

ensure easy calculation of posterior SD of B0 for interviewer effects */ 

model y ~ mvn(Mu, Cov); 

run; 
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Relative performance of methods based on model-assisted survey 

regression estimation: A simulation study 
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Abstract 

Use of auxiliary data to improve the efficiency of estimators of totals and means through model-assisted 

survey regression estimation has received considerable attention in recent years. Generalized regression 

(GREG) estimators, based on a working linear regression model, are currently used in establishment surveys 

at Statistics Canada and several other statistical agencies. GREG estimators use common survey weights for 

all study variables and calibrate to known population totals of auxiliary variables. Increasingly, many 

auxiliary variables are available, some of which may be extraneous. This leads to unstable GREG weights 

when all the available auxiliary variables, including interactions among categorical variables, are used in the 

working linear regression model. On the other hand, new machine learning methods, such as regression trees 

and lasso, automatically select significant auxiliary variables and lead to stable nonnegative weights and 

possible efficiency gains over GREG. In this paper, a simulation study, based on a real business survey 

sample data set treated as the target population, is conducted to study the relative performance of GREG, 

regression trees and lasso in terms of efficiency of the estimators and properties of associated regression 

weights. Both probability sampling and non-probability sampling scenarios are studied. 

 

Key Words: Model assisted inference, Calibration estimation; Model selection; Generalized regression estimator. 

 

 

1. Introduction 
 

At Statistics Canada and several other statistical agencies, there is a growing interest in leveraging 

auxiliary data, possibly from administrative sources, to improve the efficiency of estimators. Machine 

learning techniques have become a popular tool in various disciplines for utilizing such auxiliary 

information. These methods often do not require the distributional assumptions of more traditional 

methods and are able to adapt to complex non-linear and non-additive relationships between the outcomes 

and auxiliary variables. Machine learning methods have been applied to survey data in a variety of 

contexts such as response/adaptive designs, data processing, nonresponse adjustment and weighting 

(Buskirk, Kirchner, Eck and Signorino, 2018; Kern, Klausch and Kreuter, 2019).  

Recently, the use of machine learning techniques to improve the efficiency of estimators of totals and 

means through model-assisted survey regression estimation under probability sampling has been 

considered. Model-assisted survey regression estimators of finite population totals may reduce variability 

and lead to significant gains in efficiency if the available auxiliary variables are strongly associated with 

the survey variable of interest. Increasingly, a large number of auxiliary variables are available, some of 

which may be extraneous. In this case, variable selection followed by regression estimation based on the 

selected model may improve efficiency of the survey regression estimators of finite population totals. We 

consider finite population estimation using the generalized regression (GREG) estimator with various 

linear working models (Särndal, Swensson and Wretman, 1992). Model-assisted estimators, using lasso 
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and adaptive lasso methods (McConville, Breidt, Lee and Moisen, 2017) and regression trees (McConville 

and Toth, 2019), have been applied to survey data. Other nonlinear models, such as penalized splines and 

neural networks, have been explored for model-assisted estimation; see Breidt and Opsomer (2017) for a 

survey of these techniques.  

Another field of research where the use of model-assisted estimators has been proposed is estimation 

from non-probability samples. Increasing costs and declining response rates are leading to an expanding 

interest in the use of non-probability samples. However, the process generating a non-probability sample 

is unknown and such samples are subject to selection bias. Two commonly used approaches to estimation 

from non-probability samples are quasi-randomization and superpopulation modeling. In the first, the 

sample is treated as if it was obtained from probability sampling but with unknown selection probabilities. 

The pseudo-inclusion probabilities are estimated via a propensity model that uses the sample data in 

combination with some external data set that covers the targeted population. Machine learning techniques 

have been employed in the estimation of pseudo-inclusion probabilities or, equivalently, in the 

construction of pseudo-weights. Kern, Li and Wang (2020) investigated several machine learning 

techniques to construct pseudo-weights using a propensity score-based kernel weighting for non-

probability samples. Rafei, Flannagan and Elliott (2020) developed a pseudo-weighting approach using 

Bayesian Additive Regression Trees.  

In the superpopulation approach, observed values of the variables of interest are assumed to be 

generated by some model. The model is estimated from the data and, along with external population 

control data, is used to project the sample to the population. Under this framework, calibration to known 

population totals of auxiliary variables provides a means of potentially reducing the effect of sample 

selection bias. Chen, Valliant and Elliott (2018) discussed the implementation of model calibration using 

adaptive lasso for data based on non-probability sampling. In scenarios where the population totals are 

estimated, Chen, Valliant and Elliott (2019), incorporated the sampling uncertainty of the benchmarked 

data, obtained from a probability sample survey, into the variance component of a model-assisted 

calibration estimator using adaptive lasso regression. Therefore, unlike in the probability sampling context 

where the use of model-assisted estimation seeks to improve the efficiency of estimators, the use of these 

techniques in a non-probability sampling context aims to diminish the impact of selection bias.  

We consider several lasso-based estimators as well as a regression tree estimator and evaluate their 

performance in both a probability sampling context and a non-probability sampling set up. In Section 2, 

the model-assisted estimators considered are discussed. The set up for a simulation study under probability 

sampling is described in Section 3. The results of the simulation study on the root mean square error of the 

estimators, relative bias of variance estimators and properties of survey weights are presented in Section 4. 

Except for the GREG estimator, all the model-assisted estimators considered here involve variable 

selection and yield, if applicable, regression weights that depend on the survey variable of interest, .y  The 

impact of using a single set of regression weights for multiple related study variables is also investigated 

in this section. The results of the simulation study using a non-probability sampling scenario are detailed 

in Section 5. We conclude with a summary of the findings in Section 6.  
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2. Model-assisted estimation under probability sampling 
 

2.1 GREG estimators 
 

Consider the estimation of a finite population total ,y ii U
t y


=  where  1, ,U N=   is the set of 

units of the finite population and iy  is the value of the survey variable of interest for the unit .i U  Let 

s U  be a sample selected according to a sampling design ( ). ,p  where ( )p s  is the probability of 

selecting .s  For   ,i U  let  Pri i s =   denote the first-order inclusion probabilities of the design. We 

assume 0i   for all .i U  Additionally, assume d  auxiliary variables, ( )1 2, , ,
T

i i i idx x x= x  are known 

for each   .i U  A standard approach is to use the Horvitz-Thompson estimator  

 
,HT

ˆ i
y i i

i s i si

y
t d y

 

= =    

where 1

i id  −=  denotes design weights. Under this strictly design-based framework, the auxiliary data do 

not impact the form of the estimator but can impact the design weights, ,id  through the specification of 

the sampling design.  

One strategy to use auxiliary data in estimation is to employ a model-assisted estimator of yt  by 

specifying a working model for the mean of y  given x  and use this model to predict y  values. 

Specifying a linear regression working model leads to the generalized regression (GREG) estimator 

(Cassel, Särndal and Wretman, 1976). The GREG estimator typically has smaller variance than the 

Horvitz-Thompson estimator if the working model has some predictor power for .y  Here, we consider the 

GREG estimator under a linear regression working model  

 T

i i iy = +x β  (2.1) 

with ( )0 1 ,, , ,
T

p  =β i  independent and identically distributed with mean zero and variance 2  and 

( )1 .1,  , ,
T

i i ipx x= x  The GREG estimator is given by  

 ,GREG
ˆˆ

ˆT
Ti i

y i

i s i Ui

y
t

 

−
= + 

x β
x βs

s  (2.2) 

with the regression coefficients β  estimated as  

 ( ) ( ) ( )
1

1 1 1ˆ ,argmin
T T T

s s s s s s s s s s s s


−
− − −= − − =β Y X β Π Y X β X Π X X Π Y  (2.3) 

where sX  is a ( )1n p +  matrix, sY  is a n -vector and Π s  is an n n  diagonal matrix of first-order 

inclusion probabilities for the sampled units.  

The GREG estimator can also be written as a weighted sum of the variable of interest, ,y  yielding 

regression weights that are independent of y  and, therefore, can be applied to any study variable, :y  

 ( )
1

,GREG ,HT
ˆˆ 1

T
T

y x x k k k i i i i i

i s k s i s

t d d y w y

−

  

  
 = + − = 
   

  t t x x x  (2.4) 
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where xt  is the known population total vector of the covariates x  and 
,HT

ˆ
xt  is the Horvitz-Thompson 

estimator vector of the covariate population totals .x ii U
=t x  The regression weights, ,iw  are termed 

calibration weights because they satisfy the calibration constraint .i i ii s i U
w

 
= x x  The calibration 

weight iw  does not depend on the study variable .iy  Note that the GREG estimator (2.4) can alternatively 

be expressed as 

 ( ),GREG ,HT ,HT
ˆˆˆ ˆ

T

y y x xt t= + −t t βs
  

which only requires known population totals .xt  For the GREG estimator, the individual population 

values , i i Ux  are not needed. 

If a variable selection procedure, such as a forward stepwise procedure, is implemented prior to fitting 

the linear regression model, then the calibration weights will depend on y  as the selected models may 

vary across study variables. This type of stepwise survey regression estimator is calibrated to the auxiliary 

variables selected by the variable selection procedure for a specific variable of interest, .y  

Using a working linear regression model with many auxiliary variables, including interactions of 

categorical auxiliary variables, can produce substantially variable weights, and greatly increase the 

variance of the GREG estimator. Furthermore, some of the regression weights, ,iw ,i s  may be negative, 

thus losing the interpretation of a weight as the number of population units represented by the sampled 

unit.  

 
2.2 Survey regression estimator with Lasso 
 

If the linear regression model in (2.1) is sparse, i.e., p  is large, and, say, only 0p  of the p  regression 

coefficients are nonzero, then the estimation of the zero coefficients in (2.3) leads to extra variation in the 

GREG estimator (2.2). In this case, model selection to remove extraneous variables could reduce the 

overall design variance of the GREG estimator, leading to more efficient estimates of finite population 

totals. The least absolute shrinkage and selection operator (lasso) method, developed by Tibshirani (1996), 

simultaneously performs model selection and coefficient estimation by shrinking some regression 

coefficients to zero. The lasso approach estimates coefficients by minimizing the sum of squared residuals 

subject to a penalty constraint on the sum of the absolute value of the regression coefficients.  

McConville et al. (2017) proposed using survey-weight lasso estimated regression coefficients given 

by 

 ( ) ( )1

,

1

,ˆ argmin  
p

T

s L s s s s s j

j

 −

=

= − − + β Y X β Π Y X β   

where 0.   The lasso survey regression estimator for the total yt  is then given by  

 
,

, LASSO ,

ˆ
ˆˆ .

T

i i s L T

y i s L

i s i Ui

y
t

 

−
= + 

x β
x β   
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The value of the penalty parameter   must be selected prior to obtaining the estimated coefficients. In 

general, this process of specifying hyperparameters prior to fitting the final model is called 

hyperparameter tuning. There are several potential selection criteria that can used to select the value of 

hyperparameters including Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) or 

cross-validation. We used a version of cross-validation which incorporates the design weights in our 

simulation study; see McConville (2011) for discussion of the selection of the penalty parameter for 

survey-weighted lasso coefficient estimates. 

 
2.3 Survey regression estimator with adaptive Lasso 
 

An issue with the use of the lasso criterion is that by shrinking the regression coefficients towards zero 

it yields biased estimates for regression coefficients that are far from zero. Under the adaptive lasso 

criterion (Zou, 2006), the coefficients in the 1l  penalty are weighted by the inverse of a root- n  consistent 

estimator of .β  Therefore, the bias for large coefficients tends to be smaller.  

McConville et al. (2017) considered an adaptive lasso survey regression estimator 

 
, AL

, ALASSO , AL ,
ˆ

ˆˆ
T

i i s T

y i s

i s i Ui

y
t

 

−
= + 

x β
x β   

where  

 ( ) ( )1

, AL

1

mˆ arg in  
ˆ

p
T j

s s s s s s

j sj







−

=

= − − + β Y X β Π Y X β   

and β̂s  is given by (2.3). The reliance of the adaptive lasso method on the standard weighted linear 

regression coefficient estimates, ˆ ,β s  leads to a loss of efficiency in settings when p  is large because the 

estimates β̂s  tend to be very unstable.  

 
2.4 Lasso calibration estimators 
 

The lasso and adaptive lasso methods do not produce regression weights directly, as the estimators 

cannot be expressed as weighted combinations of the y -values. McConville et al. (2017) developed lasso 

survey regression weights using a model calibration approach and a ridge regression approximation. These 

lasso regression weights depend on the variable of interest, .y  

The lasso calibration estimator is calculated by regressing the variable of interest, ,iy  on an intercept 

and the lasso-fitted mean function ,
ˆ .T

i s Lx β  The lasso calibration estimator can be written in the same form 

as (2.4), where ix  is replaced by ( ), :, ˆ1
T

T

i s L=x x β
*

i
 

 ( )* *

1

* * *

, CLASSO , HT
ˆˆ .1

T
T

y k k k i i ix x
i s k s

t d d y

−

 

  
 = + −  
   

 t t x x x  (2.5) 
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Similarly, the adaptive lasso calibration estimator is given by  

 ( )** **

1

** ** **

, CALASSO , HT
ˆˆ ,1

T
T

y k k k i i ix x
i s k s

t d d y

−

 

  
= + −  

   
 t t x x x   

where the lasso-fitted mean for *

ix  in (2.5) is replaced by the adaptive lasso fit, ( )**

,AL
ˆ1, .

T
T

i i s=x x β  The 

weights for the lasso calibration estimators are calibrated to the population size N  and to the population 

total of the lasso-fitted mean functions.  

 
2.5 Regression tree estimator  
 

The GREG estimator can also be expressed as  

 
( )

( ), ,
ˆ

ˆˆ i n i

y r n i

i s i Ui

y h
t h

 

−
= + 

x
x  (2.6) 

where ( )ˆ
n ih x  is an estimator of the mean function of iY  given ,i i=X x ( ) ( ),i i i ih E Y= =x X x  based on 

the sample data ( ), , .i iy i sx  As an alternative to a linear regression model, McConville and Toth (2019) 

proposed estimating ( )h x  with a regression tree model using the following algorithm: 

1. Let ( )k n  be the minimum box size and   be a specified significance level. 

2. If the dataset contains at least ( )2k n  observations then continue to step 3; otherwise, stop. 

3. Among the auxiliary variables ,  1, , ,lx l d=   choose a variable to split the data. The chosen lx  

is the variable that shows the largest significance difference after testing the null-hypothesis of 

homogeneous .lE y x    If no variable leads to a significant difference, then stop. 

4. Split the data into two sets LS  and RS  by splitting based on the value of the selected variable lx  

that results in the largest decrease in the estimated mean square error, while satisfying the 

requirement that each subset contains at least ( )k n  units. 

5. For each of the resulting subsets of the data, return to step 1. 

 

The resulting regression tree model groups the categories of an auxiliary variable based on their 

relationship to the variable of interest and only includes auxiliary variables and interactions associated 

with this variable. Importantly, including a categorical variable does not require a split for each category, 

potentially reducing the model size substantially while still capturing important interactions.  

After fitting a regression tree model, we obtain a set of boxes  1 2, , ,n n n nqQ B B B=   which partition 

the data. Let ( ) 1i nkI B =x  if i nkBx  and 0 otherwise, for 1, , .k q=  This means that ( ) 1i nkI B =x  

for exactly one box nk nB Q  for every .i s  For every ,i nkBx  the estimator of ( )ih x  is given by  

 ( ) ( ) ( )
1 1# ,n i nk i i i nk nk

i s

h B y I B 
− −



=  =x x  (2.7) 

where 
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 ( )# nkB = ( )1

i i nk

i s

I B −



 x

 

 

is the HT estimator of the population size in box .nkB  The regression tree estimator , TREEŷt  is obtained by 

inserting equation (2.7) into the generalized regression estimator, given in equation (2.6), leading to the 

post stratified estimator 

 , TREE ,ŷ k nk

k

t N =   

where kN  is the number of units in U  that belong to box .k  

Since ( )n ih x  can be written as a linear regression estimator with q  indicator function covariates, the 

regression tree estimator is also a post-stratified estimator, where each box  nkB  represents a post-stratum. 

This implies that this estimator is calibrated to the population total of each box, providing a data-driven 

mechanism, dependent on ,y  for selecting post-strata that ensures that none of them are empty. As a 

result, the regression weights are guaranteed to be non-negative. The weights produced by this estimation 

procedure depend on the variable of interest, .y  Therefore, unlike the GREG approach, a single set of 

generic weights to apply to all study variables is not available. Instead, a set of weights for each survey 

variable of interest is produced.  

 
2.6 Variance estimation under stratified simple random sampling 
 

Under stratified simple random sampling, a variance estimator of the model-assisted survey regression 

estimators described above is obtained by the Taylor linearization method and given by 

 ( )
( )

( )
21ˆ   ,ˆ

1
h

h h h

hi h

h i sh h

y

N N n
V e e

n
t

n 

−
= −

−
   (2.8) 

where h  indexes the strata, hN  is the number of population units in stratum ,h hn  is the number of 

sampled units hs  in stratum ,h ( )ˆ
hi hi n hie y h= − x  is the residual of sample unit i  in stratum h  under the 

regression model and he  is the average residual in stratum .h  

The variance estimators readily extend to more complex sampling designs, but for simplicity we have 

given the expression only for stratified simple random sampling which is used in the simulation study of 

Section 3. 

 
3. Simulation study using Financing and Growth of Small and 

Medium Enterprises Survey data 
 

In this section, we describe a simulation study used to compare the performance of model-assisted 

survey regression estimators relative to the purely design-based HT estimator. Using the Survey of 

Financing and Growth of Small and Medium Enterprises data as the population, we compare the 
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estimators in repeated samples of the data to produce estimates of the total amount requested for trade 

credit which is a particular type of financing.  

 
3.1 Simulation population 
 

The Survey of Financing and Growth of Small and Medium Enterprises (SFGSME) is a periodic 

survey of enterprises which occurs approximately every three years and collects information on the types 

of financing businesses use. The sample is stratified by size, defined by the number of employees, the age 

of the business, industry at the 2-digit North American Industry Classification System (NAICS) and 

geography. A sample of approximately 17,000 enterprises was selected for the 2017 iteration of the 

survey.  

The Business Register (BR) is the primary source of auxiliary information for business surveys at 

Statistics Canada. The frame used by the SFGSME was constructed by selecting from Statistic’s Canada 

BR all enterprises with between 1 and 499 employees and a minimum gross revenue of $30,000. Non-

profit enterprises as well as enterprises belonging to certain industry subgroups were excluded from the 

target population. The BR contains information on the location, number of employees, industry as well as 

revenue for each enterprise in the population.  

 
3.2 Simulation methodology 
 

We conducted a simulation study to compare the relative performance of several model-assisted survey 

regression estimators, using three and four categorical auxiliary variables. We considered sample sizes of 

 200; 500;1,000n =  from the 9,115 respondents in the SFGSME dataset. This dataset was treated as the 

target population and repeated samples were drawn using stratified simple random sampling as this is the 

design commonly used by statistical agencies for business surveys. We assumed there are two strata, 

where stratum A consists of units with revenue of less than $2.5 million and stratum B consists of units 

with revenue greater than $2.5 million. We assumed equal sample sizes in each stratum but most of the 

units in the population, approximately 70%, belong to stratum A. Under this sampling design, larger 

revenue units are over-represented, resulting in an unequal probability sampling design. Preliminary 

simulations using a simple random sample design were also considered and yielded similar results. The 

minimum sample size considered was 200n =  because for smaller sample sizes and 28 categories of x -

variables, there were often categories without a sampled unit. In this case, it is not possible to calibrate the 

GREG estimator to all the pre-specified marginal totals.  

For each sample, models using three x -variables, industry (10 categories), employment size (4 

categories) and region (6 categories) were used to estimate total amount of trade credit requested and 

results were compared to the true total. We also considered a fourth variable, revenue, with 8 categories. 

For each combination of the three different sample sizes, and the two sets of auxiliary variables, with 20 

and 28 main effects categories, we drew 5,000 repeated stratified random samples from the target 
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population. For each sample, we implemented the HT estimator and several model-assisted survey 

estimators as summarized in Table 3.1 below: 

 
Table 3.1 

Summary of model assisted estimators considered in simulation study 
 

Estimator Auxiliary Data  Regression Weights Calibration Totals 

GREG Marginal totals 

Considered main effects 

only 

Independent of y  All auxiliary variables 

GREG with forward 

variable selection (FSTEP) 

Individual values 

Considered main effects 

only 

Dependent on y  Selected auxiliary variables 

Regression Tree (TREE) Individual values Dependent on ,y  strictly 

positive 

Population size of each box 

Lasso (LASSO) Individual values  

Considered main effects 

(1-way) and two-way 

interactions (2-way) 

  

Calibrated lasso 

(CLASSO) 

Individual values 

Considered main effects 

(1-way) and two-way 

interactions (2-way) 

Dependent on y  Population size and lasso-

fitted mean function  

Adaptive lasso (ALASSO) Individual values 

Considered main effects 

only 

  

Calibrated adaptive lasso 

(CALASSO) 

Individual values 

Considered main effects 

only 

Dependent on y  Population size and lasso-

fitted mean function 

 
We initially also considered adaptive lasso and adaptive lasso calibration estimators using all main 

effects and 2-way interactions, but estimates of the coefficients under the GREG linear model, ˆ ,sβ  were 

highly unstable leading to singularity issues.  

All computations were completed in R (Version 3.4.0, 2017). The HT, GREG, regression tree and 

lasso estimators were calculated using the package mase (McConville, Tang, Zhu, Li, Cheung and Toth, 

2018) and the adaptive lasso coefficients were computed using the package glmnet (Friedman, Hastie, 

Simon, Qian and Tibshirani, 2017). The function cv.glmnet was used to select the value of the penalty 

parameter for the lasso estimators. We used a 10-fold cross validation procedure which allows for the 

inclusion of design weights. For the regression tree estimator, the minimum box size ( )k n  was specified 

as 25 and the level of significance   was 0.05. We also considered a minimum box size of 10 units. For 

small sample sizes, there was a small gain in efficiency relative to a minimum box size of 25. For sample 

sizes of 1,000,n =  different choices for the minimum box size yielded similar results in term of mean 

square error. Forward stepwise selection for the FSTEP estimator was based on minimizing the Akaike 

Information Criteria (AIC) and was performed using the function stepAIC in the MASS package 

(Ripley, Venables, Bates, Hornik, Gebhardt and Firth, 2017). 
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In regressing the amount of trade credit requested for the entire finite population on the 28 marginal 

categories, the adjusted coefficient of determination was approximately 2 0.22R =  when both main effects 

and two-way interaction effects were considered. For the population model with main effects only the 

number of significant effects was 15 and for the population model with main effects and two-way 

interactions, there were 2 significant main effects and 29 significant interaction effects. These population-

level results indicate that useful predictive models should be sparse and that there may be important two-

way interactions.  

Fitting regression tree models to the amount of trade credit requested resulted in 25 splits. The first 

split was based on revenue, indicating that this is the auxiliary data that is most strongly related to the 

amount of trade credit requested. There were splits based on all four of the auxiliary variables considered: 

revenue, industry, employment size and geography. This is consistent with the conclusions that useful 

predictive models should be sparse but allow for higher order interactions.  

 
4. Results of the simulation study 

 
4.1 Performance of estimators in terms of design MSE 
 

We computed design bias and design mean square error (MSE) from the 5,000 total estimates by 

sample size and number of marginal categories. The percentage absolute relative design bias was less than 

2 percent for all the estimators for all scenarios. As expected, for all estimators, the bias decreases as the 

sample size increases.  

Figure 4.1 displays the MSE of the HT, GREG, GREG with forward variable selection, regression tree 

and calibrated lasso estimators by sample size, based on the 5,000 simulated samples. The MSE values are 

similar for the adaptive and non-calibrated versions of the lasso estimators. For all the estimators, the 

decrease in MSE is much more pronounced from 200n =  to 500n =  than from 500n =  to 1,000.n =  

This is likely due to the small sample size, relative to the number of categories for the auxiliary variables. 

It may not be possible to explore all the potential effects, particularly higher order effects, with only 200 

sampled units.  

Table 4.1 displays the ratio the design MSE of each estimator to the MSE of the HT estimator for the 

total amount of trade credit requested. For 200,n =  the regression tree estimator and the lasso (2-way) 

estimator with two factor interaction effects are the only model-assisted estimators that provide any 

efficiency gains, relative to the HT estimator, when the number of categories of auxiliary variables used is 

large. As the sample size increases, the gains in efficiency of the model-assisted survey regression 

estimators, relative to the HT estimator, are essentially equal. Using any of the model-assisted estimators 

when 1,000n =  results in a slight gain in efficiency, relative the HT estimator. There is little efficiency 

advantage for model-assisted estimators over the HT estimator, indicating that the auxiliary variables are 

not strongly related to the variable of interest.  
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Figure 4.1 Comparison of mean square error for HT, GREG, FSTEP, regression tree and calibrated lasso 

estimators (1-way and 2-way) for the total amount of trade credit requested.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 4.1 

Ratio of MSE of each estimator to MSE of HT estimator with 20 and 28 marginal categories 
 

 20 categories 28 categories 

n= 200 n= 500 n= 1,000 n= 200 n= 500 n= 1,000 

GREG 1.067 1.011 0.994 1.084 0.959 0.954 

FSTEP 1.036 1.009 0.994 1.040 0.945 0.958 

TREE 1.023 1.007 0.977 0.983 0.963 0.949 

LASSO (1-way) 1.020 0.995 0.986 1.009 0.946 0.947 

CLASSO (1-way) 1.047 1.004 0.990 1.042 0.952 0.949 

LASSO (2-way) 0.999 0.995 0.952 0.981 0.935 0.936 

CLASSO (2-way) 1.061 1.029 0.966 1.045 0.959 0.950 

ALASSO 1.024 0.999 0.986 1.021 0.948 0.948 

CALASSO 1.040 1.005 0.989 1.037 0.951 0.949 

 
The potential gains in efficiency for model-assisted estimators depend on the predictive power of the 

working model. In our simulation population, the strength of the relationship between the variable of 

interest and the available auxiliary variables is weak, leading to only slight efficiency gains relative to the 

purely design-based HT estimator. Therefore, to further explore the differences between the various 

model-assisted survey estimators, we ran additional simulations using different survey variables of 

interest, generated according to the following procedure: 

1. Assuming a lasso model with main effects only, we obtained the lasso coefficient estimates for 

the amount of trade credit requested, ,iy  using the population values for the auxiliary variables 

,ix  including revenue. 

 

                          n = 200                                             n = 500                                           n = 1,000  

 
        Regression Tree       HT                                FSTEP                        CLASSO (1-way)         CLASSO (2-way)           GREG 

5.00E+15 
 

4.50E+15 
 

4.00E+15 
 

3.50E+15 
 

3.00E+15 
 

2.50E+15 
 

2.00E+15 
 

1.50E+15 
 

1.00E+15 
 

5.00E+14 
 

0.00E+00 
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2. We used the coefficient estimates ˆ
L  obtained in step 1 and the population values for ix  to 

generate a new survey variable of interest 

 * ˆ ,T

i i L iy = +x β u   

where iu  is a normally distributed random variable with mean 0 and standard deviation   

chosen such that the adjusted coefficient of determination is approximately 2 0.5.R =  

3. We drew 5,000 repeated samples from the target population and calculated the mean square 

error of each estimator of the total * .
y

t  

4. Steps 1-3 were repeated by fitting a lasso regression model with main effects and 2-way 

interactions and a regression tree model using the algorithm detailed in Section 2.5. 

 

Table 4.2 displays the ratio the design MSE of each estimator to that of the HT under the three 

different models generating the survey variable of interest for a sample size of 1,000.n =  As expected, the 

estimator based on the correctly specified working model is the most efficient. In the case where the true 

generating model contains only main effects, assuming a working model with higher order interactions 

results in a slight loss in efficiency. If two-way or higher order interactions are present, the regression tree 

and lasso-based estimators fitted with two-way interactions are more efficient than the model-assisted 

estimators based on working models with only main effects. When the generating model is a regression 

tree, the regression tree estimator yields modest efficiency gains over the 2-way lasso-based estimators. 

This can be explained by the fact that the regression tree model groups the categories of an auxiliary 

variable based on their relationship to the variable of interest and, therefore, reduces the model size. In all 

cases, significant efficiency gains, relative to the design-based HT estimator, are achieved. 

 
Table 4.2 

Ratio of MSE for each estimator to MSE of HT under different models generating survey variable of interest 
 

 LASSO (1-way) LASSO (2-way) Regression Tree 

GREG 0.749 0.855 0.878 

FSTEP 0.749 0.855 0.876 

TREE 0.803 0.821 0.778 

LASSO (1-way) 0.747 0.850 0.871 

CLASSO (1-way) 0.747 0.851 0.873 

LASSO (2-way) 0.763 0.761 0.826 

CLASSO (2-way) 0.763 0.765 0.833 

ALASSO 0.750 0.849 0.872 

CALASSO 0.750 0.851 0.873 

 
4.2 Performance under other scenarios 
 

We also examined the performance of the lasso-based and regression tree estimators under scenarios 

where there are no main effects, only 2-way interactions. We generated a fourth survey variable of interest 
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using the lasso regression model with main effects and 2-way interactions as described in the procedure 

above. However, in step 2, we set all coefficients estimates corresponding to main effects equal to 0.  

The first column of Table 4.3 (called no multicollinearity) shows the ratio the design MSE of the 

estimators to that of the HT estimator, where the survey variable is generated from a model with no main 

effects for sample sizes of 1,000.n =  Under this scenario, the lasso estimators with 2-way interactions and 

the regression tree estimator are significantly more efficient than model-assisted estimators based on main 

effects only models. Relative to the commonly used GREG estimator, the efficiency gains for the lasso 

estimators with 2-way interactions and the regression tree estimator are significantly greater when there 

are no main effects. This is evident by comparing LASSO 2-way column in Table 4.2 to first column in 

Table 4.3. The relative MSE is very similar for the 2-way lasso and regression tree estimators but closer to 

1 for GREG and 1-way lasso estimators. 

 
Table 4.3 

Ratio of MSE for each estimator to MSE of HT under generating model with no main effects and in the 

absence/presence of multicollinearity 
 

 No Multicollinearity Duplicated Variable Collapsed Categories 

GREG 0.935 - - 

TREE 0.824 0.850 0.842 

LASSO (1-way) 0.930 0.945 0.942 

CLASSO (1-way) 0.936 0.953 0.951 

LASSO (2-way) 0.783 0.795 0.773 

CLASSO (2-way) 0.795 0.809 0.781 

 
For administrative data with many variables, it is not uncommon for some variables to be colinear or 

nearly colinear. For example, information on both the total number of employees and the number of full-

time equivalent employees is often available. The GREG estimator, and by extension the FSTEP estimator 

and adaptive lasso estimators, fail in the presence of collinearity as the design matrix is singular. We 

investigated the performance for regression tree and lasso estimators in the presence of multicollinearity. 

We considered two types of multicollinearity: 

• Duplicate of existing categorical variable. We created three new indicator variables 

corresponding to employment size.  

• Collapsed categories of existing auxiliary variable: We created a new indicator variable 

corresponding to the three highest categories of revenue.  

 

The MSE, relative to the HT estimator, for 1,000n =  is shown in columns 2 and 3 of Table 4.3. These 

results are very similar to those in the first column of Table 4.3 without the presence of multicollinearity. 

The regression tree and lasso estimators provide an automatic way of removing colinear auxiliary 

variables without impacting the potential efficiency gains. It should be noted that other methods, such as 

principal component analysis, can be used to eliminate collinearity but require some expertise.  
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4.3 Performance of variance estimators in terms of relative bias 
 

Variance estimators based on (2.8) were constructed for each estimator. Table 4.4 displays the 

percentage relative bias of each estimator for the total amount of trade credit requested. For comparison 

purposes, the theoretically unbiased variance estimator of the HT estimator is included in this table. This 

variance estimator is equivalent to the expression provided in (2.8) where .i i se y y= −  The variance 

estimators for the model-assisted survey regression estimators have substantial negative bias which 

increases as the number of auxiliary variables, ,p  increases. The magnitude of negative bias is largest for 

the lasso-based estimators fitted using 2-way interactions. For small sample sizes, the negative bias is 

smallest for the regression tree estimator. As well, for small sample sizes, there is a substantial difference 

in bias between the GREG and FSTEP estimators. Performing variable selection prior to calculating the 

standard GREG calibration estimator appears to reduce the bias of the variance estimator in this case. The 

bias reduces for all model-assisted survey regression estimators as the sample size increases. 

 
Table 4.4 

Percent relative bias of variance estimators 
 

 20 categories 28 categories 

n = 200 n = 500 n = 1,000 n = 200 n = 500 n = 1,000 

GREG -12.44 -4.16 -1.60 -22.23 -10.86 -6.99 

FSTEP -7.05 -3.60 -1.62 -14.07 -7.71 -6.73 

TREE -5.79 -5.53 -2.81 -8.45 -12.93 -10.83 

LASSO (1-way) -7.79 -2.96 -1.14 -12.42 -9.49 -6.44 

CLASSO (1-way) -10.08 -3.74 -1.61 -16.01 -9.84 -6.52 

LASSO (2-way) -11.94 -11.57 -7.62 -16.12 -15.14 -13.08 

CLASSO (2-way) -19.99 -15.09 -9.06 -25.87 -19.04 -15.14 

ALASSO -8.69 -3.61 -1.41 -14.52 -9.43 -6.38 

CALASSO -9.40 -3.78 -1.48 -15.80 -9.64 -6.46 

HT 5.19 5.72 5.82 4.90 -0.11 1.66 

 
Given the bias of the variance estimators seen here, particularly for small sample sizes, a possible 

concern is the quality of the first-order Taylor expansion approximation. For a large number of categorical 

auxiliary variables, the remainder term in the Taylor expansion may no longer be negligible for small 

sample sizes. An alternative variance estimator for the lasso estimators was considered by McConville 

et al. (2017) but yielded only slight improvements in terms of bias reduction. An additional concern is 

properly accounting for the inherently data driven procedure used to estimate the regression tree and lasso 

models. The regression tree model has splits while the lasso models have a penalty parameter both 

depending on the sample.  

 
4.4 Properties of the survey weights 
 

Regression weights are directly available for the GREG, FSTEP, regression tree, lasso calibration (1-

way and 2-way) and adaptive lasso calibration estimators. We investigated the properties of the weights 

for these estimators in our simulations.  



Survey Methodology, June 2022 63 

 

 

Statistics Canada, Catalogue No. 12-001-X 

Large variation in the values of weights is undesirable as they allow some units to be much more 

influential than others. Positive weights are preferred by national statistical organizations as a negative 

weight no longer holds the interpretation of the number of population units represented by the sampled 

unit.  

First, we computed the average, over repeated samples, of the empirical within-sample variance of the 

weights: 
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Table 4.5 displays the average variance and average CV for the weights across samples when revenue 

was included as an auxiliary variable. The weights for the GREG estimator and, to a lesser extent the 

FSTEP estimator, are much more variable than the weights for the regression tree and lasso-based 

estimators, particularly for small sample sizes. The variability of the weights for the three lasso-based 

approaches is very similar and is always slightly lower than the variability of the weights for the 

regression tree estimator.  

 
Table 4.5 

Average variance (CV) for weights across samples 
 

 n = 200 n = 500 n = 1,000 

GREG 728.18 (0.59) 77.14 (0.48) 16.41 (0.44) 

FSTEP 462.81 (0.47) 67.45 (0.45) 15.90 (0.44) 

TREE 374.43 (0.42) 59.35 (0.42) 14.70 (0.42) 

CLASSO (1-way) 354.57 (0.41) 56.21 (0.41) 14.03 (0.41) 

CLASSO (2-way) 361.83 (0.42) 56.60 (0.41) 14.06 (0.41) 

CALASSO 354.29 (0.41) 56.28 (0.41) 14.03 (0.41) 

 
We also computed the proportion of simulated samples where the regression weights contained 

negative values. As mentioned in Section 2.5, by construction, the weights for the regression tree 

estimator are guaranteed to be strictly positive. When the sample size was 200, the GREG estimator 

calibrated to 20 marginal categories yielded negative weights for approximately 3% of the repeated 

samples. There were no negative weights when the sample size was 500 or 1,000. For the GREG estimator 

calibrated to 28 marginal categories, approximately 27% of the repeated samples of size 200 contained 

negative weights and less than 0.5% of the repeated samples of size 500 contained negative weights. The 

GREG weights are unstable when the sample size is small, especially if the GREG estimator is calibrated 
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to auxiliary variables with many categories. Using forward stepwise variable selection with the GREG 

estimator resulted in a substantial decrease in the number of simulated samples with negative weights for 

small sample sizes. The FSTEP estimator applied to the 28 marginal categories yielded negative weights 

in approximately 0.5% of the repeated samples of size 200. There were no negative weights observed for 

the lasso calibration estimator with only main effects or adaptive lasso calibration estimator. Using the 

lasso calibration estimator with 2-way interactions resulted in negative weights in less than 0.05% of the 

simulated samples. 

 
4.5 Estimation based on a single set of weights  
 

A major drawback in the implementation of the regression tree and the calibrated lasso-based 

approaches is that the estimation procedures yield variable-specific weights. We conducted additional 

simulations in which a single set of variable-specific weights was applied to other related survey variables 

of interest. In the context our business survey data, we considered four survey variables of interest, the 

amount of trade credit requested as well as the amount requested for three additional types of financing: 

line of credit, business credit card and leasing financing. We examined the impact on bias and loss of 

efficiency in using a single set of weights, determined by a primary variable of interest, to estimate the 

total amount requested for the remaining three survey variables of interest. Specifically, we calculated the 

percentage absolute relative design bias for the estimators of the total amount requested and the variance 

estimators. We also calculated the ratio of the MSE for the regression tree and three calibrated lasso-based 

approaches using the set of weights corresponding to a primary variable of interest to the MSE for the 

estimators using variable-specific weights. For brevity, we considered only settings with 28 marginal 

categories. 

The percentage absolute relative design bias was less than 2 percent for all of the estimators for all 

scenarios. For all estimators and primary variable of interest, the bias decreases as the sample size 

increases. 

Unlike the bias of the variance estimators based on variable-specific weights, the bias of the variance 

estimators based on a single set of weights for a primary variable of interest does not necessarily decrease 

as the sample size increases. As well, the bias is not strictly in one direction and may be positive or 

negative. For the regression tree and calibrated lasso-based approaches, the bias of the variance estimators 

is substantially larger for the primary variable of interest used to calculate the single set of weights than 

for the other study variables. The data driven nature of these estimators means that the estimated variance 

for the primary variable of interest is underestimated, as shown in Table 4.4.  

Table 4.6 displays the ratio of the design MSE of each estimator with weights determined by a primary 

variable of interest to that of the estimator with variable-specific weights, calculated separately for each of 

the four study variables for n  equal to 200 and 500. Using a single set of weights determined by a primary 

variable of interest results in a similar or slightly higher MSE than using variable-specific weights. Here, 
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the loss in efficiency is modest, less than 8% in all settings considered. Similar results were obtained for 

the case 1,000.n =  There is no clear pattern in terms of loss of efficiency and sample size.  

 

Table 4.6 

Ratio of MSE for each estimator with weights determined by primary variable of interest to MSE for 

estimator with variable-specific weights 
 

 

n  

Trade Credit Line of Credit Business Credit 

Card 

Lease Financing 

200 500 200 500 200 500 200 500 

Primary 

variable: 

Trade Credit 

TREE - - 1.01 0.97 0.99 1.00 0.99 1.00 

CLASSO (1-way) - - 0.99 0.99 1.01 0.99 1.00 1.01 

CLASSO (2-way) - - 0.93 0.94 0.92 0.98 0.92 0.97 

CALASSO - - 0.97 0.99 1.01 0.99 0.96 1.00 

Primary 

variable: Line 

of Credit 

TREE 1.06 0.97 - - 0.98 1.00 0.98 0.97 

CLASSO (1-way) 0.96 0.98 - - 0.99 1.01 0.99 0.99 

CLASSO (2-way) 0.95 0.96 - - 0.92 0.98 0.93 0.96 

CALASSO 0.97 0.98 - - 0.99 1.00 0.96 0.98 

Primary 

variable: 

Business 

Credit Card 

TREE 1.06 1.01 1.06 0.97 - - 0.99 1.02 

CLASSO (1-way) 0.99 1.02 0.98 0.97 - - 0.99 1.02 

CLASSO (2-way) 0.98 1.00 0.95 0.93 - - 0.92 0.99 

CALASSO 1.00 1.02 0.97 0.97 - - 1.00 1.01 

Primary 

variable: 

Lease 

Financing 

TREE 1.07 1.03 1.06 1.05 0.99 1.02 - - 

CLASSO (1-way) 0.99 1.05 0.98 1.04 0.99 1.02 - - 

CLASSO (2-way) 0.97 1.02 0.96 1.01 0.92 0.99 - - 

CALASSO 1.00 1.05 0.98 1.05 1.00 1.01 - - 

 
5. Estimation under non-probability sampling 
 

In this section, we study the effect of selection bias on the survey regression estimators under non-

probability sampling. For this purpose, we studied two types of selection bias possibly present in non-

probability samples. In particular, we considered a scenario in which the probability of selection depends 

only on the auxiliary data available for all units in the population, and a scenario in which the probability 

of selection depends on the survey variable of interest. In both scenarios, we evaluated the absolute 

relative bias (ARB), ,ŷ y yt t t−  for each estimator of the total. Following Chen, Valliant and Elliott 

(2018), we treat the non-probability sample as a simple random sample and set the design weights equal to 

id N n=  for the estimation of total yt  as the selection process for non-probability samples is unknown in 

practice.  

 
5.1 Selection probabilities depend on auxiliary data 
 

We drew repeated samples using the same stratified SRS design as in Section 4. Table 5.1 displays the 

ARB of each estimator of the total amount of trade credit requested assuming ,id N n=  when the sample 

is in fact selected using disproportionate stratified random sampling. 

As expected, the wholly designed-based HT estimator has the largest bias, and this bias does not 

decrease as the sample size increases. The ARB of model-assisted estimators decreases as the sample size 
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n  increases. The GREG estimator has the smallest bias, particularly for small sample sizes. Furthermore, 

the GREG estimator is approximately unbiased if revenue is included as one of the auxiliary variables for 

calibration. However, if stepwise variable selection is used, the GREG estimator is no longer unbiased for 

small sample sizes. On the other hand, if revenue is not included as a calibration variable, the GREG 

estimator is slightly biased. The lasso-based and, to a smaller extent, the regression tree estimators suffer 

from small sample bias for 200n =  when revenue is correctly included as an auxiliary variable. This is 

most apparent for the standard lasso estimators that do not include calibration to known population totals. 

For n  equal to 500 or 1,000, including revenue as an auxiliary variable, substantially decreases the bias 

for the regression tree and calibrated lasso estimators but only slightly decreases the bias for the lasso 

estimators without calibration. This indicates that the additional calibration step is important for 

diminishing the effect of selection bias, especially if the sample size is small.  

 
Table 5.1 

Percent ARB of each estimator under stratified sampling with revenue and without revenue included as an 

auxiliary variable  
 

 Revenue Without Revenue 

n = 200 n = 500 n = 1,000 n = 200 n = 500 n = 1,000 

GREG 0.31 0.06 0.06 4.84 5.12 4.71 

FSTEP 2.67 0.44 0.06 9.20 5.18 4.92 

TREE 4.15 1.04 0.50 17.40 10.20 8.94 

LASSO (1-way) 17.42 5.10 2.32 16.32 8.88 6.49 

CLASSO (1-way) 7.99 0.83 0.20 9.04 5.22 4.59 

LASSO (2-way) 25.36 14.28 8.40 26.31 15.16 9.89 

CLASSO (2-way) 10.72 1.44 1.02 14.19 5.56 3.84 

ALASSO 14.95 5.63 3.00 14.35 8.64 6.51 

CALASSO 9.63 2.54 1.25 9.27 5.77 4.92 

HT 49.45 48.84 48.81 49.08 49.29 48.60 

 

These results indicate that when the selection probability depends on a known auxiliary variable, 

including it in the working model for the GREG estimator effectively diminishes the effect of selection 

bias. This was not the case for the model-assisted estimators that involved variable selection. Performing 

variable selection may increase bias as auxiliary variables that are predictive in terms of selection 

probability may not be selected and properly accounted for. The lasso estimators can be constructed such 

that user-specified variables are always included in the working regression model. These user-specified 

variables can be added to *

ix  in equation (2.5) to force calibration to corresponding population totals. 

Unfortunately, the underlying selection mechanism is unknown in practice and, therefore, correctly 

identifying variables which impact selection probability is challenging. 

 

5.2 Selection probabilities depend on the study variable 
 

Next, we drew repeated samples using Poisson sampling where the sampling probabilities depends on 

the survey variable of interest. We assume the Poisson sampling probabilities are given by: 
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 ( ) 0 1logit i ip y = +   

where iy  is the amount of trade credit requested in millions of dollars, 1 0.5 =  and 

0 3.80, 2.85, 2.10. = − − −  The intercept values, 0 ,  were chosen such that we obtained sample sizes of 

approximately 200, 500 and 1,000 units, averaged over the simulated samples. Under this sampling 

design, units with larger amounts requested for trade credit have a higher probability of being sampled 

and, therefore, are over-represented. Table 5.2 displays the ARB of each estimator of the total amount of 

trade credit requested assuming ,id N n=  when the sample is selected using the above informative 

Poisson sampling. Here, all the estimators are heavily biased because the population model does not hold 

due to informative sampling. The magnitude of the bias is very similar across estimators and does not 

substantially decrease as the sample size increases. The inclusion or exclusion of revenue as an auxiliary 

variable does not impact the bias.  

 
Table 5.2 

Percent ARB of each estimator under Poisson sampling with revenue and without revenue included as an 

auxiliary variable 
 

 Revenue Without Revenue 

0
 = -3.8 

0
 = -2.85 

0
 = -2.1 

0
 = -3.8 

0
 = -2.85 

0
 = -2.1 

GREG 23.53 22.27 20.45 24.74 22.91 21.21 

FSTEP 24.54 22.55 20.58 25.16 23.24 21.15 

TREE 24.07 22.73 20.15 24.93 22.47 20.55 

LASSO (1-way) 24.29 22.73 20.65 25.45 23.29 21.38 

CLASSO (1-way) 23.02 22.30 20.47 24.74 22.99 21.23 

LASSO (2-way) 23.15 22.06 20.17 24.66 22.73 20.62 

CLASSO (2-way) 20.11 20.18 19.01 22.62 21.63 19.98 

ALASSO 24.44 22.72 20.66 25.50 23.21 21.36 

CALASSO 23.91 22.46 20.53 25.10 23.01 21.25 

HT 29.12 27.95 25.57 29.36 27.53 25.45 

 
6. Conclusions  
 

We have evaluated the performance of several model-assisted survey regression estimators, in the 

context of both probability and non-probability sampling, through a simulation study. First, we discuss the 

overall conclusions from our simulation study using probability samples with a stratified SRS design. In 

the context of our business survey data with all categorical auxiliary variables, the regression tree 

estimator and the lasso (2-way) estimator with two factor interaction effects are the only model-assisted 

estimators that provide any efficiency gains, relative to the HT estimator, when the sample size is small 

and the number of categories of auxiliary variables used is large. As well, the variance estimator for the 

regression tree estimator is the least biased in this scenario. As the sample size increases, the difference in 

efficiency between the model-assisted survey regression estimators becomes negligible and all are slightly 

more efficient than the HT estimator. In general, the potential gains in efficiency for model-assisted 

estimators over the HT estimator depend on the predictive power of the model. In our simulation 
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population, the strength of the relationship between the study variable and the available categorical 

auxiliary variables is somewhat weak as judged by the adjusted coefficient of determination 2R  around 

0.20. We therefore generated study variables leading to larger 2R  values around 0.50 by making the 

model error variance smaller. As expected, model-assisted estimators led to significant efficiency gains 

over the HT estimator in all cases, as reported in Table 4.2 which shows that the regression tree estimator 

and the lasso estimator with interaction effects yield improved efficiency over the commonly used GREG 

estimator if two-factor interactions are present. Moreover, the regression weights for the tree estimator and 

the calibration weights for the lasso calibration estimators are much less variable, particularly for small 

sample sizes, than the weights for the GREG. We also examined the performance of the lasso-based and 

regression trees estimators under a scenario with no main effects and only two-factor interactions are 

present and another scenario where multi-collinearity among the auxiliary variables is present. In the latter 

scenario, GREG is not applicable, and we show that the regression tree and lasso estimators provide an 

automatic way of removing colinear auxiliary variables without impacting the potential efficiency gains. 

Overall, we recommend using either lasso (2-way) or regression tree estimators in terms of efficiency 

when two factor interactions are likely to be present among the categorical auxiliary variables. Even in the 

case of models with only main effects, both methods perform well relative to GREG in terms of MSE 

because the lasso (2-way) estimator automatically shrinks regression coefficients associated with the 

interactions to zero while the regression tree estimator does not require specification of the mean function. 

In other contexts where there is evidence of complex non-linear and non-additive relationships between 

the survey variable of interest and auxiliary variables, the use of other tree-based machine learning 

methods, such as xgboost and random forests, should be studied.  

In Section 4.3, we studied the performance of variance estimators in terms of relative bias and showed 

that all the variance estimators exhibit significant underestimation for sample size 200n =  and 28 x -

categories. Relative bias of the regression tree variance estimator did not decrease as the sample size 

increased, unlike in the other cases, and it could be due to overfitting. In the context of random forests 

method, Dagdoug, Goga and Haziza (2021) examined a procedure based on cross-validation which led to 

small relative biases and good coverage rates. It would be worthwhile to study a similar procedure for 

variance estimation of the regression tree estimator. 

A major drawback of the regression tree and lasso-based approaches is that the estimation procedures 

do not yield a set of generic weights that can be applied to all study variables, .y  A possible alternative 

approach is to derive regression weights based on a primary variable of interest and apply that set of 

weights to related study variables. In the survey context considered here, using a single set of weights for 

a group of related variables resulted in little loss of efficiency, relative to the use of variable-specific 

weights. As well, the bias of the estimators remained negligible. Under this approach, the desirable 

properties of the regression weights, low variability and, in the case of the regression tree estimator, 

strictly positive weights are maintained. However, the asymptotic properties of the lasso and regression 
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tree survey estimators have not been derived for a single set of weights, applied to multiple study 

variables.  

We also considered the use of model-assisted survey regression estimators for data from mis-specified 

probability sampling, treated as a non-probability sample. When the probability of selection depends on an 

observed auxiliary variable, the bias of the model-assisted estimators decreases as the sample size 

increases. Including the appropriate auxiliary variable in the working model for the GREG estimator 

effectively removes the selection bias. Achieving this in practice is difficult as the selection process is 

unknown. Performing variable selection can increase the bias for model-assisted survey regression 

estimators as the auxiliary variables related to the selection probability may not be included in the 

regression model. In fact, in our simulations, correctly including revenue as a potential auxiliary variable 

did not necessarily decrease the bias of the lasso estimators.  

When the probability of selection depends on the survey variable of interest, all the estimators are 

heavily biased. The magnitude of the bias is similar across estimators and does not greatly decrease as the 

sample size increases. In our simulation population, the auxiliary variables are not highly predictive for 

the survey variables of interest. Examining the impact of the strength of the relationship between the 

auxiliary variables and the variable of interest when informative selection is present warrants more 

investigation.  

Sample selection bias may not be reduced by using a non-probability sample alone, as demonstrated in 

our simulation study. Methods based on integrating a non-probability sample observing the study 

variables and associated auxiliary variables with a probability sample observing only the same auxiliary 

variables have the potential of reducing selection bias through modeling the participation probabilities 

(Chen, Li and Wu, 2020). Dual frame screening methods are also available when the study variable is 

observed in both samples and the units in the probability sample belonging to the non-probability sample 

can be identified without linkage errors without the need to model the participation probabilities (Kim and 

Tam, 2020; Rao, 2021 and Beaumont, 2020). However, the dual frame method is effective only when the 

sampling fraction for the non-probability sample is large. We are studying the above methods in the 

context of business surveys, for example integrating survey data with incomplete administrative data 

treated as a non-probability sample. 
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Bayesian inference for a variance component model using 
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Abstract 

We consider an intercept only linear random effects model for analysis of data from a two stage cluster 

sampling design. At the first stage a simple random sample of clusters is drawn, and at the second stage a 

simple random sample of elementary units is taken within each selected cluster. The response variable is 

assumed to consist of a cluster-level random effect plus an independent error term with known variance. The 

objects of inference are the mean of the outcome variable and the random effect variance. With a more 

complex two stage sampling design, the use of an approach based on an estimated pairwise composite 

likelihood function has appealing properties. Our purpose is to use our simpler context to compare the results 

of likelihood inference with inference based on a pairwise composite likelihood function that is treated as an 

approximate likelihood, in particular treated as the likelihood component in Bayesian inference. In order to 

provide credible intervals having frequentist coverage close to nominal values, the pairwise composite 

likelihood function and corresponding posterior density need modification, such as a curvature adjustment. 

Through simulation studies, we investigate the performance of an adjustment proposed in the literature, and 

find that it works well for the mean but provides credible intervals for the random effect variance that suffer 

from under-coverage. We propose possible future directions including extensions to the case of a complex 

design. 

 

Key Words: Cluster sample analysis; Composite likelihood; Curvature adjustment; Random effects model. 

 

 

1. Introduction 
 

Multi-stage survey designs are used in many population-based surveys. Increasingly, multilevel 

models have been used to make inferences when data are obtained from a multi-stage survey.  

Desiring to improve such inferences Rao, Verret and Hidiroglou (2013) (RVH) proposed using a 

weighted log pairwise composite likelihood approach. There is an extensive literature on composite 

likelihoods: see review papers by Varin (2008), Varin, Reid and Firth (2011) and Yi (2017), and many 

applications. In their Section 4 RVH describe a unified approach applicable to both linear and generalized 

linear models. Important aspects of their work include (a) obtaining design-consistent point estimates of 

mean and regression parameters and variance components, and (b) using only first-order inclusion 

probabilities and second-order probabilities within clusters. In particular, RVH work in (a) is important 

because of design inconsistency when the number of clusters (first-stage units) grows while the cluster 

sample sizes remain small (Pfeffermann, Skinner, Holmes, Goldstein and Rasbash, 1998). Unlike the 

pseudo-likelihood approach in common use (Rabe-Hesketh and Skrondal, 2006) their method ensures that 

(a) holds for outcomes from generalized linear models. The research in RVH has been extended by Yi, 

Rao and Li (2016) (YRL), who provide a more general framework, additional theory and extensive 

simulations.  
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Two related developments have led to our research. First, there is increasing interest in the use of 

Bayesian methods for inferences from survey data. Section 5 has a general reference together with an 

introduction to papers describing extensive use of Bayesian methods at the National Agricultural 

Statistical Service of the US Department of Agriculture. Second, there is (Bayesian) literature 

demonstrating the possibility of overstated precision by using unadjusted composite likelihoods, e.g., 

Ribatet, Cooley and Davison (2012) (RCD) and Stoehr and Friel (2018).  

Our approach is to start with a posterior distribution taken proportional to the product of a composite 

likelihood and prior distribution. Comparing this approximate posterior distribution with one using the full 

likelihood, we show that inferences based on the approximate posterior exhibit overstated precision. 

Making adjustments to the posterior distribution based on the composite likelihood as in RCD, we then 

use simulations to compare the three ways of formulating a posterior distribution, i.e., those based on the 

full, composite and adjusted composite likelihoods. This is done by visual evaluation of the graphs of the 

posterior densities and coverages (over repeated simulations) of 95% credible intervals for the model 

parameters.  

The methodology is described in Section 2.3. The adjustments to the approximate posterior distribution 

based on a composite likelihood are derived from a transformation of the logarithm of the composite 

likelihood at its mode, designed so that the negative of the inverse of the curvature matrix of the 

approximate posterior density at its mode will match the corresponding posterior variance-covariance 

matrix of the parameters. This is similar to the property in frequentist inference that the inverse of the 

observed Fisher information matrix (negative of the Hessian of the log likelihood at its mode) estimates 

the variance-covariance matrix of the maximum likelihood estimates. 

To focus on the main issue we use a “noninformative” prior distribution for the parameters of our 

model, described below. Then the corresponding posterior density is close to the normalized likelihood, 

and advances shown in a Bayesian context would also be seen in a frequentist model-based approach.  

To simplify the initial investigation a standard linear random effects (intercept only) superpopulation 

model is assumed. Consider a survey population drawn from that superpopulation and composed of a 

large number N  of clusters, each of a common size, say, .m  Let ijY  denote the continuous response 

variable for elementary unit j  in cluster i  with =1, ,i N  and =1, , .j m  Then we write 

 =ij i ijY u e + +  (1.1) 

where ( ) ( )2 2~ 0, , ~ 0, ,i u ij eu N e N   all iu  and ije  are independent, and , u , and e  are parameters. 

We also begin by assuming that the survey sampling design is a simple random sample of n  clusters, 

where n  is a positive integer. This has the advantage that the model (1.1) holds not only for the 

superpopulation and the finite population but also (replacing N  by )n  for the sample itself, arising from 

generation of the population followed by the selection of the sample using the sampling design. It ensures 

that the likelihood function to be used in Bayesian inference is well defined. As well, it can be shown that 
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Bayesian inference from the sample for the parameters of model (1.1) would be interpretable also in terms 

of the frequentist theory for analytic uses of survey data (Skinner, Holt and Smith, 1989).  

Our work is valuable because we show the perils of using an unadjusted pairwise composite likelihood 

to form an approximate posterior distribution for inference even in this very simple and straightforward 

case. Extensions to unequal probability sampling designs are discussed in Section 4.  

The proposed adjustment leads to excellent frequentist properties for inference about the mean .  The 

posterior mean of   has low bias in the frequency sense, and the frequentist coverage of credible intervals 

aligns with the nominal levels. For u  it provides a significant improvement over using the unadjusted 

composite likelihood. However, the coverage falls short of the nominal level, leading to the need for 

additional research about how to modify the adjustment.  

The rest of the paper is structured as follows. Section 2 provides the definitions of the full, composite 

and adjusted composite likelihoods and the prior distributions. There follows a description of the curvature 

adjustment and the reasons for its use. The simulation studies are described in Section 3 including the 

model, prior distributions, sample sizes and their settings, number of replications, etc. This section also 

describes how the results are displayed together with a summary of our findings. Extensions to unequal 

probability sampling cases are discussed in Section 4. Conclusions are in Section 5. 

 
2. Full likelihood, pairwise likelihood and Bayesian implementation 
 

2.1 Model and formulae 
 

As in Section 1, let ijY  denote the response variable for second-stage unit j  in first-stage unit i  for 

=1, , ,i n  and =1, , .j m  We use lower case letter ijy  to represent realized values of .ijY  Let 

( )  1= , , nny y y  denote the sample data with ( )
T

1= , ,i i imy yy  for =1, , ,i n  where T denotes 

transpose. 

In a more general random effects model, we might assume that, conditional on random effects iu  for 

=1, , ,i n  the ijY  are independently distributed as  

 ( )~ ;ij ij i yy u
Y f y u θ   for  =1, , ,j m  (2.1) 

where 
y u

f  is a known density function and yθ  is the associated parameter vector. Next, we model 

random effects by assuming that the iu  are independent and identically distributed as  

 ( )~i u i uu f u θ   for  =1, , ,i n  (2.2) 

where uf  is a given density function indexed by the parameter vector .uθ  

Let ( )
T

T T= ,y uη θ θ  be the vector of model parameters which is of interest. In the frequentist framework, 

the maximum likelihood method is commonly used to conduct inference about η  by maximizing the 

likelihood function  
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 ( ) ( )
=1

= ; ,
n

i

i

L fη y η   

where  

 ( ) ( ) ( )|

=1

; = ; .
im

i y u ij i y u i u i

j

f f y u f u du
 
 
 
y η θ θ  (2.3) 

An alternative to the likelihood method is the composite likelihood approach (Lindsay, 1988). In 

particular, the pairwise likelihood method has often been employed. Let ( ) ( )= ;ij ijL f yη η  be the density 

of ,ijY  determined by  

 ( ) ( ) ( ); = ; .ij ij i y u i u iy u
f y f y u f u duη θ θ   

For ,j k  let ( ) ( )= , ;ijk ij ikL f y yη η  be the joint density for paired responses ( ), ,ij ikY Y  determined by  

 ( ) ( ) ( ) ( ), ; = ; ; .ij ik ij i y ik i y u i u iy u y u
f y y f y u f y u f u duη θ θ θ   

Then a marginal pairwise likelihood function can be formulated as  

 ( ) ( ) ( ) ( )
=1 <

= ,jk j k

n
d d d

ijk ij ik

i j k

C L L L η η η η   

where ,jkd ,jd  and kd  are weights that can be user-specified to enhance efficiency or to facilitate some 

specific features of the formulation. Discussion on choosing weights can be found in Cox and Reid 

(2004), Lindsay, Yi and Sun (2011), Varin, Reid and Firth (2011), and Yi (2017). To confine our attention 

to the use of marginal pairwise likelihoods, in line with the approach of RVH, here we consider the case 

with = = 0j kd d  and =1.jkd  

Returning to the special case of model (1.1), suppose that 2

e  is known, and take η  to consist of 

=y θ  and 2= .u uθ  In a Bayesian approach it is necessary to choose a prior distribution for .η  We will 

assume a prior distribution in which   and 2

u  are independent, with a uniform distribution with large 

support for ,  and a distribution for u  that is close to uniform on an interval assumed to contain the 

support of the full likelihood function for 2

u  with high probability. Gelman (2006) presents a thorough 

treatment of choosing a prior distribution of u  in the random effects model (1.1). He recommends using 

a uniform prior for u  for moderate to large values of ,n  but a half-Cauchy prior for smaller values of n  

(see, especially, Sections 3.2 and 5.2 of Gelman, 2006). The half-Cauchy prior is supported on ( )0,  and 

is given by 

 ( )

1
2

1 ,u
u

A


 

−

  
 +     

 (2.4) 

where A  is a scale hyperparameter. 
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2.2 Unadjusted pairwise composite likelihood 
 

Again, assume model (1.1), and assuming 2

e  known, let ( )
T

2= , u η  be the vector of model 

parameters. We are interested in comparing the performance of the posterior distribution of η  based on 

using the full likelihood or the pairwise likelihood, together with the adjusted posterior pairwise 

distribution to be described below. 

To start, consider a simple situation where 2

u  also is assumed to be known and only   is unknown. 

Let ( )   be a prior density of .  Then the posterior density of   is  

 ( )( ) ( ) ( )FL

=1

; ,
n

i

i

p n f    y y  (2.5) 

where the subscript FL indicates that it is based on the full likelihood. In contrast, we consider  

 ( ) ( ), PL

1 <

= ,i ijk

j k m

L L 
 

   

where ( ) ( ) ( ) ( )= ; ; ,ijk ij i ik i u i iy u y u
L f y u f y u f u du    and then define  

 ( )( ) ( ) ( )PL , PL

=1

n

i

i

p n L    y  (2.6) 

to be the “pairwise” posterior density of .  We wish to compare the variances of   derived from 

( )( )FLp n y  and ( )( )PL ,p n y  shown in the following theorem, of which the derivations are 

straightforward. 

 
Theorem: Assume that ( )   is a uniform prior. Then 

(a) ( )( )FLp n y  is a normal density with mean y  and variance 
2 2

;e um

mn

 +
 

(b) ( )( )PLp n y  is a normal density with mean y  and variance 
( )

2 22

1

e u

m m n

 +

−

 

where =y  

( )
1

=1 =1
.

n m

iji j
mn y

−

   
 

The theorem shows that when m  is greater than 2, the variance derived from the “pairwise” posterior 

density ( )( )PLp n y  is smaller than that of the posterior density ( )( )FL .p n y  This finding is 

intuitively reasonable, because the pairwise likelihood is effectively taking all ( )1 2m m −  pairs of 

observations within each cluster to be independent. It motivates us to examine an adjusted version of 

( )( )PL ,p n y  to be discussed in the sequel. 

For the case where 2

u  is also unknown, it can be shown that a similar kind of adjustment is needed. 

Assuming independent uniform priors for   and 2 ,u  it is straightforward to show that  

 ( )( ) ( )22 1

FL 0, exp 0.5tr
n

u m mp n 
− −  − y Σ Σ S  (2.7) 
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where ( ) ( )
T 2 2 T

0 =1
= , = , = ,

n

i m i m m m m e m u m mi
  − − +S y μ y μ μ 1 Σ I 1 1 m1  represents the 1m  unit 

vector, and mI  stands for the m m  identity matrix.  

After some algebra the pairwise composite likelihood posterior (PL) can be shown to be  

 ( )( ) ( ) ( )1 42 1

PL 2 2 0PL, exp 0.5tr
nm m

up n 
− −  − y Σ Σ S  (2.8) 

where, with ( )
T

= , ,ijk ij iky y − −z  

 T

0PL

=1 <

= .
n

ijk ijk

i j k

S z z   

Note that 2Σ  is defined in (2.7) with = 2.m  

Assuming independent uniform priors for   and 2 ,u  we consider the posterior density of 2

u  with   

integrated out. To assess the relative precisions of Bayesian inference in the two cases, we must use 

approximations because of the complexity of the two posterior densities. Specifically, we compare the 

curvature of the log posterior and the log pairwise posterior densities for 2

u  at their modes. The ratio of 

the latter to the former can be shown to be equal for large n  to  

 
( )( )

( )

2
2 2

2
2 2

2 1
,

2

e u

e u

m m

m

 

 

− +

+
  

implying that using the unadjusted pairwise posterior density for > 2m  would overestimate the precision 

of estimation of 2.u  

Thus, for both   and 2

u  (or ),u  basing an approximate log likelihood for Bayesian inference 

directly on the pairwise composite likelihood would lead to posterior intervals that are too narrow. 

Note: In Section 3 the parameter vector η  is set to be ( )
T

, u   (with variance 2

u  replaced by 

standard deviation ),u  and a half-Cauchy prior distribution is used for .u  However, the comparison of 

full and log pairwise posterior densities will remain similar under the appropriate transformations. 

 
2.3 Curvature adjustment for the log pairwise likelihood 
 

In this section we motivate the curvature adjustment for the log pairwise likelihood from the standpoint 

of estimating function theory, as presented, for example by Jørgensen and Knudsen (2004). 

First, we note that if X  has a q -variate normal distribution with mean vector μ  and variance-

covariance matrix ,Σ  the logarithm of the multivariate density of X  has form  

 ( ) ( ) ( )
T 11 1

log 2 log .
2 2 2

q
 −− − − − −Σ x μ Σ x μ  (2.9) 

The expression in (2.9) as a function of x  has its maximum at μ  and curvature or second derivative 

matrix (Hessian) at the maximum equal to 1.−−Σ  Intuitively, this correspondence between the curvature of 
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the log density at the maximum and inverse of the covariance matrix can be expected to hold 

approximately for a multivariate density that is close to being normal. 

Consider a model in which the distribution of the observation variable ( )nY  depends on a vector 

parameter .η  Given an observation ( ) ( )= ,n nY y  the log likelihood is denoted ( )( ); =nη y  

( )( )( )log ;f ny η  where f  is the density of ( ).nY  Under regularity conditions, (e.g., Lehmann, 1999, 

Chapter 7) the MLE η̂  is found by solving the system  

 ( )( ); = ,ns η y 0  (2.10) 

where ( )( ); ns η y  denotes the score function, the gradient of ( )( ); .nη y  The system (2.10) is an 

unbiased (vector) estimating equation, and is optimally efficient, having minimal asymptotic variance-

covariance matrix (in the sense of positive definite difference) among solutions of unbiased estimating 

equation systems. In regular cases (e.g., Lehmann, 1999, Chapter 7) the score function satisfies the second 

Bartlett identity (e.g., Lindsay, 1988):  

 ( )( ) ( )( ) ( )( )2Var ; = ; = ; ,n E n E n     −  −      η η ηs η y s η y η y  (2.11) 

where Var denotes a variance-covariance matrix, and   represents a gradient. As well, asymptotically, 

through a Taylor series approximation of ( )( ) ( )( ) ( )( )ˆ ; ; = ; ,n n− −s η y s η y 0 s η y n  we have:  

 ˆ −η η ≃ ( )( ) ( )( )
1

; ; .n n
−

 −  s η y s η y  (2.12) 

Thus, standard (frequentist) likelihood inference estimates the variance-covariance of η̂  as the reciprocal 

of the observed Fisher information matrix  

 ( )( ) ( )( )
2

2

T ˆ ˆ
= ; = ; ,n n


− −
  η η

I η y η y
η η

 (2.13) 

which is the negative of the Hessian (curvature matrix) of the log likelihood function at its maximum. 

In Bayesian inference, if ( ) η  is a prior density for ,η  the logarithm of the posterior density for η  is  

 ( )( ) ( ) ( )( ) ( )( )log = log ; ,n n K n  + −η y η η y y  (2.14) 

where  

 ( )( ) ( ) ( )( ) = log ; .K n f n dy η y η η   

If the prior density is flat in areas of appreciable likelihood, the posterior density of ,η  which quantifies 

the inference about ,η  approximates a density with mode at η̂  and the curvature of its logarithm equal to 

the negative of the Fisher information, making the posterior variance-covariance of η̂  approximately 

equal to the reciprocal of I  in (2.13). Thus the Bayesian estimation of η  is efficient in the frequentist 

sense; alternatively, the frequentist inference is close to the Bayesian inference. 
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Suppose that in the frequentist context, the score function is replaced by another estimating function 

( )( );ng y η  that is unbiased in the sense of having expectation 0. See, for example, Lindsay, Yi and Sun 

(2011). Then the estimator η̂  is no longer optimally efficient. However, it is consistent, and its variance 

can be estimated by the delta method, or linearization of the function .g  We might wish to think of 

treating g  as a stand-in for a score vector, or as the gradient with respect to η  of a substitute for the log 

likelihood function. In particular, composite likelihood equations might be thought of as stand-ins for 

score estimating equations. 

A question is then whether a substitute for the log likelihood function having gradient g  could play the 

role of the log likelihood in Bayesian inference, and lead to an approximately correct posterior when 

substituted into (2.14), and if not, whether there are principled ways in which we could correct it. 

Thus, suppose we have an alternative to the score function, namely estimating function ( )( ); ,ng y η  

that is unbiased for η  in the sense of having  

 ( )( ); = .E n 
 η g y η 0   

Suppose the solution η̂  of the equation ( )( ); =ng y η 0  maximizes a function ( )( );h ny η  which we 

would like to think of as an alternative to the log likelihood function; for example, ( )( );h ny η  could be a 

log pairwise composite likelihood function, and ( )( ) ( )( ); = ; .n h ng y η y η  Then ( )( );h ny η  would 

be approximately equal to what the log posterior density would be if the prior were non-informative, and 

if we took ( )( );h ny η  to be a stand-in for the log likelihood function. The stand-in posterior variance-

covariance of η  would be approximately the inverse of the negative of the curvature matrix of 

( )( );h ny η  at ˆ .η  By estimating function theory (e.g., Heyde, 1997), using the same kind of Taylor series 

approximation as in (2.12), the frequentist variance-covariance of η̂  satisfies  

 ( )TˆVarη η ≃ ( )( )  ( )( ) ( )( ) 
11 T

; Var ; ; .E n n E n
−−

           η η ηg y η g y η g y η  (2.15) 

If ( );h y η  were the log pairwise composite likelihood function, we would have, in the notation of RCD, 

 ( )TˆVarη η ≃ ( ) ( ) ( )
1

1

0 0 0

1
,

n

−
− 

 H η J η H η  (2.16) 

where 0η  is the true value of ,η ( )0nH η  is minus the expectation of ,h  and ( )0nJ η  is equal to the 

variance-covariance matrix of ,g  the gradient of .h  

If g  had the property (analogous to (2.11)) that 

 ( )( ) ( )( )Var ; = ; ,n E n   −    η ηg y η g y η  (2.17) 

so that ( ) ( )0 0= ,−J η H η  then the right-hand side of (2.15) or of (2.16) would be approximately the same 

as the stand-in posterior variance-covariance of .η  

The property (2.17) is called information unbiasedness of an estimating function (Lindsay, 1982). 

Given a g  that does not satisfy (2.17), then to produce a *
g  approximately satisfying (2.17), we could set 
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 ( )( ) ( ) ( )( ) ( )( )* *ˆ ˆ; = ; = ;h n h n h n+ −y η y η C η η y η  (2.18) 

for a constant matrix ,C  so that the gradient of *h  is T
C  times the gradient of ,h  while the point estimate 

of η  that maximizes 
* ,h  and its approximate variance-covariance, are unchanged. 

We want ( )* *Var = ,E− η ηg g  and it can be shown that this is equivalent to 

 ( ) ( ) ( ) ( )
1 T

0 0 0 0= ,
−

H η J η H η C H η C  (2.19) 

which is a curvature adjustment like the one in RCD, who suggest taking the solution of (2.19) that sets 
1= ,A

−
C M M  where ( ) ( ) ( )

1T

0 0 0=A A

−
M M H η J η H η  and ( )T

0= .M M H η  

 
3. Simulation studies  
 

3.1 Simulation design 
 

Using simulation studies we have evaluated the performance of the proposed method, i.e., pairwise 

composite likelihood with a curvature adjustment, and compared it with using the full likelihood and the 

pairwise composite likelihood. We used the model in (1.1) to generate our data, i.e., for =1, ,i n  and 

=1, ,j m  we simulated values of ijY  from  

 = ,ij i ijY u e + +  (3.1) 

where =1, ( )iid 2~ 0, ,i uu N   and ( )
iid 2~ 0, .ij ee N   This is equivalent to having applied the 

superpopulation generation and sampling described in the paragraph surrounding (1.1). 

Our first study, not included here, considered inference about   with known u  and .e  It showed 

that using the pairwise composite likelihood for inference about   badly overstated the precision, and that 

the curvature adjustment was successful. Thus, we proceeded to a more thorough study, considering 

inference for both   and .u  To simplify we took = 0.5,e  and considered  20, 40n  and 

 5,10 .m  For the half-Cauchy prior defined in (2.4) we took  5,10,15 .A  There were 500 replicate 

data sets for each setting.  

We considered three scenarios: (1)  0.1, 0.5u   and the half-Cauchy prior on ;u  (2) Signal to 

Noise Ratio, SNR  0.25, 0.75  and the half-Cauchy prior on ,u  where ( )2 2 2SNR = ;u u e  +  and (3) 

 0.1, 0.5u   and a uniform prior on .u  Throughout, we took a uniform prior on .  

In Section 3.2 we describe the algorithms for the simulation studies. 

 
3.2 Algorithms 
 

As in Sections 2.1 and 2.2 define ( )  1= , , nny y y  with ( )
T

1= , ,i i imy yy  and =y  

( )
=1 =1

.
n m

iji j
y mn   Further, 

( )t
η  denotes the value of η  at the tht  iteration where ( )

T
= , .u η  The 

full likelihood is 
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 ( )( ) ( )2 1

FL 0

1
, | exp tr ,

2

n

u m mL n 
− − 

 −  
y Σ Σ S  (3.2) 

as in (2.7).  

Using (3.2) together with the prior, ( ), η  yields the posterior density,  

 ( )( ) ( )( ) ( )FL FL .p n L n η y η y η   

Sampling   and u  is done in three steps:  

Step 1. Sample 
( )t

  from ( )( )( 1)

FL , t

up n  −
y  where  

 ( )( )
2 2

, ~ , .e u
u

m
n N y

mn

 
 

 +
 
 

y   

We set the starting value, 
( )0

,u  to be the maximum likelihood estimate of .u  

Step 2. Use the Metropolis-Hastings (MH) algorithm to sample 
( )t

u  from ( )( )( )

FL , .t

up n y  The 

latter is easily obtained from ( )( )FL .p nη y  Given > 0,s  the candidate ,u  labelled *,u  is sampled from 

the jumping distribution, ( )( )1 2, .
t

uN s
−

 If 
( ) ( )1* 0, = .

t t

u u u  
−

  Otherwise, the procedure is standard 

with accept/reject ratio ( )( ) ( )( )* ( 1)

FL FL FL FL

tp n p n−
η y η y  where 

( )( )
T

* *

FL ,
t

u =η  and ( 1)

FL

t − =η  

( )
T

( ) ( 1), .t t

u  −
 

Step 3. Repeat Steps 1 and 2 for = 1,000K  times with the first 200 samples used as the burn-in.  

The pairwise composite likelihood (PL) is  

 ( )( )
( ) ( )1 4 1

PL 2 2 0PL

1
, exp tr ,

2

nm m

uL n 
− − 

 −  
y Σ Σ S  (3.3) 

as in (2.8).  

Using (3.3) together with the chosen prior, ( ), η  yields the posterior density ( )( )PL .p nη y  

Sampling   and u  is done in three steps:  

Step 1. Sample 
( )t

  from ( )( )( 1)

PL , t

up n  −
y  where  

 ( )( )
( )

2 22
, ~ , .

1

e u
un N y

nm m

 
 

 +
 

− 
y   

Step 2. Use the Metropolis-Hastings (MH) algorithm to sample 
( )t

u  from ( )( )( )

PL , ,t

up n y  as 

described in Step 2 above for the FL (substituting PL for FL in all formulas).  

Step 3. Repeat Steps 1 and 2 for = 1,000K  times with the first 200 samples used as the burn-in.  

The final part is to obtain the (curvature) adjusted pairwise composite likelihood (APL), as described in 

Section 2.3. This derivation, based on the approach of RCD, exploits PL
ˆ ,Aη  the estimated posterior means 

of   and .u  
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Step 1. Given ( ),s s   sample the candidate ( )
T

* * *= , u η  from the bivariate normal jumping 

distribution, ( )( )1

2 ,
t

N
−

η Σ  where ( )2 2= diag , .s s Σ  If 
( ) ( )1* < 0, = .

t t

u
−

η η  Otherwise, go to Step 2.  

Step 2. Define ( )( )PL , un  y  as the log pairwise composite likelihood obtained by taking the 

logarithm of (3.3), and ( )PL ,i u y  as the log pairwise composite likelihood corresponding to the data 

from cluster ,i  i.e., .iy  

Step 3. Numerically obtain ( )( )2

PL PL PL
ˆˆ ˆ= , un  H y  and  

 ( ) ( ) 
T

PL PL PL PL PL

=1

ˆ ˆˆ ˆ ˆ= , , ,
n

i u i u

i

   
 
   J y y   

where PL̂  and PL
ˆ

u  are the estimated posterior means of   and .u  

Step 4. Based on the approach of RCD, and using the singular value decomposition, we write 
Tˆ =H M M  and 1 Tˆ ˆ ˆ = A A

−
HJ H M M  for some matrices M  and .AM  Then define 1= .A

−
C M M  In our case, 

C  is a 2 2  matrix.  

Step 5. From RCD the adjusted log pairwise composite likelihood, APL ,  is  

 ( )( ) ( )( )*

APL PL=n ny η y η   

where 

 ( )*

PL PL
ˆ ˆ= .+ −η η C η η   

Step 6. Define the adjusted pairwise posterior density as  

 ( )( ) ( )( ) ( )APL APL , up n L n   η y y η   

where ( )( ) ( )( )( )APL APL= exp ,L n ny η y η  the latter defined in Step 5.  

Using the candidate value, * ,η  from Step 1 define the adjusted candidate value *

PL
ˆ=c +η η  

( )*

PL
ˆ .C −η η  Then the accept/reject ratio is 

 ( )( ) ( ) ( )( )*

APL APL .
t

cp n p ny η yη   

The remaining steps are the standard ones for the Metropolis-Hastings algorithm.  

 

3.3 Results from simulations 
 

For each method (FL, PL, APL), each design parameter ( ),m n  and each prior distribution we 

summarized the simulation results using (a) the credible interval coverage rate in repeated sampling, and 

(b) the averages of the 0.025, 0.25, 0.50, 0.75 and 0.975 points of the posterior distributions of   and .u  

There are also graphical summaries, i.e., averaged posterior density estimates for each of the posterior 

distributions, i.e., ( )( ) ( )( )FL PL,p n p nη y η y  and ( )( )APL .p nη y  First, consider an interval, say, 

 , ,a b  that supports most of the mass (e.g., 95%) of the posterior densities. Then divide it into = 50M  

equally spaced subintervals with the cut points 0 1 1= = .M Ma c c c c b−     For =1, , ,t T  let 
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( ) ( )ˆ .
t

Pf  denote the estimate of the posterior density ( ). ,Pf  derived from the tht  simulation, where P  

stands for FL, PL or APL, and T  is the number of simulations. Next define, for =1, , ,r M  

 ( ) ( ) ( )
=1

1ˆ ˆ= .
T

t

P r P r

t

f c f c
T
   

Then a curve connecting the points ( ) ˆ,r P rc f c  for 0 1= = ,Ma c c c b    is taken as the averaged 

posterior density estimate for ( ). .Pf  

Table 3.1 presents the coverage rates for   and u  for =15,A  20, 40 ,n  5,10 ,m  and 

 0.1, 0.289, 0.5, 0.866 .u   Figure 3.1 has the average posterior density estimates for   and u  for 

 =15, 0.1, 0.5 , = 40,uA n   and =10.m  In both Table 3.1 and Figure 3.1 the summaries are given for 

the full likelihood (FL), pairwise composite likelihood (CL), and adjusted pairwise composite likelihood 

(APL).  

 
Table 3.1 

Coverage rates (in percent) for the 95% credible intervals of   and 
u

 with = 15A  
 

  =
u

0.1 =
u

0.289 =
u

0.5 =
u

0.866 

  = 20n  = 40n  = 20n  = 40n  = 20n  = 40n  = 20n  = 40n  

    

= 5m  FL̂  97.40 95.80 94.84 94.60 94.80 94.40 94.80 95.00 

 PL̂  68.20 66.60 58.45 58.40 53.60 51.40 50.00 50.20 

 APL̂  92.40 93.00 92.96 93.60 92.20 92.20 91.60 93.00 

=10m  FL̂  94.80 95.00 95.00 94.00 94.80 94.20 95.00 93.80 

 PL̂  43.80 42.80 35.40 31.80 30.40 29.60 27.40 26.40 

 APL̂  90.60 91.80 92.20 93.40 92.80 92.60 91.80 93.00 

= 5m  , FL
ˆ

u  97.20 99.00 91.55 95.40 93.00 94.80 92.60 95.00 

 , PL
ˆ

u  92.80 85.60 59.62 61.80 52.40 54.20 46.20 48.20 

 , APL
ˆ

u  88.40 83.40 86.85 92.20 84.40 91.20 82.00 89.60 

=10m  , FL
ˆ

u  99.00 97.20 93.60 92.80 93.80 93.80 93.00 93.60 

 , PL
ˆ

u  63.60 56.80 33.40 38.00 27.00 29.60 24.40 26.60 

 , APL
ˆ

u  82.80 84.40 85.20 89.00 80.80 86.60 79.00 87.00 

 
The following summary includes the results for only the half-Cauchy prior with  5,10,15 ,A  

 5,10 ,m  20, 40 ,n  and  0.1, 0.289, 0.5, 0.866 ,u   the second and fourth values corresponding 

to SNR = 0.25 and SNR = 0.75, respectively. The results are similar for the three choices of ,A  and for 

the uniform prior.  

Without any adjustment the coverages of PL differ substantially from the nominal 0.95. For example 

(Table 3.1), for =15,A = 40,n =10,m  and = 0.5,u  the coverage for   is less than 0.30. Considering 
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all values of the design parameters, the largest coverage is 0.70. In most cases, the coverage for   is 

much less than 0.70.  

With the curvature adjustment the coverage for   is excellent. Of the 48 cases (three choices of ,A  

two choices of ,m  two choices of ,n  four choices of ),u  thirteen had coverage between 0.93 and 0.95, 

twenty-two between 0.92 and 0.93, eleven between 0.91 and 0.92, and two below 0.91, with the latter for 

= 0.1,u = 20,n =10,m  and 5A =  and 15.  

With the curvature adjustment the coverage for u  varies considerably, but there is, in almost all cases, 

a very large improvement in coverage relative to using the uncorrected pairwise composite likelihood.  

The plots (Figure 3.1) show that for   the posterior distribution corresponding to the adjusted 

likelihood is very close to the posterior distribution using the full likelihood. For u  there are differences 

between the posterior distributions corresponding to the full and adjusted likelihoods, most notably a shift 

to smaller values for the latter.  

To investigate the effects of increasing m  and ,n  consider the difference FL APL= C C −  where C  

denotes coverage and FL and APL refer to the corresponding posterior distributions.  

Overall with all , , ,m n A  and ,u  for ,   decreases as n  increases. For the larger values of ,u   

decreases as m  increases, while for the smaller values of ,u   tends to increase as m  increases. Overall, 

for ,u   decreases as n  increases except in the case = 0.1,u  while   increases as m  increases. 

The reason for the deterioration of the adjustment as m  increases might be that the number of pairs per 

cluster is ( )1 2m m −  and increases more rapidly, so that the pairwise likelihood quickly becomes more 

concentrated around its mode; the curvature adjustment may not suffice to compensate for a change in 

shape of the log pairwise composite likelihood, e.g., an increase in kurtosis. 

Table 3.2 presents one-sided non-coverage rates of the 95% Credible Intervals for   and u  with 

=15,A  20, 40 ,n  5,10 ,m  and  0.1, 0.289, 0.5, 0.866 .u   We observe the following: 

 

i) For ,  the non-coverage for full likelihood intervals appears symmetric. The adjusted pairwise 

likelihood has undercoverage for ,  and except when u  is 0.1 the non-coverage is symmetric. 

A dependence of the coverage on m  is seen only in the = 0.1u  case. 

ii) For ,u  the full likelihood interval has non-coverage that is close to nominal and not very 

skewed, except in the case when = 0.1,u  where there is marked over-coverage. For 0.1u   

and = 5,m  coverage improves as n  moves from 20 to 40, but for 0.1u   and =10,m  there 

is little difference in coverage for the two values of .n  

iii) For ,u  the adjusted pairwise likelihood has asymmetric non-coverage. Except in the case of 

= 0.1,u  the magnitude of the non-coverage tends to be similar on the left to that of the full 

likelihood, but much greater on the right, and the coverage improves as n  moves from 20 to 40.  
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Figure 3.1 Estimated posterior densities of   and 
u

 using three methods when = 15A , = 40n , = 10m , 

and =
u

(0.1, 0.5) using a half-Cauchy prior for 
u

. 
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Remembering that the adjusted log pairwise likelihood is not explicitly being constructed to 

approximate the log full likelihood, it does appear in Figure 3.1 that the adjusted log pairwise likelihood 

falls more quickly in the tails. 

We also tried centering the curvature adjustment at the log pairwise posterior mode rather than the log 

pairwise posterior mean, and found that the under-coverage increased, though the asymmetry of coverage 

was less severe, for the resulting credible intervals. 

 

Table 3.2 

One-sided non-coverage rates (in percent) of the 95% Credible Intervals (CIs) of   and 
u

 with = 15A  
 

 Non-CR-L Non-CR-R Non-CR-L Non-CR-R Non-CR-L Non-CR-R Non-CR-L Non-CR-R 

 =
u

0.1 =
u

0.289 

 = 20n  = 40n  = 20n  = 40n  

   

= 5m  FL̂  1.40 1.20 1.60 2.60 3.05 2.11 3.20 2.20 

 PL̂  16.60 15.20 16.40 17.00 21.13 20.42 20.40 21.20 

 APL̂  2.60 5.00 2.20 4.80 3.76 3.29 3.80 2.60 

=10m  FL̂  2.80 2.40 2.40 2.60 3.00 2.00 3.20 2.80 

 PL̂  26.80 29.40 28.60 28.60 33.00 31.60 33.80 34.40 

 APL̂  3.60 5.80 4.60 3.60 4.00 3.80 3.80 2.80 

 
u

 

= 5m  , FL
ˆ

u  2.80 0.00 1.00 0.00 3.05 5.40 1.80 2.80 

 , PL
ˆ

u  7.20 0.00 9.20 5.20 14.79 25.59 14.80 23.40 

 , APL
ˆ

u  4.60 7.00 3.60 13.00 3.05 10.09 2.40 5.40 

=10m  , FL
ˆ

u  1.00 0.00 2.00 0.80 3.00 3.40 3.80 3.40 

 , PL
ˆ

u  14.60 21.80 17.80 25.40 22.80 43.80 24.80 37.20 

 , APL
ˆ

u  3.40 13.80 3.80 11.80 3.00 11.80 2.80 8.20 

 =
u

0.5 =
u

0.866 

 = 20n  = 40n  = 20n  = 40n  

   

= 5m  FL̂  3.20 2.00 3.00 2.60 3.40 1.80 3.00 2.00 

 PL̂  24.40 22.00 24.60 24.00 26.40 23.60 25.80 24.00 

 APL̂  4.40 3.40 4.20 3.60 4.20 4.20 3.80 3.20 

=10m  FL̂  3.00 2.20 3.40 2.40 3.00 2.00 3.40 2.80 

 PL̂  34.60 35.00 35.60 34.80 36.80 35.80 37.60 36.00 

 APL̂  4.00 3.20 4.20 3.20 4.80 3.40 3.40 3.60 

 
u

 

= 5m  , FL
ˆ

u  3.00 4.00 2.20 3.00 3.40 4.00 2.00 3.00 

 , PL
ˆ

u  16.00 31.60 18.20 27.60 19.20 34.60 21.00 30.80 

 , APL
ˆ

u  1.20 14.40 1.80 7.00 1.40 16.60 2.20 8.20 

=10m  , FL
ˆ

u  3.20 3.00 2.80 3.40 3.80 3.20 3.20 3.20 

 , PL
ˆ

u  24.00 49.00 28.00 42.40 25.40 50.20 29.80 43.60 

 , APL
ˆ

u  2.60 16.60 2.40 11.00 3.20 17.80 2.00 11.00 

Note: Non-CR-L represents the left-side non-coverage rates (in percent) for the 95% CIs of   and ;u  Non-CR-R represents the 

right-side non-coverage rates (in percent) for the 95% CIs of   and .u  
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4. Extension to unequal probability sampling designs 
 

An important extension of our setting is to a complex sampling framework, where frequentist 

parameter estimation through estimation of a population-level pairwise composite likelihood is now in 

fairly common use. RVH and YRL have shown that an approach based on applying a frequentist pairwise 

composite likelihood works well for estimating multilevel model variance components in the case of 

certain unequal probability sampling designs, and avoids the issue of inconsistency when the second stage 

sample sizes are small. The uncertainty estimation in this approach uses estimating function theory and 

may not require the adjustments we consider in this paper. However, it would be desirable to formulate a 

Bayesian counterpart of this method. If a Bayesian formulation were agreed upon, the results of our paper 

would predict a need for adjustment of the pseudo-log-pairwise-composite-likelihood to align it with an 

appropriate log full likelihood function. 

Suppose that the purpose is still analytic, that the model for ijY  is (1.1), and the objects of inference are 

the mean   and the variance component 2

u  or its square root. The survey population has N  first stage 

units with sizes ,iM =1, , ,i N  and the first-stage sample consists of n  of these, selected with an 

unequal probability sampling design. At the second stage, im  elementary units are selected by simple 

random sampling from the thi  first stage unit, if that unit has been sampled at the first-stage. If the sizes 

iM  and im  and the sampling design probabilities ( )p s  (where s  runs through the two-stage subsets of 

the population satisfying the sample size specifications) do not depend on the iu  or ije  values, the 

likelihood function can be taken to be of the form of (2.3), with m  replaced by ,im  and the extension of 

our work is straightforward in principle. However, if the sizes or sampling design probabilities do depend 

on the values of iu  or ,ije  they will be informative about the parameters of interest. The sample-level 

likelihood function from the combination of multilevel model and sampling design may be ill-defined or 

intractable. From a Bayesian perspective we then need to consider what can reasonably substitute for the 

true likelihood, and how closely that substitute can be approximated by an adjusted pairwise composite 

likelihood. The answers may depend upon the preferred method of using the sampling design probabilities 

in inference, and there are several possibilities. Pursuing these possibilities would be a fruitful avenue for 

future research. 

One method, with limited applicability, would be based on the approach of Léon-Novelo and Savitsky 

(2019). Assuming single stage Bernoulli sampling (so that the sampling probabilities are fully determined 

by the inclusion probabilities) they model the joint distribution of the outcome variable, ,Y  and the 

inclusion probability, ,  using the model generating Y  from x  in the population and a model generating 

  from x  and .Y  To make computations feasible there are restrictions on the form of this model; see 

their Theorem 1 and, especially, the special case in their Section 2.1. 

We can extend the model in Section 2.1 of Léon-Novelo and Savitsky (2019) to two-stage cluster 

sampling. A further extension, i.e., replacing the sampling density of Y  with a pairwise composite 

likelihood analogous to the likelihood part of (2.6), can be made. Thus, subject to the limitations in 



Survey Methodology, June 2022 89 

 

 

Statistics Canada, Catalogue No. 12-001-X 

Theorem 1 of Léon-Novelo and Savitsky (2019), there are counterparts to the posterior densities, (2.5) and 

(2.6), that include the inclusion probabilities. 

Another method, not fully Bayesian, but perhaps the most widely applicable extension of our 

approach, is to consider the population (census) log likelihood function ((2.5) and (2.6) of RVH) to be 

correct, and formulate a corresponding census log pairwise composite likelihood function as in our 

Section 2. We would then try to estimate the latter from the sample using sampling weights ((4.2) of 

RVH), and make adjustments such as appropriate weight normalization, or “scaling” as in Pfeffermann, 

Skinner, Holmes, Goldstein and Rasbash (1998), and curvature adjustments to the resulting estimated log 

pairwise composite likelihood function. This would produce a log pseudo-pairwise-likelihood function 

that could be used as an approximate log likelihood function in Bayesian inference. It would yield a 

Bayesian counterpart to the frequentist method put forward by RVH and YRL, and would extend the 

method of this paper to the unequal probability sampling situation. 

We have obtained some preliminary details for this second approach. That is, if 2

u  is known, analytic 

expressions for the full likelihood and pairwise composite likelihood are available for   at the census 

level. For the partial likelihood we alter (2.8) by taking u  fixed and add the weights iw  and 
jk i

w  as in 

(4.2) of RVH. With a locally uniform prior for ,  

 ( )( ) ( ) ( )
T1

PL 2

=1

exp 0.5
n

i ij ik ij ikjk i
i j k

p n w w y y y y    −



 
 − − −  − − 

 
y   

where  

 
11 12

1

2 21 22
=

 

 

−
 

  
 

  

with  

 
2

11 22 2

2 2
= = 1

2

u
e

e u


  

 

−  
− 

+ 
  

and  

 
( )

2
12 21

2 2 2
= = .

2

u

e e u


 

  
−

+
  

After some algebra, 

 ( )( )

2

=1 =1

PL 2 2

=1

2 ( ) 2
exp 0.5 .

2

n n

i i ij ikjk i jk ii j k i j k

n

e u i jk ii j k

w w w w y y
p n

w w
 

 

 



  + 
  − − 
 + 
  

   

 
y   

Similarly, we alter (2.7) by taking u  fixed and adding the weights. With a locally uniform prior for ,  
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 ( )( ) ( ) ( )FL

=1 =1 =1

exp 0.5 .
n m m
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i ij ikjk i
i j k

p n w w y y   
 

 − − − 
 
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After some algebra,  

 ( )( ) ( ) ( ) ( )
2

1 2

FL

=1 =1

ˆexp 0.5
n m

i j i jk i
i j j k

p n w w a w a  


   
 − + −   

   
  y   

where  

 ( )
2

1 2

2 2
= 1 ,u

e

e u

a
m




 

−  
− 

+ 
  

 ( )

( )

2
2

2 2 2
= u

e e u

a
m



  
−

+
  

and  

 

( ) ( ) ( )
( ) ( )

1 2

=1 =1

1 2

|=1 =1

2
ˆ = .

n m

i ij ij ikj i jk ii j j k

n m

i j i jk ii j j k

w a w y a w y y

w a w a w






 + +
 

 +
 

  

  
  

Choice of the scaling of the weights will be important. To quantify the overstated precision in the log 

pairwise composite posterior a numerical evaluation may be required. 

An advantage of pursuing extensions of this Bayesian approach further in future research would be that 

it is focused on inference for the model parameters rather than on finite population quantities, and thus it 

would not be necessary to bring third- or fourth-order inclusion probabilities into uncertainty estimation 

for 2

u  or .u  

 
5. Conclusion 
 

There are well-known philosophical and foundational reasons for considering Bayesian approaches to 

survey sampling, and there is a long tradition of research in this area. See for example Sedransk (2008). 

There are also practical advantages. Using a Bayesian approach rather than a frequentist one relies much 

less on approximations, substituting computation for asymptotic expressions. In the context of random 

effects models, an important advantage is the ability to constrain the variance components to be non-

negative in the prior distribution, without masking deficiencies in the data.  

One example where Bayesian methods are used extensively is at the National Agricultural Statistical 

Service (NASS) of the US Department of Agriculture. At NASS, Bayesian methods are used to produce 

official statistics at the county and state levels for variables such as planted crop acreage and crop yield. 

Commonly, these inferences use several data sources. There is special attention to consistent estimation 
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across the hierarchy of geographical areas of interest for inference. See Nandram, Berg and Barboza 

(2014); Erciulescu, Cruze and Nandram (2020, 2019, 2018); and Cruze, Erciulescu, Nandram, Barboza 

and Young (2019) for additional details.  

We have investigated a use of pairwise composite likelihood in Bayesian inference for survey data, in 

the sense of developing a posterior distribution for mean   and standard deviation parameter u  of a 

simple random effects model. We have evaluated the posterior distribution in terms of the frequentist 

coverage properties of credible intervals for the parameters, and found them to work well for   but not to 

be fully satisfactory for inference about u  for the settings considered. There would be corresponding 

implications for frequentist inference from the pairwise composite likelihood, treated as an approximate 

likelihood function. It is possible that better results might be obtainable through applying a suitable 

transformation to ,u  and this is a subject of future research. 

An ideal situation for the use of composite likelihood in Bayesian inference is one where (a) a model 

for generation of the data is fully specified, so that a true likelihood function exists, and (b) the true 

likelihood can be reasonably approximated by the composite likelihood, so that the corresponding 

posterior distributions agree well. For example, for Stoehr and Friel (2018) the motivation is the use for 

Bayesian inference of a pseudo-likelihood for data from a Gibbs random field. They establish identities 

that link the gradient and the Hessian of the log posterior for a parameter to moments of sufficient 

statistics of the random field, and use these to improve the ability of the log pairwise posterior density to 

approximate the log posterior density function. The curvature adjustment of RCD, upon which we have 

based our approach, instead adjusts the log pairwise composite likelihood so that its gradient (which we 

might call the “pairwise score vector”) has the information-unbiasedness property that leads to credible 

intervals with frequentist coverage probabilities approximating nominal values. Intuitively, with the 

increase of the number n  of clusters, m  remaining fixed, this approximation should improve, and its 

computation does not require the use of properties of the likelihood itself. In this paper, we have used the 

availability of the full likelihood in the simple case to evaluate how closely Bayesian inference based on 

the adjusted pairwise composite likelihood resembles full Bayesian inference. 

 
Acknowledgements 
 

The research is partially supported by grants to Thompson and Yi from the Natural Sciences and 

Engineering Research Council of Canada (NSERC). Yi is Canada Research Chair in Data Science (Tier 

1). Her research was undertaken, in part, thanks to funding from the Canada Research Chairs Program. 

 
References 

 

Cox, D.R., and Reid, N. (2004). A note on pseudolikelihood constructed from marginal densities. 

Biometrika, 91, 729-737. 

 



92 Thompson et al.: Bayesian inference for a variance component model using pairwise composite likelihood 

 

 

Statistics Canada, Catalogue No. 12-001-X 

Cruze, N., Erciulescu, A., Nandram, B., Barboza, W. and Young, L. (2019). Producing official county-

level agricultural estimates in the United States: Needs and challenges. Statistical Science, 34, 301-316. 

 

Erciulescu, A., Cruze, N. and Nandram, B. (2018). Benchmarking a triplet of official estimates. 

Environmental and Ecological Statistics, 23, 523-547. 

 

Erciulescu, A., Cruze, N. and Nandram, B. (2019). Model-based county level crop estimates incorporating 

auxiliary sources of information. Journal of the Royal Statistical Society, Series A, 182, 283-303. 

 

Erciulescu, A., Cruze, N. and Nandram, B. (2020). Statistical challenges in combining survey statistics 

and auxiliary data to produce official statistics. Journal of Official Statistics, 36, 63-88. 

 

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 

3, 515-533. 

 

Heyde, C.C. (1997). Quasi-Likelihood and its Application: A General Approach to Optimal Parameter 

Estimation. New York: Springer-Verlag. 

 

Jørgensen, B., and Knudsen, S.J. (2004). Parameter orthogonality and bias adjustment for estimating 

functions. Scandinavian Journal of Statistics, 31, 93-114. 

 

Lehmann, E.L. (1999). Elements of Large-Sample Theory. New York: Springer-Verlag. 

 

Léon-Novelo, L., and Savitsky, T. (2019). Fully Bayesian estimation under informative sampling. 

Electronic Journal of Statistics, 13, 1608-1645. 

 

Lindsay, B.G. (1982). Conditional score functions: Some optimality results. Biometrika, 69, 505-512. 

 

Lindsay, B.G. (1988). Composite likelihood methods. Contemporary Mathematics, 80, 220-239. 

 

Lindsay, B.G., Yi, G.Y. and Sun, J. (2011). Issues and strategies in the selection of composite likelihoods. 

Statistica Sinica, 21, 71-105. 

 

Nandram, B., Berg, E. and Barboza, W. (2014). A hierarchical Bayesian model for forecasting state-level 

corn yield. Journal of Environmental and Ecological Statistics, 21, 507-530. 

 

Pfeffermann, D., Skinner, C.J., Holmes, D.J., Goldstein, H. and Rasbash, J. (1998). Weighting for unequal 

selection probabilities in multi-level models. Journal of the Royal Statistical Society, Series B, 60, 23-

56. 

 



Survey Methodology, June 2022 93 

 

 

Statistics Canada, Catalogue No. 12-001-X 

Rao, J.N.K., Verret, F. and Hidiroglou, M.A. (2013). A weighted composite likelihood approach to 

inference for two-level models from survey data. Survey Methodology, 39, 2, 263-282. Paper available 

at https://www150.statcan.gc.ca/n1/pub/12-001-x/2013002/article/11887-eng.pdf. 

 

Rabe-Hesketh, S., and Skrondal, A. (2006). Multilevel modeling of complex survey data. Journal of the 

Royal Statistical Society, Series A, 169, 805-827. 

 

Ribatet, M., Cooley, D. and Davison, A.C.D. (2012). Bayesian inference from composite likelihoods, with 

an application to spatial extremes. Statistica Sinica, 22, 813-845. 

 

Sedransk, J. (2008). Assessing the value of Bayesian methods for inference about finite population 

quantities. Journal of Official Statistics, 24, 495-506. 

 

Skinner, C.J., Holt, D. and Smith, T.F.M. (1989). Analysis of Complex Surveys. Wiley. 

 

Stoehr, J., and Friel, N. (2018). Calibration of conditional composite likelihood for Bayesian inference on 

Gibbs random fields. Artificial Intelligence and Statistics, 921-929. arXiv:150201997v2. 

 

Varin, C. (2008). On composite marginal likelihoods. AStA Advances in Statistical Analysis, 92, 1. 

https://doi.org/10.1007/s10182-008-0060-7 (accessed July 1, 2020). 

 

Varin, C., Reid, N. and Firth, D. (2011). An overview of composite likelihood methods. Statistica Sinica, 

21, 5-24. 

 

Yi, G.Y. (2017). Composite likelihood/pseudolikelihood. Wiley StatsRef: Statistics Reference Online. 1-

14. 

 

Yi, G.Y., Rao, J.N.K. and Li, H. (2016). A weighted composite likelihood approach for analysis of survey 

data under two-level models. Statistica Sinica, 26, 569-587. 

https://www150.statcan.gc.ca/n1/pub/12-001-x/2013002/article/11887-eng.pdf


 
 
 
 
 
 
 
 
 



Survey Methodology, June 2022 95 
Vol. 48, No. 1, pp. 95-117 
Statistics Canada, Catalogue No. 12-001-X 

 
1. Elisabeth Neusy, Statistics Canada, 100 Tunney’s Pasture Driveway, Ottawa, Ontario, Canada, K1A 0T6. E-mail: 

elisabeth.neusy@statcan.gc.ca; Jean-François Beaumont, Wesley Yung and Mike Hidiroglou, Statistics Canada, 100 Tunney’s Pasture 

Driveway, Ottawa, Ontario, Canada, K1A 0T6. David Haziza, University of Ottawa, 150 Louis-Pasteur Private, Ottawa, ON, K1N 6N5. 

 
 

Non-response follow-up for business surveys 

Elisabeth Neusy, Jean-François Beaumont, Wesley Yung, 

Mike Hidiroglou and David Haziza1 

Abstract 

In the last two decades, survey response rates have been steadily falling. In that context, it has become 

increasingly important for statistical agencies to develop and use methods that reduce the adverse effects of 

non-response on the accuracy of survey estimates. Follow-up of non-respondents may be an effective, albeit 

time and resource-intensive, remedy for non-response bias. We conducted a simulation study using real 

business survey data to shed some light on several questions about non-response follow-up. For instance, 

assuming a fixed non-response follow-up budget, what is the best way to select non-responding units to be 

followed up? How much effort should be dedicated to repeatedly following up non-respondents until a 

response is received? Should they all be followed up or a sample of them? If a sample is followed up, how 

should it be selected? We compared Monte Carlo relative biases and relative root mean square errors under 

different follow-up sampling designs, sample sizes and non-response scenarios. We also determined an 

expression for the minimum follow-up sample size required to expend the budget, on average, and showed 

that it maximizes the expected response rate. A main conclusion of our simulation experiment is that this 

sample size also appears to approximately minimize the bias and mean square error of the estimates. 

 

Key Words: Non-response; Follow-up; Business surveys. 

 

 

1. Introduction 
 

Data collection research is a topic of interest amongst national statistical agencies looking to increase 

response rates and/or reduce data collection costs. With the high costs of collecting survey data, even a 

small increase in the efficiency of data collection procedures can translate into significant monetary 

savings. Given that response rates have declined over the past twenty years in both social and economic 

surveys, there has also been a growing concern over non-response bias.  

In one of the first papers to discuss non-response, Hansen and Hurwitz (1946) proposed drawing a sub-

sample of non-respondents, also called a non-response follow-up sample, to eliminate non-response bias. 

Their set-up was as follows: questionnaires were mailed out and after a certain period, a sample of non-

respondents was followed up by personal interviewers to obtain their responses. They showed how the 

responses to the initial mail-out could be combined with those from the non-response follow-up sample to 

obtain an unbiased estimator of a population total or mean. They made the strong assumption that every 

unit of the follow-up sample responds. However, in today’s environment, this assumption is not realistic 

as businesses and individuals are becoming increasingly reluctant to respond to surveys. 

Much of the research published in the literature in the last 15 years has focused on adaptive collection 

designs, also called adaptive survey designs, responsive collection designs, responsive survey designs, or 

simply responsive designs. Groves and Heeringa (2006) defined a responsive survey design as one that 

uses paradata, or process data, to guide changes in the features of data collection to achieve higher quality 



96 Neusy et al.: Non-response follow-up for business surveys 

 

 

Statistics Canada, Catalogue No. 12-001-X 

estimates per unit cost. Beaumont, Bocci and Haziza (2014) noted that the literature on adaptive collection 

designs has mainly focussed on developing procedures that aim at reducing the non-response bias of an 

estimator that is not adjusted for non-response (see for example Schouten, Cobben and Bethlehem, 2009; 

and Peytchev, Riley, Rosen, Murphy and Lindblad, 2010). Beaumont et al. (2014) argued that any 

information (e.g., auxiliary data, paradata) that can be used during data collection to reduce non-response 

bias can also be used at the estimation stage. In other words, the non-response bias that can be removed at 

the collection stage through an adaptive collection procedure can also be removed at the estimation stage 

through appropriate non-response weight adjustments. They suggested that adaptive collection procedures, 

such as call prioritization, cannot reduce the non-response bias to a greater extent than a proper non-

response weight adjustment. Limitations of adaptive collection procedures to reduce non-response bias 

and costs were also noted in the review paper by Tourangeau, Brick, Lohr and Li (2017). 

So far, the literature on collection research has mostly targeted household surveys, and little has been 

reported on this subject for business surveys, two exceptions being Bosa, Godbout, Mills and Picard 

(2018) and Thompson, Kaputa and Bechtel (2018). Bosa et al. (2018) derived an item score that reflects 

the importance of following-up a particular sample unit and suggested an adaptative collection procedure 

using this score. Units with a large item score contribute the most to reducing the variance of point 

estimators. These units are given priority for expensive collection operations such as telephone follow-up. 

Thompson et al. (2018) considered sub-sampling of non-respondents and investigated the problem of sub-

sample allocation subject to some constraints on the response rate and sample size in predetermined 

domains of interest. 

Although business surveys typically use simple sampling designs, such as stratified simple random or 

Bernoulli sampling designs, they do possess certain features that can pose collection challenges. A 

distinctive feature is that business populations are highly skewed with a small percentage of businesses 

representing much of the economic activity. Consequently, business surveys usually include a take-all 

stratum where all units are selected with certainty, and take-some strata where the units are usually 

selected using simple random sampling without replacement or Bernoulli sampling. The take-all units 

correspond to large businesses. Failing to obtain a response from these large businesses could cause 

significantly biased estimates. As a result, all take-all units are typically followed up, and efforts are made 

to ensure their responses are received. The large businesses usually have staff (e.g., accountants) capable 

of responding to items on the questionnaire. On the other hand, small businesses may have to pay an 

outside accountant to obtain the requested information; this could be a contributing factor to non-response 

for such businesses. Another feature of business surveys is that collection is usually conducted in two 

steps. First, letters are sent to the sample units by postal service or by email, inviting them to complete an 

online electronic questionnaire. After a certain period of time, a follow-up of the non-responding units is 

conducted via computer-assisted-telephone interviews. 

In this article, we focus on the take-some strata and attempt to respond to the following questions: (i) 

For a fixed budget for follow-up, how much effort should we dedicate to repeatedly following up 
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non-respondents until a response is received? (ii) Should we follow up all the non-respondents or select a 

sample of them? (iii) If we select a sample of non-respondents, what sampling designs would lead to more 

efficient estimators? To the best of our knowledge, determining an appropriate follow-up sample size and 

sampling design has not been investigated in the literature. 

In the remainder of the paper, we present our investigations on non-response follow-up in the business 

survey context. The proposed follow-up strategy, which consists of a follow-up sampling design, data 

collection procedure, and estimator, is introduced in Section 2. In Section 3, we provide some theoretical 

properties of the proposed follow-up strategy. Section 4 describes a simulation study conducted to 

investigate the properties of the non-response-adjusted Hansen-Hurwitz estimator of a population total 

under different follow-up sampling designs and response scenarios. Finally, in Section 5, we summarize 

our main conclusions. Although we focus on business surveys, we believe that most of our conclusions 

also apply to social surveys. 

 
2. Proposed follow-up strategy 
 

Consider a finite population U  of N  units, partitioned into L  strata, 1, , , , ,h LU U U  of size 

1, , , , ,h LN N N  respectively, such that 
1

L

hh
U U

=
=  and 

1
.

L

hh
N N

=
=  We are interested in 

estimating the population total 
1

,
h

L

hih i U
Y y

= 
=   where hiy  is the value of the variable of interest y  for 

.hi U  From each stratum ,hU  a sample 1 ,hs  of size 1 ,hn  is selected according to simple random 

sampling without replacement. The resulting total sample, 1 11
,

L

hh
s s

=
=  is of size 1.n  We denote by 

1 1 ,hi h hn N =  the probability that unit hi U  is selected in 1 .hs  The 1hn  sampled units in stratum h  are 

invited, either by post or email, to complete an online electronic questionnaire. We call this the “mail-

out”. If all sampled units respond to the mail-out, one could use the unbiased expansion estimator of ,Y  

also called the full sample estimator: 

 
1

FULL 11

ˆ ,
h

L

hi hih i s
Y w y

= 
=   (2.1) 

where 1 11hi hiw =  denotes the design weight associated with 1 .hi s  

In practice, not all sampled units respond to the mail-out. Suppose that, after a certain period of time,

1hrn  of the 1hn  sampled units respond in stratum .h  We denote the set of respondents in stratum h  by 

1 ,hrs  and the response probability for unit 1hi s  by 1 .hip  A sample of 2n  units, 2 ,s  is then selected from 

the set of all non-respondents to the mail-out, 1,nr .s  We denote by 2 ,hs  the set of 2hn  units selected for a 

follow-up in stratum h  among the set of non-respondents to the mail-out in stratum ,h 1 ,nr .hs  We denote 

the probability that the mail-out non-respondent 1 ,h nri s  is selected in the follow-up sample 2s  by 2 .hi  

We assume that this probability can be written as *

2 2 2 ,hi hin =  where *

2hi  does not depend on the follow-

up sample size 2n  and satisfy the condition 

 
1 ,nr

*

21
1.

h

L

hih i s


= 
=   (2.2) 
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This condition is satisfied for simple random sampling, stratified simple random sampling, with 

proportional or Neyman allocation, and probability proportional to size sampling. 

Units of the sample 2s  are followed up via telephone. If all 2hn  units respond to the follow-up, 

1, , ,h L=  the unbiased Hansen and Hurwitz (1946) estimator of the population total Y  can be used: 

 
1 2

HH 1 1 21 1

ˆ ,
hr h

L L

hi hi hi hi hih i s h i s
Y w y w w y

=  = 
= +     (2.3) 

where 2 21hi hiw =  is the follow-up design weight of unit 2 .hi s  The objective of the sample 2s  is to 

estimate the unknown total 
1 ,

11
.

h nr

L

hi hih i s
w y

=    If a variable x  strongly related to the variable of interest 

y  is available before sample selection for all the mail-out non-respondents, it seems natural to use 1hi hiw x  

as an auxiliary variable for stratification or as a size measure for probability proportional to size sampling. 

As pointed out by a reviewer, it is important to wait until mail-out data collection is closed before 

selecting the follow-up sample. If units respond to the mail-out after the follow-up sample has been 

selected, some decisions on how to handle these late respondents are required. If they are not discarded, it 

may be difficult to obtain an unbiased estimator like (2.3) without introducing model assumptions (see 

Beaumont, Bocci and Hidiroglou, 2014). This issue may also have implications on the length of the 

collection period. 

As pointed out in the introduction, it is unlikely that all the follow-up sample units will respond. 

Suppose that after the end of the data collection period, 2hrn  units have responded to the follow-up in 

stratum .h  We denote by 2hrs  the set of the 2hrn  respondents in stratum .h  We consider the non-response-

adjusted version of the Hansen and Hurwitz (1946) estimator: 

 
1 2

HH NA 1 1 2 21 1

ˆ ,
hr hr

L L

hi hi hi hi hi hih i s h i s
Y w y w w a y− =  = 

= +     (2.4) 

where 2hia  is a non-response weight adjustment. Under uniform non-response, a suitable weight 

adjustment is the inverse of the overall weighted response rate: 

 2

2

1 21

2 2 2

1 21

, , 1, , .h

hr

L

hj hjh j s

hi hrL

hj hjh j s

w w
a a i s h L

w w

= 

= 

= =  =
 

 
 (2.5) 

A less restrictive assumption is uniform non-response within strata. Under this assumption, a suitable 

weight adjustment would be the inverse of the stratum weighted response rate:  

 2

2

2

2 2 2

2

, , 1, , .h

hr

hjj s

hi h hr

hjj s

w
a a i s h L

w





= =  =



 (2.6) 

Note that the non-response weight adjustment (2.6) is computable only if 2 0hrn   for all strata. 

Alternatively, unweighted versions of (2.5) and (2.6) could also be considered. 
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As mentioned earlier, follow-up of non-respondents who have been selected in 2s  is performed via 

telephone. In our proposed data collection procedure, a calling queue is first created by randomly ordering 

units in 2 .s  These units are then called sequentially until the queue is empty or the entire follow-up budget 

has been expended, whichever comes first. Each call attempt made to units in 2s  results in one of these 

three outcomes: 

1. Response: A response is obtained from the unit. The unit is removed from the calling queue so 

that it does not get called again. 

2. Final non-response: The unit is finalized as a non-respondent; it should not be called back again 

and is removed from the calling queue. The most common example of this outcome is a refusal 

to respond to the survey.  

3. Still in progress: The unit is not finalized and needs to be called again; it is therefore returned to 

the end of the calling queue. An example of this outcome is an attempt where no contact is 

made or an attempt where an appointment is made for a callback. 

 

The “response” and “final non-response” outcomes are both final outcomes, in the sense that the unit is 

removed from the calling queue and the collection process. This is in contrast to the “still-in-progress” 

outcome where the unit is returned to the calling queue so that it can be called again. A unit that completes 

the data collection process with an outcome of “response” or “final non-response” is said to be finalized or 

resolved, otherwise, it is said to be unresolved. There are two types of non-respondents after data 

collection: i) Finalized units with a “final non-response” outcome; and ii) Unresolved units. Both types of 

non-respondents are accounted for in estimation using the non-response-adjusted estimator (2.4). 

We assume that, for a given sample unit, the outcomes of the call attempts are independent, and the 

probability associated with each of the three possible outcomes remains constant throughout the entire 

data collection period. For a given sampled unit 2 ,hi s 1, , ,h L=  the probability of a “response” is 

denoted as 
( )1

2 ,hiP  the probability of a “final non-response” is denoted as 
( )2

2 ,hiP  and the probability of a 

“still-in-progress” outcome is denoted as 
( )3

2 .hiP  In practice, the independence and constant probability 

assumptions may not hold exactly. The independence assumption is expected to be more plausible if the 

probabilities are conditional on strong predictors and if the time gap between two successive call attempts 

on the same unit is not too short. The constant probability assumption is not satisfied when the 

probabilities depend on predictors that can vary during data collection, such as the time of day or day of 

the week of the call attempt. Although it might be possible to extend our model to time-varying predictors, 

it would complicate our theoretical developments and simulation study. These assumptions are made 

throughout the paper to simplify our analyses. This is a limitation of our investigations that should be kept 

in mind when interpreting our results.  

Multiple phone call attempts may be necessary to reach and resolve a unit. Data collection managers 

may wish to impose an upper limit on the number of call attempts that can be made to any follow-up 

sample unit. If a unit is still in progress after reaching the limit, it is removed from the calling queue and 
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remains unresolved at the end of data collection. Let K  be that upper limit on the number of call attempts. 

Assuming each unresolved unit at the end of data collection always reaches the maximum number of 

attempts ,K  the probability that unit 1 ,nrhi s  responds when selected in the sample 2s  can be written as 

( )2 21
,

K

hi hikk
p K p

=
=  where 2hikp  is the probability that unit 1 ,nrhi s  responds exactly at the thk  attempt 

when selected in 2 .s  Under our assumptions, it is easy to see that 
( )( ) ( )1
3 1

2 2 2 .
k

hik hi hip P P
−

=  As a result, we 

have 
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11 3

2 20

3
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.
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hi hikk

kK

hi hik

K

hi

hi

hi

p K p

P P

P
P

P
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−
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=

=

−
=

−



  

(2.7)

 

In the next section, equation (2.7) will be used to determine an appropriate follow-up sample size. 

 
3. Some theoretical properties of the proposed follow-up strategy 
 

Let C  be the total budget allocated for non-response follow-up, which could be defined in terms of 

monetary or time units. A cost is incurred for each call attempt and depends on the call outcome. We 

denote by 
( )1 ,c

( )2c  and 
( )3 ,c  the cost per call attempt for a “response”, “final non-response” and “still-in-

progress” outcome, respectively. To simplify our derivations, we assume that these costs are the same for 

each sample unit and do not vary during data collection. Let 
1

K

hi hikk
c c

=
=  be the cost of either resolving 

unit 2hi s  or reaching the maximum number of call attempts for that unit, where hikc  is the cost of the 
thk  call attempt for unit 2 .hi s  If a unit 2hi s  is resolved at the thl  attempt, hikc  is defined to be zero for 

all .k l  Therefore, the cost hikc  is either zero, if unit 2hi s  has been resolved before the thk  attempt, or 
( )1 ,c

( )2c  or 
( )3 ,c  depending on the call outcome. For a given sample size 2n  and a fixed value of ,K  the 

total follow-up cost, 
21

,
h

L

hih i s
c

=    is a random variable when each sample unit is followed up until it is 

resolved or the maximum number of call attempts has been reached. Taking the expectation of the total 

cost with respect to the follow-up sampling design and non-response mechanism, conditionally on 1,nr ,s  

we obtain the expected follow-up cost: 

 ( ) ( )
1 ,nr

2 21
, ,

h

L

hi hih i s
C n K c K

= 
=   (3.1) 

where ( )
1

K

hi hikk
c K c

=
=  is the expected cost of either resolving unit 1 ,nrhi s  or reaching the maximum 

number of call attempts, when that unit is selected in 2 ,s  and hikc  is the expected cost of the thk  attempt, 

,k K  for that unit. Given 0hikc   only if unit i  has not been resolved before the thk  attempt, it is easy 

to see that the expected cost hikc  is 

 
( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )

1
3 1 1 2 2 3 3

2 2 2 2 .
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hik hi hi hi hic P c P c P c P
−
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The expected cost ( )hic K  reduces to 
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(3.2)

 

Using *

2 2 2hi hin =  along with condition (2.2), we can determine the follow-up sample size necessary to 

expend the budget ,C  on average, while ensuring each unit is resolved or has reached the maximum 

number of attempts, .K  That is, we can determine the follow-up sample size such that the expected 

follow-up cost (3.1) is exactly equal to the budget .C  This sample size is 

 ( )
( )

1 ,nr

2 *

21

, ,

h

L

hi hih i s

C
n C K

c K
= 

=

 
 (3.3) 

where ( )hic K  is given in (3.2). For a fixed budget ,C  the sample size ( )2 ,n C K  is inversely related to K  

and is a minimum when ;K =  i.e., when there is no upper limit on the number of calls. This means that, 

for a fixed cost ,C  choosing a sample size larger than ( )2 ,n C   has an effect similar to reducing the 

value of ,K  thereby increasing the expected number of unresolved units. Also, if a sample size smaller 

than ( )2 ,n C   is chosen, the expected cost (3.1) is smaller than the budget ;C  i.e., on average, the budget 

is not entirely expended. The sample size ( )2 ,n C   is thus the minimum sample size that expends the 

budget ,C  on average. 

From the sample size ( )2 ,n C K  in (3.3), the expected number of respondents to the follow-up survey 

is 
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(3.4)

 

where ( )2hip K  is given in (2.7), and the expected response rate is  

 
( )

( )
( )

1 ,nr
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2 21
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,
.

, h

Lr

hi hih i s

n C K
p K

n C K


= 
=   (3.5) 

From (2.7) and (3.5), we observe that the expected response rate does not depend on the budget C  and 

decreases as K  decreases. It was noted above that choosing a sample size larger than the minimum 

sample size ( )2 , ,n C   for a fixed cost ,C  has an effect similar to reducing the value of .K  Consequently, 

choosing a sample size larger than ( )2 ,n C   would also have the effect of reducing the expected response 

rate. 
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We can also obtain the expected number of resolved units in a way similar to (3.4) as 

 ( )

( )( )( )
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1 ,nr

* 3
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2, res *
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 
 (3.6) 

It can be easily seen that ( ) ( )2, res 2, ,n C K n C K  and that ( ) ( )2, res 2, , .n C n C =   If the follow-up 

sample size is chosen to be smaller than ( )2 ,n C   then the expected cost ( )
1 ,nr

*

21
,

h

L

hi hih i s
c C

= 
 =   

with * ,C C  and, from (3.4) and (3.6), both the expected number of respondents and resolved units 

decrease. 

If the probability 
( )3

2hiP  is very close to 1 for a few units 1 ,nr ,hi s 1, , ,h L=  the minimum sample size 

( )2 ,n C   could become very small. In this situation, it may be appropriate to choose a finite value of K  

to avoid spending too large a portion of the budget on a few units. This would reduce the expected 

response rate, as noted above, and possibly increase the bias of estimates. However, using a finite value of 

K  might also significantly increase the expected number of respondents and reduce the variance of 

estimates. Plots of the expected response rate and the expected number of respondents as a function of K  

may be useful to determine a suitable trade-off between the maximization of the expected response rate 

( )K =  and the maximization of the expected number of respondents, which could be reached at a finite 

value of .K  A small reduction of the expected response rate might be tolerated if it yields a significant 

increase in the expected number of respondents. 

Under uniform follow-up response, we have: 
( ) ( )1 1

2 2 ,hiP P=
( ) ( )2 2

2 2hiP P=  and 
( ) ( )3 3

2 2 ,hiP P=  for each unit

1 ,nr ,hi s 1, , .h L=  The follow-up sample size (3.3), the expected number of respondents (3.4), the 

expected response rate (3.5) and the expected number of resolved units (3.6) reduce to 

 ( )
( ) ( ) ( ) ( ) ( ) ( )( )

( )

( )( )

3

2
2 1 1 2 2 3 3 3

2 2 2 2

1
, ,

1
K

PC
n C K

c P c P c P P

−
=

+ + −
 (3.7) 

 ( )
( ) ( ) ( ) ( ) ( ) ( )( )

( )1

2 21 1 2 2 3 3

2 2 2

, ,r

C
n C K P

c P c P c P
=

+ +
 (3.8) 

 
( )

( )
( )

( )( )
( )

3

212

2 3

2 2

1,
,

, 1

K

r
Pn C K

P
n C K P

−
=

−
 (3.9) 

and  

 ( )
( ) ( ) ( ) ( ) ( ) ( )( )

( )( )3

2,res 21 1 2 2 3 3

2 2 2

, 1 ,
C

n C K P
c P c P c P

= −
+ +

 (3.10) 

respectively. It is worth pointing out that the expected number of respondents (3.8) and the expected 

number of resolved units (3.10) no longer depend on .K  The expected number of resolved units, 
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( )2, res , ,n C K  is therefore equal to the minimum sample size to expend the budget ,C ( )2 , ,n C   for every 

value of .K  As noted for the general expected response rate (3.5), the expected response rate (3.9) does 

not depend on the budget C  and decreases as K  decreases. Given the above observations, the value of 

K  that maximizes both the expected response rate and the expected number of respondents is K =  

under uniform response, which leads to choosing the sample size ( )2 , .n C   

The probabilities 
( )1

2 ,hiP
( )2

2hiP  and 
( )3

2hiP  are unknown. In practice, these probabilities must be replaced 

with estimates in the above expressions. Because they are needed before selecting the follow-up sample 

and collecting data, estimates of 
( )1

2 ,hiP
( )2

2hiP  and 
( )3

2hiP  could be obtained from previous survey data.  

 
4. Simulation study 
 

We conducted a simulation study to evaluate the properties of the non-response-adjusted estimator 

(2.4), 
HH NA
ˆ ,Y −

 under different response scenarios and follow-up sampling designs. 

 

4.1 The simulation setup 
 

Data used to create the sample 
1

s  
 

The data used for the simulation study are sample data from an actual business survey: Statistics 

Canada’s Monthly Survey of Food Services and Drinking Places (MSFSDP). As is typical for business 

surveys, the MSFSDP is stratified by province, industry and revenue (one take-all and one or more take-

some strata within each province/industry combination). For greater detail on the MSFSDP, see Statistics 

Canada (2017). Each “Take All” stratum within a province/industry combination consists of the large and 

important businesses, which are usually all followed up. These units are excluded from the simulation 

study to focus on the follow-up strategy for the “Take some” strata. The set of sample units included in the 

simulation study is thus the original sample of 2,375 units selected in the 63L =  “Take some” strata. 

Two variables are used for the simulation study: “Revenue” and “Sales”. The first variable, Revenue, 

comes from the sampling frame (Statistics Canada’s Business Register) and is present for all units selected 

in the MSFSDP sample. We use Revenue as an auxiliary variable, ,x  for sampling the non-respondents to 

the mail-out (see below). The second variable, Sales, is one of the variables collected by the survey; it is 

the variable of interest .y  Both unit and item non-response are handled by imputation in the MSFSDP; 

thus Sales are available for all units in the simulation study and is imputed for 15% of the sample units. 

The correlation between Revenue and Sales is about 83% for both the respondent only data and the fully 

imputed data. 

In our simulation experiments, the sample 1s  is not randomly generated multiple times from MSFSDP 

data. Instead, 1s  is fixed and consists of the set of all 1 2,375n =  units in the original MSFSDP sample. 

The strata identifier, the design weight, the variable of interest y  (Sales) and the auxiliary variable x  

(Revenue) for each unit of 1s  are taken from the MSFSDP sample file. Units with imputed y  values are 

included in 1 ,s  and imputed values are treated as observed values. This allows us to compute the full 
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sample estimate FULLŶ  given in (2.1). This estimate is used as a benchmark to evaluate the properties of 

HH NAŶ −
 for different response scenarios and follow-up sampling designs, as detailed below. 

 

Generation of the set 
1,nr

s  of mail-out non-respondents 
 

Next, from 1 ,s  response to the mail-out is generated independently from one unit to another using a 

Bernoulli distribution with probability 1 ,hip 1 ,hi s 1, , .h L=  Two response probability scenarios are 

considered:  

1. Uniform: 1 50%hip =  for all sample units. Under this scenario, the expected number of non-

respondents to the mail-out is 2,375/2 = 1,187.5.  

2. Correlated to the variable of interest: 1hip  is determined using the logit function 

 1

1

log 0.31 0.000004 .
1

hi
hi

hi

p
y

p

 
= − + 

− 
  

The constants -0.31 and 0.000004 are chosen by trial and error so that the expected number of non-

respondents to the mail-out is again approximately half of the size of 1.s  Note that the expected number of 

non-respondents to the mail-out can be written as ( )
1

11
1 .

h

L

hih i s
p

= 
−   As a result, the constants are such 

that 
1

11
1,187.5,

h

L

hih i s
p

= 
   where ( )

1

1 1 exp 0.31 0.000004 .hi hip y
−

=  + −    

 

Selection of the follow-up sample 
2

s  
 

The next step in the simulation is to select a follow-up sample 2s  from the set of mail-out non-

respondents, 1,nr ,s  generated from one of the two response probability scenarios above. Five different 

sampling designs are considered for the selection of the follow-up sample: 

1. Census of the mail-out non-respondents; 

2. Simple Random Sampling (SRS) without replacement, ignoring the original stratification; 

3. Stratified SRS without replacement using the original stratification, with sample allocation to 

strata proportional to the number of mail-out non-respondents; 

4. Systematic sampling with probability proportional to Revenue, ,hix  ignoring the original 

stratification; 

5. Systematic sampling with probability proportional to Revenue multiplied by the initial design 

weight, 1 ,hi hiw x  ignoring the original stratification. 
 

Note that the size variables used for the two Probability Proportional to Size (PPS) sampling designs 

are trimmed from below the th5  percentile to remove zero-valued observations and some extremely small 

values that caused instability. On average, there are 1,188 non-respondents to the mail-out. For the first 

design, all non-respondents are followed up. For the remaining four designs, the follow-up sample sizes 

used for the simulation are chosen as 100, 200, 300, 400, 500, 700, and 900. 
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Generation of call outcomes 
 

The outcomes of the telephone follow-up collection procedure are simulated at the call attempt level. 

For each sample unit 1 ,hi s 1, , ,h L=  the probabilities 
( )1

2 ,hiP
( )2

2hiP  and 
( )3

2hiP  for the three possible 

outcomes (see Section 2) are assigned before the start of the simulation and do not vary as data collection 

progresses. Two response scenarios are considered:  

1. Uniform: 
( )1

2 25%,hiP =
( )2

2 5%,hiP =  and 
( )3

2 70%hiP =  for all units. These values were taken from 

Xie, Godbout, Youn and Lavallée (2011). 

2. Correlated to the variable of interest: The probability of a “response” is based on the following 

logit function:  

 

( )

( )

1

2

1

2

log 1.29 0.000002 0.3 ,
1

hi
hi hi

hi

P
y z

P

 
= − + + 

− 
  

where hiz  is generated from the standard normal distribution. The constants -1.29, 0.000002 

and 0.3 are chosen by trial and error so that the average of 
( )1

2hiP  over all units in the sample 1s  is 

approximately 25%; i.e., 
( )

1

1 1

1 21
0.25,

h

L

hih i s
n P−

= 
   where 

( )
1

2 1 exp(1.29 0.000002hi hiP y= + − −  


1

0.3 ) .hiz
−

 Note that the coefficient of correlation between the response probability 
( )1

2hiP  and the 

variable of interest 
hiy  is 61%. The other two probabilities are defined as: 

( ) ( )( )2 10.05
2 20.75

1hi hiP P= −  

and 
( ) ( )( )3 10.70

2 20.75
1 .hi hiP P= −  This ensures that 

( ) ( ) ( )1 2 3

2 2 2 1.hi hi hiP P P+ + =  

 

For a given follow-up sample unit, the probabilities 
( )1

2 ,hiP
( )2

2hiP  and 
( )3

2hiP  are used to randomly generate 

the outcome of each call. After a call attempt, the unit returns to the end of the calling queue unless it is 

finalized and an outcome of “response” or “final non-response” is obtained. Outcomes are generated 

independently from one call to another. There is no explicit upper limit on the number of call attempts 

made to the same unit in our simulation study ( ).K =  

Note that for the response scenario with varying response probabilities, the units that respond to the 

first call attempt are typically units with a higher response probability. As a result, the units that remain in 

the calling queue for the second attempt tend to be units with a lower response probability. It follows that 

the proportion of units that respond in the second attempt tends to be lower than in the first attempt. 

Similarly, the proportion of units that respond in the third attempt tends to be lower than in the second 

attempt, and so on. The proportion of units that respond decreases with each call attempt, as the units that 

remain in the calling queue are those that are harder to reach. Therefore, estimates may suffer from 

substantial bias if data collection ends prematurely, and if those that are harder to reach tend to have y -

values larger or smaller than the other sample units.  

The total budget for follow-up is fixed at 3,000 units (monetary or time units) in our study. A cost is 

charged for each call attempt. The amount charged depends on the outcome of the attempt: a “response” 

outcome has a cost of 5 units 
( )( )1 5 ,c =  a “final non-response” outcome has a cost of 2 units 

( )( )2 2 ,c =  

and a “still-in-progress” outcome has a cost of 1 unit 
( )( )3 1 .c =  The collection ends when the budget runs 
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out, or when there are no more cases left in the calling queue (i.e., all units are resolved), whichever 

occurs first. The cost values and budget have been chosen somewhat arbitrarily as they are survey-

specific. However, we ensured that 
( ) ( ) ( )1 2 3 c c c   as this relation is generally expected to hold in 

telephone surveys. 

 

Monte Carlo measures 
 

The generation of responses to the mail-out, the selection of the follow-up sample and the generation 

of responses to the follow-up are repeated independently 1,000R =  times for each combination of mail-

out response scenario, follow-up sampling design and follow-up response scenario described above. The 

non-response-adjusted estimator (2.4), 
HH NA
ˆ ,Y −

 is computed for each replicate. The non-response weight 

adjustments 2hia  are computed using (2.5) as the inverse of the overall weighted response rate. We use 

2 2 ,hia a=  given in (2.5), rather than 2 2 ,hi ha a=  given in (2.6), to avoid a few cases where some of the sets 

2hrs  are empty, which would lead to infinite values of 2 .ha  The non-response weight adjustment (2.5) can 

be viewed as an extreme form of collapsing. Less extreme collapsing could be applied in practice and 

might show better properties. We choose (2.5) in this simulation study for its simplicity. 

Using the 1,000 replicates of 
HH NA
ˆ ,Y −

 the Monte Carlo Relative Bias (RB) and Relative Root Mean 

Square Error (RRMSE) of 
HH NAŶ −

 are computed as 

 
1

1
RB 100%

R

r

r

E
R =

=     and   2

1

1
RRMSE 100%,

R

r

r

E
R =

=    

where ( )HH NA FULL FULL
ˆ ˆ ˆr

rE Y Y Y−= −  is the relative error for the thr  simulation replicate, and 
HH NA
ˆ rY −

 is the 

non-response-adjusted Hansen-Hurwitz estimator for the thr  replicate, 1, ,1,000.r =  

As pointed out above, the initial sample 1s  is fixed for each of the 1,000 replicates to focus on the 

mail-out and follow-up response mechanisms and the follow-up sampling design. While it could have 

been possible to create an artificial population and draw a different initial sample at each replicate, it was 

felt that this additional complexity would not change our main conclusions, except for systematically 

increasing the variance of 
HH NA
ˆ .Y −

 Our simulation setup has also the advantage of being conditional on 

real sample data. 

 
4.2 Simulation results 
 

In this section, we discuss the simulation results for four scenarios of mail-out and follow-up response: 

 

1. The response probability is uniform for both the mail-out and the follow-up. This serves as a 

baseline scenario with which to compare the other scenarios. 

2. The response probability is correlated to Sales for the mail-out and uniform for the follow-up. 

3. The response probability is uniform for the mail-out and correlated to Sales for the follow-up. 
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4. The response probability is correlated to Sales for both the mail-out and the follow-up. This 

scenario is probably the most realistic. 

 

Response Scenario 1: Uniform response probability for both the mail-out and the follow-up 
 

Figure 4.1 shows the relative bias versus the follow-up sample size for the five sampling designs. 

Figure 4.2 shows the RRMSE versus the follow-up sample size. Note that the results for the follow-up of 

all mail-out non-respondents are given by the last point on the figures (i.e., a sample size of 1,188). 

 
Figure 4.1 Relative bias versus follow-up sample size for Scenario 1. 

 
 
 
 
 
 
 
 

Figure 4.2 Relative root mean square error versus follow-up sample size for Scenario 1. 
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The following observations can be made by examining Figures 4.1 and 4.2: 

• The RB is approximately zero for all follow-up sample sizes and designs. The only exception is 

stratified SRS with a follow-up sample size of 100. The proportional allocation strategy for the 

follow-up sample does not ensure that at least one unit is selected from each stratum. Therefore, 

for smaller follow-up sample sizes (e.g., 100), some strata end up with no follow-up sample 

although they may contain mail-out non-respondents. This causes a negative bias for the 

estimation of a population total. 

• As the sample size increases from 100 to 400, the RRMSE decreases for all designs. This can 

be explained by an increase of the average number of respondents as the sample size increases 

(not shown in the figures). 

• For sample sizes greater than 400, the RRMSE remains roughly constant for the SRS and 

stratified SRS designs. For those sample sizes, the average number of respondents remains 

roughly constant. This is consistent with equation (3.8). It indicates that, under uniform 

response to the follow-up, the expected number of respondents does not vary with ,K  and thus 

with the follow-up sample size, provided the budget is expended. 

• The PPS designs seem to be more efficient than the SRS and stratified SRS designs. However, 

for sample sizes greater than 400, the gains in efficiency diminish as the sample size increases.  

 
Response Scenario 2: Response probability correlated to Sales for the mail-out and uniform 

for the follow-up 
 

Figures 4.3 and 4.4 show the relative bias and the RRMSE for Scenario 2, respectively.  

 
Figure 4.3 Relative bias versus follow-up sample size for Scenario 2. 
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Figure 4.4 Relative root mean square error versus follow-up sample size for Scenario 2. 

 
 
 
 
 
 
 
 

The following observations can be made by examining Figures 4.3 and 4.4: 

• The results show that if the mail-out response probability is correlated to Sales, but the follow-

up response probability is uniform, the bias can be nearly eliminated through the follow-up 

sampling design. This can be explained by observing that the Hansen and Hurwitz (1946) 

estimator (2.3) is unbiased for any mail-out response mechanism. 

• The observations given for Scenario 1 apply to Scenario 2 as well. 

 

Response Scenario 3: Response probability uniform for the mail-out and correlated to Sales 

for the follow-up 
 

Figures 4.5 and 4.6 show the relative bias and the RRMSE for Scenario 3, respectively.  

 
Figure 4.5 Relative bias versus follow-up sample size for Scenario 3. 

 
 
 
 
 
 
 
 

                                                       Follow-up Sample Size 

   
   

   
   

   
   

   
   

   
   

   
   

   
 R

R
M

SE
 (

%
) 

SRS 

Stratified SRS 

PPS Revenue 

PPS weighted Revenue 

                                                       Follow-up Sample Size 

   
   

   
   

   
   

   
   

   
   

   
R

e
la

ti
ve

 B
ia

s 
(%

) 

SRS 

Stratified SRS 

PPS Revenue 

PPS weighted Revenue 



110 Neusy et al.: Non-response follow-up for business surveys 

 

 

Statistics Canada, Catalogue No. 12-001-X 

Figure 4.6 Relative root mean square error versus follow-up sample size for Scenario 3. 

 
 
 
 
 
 
 
 
 
 

The following observations can be made by examining Figures 4.5 and 4.6: 

• The RB is lowest for sample sizes less than or equal to 400, where we observed that all the units 

were finalized before the budget ran out. The lower RB for stratified SRS with a follow-up 

sample size of 100 is due to strata with no follow-up sample (see Response Scenario 1).  

• The RRMSE is minimized for a sample size of 400.  

• For sample sizes greater than 400, both RB and RRMSE increase as the sample size increases. 

For those sample sizes, we observed a diminution of the average response rate as the sample 

size increases (see the discussion below equation (3.5) for a theoretical justification). This 

explains the increase of RB and RRMSE as the sample size increases. 

• The PPS designs seem again to be more efficient than the SRS and stratified SRS designs. 

However, for sample sizes greater than 400, the gains in efficiency diminish as the sample size 

increases.  

 
Response Scenario 4: Response probability correlated to Sales for both the mail-out and the 

follow-up 
 

Figures 4.7 and 4.8 show the relative bias and the RRMSE for Scenario 4, respectively.  

Figures 4.7 and 4.8 are similar to Figures 4.5 and 4.6. The observations given for Scenario 3 apply to 

Scenario 4 as well. 
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Figure 4.7 Relative bias versus follow-up sample size for Scenario 4. 

 
 
 
 
 
 
 
 

 
Figure 4.8 Relative root mean square error versus follow-up sample size for Scenario 4. 
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We observed that for follow-up sample sizes smaller than or equal to 400, and for all sampling designs 

and response scenarios, all the units were finalized with an outcome of “response” or “final non-response” 

before the budget was exhausted, except for two simulation replicates. As a result, the follow-up response 

rate remained roughly constant whereas the number of respondents increased as the follow-up sample size 

increased from 100 to 400, reducing the variance and mean square error of the estimator 
HH NA
ˆ .Y −

 

For sample sizes of 500 or over, the follow-up budget always ran out before all the units were 

finalized. As the follow-up sample size increased, the number of respondents and finalized units remained 
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roughly constant. On average, between 430 and 445 cases were finalized at the end of data collection 

depending on the sampling design and response scenario; the other units were left in the calling queue 

with an outcome of “still-in-progress”. It thus appears that the follow-up budget used for the simulation 

study was just large enough to finalize around 440 units for sample sizes greater than or equal to 500. 

Given that the number of respondents remained roughly constant as the sample size increased, the 

response rate decreased. The reduction of the response rate can be explained by a smaller average number 

of call attempts per sample unit as the follow-up sample size increases. This has the undesirable 

consequence of increasing the bias and mean square error of 
HH NAŶ −

 for the non-uniform follow-up 

response mechanism.  

From Figures 4.2, 4.4, 4.6 and 4.8, we also observe that the RRMSE reaches a minimum for a sample 

size of 400 or 500 depending on the response scenario and sampling design. The sample size that 

minimizes the RRMSE seems to correspond roughly to the minimum sample size that expends the follow-

up budget on average. As discussed above, a smaller sample size increases the variance of 
HH NA
ˆ ,Y −

 due to 

a smaller number of respondents, whereas a larger sample size may increase the bias due to a reduced 

response rate. The minimum sample size to expend the follow-up budget appears to be the same as the 

expected number of resolved units, which was around 440 in our simulation study for sample sizes of 500 

or above.  

The theory developed in Section 3 supports the above empirical observations for uniform response to 

the follow-up. Table 4.1 provides values of the sample size (3.7), the expected number of respondents 

(3.8), the expected response rate (3.9), and the expected number of resolved units (3.10) for different 

values of ,K  and for the values of ,C
( )1 ,c

( )2 ,c
( )3 ,c

( )1

2 ,P
( )2

2P  and 
( )3

2P  used in the simulation study: 

3,000,C =
( )1 5,c =

( )2 2,c =
( )3 1,c =

( )1

2 0.25,P =
( )2

2 0.05P =  and 
( )3

2 0.70.P =  The minimum sample size 

( )2 ,n C   and the expected number of resolved units ( )2, res ,n C K  are equal to 439; this agrees with the 

simulation results. 

As shown in Table 4.1, a small value of K  may reduce significantly the expected response rate 

whereas the expected number of respondents does not vary with K  provided the budget is expended. 

Therefore, under uniform response to the follow-up, there does not seem to be any advantage to using a 

follow-up sample size larger than ( )2 , ,n C   the minimum sample size to expend the budget on average, 

which is 439 in this scenario. This choice maximizes the expected response rate without reducing the 

expected number of respondents. Under moderate departure from uniform response, choosing a sample 

size close to ( )2 ,n C   (or a large value of )K  would ensure the non-response bias is better controlled.  

Our simulation results indicate that the conclusions drawn from Table 4.1 hold approximately for non-

uniform response to the follow-up. In particular, the minimum sample size that expends the budget was 

close to 439 and the expected number of respondents and resolved units stayed roughly constant when the 

follow-up sample size increased. As a result, incorrectly assuming uniform response when it is not 

uniform leads to an appropriate sample size in our simulation setup. Another conclusion of our simulation 

study is that choosing a follow-up sample size close to ( )2 ,n C   appears to minimize both the 
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non-response bias and mean square error of 
HH NA
ˆ .Y −

 However, we will show in the next two examples that 

our conclusions may not always hold under larger departures from uniform response.  

Suppose that there are exactly 1,188 mail-out non-respondents and that the values of ,C
( )1 ,c

( )2 ,c
( )3 ,c

( )1

2 ,P
( )2

2P  and 
( )3

2P  are exactly the same as those used in the simulation study and Table 4.1. However, for 

one of the 1,188 units, unit j  say, the probabilities 
( )1

2 0.25,jP =
( )2

2 0.05jP =  and 
( )3

2 0.70jP =  are replaced 

with 
( )1

2 0.000005,jP =
( )2

2 0.000001jP =  and 
( )3

2 0.999994,jP =  respectively. The response mechanism is 

almost uniform, except for one unit with a very small probability of being resolved. For simplicity, we 

assume that the follow-up sample is selected using simple random sampling without replacement. For this 

scenario, Table 4.2 shows the sample size (3.3), the expected number of respondents (3.4), the expected 

response rate (3.5) and the expected number of resolved units (3.6) for different values of .K  

 
Table 4.1 

Sample size, expected response rate, and expected number of respondents and resolved units for different 

values of K  under uniform response to the follow-up 
 

K  Sample size (3.7) Expected response rate 

(3.9) 

Expected number of 

respondents (3.8) 

Expected number of 

resolved units (3.10) 

  439 83.3% 366 439 

20 439 83.3% 366 439 

10 452 81.0% 366 439 

6 498 73.5% 366 439 

5 528 69.3% 366 439 

4 578 63.3% 366 439 

3 668 54.8% 366 439 

2 861 42.5% 366 439 

1* 1,188 25.0% 297 356 

* The direct application of (3.7) leads to ( )2 ,1n C = 1,463. However, this value is larger than the expected number of mail-

out non-respondents in the simulation study. Assuming there are exactly 1,188 mail-out non-respondents and taking them all 

in the follow-up sample ( )2 1,188n = , we can compute the expected follow-up cost (3.1) as ( )2 , 1C n = 2,435.4, which is 

smaller than the total budget of 3,000. Using a revised budget of 2,435.4, the expected number of respondents and resolved 

units are 297 and 356, respectively. 

 

Table 4.2 

Sample size, expected response rate, and expected number of respondents and resolved units for different 

values of K  when one unit has a very small probability of being resolved 
 

K  Sample size (3.3) Expected response rate 

(3.5) 

Expected number of 

respondents (3.4) 

Expected number of 

resolved units (3.6) 

  20 83.3% 17 20 

20 439 83.2% 365 438 

10 452 80.9% 365 438 

6 498 73.5% 366 439 

5 528 69.3% 366 439 

4 578 63.3% 366 439 

3 668 54.7% 366 439 

2 861 42.5% 366 439 

1* 1,188 25.0% 297 356 

* The direct application of (3.3) leads to ( )2 ,1n C = 1,464, which is larger than the number of mail-out non-respondents 

(1,188). Similar to Table 4.1, we can compute the expected follow-up cost (3.1) as 2(C n = 1,188, 1)K = = 2,434.4, which 

is smaller than the total budget of 3,000. Using a revised budget of 2,434.4, the expected number of respondents and 

resolved units are 297 and 356, respectively. 
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The minimum sample size to expend the budget, on average, is ( )2 , 20n C  =  in that scenario. It is 

significantly smaller than 439, the corresponding value for uniform response shown in Table 4.1. As 

pointed out in Section 3, using a finite value of K  may avoid spending too large a portion of the budget 

on a few units with a very small probability of being resolved (unit j  in this example). Indeed, Table 4.2 

shows that the expected response rate decreases marginally by reducing the value of K  from infinity to 

20 whereas the expected number of respondents drastically increases from 17 to 365. Using a finite value 

of K  seems desirable in this scenario as it may substantially reduce the variance of HH NA
ˆ .Y −  The impact 

on non-response bias is likely to be negligible unless the y  value of unit j  is extremely different from 

other units. Incorrectly assuming uniform response for all units would lead to choosing a sample size of 

439, as shown in Table 4.1. This choice appears to remain appropriate for this non-uniform follow-up 

response mechanism. 

Suppose again that there are 1,188 mail-out non-respondents, the values of ,C
( )1 ,c

( )2c  and 
( )3c  are the 

same as those used in the simulation study and Table 4.1, and the follow-up sample is selected using 

simple random sampling without replacement. Suppose now the 1,188 mail-out non-respondents can be 

divided into two response homogeneous groups, each of size 594. The probabilities are 
( )1

2 0.45,hiP =  
( )2

2 0.09hiP =  and 
( )3

2 0.46hiP =  for the 594 units in the first group and 
( )1

2 0.05,hiP =
( )2

2 0.01hiP =  and 
( )3

2 0.94hiP =  for the remaining 594 units. The response mechanism is not uniform; it is uniform within each 

of the two response homogeneous groups. The average probabilities over the 1,188 mail-out non-

respondents are the same as those given in the uniform response scenario. Table 4.3 shows the sample size 

(3.3), the expected number of respondents (3.4), the expected response rate (3.5), and the expected number 

of resolved units (3.6) for different values of .K  

 

Table 4.3 

Sample size, expected response rate, and expected number of respondents and resolved units for different 

values of K  under uniform response within groups 
 

K  Sample size (3.3) Expected response rate 

(3.5) 

Expected number of 

respondents (3.4) 

Expected number of 

resolved units (3.6) 

  235 83.3% 196 235 

20 305 71.2% 217 261 

10 409 60.9% 249 299 

6 519 54.2% 281 338 

5 566 51.9% 294 352 

4 629 48.9% 308 370 

3 727 44.7% 325 390 

2 914 37.7% 344 413 

1* 1,188 25.0% 297 356 

* The direct application of (3.3) leads to ( )2 ,1n C = 1,463, which is larger than the number of mail-out non-respondents 

(1,188). Similar to Table 4.1, we can compute the expected follow-up cost (3.1) as 2(C n = 1,188, 1)K = = 2,435.4, which 

is smaller than the total budget of 3,000. Using a revised budget of 2,435.4, the expected number of respondents and 

resolved units are 297 and 356, respectively. 

 
The minimum sample size to expend the budget, on average, is ( )2 , 235,n C  =  which is much 

smaller than the corresponding value of 439 for uniform response. In this scenario, using a finite value of 
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K  does not seem advantageous. By decreasing the value of K  from infinity to 20, the expected number 

of respondents only increases by 21 whereas the expected response rate decreases by more than 10%. The 

small variance reduction could possibly be offset by a larger increase of non-response bias. The magnitude 

of non-response bias depends on the strength of the association between the y  variable and the response 

homogeneous groups. A small value of K  (a large sample size) might be appropriate if this association is 

weak so as to benefit from a larger expected number of respondents. However, this is a risky choice as the 

expected response rate would drop significantly, thereby offering a reduced protection against departure 

from the assumed response mechanism. Therefore, a sample size of 439 in this scenario might not be 

appropriate due to the increased risk of non-response bias. Then non-response bias can be dampened at the 

estimation stage, at least asymptotically, by computing the non-response weight adjustment (2.5) 

separately for each response homogeneous group. This weighting strategy is standard and should be used 

when response homogeneous groups can be identified; yet it does not offer full protection against 

departure from the assumed response mechanism. It is for this reason that a large value of ,K  even 

infinite, may be preferable in this scenario.  

As pointed out in Section 3, plots of the expected response rate and the expected number of 

respondents as a function of K  may be useful to determine a suitable trade-off between the maximization 

of the expected response rate ( )K =  and the maximization of the expected number of respondents, as 

illustrated in the above examples. An infinite value of K  should be the default as it minimizes non-

response bias. However, a large finite value of K  might be appropriate if it sharply increases the expected 

number of respondents with minimal impact on the expected response rate. 

 
5. Conclusions 
 

In Section 3, we derived an explicit expression for ( )2 , ,n C   the minimum sample size to expend the 

budget ,C  on average, while resolving all follow-up sample units. We showed that this minimum sample 

size maximizes the expected response rate; thereby minimizing the bias of the non-response-adjusted 

Hansen and Hurwitz (1946) estimator. Our empirical investigations showed that this minimum sample 

size also appears to minimize the mean square error of this estimator. This can be explained by noting that 

the expected number of respondents remain roughly constant as the sample size increases, yielding an 

approximately constant variance. For the uniform follow-up response mechanism, it was possible to show 

theoretically that the expected number of respondents does not vary as the sample size increases (or does 

not vary with ),K  confirming the empirical results.  

At first glance, the idea of maximizing the expected response rate to minimize non-response bias may 

appear to contradict existing non-response literature. It is well known that a data collection procedure that 

intends to maximize the response rate for a given sample will most likely increase the non-response bias 

when easy-to-reach respondents differ from the other sample units. That is, increasing the response rate 

does not necessarily reduce non-response bias for a given sample and may actually do the opposite. Our 
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results do not contradict this statement as we studied a different feature of the data collection design: the 

effect of the follow-up sample size on the expected response rate and non-response bias. It appears that 

this question has not been investigated in the literature. Our main conclusion is that a smaller follow-up 

sample size contributes to increasing the expected response rate and decreasing non-response bias.  

Our conclusions may have important implications in practice. In business surveys conducted by 

Statistics Canada, all the mail-out non-respondents are currently followed up, and an adaptive collection 

procedure is used to prioritize cases (see Bosa et al., 2018). We believe that the non-response bias could 

be further reduced by following up only a sample of mail-out non-respondents in situations where the 

follow-up budget is insufficient to properly handle the volume of mail-out non-respondents. The adaptive 

collection procedure currently in place could continue to be used to manage data collection of the follow-

up sample. 

Another conclusion of our empirical investigations is that the PPS designs appeared to perform slightly 

better than the SRS and stratified SRS designs. However, no attempt was made to optimize the 

stratification or allocation of the stratified SRS design. The performance of the stratified design would 

likely be improved through a more efficient use of the auxiliary variable “Revenue” for stratification. 

Finally, we observed that, unlike the follow-up response mechanism, the mail-out response mechanism 

had no impact on the bias of the non-response-adjusted Hansen and Hurwitz (1946) estimator. As a result, 

the mail-out non-response bias could be eliminated, even if the mail-out response probability was 

correlated to the variable of interest, provided that the follow-up response probability was uniform. This 

result is not surprising since the estimator of Hansen and Hurwitz (1946) is unbiased for any mail-out 

response mechanism. 
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population census tables with data from multiple sources 
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Abstract 

The Multiple Imputation of Latent Classes (MILC) method combines multiple imputation and latent class 

analysis to correct for misclassification in combined datasets. Furthermore, MILC generates a multiply 

imputed dataset which can be used to estimate different statistics in a straightforward manner, ensuring that 

uncertainty due to misclassification is incorporated when estimating the total variance. In this paper, it is 

investigated how the MILC method can be adjusted to be applied for census purposes. More specifically, it is 

investigated how the MILC method deals with a finite and complete population register, how the MILC 

method can simultaneously correct misclassification in multiple latent variables and how multiple edit 

restrictions can be incorporated. A simulation study shows that the MILC method is in general able to 

reproduce cell frequencies in both low- and high-dimensional tables with low amounts of bias. In addition, 

variance can also be estimated appropriately, although variance is overestimated when cell frequencies are 

small. 

 

Key Words: Combined survey-register data; Population census; Misclassification; Multiple imputation; Latent Class 
analysis. 

 

 

1. Introduction 
 

Official Statistics are increasingly often compiled from a combination of data sources, including 

surveys and administrative registers. The use of different sources poses multiple challenges. Different 

sources can be overlapping, meaning that more than one observation is obtained for the same person and 

variable. Often, it is observed that data sources are contaminated by errors and missing values. Therefore 

it can happen that two data sources provide two different values for the same unit and variable. Most of 

the data collected by statistical agencies have to be corrected or processed somehow to obtain consistent 

and publishable results. Several strategies are available to deal with multiple, overlapping data sources 

that are each contaminated by erroneous and missing values, see e.g. Pankowska, Pavlopoulos, Bakker 

and Oberski (2020). A first, and in practice often chosen strategy, is to ignore inconsistencies between 

data sources. This happens for instance if one data source is chosen that is believed to have the highest 

quality (de Waal, van Delden and Scholtus, 2020). When such strategies are chosen, the information in all 

available sources is not fully exploited. 

A second strategy is to apply weighting techniques (Särndal, Swensson and Wretman, 2003). When 

weighting is used, survey records are calibrated towards the totals from a register source. Differences 

between data sources are fully explained from the selection effects of the sample. This approach ignores 
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the fact that the register totals, as well as the sample surveys, might be subject to measurement error. An 

additional complication is that weighting does not always lead to fully consistent output, as it only 

achieves consistency with regard to the variables that are incorporated in the weighting model. The 

number of variables that can be included in a weighting model is however limited. 

A third strategy to resolve inconsistencies between multiple sources is macro-integration, an approach 

that reconciles statistical output at aggregate level. This approach usually consists of two steps. First, 

differences with a known cause are resolved (i.e. bias). The remaining, mostly smaller, discrepancies that 

usually arise due to noise are corrected in a second step. Several mathematical methods have been 

developed for this purpose, e.g. Bikker, Daalmans and Mushkudiani (2013), Daalmans (2019), Di Fonzo 

and Martini (2003), Magnus, van Tongeren and de Vos (2000), Sefton and Weale (1995) and Stone, 

Champernowne and Meade (1942). A first drawback of macro integration is that the connection between 

the micro-data and the published results gets lost. The macro-integrated results cannot be computed by 

aggregation of the micro data. A second drawback is that the detailed micro data might not be fully 

exploited, as the corrections are made at the macro level. 

Many of the issues arising when one of the previously discussed strategies is used can be circumvented 

by Multiple Imputation of Latent Class analysis (MILC) by Boeschoten, Oberski and de Waal (2017). 

This method combines multiple measures from different sources (population register and sample survey) 

at micro level. The different observations are considered indicators of a Latent Class (LC) model. The 

MILC-model corrects for misclassification while also taking edit restrictions into account. These are rules 

that identify logically impossible combinations of scores (e.g. pregnant men). After the LC model has 

been estimated, multiple imputed versions of the target variable are created, that are corrected for the 

estimated misclassification. Differences between imputed values reflect the uncertainty due to missing and 

conflicting values. The total variance can be estimated based on these differences. The method can be 

considered a model-based imputation method that requires the Missing At Random (MAR) assumption. A 

simulation study on the performance of this method showed that its performance is strongly related to the 

entropy 2R  value of the LC model; a measure which indicates how well the LC model can predict class 

membership based on the observed variables, or how well classes are separated. 

After MILC was introduced, multiple studies have extended the method to broaden its scope of 

applicability. Boeschoten, de Waal and Vermunt (2019) extended the method to impute values that are 

missing by design, for example because they were not present in the sample, using a quasi-latent variable. 

More specifically, a quasi-latent variable is a latent variable that is restricted to have a perfect relationship 

with an observed variable that contains missing values. In that way, the relationship between the quasi-

latent variable and all other variables specified in the model can be used to estimate the missing values. In 

addition, they investigated the performance of the method when two combined sources follow different 

missingness mechanisms. Furthermore, Boeschoten, Filipponi and Varriale (2021) investigated how the 

method can be extended for longitudinal situations and how unit missingness can be imputed in a situation 

of combined survey and register data. 
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Although these previous studies investigated a number of relevant issues, there are still cases for which 

it is unclear how the MILC-method can be applied. The aim of this paper is to further enhance the 

possibilities of MILC in terms of application and, with that, to further increase the capabilities of 

producing multi-source statistics. 

Currently, the application of MILC has been limited to univariate problems. In practice, however, there 

is often a need to estimate multiple variables at once. The first important extension in this paper is to allow 

the simultaneous imputation of multiple latent variables. As population registers can contain 

misclassification, it is worthwhile to correct for the misclassification if possible. For multivariate 

problems, corrections should be performed simultaneously, which is more difficult than for one variable 

only. 

Second, statistical agencies generally consider finite target populations (e.g. containing all registered 

inhabitants of a country). It is unclear if the MILC method can be applied directly to a finite population, or 

that adaptations to the method should be made. 

The usefulness of the extensions in this paper is illustrated by an application to the Dutch virtual 

census; an application that would otherwise not be possible. For the census, a large number of tables have 

to be estimated from a population register and a sample survey. To the best of our knowledge, this is the 

first time that MILC has been applied to such a large estimation problem. Theoretically, it is already 

known that edit restrictions can be incorporated in an LC model to prevent the occurrence of logically 

impossible combinations of scores (Boeschoten et al., 2017). However, it is not trivial how the MILC 

method performs if edit restrictions are incorporated in such a way that they affect multiple cells in a 

population census table. 

In Section 2, a description of the MILC method is given, tailored to handle the specific extensions 

discussed. In Section 3, a description of the simulation study is given. Simulation results are shown in 

Section 4 and Section 5 provides a discussion. 

 
2. Methodology 
 

When applying the MILC method, the starting point is a unit-linked combined dataset, which can 

consists of combinations of administrative population registries and survey samples. In order to account 

for uncertainty regarding the parameters of the LC model estimated at a later step in MILC, a non-

parametric bootstrap procedure is applied on this dataset first (step 1). This involves creating M  bootstrap 

samples by drawing observations from the observed dataset with replacement. Subsequently, for each 

bootstrap sample, the LC model of interest is estimated (step 2) using Latent GOLD software (Vermunt 

and Magidson, 2013a). Here, model parameters are estimated by Maximum Likelihood using a 

combination of the Expectation-Maximization and Newton-Raphson algorithms. Note that here, by 

explicitly stating which cells should be restricted, constrained estimation is used. Next, M  imputations 

are created using the M  sets of parameter values obtained from the M  latent class models (step 3). If 

imputations would be created based on the maximum-likelihood estimates obtained directly using the 
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original observed data, sampling uncertainty regarding the estimated parameters of the latent class model 

would be ignored. 

In the following subsections, we explain each of the steps of MILC in more detail and present the 

extension for the estimation of multiple latent variables for a finite population from register and sample 

survey data. 

 

2.1 Step 1: Creating bootstrap samples 
 

We propose to use the “classical” bootstrap procedure here, which consists of repeatedly drawing 

samples with replacement from the original dataset, of the same size as the original dataset. A motivation 

for using this classical with-replacement bootstrap here, as opposed to an adapted bootstrap procedure for 

a finite population, is provided in Section 2.5 below. 

The bootstrap should be applied to the dataset that is used to estimate the LC models. When register 

data and survey data are combined, the indicator variables from the survey will typically be missing for a 

large part (e.g., 90% or more) of the population. The LC models could then be estimated by two different 

approaches: 

• using only the subset of persons observed in both the survey and the register (complete cases);  

• using all available data, including cases with missing indicators.  
 

Under the second approach, full information maximum likelihood can be used to handle missing 

values when estimating the LC models. This has the advantage of using all available information. Since 

this amounts to estimating the LC model on M  datasets with the size of the target population, a practical 

drawback of this approach is that it may be computationally demanding in terms of time and memory. 

Therefore, the first approach may be more attractive, in particular when the associations among the 

covariates and target variables are relatively weak. In the latter approach, the cases with missing survey 

data will contain relatively little information about the parameters of the LC model. Note that under both 

approaches, the estimated LC models are used to impute predictions of the latent classes throughout the 

population. Depending on which approach is chosen to estimate the LC models, bootstrapping is applied 

either to the subset of complete cases or to the target population. In the simulation study in this paper, the 

complete-case approach will be used. 

 

2.2 Step 2: Estimating the latent class model 
 

The second step performed is the estimation of the LC model. It is explained below how this is done 

for multiple latent variables. As described in the previous section, the LC model is typically estimated M  

times using the M  bootstrapped datasets. In the situation under evaluation in this paper, the LC model is 

estimated M  times on M  subsets of complete observations coming from the M  bootstrap samples. An 

extensive discussion of the model and the assumptions made when using the model to correct for 

measurement error can be found in Boeschoten et al. (2017). Multiple latent variables can be estimated 
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simultaneously in one model, which yields the following model structure for the joint probability of the 

response variables given covariate values, denoted by ( )P .= =Y y Q q  The number of latent variables is 

denoted as v  and hK  is the number of classes of latent variable hX  (scalar), where ( )1, , .h v=  

Furthermore, Y  are the observed target variables, i.e. the indicator variables, hL  is the number of 

indicator variables for hX  and Q  are the (also observed) covariate variables:  
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(2.1)

 

Here, local independence is assumed as well as independence of covariates. 

Constrained parameter estimation is used when certain cells within ( )1 1P , , v vX x X x= = =Q q  are 

restricted. This can be used to specify that certain combinations of scores between covariates and latent 

variables are logically impossible, or when a “quasi-latent” variable is used to create imputations for 

missing values in a variable (Vermunt and Magidson, 2013b). 

 
2.3 Step 3: Multiple imputation 
 

To be able to create multiple imputations, joint posterior membership probabilities are calculated for 

every person in the original dataset. They represent the probability that a unit is part of a combination of 

latent classes from the different latent variables, given its combination of scores on the indicators and 

covariates used in the LC model. These probabilities can be used to create multiple imputations of the 

latent variables which contain their “true scores”. 

The joint posterior membership probabilities can be calculated by applying Bayes’ rule to the 

conditional response probabilities obtained from the M  LC models:  
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(2.3)

 

and ( )P = =Y y Q q  is defined in equation 2.1. For one profile (so one set of scores on all indicator and 

covariate variables), the joint posterior membership probabilities sum up to one. 
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To be able to include parameter uncertainty in our variance estimates, we perform the model 

estimation on M  bootstrap samples of the dataset, resulting in M  different LC models. We generate 

imputations in the original dataset accounting for the parameter uncertainty by using the resulting M  sets 

of bootstrap parameter estimates. More specifically, with each of these M  parameter sets we compute the 

posterior class membership probabilities for the original sample, and use these to generate the imputations. 

In other words, the M  imputations are based of M  different sets of posterior probabilities. 

 
2.4 Step 4: Pooling 
 

The next step is to obtain estimates of interest for every imputation, and to pool them using Rubin’s 

Rules (Rubin, 1987, page 76). For this research, the main interest is producing a frequency table. 

Therefore, the frequency table of interest is obtained for the M  imputations and they are pooled, which 

means taking the average over the imputations for every cell in the frequency table: 

 
=1

1ˆ ˆ= ,
M

j ij

iM
   (2.4) 

where j  refers to a specific cell in the frequency table. 

Next, an estimate of the uncertainty around these frequencies is of interest. In general, the variance of 

the pooled estimate j  can be estimated by Rubin’s total variance formula for multiple imputation (Rubin, 

1987, page 76): 
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 can be estimated as  
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The within variance withinVAR
j
 reflects the average sampling variance of ij  when the imputed values 

are treated as observed. In our application, as the population is finite and imputations are generated for the 

complete population, this within variance component is zero and can be mitigated (Vink and van Buuren, 

2014). Note that this is a property of multiple imputation and is due to the fact that the complete 

population is imputed. This should not be confused with the decision to only use a sample for LC model 

estimation. Hence, formula (2.5) is reduced in this case to:  

 
between

total between

VAR
VAR VAR .

j

j j M
= +  (2.7) 

 

2.5 A note on bootstrapping for multiple imputation in finite populations 
 

The aim of a census is to estimate certain target parameters of a finite population (e.g., all persons 

currently living in the Netherlands). Hence, a natural idea might be to apply a finite-population bootstrap 
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procedure in this context; see Mashreghi, Haziza and Léger (2016) for an overview of bootstrap methods 

for finite populations. However, when determining the appropriate bootstrap approach, it should be noted 

that the bootstrap in MILC is specifically implemented to account for the between imputation variance 

component of formula (2.5) in Section 2.4. In general, variability in the target parameters due to the fact 

that a sample was drawn from a finite population is incorporated in the within variance component of 

formula (2.5). As we use mass imputation here, the within variance component in fact reduces to zero; cf. 

formula (2.7). More generally, this component would be estimated separately from the bootstrap method 

at hand; see Boeschoten et al. (2017) for an example. 

Furthermore, the reason for incorporating the bootstrap in the MILC approach is to account for 

uncertainty in the estimated parameters of the latent class model. Note that these parameters are not 

associated with a finite population, but with a model. Even if we had observed the entire finite population, 

there would still be uncertainty about the true parameter values of the latent class model. This uncertainty 

can be considered as drawing from an infinite distribution. Therefore, we select the classical with-

replacement bootstrap. We argue that bootstrap methods for finite populations should not be used in this 

context. For large samples, such methods would result in a substantial underestimation of the variance 

when combined with the usual approach to multiple imputation. We also checked this empirically in the 

simulation study to be discussed in Section 3. As an example, when a pseudo-population bootstrap method 

for finite populations was used, the resulting se/sd ratios in Table 4.7 for the condition MAR, 5M =  were 

0.7217, 0.7887, 0.7536 and 0.8607, respectively, all pointing to a non-negligible underestimation of the 

true variance. 

In the simulation study in this paper, we will restrict attention to surveys based on simple random 

sampling and stratified simple random sampling. For more complex survey designs, e.g. involving cluster 

sampling or sampling with unequal probabilities, it is unclear whether the proposed bootstrap approach is 

always appropriate. It is possible that in some cases such complex design features could indirectly affect 

the uncertainty of estimated parameters of the latent class model and therefore become relevant for 

variance estimation. We will return to this point in the discussion section. 

 
3. Simulation study 
 

In this section, we describe a simulation study that is performed to evaluate the extensions of the MILC 

method in Section 2. The topic of this study is the estimation of a table from the Dutch Population and 

Housing Census. 

 

3.1 The Dutch Census 
 

Population and housing censuses provide a picture about the socio-demographic and socio-economic 

situation of a country and it is ubiquitous that a census should cover the entire population of people and 

dwellings that are present in a country. Every ten years the United Nations Economic and Social Council 

(ECOSOC) adopts a resolution, urging Member States to carry out a population and housing census and to 
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disseminate census results as an essential source of information, see e.g. The Economic and Social 

Council (2005). In the EU, explicit agreements have been made about which variables should be listed in 

the census, and also which cross-tables should be produced (European Commission, 2008, 2009 and 

2010). 

The vast majority of countries produce census data by conducting a traditional census, which entails 

interviewing inhabitants in a complete enumeration, reaching every single household. An increasing 

number of countries however have adopted a different, innovative approach, in the form of a so-called 

virtual census. With a virtual census, census tables are compiled using data sources that are already 

available at the statistical agency. These are data sources that have not been primary collected for the 

census, but for other purposes. Statistics Netherlands can rely on population registers as the main source 

for most census tables. These registers are of relatively good quality, including a very broad coverage 

(Geerdinck, Goedhuys-van der Linden, Hoogbruin, De Rijk, Sluiter and Verkleij, 2014). All register 

variables are available from Statistics Netherlands’ system of social statistical data-sets (Bakker, 

Van Rooijen and Van Toor, 2014). The backbone is the Central Population Register which combines the 

population registers from municipalities. The population registers are supplemented with variables 

originating from sample surveys, because not all variables that are necessary according to the EU 

regulations can be found in the population registers. 

For the 2001 and 2011 Dutch censuses, only two variables could not be measured from registers: 

Occupation and Educational Attainment (Schulte Nordholt, Van Zeijl and Hoeksma, 2014). These two 

variables were observed from combined Labour Force Surveys (LFSs). To obtain the required cross-tables 

for the 2011 Dutch census, a procedure was used where all data sources were matched on the unit level. 

Then, a micro-integration process was carried out. Micro-integration brings together records from 

different micro-datasets and subsequently resolves data inconsistencies. The goal is to improve the quality, 

compatibility and scope of the data sets. The techniques that are used in micro integration are: completing, 

harmonising and correcting for measurement errors. Completing means that corrections are made for an 

under- or overcoverage of a target population. Harmonisation refers to transformations such that data sets 

fit to the concept that is supposed to be measured. Measurement correction means that inconsistencies 

between sources are resolved (Bakker, 2011; van Rooijen, Bloemendal and Krol, 2016). Also, 

inconsistencies between sources are removed, by using formal rules that make clear what happens in case 

of inconsistencies, e.g. which source is used (Bakker, 2010; de Waal, Pannekoek and Scholtus, 2011). 

After micro-integration, two combined data sources were obtained: one based on a combination of 

registers and the other one based on a combination of sample surveys. All census tables that do not contain 

occupation and educational attainment were entirely compiled from the combined registers. The values in 

the cells of these tables were obtained by counting the occurrence of the categories in the matched 

registers. The other census tables, those with educational attainment and/or occupation, were estimated 

from the combined sample surveys. To establish consistent results, a procedure was applied based on 

weighting followed by macro integration (Daalmans, 2018; Schulte Nordholt et al., 2014). In the first step, 
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weights were derived, such that the marginal totals of the weighted survey data comply with the known 

totals from the registers. The different tables that are obtained in this way are not necessarily consistent 

with each other, because different weighting schemes apply to each table. To resolve this problem, macro-

integration is used. This step starts with initial estimates for each census table, derived from the weighted 

survey data or from the integrally counted register data. These initial estimates are adjusted, to arrive at 

fully consistent census tables, that comply with the known register totals. 

MILC has a couple of advantages over the current estimation method. First, the assumption is often 

made that the population registers are free of error. If a variable is measured both in the population register 

and in a sample survey and the scores on these variables contradict each other, the register score usually 

overrides the survey score because of this assumption. In other words, sample survey data are ignored for 

the part that is also observed in a register. Second, for the current procedure, it is not easy to compute 

uncertainty measures that capture all steps of the estimation process, including the uncertainty due to the 

missing and conflicting values in the linked data-sets. For MILC on the other hand it is well-established 

how variances can be properly estimated. Third, the data processing procedure that is currently used 

contains a specific sequence of steps, where decisions made at one step are influenced by decisions made 

at previous steps. For instance, if there are two conflicting values for the same person, then one of these is 

chosen in the “micro-integration” step. In the subsequent weighting and macro integration steps only one 

value is used. Thus, the availability of the different values is ignored in the final estimation of the census 

tables. Basically, MILC exploits information provided by all observed values in contrast to the current 

procedure. 

 

3.2 The census table under investigation 
 

The starting point of this simulation study is an existing census table, which can be downloaded from 

Census Hub (Census Hub, 2017). This table comprises 2,691,477 persons who where living in the region 

“Noord-Holland” in the Netherlands in 2011. This census table is a cross-table between the following six 

variables:  

1. Age in 21 categories: under 5 years; 5 to 9 years; 10 to 14 years; 15 to 19 years; 20 to 24 years; 

25 to 29 years; 30 to 34 years; 35 to 39 years; 40 to 44 years; 45 to 49 years; 50 to 54 years; 55 

to 59 years; 60 to 64 years; 65 to 69 years; 70 to 74 years; 75 to 79 years; 80 to 84 years; 85 to 

89 years; 90 to 94 years; 95 to 99 years; 100 years and over.  

2. Marital status in eight categories: never married; married; widowed; divorced; registered 

partnership; widow of registered partner; divorced from registered partner; not stated.  

3. Gender in two categories: male; female.  

4. Place of birth in five categories: the Netherlands; a country within the European Union; a 

country outside the European Union; other; not stated.  

5. Type of family nucleus in which a person lives in five categories: partners; lone parents; 

sons/daughters; not stated; not applicable.  
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6. Country of citizenship in five categories: Dutch citizen; citizen of a country within the 

European Union; citizen of a country outside the European Union; stateless; not stated.  

 

Thus, the census table consists of 42,000 cells. 

 

3.3 Simulation setup 
 

The goal of this simulation study is to replicate the frequencies of the 42,000 cells in the cross-table 

using multiple indicators contaminated with misclassification and missing values. Therefore, this 

misclassification should be induced first. 

We generate two indicator variables for three different latent variables, all containing 5% random 

misclassification, which can be considered a very high amount, especially for Dutch population registers. 

The indicator variables are generated for the variables “Gender”, “Type of family nucleus” and “Country 

of citizenship”. Misclassification is generated in such a way that first, 5% of the cases are randomly 

selected. Second, their original score is identified and third, a different score is assigned by sampling from 

the observed frequency distribution of the other categories. 

For the register indicators ,1,vl
Y  misclassification is generated only once, as these indicator variables 

represent register variables for the complete and finite population, there should not be any variability in 

misclassification between replications in the simulation study for these variables. For the survey indicators 

, 2 ,
vl

Y  misclassification is newly generated for every replication in the simulation study, followed by 

generating missing values using either a Missing Completely At Random (MCAR) or Missing At Random 

(MAR) missingness mechanism with approximately 90% missingness for both situations. With a MCAR 

mechanism, the response probabilities for the respondents and non-respondents is equal. With a MAR 

mechanism, the response probabilities are related to other observed values (Rubin, 1976). These , 2vl
Y  

indicators represent survey variables for a sample of the population. 

Missingness is generated in such a way that it mimics a situation that 10% of the population is included 

in the survey. Missingness is generated under MCAR and MAR. Under MCAR, the probability of being 

missing (i.e. not being included in the survey) is 90% and equal for every person in the population. Under 

MAR, the probability of being missing depends on a persons’ age and decreases as a person gets older. 

More specifically, the probability of being missing is lowest for persons in the age category “100 years 

and older”, and is 80%. This percentage gradually increases with the highest being 94% for the persons in 

the age category “under five years”. To summarize, for each of the 500 iterations in the simulation study, a 

simple random or stratified sample of the combined data-set is obtained that contains approximately 

269,147 persons (10% of the population), on which the LC model is estimated. 

 

3.4 Applying the MILC method 
 

As discussed in Section 2, M  bootstrap samples are generated from the combined dataset, and in this 

study the LC model is estimated only on the complete set of observations of each bootstrap sample. 

Results are obtained using 5,M = 10M =  and 20.M =  
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In Figure 3.1, the graphical overview of the latent class model can be found. Here, it can be seen that 

the latent variables 1X  “Gender”, 2X  “Family nucleus” and 3X  “Citizen” are all measured by two 

indicators. The restriction on the relationship between 1Q  “Age” and 2X  “Family nucleus” is denoted by 

“a” in Figure 3.1. Here, we restricted that if someone is of age category “under 5 years”, “5 to 9 years” or 

“10 to 14 years”, it is impossible to be assigned to the latent classes “partners” or “lone parents” for the 

latent variable “Family nucleus”. 

 
 

Figure 3.1 Graphical overview of the LC model specified. Note that edit restrictions are applied between the 

variables “Type of family nucleus” and “age” (denoted in the model by “a”). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
To specify the LC model for response pattern ( )P = =Y y Q q  we can fill in at equation 2.1 that 

3,v = 1 2,K = 2 4,K = 3 4,K = 1 2,L = 2 2L =  and 3 2.L =  Note that 2X  here only has four latent classes, 

while the variable “Family Nucleus” in the population census table has five categories. Therefore, it would 

have made sense for 2X  to also have five latent classes. However, there were no observations for the 

category “not applicable”, so therefore we didn’t have to include a latent class for this category. The same 

holds for the category “stateless” of 3.X  

Next, multiple imputations can be created and estimates of interest can be pooled as described in 

Sections 2.3 and 2.4. As the cells of the frequency-tables of interest can become very small, a log-

transformation is used to ensure appropriate confidence intervals around these small cells. Therefore, 

betweenVAR
j
 is not estimated as the variance of ˆ ,ij  as in equation 2.7, but as the variance of ( )ˆlog ,ij  

where ˆ
ij  refers to the number of units in cell j  in imputation .i  

 

     Y11 Gender 

     Y12 Gender 

     Y21 Partners 

     Y22 Partners 

     X1 Gender 

              Q1 Age 

    Q2 Marital status 

    Q3 Place of birth 

X2 Family 
nucleus 

     X3 Citizen 

     Y31 Citizen 

     Y32 Citizen 
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3.5 Evaluation 
 

To evaluate the performance of the MILC method when trying to construct the census table initially 

used to create the misclassified data, it is useful to make comparisons to results obtained when the variable 

observed in the register is used directly to create cross-tables. We refer to these results as obtained using 

, 1.vY  These results are equal over the 500 simulation iterations and the bias here directly reflects the 

misclassification in this indicator, which becomes more severe as the categories are more imbalanced in 

size due to the misclassification mechanism. Furthermore, it would be difficult to draw general 

conclusions from results obtained by only evaluating every single of the 42,000 cells of the complete 

census table. Therefore, we investigate some specific characteristics of this table separately. First, we 

investigate whether the method is able to reconstruct the univariate marginal cell frequencies of the latent 

variables specified. Second, we investigate if the method is able to reconstruct the joint distribution of the 

three latent variables. Third, we investigate if the method correctly incorporates edit restrictions. At last, 

we investigate some features of the complete census table. 

First, we evaluate the cell-proportions of the previously discussed cross-tables in terms of bias, by 

evaluating the average absolute bias and the root mean squared error (RMSE) over the 500itN =  

replications in the simulation study. More specifically, the bias of a cell frequency j  is calculated as  
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Furthermore, the RMSE is calculated as  
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Second, results are evaluated in terms of variance. Here, it is of interest to evaluate whether MILC 

correctly reflects uncertainty due to missing and conflicting values in between imputation variance for 

both univariate and multivariate cross-tables. Therefore, we investigate if the average of the estimated 

standard errors is approximately equal to the standard deviation over the 500 estimates obtained from the 

500 simulation replications by evaluating its ratio, which is calculated by  
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where SE is the square root of the estimate of the total variance obtained after applying pooling rules 

(Rubin, 1976) and ( )ˆSD
itj  is calculated as  
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To account for small cell frequencies, ˆ
itj  and 

itj  are considered on a log scale in equations 3.2, 3.3 and 

3.4. To summarize, we denote the specific conditions evaluated in this simulation study as , 1,vY  MILC-

MCAR-5, MILC-MCAR-10, MILC-MCAR-20, MILC-MAR-5, MILC-MAR-10 and MILC-MAR-20. 

 
4. Simulation results 
 

First, cell-proportions of univariate and multivariate cross-tables are evaluated in terms of bias and root 

mean squared error (RMSE) over the 500 simulation replications. Second, these cell-proportions are 

evaluated in terms of variance by investigating the average of the estimated standard error divided by the 

standard deviation over the 500 estimates obtained from the 500 simulation replications (SESD). Due to 

the log-transformations we made in equations 3.2, 3.3 and 3.4 to account for small cell frequencies, the 

RMSE and SESD are reported on a log scale. 

 

4.1 Results in terms of bias 
 

4.1.1 Univariate marginal frequencies of imputed variables 
 

In Table 4.1, the simulation results can be found that cover the univariate marginal frequencies of the 

imputed latent variable “Gender” in terms of bias and RMSE. Results from all simulation conditions are 

shown. Here, it can be seen that a smaller amount of bias is obtained if 
1,1Y  is used, compared to results 

obtained using MILC under all conditions. In addition, it can be seen that the RMSE is also smaller if 
1,1Y  

is used instead of the MILC method. Furthermore, it can be seen that both bias and RMSE slightly 

decrease as M  increases, and that the quality of the results appears to be unrelated to the missingness 

mechanism. 

 
Table 4.1 

Results in terms of bias and root mean squared error for the two categories of the imputed latent variable 

“Gender” 
 

 Gender Frequency 1, 1
Y  

MCAR MAR 

= 5M  = 10M  = 20M  = 5M  = 10M  = 20M  

Bias F. 1,367,167 -2,126 3,386 3,308 3,325 3,231 3,153 3,109 

M. 1,324,310 2,126 -3,386 -3,308 -3,325 -3,231 -3,153 -3,109 

RMSE F. 1,367,167 2,154 6,008 5,888 5,760 5,914 5,637 5,512 

M. 1,324,310 2,154 6,008 5,888 5,760 5,914 5,637 5,512 

Note: “F.” is “Female” and “M.” is “Male”. 

 
In Table 4.2, the simulation results can be found that cover the univariate marginal frequencies of the 

imputed latent variable “Type of family nucleus” in terms of bias and RMSE. Here, the results are very 

different from the results we found for “Gender”, the bias obtained for 
2,1Y  is much higher compared to 

the bias obtained using MILC under all conditions and the same holds for RMSE. In addition, whether the 

results for the MILC method depend on the missingness mechanism differ per category. In terms of bias 

and RMSE, this is the case for the categories “N.A.” and “Partners”. 
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Table 4.2 

Results in terms of bias and root mean squared error for the four observed categories of the imputed latent 

variable “Type of family nucleus” 
 

 Type of family nucleus Frequency 2, 1
Y  

MCAR MAR 

= 5M  = 10M  = 20M  = 5M  = 10M  = 20M  

Bias Lone parents  97,360 2,670 185 182 176 224 226 220 

N.A.  604,032 8,985 -957 -975 -989 -1,601 -1,612 -1,611 

Partners  1,272,339 -19,686 401 411 427 932 935 932 

Sons/daughters  717,746 8,030 371 381 386 446 451 459 

RMSE Lone parents  97,360 2,672 425 408 395 426 421 414 

N.A.  604,032 8,989 1,337 1,318 1,312 1,837 1,833 1,818 

Partners  1,272,339 19,688 954 914 904 1,256 1,235 1,218 

Sons/daughters  717,746 8,034 630 624 617 715 692 688 

Note: “N.A.” means “Not applicable”. Note that the category “Not stated” is mitigated as it contained zero observations. 
 

 

In Table 4.3, the simulation results can be found that cover the univariate marginal frequencies of the 

imputed latent variable “Citizen” in terms of bias and RMSE. Here, the results are comparable to the 

results we found for “Type of family nucleus”, as the bias obtained when only 
3,1Y  is used is again much 

higher compared to the bias obtained using MILC method and the same holds for RMSE. As was also the 

case for “Type of family nucleus”, whether the results for the MILC method depend on the missingness 

mechanism differ per category, although this is more the case for the bias here, and not so much in terms 

of RMSE. 

 

Table 4.3 

Results in terms of bias and root mean squared error for the four observed categories of the imputed latent 

variable “Citizen” 
 

 Citizen Frequency 3, 1
Y  

MCAR MAR 

= 5M  = 10M  = 20M  = 5M  = 10M  = 20M  

Bias EU  79,212 51,365 -5 -7 -12 -199 -211 -216 

NL  2,511,214 -116,899 -555 -546 -545 117 124 107 

not EU  89,592 58,085 512 502 507 62 69 89 

Not stated  11,459 7,448 49 51 49 21 18 20 

RMSE EU  79,212 51,365 410 398 388 488 486 475 

NL  2,511,214 116,899 925 894 883 767 756 720 

not EU  89,592 58,086 800 770 767 618 611 590 

Not stated  11,459 7,449 201 197 190 204 205 198 

Note: “N.S.” means “Not stated”. Note that the category “Stateless” is mitigated as it contained zero observations. 

 
Boeschoten et al. (2017) concluded that the quality of the output when MILC is applied related to how 

well the latent class model is able to make classifications based on the observed data, which is 

summarized in the entropy 2.R  The entropy 2R  values for “Gender”, “Type of family nucleus” and 

“Citizen” are approximately 0.7352, 0.9191, and 0.8571 respectively under MCAR. So this corresponds to 

the quality of the results for the latent variables in terms of bias and RMSE. An additional explanation for 

“Gender” is that the two categories are of comparable size and the amount of misclassification in both 

categories is approximately equal and behaves symmetrical in our simulation study. This causes that the 

marginal distribution of 
1,1Y  is very similar to the marginal distribution of 1X  and not so much affected by 

misclassification. 
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4.1.2 Joint frequencies of imputed variables 
 

In Table 4.4, the simulation results can be found that cover the joint marginal frequencies of the three 

imputed latent variables in terms of bias and RMSE. Again, it can be seen here that if only 
,1vY  is used, 

severe bias is present in all cells of the joint frequency table. The results obtained when the MILC method 

is applied show much lower amounts of bias and RMSE. Here, the differences between different numbers 

for M  or different missingness mechanism are much smaller compared to the differences between MILC 

and 
,1.vY  Furthermore, the differences in the amount of bias for particular cells after applying the MILC 

method seem to be related to imbalances in cell frequencies within particular variables. More specifically, 

the variable “Citizen” knows substantive differences in cell frequencies and within Table 4.4, it can be 

seen that particular the category “not EU” is affected in terms of bias by this imbalance. 

 
Table 4.4 

Results in terms of bias and root mean squared error for the 32 observed categories of the joint distribution of 

the three imputed latent variables “Gender”, “Type of family nucleus” and “Citizen” 
 

 

Gender   Type of family  

nucleus   Citizen  

, 1v
Y  

MCAR MAR 

Gender Family nucleus Citizen Frequency = 5M  = 10M  = 20M  = 5M  = 10M  = 20M  

Bias F. Lone parents EU 2,091 1,434 8 7 7 1 0 0 

F. Lone parents NL 76,131 -6,620 652 650 646 240 241 234 

F. Lone parents not EU 3,120 1,513 33 32 32 39 39 38 

F. Lone parents N.S. 646 154 -5 -5 -6 -13 -13 -13 

F. N.A. EU 12,436 5,971 433 432 432 431 427 427 

F. N.A. NL 293,960 -11,998 -595 -618 -623 905 891 880 

F. N.A. not EU 9,509 7,317 1,032 1,031 1,032 1,069 1,069 1,071 

F. N.A. N.S. 1,221 982 182 182 182 198 197 197 

F. Partners EU 20,443 11,185 237 236 235 24 19 21 

F. Partners NL 584,547 -34,001 294 262 279 -564 -599 -624 

F. Partners not EU 26,877 12,022 404 402 401 254 255 258 

F. Partners N.S. 1,292 1,837 -19 -18 -18 -23 -24 -24 

F. Sons/daughters EU 4,368 7,541 -778 -779 -780 -851 -853 -854 

F. Sons/daughters NL 321,364 -8,738 2,483 2,471 2,479 2,620 2,601 2,588 

F. Sons/daughters not EU 7,680 8,303 -764 -768 -766 -876 -874 -869 

F. Sons/daughters N.S. 1,482 971 -209 -208 -208 -223 -223 -222 

M. Lone parents EU 389 591 -10 -11 -11 9 9 9 

M. Lone parents NL 14,536 4,791 -553 -552 -554 -134 -131 -130 

M. Lone parents not EU 372 707 35 35 35 53 53 53 

M. Lone parents N.S. 75 100 27 27 27 28 29 29 

M. N.A. EU 16,308 4,444 -306 -304 -305 -349 -349 -350 

M. N.A. NL 253,493 -3,733 -714 -708 -717 -2,730 -2,722 -2,713 

M. N.A. not EU 13,636 5,548 -904 -903 -902 -1,023 -1,023 -1,020 

M. N.A. N.S. 3,469 455 -85 -86 -87 -102 -103 -104 

M. Partners EU 18,444 11,881 793 796 794 905 906 906 

M. Partners NL 599,278 -38,164 -3,170 -3,128 -3,127 -1,528 -1,490 -1,474 

M. Partners not EU 19,776 13,709 1,794 1,793 1,793 1,785 1,790 1,791 

M. Partners N.S. 1,682 1,846 69 69 69 78 78 79 

M. Sons/daughters EU 4,733 8,319 -382 -382 -384 -370 -371 -374 

M. Sons/daughters NL 367,905 -18,435 1,049 1,076 1,072 1,308 1,333 1,346 

M. Sons/daughters not EU 8,622 8,966 -1,118 -1,120 -1,117 -1,240 -1,239 -1,233 

M. Sons/daughters N.S. 1,592 1,103 90 90 91 77 77 78 

Note: “N.S.” means “Not stated” and “N.A.” means “Not applicable”. Note that the categories “Stateless” for “Citizen” and “Not 

Stated” for “Type of family nucleus” are mitigated as they contained zero observations. 
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Table 4.4 (continued) 

Results in terms of bias and root mean squared error for the 32 observed categories of the joint distribution of 

the three imputed latent variables “Gender”, “Type of family nucleus” and “Citizen” 
 

 

Gender   Type of family  

nucleus   Citizen  

, 1v
Y  

MCAR MAR 

Gender Family nucleus Citizen Frequency = 5M  = 10M  = 20M  = 5M  = 10M  = 20M  

RMSE F. Lone parents EU 2,091 1,434 45 42 41 45 42 40 

F. Lone parents NL 76,131 6,621 742 734 724 418 408 394 

F. Lone parents not EU 3,120 1,514 67 64 64 71 68 66 

F. Lone parents N.S. 646 155 22 21 20 26 25 24 

F. N.A. EU 12,436 5,972 449 446 445 447 442 440 

F. N.A. NL 293,960 12,001 1,260 1,245 1,222 1,433 1,374 1,348 

F. N.A. not EU 9,509 7,317 1,038 1,037 1,037 1,075 1,075 1,076 

F. N.A. N.S. 1,221 983 185 185 185 202 201 201 

F. Partners EU 20,443 11,186 291 285 282 173 163 157 

F. Partners NL 584,547 34,003 2,332 2,285 2,204 2,364 2,248 2,197 

F. Partners not EU 26,877 12,023 456 450 447 330 327 327 

F. Partners N.S. 1,292 1,838 46 44 43 48 48 47 

F. Sons/daughters EU 4,368 7,541 787 787 787 860 862 863 

F. Sons/daughters NL 321,364 8,742 2,820 2,796 2,781 2,959 2,903 2,879 

F. Sons/daughters not EU 7,680 8,304 779 782 780 892 889 883 

F. Sons/daughters N.S. 1,482 972 216 214 214 230 230 229 

M. Lone parents EU 389 592 18 17 17 17 17 16 

M. Lone parents NL 14,536 4,792 605 600 600 271 260 257 

M. Lone parents not EU 372 707 38 38 37 55 55 55 

M. Lone parents N.S. 75 101 27 27 27 29 29 29 

M. N.A. EU 16,308 4,445 331 328 327 373 371 370 

M. N.A. NL 253,493 3,742 1,390 1,349 1,314 2,959 2,931 2,911 

M. N.A. not EU 13,636 5,549 913 912 911 1,033 1,031 1,028 

M. N.A. N.S. 3,469 456 107 105 104 121 121 120 

M. Partners EU 18,444 11,881 808 810 807 919 919 917 

M. Partners NL 599,278 38,165 3,898 3,837 3,794 2,755 2,617 2,568 

M. Partners not EU 19,776 13,709 1,804 1,803 1,803 1,797 1,800 1,800 

M. Partners N.S. 1,682 1,846 88 87 85 98 95 95 

M. Sons/daughters EU 4,733 8,319 403 403 403 401 401 402 

M. Sons/daughters NL 367,905 18,437 1,728 1,723 1,687 1,905 1,872 1,854 

M. Sons/daughters not EU 8,622 8,967 1,129 1,130 1,127 1,252 1,250 1,244 

M. Sons/daughters N.S. 1,592 1,104 109 108 107 103 102 101 

Note: “N.S.” means “Not stated” and “N.A.” means “Not applicable”. Note that the categories “Stateless” for “Citizen” and “Not 

Stated” for “Type of family nucleus” are mitigated as they contained zero observations. 

 
4.1.3 Restricted cells 
 

In Table 4.5, the simulation results can be found for the six cells that are restricted in the marginal 

cross-table between “Age” and “Type of family nucleus”. Under “Frequency”, it can be seen that these six 

cells should all contain zero observations. A combination of these scores is logically impossible. 

Furthermore, it can be seen that due to misclassification in 
2,1,Y  observations containing these 

combinations of scores are present when 
2,1Y  is used to estimate this cross-table directly. In addition, it can 

be seen that if the MILC method is applied, such impossible combinations of scores will never be present, 

regardless of the missingness mechanism or the number of imputations. Furthermore, as the cells in this 

marginal table contain zero observations, all cells of more detailed tables covering these logically 

impossible combinations of scores automatically also contain zero observations. 
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Table 4.5 

Results in terms of bias and root mean squared error for the six restricted categories from cross-table between 

“Type of family nucleus” and the covariate “Age” 
 

 Type of family nucleus Frequency 2, 1
Y  

MCAR MAR 

= 5M  = 10M  = 20M  = 5M  = 10M  = 20M  

Bias Lone parents under 5 years 0 377 0 0 0 0 0 0 

Lone parents 5 to 9 years 0 386 0 0 0 0 0 0 

Lone parents 10 to 14 years 0 376 0 0 0 0 0 0 

Partners under 5 years 0 4,934 0 0 0 0 0 0 

Partners 5 to 9 years 0 5,041 0 0 0 0 0 0 

Partners 10 to 14 years 0 4,937 0 0 0 0 0 0 

RMSE Lone parents under 5 years 0 377 0 0 0 0 0 0 

Lone parents 5 to 9 years 0 386 0 0 0 0 0 0 

Lone parents 10 to 14 years 0 377 0 0 0 0 0 0 

Partners under 5 years 0 4,934 0 0 0 0 0 0 

Partners 5 to 9 years 0 5,041 0 0 0 0 0 0 

Partners 10 to 14 years 0 4,937 0 0 0 0 0 0 

 
4.1.4 The complete population frequency table 
 

Figures 4.1 and 4.2 show results in terms of bias and root mean squared error (RMSE) when the 

complete census table, so the cross-table between the six variables, is estimated. As these are 42,000 cells 

in total, it is not feasible to evaluate them individually. Figure 4.1 and Figure 4.2 give an overview of how 

size of the cell frequency is related to the quality of the results. Here it can be seen that if 
,1vY  are used, 

results in terms of bias and RMSE are related directly to cell frequency. More specifically, the relationship 

between cell frequency and absolute bias is approximately linear where the amount of bias is 

approximately 10% of the cell frequency. 

 
Figure 4.1 Results in terms of bias when the complete cross-table between the latent variables “Gender”, 

“Type of family nucleus” and “Citizen” and the three covariates “Age”, “Marital status” and 

“Place of birth” is estimated. The X-axis represents cell frequency and the Y-axis represents the 

bias. Results are shown for , 1
,

v
Y  MILC-MCAR-20 and MILC-MAR-20. 
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Figure 4.2 Results in terms of root mean squared error (RMSE) when the complete cross-table between the 

latent variables “Gender”, “Type of family nucleus” and “Citizen” and the three covariates 

“Age”, “Marital status” and “Place of birth” is estimated. The X-axis represents cell frequency 

and the Y-axis represents the RMSE. Results are shown for , 1
,

v
Y  MILC-MCAR-20 and MILC-

MAR-20. 

 

 

 

 

 

 

 

 

 

 

 
4.2 Results in terms of variance 
 

4.2.1 Univariate marginal frequencies of imputed variables 
 

In Table 4.6, the simulation results can be found that cover the univariate marginal frequencies 

“Gender” in terms of se/sd. As this ratio measures whether the average standard error estimated at each 

replication in the simulation correctly describes the uncertainty (standard deviation) that is found over the 

estimates, it should be close to one. In addition, as a completely observed and finite population is 

assumed, variance is not estimated when 
,1vY  is used. The results obtained using MILC are generally close 

to one and comparable to the results in terms of bias as only minor differences can be found between 

different values for M  or between the different missingness mechanisms. 

 
Table 4.6 

Results in terms of average standard error of the estimates divided by standard deviation over the estimates 

(se/sd) for the two categories of the imputed latent variable “Gender”  
 

 Gender Frequency , 1v
Y  

MCAR MAR 

= 5M  = 10M  = 20M  = 5M  = 10M  = 20M  

se/sd F. 1,367,167 - 1.0540 1.0317 1.0363 1.0030 1.0235 1.0237 

M. 1,324,310 - 1.0546 1.0317 1.0363 1.0034 1.0236 1.0236 

Note: (“F.” is “Female” and “M.” is “Male”). 

 
In Table 4.7 and 4.8, the simulation results can be found that cover the univariate marginal frequencies 

for “Type of family nucleus” and “Citizen” respectively in terms of se/sd. The results found here have a 

very comparable structure compared to the results we found for “Gender”. 
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Table 4.7 

Results in terms of average standard error of the estimates divided by standard deviation over the estimates 

(se/sd) for the four observed categories of the imputed latent variable “Type of family nucleus” 
 

 Type of family nucleus Frequency , 1v
Y  

MCAR MAR 

= 5M  = 10M  = 20M  = 5M  = 10M  = 20M  

se/sd Lone parents 97,360 - 1.0457 1.0510 1.0529 1.0561 1.0337 1.0336 

N.A. 604,032 - 0.9706 0.9874 0.9922 0.9751 0.9829 0.9863 

Partners 1,272,339 - 1.0332 1.0418 1.0456 1.0052 1.0269 1.0298 

Sons/daughters 717,746 - 0.9594 0.9615 0.9606 0.9696 0.9880 0.9938 

Note: “N.A.” means “Not applicable”. Note that the category “Not stated” is mitigated as it contained zero observations. 

 
Table 4.8 

Results in terms of average standard error of the estimates divided by standard deviation over the estimates 

for the four observed categories of the imputed latent variable “Citizen”  
 

 Type of family nucleus Frequency , 1v
Y  

MCAR MAR 

= 5M  = 10M  = 20M  = 5M  = 10M  = 20M  

se/sd Citizen EU 79,212 - 1.0417 1.0172 1.0362 1.0768 1.0539 1.0571 

Citizen NL 2,511,214 - 1.0136 1.0113 1.0235 1.0925 1.0645 1.0927 

Citizen not EU 89,592 - 0.9478 0.9632 0.9709 1.0282 0.9916 1.0125 

Not stated 11,459 - 1.0063 1.0208 1.0238 1.1057 1.0861 1.1143 

Note: “N.S.” means “Not stated”. Note that the category “Stateless” is mitigated as it contained zero observations. 

 
4.2.2 Joint frequencies of imputed variables 
 

In Table 4.9, the simulation results can be found that cover the joint marginal frequencies of the 

imputed latent variables “Gender”, “Type of family nucleus” and “Citizen” in terms of absolute se/sd. The 

results found for these joint frequencies are very comparable to the results we found for the marginal 

frequencies. For cells with a relatively low frequency, it can be seen that the ratio is in general larger than 

one, indicating that the variance estimated for these frequencies (and thereby the differences between the 

imputations) incorporate more uncertainty than is actually found over different replications. Summarizing, 

the uncertainty for cells containing low frequencies is overestimated. 

Results in terms for variance are not shown for the restricted cells, as a variance term cannot be 

estimated here. 

 

Table 4.9 

Results in terms of average standard error of the estimates divided by standard deviation over the estimates 

for the 32 observed categories of the joint distribution of the three imputed latent variables “Gender”, “Type 

of family nucleus” and “Citizen” 
 

Gender   Type of family  

nucleus   Citizen  

, 1v
Y  

MCAR MAR 

Gender Family nucleus Citizen Frequency = 5M  = 10M  = 20M  = 5M  = 10M  = 20M  

F. Lone parents EU 2,091 - 1.1813 1.2097 1.2032 1.1495 1.1654 1.1997 

F. Lone parents NL 76,131 - 1.0371 1.0471 1.0504 1.0270 1.0252 1.0349 

F. Lone parents not EU 3,120 - 1.1659 1.1590 1.1519 1.1607 1.1634 1.1870 

Note: “N.S.” means “Not stated” and “N.A.” means “Not applicable”. Note that the categories “Stateless” for “Citizen” and “Not 

Stated” for “Type of family nucleus” are mitigated as they contained zero observations. 
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Table 4.9 (continued) 

Results in terms of average standard error of the estimates divided by standard deviation over the estimates 

for the 32 observed categories of the joint distribution of the three imputed latent variables “Gender”, “Type 

of family nucleus” and “Citizen” 
 

Gender   Type of family  

nucleus   Citizen  

, 1v
Y  

MCAR MAR 

Gender Family nucleus Citizen Frequency = 5M  = 10M  = 20M  = 5M  = 10M  = 20M  

F. Lone parents N.S. 646 - 1.0963 1.1004 1.1272 1.1110 1.1000 1.1054 

F. N.A. EU 12,436 - 1.0850 1.0838 1.1172 1.0888 1.1065 1.1456 

F. N.A. NL 293,960 - 1.0840 1.0652 1.0575 1.0158 1.0406 1.0461 

F. N.A. not EU 9,509 - 1.1636 1.1822 1.1892 1.1574 1.1383 1.1562 

F. N.A. N.S. 1,221 - 1.1789 1.1964 1.2097 1.1959 1.1826 1.2133 

F. Partners EU 20,443 - 1.0508 1.0537 1.0653 1.0689 1.0684 1.0925 

F. Partners NL 584,547 - 1.0313 1.0099 1.0189 1.0035 1.0253 1.0197 

F. Partners not EU 26,877 - 1.0532 1.0766 1.0720 1.0765 1.0725 1.0733 

F. Partners N.S. 1,292 - 1.1471 1.1566 1.1504 1.2157 1.1855 1.1940 

F. Sons/daughters EU 4,368 - 1.0135 1.0147 1.0338 1.0430 1.0518 1.0479 

F. Sons/daughters NL 321,364 - 1.0548 1.0379 1.0527 1.0017 1.0222 1.0221 

F. Sons/daughters not EU 7,680 - 0.9977 0.9966 0.9909 1.0249 1.0132 1.0416 

F. Sons/daughters N.S. 1,482 - 1.0344 1.0325 1.0357 1.0836 1.0688 1.0890 

M. Lone parents EU 389 - 1.3198 1.4136 1.4316 1.2941 1.3575 1.4470 

M. Lone parents NL 14,536 - 1.0784 1.0762 1.0736 1.0755 1.0690 1.0650 

M. Lone parents not EU 372 - 1.4159 1.3857 1.4511 1.4814 1.4481 1.4619 

M. Lone parents N.S. 75 - 1.4330 1.5192 1.5659 1.4598 1.5035 1.5373 

M. N.A. EU 16,308 - 1.0990 1.0908 1.1165 1.0894 1.1022 1.1366 

M. N.A. NL 253,493 - 1.0035 1.0100 1.0193 0.9920 1.0175 1.0238 

M. N.A. not EU 13,636 - 1.1168 1.1100 1.1141 1.0826 1.1054 1.0952 

M. N.A. N.S. 3,469 - 1.0241 1.0818 1.1052 1.1592 1.1478 1.1780 

M. Partners EU 18,444 - 1.1618 1.1593 1.1579 1.1473 1.1335 1.1476 

M. Partners NL 599,278 - 1.0668 1.0444 1.0487 1.0081 1.0329 1.0231 

F. Partners not EU 19,776 - 1.0932 1.0788 1.0816 1.0674 1.0612 1.0911 

F. Partners N.S. 1,682 - 1.1068 1.1411 1.1418 1.1335 1.1719 1.1770 

F. Sons/daughters EU 4,733 - 1.0598 1.0396 1.0548 1.0528 1.0497 1.0414 

F. Sons/daughters NL 367,905 - 1.0549 1.0347 1.0365 1.0098 1.0298 1.0340 

F. Sons/daughters not EU 8,622 - 1.0077 1.0093 1.0100 1.0413 1.0449 1.0471 

F. Sons/daughters N.S. 1,592 - 1.0472 1.0617 1.0699 1.0458 1.0362 1.0627 

Note: (“N.S.” means “Not stated” and “N.A.” means “Not applicable”). Note that the categories “Stateless” for “Citizen” and 

“Not Stated” for “Type of family nucleus” are mitigated as they contained zero observations. 

 
4.2.3 The complete population frequency table 
 

In Figure 4.3, results can be found in terms of average standard error of the cell frequencies divided by 

the standard deviation over the frequencies estimated in the 500 replications in the simulation study 

(se/sd). Here it can be seen that the standard error estimated per cell frequency is especially too large when 

cell frequencies are close to zero, and become closer to the nominal rate of one as the cell frequencies 

become larger. Apparently, variability due to missing and conflicting values is overestimated by MILC for 

cells with a frequency close to zero. In addition, this becomes more apparent when the number of 

imputations increases and it is not influenced by missingness mechanism. 
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Figure 4.3 Results in terms of average standard error of the cell frequencies divided by the standard 

deviation over the frequencies (se/sd) when the complete cross-table between the latent variables 

“Gender”, “Type of family nucleus” and “Citizen” and the three covariates “Age”, “Marital 

status” and “Place of birth” is estimated. The X-axis represents cell frequency and the Y-axis 

represents the se/sd ratio. Results are shown for MILC-MCAR-5, MILC-MCAR-10, MILC-

MCAR-20, MILC-MAR-5, MILC-MAR-10 and MILC-MAR-20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
4.3 Sensitivity to violations of assumptions 
 

The simulation study presented in this paper is aimed at investigating the performance of the MILC 

method in a situation of misclassification in a finite population setting. When applying the MILC method 

in practice, a number of assumptions are made and during this simulation study these assumptions were 

met. To further investigate the sensitivity to violations of these assumptions, additional simulation studies 

were performed. 

An important assumption made when applying the MILC method is that the missingness mechanism is 

either MCAR or MAR. Therefore, a first sensitivity analysis involves a Missing Not At Random (MNAR) 

mechanism. More specifically, we generated this mechanism in such a way that the probability of being 
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missing in the survey indicator for “Type of family nucleus” depends on the latent variable “type of family 

nucleus” and is smallest for the first category and largest for the last category. In Table 4.10, it can be seen 

that the bias and RMSE increase when the mechanism is MNAR compared to MAR, while the se/sd is not 

affected. More specifically, it can be seen that the extent of the bias relates to how much the respective 

class is affected by the mechanism. 

A second assumption states that the measurement error present in the indicators is random. To 

investigate sensitivity to the violation of this assumption, we generated a selective measurement error 

mechanism where the probability of measurement error in the register indicator for the variable “type of 

family nucleus” differs per category. Here, again the first category is least affected and the last category 

most. In Table 4.10 it can be seen that the effect of this selective mechanism are limited. The bias 

increases in a similar way as the percentage of measurement error in the respective category increases, but 

these are still relatively low amounts of bias. The se/sd is not affected by the mechanism. 

 
Table 4.10 

Results in terms of bias, root mean squared error and se/sd for the four observed categories of the imputed 

latent variable “Type of family nucleus”  
 

 Type of family nucleus Frequency 2, 1
Y  MAR MNAR Selective ME covar 

Bias Lone parents  97,360 2,670 224 6,256 105 1,172,993 

N.A.  604,032 8,985 -1,601 27,002 -1,824 534 

Partners  1,272,339 -19,686 932 -11,341 1,116 -1,174,697 

Sons/daughters  717,746 8,030 446 -21,917 603 1,170 

RMSE Lone parents  97,360 2,672 426 6,268 332 1,172,994 

N.A.  604,032 8,989 1,837 27,017 2,060 1,094 

Partners  1,272,339 19,688 1,256 11,377 1,466 1,174,697 

Sons/daughters  717,746 8,034 715 21,924 819 1,291 

se/sd Lone parents  97,360 - 1.0561 1.01936 1.0634 1.0518 

N.A.  604,032 - 0.9751 1.02491 0.9722 1.0471 

Partners  1,272,339 - 1.0052 0.97456 0.9291 0.9649 

Sons/daughters  717,746 - 0.9696 1.02547 1.0962 1.0181 

Note: “N.A.” means “Not applicable” under different violations of assumptions. Note that the category “Not stated” is mitigated 

as it contained zero observations. 

 
A third assumption is that covariates do not contain measurement error. This assumption is the most 

remarkable, as it is typically often not the case that a coviarate does not contain measurement error. It is 

more likely that these variables will be treated as such because no additional information about their 

measurement error is known. If information was known, for example because additional survey 

information was present, it would have been incorporated by means of a latent variable. As in practice 

however there is always a probability that for some variables such information is not known, we 

investigate the sensitivity of the method to violation of this assumption. More specifically, we generated 

5% misclassification in the covariate “marital status”, which has a relatively strong association with the 

latent variable “type of family nucleus”. Indeed, the bias in some categories is highly affected by this 

misclassification. 
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5. Discussion 
 

In this paper, the performance of the MILC method was investigated in a situation where 

misclassification was induced in a finite population setting. Here, an existing population census table was 

used as a starting point, and for three categorical variables present in this census table, two indicator 

variables were generated with 5% misclassification each, where one indicator also contains approximately 

90% missing values. As a finite population was assumed, the estimated variance only contained a between 

variance component reflecting the differences between the imputations and thereby the uncertainty caused 

by the misclassification and missing values in the indicator variables. 

The simulation results show that the method, regardless of the number of imputations, produces results 

with a low bias for marginal frequency distributions, cross-tables between imputed latent variables and 

covariates and even for the complete six-way cross-table. Striking is the amount of bias that is induced 

when the indicator observed via the register is used to calculate the cross-tables evaluated in comparison 

to when MILC is used. It is also shown that if these indicators are used, it is likely that impossible 

combinations of scores are produced as well, something that can be easily circumvented by specifying edit 

restrictions in the LC model. This simulation study once again shows that misclassification, even if it is 

non-systematic, can seriously bias results. In terms of variance, it was seen that if the MILC method is 

applied, variance estimates are appropriate in general. However, if cell frequencies are relatively small, 

the variance is overestimated. This problem is more severe if the complete frequency table is evaluated, 

because this large table contains many cells with low frequencies. 

The current set-up of this simulation study knows two major limitations. The first is caused by the 

large amount of cells in the cross-table. Because of this, a latent class model containing only main effects 

was used. It was not feasible to use a saturated model as the number of parameters would be very large, 

and it would be likely that not every parameter is estimable in every bootstrap sample. This would limit 

the use of starting values, thereby increasing the computation time for the simulation study to an 

unfeasible amount. 

A second limitation is that in our simulation set-up we only considered relatively simple sampling 

designs for the survey data: simple random sampling (MCAR conditions) and, essentially, stratified 

simple random sampling (MAR conditions). A future study could examine to what extent the MILC 

method can also correct for misclassification error with appropriate variance estimates when survey data 

are obtained by a complex sampling design that involves, for instance, cluster sampling, multistage 

sampling or sampling with unequal probabilities proportional to size. In the context of missing data it has 

been found that, although a generally accepted theory is still lacking, in practice multiple imputation often 

works reasonably well for complex samples, provided that design variables and/or survey weights are 

included in the imputation model; see, e.g., Rässler (2004, page 14) and the references listed there. It 

would be interesting to investigate whether this result also applies to multiple imputation in the context of 

correcting for measurement errors. As an alternative, Zhou, Elliott and Raghunathan (2016) proposed a 

Bayesian approach to incorporate survey design features into a multiple-imputation analysis. 
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The starting point of this simulation study was an existing population census table. A nice property 

here was that we could approach this as a finite and known population. Therefore, we did not have to 

include (within) sampling variance in our estimate of the total variance. It was insightful to evaluate cell 

frequencies of both univariate and multivariate cross-tables as results generally appeared to be related to 

cell-frequency. 
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Bayesian inference for multinomial data from small areas 

incorporating uncertainty about order restriction 

Xinyu Chen and Balgobin Nandram1 

Abstract 

When the sample size of an area is small, borrowing information from neighbors is a small area estimation 

technique to provide more reliable estimates. One of the famous models in small area estimation is a 

multinomial-Dirichlet hierarchical model for multinomial counts. Due to natural characteristics of the data, 

making unimodal order restriction assumption to parameter spaces is relevant. In our application, body mass 

index is more likely at an overweight level, which means the unimodal order restriction may be reasonable. 

The same unimodal order restriction for all areas may be too strong to be true for some cases. To increase 

flexibility, we add uncertainty to the unimodal order restriction. Each area will have similar unimodal 

patterns, but not the same. Since the order restriction with uncertainty increases the inference difficulty, we 

make comparison with the posterior summaries and approximated log-pseudo marginal likelihood. 

 

Key Words: Bayesian computation; Contingency tables; Log-pseudo marginal likelihood; Monte Carlo method; Small 
areas; Unimodal order restrictions. 

 

 

1. Introduction 
 

The term “small area” generally refers to a small geographical area such as a county. It can be 

described as the sub-population of interest in a large sample survey. Sample survey data certainly can be 

used to derive reliable estimators of totals and means for large areas or domains. However, using the same 

survey, sample data for small areas are typically small and likely to yield unacceptably large standard 

errors (Ghosh and Rao, 1994). Considering the cost and feasibility of conducting new sample survey for 

small areas, there is a growing demand for reliable small area statistics using the current large sample 

survey. Pooling information from related areas to find more accurate estimates is key in small area 

estimation (Rao and Molina, 2015). 

With the pooling information feature, Bayesian hierarchical models for small area estimation have lots 

of potential in small area estimation. It automatically incorporates all sources of uncertainty associated 

with an inference problem; see, for example, Nandram, Erciulescu and Cruze (2019), Trevisani and 

Torelli (2007), and You and Rao (2002). In the small area context, multinomial Dirichlet models as one of 

Bayesian hierarchical models have been widely used for modeling categorical data. Maples (2019) 

propose a pair of Dirichlet-Multinomial small area models to jointly estimate relevant school-aged child 

population and poverty. Wang, Berg, Zhu, Sun and Demuth (2018) develop a spatial hierarchical model 

based on the generalized Dirichlet distribution to construct small area estimators of compositional 

proportions in several mutually exclusive and exhaustive landcover categories. We focus on extensions of 

the multinomial Dirichlet model. Recently, there are extensive researches considering constrained 

inference for small area estimation, for example, Wu, Meyer and Opsomer (2016) and Heck and Davis-
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Stober (2019). Nandram (1997) provided a clear discussion about a hierarchical Bayesian approach for 

taste-testing experiment and appropriate methods for the model. To select the best population, he studied 

three criteria based on the distribution of random variables representing values on a hedonic scale using 

the simple tree order. Nandram (1998) pooled data from several multinomial populations using a three-

stage multinomial Dirichlet model. 

In many statistical problems, it is necessary to take into account the order restrictions of the unknown 

parameters of interest. Based on the characteristic of data, incorporating order restrictions on cell 

probabilities of count data can improve the accuracy of estimation. Our major task is to assume the same 

unimodal order restrictions across areas in the multinomial Dirichlet model. A lot of discussion have been 

done about the multinomial Dirichlet model with order restrictions. 

Sedransk, Monahan and Chiu (1985) described a Bayesian method for estimation of finite population 

parameters in general population surveys. They added order restrictions to the model to capture the 

unimodal smoothness relationships among cell probabilities ( )1, , ,Jp p  such as  

 1 1 .k k Jp p p p+       

But their model cannot pooling information among areas and is not intended for small area estimation. 

Gelfand, Smith and Lee (1992) provided very-detailed Gibbs sampler structures for Bayesian analysis 

of constrained parameters. They suggested that a Dirichlet prior should be used for ordered multinomial 

parameters, such as 1 2 .k Jp p p p      They noted that the Gibbs sampler cannot be 

employed directly when k  is unknown and prior ( )Pr = = , =1, , .jk j w j K  But the marginal posterior 

for k  can be calculated directly, taking the from  

 ( )
( ) ( )

( ) ( )

1 1 1

1 1 1=1

, , , , , ,
Pr = = ,

, , , , , ,

J j J J

J

J j J Jj

C j w C Y Y j
k j Y

C j w C Y Y j

   

   

+ +

+ +
  

where ( )C  are normalization constant of the Dirichlet distribution with order restrictions. They showed 

Bayesian inference on order parameters can have higher precision. However, their Dirichlet multinomial 

model with the ordered parameters does not consider stratification and cannot borrow information among 

areas either. 

Nandram and Sedransk (1995) showed the precision of inference about ,ij  the proportion of firms in 

stratum i  belonging to SR class ,j  can be dramatically increased by using Dirichlet multinomial model 

with appropriate order restrictions on ,ij  within stratum ,i  
( )  1= : .s

sij i i iJR         

Their order restriction is complicated due to the stratification. They also consider the case where there is 

uncertainty about the vector of modal positions ,L  which can take g  possible values, 

1 2, , , , .g g J  The position probabilities are given below,  

 ( )Pr = = , =1, 2, , ,s sL w s g  where sw  are specified and 
=1

=1.
g

s

s

w   
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They directly applied Monte Carlo integration to estimate the posterior ( )= Pr = .s sw L n  Adopting a 

Bayesian view, they showed that the posterior variances can be dramatically reduced by including order 

restrictions among ,ij  both within and between the strata. However, their model cannot borrow 

information among strata and their order restriction assumption is totally different from ours. 

Nandram, Sedransk and Smith (1997) improved estimation of the age composition of the population of 

Atlantic cod with the help of order-restricted Bayesian estimation. Their work was inspired by Sedransk, 

Monahan and Chiu (1985) and Gelfand, Smith and Lee (1992). Let ij  denote as cell probabilities that a 

fish belong to a length stratum i  and an age class .j  To simplify the analysis, the likelihood of π  is  

 ( )
=1 =1

.ij

I J
n

ij

i j

 π n   

They took independent Dirichlet distributions as prior; that is  

 ( ) 1

=1 =1

,ij

I J

ij

i j

f



−

 π α   

where 0ij   is a fixed quantity, within stratum ,i  1 i ii ik iu       for some .i ik Z  

In their Atlantic cod study, let =1i  correspond to the stratum with the shortest fish and =1j  

correspond to the youngest fish. It is expected that as i  increases, the relative values of the  :ij ij Z   

will change. The order restrictions are not just within strata, but also among strata, such as  

 1 ,i it iK        

 1 *j jKjt
       where i j  and *.t t   

They presented uncertainty about both the locations of the modes and the unimodality itself is included 

as part of the probabilistic specification, as an extension of their work. They considered the case where 

there is uncertainty about the vector of modal position ,L  

 ( )Pr = = , =1, 2, , .s sL w s g   

They showed the joint posterior distribution of   and L  is  

 ( )
( ) ( )

( ) ( )
=1

= 1

, = = .s i

s s

I

s n ii
s g

ss

w C g
f L n

w C C

 


 




 n
  

Their order restriction assumption is not the same across strata, which makes their model is different from 

ours. 

Chen and Nandram (2019), which appeared in the Proceedings of the American Statistical Association, 

proposed a multinomial Dirichlet model with order restrictions. They considered similar unimodal 
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structure within each area. They showed how to use the Gibbs sampler to sample the posterior 

distribution. A huge improvement for estimating the cell probabilities has been shown in their model 

application. Chen and Nandram (2021) have an overview for this type of order-restricted problem for 

small area estimation. Their overview cover model selection, sampling from posterior distribution, model 

diagnostics. 

We notice the same unimodal order restrictions may not hold for some cases. Incorporating uncertainty 

about the order restrictions may solve the issue, see Nandram, Sedransk, and Smith (1997). In our work, to 

increase the model flexibility, we add uncertainty to the unimodal order restriction. Areas have similar 

unimodal order restrictions on parameters of interest, but not the same modal position. Our order 

restrictions occur within areas, not across them and the restriction may not be similar across area. They 

create a difficult problem that will be discussed in the paper. 

The article is organized as follows. In Section 2, we present a brief review of the multinomial Dirichlet 

model and the multinomial Dirichlet model with order restrictions. In Section 3, we incorporate 

uncertainty about order restriction into the model. We present the estimation method and show how to use 

the conditional predictive ordinate as Bayesian diagnostics. In Section 4, for illustrative purpose, we show 

how to analyze the body mass index (BMI) data using the model incorporating uncertainty about order. 

We demonstrate how much improvement there is under the order restrictions. In Section 5, we also 

demonstrate that incorporating uncertainty about order restrictions to the model can improve the 

robustness of the model. Section 6 has a summary and the future work. 

 
2. Hierarchical multinomial Dirichlet 
 

In this section, we present a brief review of Multinomial-Dirichlet model and its extensions with the 

order restriction. To study the association between bone mineral density and body mass index (BMI) from 

several U.S. counties, Nandram, Kim and Zhou (2019) provided a clear discussion of the general 

hierarchical multinomial Dirichlet model and their methodology for small area estimation. Let ijn  be the 

cell counts, which are numbers in each category j  for each area ,i  ij  be the corresponding cell 

probabilities, =1, 2, , ,i I =1, 2, , ,j K  and the total number for each area i  is . =1
= .

K

i ijj
n n  The 

general hierarchical multinomial Dirichlet model is  

 ( ) ( )
ind

. 1
~ Multinomial , , = , , ,i i i i i i iKn nn θ n θ n   

 ( ) ( )
ind

1
~, Dirichlet , = , , ,i i i ik   θ μ μ θ   

 ( )
( )

( )
2

1 !
, = ,

1

K
 



−

+
μ   

where hyper-parameters ( )1= , , ,K μ
=1

0, =1, 0.
K

j jj
     
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They suggest the non-information prior which will be easy to reparameterize. Without any prior 

information, they take μ  and   to be independent, ( ) = ,ij jE  
=1

=1.
K

jj
  As an interpretation of 

hyper-parameters, μ  are related to cell means and   is related to a prior sample size. This model features 

stratification and hyper-parameters to pool information from different strata together. 

This hierarchical multinomial Dirichlet model is a convenient starting point for small area estimation. 

For convenience, we denote it as 1M  model for the future discussion. 

 
2.1 Hierarchical multinomial Dirichlet model with order restrictions 
 

Chen and Nandram (2019) incorporate the order restriction into the Bayesian hierarchical multinomial 

Dirichlet model. Letting ijn  be the cell counts, ij  the corresponding cell probabilities, =1, 2, , ,i I  

=1, 2, , ,j K
. =1
=

K

i ijj
nn  and we believe the mode of ’siθ  is ,1 .im m K    

Specifically, they assume  

 ( )
ind

.
~ Multinomial , , , =1, , ,i i i i i C i In θ n θ θ   

where  1= : , =1, , ,i i im iKC i I     θ  and assume the modal position m  in C  is known. 

At the second stage they assume  

 ( )
ind
~, Dirichlet , =1, , ,i i I θ μ μ   

 ( )
( ) ( )

( )
2

=1

1 ! !
, = , 0, =1, .

1

K

j j

j

K m K m
C   



− −
 

+
 μμ μ   

Since ( ) = ,ij jE   μ  should have the same order restriction as ,iθ  which is ,C μμ  

  1= : ,m KC      μ μ   

and we assume the modal position m  in C  is known. 

A posteriori ( )
ind
~, , Dirichlet ,i i i +θ μ n n μ , = 1, , ,i iC i Iθ  where  

 

( )

( )

( )

=1

=1

1

= 1

, ,
= ,

K

ij jj ij j

K

ij jj

i

n K n

ijjn

i

f
C

   

 







  + + −  

 +





+


θ μ n

n μ
  

where 

 ( )
( )

( )

=1 1

=1
=1

= .ij j

i

K
K

ij jj n

i ij iKC
jij jj

n
C d

n

 
 

 
 

+ −



  +
 

+
 +




θ
n μ θ   

In our BMI data application, there are five categories of BMI. We only interest in the normal and 

overweight BMI level. We use model 2M  represent the model with order restrictions and its modal 
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position is at the second, which is normal weight. Model 3M  represents the model with order restrictions 

and its modal position is at the third, which is overweight weight. 2M  and 3M  are the same hierarchical 

multinomial Dirichlet model, but with different order restrictions. 

The joint posterior density of 2M  or 3M  is  

 ( )
( ) ( )

( ) ( )

( )

1

2
=1 =1 =1

1 ! !1
, , ,

1

ij j

I K K
n

ij ij

i j j

K m K m

D C

 
   

  

− − − 
  

+ 
  θ μ n

μ μ
  

where  

 ( )
( )

( )
=1

=1

=

K

jj

K

jj

D
 


 








μ   

is the normalization constant of Dirichlet distribution,  

 ( )
( )

( )

=1 1

=1
=1

= ,j

i

K
K

jj

ij iKC
jjj

C d
 

 
 

 

−










θ
μ θ   

is the normalization constant of the truncated Dirichlet distribution, , .C C θ μ  

Nandram (1998) showed how to generate samples from model 1.M  In fact, using the griddy Gibbs 

sampler, it can be done easier than the method in Nandram (1998). Chen and Nandram (2019) present 

sampling methods for μ  and θ  with order restrictions from the joint posterior distribution of model 2M  

and 3 ,M  as in Appendix A.1 and Appendix A.2. 

Gelfand, Dey and Chang (1992) used predictive distributions to address the issues of model adequacy 

and model selection. They proposed the conditional predictive ordinate for the model determination. The 

conditional predictive ordinate (CPO) is based on leave-one-out cross validation. CPO estimates the 

probability of observing in  in the future if after having already observed ( ) .i
n  The sum of the log CPO’s 

is an estimator for the log marginal likelihood. The “best” model amongst competing models have the 

largest LPML. 

Chen and Nandram (2021) presented a method to compute the conditional predictive ordinate (CPO) 

and LPML as a Bayesian model selection criteria. In Appendix A.3, we have improved estimation to 

integrate out the order-restricted ,  and the estimated CPO of 2M  and 3M  are  

 CPÔ𝑖 (𝑀2 or 𝑀3) 

1

=1 ( )

=1 =1 =1

!1 1
= ,

!

nij

K
KM M

ijj h

ij

h h ji

n

M n M


−

−






 
  
    


    

where ( ) ( )( )( ) ~ Dirichlet
h hh

i i 
+θ n μ  with order restriction, 

( )h
μ  and 

( )h
  are the posterior samples from 

the joint posterior density. 
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3. Hierarchical multinomial Dirichlet model incorporated uncertainty 

about order restrictions 

 
3.1 Model specification 
 

We consider adding uncertainty to the model to increase the robustness and flexibility. Let pos =L  be 

the mode position of cell probabilities. The extension of the hierarchical multinomial Dirichlet model, 

denoted as 4 ,M  is  

 ( )
ind

pos
~, = Multinomial , , =1, , , =1, , ,i i i iL i I Kn θ n θ   

 ( )
ind

pos
~, , = Dirichlet , =1, , , ,i i lL i I C  θ μ μ θ   

 ( )
( ) ( )

( )
pos 2

=1

1 ! !
, = = , 0, =1, ,

1

K
l

j j

j

K m K m
L C   



− −
 

+
 μμ μ   

where 

  1= : ,i i im iKC      θ   

  1= : ,m KC      μ μ   

and 

 ( )pos

= 1

= = , =1, =1, , .
K

P L w w L   

Modes are the same for all areas but we are uncertain about where they are. 

Then the joint posterior distribution of ,θ ,μ  and ,  is  
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μ

μ

θ μ n
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μ μ

  

where 
posLCI  and 

posL
CI
μ

 are the indicator functions under that order restriction. 

 
3.2 Estimation of ( )pos

= nP L  
 

To generate samples of ,θ μ  and ,  we have to deal with the uncertainty indicator pos .L  In 4 ,M  

variable posL  has prior ( )pos = = lP L w  and posterior  
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Chen and Nandram (2021) notice the order restrictions will significantly increase the computational 

difficulty, especially for the marginal likelihood. There is an accuracy-efficiency trade-off. We notice that 

for each iteration from M1 model, there are two patterns of unimodal structure in θ  for different counties. 

One is that the normal BMI level has the highest cell probability among five levels, which can be 

considered as an unimodal structure and the mode is at the second position. Another is that the overweight 

BMI level has the highest probability, which can be considered as an unimodal structure and the mode is 

at the third position. We can approximate the posterior sample using information obtained from M1. 

 

Estimation Method: 

1. Apply M1 model to the data and acquire posterior samples of .  

2. For each iteration, count areas whose first cell probabilities are the largest among other cells.  

3. In the same iteration, count areas whose second cell probabilities are the largest.  

4. Count areas whose third cell probabilities are the largest, until the last cell.  

5. Compute the ratio of different cases. For example, we may only have 13 counties whose normal 

BMI level probabilities are the largest and 22 counties whose overweight probabilities are the 

largest. Then we have the ratio is 13/22.  

6. Compute the average of ratios for overall iterations. Use the average as approximated mixture 

probabilities.  

 

For example, in our application BMI, 37.2% of θ  has mode at the second position, 62.8% of θ  has 

mode at the third position. Then we can have (𝐿pos = 2̂  | 𝐧) ≈ 0.372 and 𝑃(𝐿pos = 3̂  | 𝐧) ≈ 0.628 as 

probabilities to mix samples from M2 (mode at 2nd) and samples from M3 (mode at 3rd) together. 

Then  

 CPÔ𝑖 (𝑀4) ≈
=1

K


 𝑃(𝐿pos = ℓ̂  | 𝑛) 

1

CPÔ𝑖 (𝐿pos= ℓ)

]

−1

 ,   

where CPÔ𝑖 (𝐿pos= ℓ) are computed in Section 2.1. In the following numerical example,  

 CPÔ𝑖 (𝑀4) ≈ [𝑃(𝐿pos = 2̂  | 𝑛) 
1

CPÔ𝑖 (𝑀2)
+ 𝑃(𝐿pos = 3̂  | 𝑛) 

1

CPÔ𝑖 (𝑀3)
]

−1

,  

without extra computation, taking advantage of known CPOs and the estimated ( )pos =P L n  from the 

previous section, we can easily acquire the CPO of 4 ,M  as in Appendix A.3. 
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4. Application to body mass index data 

 
4.1 Body mass index 
 

The performance of our method is studied using the Third National Health and Nutrition Examination 

Survey, NHANES III. NHANES III is a stratified multistage probability design targeted to obtain a 

representative sample of the total civilian noninstitutionalized U.S. population age 2 months and older. 

The sample was selected from households across the United States during the period October 1988 

through September 1994. Some individuals area selected with different probabilities. For confidentiality 

reasons, the final data set for this study uses only the 35 largest counties (from 14 states) with a population 

of at least 500,000 for selected age categories by sex (male, female) and race (white non-Hispanic, black 

non-Hispanic, Hispanic, other). 

The original sensitive attributes BMI data are transformed to categorical data based on the criteria 

defined by the Centers for Disease Control (CDC), which are underweight, normal, overweight, obese I, 

and obese II. If BMI is less than 18.5, it falls within the underweight range. If BMI is 18.5 to   25, it falls 

within the normal. If BMI is 25.0 to   30, it falls within the overweight range. If BMI is 30.0 to   35, it 

falls within the obese I range. If BMI is 35.0 or higher, it falls within the obese II range. Our goal is to 

estimate the proportions of the BMI levels. Table 4.1 gives an illustration of the female BMI data of a few 

counties, where it can be seen that the cell probability is largest for the normal range and other 

probabilities roughly tail off on both sides to form the unimodal order restriction. Indeed, there are 

violations in some counties in the earliest and latest cells. 

Thus, for each county, the BMI counts can be assumed to follow a multinomial distribution because 

each individual person can be assumed to exist independently. Figure 4.1 shows a histogram of all BMI 

values for females aggregated into a single large sample. It can be clearly seen that the unimodal order 

restriction holds. Because the data in the individual counties are generally sparse, it is difficult to tell 

whether the unimodal order restriction holds. However, it is sensible to assume that the same unimodal 

restriction holds within all the counties. Therefore, we can use multinomial distributions to model the 

female BMI counts.  

 
Table 4.1 

The female BMI in five levels 
 

County ID BMI_lvl1 BMI_lvl2 BMI_lvl3 BMI_lvl4 BMI_lvl5 

1 3 40 37 13 4 

2 1 36 38 15 1 

3 3 20 49 13 5 

      

35 1 41 41 9 0 

Total 45 1,201 1,318 496 89 
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                                                Figure 4.1  The overall female BMI in five categories. 
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4.2.1 MCMC convergence 
 

For each model, we run 20,000 MCMC iterations, take 10,000 as a “burn in” and use every th10  to 

obtain 1,000 converged posterior samples to maintain consistency. Table 4.2 gives the effective sample 

sizes of the parameters ,μ   for the model with the order restriction and the general model. The effective 

sample sizes are almost 1,000. Table 4.3 provides p-values of the Geweke test to check the convergence of 

the parameters (Geweke, 1991). All p-values are large enough to not reject the null hypothesis that the 

MCMC is stationary. Then posterior samples can be used for the further inference. 

 
Table 4.2 

Effective sample sizes of   and   
 

 
1

  
2

  
3

  
4

  
5

    

1M   1,000   1,123.7   1,000   1,000   895.4   1,000  

2M  (Mode at 2nd)   1,000   1,000   1,000   1,000   1,150.2   1,000  

3M  (Mode at 3rd)   1,000   887   889   1,000   1,173.9   1,000 

 

Table 4.3 

P values of Geweke test for   and   
 

 
1

  
2

  
3

  
4

  
5

    

1M   0.623   0.558   0.899   0.767   0.959   0.514  

2M  (Mode at 2nd)   0.964   0.705   0.507   0.511   0.837   0.999  

3M  (Mode at 3rd)   0.817   0.559   0.580   0.557   0.812   0.516  
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4.2.2 Model comparison 
 

With the approximate mixture probabilities, we mix posterior samples of 2M  and 3M  together to 

construct samples of 4 .M  

We provide posterior mean (PM), posterior standard deviation (PSD) and coefficient of variation (CV) 

of ’sθ  for all counties, which can be found in Appendix A.4. 

To compare model difference visually, we present the posterior densities plots about different counties 

in those models as Figure 4.2, Figure 4.3, Figure 4.4 and Figure 4.5. We use different colors to indicate 

five BMI levels and dashed lines for the posterior means. Due to different capability of borrowing 

information among areas, we can see different flatness of posterior density curves in the models. With 

different order restriction assumptions, those posterior density curves center at different places and may 

overlap differently. We mainly focus on density curves of normal BMI and overweight BMI, since the 

modal position might be second or third. 

In Figure 4.2 has posterior density plots for County 2 applying different models. The number of 

observations with normal BMI level, which is 36, is close to the number of observations with overweight 

BMI level, which is 38. The unimodal order restriction may not hold in County 2. Maybe for this reason, 

there is a significant overlap between normal level and overweight level in the first plot after applying 1M  

to our BMI data. The second plot and the third plot show much less overlap in density curves, due to the 

strong order restriction assumption. The last plot, which is the density curve from 4M , is similar to the 

density curves in 3 .M  Based on the observations in County 2, the order restriction that the modal position 

is at the third may be reasonable. The density curves in 3M  and 4M  may be appropriate for County 2. 

In Figure 4.3 has posterior density plots for County 3 applying different models. Unlike in County 2, 

the density curves of   from model 1M  in County 3 shows a very strong unimodality because we have 49 

people in overweight BMI level which dominates this county. The second plot from 2 ,M  which assumes 

that the mode is at normal BMI level, has a significant overlap. Its order restriction assumption that the 

modal position is at the second position may not hold in this county. The third plot from 3 ,M  which 

assumes that the mode is at overweight BMI level, is similar as the density curve in 1.M  The posterior 

mean of normal BMI level probability is higher than in 1.M  This phenomenon can be considered as an 

evidence that 3M  has a stronger borrowing ability than 1.M  Overall, the modal position among 35 

counties may be at the third. 3M  can borrow more information among those counties than other models. 

Then the last plot, which is the density curve from 4 ,M  has a little overlap. But the unimodal pattern is 

still in 4 .M  

In Figure 4.4, they are posterior density plots for County 13 applying different models. Only 2M  with 

an assumption that the mode is at normal BMI level does not show a significant overlap. Since more 

people are at overweight BMI level, that assumption may be validate in County 13. 

Figure 4.5 provides posterior density plots for County 35, which has almost same amount of people in 

normal and overweight BMI level. 2M  and 3M  with different unimodal assumptions have opposite 

conclusion about normal and overweight probabilities. In this county, 1M  and 4M  may be better models.  
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 Figure 4.2  Posterior densities of θ  for county 2 showing different order restrictions under different models. 
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 Figure 4.3  Posterior densities of θ  for county 3 showing different order restrictions under different models. 
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 Figure 4.4  Posterior densities of θ  for county 13 showing different order restrictions under different models. 
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 Figure 4.5  Posterior densities of θ  for county 35 showing different order restrictions under different models. 
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Overall, the model with order restrictions, 2M  and 3 ,M  can borrow more information among areas 

than the model without order restriction, 1.M  The model with uncertain order restriction, 4 ,M  borrow less 

information among areas than 2M  or 3 .M  For this reason, 2M  and 3M  have sharper posterior density 

curves than 1 ,M 4M  has slightly flatter posterior density curves than 2M  and 3 .M  For the same reason, 

as shown in Table 4.4, 1M  has the largest total variance, which is the sum of posterior variance of all 

counties’ cell probabilities. 2M  and 3M  have the smallest variance due to its strong unimodal order 

restriction assumption. 4’sM  variance is between 1M  and 3M  (or 2 )M  since 4M  is a mixture of 2M  and 

3 .M  

 

Table 4.4 

Total variance of   
 

1
M  

2
M  (mode at normal) 

3
M  (mode at overweight) 

4
M  

0.172 0.063 0.069 0.107 

 
Figure 4.6 and Figure 4.7 are boxplots of ’s  posterior samples. The first (Underweight) and last 

(Obese II) blocks show that different models do not have much difference in estimating the cell 

probabilities of underweight, normal, and obese I. In the box plots, short line segments from 2 ,M 3 ,M  and 

4M  and long line segments from 1M  show that the models with order restrictions ( )2 3 4, ,M M M  have 

smaller variances than the model without order restriction ( )1 .M  The models with order restrictions can 

borrow more information than the model without order restriction. The differences between each box of 

1M  are larger than the differences in 2 ,M 3 ,M  and 4 .M  In other word, the differences between posterior 

mean of each county in 1M  are larger than other models’. It proves that the models with order restrictions 

borrow more information among areas than the model without order restriction. 

In Figure 4.8, we have some regression lines to show the overall posterior standard deviation 

comparison among those models. The black dashed line is a reference line whose slope is one. The first 

plot shows a comparison between 1M  and 3M  (mode at overweight). All of regression lines are above the 

reference line, which means that 3M  (mode at overweight) has smaller standard deviation. We gain higher 

precision on estimation of cell probabilities among 35 counties in 3 .M  The second plot shows a 

comparison between 2M  (mode at normal) and 3M  (mode at overweight). The regression lines about 

underweight, Obese I and Obese II are around the reference line. Only the regression line about 

overweight shows significant difference. It means 3M  (mode at overweight) is slightly better than 2M  

(mode at normal). In other word, the assumption that overweight BMI probability is the highest may be 

more reasonable. The last two plots in Figure 4.8 is a comparison between 2M  (mode at normal) and 4 ,M

3M  (mode at overweight) and 4 .M  4’sM  performance is slightly worse than 3M  and 2 .M  

In Figure 4.9, we use different symbols to represent different models’ CPO for all 35 counties. In BMI 

data, County 4 has the largest population, which shows lowest CPO value among others. It is known that 

low CPO values suggest possible outliers, high-leverage and influential observations. Due to the 

borrowing feature from the models, County 3 has a low CPO which may be affected by County 4. For 
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most counties, the model with order restriction which assumes the mode is at overweight position can 

have large CPO, compared with other models. As a summary, in Table 4.5, 2M  (mode at overweight) has 

the largest LMPL, which should the “best” model for our BMI data. 

 

                                                                  Figure 4.6  Posterior of θ : Part I. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 
   

This is a county-wise comparison for different BMI categories under different models. 
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                                                                  Figure 4.7  Posterior of θ : Part II. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
  

 

This is a county-wise comparison for different BMI categories under different models. 
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                     Figure 4.8  Standard deviation comparison between those models to show improvement. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

                                             Figure 4.9  CPOs for 35 Counties under different models. 
 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Note: Lower CPO suggests possible outliers, high-leverage and influential observations. 
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Table 4.5 

LPML, comparison of the four models using LPML 
 

1
M  

2
M  (mode at normal) 

3
M  (mode at overweight) 

4
M  

-326.76 -331.88 -318.26 -329.58 

 
5. Simulated BMI 
 

To have a better comparison between those models, Chen and Nandram (2021) construct a simulated 

data transformed from BMI using the idea of Pool-Adjacent-Violators Algorithm (PAVA) to have strong 

order restrictions as 1 ,m K       (Mair, Hornik and de Leeuw, 2009). It is a simple iterative 

algorithm for solving the quadratic problem. 

Generally, given a sequence of n  data points 1, , ,ny y  we start with 1y  on the left. We move to the 

right until we encounter the first violation 1.i iy y +  Then we replace this pair by their average, and back-

average to the left as needed, to get monotonicity. We continue this process to the right, until finally we 

reach .ny  We can have a reconstructed data set to fit our order restrictions better. Fitting models to the 

simulated data, we can discover the advantage of hierarchical multinomial-Dirichlet model with order 

restrictions easily. 

 
                                  Figure 5.1  Simulation method to have the unimodal order restriction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, for each county, we start from BMI level 1 to the mode using PAVA to create an increasing 

sequence. Then from the mode to BMI level 5, we apply PAVA to create a decreasing sequence. To make 

sure that each BMI level has an integer number, we take the nearest integer that is larger than the mode to 

replace the mode, and take the nearest integer that is smaller than ijn  (except the mode) to replace those 

     check 
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non-modes. Now our assembled BMI data have strong order restrictions. But we also notice that our 

current approach cannot be used for a general case to create an unimodal structure. It works for BMI data 

when the numbers of level 2 and level 3 are significantly larger than others. Now we have a simulated 

BMI data which mode is at the third position (overweight). 

 

Table 5.1 

LPMLs of model 
1
,M

2
,M

3
,M  and 

4
M  for simulated data, comparison of the four models using LPML 

 

1
M  

2
M  (mode at normal) 

3
M  (mode at overweight) 

4
M  

-319.83 -330.73 -310.39 -311.26 

 
Since the mode is at the third position, the LPML of 3M  is significantly larger than others, which is 

-310.39. The LPML of 4M  is -311.26, due to the robustness of 4 .M  The LPML of 2M  is the smallest, 

which is -330.73. The LPML of 1M  is -319.83. The LPMLs show that the model with order restrictions 

can have the best performance if the unimodal assumption is correct. Model 4 ,M  which incorporates 

uncertainty about order, has a similar performance as Model 3 .M  In Figure 5.2, 3M  and 4M  have 

consistently large CPO values for 35 counties among those models. 2M  have lowest CPO values at 

County 3 and 4, which suggests possible outliers, high-leverage and influential observations. For most of 

counties, 3M  has the largest CPOs and 2M  has the smallest CPOs because of the order restriction 

assumption may be correct in 3M  but not in 2 .M  

In the simulated BMI data, CPO and LPML are proved to be able to select more adequate models. 

Model 4M  is robust and consistent for most cases. 

 

                               Figure 5.2  CPOs for 35 counties under different models (simulation). 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Note: Lower CPO suggests possible outliers, high-leverage and influential observations. 
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6. Concluding remarks 
 

The Dirichlet multinomial model with mixed order restrictions is an extension of 2 .M  It increases the 

robustness and flexibility due to its uncertainty. We have also shown how to acquire samples of the model 

with mixed order restriction. In our application and simulation, we find that, with the uncertainty, the 

Dirichlet multinomial model with mixed order restrictions may be the best model for all cases with varied 

unknown unimodality. For most cases, we could not know the unimodal order restriction, even if we 

believe it exists. Bringing uncertainty to the model is necessary. We also notice that due to its complexity, 

it is hard to compute its marginal likelihood. We show a method to estimate the posterior probabilities of 

the mode location, which is ( )pos = .P L n  But there is a precision-efficiency tradeoff. 

However, as shown in Figure 4.2 and Figure 4.3, the same unimodal order restriction for all counties 

may be still strong even with uncertainty. Some counties have more people in the normal BMI level, and 

some counties have more people in the overweight BMI level. Nandram and Sedransk (1995) and 

Nandram, Sedransk and Smith (1997) presented a good discussion about unimodal order restriction in a 

stratified population. With the help of uncertainty, they made inference about the proportion of firms and 

fish belonging to each of several classes when there are unimodal order relations among the proportions. 

In that paper, the hyperparameters are specified and they did not have a small area estimation problem; 

our problem is much more difficult even we consider a similar uncertainty model structure. 

In Section 4.2.2, the model with fixed order restrictions is a better model for BMI data because of its 

largest LPML. But without any background, assuming the modal position is risky and may cause the 

wrong inference. The multinomial Dirichlet model with order restrictions, incorporating uncertainty, can 

reduce the risk and is more robust. In the simulation, Model 2M  is the best model for the simulated BMI 

data. Model 4M  shows a better consistency for the simulated BMI data and the real BMI data. 

The final BMI data set for this study uses only the 35 largest counties with a population of at least 

500,000 for selected age categories by sex (male, female) and race (white non-Hispanic, black non-

Hispanic, Hispanic, other). We can easily apply our method to the small domains formed by on race, age 

and sex, such as the male-Hispanic BMI data. But the cells of the multinomial tables will become sparse. 

We can eliminate some counties that become small or we can combine some counties. However, due to 

the structures of multinomial-Dirichlet models with order restrictions, we cannot add race, age and sex as 

covariates into the model. 

Since the BMI data are from the survey sampling and individuals are selected with different 

probabilities, we should not ignore the survey weights. It is possible to incorporate the survey weights into 

our model as well. Let igW  denote the survey weights, adding up to the population size within each 

county, 1, , ,i =  sample index = 1, , ig n  and cell index =1, , .j K  Yang (2021) provided adjusted 

weights are  

 

1

= ,
i

ig

ig i n

igg

W
n

W


=
  

and .=1 =1
= = .

in K

ig i ijg j
n n   Yang (2021) used weighted likelihood distributions for a single 

multinomial model, see also Nandram, Choi and Liu (2021). Yang (2021) found out there is a very small 

difference between normalized and unnormalized weighed likelihood. 
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We can transform BMI data using the adjusted weights into adjusted counts. Let igjI  be the BMI 

category indicator for individual g  in county , =1, ,i i  at cell , =1, , .j j K  We define = 0igjI  or 1 

with 
=1

1,
K

igjj
I =  for example, if a person responds in cell ,j  a one is scored and all other cells have 

zeros. For simplification, we can have the unnormalized weighted joint posterior distribution as  
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Our approaches can be applied to the adjusted counts directly. 

It is possible to relax the unimodal order restriction somewhat. One can restrict the position of the 

mode without any ordering on its left or right, we can still have the mode at 2 or 3 for the BMI data to 

provide a model with uncertainty about the modal position. This can be done in the same spirit as in our 

current work. 

We notice the same unimodal structure across all counties is not satisfied. Borrowing information 

across those areas may have a negative effect to model inference. Neuenschwander, Wandel, 

Roychoudhury and Bailey (2016) presented a different approach to increase the model robustness in drug 

development. They proposed the exchangeability nonexchangeability (EXNEX) approach to reduce the 

risk of too much shrinkage and excessive borrowing for extreme strata. We can borrow their approach to 

increase our model robustness. But we believe it is very difficult to make inference using the Dirichlet 

multinomial model with EXNEX prior because the model complexity increases significantly. 

 
Appendix 

 
A.1 Gibbs sampler for μ  and   in 2

M  and 3
M  

 

We present griddy Gibbs sampler, a Markov chain Monte Carlo (MCMC) algorithm, for μ  with the 

order restriction and .  

Liu and Sabatti (2000) presented a comprehensive discussion of the general Gibbs sampler which is 

more efficient Markov chain Monte Carlo method for Bayesian inference. They explored its connection 

with the multigrid Monte Carlo method and its use in designing more efficient samplers. Gibbs sampler 

may be more efficient in our hierarchical model. Therefore we use Gibbs sampler to generate the posterior 

samples for the Bayesian inference. 
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We present the modified Gibbs sampler for C μμ  and .  The joint posterior density is  

 ( )
( ) ( )

1

=1

2
=1

1
, , ,

(1 )

ij j
K n

I
ij C Cj

i

I I

D C
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μ
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 ( )
( )

( )

=1 1

=1
=1

= .j

i

K
K

jj

ij iKC
jjj

C d
 

 
 

 

−










θ
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There is no recognizable conditional distribution of μ  and   to generate samples. So we use grid 

method to draw μ  and   from ( ), μ n  after integrating with respect to ,θ  we get  
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Chen and Shao (1997) mentioned that importance sampling could be used to estimate the ratio, 
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We consider Dirichlet ( )jrn  as our importance of all counties function, where r  is an adjustable ratio and 
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I
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j

n
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I


  

It combines information together. Since our importance function does not depend on the unknown μ  and 

,  we can generate one set of numbers for all iterations. In our numerical example, it has been proved as 

an efficient way to generate posterior samples. 

 

Gibbs sampler steps: 

1. Draw   from ( ), ;  μ n  

2. For j  from 1m −  to 1, draw j  from ( )( ), , ,
j

j  −
μ n  where 
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3. For j  from 1m +  to ,K  draw j  from ( )( ), , ,
j

j  −
μ n  where 
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4. Get 
=1,

=1 ,
K

m jj j m
 


−  repeat Step 1 to Step 4 until convergence, 
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A.2 Sampling θ  in 2
M  and 3

M  
 

The posterior of θ  has a recognizable distribution, which is the Dirichlet distribution with the order 

restriction. Instead of drawing samples directly from the Dirichlet distribution with the order restriction, 

Chen and Nandram (2019) present a direct sampling from truncated Gamma distributions, where 

Nadarajah and Kotz (2006) offered a method for truncated Gamma. 

Denote ( )1= , , ,K β  if 1 20 m K          and the mode is ,m  then we assume 

1 20 ,m K          the mode is .m  

 

Steps of sampling   from Dirichlet 1
( , , ) :

K
   

 

1. Draw ( )~ Gamma ,1 ,m m   where 0 ;m    

2. Draw from 1m −  to 1,  

                                      1 ~m − Truncated Gamma ( )1,1 ,m −
 where 10 ,m m −    

                                        

                                      1 ~ Truncated Gamma ( )1,1 ,  where 1 20 ;     

3. Draw from 1m +  to ,K  

                                      1 ~m + Truncated Gamma ( )1,1 ,m +
 where 10 ,m m +    

                                        

                                      ~K Truncated Gamma ( ),1 ,K  where 10 .K K  −    

Then,  
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A.3 Bayesian diagnostics of 2

,M
3
,M  and 4

M  
 

Since the only difference between 2M  and 3M  is the order restriction assumption and the CPOs of 

2M  and 3M  are similar, we only present the CPO of 2M  here,  
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where  
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is the density function of ,iθ  and .i Cθ  

We notice ( )h
μ  and ( )h  are the posterior samples from Section 7.2. For each pair of ( )h

μ  and 
( ) ,h  we 

can draw iθ  from Dirichlet ( )( ) ( ) ,h h

i +n μ  
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( ) ( )( ) ( )~ Dirichleth h h

i i 


+θ n μ  with order restriction. Then we get the LPML as LPML̂ 
=1

= log
I

i
(CPÔ𝑖). 

However, it is not easy to compute CPOi  or CPÔ𝑖 of 4M  directly. We present how to use the known 

CPOs, such as ( )2
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 to compute ( )4
CPO ,

i M
 

 

( ) ( )
( )
( )

( ) ( ) ( )

( )

( )
( ) ( )

( )

( )
( ) ( ) ( )

( ) ( )

( )

4

1

( )

( )

1

( )=1

1

( )

=1

1

( )

=1

=

CPO = =

= , , = ,
=

, , = ,
= =

, , = , , = ,
= =

, , =

= =

i

i ii M

K

i

K
i

K
i i

i

f n
f n n

f n

P L f n L f L d d

f n

f n L f L
P L d d

f n

f n L f n L f L
P L d d

f n L f n

P L

  

 


  




−

−

−

−

 
 
 
 

 =
 
 
 

 =
 
 
 

 =
 
 
 

 

  

  

μ μ μ

μ μ
μ

μ μ μ
μ

μ

( ) ( )
( ) ( )

( )
( )

( ) ( )

( ) ( )
( )

( )
( )

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )

1

1

1

=1

1

=1

=
1

, , = ,

, , =

= , , = ,
= =

=, , =

= , , = ,1
= =

=, , =

= =
=

K

i

K

i

K

i

K

f n L f L
d d

f n L f n

f n L f n L f L
P L d d

f n Lf n L f n

f n L f n L f L
P L d d

f n f n Lf n L

P L f n L

P L f n

 




 




 




−

−

−

=

 =
 
  

 =
 
  

 =
 
  

=

 

  

  



μ μ
μ

μ

μ μ
μ

μ

μ μ
μ

μ

( )
( )

( )
( )

( )

1

1

1

=1

1
, ,

, , =

1
= = , , = ,

, , =

K

i

K

i

f n L d d
f n L

P L n f n L d d
f n L

 


 


−

−

 
 =
 
 

 
 
  

 

  

μ μ
μ

μ μ
μ

  

then CPÔ𝑖 (𝑀4) =1

K
P

 (𝐿 = ℓ̂ | 𝑛) 
1

CPÔ𝑖 (𝐿pos=ℓ)

] 
1

,
−

 where CPÔ𝑖 (𝐿pos=ℓ ) are known, such as 

CPÔ𝑖 (𝑀2) and CPÔ𝑖 (𝑀3). Without extra computation, taking advantage of known CPOs from 2M  and 

3 ,M  we can easily acquire the CPO of 4 .M  
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A.4 Posterior summary of   

 
Table A.1 

Part I: Counties 1-11 
 

County ID Model Underweight Normal Overweight Obese I Obese II 

PM PSD CV PM PSD CV PM PSD CV PM PSD CV PM PSD CV 

1 
1M  0.026 0.013 0.501 0.399 0.040 0.101 0.394 0.040 0.102 0.143 0.029 0.206 0.039 0.016 0.408 

2M  0.021 0.009 0.425 0.421 0.023 0.056 0.376 0.021 0.056 0.148 0.023 0.153 0.033 0.010 0.316 

3M  0.021 0.009 0.431 0.376 0.019 0.051 0.418 0.023 0.055 0.152 0.023 0.153 0.033 0.011 0.323 

4M  0.021 0.009 0.431 0.393 0.030 0.076 0.404 0.030 0.075 0.150 0.023 0.156 0.033 0.010 0.315 

2 
1M  0.014 0.010 0.704 0.390 0.040 0.102 0.417 0.041 0.098 0.160 0.030 0.189 0.019 0.011 0.580 

2M  0.015 0.007 0.490 0.422 0.024 0.056 0.381 0.019 0.049 0.159 0.024 0.152 0.023 0.009 0.386 

3M  0.015 0.007 0.494 0.375 0.020 0.055 0.426 0.025 0.059 0.161 0.023 0.143 0.023 0.010 0.405 

4M  0.015 0.007 0.476 0.391 0.031 0.079 0.409 0.031 0.077 0.161 0.024 0.147 0.024 0.010 0.405 

3 
1M  0.028 0.014 0.489 0.282 0.039 0.137 0.495 0.042 0.085 0.149 0.029 0.192 0.047 0.017 0.368 

2M  0.024 0.011 0.459 0.393 0.021 0.054 0.378 0.018 0.047 0.166 0.028 0.167 0.040 0.015 0.368 

3M  0.021 0.009 0.440 0.334 0.035 0.106 0.458 0.036 0.079 0.151 0.022 0.146 0.037 0.012 0.320 

4M  0.022 0.010 0.452 0.354 0.042 0.118 0.429 0.050 0.117 0.156 0.026 0.163 0.038 0.013 0.342 

4 
1M  0.007 0.004 0.543 0.356 0.022 0.062 0.421 0.022 0.053 0.183 0.018 0.096 0.034 0.009 0.252 

2M  0.009 0.004 0.461 0.394 0.014 0.035 0.381 0.011 0.029 0.182 0.020 0.112 0.034 0.008 0.224 

3M  0.009 0.004 0.451 0.363 0.018 0.050 0.422 0.019 0.046 0.174 0.017 0.098 0.032 0.007 0.220 

4M  0.009 0.004 0.456 0.374 0.023 0.061 0.407 0.026 0.063 0.177 0.018 0.104 0.032 0.007 0.221 

5 
1M  0.016 0.011 0.708 0.370 0.042 0.112 0.400 0.042 0.104 0.180 0.033 0.181 0.035 0.016 0.453 

2M  0.015 0.008 0.515 0.413 0.024 0.057 0.372 0.021 0.057 0.168 0.027 0.158 0.032 0.012 0.360 

3M  0.015 0.007 0.490 0.366 0.023 0.063 0.419 0.027 0.063 0.169 0.026 0.152 0.032 0.011 0.341 

4M  0.015 0.008 0.493 0.382 0.032 0.084 0.402 0.033 0.083 0.169 0.026 0.154 0.032 0.011 0.356 

6 
1M  0.009 0.009 0.943 0.380 0.045 0.118 0.402 0.044 0.108 0.147 0.032 0.217 0.063 0.021 0.339 

2M  0.012 0.007 0.586 0.417 0.025 0.059 0.375 0.020 0.054 0.151 0.024 0.160 0.046 0.017 0.362 

3M  0.012 0.007 0.569 0.371 0.023 0.061 0.423 0.026 0.061 0.151 0.023 0.150 0.043 0.015 0.355 

4M  0.012 0.007 0.590 0.387 0.032 0.083 0.406 0.034 0.083 0.151 0.024 0.158 0.044 0.016 0.370 

7 
1M  0.009 0.009 0.943 0.376 0.044 0.117 0.400 0.045 0.113 0.183 0.035 0.191 0.032 0.016 0.502 

2M  0.012 0.007 0.575 0.416 0.025 0.059 0.374 0.022 0.058 0.169 0.028 0.163 0.030 0.012 0.389 

3M  0.013 0.007 0.578 0.367 0.023 0.062 0.422 0.027 0.065 0.169 0.025 0.150 0.030 0.011 0.359 

4M  0.012 0.007 0.590 0.384 0.033 0.087 0.405 0.034 0.084 0.169 0.027 0.156 0.030 0.011 0.372 

8 
1M  0.019 0.014 0.726 0.387 0.048 0.123 0.443 0.050 0.112 0.126 0.033 0.265 0.025 0.015 0.597 

2M  0.017 0.009 0.520 0.426 0.025 0.058 0.386 0.020 0.051 0.143 0.024 0.170 0.027 0.011 0.406 

3M  0.016 0.008 0.488 0.376 0.023 0.061 0.437 0.029 0.066 0.144 0.023 0.160 0.027 0.010 0.387 

4M  0.017 0.009 0.520 0.394 0.035 0.088 0.418 0.035 0.083 0.144 0.023 0.162 0.027 0.011 0.401 

9 
1M  0.016 0.011 0.686 0.391 0.045 0.116 0.398 0.044 0.110 0.174 0.035 0.203 0.021 0.012 0.584 

2M  0.015 0.008 0.504 0.421 0.027 0.064 0.373 0.021 0.058 0.165 0.025 0.152 0.026 0.010 0.389 

3M  0.016 0.008 0.492 0.372 0.021 0.056 0.420 0.025 0.059 0.167 0.025 0.149 0.025 0.010 0.389 

4M  0.015 0.008 0.496 0.390 0.033 0.084 0.403 0.033 0.081 0.166 0.025 0.148 0.026 0.010 0.383 

10 
1M  0.008 0.007 0.940 0.396 0.041 0.103 0.403 0.042 0.104 0.180 0.033 0.184 0.013 0.010 0.760 

2M  0.011 0.007 0.574 0.423 0.024 0.057 0.377 0.022 0.058 0.167 0.025 0.151 0.021 0.010 0.453 

3M  0.012 0.007 0.573 0.376 0.021 0.055 0.422 0.024 0.057 0.169 0.025 0.146 0.021 0.009 0.438 

4M  0.012 0.007 0.579 0.393 0.033 0.083 0.406 0.032 0.079 0.168 0.025 0.146 0.021 0.009 0.447 

11 
1M  0.026 0.013 0.515 0.365 0.037 0.102 0.385 0.038 0.098 0.181 0.030 0.167 0.044 0.016 0.366 

2M  0.021 0.009 0.420 0.407 0.024 0.058 0.367 0.021 0.057 0.169 0.025 0.148 0.036 0.012 0.323 

3M  0.021 0.009 0.435 0.363 0.022 0.062 0.411 0.026 0.064 0.169 0.024 0.144 0.037 0.012 0.326 

4M  0.021 0.009 0.440 0.379 0.031 0.081 0.395 0.031 0.078 0.169 0.024 0.140 0.036 0.012 0.322 

Note: Posterior Mean (PM), Posterior Standard Deviation (PSD), Coefficient of Variation (CV). 
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Table A.2 

Part II: Counties 12-23 
 

County ID Model Underweight Normal Overweight Obese I Obese II 

PM PSD CV PM PSD CV PM PSD CV PM PSD CV PM PSD CV 

12 
1M  0.008 0.007 0.937 0.415 0.041 0.099 0.439 0.042 0.095 0.113 0.027 0.235 0.026 0.013 0.507 

2M  0.012 0.007 0.581 0.434 0.024 0.055 0.392 0.020 0.050 0.135 0.023 0.171 0.028 0.010 0.360 

3M  0.012 0.007 0.557 0.386 0.022 0.056 0.438 0.026 0.059 0.137 0.024 0.173 0.027 0.010 0.355 

4M  0.012 0.007 0.583 0.403 0.033 0.082 0.422 0.033 0.078 0.135 0.024 0.176 0.028 0.010 0.357 

13 
1M  0.012 0.007 0.563 0.432 0.030 0.070 0.378 0.029 0.076 0.142 0.021 0.146 0.036 0.012 0.323 

2M  0.013 0.006 0.426 0.434 0.023 0.053 0.375 0.020 0.053 0.146 0.018 0.123 0.033 0.009 0.272 

3M  0.013 0.006 0.423 0.388 0.014 0.037 0.413 0.017 0.042 0.152 0.019 0.122 0.034 0.009 0.277 

4M  0.013 0.006 0.426 0.405 0.028 0.069 0.399 0.025 0.063 0.150 0.019 0.124 0.033 0.009 0.273 

14 
1M  0.024 0.013 0.545 0.425 0.045 0.106 0.399 0.044 0.110 0.131 0.030 0.228 0.022 0.012 0.567 

2M  0.019 0.009 0.465 0.434 0.027 0.062 0.378 0.023 0.059 0.144 0.023 0.162 0.025 0.010 0.380 

3M  0.019 0.009 0.463 0.383 0.021 0.055 0.426 0.024 0.057 0.147 0.024 0.162 0.026 0.010 0.389 

4M  0.019 0.009 0.465 0.400 0.033 0.082 0.409 0.032 0.078 0.146 0.024 0.162 0.025 0.010 0.378 

15 
1M  0.022 0.012 0.532 0.357 0.041 0.114 0.444 0.041 0.093 0.131 0.028 0.214 0.047 0.018 0.384 

2M  0.018 0.008 0.438 0.412 0.021 0.050 0.384 0.017 0.045 0.148 0.025 0.166 0.039 0.013 0.334 

3M  0.018 0.008 0.462 0.368 0.025 0.068 0.433 0.028 0.064 0.145 0.023 0.155 0.037 0.012 0.325 

4M  0.018 0.008 0.448 0.383 0.032 0.083 0.416 0.035 0.083 0.146 0.024 0.167 0.037 0.012 0.327 

16 
1M  0.013 0.009 0.695 0.372 0.037 0.100 0.439 0.041 0.092 0.158 0.029 0.183 0.018 0.010 0.584 

2M  0.015 0.007 0.482 0.416 0.020 0.048 0.386 0.017 0.044 0.160 0.024 0.150 0.023 0.009 0.406 

3M  0.014 0.007 0.480 0.371 0.023 0.062 0.436 0.028 0.063 0.157 0.021 0.135 0.023 0.009 0.383 

4M  0.014 0.007 0.481 0.386 0.031 0.080 0.418 0.035 0.083 0.158 0.023 0.147 0.023 0.009 0.381 

17 
1M  0.039 0.016 0.405 0.351 0.039 0.111 0.426 0.041 0.095 0.161 0.030 0.187 0.024 0.012 0.507 

2M  0.028 0.012 0.418 0.406 0.021 0.051 0.378 0.017 0.045 0.161 0.025 0.153 0.027 0.010 0.362 

3M  0.026 0.011 0.420 0.362 0.024 0.066 0.428 0.028 0.064 0.157 0.021 0.132 0.027 0.009 0.351 

4M  0.027 0.012 0.425 0.377 0.030 0.080 0.410 0.034 0.083 0.159 0.023 0.142 0.027 0.010 0.365 

18 
1M  0.009 0.009 0.964 0.420 0.045 0.108 0.376 0.043 0.114 0.164 0.036 0.220 0.032 0.017 0.519 

2M  0.012 0.007 0.581 0.430 0.028 0.065 0.370 0.024 0.066 0.158 0.026 0.163 0.030 0.011 0.373 

3M  0.013 0.007 0.552 0.378 0.019 0.051 0.417 0.024 0.056 0.162 0.025 0.153 0.031 0.011 0.362 

4M  0.013 0.007 0.568 0.396 0.034 0.086 0.400 0.033 0.082 0.161 0.025 0.159 0.031 0.011 0.366 

19 
1M  0.019 0.013 0.693 0.416 0.048 0.116 0.384 0.047 0.123 0.164 0.035 0.214 0.016 0.012 0.767 

2M  0.016 0.008 0.507 0.431 0.030 0.070 0.372 0.025 0.066 0.157 0.026 0.162 0.023 0.010 0.430 

3M  0.017 0.009 0.532 0.378 0.020 0.053 0.420 0.025 0.059 0.162 0.025 0.158 0.024 0.010 0.407 

4M  0.017 0.009 0.533 0.397 0.036 0.091 0.402 0.034 0.085 0.161 0.027 0.166 0.024 0.010 0.422 

20 
1M  0.009 0.009 0.935 0.335 0.044 0.132 0.494 0.047 0.095 0.139 0.031 0.225 0.023 0.013 0.564 

2M  0.013 0.008 0.610 0.413 0.020 0.048 0.390 0.017 0.043 0.157 0.027 0.171 0.027 0.011 0.406 

3M  0.012 0.007 0.551 0.359 0.029 0.082 0.454 0.035 0.077 0.149 0.023 0.156 0.026 0.010 0.380 

4M  0.012 0.007 0.599 0.378 0.037 0.098 0.432 0.043 0.100 0.152 0.025 0.166 0.026 0.010 0.396 

21 
1M  0.048 0.021 0.431 0.431 0.050 0.116 0.353 0.051 0.145 0.123 0.033 0.269 0.046 0.021 0.453 

2M  0.029 0.012 0.432 0.436 0.032 0.074 0.363 0.029 0.079 0.138 0.025 0.179 0.035 0.013 0.363 

3M  0.029 0.014 0.485 0.377 0.020 0.052 0.412 0.024 0.058 0.146 0.025 0.174 0.036 0.013 0.364 

4M  0.029 0.014 0.459 0.398 0.038 0.096 0.394 0.035 0.090 0.143 0.026 0.180 0.036 0.013 0.372 

22 
1M  0.016 0.010 0.660 0.431 0.044 0.102 0.391 0.043 0.109 0.134 0.030 0.226 0.029 0.015 0.512 

2M  0.015 0.008 0.500 0.434 0.027 0.062 0.378 0.023 0.060 0.145 0.024 0.163 0.028 0.010 0.369 

3M  0.015 0.008 0.500 0.384 0.019 0.050 0.423 0.023 0.055 0.149 0.023 0.151 0.029 0.011 0.362 

4M  0.015 0.008 0.508 0.402 0.034 0.083 0.407 0.032 0.078 0.147 0.024 0.160 0.029 0.011 0.376 

23 
1M  0.011 0.011 0.979 0.379 0.048 0.126 0.426 0.048 0.112 0.149 0.034 0.230 0.035 0.018 0.516 

2M  0.013 0.007 0.560 0.422 0.025 0.060 0.379 0.021 0.055 0.155 0.026 0.171 0.031 0.011 0.352 

3M  0.013 0.007 0.568 0.371 0.024 0.064 0.431 0.029 0.068 0.154 0.025 0.162 0.032 0.012 0.378 

4M  0.013 0.007 0.570 0.388 0.035 0.089 0.413 0.037 0.089 0.155 0.026 0.171 0.032 0.012 0.365 

Note: Posterior Mean (PM), Posterior Standard Deviation (PSD), Coefficient of Variation (CV). 
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Table A.3 

Part III: Counties 24-35 
 

County ID Model Underweight Normal Overweight Obese I Obese II 

PM PSD CV PM PSD CV PM PSD CV PM PSD CV PM PSD CV 

24 
1M  0.008 0.008 1.005 0.375 0.044 0.116 0.397 0.043 0.107 0.182 0.034 0.189 0.038 0.017 0.445 

2M  0.012 0.007 0.596 0.414 0.024 0.058 0.373 0.021 0.055 0.167 0.027 0.160 0.033 0.011 0.339 

3M  0.012 0.007 0.551 0.368 0.023 0.062 0.418 0.026 0.061 0.169 0.025 0.145 0.033 0.011 0.339 

4M  0.012 0.007 0.581 0.385 0.033 0.085 0.403 0.032 0.079 0.168 0.026 0.153 0.032 0.011 0.343 

25 
1M  0.018 0.012 0.676 0.449 0.047 0.103 0.402 0.045 0.112 0.117 0.029 0.248 0.015 0.011 0.751 

2M  0.016 0.008 0.483 0.444 0.030 0.068 0.383 0.023 0.060 0.135 0.025 0.185 0.022 0.010 0.435 

3M  0.016 0.008 0.512 0.390 0.020 0.050 0.428 0.024 0.055 0.143 0.025 0.177 0.023 0.010 0.422 

4M  0.016 0.008 0.510 0.411 0.036 0.087 0.412 0.033 0.080 0.139 0.026 0.188 0.023 0.009 0.421 

26 
1M  0.027 0.016 0.595 0.373 0.045 0.120 0.432 0.046 0.107 0.136 0.032 0.232 0.032 0.016 0.514 

2M  0.021 0.010 0.483 0.417 0.023 0.056 0.383 0.019 0.050 0.148 0.026 0.173 0.031 0.012 0.378 

3M  0.020 0.009 0.477 0.370 0.025 0.066 0.433 0.029 0.066 0.148 0.024 0.161 0.029 0.010 0.357 

4M  0.020 0.009 0.463 0.387 0.034 0.087 0.415 0.035 0.084 0.148 0.025 0.168 0.030 0.011 0.365 

27 
1M  0.030 0.018 0.582 0.302 0.045 0.148 0.473 0.049 0.103 0.170 0.037 0.219 0.026 0.016 0.600 

2M  0.022 0.011 0.492 0.401 0.023 0.056 0.378 0.019 0.050 0.171 0.030 0.176 0.028 0.011 0.377 

3M  0.020 0.009 0.463 0.346 0.034 0.099 0.446 0.037 0.082 0.160 0.024 0.150 0.027 0.011 0.386 

4M  0.021 0.010 0.479 0.366 0.041 0.112 0.423 0.046 0.109 0.163 0.027 0.163 0.028 0.011 0.391 

28 
1M  0.019 0.013 0.687 0.410 0.047 0.115 0.389 0.048 0.122 0.156 0.035 0.221 0.025 0.015 0.594 

2M  0.017 0.008 0.494 0.429 0.028 0.066 0.374 0.025 0.066 0.154 0.026 0.168 0.027 0.010 0.389 

3M  0.017 0.008 0.504 0.377 0.022 0.058 0.421 0.025 0.059 0.159 0.027 0.167 0.027 0.010 0.373 

4M  0.017 0.009 0.508 0.395 0.034 0.087 0.404 0.035 0.086 0.157 0.026 0.168 0.027 0.011 0.394 

29 
1M  0.009 0.008 0.980 0.391 0.042 0.107 0.429 0.041 0.096 0.150 0.032 0.211 0.022 0.013 0.575 

2M  0.012 0.007 0.621 0.424 0.023 0.055 0.384 0.020 0.051 0.155 0.024 0.156 0.025 0.010 0.394 

3M  0.012 0.007 0.566 0.376 0.023 0.060 0.433 0.027 0.062 0.154 0.023 0.147 0.025 0.009 0.370 

4M  0.012 0.007 0.591 0.393 0.033 0.083 0.416 0.033 0.081 0.155 0.023 0.149 0.025 0.009 0.372 

30 
1M  0.015 0.010 0.702 0.338 0.041 0.121 0.420 0.044 0.104 0.207 0.034 0.166 0.020 0.012 0.590 

2M  0.016 0.007 0.471 0.401 0.022 0.055 0.373 0.019 0.052 0.186 0.032 0.171 0.025 0.010 0.380 

3M  0.015 0.007 0.466 0.355 0.027 0.075 0.427 0.028 0.066 0.179 0.028 0.155 0.024 0.009 0.386 

4M  0.015 0.007 0.468 0.371 0.033 0.090 0.407 0.037 0.090 0.183 0.030 0.165 0.025 0.009 0.386 

31 
1M  0.023 0.013 0.578 0.399 0.043 0.107 0.391 0.043 0.110 0.158 0.031 0.199 0.030 0.015 0.491 

2M  0.019 0.009 0.462 0.423 0.026 0.062 0.373 0.022 0.060 0.156 0.025 0.161 0.029 0.011 0.374 

3M  0.019 0.009 0.478 0.373 0.022 0.058 0.420 0.025 0.060 0.160 0.025 0.155 0.028 0.010 0.351 

4M  0.019 0.009 0.472 0.391 0.033 0.083 0.403 0.033 0.082 0.159 0.025 0.158 0.029 0.010 0.355 

32 
1M  0.007 0.007 0.941 0.319 0.037 0.116 0.450 0.039 0.086 0.200 0.032 0.159 0.024 0.012 0.511 

2M  0.012 0.007 0.569 0.397 0.020 0.051 0.378 0.016 0.042 0.186 0.031 0.164 0.027 0.010 0.370 

3M  0.011 0.006 0.576 0.348 0.029 0.084 0.439 0.030 0.068 0.177 0.026 0.144 0.026 0.009 0.345 

4M  0.011 0.006 0.579 0.365 0.036 0.097 0.417 0.039 0.094 0.181 0.029 0.159 0.026 0.009 0.352 

33 
1M  0.011 0.007 0.662 0.367 0.037 0.101 0.419 0.035 0.084 0.177 0.029 0.164 0.026 0.012 0.458 

2M  0.014 0.007 0.510 0.411 0.020 0.049 0.381 0.017 0.044 0.168 0.024 0.140 0.027 0.009 0.331 

3M  0.013 0.006 0.502 0.370 0.021 0.058 0.424 0.024 0.056 0.167 0.022 0.133 0.027 0.009 0.346 

4M  0.013 0.007 0.519 0.384 0.029 0.076 0.408 0.031 0.076 0.169 0.023 0.135 0.027 0.009 0.352 

34 
1M  0.015 0.010 0.695 0.373 0.041 0.110 0.452 0.042 0.092 0.134 0.030 0.222 0.026 0.013 0.503 

2M  0.015 0.008 0.496 0.420 0.021 0.051 0.389 0.017 0.044 0.148 0.023 0.158 0.028 0.011 0.390 

3M  0.015 0.007 0.485 0.372 0.024 0.065 0.443 0.029 0.065 0.144 0.022 0.153 0.027 0.010 0.363 

4M  0.015 0.007 0.495 0.388 0.033 0.086 0.424 0.036 0.085 0.145 0.023 0.157 0.028 0.011 0.381 

35 
1M  0.014 0.010 0.705 0.419 0.040 0.095 0.435 0.040 0.092 0.121 0.028 0.228 0.012 0.010 0.790 

2M  0.015 0.007 0.488 0.436 0.024 0.055 0.392 0.020 0.050 0.138 0.022 0.162 0.020 0.009 0.447 

3M  0.014 0.007 0.474 0.388 0.021 0.055 0.437 0.026 0.059 0.140 0.023 0.166 0.020 0.009 0.433 

4M  0.015 0.007 0.486 0.406 0.032 0.080 0.421 0.033 0.077 0.139 0.023 0.167 0.020 0.009 0.439 

Note: Posterior Mean (PM), Posterior Standard Deviation (PSD), Coefficient of Variation (CV). 
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A generalization of inverse probability weighting 

Alain Théberge1 

Abstract 

In finite population estimation, the inverse probability or Horvitz-Thompson estimator is a basic tool. Even 

when auxiliary information is available to model the variable of interest, it is still used to estimate the model 

error. Here, the inverse probability estimator is generalized by introducing a positive definite matrix. The 

usual inverse probability estimator is a special case of the generalized estimator, where the positive definite 

matrix is the identity matrix. Since calibration estimation seeks weights that are close to the inverse 

probability weights, it too can be generalized by seeking weights that are close to those of the generalized 

inverse probability estimator. Calibration is known to be optimal, in the sense that it asymptotically attains the 

Godambe-Joshi lower bound. That lower bound has been derived under a model where no correlation is 

present. This too, can be generalized to allow for correlation. With the correct choice of the positive definite 

matrix that generalizes the calibration estimators, this generalized lower bound can be asymptotically attained. 

There is often no closed-form formula for the generalized estimators. However, simple explicit examples are 

given here to illustrate how the generalized estimators take advantage of the correlation. This simplicity is 

achieved here, by assuming a correlation of one between some population units. Those simple estimators can 

still be useful, even if the correlation is smaller than one. Simulation results are used to compare the 

generalized estimators to the ordinary estimators. 

 

Key Words: Calibration estimator; Godambe-Joshi lower bound; Horvitz-Thompson estimator; Moore-Penrose inverse; 

Vaccination rate. 

 

 

1. Introduction 
 

The usual inverse probability estimator of the total for a population of N  units is 

 IP

1

ˆ ,
N

i i

i i

y


=

=   (1.1) 

where iy  is the variable of interest for unit ,i i  is 1 or 0 depending on whether i  is in the sample s  or 

not, and 0i   is the probability that i  is in .s  Note that the expectation of i  is ,i  this makes IP̂  

unbiased for 
1

.
N

ii
y

=
=  It is also known as the Horvitz-Thompson estimator, presented in Horvitz and 

Thompson (1952). In this paper, estimators that can draw some strength from units not in s  will be 

presented. 

Here is an example of such an estimator for a population of N  units that is partitioned into 2pN N=  

pairs   ( )2 1, 2 1, 2, , ,pi i i N− =  

 
( ) ( )2 1 2 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2 diff

LIM

1 2 1 2 2 1 2

2 2
ˆ ,

pN
i i i i i i i i i i i i i

i i i i i

y y y y y y      


  

− − − − − −

= − −

+ − + + −
=

+ −
  (1.2) 

where ( )2 1 2 2 1 2i i i iE  − −=  is the probability that both units 2 1i −  and 2i  are in ,s  and 

( )diff 2 2 1 2 1 2 .i i i i i   − −= −  It can be verified that LIM̂  is also unbiased.  
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It should be noted that the denominators in (1.2) correspond to the probability that at least one unit of 

the pair is in the sample. Thus, this estimator is reminiscent of inverse probability weighting, except it is 

based on pairs, instead of individual units. The numerators in (1.2) correspond to a value assigned to each 

pair with at least one sampled unit, and each observed pair is given a weight equal to the inverse of the 

probability of being observed. From the observation of only one unit of a pair, the estimator (1.2) assigns a 

value to the pair, and if the units of a pair are strongly correlated, this may be an efficient way to utilize 

this correlation. The estimator is a special case of a more general one that applies to more general 

populations, not only those with units grouped in pairs. Because it yields examples that give some insight 

into the general estimator, and because those examples can be given an explicit form that is simple to 

interpret and understand, Section 6 and Section 7 will also be about the case where the population, or a 

domain, is partitioned into pairs. The generalized inverse probability estimator is presented in Section 2; it 

depends on a parameter ,Σ  a positive definite N N  matrix. In Section 3, the new estimator is applied to 

the problem of calibration. The choice of the parameter Σ  is discussed in Section 4. In Section 5, it is 

seen that, with the right choice for ,Σ  the generalized calibration estimator is optimal, in the sense that it 

asymptotically attains a generalization of the Godambe-Joshi lower bound. Simple examples are given in 

Section 6, and the results of a simulation are presented in Section 7. Section 8 summarizes the paper. 

 
2. The generalized inverse probability estimator 
 

Estimators in this paper utilize a positive definite matrix Σ ℝ𝑁×𝑁 . A matrix formulation of the 

estimators will therefore be useful. For a vector of interest ( )1 2, , , Ny y y =y  and 1N 1  a vector of ones, 

the inverse probability estimator of the total 11

N

i Ni
y =

= =  y 1  can be written 

  

( )( )

IP

1
1

1

ˆ

,

N
i i

i i

s s N

y

E




=
−



=

= 



y Δ Δ 1

 

(2.1)

 

where ( )i iE =  is assumed greater than 0 for 1, 2, , ,i N=  and sΔ  is the N N  diagonal matrix of 

the .i  

The generalization of the inverse probability estimator relies on the Moore-Penrose inverse of a matrix 

,M  denoted †.M  The Moore-Penrose inverse is unique and always exists; it is equal to the ordinary 

inverse if the latter exists. A precise definition and properties of the Moore-Penrose inverse can be found 

in Ben-Israel and Greville (2002). In particular, it can be verified that † .s s=Δ Δ  Since it is also true that 
2 ,s s=Δ Δ  if I ℝ𝑁×𝑁 is the identity matrix, the inverse probability estimator can be written 

 
( )( )

( ) ( )( )

1

IP 1
1

† †

1

ˆ

.

s s N

s s s s N

E

E


−


−



= 

= 

y Δ Δ 1

y Δ IΔ Δ IΔ 1
 

(2.2)
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If in (2.2), the identity matrix is replaced by any N N  positive definite matrix ,Σ  one obtains the 

generalized inverse probability estimator or the generalized Horvitz-Thompson estimator, 

 ( ) ( ) ( )( )
1

† †

GIP 1
ˆ .s s s s NE

−

= Σ y Δ ΣΔ Δ ΣΔ 1  (2.3) 

In the phrase “inverse probability”, the matrix ( )
†

s sE Δ ΣΔ  is now the “probability” and 

( )( )
1

†

s sE
−

Δ ΣΔ  is the new “inverse probability”. The ordinary inverse probability estimator is simply a 

special case of ( )GIP
ˆ , Σ  which can be obtained by choosing .=Σ I  As will be seen in c) below, one now 

has a family of unbiased estimators, ( )GIP
ˆ , Σ  parameterized by .Σ  

 

2.1 Notes on the generalized inverse probability estimator 
 

a) Although the vector y  appears in the estimator, only the sampled units affect the estimator’s 

value. This is because ( ) ( )
† †

,s s s s s=Δ ΣΔ Δ Δ ΣΔ  thus (2.3) could have been written 

 ( ) ( ) ( ) ( )( )
1

† †

GIP 1
ˆ .s s s s s NE

−


=Σ Δ y Δ ΣΔ Δ ΣΔ 1  (2.4) 

The proof of this and of many other results stated here may be found in Théberge (2017). The 

1N   vector ( ) ( ) ( )( )
1

† †

GIP 1s s s s s NE
−

=w Σ Δ ΣΔ Δ ΣΔ 1  gives the weights of ( )GIP
ˆ , Σ  and all 

the units not in sample have a weight of zero. 

b) The matrix ( )
†

s sE Δ ΣΔ  is invertible under the assumptions that ( )i iE =  is greater than zero 

for 1, 2, ,i N=  and that Σ  is positive definite. Thus, (2.3) is well defined. 

c) By taking the expectation of (2.3), one immediately sees that ( )GIP̂ Σ  is unbiased for 

estimating 1.N = y 1  This is true for any positive definite .Σ  A poor choice of Σ  may mean 

an estimator with a high variance, but it does not cause a bias. 

d) Often, there is no closed-form formula for ( )
†
,s sE Δ ΣΔ  but for single stage sampling plans at 

least, it can be easily approximated. One simply takes the average of a large number of values 

of ( )
†
,s sΔ ΣΔ  each computed for a different sample obtained with the sampling plan. The 

computation does not require the knowledge of any of the variables of interest. It is a “desk 

exercise” in the sense that it does not require contacting the units. It can even be carried out 

before the actual sample is selected. 

e) It is well known that for a total estimator utilizing a regression vector ,β ( )ˆ ,T β  is 

asymptotically equivalent in terms of bias and variance to the estimator ( )ˆˆ
sT β  where ˆ

sβ  is an 

estimator that converges in probability to .β  Similarly, ( )GIP
ˆ ˆ

s Σ  has the same asymptotic bias 

and variance as ( )GIP̂ Σ  if the positive definite matrix ˆ
sΣ  converges in probability to the 

positive definite matrix .Σ  In essence, if the sample size is sufficiently large, the error 

introduced by estimating Σ  by ˆ
sΣ  is negligible compared to the error in ( )GIP̂ Σ  due to the 

sampling of units. All asymptotic results in this paper assume that the sampling plan is non 

informative (see, for example Cassel, Särndal and Wretman, 1977). 
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f) When ,=Σ I  then ( )GIP̂ Σ  reduces to the ordinary inverse probability estimator, IP
ˆ ,  as given 

in (2.1). This is the justification for referring to ( )GIP̂ Σ  as the generalized inverse probability 

estimator or the generalized Horvitz-Thompson estimator. It will be seen later, why this 

particular unbiased extension of the ordinary Horvitz-Thompson estimator is of interest. 

g) An arbitrary symmetric positive definite matrix Σ  may contain up to ( )1 2N N +  distinct 

parameters. It is not feasible to specify so many values. If the sample s  is utilized to estimate 

those parameters, the task of estimating ( )1 2N N +  parameters from n N  observations is 

clearly impossible. A simpler choice must be used. The simplest choice utilizes ,=Σ I  as seen 

in f). There are other choices that have a reasonable number of parameters. One example is 

given in Section 6. 

h) For estimating a domain total y c  where ( )1, , , ,i Nc c c =c  is a vector of known constants 

with 1ic =  or 0 depending on whether unit i  is in the domain or not, it suffices to replace (2.3), 

which is for estimating the population total, with ( ) ( )( )
1

† †
.s s s sE

−

y Δ ΣΔ Δ ΣΔ c  The weight 

vector ( ) ( )( )
1

† †

s s s sE
−

Δ ΣΔ Δ ΣΔ c  varies with each domain described by ;c  however the 

weight matrix, ( ) ( )( )
1

† †
,s s s sE

−

Δ ΣΔ Δ ΣΔ  does not depend on the domain. There are N n−  

rows of this matrix that are nil. Even though there are potentially nN  elements of the weight 

matrix that are non zero, post-multiplication by c  will give the weight vector for any domain 

described by .c  

i) One possibility for the matrix Σ  is one where all the diagonal elements are the same, and all 

the off-diagonal elements are the same. In this way, all the units are the same with respect to .Σ  

However, if all units are the same with respect to the sampling plan, for example simple random 

sampling or Bernoulli sampling, and if all units are the same with respect to the parameter 

estimated, for example a total or an average for all units, then by symmetry, every sampled unit 

will have the same weight. Since both IP̂  and ( )GIP̂ Σ  are unbiased, both estimators will have 

the same weights. Nonetheless, for domain parameters, because some units are in the domain 

and some not, the symmetry argument no longer holds and the value of the off-diagonal 

elements of Σ  may make a difference in ( )GIP
ˆ . Σ  

j) By setting 1N=y 1  in ( )GIP
ˆ , Σ  the estimator simply becomes the sum of all the weights of the 

sampled units and the parameter estimated becomes 1 1 ,N N N  =1 1  the known total number of 

units. However, the sum of the weights does not necessarily equal .N  This does not bode well 

for the variance of ( )GIP
ˆ . Σ  To fix this, calibration can be used. Calibration was introduced by 

Deville and Särndal (1992). At its simplest, it would consist of scaling the inverse probability 

weights, generalized or not, by a common factor so that the resulting final weights do add up to 

.N  Even for the ordinary inverse probability estimator, for some sampling plans, the sum of the 

design weights does not necessarily equal ,N  and here too, the solution lies in calibration. The 

subject of calibration is examined in the next section. 
 



Survey Methodology, June 2022 181 

 

 

Statistics Canada, Catalogue No. 12-001-X 

3. The generalized calibration estimator  
 

The sum of the weights of an estimator is an estimate of the known population size, .N  When the 

sampling plan is such that the sample size is not fixed, the ordinary inverse probability estimator of the 

population size will have a variance greater than zero. The sum of the weights of ( )GIP
ˆ , Σ  noted ( ) ,S Σ  

is often a worse estimator of the population size than the sum of the weights of IP
ˆ ;  it will often vary, 

even when the sample size is fixed. An estimator whose estimates of the population size vary, cannot be 

seen as very reliable.  

To fix the problem that the ordinary inverse probability estimator experiences when the sample size is 

variable, calibration can be used. The weights of CAL̂  are calibrated so that their sum equals the 

population size, N . A similar fix can be made to the generalized estimator: 

( ) ( )( ) ( )GCAL GIP
ˆ ˆ .N S =Σ Σ Σ  The definition of ( )GCAL̂ Σ  will be expanded to include the possibility 

of more calibration equations involving more auxiliary variables. The use of calibration equations was 

presented in Deville and Särndal (1992). 

With an auxiliary variable matrix X ℝ𝑁×𝑞 assumed to be of full rank and noting ( )
1 2

= 
M

v v Mv  

the weighted Euclidean norm of the vector ,v  the following problem is addressed: 
 

Calibration Problem: Among the weight vectors s w ℝ𝑁 in the range of ,sΔ  i.e., non-sampled units 

should have a weight of 0, which minimize 1 ,s N − 
T

X w X 1  i.e., which “best” satisfy the q  calibration 

equations, seek one that minimizes ( )GIP ,s s−
U

w w Σ  i.e., as close as possible to the weights of 

( )GIP
ˆ , Σ  where T ℝ𝑞×𝑞 and U ℝ𝑁×𝑁 are positive definite matrices. 

 

Weights, ,sw  that satisfy the calibration equations, 1,s N = X w X 1  do not always exist, especially if 

the number of equations, ,q  is high relative to the sample size. To prepare for this eventuality, the matrix 

T  is at the statistician’s disposal for specifying the relative importance of the q  calibration equations. 

The matrix U  specifies the relative importance given to each unit when measuring the distance from 

( )GIP .sw Σ  This formulation of the calibration problem generalizes that of Théberge (1999), where T  and 

U  were diagonal matrices, and the inverse probability, or Horvitz-Thompson, weights were used instead 

of the generalized inverse probability weights. 

The solution to the calibration problem yields 

 
( ) ( )

( ) ( )
GCAL GCAL

1 GIP

ˆ

ˆ ˆ ,

s

N s





= 

=  + −

Σ y w Σ

y 1 y y w Σ
 

(3.1)
 

where ˆˆ =y Xβ  with 

 ( )( ) ( )
†

† †1 2 1 2 1 2 1 2ˆ .s s s s=  β T T X Δ UΔ XT T X Δ UΔ y  (3.2) 

The estimator ( )GCAL̂ Σ  is asymptotically unbiased. Also, if ˆ
s →Σ Σ  in probability, then the bias and 

variance of ( )GCAL
ˆ ˆ

s Σ  are asymptotically the same as those of ( )GCAL
ˆ . Σ  The rate at which ˆ

s →Σ Σ  will 

depend on the estimator ˆ
sΣ  and on the number of parameters in .Σ  
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The difference between ( )GCAL̂ Σ  and the ordinary calibration estimator, ( )GCAL
ˆ ,N N I  is simply the 

use of generalized inverse probability weights to estimate the sum of the residues, rather than the usual 

inverse probability weights. This was to be expected given that in one case we are, in the calibration 

problem, seeking weights that minimize ( )GIP ,s s−
U

w w Σ  instead of weights that minimize 

IP ,s s−
U

w w  where ( )IP GIPs s N N=w w I  are the usual inverse probability weights. 

The following result is proven in the Appendix: for any α ℝ𝑁, if sΔ α  is in the range of ,sΔ X  then 

the weighted sum of residuals, ( ) ( )
†

ˆ ,s s
−y y Δ UΔ α  is zero. A vector v  is said to be in the range of a 

matrix F  is there exists a vector λ  such that .=v Fλ  In particular, if the matrix U  is diagonal and 

written 1 ,−=U A D  where ( )( )
1

sE
−

=A Δ  is the diagonal matrix of the ordinary inverse probability 

weights and D ℝ𝑁×𝑁 is an arbitrary positive diagonal matrix, then with =α Dc  the result gives that 

( ) ( ) ( )
†

1ˆ ˆ
s s s

− − = −y y Δ A DΔ Dc y y AΔ c  is zero if sΔ Dc  is in the range of .sΔ X  This is similar to 

result 6.5.1 of Särndal, Swensson and Wretman (1992), for example, where c  is a vector of ones and the 

diagonal elements of D  are variances. 

It can be seen from the form of (3.1), that ( )GCAL̂ Σ  is also a regression estimator that uses a model   

such that ( ) .E =y Xβ  Despite the notation used in (3.2), calibration estimators do not use models, instead 

there are calibration equations. When viewed as a regression estimator, it is important to realize that 

( )GCAL̂ Σ  is asymptotically design unbiased, regardless of the choice of the model parameter ,β  and 

regardless of the choice of the positive definite matrix .Σ  

 
4. The choice of the positive definite matrix Σ  
 

Different choices for Σ  will generally lead to different generalized inverse probability estimators and 

different generalized calibration estimators. The advantage of the generalization of the inverse probability 

estimator comes from its use in a generalization of calibration, as seen in Section 3, and the optimality of 

generalized calibration, as discussed in Section 5. It will be seen that a matrix Σ  is an appropriate choice 

to use for ( )GIP
ˆ , Σ  if a model   with ( )V =y Σ  is an appropriate model for .y  Even if the assumption 

that ( )V =y Σ  is wrong, the estimator ( )GIP̂ Σ  remains design unbiased and the estimator ( )GCAL̂ Σ  

remains asymptotically design unbiased. The generalized calibration estimators with ( )V=Σ y  can be 

said to be model assisted as opposed to model based or model dependent (see Särndal et al., 1992, 

Section 6.7). The ordinary calibration estimators, CAL̂  use (3.1) with .=Σ I  A model that fits the 

population perfectly is not necessary, but hopefully a better model than one with ( )V =y I  can be 

utilized. In fact, if Σ  is any positive diagonal matrix, then ( )GIP̂ Σ  will result in the ordinary inverse 

probability estimator, and the generalized calibration estimator will result in the ordinary calibration 

estimator. Often, a more appropriate model for y  would have ( )V y  non-diagonal. As for the variance of 

( )GIP
ˆ , Σ  it may be higher than that of the ordinary inverse probability estimator, even if ( ) .V =y Σ  It is 

the calibration of ( )GIP̂ Σ  that yields, as will be seen in Section 5, an optimal estimator. 

The use of a block-diagonal matrix simplifies the computation of inverses needed in (2.3). Blocks may 

correspond to persons of a household, students of a class, workers of an establishment, dwellings of a 
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block, etc. It is often natural for units belonging to the same block to have a correlated variable of interest. 

For example, how one worker rates their employer is likely correlated with the rating of another worker of 

the same employer; the race or religion of a couple is often the same. In such cases, a multistage sampling 

plan would often be used, but it will be assumed here that a single stage plan is used. This could be 

because a single stage sampling plan was more suitable for other variables of interest of the same survey, 

or because some unit level characteristics are so important, that it is desirable to stratify at the population 

level so that the sample can be targeted at certain strata. For example, it may be important to stratify 

persons by age, but households can’t be stratified by age. 

In the simulation presented in this paper, the vaccination status of individuals in two-person 

households is made to be correlated. An extreme case presents itself if the blocks are persons of a same 

household and the variable of interest is household income. In such a case the correlation is perfect, and 

lines of Σ  corresponding to persons from a same household should be identical. Such a matrix Σ  is not 

positive definite, but it is the limit of a sequence of positive definite matrices, and the limit of the 

corresponding sequence of generalized inverse probability estimators could be computed. The example 

(1.2) given in the introduction is based on this idea. 

If Σ  is block-diagonal with blocks 1 2, , , ,BΣ Σ Σ  then because both the Moore-Penrose inverse and 

the ordinary inverse of a block-diagonal matrix is the block-diagonal matrix of inverses, the estimator 

( )GIP̂ Σ  can be decomposed into 

 

( ) ( )

( ) ( )( )
GIP GIP

1
1† †

1

1

ˆ ˆ

,
b b b b b

B

b b

b
B

b s b s s b s N

b

E

 
=

−



=

=

=





Σ Σ

y Δ Σ Δ Δ Σ Δ 1

 

(4.1)

 

where bN  is the size of block ,b by  and 
bsΔ  are the sub-vector and sub-matrix respectively, which 

correspond to block .b  

If the population is partitioned into blocks of correlated units, the variable defining the blocks must be 

on the frame. But that variable need not be perfect. For example, a unit’s household may only be known at 

the time of the survey, but using an outdated household variable available on the frame will still be useful, 

while not introducing any bias. It simply means that the strength borrowed by the generalized inverse 

probability estimator from the correlations will be reduced. On the other hand, the strength borrowed from 

the correlations by the ordinary inverse probability estimator is nil. 

If a positive definite estimator ˆ
sΣ  converges to a positive definite Σ  in probability, then the bias and 

variance of ( )GIP
ˆ ˆ

s Σ  are asymptotically the same as those of ( )GIP
ˆ . Σ  In practice, even if the general 

form of Σ  depends on ( )1 2N N −  covariances, the number of parameters in Σ  should be small 

compared to the sample size. Using the inverse probability estimator means assuming all covariances are 

zero. When using the generalized inverse probability estimator, one could assume that those covariances 

depend on a few parameters, and that those parameters are considered fixed, rather than estimated from 

the sample. In the examples of Section 6, Σ  depends on only one parameter, ,  and its value is assumed 

to be 1. 
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5. The generalized Godambe-Joshi lower bound 
 

For any unbiased estimator ̂  of the population total ,  if ( )ˆ
pV   is the variance of ̂  under the 

sampling plan, Godambe and Joshi (1965) have given a lower bound for the value of ( )ˆ
pE V   under the 

assumption that the variance matrix ( )V y  was diagonal. That lower bound is the sum of the elements of 

the diagonal matrix ( )( )( ) ( )
1

.sE V

−

−Δ I y  That result is generalized in the following paragraph. 

For any linear unbiased total estimator, ˆ,  if ( )V y  is positive definite, then ( )ˆ
pE V   is not lower 

than the sum of the elements of the matrix ( )( )( ) ( )
1

†

.s sE V V 

−

−Δ y Δ y  It is easily verified that the usual 

Godambe-Joshi lower bound is obtained if ( )V y  is diagonal. 

Just as the calibration estimator asymptotically attains the Godambe-Joshi lower bound, the 

generalized calibration estimator with ( ) ,V=Σ y  asymptotically attains the generalized Godambe-Joshi 

lower bound, regardless of the value of the matrices ,X T  and .U  The link between the value of those 

three matrices and the value of ( )V y  is not examined in this paper, but the calibration problem stated in 

Section 3 does clarify the role of each of those matrices. The derivation of the generalized lower bound 

and the proof of the optimality of the generalized calibration estimator are given in Théberge (2017). 

The fact that ( )( )GCAL
ˆ V y  asymptotically attains the generalized Godambe-Joshi lower bound shows 

that the generalized inverse probability estimator performs well when applied to residuals, as it does in 

(3.1), even though it is not recommended in general. Similarly, the ordinary inverse probability estimator 

can be inefficient if the sample size is random, but will perform well if applied to residuals. 

It should be noted that, contrary to the ordinary Godambe-Joshi lower bound, the generalized lower 

bound applies only to linear unbiased estimators. In fact, an example with ( )V y  not diagonal, of a non-

linear unbiased estimator which does better than the lower bound is given in Théberge (2017).  

 
6. Examples  
 

There are cases simple enough for ( )GIP̂ Σ  to be given explicitly. Say ( )Σ  is a block-diagonal 

matrix where each of 2
p

N N=  blocks equals ( )2 1
1

,



  with 1 1.−    Such a block-diagonal matrix 

corresponds to a model of a population which can be partitioned into pairs   ( )2 1, 2 1, 2, , pi i i N− =  

where, within a pair, the variable of interest is correlated. Then, (2.3) reduces to 

 ( )( )
( ) ( )( )

2 1 2 1 2 2

GIP 2 2
1 2 1 2 2 1 2 2 1 2 2 1 2

ˆ ,
1

pN
i i i i

i i i i i i i i i

a y a y
 

       

− −

= − − − −

+
=

− + + −
Σ  (6.1) 

where 

 
( ) ( )

( ) ( )

2 2 2

2 1 2 1 2 2 1 2 2 1 2 2 2 1 2 1 2

2 2 2

2 2 2 1 2 1 2 2 1 2 2 1 2 2 1 2

1 1

1 1 .

i i i i i i i i i i i

i i i i i i i i i i i

a

a

            

            

− − − − − −

− − − − −

   = − + + + − −  
   = − + + + − −  

 
(6.2)

 

Once again, this generalized inverse probability estimator is unbiased, for any value of ,  “correct” or 

not. It is seen that as expected, when 0, =  the estimator reduces to the inverse probability estimator. The 
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value of   cannot simply be set to one in (6.1), because ( )1Σ  is not positive definite. However, the limit 

of (6.1) as 1 →  results in the estimator (1.2) given in the Introduction, 
LIM

ˆ .  It can be calibrated so that 

the sum of the weights is equal to .N  If the probabilities of inclusion do not vary with 1, 2, , ,pi N=  the 

resulting estimator is 

 ( ) ( )LCAL 2 1 2 1 2 2 2 1 2 2 1 2 2 1 2 2 1 2 diff

1

ˆ 2 2 ,
pN

p

i i i i i i i i i i i i i

ip

N
y y y y y y       


− − − − − −

=

= + − + + −  (6.3) 

where ( )2 1 2 2 1 21

pN

p i i i ii
    − −=

= + −  is the number of pairs with at least one unit in the sample. It is 

easy to verify, by setting 1N =y 1  in (6.3), that the sum of the weights of LCAL̂  is equal to 2 .pN N=  The 

generalized calibration estimator (6.3) is optimized for 1, →  but it can still have a lower variance than 

both, the inverse probability estimator and the ordinary calibration estimator, if the correlation between 

the units of a pair is strong (for example, race, religion or education level of a couple). Since a variable 

indicating which unit is paired with which, must be on the frame, a calibration at the pair level would be 

possible. The calibration would ensure that the sum of the weights of the sampled units of a pair would 

equal 2. However, the low number of observations per calibration group would not ensure the validity of 

asymptotic results and could result in significant biases. 

There are modified versions of the generalized inverse probability estimator and of the generalized 

calibration estimator. The modified versions have the advantage of having a closed form; there is no need 

to compute the expectation of ( )
†
.s sΔ ΣΔ  They also do not rely on the Moore-Penrose inverse. For a 

positive definite matrix ,Σ  they are defined as 

 ( ) ( )
1

1 1

MGIP 1
ˆ

s s N
−

− −


=Σ y Δ Σ Δ Σ Π 1  (6.4) 

and 

 ( ) ( ) ( )MGCAL 1 MGHT
ˆ ˆ ˆ ,N s 

=  + −Σ y 1 y y w Σ  (6.5) 

where ( ) ( )( )kl k lE  = = Π ℝ𝑁×𝑁 is the matrix of second order probabilities of inclusion, ( )MGIPsw Σ  

is the vector of weights of ( )MGIP
ˆ , Σ  and  denotes the Hadamard product, i.e., element-wise 

multiplication. With ( )MGIP
ˆ , Σ  the “probability” part of the phrase “inverse probability” is 1 .−

Σ Π  The 

modified generalized estimators are also unbiased, or at least asymptotically unbiased in the case of 

( )MGCAL
ˆ . Σ  The usual estimators IP̂  and CAL̂  are obtained if .=Σ I  

If 1, →  the modified generalized inverse probability estimator, ( )( )MGIP
ˆ , Σ  becomes: 

 MLIM 2 1 2 1 2 2

1

ˆ ,
pN

i i i i

i

w y w y − −

=

= +  (6.6) 

where 

 
( ) ( )2 1 2 2 1 2 2 1 2 2 1 2 1 2

2 1 2

2 1 2 2 1 2

i i i i i i i i i

i

i i i i

w
      

  

− − − − −

−

− −

+ − +
=

−
 (6.7) 

and 
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( ) ( )2 2 1 2 1 2 2 1 2 2 2 1 2

2 2

2 1 2 2 1 2

.
i i i i i i i i i

i

i i i i

w
      

  

− − − −

− −

+ − +
=

−
 (6.8) 

If the sampling plan is such that 2 2 1i i  −=  for any 1, 2, , ,pi N=  and if both units of that pair are 

sampled, then the weights of both units will be zero. That some sampled units may not contribute to the 

estimator, in some circumstances, is an undesirable property of MLIM
ˆ .  

One characteristic of the estimator 
LIM̂  is somewhat surprising. It is constructed in such a way that for 

each observed pair, that is each pair with at least one unit in the sample, the numerator in (1.2) 

corresponds to a value for the pair’s variable of interest total. The numerator of the thi  term is 0 if neither 

unit 2 1i −  nor unit 2i  are observed, it is 2 12 iy −  if only unit 2 1i −  of the pair is sampled, it is 22 iy  if only 

unit 2i  of the pair is sampled, and it is ( ) ( )2 1 2 2 1 2 diffi i i i iy y y y − −+ + −  if both units of the pair are 

sampled. The unexpected characteristic is that when both units of a pair i ( )1, 2, , pi N=  are observed, 

the estimated value for the pair’s total is not the known total .2 1 2i iy y− +  This is the motivation for yet 

another estimator and its calibrated version, where the estimate for a pair, while still being unbiased, will 

agree with the known total when both units of the pair are sampled. The alternative estimators are 

 
( ) ( )2 1 2 1 2 2 1 2 2 1 2 2

ALIM

1 2 1 2 2 1 2

ˆ
pN

i i i i i i i i i i i i

i i i i i

a b y c d y     


  

− − − −

= − −

+ + +
=

+ −
  (6.9) 

and 

 ( ) ( )ALCAL 1 ALIM
ˆ ˆ ˆ ,N s 

=  + −y 1 y y w Σ  (6.10) 

where ALIMsw  is the vector of weights of ALIM
ˆ , 1,i i i ia b c d+ = + =  motivated by what is wanted when 

both units of the pair are sampled, and in order to have ALIM̂  unbiased, one should have 

2 1 2 1 2 2 2 1 2 2 1 2 2 1 2 .i i i i i i i i i i i i i ia b c d      − − − − −+ = + = + −  Therefore, for 1, 2, , ,pi N=  

 

2 1 2 2 1 2

2 1 2 1 2

2 1 2 2

2 1 2 1 2

2 1 2 2 1 2

2 2 1 2

2 1 2 2 1

2 2 1 2

2

2

.

i i i i

i

i i i

i i i

i

i i i

i i i i

i

i i i

i i i

i

i i i

a

b

c

d

  

 
 

 
  

 
 

 

− −

− −

−

− −

− −

−

− −

−

+ −
=

−

−
=

−

+ −
=

−

−
=

−

 

(6.11)

 

 
7. Simulation results  
 

In this simulation, estimators from the preceding section will be compared to the ordinary inverse 

probability estimator and the ordinary calibrated estimator. A population of 2,000 individuals grouped into 

1,000 two-person households was generated. Persons 2i  and 2 1i −  for 1, 2, ,1,000i =  belong to the 

same household. A variable of interest y  takes the value 1 to represent a vaccinated person, and it takes 
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the value 0 to represent an unvaccinated person. To simulate how vaccination status can be correlated 

within household, the method of Lunn and Davies (1998) was used to generate pairs of correlated 

Bernoulli variables with a probability of 0.7 of a value of 1 and a correlation of 0.8. The actual population 

generated has 254 households where neither person is vaccinated, 660 households where both are 

vaccinated, 44 households where only the person with an odd label is vaccinated, and 42 households 

where only the person with an even label is vaccinated. The total number of persons vaccinated is 

660 2 44 42 1,406 + + =  for a vaccination rate of 0.703. The correlation between persons of the same 

household is ( ) ( )0.66 0.704 0.702 0.704 0.296 0.702 0.298 0.7941.−     =  

The population was sampled 10,000 times. Each household ( )1, 2, , pi i N=  was sampled 

independently; the probability of selecting both units was 0.05, the probability of selecting only unit 

2 1i −  was 0.10, and the probability of selecting only unit 2i  was 0.05. Thus, for each sample, the 

probabilities of inclusion were 2 1 0.15,i − = 2 0.1i =  and 2 1 2 0.05.i i − =  This means 

( )diff 2 2 1 2 1 2i i i i i   − −= −  in (1.2) was chosen to not be zero. This is because when diff i  is zero, LIM̂  

is a somewhat obvious choice: it is an inverse probability estimator based on pairs where the pair is given 

a value of 2 12 iy −  if only unit 2 1i −  is sampled, a value of 22 iy  if only unit 2i  is sampled, and a value of 

2 1 2i iy y− +  if both units are sampled. Combined with calibration, it is an obvious competitor to the 

ordinary calibration estimator. Why not base the estimator on pairs in this way, rather than units, if there is 

a strong correlation between units of a pair? When diff i  is zero, it is also true that LIM ALIM
ˆ ˆ . =  It is 

interesting to find out how LIM̂  compares when diff i  is not zero. For each sample, eight estimators of the 

total were calculated: the inverse probability estimator, the ordinary calibrated estimator, the 

generalization of the inverse probability estimator and its calibrated version, the modified generalized 

inverse probability estimator and its calibrated version, and finally the alternative estimator and its 

calibrated version. For the generalized and modified generalized estimators, including their calibrated 

versions, ( )Σ  with 1 →  was used, as explained in the examples of the preceding section. The simple 

closed-form formulae of that section can thus be used. For the calibration, 1N =X 1  with 1=T  and 

N N=U I  yields 1
ˆˆ .

kk s

kk s

y

Nx







= =


y Xβ 1  The average total and the variance over the 10,000 repetitions are 

given in Table 7.1. 

 

Table 7.1 

Simulation results comparing eight estimators 
 

Estimator and lower bounds  Total Variance 

Inverse probability 1,406.60 13,326 

Calibrated inverse probability 1,407.38 3,856 

Generalized inverse probability  1,406.41 11,226 

Calibrated generalized inverse probability  1,407.08 3,419 

Modified generalized inverse probability 1,406.37 16,337 

Calibrated modified generalized inverse probability 1406.68 4,932 

Alternative 1,406.61 12,447 

Calibrated alternative  1,407.12 3,697 

Generalized Godambe-Joshi lower bound (  = 0.8)  
 

3,408 

Generalized Godambe-Joshi lower bound ( 1 → ) 
 

3,360 
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All eight estimators are either unbiased or asymptotically unbiased, so as expected, the observed bias 

of each estimator is negligible, since the real population total is 1,406.  

The observed variances show that only the four calibrated estimators have reasonable variances. With 

the sampling plan used for this simulation, only the calibrated estimators can estimate the known 

population total with zero variance. 

The calibrated generalized inverse probability estimator, with a variance of 3,419, performs best. This 

despite being calculated assuming that the correlation between the units of a pair is one. It should be 

remembered that the calibrated inverse probability estimator, with a variance of 3,856, is a special case of 

the calibrated generalized inverse probability estimator, but it is computed assuming that the correlation 

between the units of a pair is zero. The calibrated alternative estimator, which contrary to the other 

estimators, has been defined only for a household size of 2, has a variance somewhere in between that of 

the calibrated versions of the inverse probability and generalized inverse probability estimators. Finally, 

the calibrated modified generalized estimator had the highest variance of the four calibrated estimators.  

The generalized Godambe-Joshi lower bound with the variance matrix, ( ) ,V y  of the model   used to 

generate y  is 3,408. This is the asymptotic variance that could be expected of the calibrated generalized 

estimator, if it had been calculated with a matrix ( )V=Σ y  based on the correct model ,  where the 

correlation between units of a pair is 0.8. If ( )Σ  is defined as in the preceding section, and ( )( )GJ Σ  

is the generalized Godambe-Joshi lower bound for the positive definite variance matrix ( ) ( ) ,V =y Σ  

then the limit as 1 →  of ( )( )GJ Σ  is 3,360. This is the variance that could be expected of the 

generalized calibration estimator, if the correlation between units of a same pair was one. 

 
8. Summary 
 

The concept of inverse probability estimation can be generalized with a positive definite matrix .Σ  

There is then a whole family of unbiased estimators parameterized by Σ  where one member, with 

N N=Σ I  is the usual inverse probability estimator. The concept of calibration can also be generalized so 

that weights close to those of the generalized inverse probability estimator are sought. The Godambe and 

Joshi lower bound of ( )ˆ
pE V   can also be generalized to a model   where the variance matrix ( )V y  is 

not necessarily diagonal. The calibrated generalized inverse probability estimator, with ( ) ,V=Σ y  

asymptotically attains the generalized lower bound for any linear unbiased estimator ˆ.  The new 

estimators are model assisted, not model based. They remain unbiased, or at least asymptotically unbiased, 

even if ( ).VΣ y  

Examples where the new estimators can be given an explicit form have been presented. Simulations 

comparing those new estimators with the usual ones have been done. Those simulations show that, while 

remaining asymptotically unbiased, significant improvements in variance can be obtained in situations 

where there is significant correlation between some units of the population, as for example there would be, 
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between persons of a same household with regards to vaccination status. Improvements in variance can 

still be made, even with ( ).VΣ y  
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Appendix 
 

Proof that with ˆˆ ,=y Xβ ( )( ) ( )
†

† †1 2 1 2 1 2 1 2ˆ ,s s s s=  β T T X Δ UΔ XT T X Δ UΔ y  where T  and U  are 

positive definite, then for any α ℝ𝑁, if sΔ α  is in the range of ,sΔ X  then the weighted sum of residuals, 

( ) ( )
†

ˆ ,s s
−y y Δ UΔ α  is zero. 

First, 

 ( ) ( ) ( ) ( )( ) ( )
†

† † † †1 2 1 2 1 2 1 2ˆ

.

s s s s s s s s

 − =  −  
  

= 

y y Δ UΔ α y Δ UΔ I XT T X Δ UΔ XT T X Δ UΔ α

y Mα

 

(A.1)

 

With sΔ  being an orthogonal projection, note that by Lemma 2 of Théberge (2017), ,s=M MΔ  and that 

by the properties of the Moore-Penrose inverse, ( )( )
†

†1 2 1 2 1 2 .s s s =MΔ XT T X Δ UΔ XT 0  For T  and U  of 

full rank, one has that the rank of ( )( )
†

†1 2 1 2 1 2

s s sΔ XT T X UΔ XTΔ  equals the rank of 1 2.sΔ XT  It then 

follows that the range of ,sΔ X  which equals the range of 1 2 ,sΔ XT  equals the range of 

( )( )
†

†1 2 1 2 1 2

s s sΔ XT T X Δ UΔ XT  by exercise 1.10 of Ben-Israel and Greville (2002). Therefore, if sΔ α  is 

in the range of sΔ X  which equals the range of ( )( )
†

†1 2 1 2 1 2 ,s s sΔ XT T X Δ UΔ XT  then we will have 

.s = =MΔ α Mα 0  
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Is undesirable answer behaviour consistent across surveys? 

An investigation into respondent characteristics 

Frank Bais, Barry Schouten and Vera Toepoel1 

Abstract 

In this study, we investigate to what extent the respondent characteristics age and educational level may be 

associated with undesirable answer behaviour (UAB) consistently across surveys. We use data from panel 

respondents who participated in ten general population surveys of CentERdata and Statistics Netherlands. A 

new method to visually present UAB and an inventive adaptation of a non-parametric effect size measure are 

used. The occurrence of UAB of respondents with specific characteristics is summarized in density 

distributions that we refer to as respondent profiles. An adaptation of the robust effect size Cliff’s Delta is 

used to compare respondent profiles on the potentially consistent occurrence of UAB across surveys. Taking 

all surveys together, the degree of UAB varies by age and education. The results do not show consistent UAB 

across individual surveys: Age and educational level are associated with a relatively higher occurrence of 

UAB for some surveys, but a relatively lower occurrence for other surveys. We conclude that the occurrence 

of UAB across surveys may be more dependent on the survey and its items than on respondent’s cognitive 

ability. 

 

 

Key Words: Respondent profiles; Answer behaviour consistency; Adapted Cliff’s Delta; Measurement error; Cognitive 
ability; Satisficing. 

 

 

1. Introduction 
 

The relation between answer behaviour in surveys and measurement error has been studied 

extensively. Measurement error refers to the extent to which a response deviates from the true value that a 

survey question was intended to measure (De Leeuw, Hox and Dillman, 2008). The occurrence and size of 

measurement error and hence response data quality can be influenced by respondent characteristics (Olson 

and Smyth, 2015; Tourangeau, Rips and Rasinski, 2000). Respondent characteristics can be thought of as 

fixed tendencies of a respondent that may lead to undesirable answer behaviour (UAB), like satisficing 

(Holbrook, Green and Krosnick, 2003; Kaminska, McCutcheon and Billiet, 2010). When respondents 

satisfice, they take short-cuts in the question-answering process. Satisficing can be seen as the outcome of 

the interaction of question difficulty, motivation, and cognitive ability (Krosnick, 1991, 1999; Krosnick, 

Narayan and Smith, 1996). Cognitive ability may be considered a characteristic of the respondent that is 

relatively constant over time. A straightforward proxy for cognitive ability like age or educational level 

may be used as a background variable to investigate its relation to answer behaviour. Background 

variables may not be free of measurement errors themselves, but these errors are assumed not to relate to 

answer behaviour and to be relatively stable over time (Schouten and Calinescu, 2013). 

Answer behaviour should be stable and typical for the respondent in order to investigate its relation to 

respondent characteristics. That is, the behaviour for a specific respondent must be shown consistently in 
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order to be typical for that respondent. Here, the term “consistent” refers to a pattern of answer behaviour 

that is shown over several moments in time, across multiple surveys. When a respondent only incidentally 

shows a specific answer behaviour, it is not to say whether this is typical for that specific respondent. For 

instance, a respondent could fill out a single battery or set of five multiple choice items by choosing the 

very first answering option for each item. It is however not clear to what extent this may be a form of 

satisficing (Krosnick, 1991, 1999; Krosnick et al., 1996), as the answers may just as well be truly 

applicable to that respondent. In case of consistent answer behaviour, we may connect the behaviour to 

other stable characteristics of the same respondent. In this paper, we investigate the relation between 

cognitive ability and consistent undesirable answer behaviour. For this purpose, we use the respondent 

background variables age and educational level as proxies for cognitive ability. From here, we use the 

abbreviation “UAB” for the term “undesirable answer behaviour” throughout the paper. 

Investigating the relation between cognitive ability and UAB is not new. However, this relation has not 

previously been investigated for a large sample of panel respondents across many surveys. To empower 

finding potential consistency for types of respondents in showing specific UAB, we use data from ten 

large population surveys administered by CentERdata in the LISS Panel. These surveys vary broadly in 

topic and contain many different kinds of items. By including many different surveys, variation will be 

present in survey topic and design. As a result of this variation, we assume that each survey has its own 

specific effect on the UABs. In our study, we want to distinguish respondent UAB that is survey-specific 

from UAB that occurs consistently across surveys. In order for respondent consistency to appear, UAB 

needs to occur across topics and survey designs. In other words, we need the full presence of topic and 

design variability to investigate UAB consistency across various surveys. We consider this topic and 

design variability as given and do not take into account survey and item characteristics for this study. 

This study aims at linking cognitive ability to measurement error by using our method of constructing 

behaviour profiles. In case cognitive ability appears to have a consistent relation to specific UABs, 

surveys can be adapted according to the age or educational level of respondents in order to minimize 

measurement error. In case of such structural associations, the adaptation can be done globally, regardless 

of the survey. This also implies that our method could be used to predict measurement error. This means 

that time-consuming and expensive tests that examine the risk of measurement error could initially be 

omitted. If our method shows an increased risk of measurement error for specific respondents, setting up 

such tests could be valuable. If our method does not find such an increased risk, we could conclude that 

survey-independent adaptive survey design based on cognitive ability may not be useful. 

For the purpose of our study, the specific survey topic or design would not even have to be taken into 

account. We realize that examining item characteristics and other respondent characteristics on their 

relation to measurement error across surveys is relevant as well. However, we consider our study a first 

step into investigating characteristics of respondents and items in their potentially consistent relation to 

UAB and measurement error across surveys. For this first step, we chose to examine the obvious 

respondent characteristics age and educational level in relation to eight relevant UABs (see Section 2). 
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Note that the undesirability of answer behaviour is potential by definition as we cannot validate its 

truthfulness (see Bais, Schouten and Toepoel, 2020 for an elaboration). Considering the aforementioned 

example, filling out the first answering option for all five items of a battery may refer to satisficing or to 

truthful responses. In the case of satisficing, we could say that this answer behaviour is undesirable. In the 

case of truthful responses, the behaviour is not undesirable. Our idea is that answer behaviour may refer to 

being undesirable as it is consistently shown across more surveys. The more consistent the behaviour, the 

more likely it becomes that the respondent is showing a personal pattern or style, and the more undesirable 

the behaviour may be considered. Therefore, the term “undesirable” is inherently potential when used 

throughout this paper. In summary, our foundation of ten large different surveys to detect potential 

behaviour consistency and to indicate the extent to which behaviour may be undesirable is solid and 

powerful. 

This paper reads as follows: In Section 2 of this paper, we briefly elaborate on the theoretical 

framework on which our main research question is based. In Section 3, we describe the data, methods, and 

statistics that were used to compare the different age and educational categories for each UAB across 

surveys. As a method to detection of consistent UAB, we use so-called “respondent profiles”, as suggested 

and explored by Bais (2021). In Section 4, we show all statistical results and give answers to our main 

research question. In Section 5, we conclude with a discussion of these results and make suggestions on 

how to proceed. 

 
2. Theoretical framework 
 

Cognitive ability may be considered a stable personal characteristic that has its influence on UAB 

(Krosnick, 1991, 1999; Krosnick et al., 1996). For our study, we consider the respondent characteristics 

age and educational level as proxies for cognitive ability to investigate its relation to specific UAB. Both 

age and educational level have been shown to be related to UAB and hence survey data quality (Krosnick, 

1991, 1999; Krosnick et al., 1996). Older and lower educated respondents show less accurate UAB than 

younger respondents (Andrews and Herzog, 1986) and higher educated respondents (Antoni, Bela and 

Vicari, 2019), and a less stable attitude reliability measurement than younger and higher educated 

respondents (Alwin and Krosnick, 1991). See Table 2.1 for an overview of the age and educational 

categories as used in this study, and relevant literature. 

In this study, we include two overarching kinds of UAB: Satisficing behaviour, and behaviour that is 

based on sensitive content. Satisficing behaviour refers to taking short-cuts in the question-answering 

process. Satisficing is positively related to item difficulty and can be the outcome of low cognitive ability 

(Heerwegh and Loosveldt, 2011; Krosnick, 1991, 1999; Krosnick et al., 1996). As a result of satisficing, 

respondents may show one of the following six specific UABs: Answering “don’t know”, acquiescence, 

neutral responding, extreme responding, primacy responding, and straightlining. See Table 2.2 for the 

meaning of these UABs and their relevant literature. 
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UAB can also be the result of sensitive survey content. Such UAB is positively related to item 

sensitivity and may be the outcome of a lack of willingness from the respondent to give a true answer 

(Bradburn, Sudman, Blair and Stocking, 1978; Shoemaker, Eichholz and Skewes, 2002; Tourangeau et al., 

2000). Sensitive items may involve a threat of disclosure (Lensvelt-Mulders, 2008) or can be experienced 

as intrusive (Tourangeau et al., 2000; Tourangeau and Yan, 2007). As a result of sensitive content, 

respondents may give one of the following two specific UABs: Socially desirable responding and 

answering “won’t tell”. Note that “socially desirable responding” is in fact undesirable because of its 

relation to measurement error (see for instance DeMaio, 1984; Heerwegh and Loosveldt, 2011). See 

Table 2.2 for the meaning of the UABs and relevant literature. See Figure 2.1 for the complete theoretical 

framework. 

We need to emphasize that most of the specific UABs in this study are referred to in some literature as 

“response styles” (see for instance He and Van de Vijver, 2013; He, Van de Vijver, Espinosa and Mui, 

2014; Van Herk, Poortinga and Verhallen, 2004; Van Rosmalen, Van Herk and Groenen, 2010). We 

deliberately do not use the concept of response style throughout this paper. The goal of this study is to 

investigate whether groups of respondents express a stable and consistent pattern or style of specific UAB 

across surveys. This means that we need to avoid confusing “response style” as a UAB with “style” as a 

consistent pattern that groups may show across surveys. Therefore, we distinguished between the UAB 

itself and the pattern or style of UAB across surveys that we are actually expecting to find. 

 
Table 2.1 

Respondent characteristics, their categories, and selected relevant literature 
 

Respondent 

characteristic 

Categories of the respondent 

characteristics in this study 

Selected relevant literature 

Age 1. 15-24 years old 

2. 25-34 years old 

3. 35-44 years old 

4. 45-54 years old 

5. 55-64 years old 

6. 65 years and older 

Alwin and Krosnick (1991); Andrews and Herzog (1986); 

Greenleaf (1992); He, Van de Vijver, Espinosa and Mui 

(2014); Hox et al. (1991); Kieruj and Moors (2013); 

Meisenberg and Williams (2008); O’Muircheartaigh, 

Krosnick and Helic (2000); Pickery and Loosveldt (1998); 

Schonlau and Toepoel (2015); Zhang and Conrad (2014) 

Education 1. primary school 

2. vmbo: intermediate secondary 

education 

3. havo/vwo: higher secondary 

education 

4. mbo: intermediate vocational 

education 

5. hbo: higher vocational education 

6. wo: university  

Aichholzer (2013); Alwin and Krosnick (1991); Greenleaf 

(1992); He et al. (2014); Krosnick (1991); Krosnick and 

Alwin (1987); Krosnick, Holbrook, Berent, Carson, 

Hanemann, Kopp, Mitchell, Presser, Ruud, Smith, 

Moody, Green and Conaway (2002); Marín, Gamba and 

Marín (1992); McClendon (1986, 1991); Narayan and 

Krosnick (1996); O’Muircheartaigh et al. (2000); Pickery 

and Loosveldt (1998); Schuman and Presser (1981); 

Zhang and Conrad (2014) 
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Table 2.2 

The answer behaviours, their meaning, and selected relevant literature 
 

Answer 

Behaviour 

Meaning of the Answer Behaviour Selected Relevant Literature for the 

Answer Behaviour 

Socially 

Desirable Responding 

The tendency to minimize showing 

socially undesirable behaviour. 

Andersen and Mayerl, 2019; 

Campanelli, Nicolaas, Jäckle, Lynn, 

Hope, Blake and Gray, 2011; DeMaio, 

1984; Heerwegh and Loosveldt, 2011; 

Holbrook et al., 2003; Jann, Krumpal 

and Wolter, 2019; Johnson and 

Van de Vijver, 2003; Kreuter, Presser 

and Tourangeau, 2008; Krosnick, 1999; 

Paulhus, 2002; Roberts, 2007; Roberts 

and Jäckle, 2012; Tourangeau et al., 

2000; Tourangeau and Yan, 2007 

Answering “Don’t Know” and “Won’t 

Tell” 

The tendency to give a “don’t know”- 

or a “won’t tell”- answer to a question. 

Beatty and Herrmann, 2002; 

Binswanger, Schunk and Toepoel, 

2013; Bishop, Tuchfarber and 

Oldendick, 1986; Bradburn et al., 1978; 

Fricker, Galesic, Tourangeau and Yan, 

2005; Krosnick et al., 2002; Leigh and 

Martin, 1987; Roberts, 2007; Roßmann, 

Gummer and Silber, 2017; Schuman 

and Presser, 1981; Shoemaker et al., 

2002; Tourangeau et al., 2000; Vis-

Visschers, Arends-Tóth, Giesen and 

Meertens, 2008 

Acquiescence The tendency to answer affirmatively, 

regardless of the content of the 

question. 

Billiet and McClendon, 2000; 

De Leeuw, 1992; Díaz de Rada and 

Domínguez, 2015; Heerwegh and 

Loosveldt, 2011; McClendon, 1991; 

Messick, 1966; O’Muircheartaigh et al., 

2000; Saris, Revilla, Krosnick and 

Shaeffer, 2010; Schaeffer and Presser, 

2003; Stricker, 1963 

Neutral Responding The tendency to choose the neutral 

midpoint category from a bipolar 

answering scale. 

He and Van de Vijver, 2013; Kalton, 

Roberts and Holt, 1980; Krosnick and 

Fabrigar, 1997; O’Muircheartaigh et al., 

2000; Si and Cullen, 1998; Stern, 

Dillman and Smyth, 2007; Tarnai and 

Dillman, 1992 

Extreme Responding The tendency to choose an extreme 

category from the answering scale. 

Aichholzer, 2013; De Leeuw, 1992; 

Díaz de Rada and Domínguez, 2015; 

Ye, Fulton and Tourangeau, 2011 

Primacy Responding The tendency to choose an option at the 

beginning of an answering list. 

Galesic, Tourangeau, Couper and 

Conrad, 2008; Krosnick, 1991; 

Krosnick, 1992; Krosnick and Alwin, 

1987; McClendon, 1991; Stern et al., 

2007 

Straightlining The tendency to give the same answers 

to a series of questions arranged in a 

grid format. 

Díaz de Rada and Domínguez, 2015; 

Fricker et al., 2005; Krosnick, 1991; 

Krosnick and Alwin, 1989; Roßmann 

et al., 2017; Schonlau and Toepoel, 

2015; Zhang, 2013; Zhang and Conrad, 

2014 
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Figure 2.1 Literature-based theoretical framework. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
Literature overview: Age and education 
 

Age and education seem to be related to non-substantive UAB, giving neutral, extreme, and 

acquiescent answers, and straightlining. Some studies found more acquiescence for older than for younger 

respondents (Meisenberg and Williams, 2008; O’Muircheartaigh, Krosnick and Helic, 2000), while other 

studies found the opposite (Hox, De Leeuw and Kreft, 1991) or no effect (He, Van de Vijver, Espinosa 

and Mui, 2014). Older respondents are found to give more extreme answers (Greenleaf, 1992; He et al., 

2014; Meisenberg and Williams, 2008), including across questionnaires (Kieruj and Moors, 2013), while 

younger respondents are found to choose relatively more middle or neutral options (He et al., 2014). 

Schonlau and Toepoel (2015) found more straightlining for younger than for older respondents, while 

another study did not find a relation between age and straightlining for respondents who give answers at a 

high pace (Zhang and Conrad, 2013). Older respondents are found to give more “no opinion”-answers 

(Pickery and Loosveldt, 1998) or “don’t know”-answers (O’Muircheartaigh et al., 2000) than younger 

respondents. 

Lower educated respondents are found to give more “no opinion”-answers (Narayan and Krosnick, 

1996; Krosnick et al., 2002; Pickery and Loosveldt, 1998) and “don’t know”-answers (O’Muircheartaigh 

et al., 2000; Schuman and Presser, 1981) than higher educated respondents. Most studies found a negative 

relation between education and acquiescence (McClendon, 1991; Narayan and Krosnick, 1996; 

O’Muircheartaigh et al., 2000), although some research did not find a relation (Bachman and O’Malley, 

1984; He et al., 2014; Hox et al., 1991). Also a negative relation between education and extreme 

responding is found (Aichholzer, 2013; Greenleaf, 1992; He et al., 2014; Marín, Gamba and Marín, 1992 

‒ but see Bachman and O’Malley, 1984 for different findings), while mixed results exist concerning 

choosing middle or neutral options; see Narayan and Krosnick (1996) versus He et al. (2014). Among 
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respondents who give answers at a high pace, more straightlining was found for lower than for higher 

educated respondents (Zhang and Conrad, 2013). Evidence for the relation between education and 

primacy responding was mixed; see Krosnick and Alwin (1987) versus McClendon (1991). 

As summarized above, the literature shows that the relation between age or education and UAB is not 

unambiguous. The literature needs to be complemented by results that are based on a fixed panel of 

respondents filling out multiple surveys. Existing findings from different studies are often mixed and may 

not be comparable because of different respondent samples. This means that it is hard to make literature-

based predictions for our panel study and consistent UAB across surveys. Therefore, we do not construct 

hypotheses and merely explore to what degree UAB for different age and educational groups is consistent 

across surveys. By using a fixed panel and large set of ten surveys, our aim is to obtain an overarching 

overview of the relation of age and education to eight relevant UABs. 

 
3. Method 

 
3.1 LISS panel and surveys 
 

We selected ten Dutch general population surveys that were administered by CentERdata to 

respondents of the Longitudinal Internet studies for the Social Sciences (LISS) Panel. This was done in the 

time period between June 2012 and December 2013. The surveys were the first wave of the Dutch Labour 

Force Survey from Statistics Netherlands and nine of the core studies from CentERdata. The data for the 

background variables as presented in Section 2 were also provided by CentERdata. All surveys were 

administered in computer-assisted format. The ten surveys cover a broad range of topics in the field of 

general population statistics, see Table 3.1. Also note the relatively high response rates for all surveys, 

ensuring comparable samples across the surveys. Considering these high and comparable response rates, 

we do not expect them to have a substantial relation to the occurrence of UAB within the context of this 

study. 

The LISS Panel consists of about 7,000 individuals from about 4,500 households and is based on a 

probability sample of households. This sample is drawn from the population registry by Statistics 

Netherlands. All panel members were invited for all surveys included in this study. The first 

administration period for each survey was approximately a month. In case of initial nonresponse, the 

respondent was sent one or two reminders within this period. To increase the response rate, a second 

administration period of about a month including one or two reminders was executed for each survey. The 

respondents were compensated for each survey that they completed. This whole procedure was 

standardized for each survey, ensuring the comparability of the response rates for the surveys. The number 

of respondents that filled out a specific survey differed per survey and the number of surveys that 

respondents filled out varied across respondents. The average number of surveys filled out by a 
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respondent was almost eight. Altogether, the surveys contain 2,074 items that were used to cover the 

UABs as presented in Section 2. 

 
Table 3.1 

Overview of all surveys, a description of their content, and their response rate (and the number of 

respondents) 
 

Survey (administration period,  

nr. of items) 

Topics of the content Response rate  

(and nr. of respondents) 

Economic Situation Assets (AS) 

(Jun/Jul ‘12, i = 50) 

Income, property and investment 75.2%   (5,588) 

Family and Household (FA) 

(Mar/Apr ‘13, i = 409) 

Housing and household; social behaviour 88.8%   (5,826) 

Health (HE) 

(Nov/Dec ‘12, i = 243) 

Health and well-being 85.4%   (5,780) 

Economic Situation Housing (HO) 

(Jun/Jul ‘13, i = 73) 

Housing and household; income, property and 

investment 

58.2%   (3,199) 

Economic Situation Income (IN) 

(Jun/Jul ‘13, i = 286) 

Employment, labour, retirement; income, property, 

investment; social security, welfare 

78.4%   (5,015) 

Personality (PE) 

(May/Jun ‘13, i = 200) 

Psychology 90.6%   (5,169) 

Politics and Values (PO) 

(Dec ‘12/Jan ‘13, i = 148) 

Politics; social attitudes and values 85.7%   (5,732) 

Religion and Ethnicity (RE) 

(Jan/Feb ‘13, i = 71) 

Religion; social stratification and groupings 88.6%   (5,908) 

Work and Schooling (WO) 

(Apr/May ‘13, i = 471) 

Education; employment, labour and retirement 86.5%   (5,585) 

Labour Force Survey (LF) 

(Dec ‘13, i = 123) 

Education; employment and labour 81.2%   (3,166) 

 
3.2 Coding the undesirable answer behaviours 
 

Each item (the total of the question and all answering options together) of all surveys was investigated 

on whether it was eligible for the selected UABs separately. The answering categories of the eligible items 

were coded for each UAB. In case a category was filled out for which the UAB occurred, the response 

was coded as 1; in case a category was filled out for which the UAB did not occur, the response was 

coded as 0. For all UABs, the coding was relatively straightforward. For neutral responding and answering 

“don’t know” and “won’t tell”, the neutral, don’t know- and won’t tell-options respectively were coded as 

1, while all other options were coded as 0. For extreme responding, the most negative and most positive 

option were coded as 1, while all other options were coded as 0. For primacy responding, the first two 

options were coded as 1, while all other options were coded as 0. This coding method was based on 

Medway and Tourangeau (2015) for the UABs that matched our research. See Table 3.2 for an overview 

of the UABs and their eligible kind of items. See Table 3.3 for the proportions of items for which the 

UABs are applicable per survey and in total. From here, we discuss the coding process of the UABs that 

need more elaboration: Socially desirable responding, acquiescence, and straightlining. 
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Table 3.2 

The answer behaviours and their eligible kind of items 
 

Answer Behaviour Eligible items 

Defined on Item Level 

Socially Desirable Responding All items coded as asking for sensitive information, containing at least one answer 

category coded as possibly being socially desirable and at least one category coded as not 

being socially desirable. 

Answering “Don’t Know” All items containing a “don’t know” answer category. 

Answering “Won’t Tell” All items containing a “won’t tell” answer category. 

Acquiescence All more or less subjective (battery) items in the form of an ordinal agree/disagree or 

yes/no answer scale. 

Neutral Responding All (battery) items with an odd and minimum number of five answer categories on an 

ordinal scale, containing a neutral middle answer category. 

Extreme Responding All (battery) items with a minimum number of four answer categories on an ordinal scale, 

containing non-neutral first and last answer categories. 

Primacy Responding All (battery) items containing at least four response options. 

Defined on Battery Level 

Straightlining The items of all batteries containing at least 3 items and at least 4 answer categories, only 

in case all items of the battery were actually filled out. 

 
Table 3.3 

The number of items and batteries per survey, the average number of items per battery, and the proportions 

of items for which the answer behaviours are applicable for all surveys and in total* 
 

 AS FA HE HO IN PE PO RE WO LF TO 

Nr. of items 50 409 243 73 286 200 148 71 471 123 2,074 

Nr. of batteries - 11 5 - 3 16 12 4 2 - 53 
Ave. nr. of items/battery - 5.5 7.6 - 5.7 11.1 6.0 5.8 12.0 - 7.8 

Soc. Des. responding 0.20 0.12 0.62 0.01 0.25 0.30 0.51 0.42 0.19 0.32 0.28 

Answering “don’t know” 0.52 0.08 0.01 0.33 0.47 0.02 0.45 0.49 0.11 0.01 0.18 
Answering “won’t tell” 0.28 - - 0.30 0.31 - 0.01 - 0.04 0.81 0.12 

Acquiescence - 0.03 - - 0.01 0.96 0.68 0.24 0.05 0.03 0.17 

Neutral responding - 0.10 - - 0.05 0.93 0.66 - 0.04 - 0.17 
Extreme responding - 0.13 - - 0.05 0.93 0.66 - 0.06 - 0.18 

Primacy responding - 0.37 0.23 - 0.24 0.93 0.73 0.55 0.19 0.27 0.35 

Straightlining - 0.15 0.16 - 0.06 0.89 0.49 0.32 0.05 - 0.20 

*Assets (AS), Family (FA), Health (HE), Housing (HO), Income (IN), Personality (PE), Politics (PO), Religion (RE), Work (WO), Labour 
Force Survey (LF), Total (TO). 

 
Socially desirable responding 
 

About 50% of all items of the involved surveys together were coded as potentially asking for sensitive 

information by at least one of three coders (see Bais, Schouten, Lugtig, Toepoel, Arends-Tóth, Douhou, 

Kieruj, Morren and Vis, 2019). Next, the answering categories of these items were coded by an 

independent fourth coder on whether they may refer to a socially desirable answer. Let us consider the 

following example: 

 

“Can you indicate, on a scale from 0 to 10, how hard or how easy it is for you to live off your income?  

0 means that it is very hard to live off your income, 10 means that it is very easy. 

very hard                                                                                                                 very easy 

      0       1       2       3       4       5       6       7       8       9       10” 
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The idea is that it is socially desirable to state that it is relatively easy to live off one’s income. For our 

study, we only considered the answering options 8 through 10 as socially desirable options. In this way, 

we hoped to distinguish respondents who are clearly sensitive to responding in a socially desirable manner 

across surveys from those who are not. 

 
Acquiescence: Responding agreeably/affirmatively to a question 
 

The answering categories of all items were evaluated on whether they showed an extent of 

agreeableness or affirmativeness (see Medway and Tourangeau, 2015). Both positively and negatively 

worded items were present throughout the surveys to measure acquiescence. Both battery (a set of related 

items sharing the same answering options) and non-battery items were considered and also subjective 

variants of the typical answering option “agree”, like “satisfied”, “applicable”, and “yes”, were considered 

for acquiescence. We chose to include those variants as acquiescent options to capture a broad range of 

possible acquiescent behaviour across many items. Such a broad range may result into more variation 

between respondents in showing acquiescence, so that we may better distinguish acquiescent from non-

acquiescent respondents. Let us consider the following example: 

 
“I really enjoy responding to questionnaires through the mail or Internet. 

totally disagree                                                          totally agree 

 1 2 3 4 5 6 7” 

 
For our study, we considered the answering options 5 through 7 as acquiescent options. We decided to 

consider the option “somewhat agree” (option 5 in the example) as an acquiescent response as well, as we 

hoped to distinguish respondents who acquiesce clearly or to only a certain extent from respondents who 

do not acquiesce. 

We need to note that the coding of socially desirable responding and acquiescence is more or less 

arbitrary; the coding of both UABs may have been executed either more or less strictly. On the one hand, 

this means that a response option that was coded as socially desirable or acquiescent may be a socially 

desirable or acquiescent response for some respondents, but the intended response for others. On the other 

hand, a response option that was not coded as socially desirable or acquiescent may indeed be the intended 

response for some respondents, but should have been coded as socially desirable or acquiescent for others. 

However, in order to investigate socially desirable responding and acquiescence at all, a coding threshold 

that distinguishes the occurrence from the non-occurrence of these UABs simply needs to be placed at 

some point. By the current way of coding these UABs, enough variability between respondents is present 

in order to distinguish age and educational subgroups that may differ in the occurrence of UAB. 
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Straightlining: Choosing the same answering category for all items in a battery 
 

Our idea is to consider straightlining for a battery only when the very same answering options were 

filled out for all its items (see Schonlau and Toepoel, 2015). When this is the case, the number of times 

that a “1” is coded is equal to the number of items that the battery consists of. For instance, the occurrence 

of straightlining for a battery of five items received the code “1” five times. This means that we took into 

account the length of the battery for this UAB. In other words, the more items a battery consists of, the 

stronger the UAB refers to straightlining in case a respondent filled out the same option for each item. See 

the following section for an elaboration on how the coding at the item level for all UABs is transformed 

into meaningful respondent behaviour summaries. 

 
3.3 Respondent profiles 
 

In order to compare respondents on consistent UAB across surveys, a few aspects need to be taken into 

account regarding the UAB. First, the number of items that is applicable to the UAB per survey can be 

relatively small. This means that uncertainty exists around the actual occurrence of UAB, since it is based 

on, by definition, a limited number of items per respondent. To give an example, suppose a respondent A 

fills out ten items and gives a “don’t know”-answer five times, while another respondent B fills out 100 

items and gives a “don’t know”-answer 50 times. Although both respondents can be attributed a 

probability of 0.50 for answering “don’t know”, this probability is relatively more certain for respondent B 

since it is based on more response data. In other words, the actual occurrence of UAB for respondents may 

be more uncertain as respondents fill out a smaller number of items. 

Second, when a survey contains filter questions that may or may not branch out into follow-up 

questions, each respondent is likely to fill out a different number of items for that survey. Therefore, the 

actual occurrence of UAB is indicated with varying uncertainty across different respondents within a 

survey. Hence, to compare respondents sharing the same characteristic on their UAB across surveys, 

simply using individual UAB proportions is insufficient: A method must be used that takes into account 

these uncertainties. For this purpose, we introduce the method of using respondent profiles. See Bais 

(2021) for an extensive statistical elaboration on this method. 

 
The respondent profile 
 

The respondent profile is a summary of UAB for a group of respondents. It represents the relative 

proportions of a specified population group (for instance lower educated respondents) in showing a 

specified UAB (for instance answering “don’t know”) at all possible probabilities from 0 to 1. In 

constructing a respondent profile, we make use of the binomial distribution to take into account the 

abovementioned uncertainties. Note that when we speak of a “respondent profile”, we refer to a group of 

respondents by definition. When we discuss a profile for a single respondent, we explicitly speak of an 

“individual respondent profile”. 
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Consider an individual respondent r  who fills out a survey consisting of 50 items of which each offers 

the answering option “don’t know”. Suppose that the respondent chooses the “don’t know”-option 10 

times out of the 50 possible occasions. Then these numbers are used to construct a binomial distribution. 

This binomial distribution shows the occurrence of answering “don’t know” for respondent .r  The 

likelihood of the UAB occurrence is calculated for each probability along the probability range from 0 to 

1. For practical calculation, we chose for a probability step size interval of 0.01 in order to construct the 

binomial distribution on the basis of 100 probabilities. We call the resulting binomial distribution for 

respondent r  an individual respondent profile. An individual respondent profile is the likelihood curve for 

the UAB occurrence and is calculated for each probability from 0 to 1. Hence, to construct the individual 

profile for respondent ,r  the likelihood of the UAB occurrence is calculated on the basis of 10 actual 

“don’t know”-answers out of 50 possible occasions for all 100 probabilities:  

 ( ) ( ) ( ) ,1 r rr
I GGr

r
r

I
p p p

G


−
= −  (3.1) 

where r  is the likelihood curve or individual profile for respondent ,r p  is the probability between 0 and 

1 with step size 0.01, rI  is the number of items for which choosing the UAB is possible for respondent ,r  

and rG  is the number of items for which the behaviour is actually shown by respondent r . In order to 

make individual respondent profiles comparable, we normalize the resulting distribution to obtain an area 

below the curve of 1 regardless of step size. This is done by dividing each of the likelihoods that the 

profile consists of by the sum of all likelihoods: 
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where r  is the normalized individual profile for respondent .r  For a single respondent ,r  the average or 

expected value rE  for the UAB occurrence can be estimated on the basis of the respondent’s profile and 

the integral over .p  This means that each probability from 0 to 1 is multiplied by its accompanying 

likelihood: 
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=   (3.3) 

The likelihood curve resulting from formula’s (3.1) and (3.2) is an individual respondent profile. The 

profile delineates the expected UAB occurrence across the full potential probability range from 0 to 1 and 

gives consideration to the amount of occurrence uncertainty. To illustrate the uncertainty on the individual 

level, consider two respondents who may both have an expected UAB value of 0.50, but who filled out a 

different number of items for which the UAB was possible. For instance, respondents A and B showed 

UAB for 10 out of 20 items and for 30 out of 60 items respectively. See Graph 1 in Figure 3.1. Here, our 

method takes into account that the expected value of 0.50 is more precisely estimated for respondent B 
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than for respondent A. This is visible by the relatively more narrow and peaked profile for respondent B, 

indicating that this respondent’s UAB occurrence is relatively more certain. 

By considering all respondents who meet the condition of a specific category for a characteristic (for 

instance lower educated respondents for educational level), the average respondent group profile can be 

calculated by simply summing their comparable individual profiles and dividing the outcome by the 

number of respondents: 

 ( ) ( )
1

1
,

R

r

r

p p
R

 
=

=   (3.4) 

where   is the respondent profile of the group UAB occurrence averaged over all respondents, and R  is 

the total number of respondents in the group. By means of this average respondent profile, the averaged 

expected value E  for the UAB occurrence for this group of respondents can be calculated as follows: 
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Figure 3.1 Examples of respondent profiles with similar expected values (Graph 1) and different expected 

values (Graph 2). 

 
 

 

 

 

 

 

 

 

 

 
The likelihood curve resulting from formula (3.4) is a group respondent profile. To illustrate the 

uncertainty on the group level, consider the two groups of lower and higher educated respondents showing 

a specific UAB. See Graph 2 in Figure 3.1. The expected values for the groups are 0.50 and almost 0.80 

respectively. Our method shows that the expected UAB occurrence is more precisely estimated for higher 

than for lower educated respondents. It is also visible that for lower educated respondents, the UAB 

occurrence is not centered around the expected group value of 0.50, but around the values of 0.40 and 

0.60. Although formula (3.4) refers to a profile for a group of respondents, it does give an indication of 
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individual UAB. Consider the respondent profile in Figure 3.2 containing individuals on all educational 

levels. The majority of individuals does not show a specific UAB very often considering the large bump 

left of the center. On the right, a small peak is visible that refers to a subgroup of individuals showing the 

UAB very often. These respondents may be either lower or higher educated respondents, or they may 

share another characteristic that is associated with a high UAB occurrence. The point here is that the 

respondent profile takes into account the individual UAB and that subgroups of individuals showing a 

specific occurrence of UAB may be identified in the profile. 

Note that by using this method of constructing respondent profiles, we assume that individual UAB is 

independent across items. This assumption may be partly unjustified, as there may be interdependence 

across items to some extent in practice. Elaborating on taking into account interdependence across items is 

beyond the scope of this paper. We refer to Bais (2021) for suggestions on how to cope with 

interdependence across items in future research using respondent profiles. 

 

Figure 3.2 Example of a respondent profile containing all educational levels. 

 

 

 

 

 

 

 

 

 

 

 

 
Also note that we choose not to use a more traditional model like multilevel analysis to analyze our 

data. We do not follow identified individual respondents across surveys, but we analyze subgroups of 
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And by means of full respondent profiles, relatively small subgroups that deviate from the main body of a 

larger group may be detected. Throughout this paper, note that a category of respondents refers to 
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In summary, the expected values of two groups with different characteristics indicate the average UAB 

occurrences for the groups as a whole. In this way, an idea is obtained about the difference of the 

occurrences of specific UAB (for instance answering don’t know) between two groups (for instance lower 

and higher educated respondents). The next step is to use a solid analysis to compare the UAB 

occurrences of two groups. 

 
3.4 Cliff’s Delta for comparing groups of respondents 
 

To compare two groups or categories of respondents meeting a specific characteristic, an adaptation of 

the effect size Cliff’s Delta (Cliff, 1993, 1996ab) is used. Cliff’s Delta   can be used as a robust 

alternative to using two independent group means. Using Cliff’s Delta for our research asks for an adapted 

version of the statistic, as we are not considering data observations but density distributions. 

 
The original Cliff’s Delta for data observations 
 

Cliff’s Delta   is a robust effect size that indicates to what extent two groups are different. It 

calculates the probability that a random data observation aX  from a group A is larger than a random data 

observation bX  from another group B, minus the reverse probability (Hess and Kromrey, 2004; 

Rousselet, Foxe and Bolam, 2016; Rousselet, Pernet and Wilcox, 2017). In practice, this means that each 

data observation in group A is compared to each data observation in group B. Then a value is assigned to 

each such comparison. If an observation from group A is larger than an observation in group B, this value 

is 1. If an observation in group A is smaller than an observation in group B, this value is -1. If the 

observations in group A and B are equal, this value is 0. Then the total sum of all these values is divided 

by the total number of comparisons, giving Cliff’s Delta. The smaller the overlap between the 

distributions of two groups, the more difference between the two groups. A Cliff’s Delta of -1 or 1 

indicates absence of overlap between two groups and a Cliff’s Delta of 0 refers to group equivalence 

(Hess and Kromrey, 2004). The sample estimate of Cliff’s Delta ̂  is 

 
( )

1 1 ,ˆ
sgn

A B

a ba b
X X

AB
 = =

−
=
 

 (3.6) 

where ( )a bX X−  results in a positive or negative number or 0, the sign function “sgn” transforms each 

positive number into 1 and each negative number into -1, and preserves each 0, and A and B are the sizes 

of group A and group B respectively.  

 
Adapting Cliff’s Delta for density distributions 
 

We need to adapt the original Cliff’s Delta for our respondent profiles that consist of likelihood 

distributions. Consider Cliff’s Delta for which each specific observation from sample A is compared to 

each specific observation from sample B exactly once. This means that when an observation with a 

specific value from sample A occurs three times, this observation value is compared to all observations 
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from sample B three times as well. Therefore, we may regard both observations for each such comparison 

on its own as having a “frequency” or “weight” of 1. When we transpose this idea to respondent profiles, 

we may consider the UAB probabilities from 0 to 1 (with a specific step size interval) our “observations” 

and the likelihoods for each probability their “frequencies” or “weights”. 
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where aP  and bP  are the probabilities from 0 to 1 from group A and group B respectively, ( )aP  and 

( )bP  are the averaged likelihoods of the probabilities aP  and bP  respectively, and A  and B  are the 

same number of step size intervals for both groups. 

As a brief illustration, we calculate the adapted Cliff’s Delta by means of formula (3.7) for the 

respondent profiles in Figure 3.1. Consider Graph 1. When comparing the profiles for respondent A to 

respondent B, Cliff’s Delta is 0. Although the two profiles slightly differ, their shapes are symmetrically 

formed around the shared expected value of 0.50. This means that the various values in the denominator of 

formula (3.7) cancel each other out. Consider Graph 2. When comparing the profiles for lower to higher 

educated respondents, Cliff’s Delta is -0.99. The profiles hardly overlap and the higher educated 

respondents clearly show more of some UAB than the lower educated respondents. The reason that Cliff’s 

Delta is not exactly 1 can be explained by the very small part of overlap around the probability of 0.70 

(see Graph 2). Note that the sign would change and Cliff’s Delta would be 0.99 when we would compare 

higher to lower (instead of lower to higher) educated respondents. 

For our study, we use the adaptation of Cliff’s Delta in order to compare respondent profiles. The 

respondent profiles and this adaptation take into account the fact that each respondent fills out a delimited 

and different number of items (see Section 3.3). Cliff’s Delta has many advantages with respect to 

answering our research question. Cliff’s Delta makes no assumption about the shape of the underlying 

distribution (Cliff, 1993, 1996ab; Goedhart, 2016; Vargha and Delaney, 2000) and is robust in case of 

outliers or skewed or otherwise non-normal distributions (Goedhart, 2016). Cliff’s Delta is easy to 

calculate, straightforward to interpret, and standardized, meaning different effect size categories can be 

distinguished (Goedhart, 2016; see Section 4.2 for these categories). For our adapted Cliff’s Delta, 

relatively small or unequal sample sizes are no issue. 

 
3.5 Confidence intervals for Cliff’s Delta and statistics 
 

For each Cliff’s Delta, we use confidence intervals to refer to its amount of uncertainty. For a 

respondent characteristic, each Cliff’s Delta is based on the comparison between the profile of a category 

and the overall profile of the remaining categories taken together. For a confidence interval, we bootstrap 

10,000 category profiles and 10,000 overall profiles. We use the so-called empirical bootstrap method, as 

we cannot make assumptions about the profiles that are non-parametric by definition (see for instance 
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Dekking, Kraaikamp, Lopuhaä and Meester, 2005 for more on this bootstrap method). For each profile, 

respondents are randomly sampled with replacement and their individual profiles are averaged by means 

of formula (3.4). The number of sampled respondents is equal to the number of respondents in the 

category or overall group respectively. By means of these averaged bootstrap profiles, we calculate 10,000 

Cliff’s Delta’s and rank them from low to high. Because of the large number of Cliff’s Delta’s in our 

study, we choose to use 99% confidence intervals. This means that we use the 51st and the 9,950th Cliff’s 

Delta in the ranking to construct each confidence interval. In the results section, we show Cliff’s Delta 

outcomes for the respondent characteristics and their categories for all UABs. Each Cliff’s Delta is 

accompanied by its 99% confidence interval. 

 
4. Results 
 

In this section, we first show the Cliff’s Delta’s for all surveys together as if they were one large 

survey. Second, we consider the Cliff’s Delta’s per survey to give an indication about UAB consistency 

across surveys to answer our research question. All Cliff’s Delta’s are obtained by comparing each 

category profile to the combined profile of the remaining categories. For instance, this means that the 

profile for respondents aged 15-24 are compared to the profile for the respondents from all other age 

categories. We chose for this type of comparison, as we are interested in whether a specific subgroup 

deviates from the complete sample of respondents, considered representative regarding age and education, 

minus that subgroup. 

First, we need to note that respondents varied in the number of surveys they filled out. Some 

respondents filled out only one or two surveys, while others filled out all or almost all surveys. Behaviour 

data for every survey that the respondent filled out were used for the analyses. For instance, if a 

respondent filled out the surveys Health, Income, and Personality, this respondent is included in the data 

analyses for all these surveys. Second, respondents are classified in one category for both age and 

education. This means that a respondent can be older than 64 years and highly educated, and is included in 

the data analyses for both characteristics. Hence, respondents are included in each survey and 

characteristic analysis that is applicable to them. From this, it should be clear that we do not analyze 

individual respondents in this study, but that we focus on groups of respondents sharing the same 

characteristic. The reason is that we want to relate UAB to characteristics that are known from the 

literature to affect UAB, rather than to isolate individuals and explore potentially related characteristics. 

We consider an individual respondent profile based on less than five items non-informative and too 

imprecise to take into account. Therefore, for each respondent group profile, we only include respondents 

who filled out at least five items. This means that part of the respondents may be excluded from several 

subgroups for the analyses. As a result, the occurrence of UAB for a subgroup after excluding respondents 

may differ from the initial occurrence of UAB for that subgroup. Thus, after excluding respondents from a 

subgroup, the remainder of the subgroup may not be representative for the original subgroup anymore in 
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terms of the initial UAB occurrence. Therefore, we used two criteria to guarantee the representativeness of 

each original subgroup: 1) Each subgroup consists of more than 30% of the number of respondents in the 

original group, and; 2) the UAB occurrence in each subgroup does not differ more than 0.02 from the 

original group’s UAB occurrence. 

 
4.1 Exploring survey participation and respondents aged 65 or older 
 

Before elaborating on the main results, we give the outcomes of a few explorations. First, we 

investigated to what extent frequency of survey participation may have differed between the various age 

and educational subgroups. See Table 4.1. The average number of surveys that was filled out per 

respondent overall is 7.6. The average number of surveys per educational subgroup appeared to be 

relatively high and not to differ much between subgroups. For the age subgroups however, it is evident 

that younger respondents filled out a lower number and older respondents a higher number of surveys on 

average. 

 
Table 4.1 

Overall survey participation in total and per subgroup in average number of surveys (and absolute number of 

respondents) 
 

 TOT 15_24 25_34 35_44 45_54 55_64 > 64 

Age 7.6 

(6,700) 

6.0 

(838) 

6.8 

(803) 

7.3 

(1,083) 

7.7 

(1,223) 

8.3 

(1,289) 

8.5 

(1,464) 

  Primary VMBO HAVW MBO HBO WO 

Education 7.6 

(6,688) 

7.3 

(601) 

7.7 

(1,634) 

7.3 

(791) 

7.6 

(1,549) 

7.7 

(1,504) 

7.6 

(609) 

 
We used respondent profiles and Cliff’s Delta to explore whether the degree of participation made a 

difference in the occurrence of the specific UABs taking all surveys together. We split up the complete 

sample of panel respondents into a group who filled out at most eight surveys and a group who filled out 

at least nine surveys. See Table 4.2. It is clear that participation rate did not affect the occurrence of most 

UABs. Not surprisingly, respondents who participated in relatively few surveys showed relatively more 

“won’t tell”-answers. A second effect was relatively more straightlining in case of a lower participation 

rate. 

 
Table 4.2 

Cliff’s Delta for Low (Filled out at most eight surveys) versus High (Filled out at least nine surveys) survey 

participation per answer behaviour1 
 

 SD PR DK ST WT AC NE EX 

At most eight vs. at least nine surveys -0.09 0.07 0.08 0.14 ~ 0.29 * -0.06 0.02 -0.10 

~→ small effect; *→ medium effect; #→ large effect. 
1Socially Desirable Responding (SD), Primacy Responding (PR), Answering “Don’t Know” (DK), Straightlining (ST), 

Answering “Won’t Tell” (WT), Acquiescence (AC), Neutral Responding (NE), Extreme Responding (EX). 
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Lastly, respondents aged 75 or older may be even more vulnerable to difficulty in cognitive processing 

and hence showing UAB than respondents aged 65-74. Therefore, we compared respondents aged 65-74 

to respondents aged 75 or older on their group UAB proportion. See Table A.1 in Appendix A. Age 

subgroups did not or hardly differ for most UABs and surveys. Only regarding straightlining there were a 

few striking differences, but interestingly, these showed that respondents aged 75 or older expressed less 

straightlining than respondents aged 65-74. This means that we do not have a reason to split up the age 

subgroup of 65 years or older into two smaller subgroups. 

 
4.2 Overall outcomes for Cliff’s Delta 
 

The overall results for Cliff’s Delta concern the global picture for specific subgroups for all surveys 

taken together. We use the rules that 0.11   indicates no effect, 0.11 0.28   a small effect, 

0.28 0.43   a medium effect, and 0.43   a large effect, as investigated by Vargha and Delaney 

(2000), see also Goedhart (2016). A subgroup is always compared to the aggregated total of all remaining 

applicable subgroups regarding the specific characteristic. See Table 4.3 for the Cliff’s Delta’s for all 

surveys taken together. 

From Table 4.3, it is clear that subgroups for age and education differ in various forms of specific 

satisficing behaviours overall. Younger and lower educated respondents showed more “don’t know”-

answers than older and higher educated respondents. Higher educated respondents showed more 

acquiescent, but less neutral responses than lower educated respondents. Younger respondents showed 

less extreme responses than respondents from other age categories. Respondents from the middle age 

categories showed more primacy responses than both younger and older respondents (see Graph 1 in 

Figure 4.1), while higher educated respondents showed more primacy responses than lower educated 

respondents. Respondents from the middle age categories showed more straightlining than older 

respondents, while higher educated respondents showed more straightlining than lower educated 

respondents. From Table 4.3, it is also evident that some subgroups for age and education differ for 

sensitivity-based answer behaviour overall. Younger respondents showed more “won’t tell”-answers than 

older respondents. Higher educated respondents showed more socially desirable responses (see Graph 2 in 

Figure 4.1), but less “won’t tell”-answers than lower educated respondents. In summary, overall 

satisficing and sensitivity-based behaviours are clearly present, in most cases particularly for the youngest, 

oldest, lowest educated, or highest educated respondent groups. 

A present overall effect size for a specific category and UAB does not by definition mean a present 

effect size for various surveys; an overall effect size may exist without effect sizes for any surveys. The 

opposite may be true as well; an overall effect size may be absent, as positive and negative effect sizes for 

various surveys cancel each other out. In the following section, we investigate to what extent either 

positive or negative effect sizes consistently exist across surveys and answer our main research question. 
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Table 4.3 

Overall Cliff’s Delta (and its 99% confidence interval) taken over all surveys, for all age categories1 and all 

educational categories2 for all answer behaviours3 
 

 Satisficing Behaviour Behaviour Based on Sensitive 

Content 

DK AC NE EX PR ST SD WT 

Age 

1524 

0.30 * 

(0.25, 0.35) 

-0.06 

(-0.12, -0.00) 

-0.02 

(-0.08, 0.04) 

-0.15 ~ 

(-0.21, -0.10) 

-0.24 ~ 

(-0.30, -0.18) 

 0.00 

(-0.06, 0.07) 

-0.04 

(-0.09, 0.01) 

 0.25 ~ 

(0.20, 0.31) 

Age 

2534 

 0.11 ~ 

(0.05, 0.16) 

 0.05 

(-0.00, 0.11) 

-0.06 

(-0.12, -0.00) 

-0.08 

(-0.14, -0.02) 

 0.08 

(0.03, 0.14) 

 0.12 ~ 

(0.06, 0.17) 

 0.02 

(-0.03, 0.08) 

 0.09 

(0.04, 0.14) 

Age 

3544 

 0.08 

(0.04, 0.13) 

-0.01 

(-0.06, 0.04) 

 0.03 

(-0.02, 0.07) 

 0.01 

(-0.04, 0.06) 

 0.13 ~ 

(0.08, 0.17) 

 0.19 ~ 

(0.15, 0.24) 

-0.02 

(-0.07, 0.02) 

 0.08 

(0.03, 0.12) 

Age 

4554 

 0.02 

(-0.02, 0.07) 

-0.04 

(-0.09, 0.00) 

 0.01 

(-0.04, 0.05) 

 0.04 

(-0.01, 0.08) 

 0.13 ~ 

(0.08, 0.17) 

 0.11 ~ 

(0.07, 0.16) 

-0.01 

(-0.05, 0.03) 

 0.02 

(-0.02, 0.06) 

Age 

5564 

-0.15 ~ 

(-0.19, -0.11) 

 0.03 

(-0.01, 0.07) 

-0.02 

(-0.06, 0.02) 

 0.06 

(0.01, 0.10) 

 0.06 

(0.03, 0.10) 

-0.12 ~ 

(-0.16, -0.08) 

 0.02 

(-0.02, 0.06) 

-0.06 

(-0.10, -0.02) 

Age 

65Ol 

-0.20 ~ 

(-0.24, -0.16) 

 0.02 

(-0.02, 0.06) 

 0.04 

(0.00, 0.08) 

 0.05 

(0.01, 0.09) 

-0.17 ~ 

(-0.20, -0.13) 

-0.22 ~ 

(-0.26, -0.18) 

 0.02 

(-0.02, 0.06) 

-0.17 ~ 

(-0.20, -0.14) 

Edu 

PRI 

 0.20 ~ 

(0.14, 0.26) 

-0.13 ~ 

(-0.19, -0.06) 

 0.14 ~ 

(0.08, 0.20) 

 0.03 

(-0.04, 0.10) 

-0.21 ~ 

(-0.27, -0.15) 

-0.14 ~ 

(-0.20, -0.07) 

-0.13 ~ 

(-0.20, -0.08) 

 0.08 

(0.02, 0.14) 

Edu 

VM 

 0.10 

(0.06, 0.14) 

-0.18 ~ 

(-0.22, -0.14) 

 0.14 ~ 

(0.10, 0.18) 

 0.04 

(-0.00, 0.08) 

-0.13 ~ 

(-0.17, -0.09) 

-0.04 

(-0.08, 0.00) 

-0.08 

(-0.12, -0.04) 

 0.07 

(0.04, 0.11) 

Edu 

HA 

 0.00 

(-0.05, 0.06) 

 0.01 

(-0.04, 0.06) 

-0.10 

(-0.16, -0.05) 

-0.02 

(-0.08, 0.03) 

 0.00 

(-0.05, 0.06) 

-0.04 

(-0.09, 0.02) 

-0.06 

(-0.10, -0.01) 

 0.02 

(-0.03, 0.07) 

Edu 

MB 

 0.07 

(0.03, 0.11) 

-0.04 

(-0.08, 0.00) 

 0.05 

(0.01, 0.09) 

-0.02 

(-0.07, 0.02) 

 0.02 

(-0.02, 0.06) 

 0.05 

(0.00, 0.09) 

-0.02 

(-0.06, 0.02) 

 0.08 

(0.04, 0.11) 

Edu 

HB 

-0.17 ~ 

(-0.21, -0.13) 

 0.18 ~ 

(0.14, 0.22) 

-0.12 ~ 

(-0.16, -0.08) 

-0.03 

(-0.07, 0.01) 

 0.12 ~ 

(0.09, 0.16) 

 0.02 

(-0.02, 0.06) 

 0.13 ~ 

(0.10, 0.17) 

-0.13 ~ 

(-0.16, -0.09) 

Edu 

WO 

-0.21 ~ 

(-0.27, -0.16) 

 0.22 ~ 

(0.16, 0.27) 

-0.18 ~ 

(-0.23, -0.12) 

 0.02 

(-0.04, 0.08) 

 0.19 ~ 

(0.14, 0.24) 

 0.12 ~ 

(0.07, 0.18) 

 0.14 ~ 

(0.08, 0.19) 

-0.13 ~ 

(-0.18, -0.08) 

~→ small effect; *→ medium effect; #→ large effect. 
115-24 Years (Age 1524), 25-34 Years (Age 2534), 35-44 Years (Age 3544), 45-54 Years (Age 4554), 55-64 Years (Age 5564), 65 Years and 

Older (Age 65Ol). 
2Primary Education (Edu PRI), VMBO (Edu VM), HAVWO (Edu HA), MBO (Edu MB), HBO (Edu HB), WO (Edu WO). 
3Answering “Don’t Know” (DK), Acquiescence (AC), Neutral Responding (NE), Extreme Responding (EX), Primacy Responding (PR), 

Straightlining (ST), Socially Desirable Responding (SD), Answering “Won’t Tell” (WT). 

 
Figure 4.1 Less Primacy Responding for Respondents Aged 15-24 (black) and 65 or Older (orange), and 

More Primacy Responding for Respondents Aged 35-44 (blue) and 45-54 (purple) in Graph 1; 

Less Socially Desirable Responding for Respondents Who Finished Only Primary School (black), 

and More Socially Desirable Responding for Respondents Who Finished HBO (green) or WO 

(orange) in Graph 2. 
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4.3 Consistency outcomes for Cliff’s Delta 
 

These results for Cliff’s Delta concern the consistency of subgroups across surveys. To reveal 

consistency, we considered the number of surveys for which at least a small effect ( )0.11   was the 

result. Considering consistency conservatively, as an at least small effect for a specific UAB and category 

for all or almost all applicable surveys, we would draw the conclusion that there is no consistency to be 

found: There is no consistent satisficing or sensitivity-based behaviour evident across surveys. See 

Table 4.4 containing all results for the UABs and categories for which more than half of the applicable 

surveys showed either positive or negative effect sizes: There is no category that shows an effect for all or 

almost all surveys for any UAB. 

 
Table 4.4 

Cliff’s Delta (and its 99% confidence interval) for the behaviours Answering don’t know, Primacy 

responding, and Neutral responding, for the applicable Age categories1 and Educational categories2 for the 

Applicable surveys3 
 

 FA HE HO IN PE PO RE WO 

Answering “Don’t Know” 

Age 

1524 

 0.09 

(0.05, 0.12) 
  

 0.46 # 

(0.41, 0.51) 
 

 0.28 * 

(0.22, 0.34) 

 0.05 

(0.03, 0.07) 

 0.24 ~ 

(0.19, 0.30) 

Age 

65Ol 
  

-0.13 ~ 

(-0.17, -0.09) 

-0.20 ~ 

(-0.24, -0.16) 
 

-0.14 ~ 

(-0.17, -0.10) 

-0.02 

(-0.03, -0.01) 
 

Edu 

PRI 

 0.15 ~ 

(0.08, 0.23) 
 

 0.08 

(-0.00, 0.15) 

 0.16 ~ 

(0.10, 0.23) 
 

 0.17 ~ 

(0.11, 0.24) 

 0.02 

(0.00, 0.05) 

 0.23 ~ 

(0.15, 0.31) 

Primacy Responding 

Age 

1524 

-0.36 * 

(-0.40, -0.32) 

-0.10 

(-0.13, -0.06) 
 

-0.31 * 

(-0.37, -0.26) 

-0.18 ~ 

(-0.24, -0.12) 

-0.11 ~ 

(-0.17, -0.06) 

-0.09 

(-0.14, -0.04) 

-0.05 

(-0.09, -0.01) 

Edu 

PRI 

 0.03 

(-0.03, 0.09) 

-0.11 ~ 

(-0.16, -0.06) 
 

-0.23 ~ 

(-0.29, -0.17) 

-0.15 ~ 

(-0.22, -0.08) 

-0.08 

(-0.15, -0.01) 

-0.14 ~ 

(-0.20, -0.09) 

-0.09 

(-0.15, -0.04) 

Edu 

WO 

-0.10 

(-0.14, -0.05) 

 0.06 

(0.02, 0.10) 
 

 0.18 ~ 

(0.12, 0.24) 

 0.18 ~ 

(0.12, 0.24) 

 0.03 

(-0.02, 0.09) 

 0.16 ~ 

(0.11, 0.21) 

 0.24 ~ 

(0.19, 0.28) 

Neutral Responding 

Edu 

WO 

 0.05 

(0.01, 0.10) 
  

-0.14 ~ 

(-0.20, -0.09) 

-0.16 ~ 

(-0.23, -0.09) 

-0.18 ~ 

(-0.23, -0.13) 
 

-0.04 

(-0.09, -0.00) 

~→ small effect; *→ medium effect; #→ large effect 
115-24 Years (Age 1524), 65 Years and Older (Age 65Ol). 
2Primary Education (Edu PRI), WO (Edu WO). 
3Family (FA), Health (HE), Housing (HO), Income (IN), Personality (PE), Politics (PO), Religion (RE), Work (WO). 

 
Therefore, for each UAB and category, we considered the number of surveys for which at least a small 

either positive or negative effect was found. See Table 4.5. It is striking that relatively many cells or 

category-UAB pairs showed both positive and negative effects (marked by “2” in Table 4.5). This means 

that a category may show more of a specific UAB for some surveys, while less for other surveys. For 

instance, consider the category 15-24 years for the UAB answering “won’t tell” (WT) in Table 4.5. Here, 

this age category showed more “won’t tell”-answers than the other categories combined for one survey, 

while less “won’t tell”-answers for another survey. For a more liberal perspective on consistency, we 

elaborate on the cases for which more than half of the applicable surveys showed either positive or 
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negative effect sizes (see Table 4.4). Strikingly, this is applicable to only seven out of the 96 possible 

cases (as we have results for eight UABs and twelve categories) and at a maximum of only 75% of the 

applicable surveys. 

 
Table 4.5 

The Categories for Age and Education (Edu) with either at Least Two Positive or Two Negative Effect Sizes 

Receiving a “1” (Unidirectional results) and the Categories with at Least One Positive and One Negative 

Effect Size Receiving a “2” (Contrasting results) for All Behaviours* 
 

 Number of Surveys 3 5 4/5 4/5 4/5/6 6/7 7 8 

Answer Behaviour WT AC NE EX DK ST PR SD 

Age 15-24 years 2    1 2 1 2 

25-34 years      2 2 2 

35-44 years      1 2 2 

45-54 years      1 1  

55-64 years     1   2 

65 years or older     1 1 2 2 

Edu Primary education  1 1  1  1 2 

VMBO  1     2 2 

HAVWO        2 

MBO         

HBO  1   1  1 1 

WO   1 2 1 1 1 2 

The empty cells refer to either no effects, or one positive effect, or one negative effect. 

*Answering Won’t Tell (WT), Acquiescence (AC), Neutral Responding (NE), Extreme Responding (EX), Answering Don’t 

Know (DK), Straightlining (ST), Primacy Responding (PR), Socially Desirable Responding (SD). 

 
For the UAB answering “don’t know”, Table 4.4 shows that respondents 15-24 years of age gave more 

“don’t know”-answers and respondents of 65 years or older gave less “don’t know”-answers than other 

respondents for multiple surveys (see Graphs 1 through 4 in Figure 4.2). Respondents who finished only 

primary education gave more “don’t know”-answers than other respondents for various surveys. For 

primacy responding, we found that respondents 15-24 years of age or who finished only primary 

education chose less early response options than other respondents for multiple surveys. Respondents who 

finished the highest educational level chose more early response options and less neutral responses than 

other respondents for various surveys. 

In summary, the results refer to an absence of UAB consistency across all or almost all surveys: Both 

satisficing and sensitivity-based UABs did not emerge consistently across surveys. We conclude that 

respondents’ UAB across surveys may be more influenced by the survey and its topic and items than 

solely by the age or educational level of the respondent. We close with a discussion in the following 

section. 
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Figure 4.2 Consistently More “Don’t Know”-Answers for Respondents Aged 15-24 (purple) for the Surveys 

Income, Politics, and Work (see Graphs 2, 3, and 4 Respectively); Consistently Less “Don’t 

Know”-Answers for Respondents Aged 65 or Older (red) for the Surveys Housing, Income, and 

Politics (see Graphs 1, 2, and 3 respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5. Conclusion and discussion 
 

In this study, we investigated to what extent cognitive ability is associated with a high occurrence of 

undesirable answer behaviour (UAB) consistently across different surveys. For cognitive ability, we used 

the respondent characteristics age and educational level. The occurrence of UAB is indicated by varying 

uncertainty, as every respondent filled out a different number of the items that were applicable to each 

behaviour. To take this varying uncertainty into account, we used an adaptation of the robust effect size 

statistic Cliff’s Delta to compare groups of respondents in the form of density distributions or respondent 

profiles. The UAB of respondents from a specific category (for instance “15-24 years” for the 

characteristic “age”) was compared to the UAB of respondents from the other categories of the 

Total minus 65_old 

65_old 

   0.0   0.1  0.2   0.3  0.4   0.5   0.6   0.7  0.8   0.9  1.0 
 

Probability of Answering Dont Know 

Graph 1 

Answering Dont Know Age, Housing 

  
  

L
ik

el
ih

o
o
d

 o
f 

p
ro

b
ab

il
it

y
 

Total minus 65_old 

65_old 

Total minus 15_24 

15_24 

  0.0   0.1  0.2   0.3   0.4   0.5   0.6  0.7   0.8  0.9  1.0 
 

Probability of Answering Dont Know 

Graph 2 

Answering Dont Know Age, Income 

  
  

L
ik

el
ih

o
o
d

 o
f 

p
ro

b
ab

il
it

y
 

Total minus 65_old 

65_old 

Total minus 15_24 

15_24 

   0.0   0.1  0.2   0.3  0.4   0.5   0.6   0.7  0.8   0.9  1.0 
 

Probability of Answering Dont Know 

Graph 3 

Answering Dont Know Age, Politics 

  
  

L
ik

el
ih

o
o
d

 o
f 

p
ro

b
ab

il
it

y
 

Total minus 15_24 

15_24 

  0.0   0.1  0.2   0.3   0.4   0.5   0.6  0.7   0.8  0.9  1.0 
 

Probability of Answering Dont Know 

Graph 4 

Answering Dont Know Age, Work 

  
  

L
ik

el
ih

o
o
d

 o
f 

p
ro

b
ab

il
it

y
 



214 Bais et al.: Is undesirable answer behaviour consistent across surveys? 

 

 

Statistics Canada, Catalogue No. 12-001-X 

characteristic together. For our study, we included the specific satisficing behaviours “answering don’t 

know”, “acquiescence”, “neutral responding”, “extreme responding”, “primacy responding”, and 

“straightlining”; the specific sensitivity-based behaviours “socially desirable responding” and “answering 

won’t tell”; and the respondent characteristics “age” and “education”. 

Considering all surveys together overall, specific satisficing and sensitivity-based behaviours are 

evident for specific age and educational groups. However, there is no consistency across surveys present 

for the age and educational categories for any of the UABs. This study used response data from a panel 

consisting of the same respondents. In general, if UAB consistency was to be expected at all, this should 

particularly be found in such a panel. If respondents would have any predisposition to show a behaviour 

style or pattern, this should especially occur while getting familiar with filling out multiple panel surveys 

within a specific time span. The fact that we did not find such patterns means that cognitive ability is most 

likely not a predictor of consistent UAB across surveys. 

Considering consistency from a more liberal perspective, specific forms of satisficing across surveys 

seem evident for specific respondents in particular. Young and lower educated respondents gave relatively 

more “don’t know”-answers; higher educated respondents chose relatively more answering options early 

in the list; young and lower educated respondents chose relatively less answering options early in the list; 

and higher educated respondents showed relatively less neutral responses for multiple surveys. However, 

there is no category for age or education that showed specific UAB consistently across all or almost all 

surveys. 

Note that within a single survey, items are clustered around a central topic and may also be similar in 

their characteristics. This means that some item interdependency may occur within surveys. If we would 

have found consistent response patterns across surveys, these patterns may have been influenced by such 

item interdependency. Obviously, some respondents may be more sensitive to item interdependency in 

showing UAB across surveys than others. In our study, we did not find any consistent response patterns 

across surveys. This means that item interdependency was unlikely to exert a structurally different 

influence on the various categories of respondents across surveys. 

Our results seem to go beyond the absence of UAB consistency across surveys. As the more surveys 

were applicable to an UAB, the more contrasting outcomes were found; many categories were associated 

with relatively more of an UAB for some surveys, while relatively less of that UAB for other surveys. 

Most contrasting results were found for giving socially desirable responses. More evidence was found for 

contrasting UAB than for consistent UAB across surveys. This evidence is not compatible to our idea that 

specific groups will show consistency for at least some of the specific UABs across most or all surveys. 

Overall, we conclude that the occurrence of UAB cannot unambiguously be attributed to the respondent’s 

cognitive ability, but may be substantially determined by the characteristics of the survey and its items 

instead. 

Following this conclusion, we do not recommend survey-independent adaptive survey design for 

respondents based on their cognitive ability. The findings for age and educational level are not consistent 
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and clearly differ depending on both survey and UAB. In essence, this means that our outcomes confirm 

the different associations and their different directions of the existing literature. The added value of our 

study is the overarching overview for age and educational level, systematically examined across a set of 

ten different surveys for a range of eight different UABs. We conclude that age and educational level may 

be taken into account for adaptive survey design only for specific surveys and survey topics. 

In our study, we did not focus on UAB of identified individual or groups of respondents. For all age 

and educational categories, each respondent was considered for every applicable survey that the 

respondent participated in. Thus, for the consistency analysis of a category, some respondents were 

considered for only one or two surveys, while other respondents were considered for all or almost all 

surveys. Our purpose was neither to attribute UAB to individual or groups of identified respondents, nor 

to compare them between surveys for the same category and UAB. Considering respondents multiple 

times, for each applicable survey, was the strength of our study. Taking into account every respondent 

who fell into a category for every applicable survey resulted in large groups per survey. We compared 

respondent profiles of large groups for a single category to respondent profiles of large groups for the 

remaining categories. This means that we focussed on the association between the respondent’s 

characteristics and potentially consistent UAB across surveys. In other words, we did not attribute UAB 

to identified respondents, but to the specific category (for instance respondents aged 15-24) in which they 

were placed. Considered from this approach, we note that we deliberately did not use a more classic 

method like cross-classified multilevel analysis (see for instance Olson and Smyth, 2015; Olson, Smyth 

and Ganshert, 2019) that takes into account repeated measurements of individual respondents. The focus 

of our study was placed on visualizing summaries of UAB and comparing subgroups that share the same 

characteristic. 

We used the comparisons between a category and the remaining categories together for age and 

education to answer our consistency research question. For this purpose, we used an adaptation of Cliff’s 

Delta; a robust effect size measure that was both useful because of its many advantages regarding our 

data, and sufficient for comparing two groups representing a specific category versus the remaining 

categories. In case of differences in expected group value or group shape, follow-up research may zoom in 

on these differences to reveal characteristics of subgroups showing relatively more of an UAB for specific 

surveys and their topics and items. Other relevant characteristics like respondent gender and origin may 

also be investigated. In particular, we would be interested in single groups with higher expected values 

than the other groups for a characteristic and in the respondents who are located to the right of the 

respondent profile. 

Other follow-up research using the profile method may focus on the relation between item 

characteristics and UAB. Just as respondent characteristics, item characteristics have their influence on 

data quality and may be associated with measurement error. See Bais et al. (2019); Beukenhorst, Buelens, 

Engelen, Van der Laan, Meertens and Schouten (2014); Campanelli et al. (2011); Gallhofer, Scherpenzeel 

and Saris (2007), and Saris and Gallhofer (2007) for overviews of item characteristics and their relation to 
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measurement error. Items can be coded on the presence or absence of characteristics like for instance 

question sensitivity. Hence, items that are coded as sensitive could be compared to items that are not 

coded as sensitive on the occurrence of UAB. In this way, the presence of item characteristics may be 

connected to UAB for the items of whole surveys specifically or across the items of multiple surveys more 

generally. Based on such associations, an overview of present item characteristics and their relation to 

UAB and measurement error may be obtained. 
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Appendix A 
 

Table A.1 

The behaviour occurrence proportions for respondents aged 65-74 (65+) and respondents aged 75 or older 

(75+) for all behaviours*, in total and for all surveys** 
 

 TO AS FA HE HO IN PE PO RE WO LF 

SD 65+ 0.66 0.95 0.61 0.66 *** 0.79 0.77 0.59 0.27 0.77  

SD 75+ 0.65 0.96 0.60 0.64  0.78 0.76 0.58 0.30 0.79  

PR 65+ 0.33  0.49 0.65  0.36 0.25 0.18 0.68 0.17  

PR 75+ 0.31  0.50 0.65  0.33 0.24 0.16 0.66 0.13  

DK 65+ 0.06    0.07 0.16  0.06 0.00   

DK 75+ 0.06    0.07 0.14  0.07 0.00   

ST 65+ 0.10  0.05 0.36  0.32 0.02 0.07 0.24   

ST 75+ 0.08  0.04 0.25  0.29 0.01 0.06 0.19   

WT 65+ 0.05    0.02 0.04     0.03 

WT 75+ 0.04    0.01 0.03     0.03 

AC 65+ 0.47  0.44    0.50 0.45 0.19   

AC 75+ 0.49  0.42    0.51 0.48 0.21   

NE 65+ 0.22  0.28   0.25 0.21 0.22    

NE 75+ 0.21  0.28   0.25 0.21 0.22    

EX 65+ 0.19  0.37   0.11 0.23 0.11    

EX 75+ 0.20  0.40   0.11 0.25 0.10    

*Socially Desirable Responding (SD), Primacy Responding (PR), Answering “Don’t Know” (DK), Straightlining (ST), 

Answering “Won’t Tell” (WT), Acquiescence (AC), Neutral Responding (NE), Extreme Responding (EX). 

**Total (TO), Assets (AS), Family (FA), Health (HE), Housing (HO), Income (IN), Personality (PE), Politics (PO), Religion 

(RE), Work (WO), Labour Force Survey (LF). 

*** Note that empty cells refer either to surveys that were not applicable to the specific behaviour or to a situation in which 

one subgroup contained no or only a few respondents. 
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A simulated annealing algorithm for joint stratification and 

sample allocation 
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Abstract 

This study combines simulated annealing with delta evaluation to solve the joint stratification and sample 

allocation problem. In this problem, atomic strata are partitioned into mutually exclusive and collectively 

exhaustive strata. Each partition of atomic strata is a possible solution to the stratification problem, the quality 

of which is measured by its cost. The Bell number of possible solutions is enormous, for even a moderate 

number of atomic strata, and an additional layer of complexity is added with the evaluation time of each 

solution. Many larger scale combinatorial optimisation problems cannot be solved to optimality, because the 

search for an optimum solution requires a prohibitive amount of computation time. A number of local search 

heuristic algorithms have been designed for this problem but these can become trapped in local minima 

preventing any further improvements. We add, to the existing suite of local search algorithms, a simulated 

annealing algorithm that allows for an escape from local minima and uses delta evaluation to exploit the 

similarity between consecutive solutions, and thereby reduces the evaluation time. We compared the 

simulated annealing algorithm with two recent algorithms. In both cases, the simulated annealing algorithm 

attained a solution of comparable quality in considerably less computation time. 

 

Key Words: Simulated annealing algorithm; Optimal stratification; Sample allocation; R software. 

 

 

1. Introduction 
 

In stratified simple random sampling, a population is partitioned into mutually exclusive and 

collectively exhaustive strata, and then sampling units from each of those strata are randomly selected. 

The purposes for stratification are discussed in Cochran (1977). If the intra-strata variances were 

minimized then precision would be improved. It follows that the resulting small samples from each 

stratum can be combined to give a small sample size.  

To this end, we intend to construct strata which are internally homogeneous but which also 

accommodate outlying measurements. To do so, we adopt an approach which entails searching for the 

optimum partitioning of atomic strata (however, the methodology can also be applied to continuous strata) 

created from the Cartesian product of categorical stratification variables, see Benedetti, Espa and Lafratta 

(2008); Ballin and Barcaroli (2013, 2020). 

The Bell number, representing the number of possible partitions (stratifications) of a set of atomic 

strata, grows very rapidly with the number of atomic strata (Ballin and Barcaroli, 2013). In fact, there 

comes a point where, even for a moderate number of atomic strata and the most powerful computers, the 

problem is intractable, i.e. there are no known efficient algorithms to solve the problem.  

Many large scale combinatorial optimisation problems of this type cannot be solved to optimality, 

because the search for an optimum solution requires a prohibitive amount of computation time. This 
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compels one to use approximisation algorithms or heuristics which do not guarantee optimal solutions, 

but can provide approximate solutions in an acceptable time interval. In this way, one trades off the 

quality of the final solution against computation time (Van Laarhoven and Aarts, 1987). In other words, 

heuristic algorithms are developed to find a solution that is “good enough” in a computing time that is 

“small enough” (Sörensen and Glover, 2013). 

A number of heuristic algorithms have been developed to search for optimal or near optimal solutions, 

for both univariate and multivariate scenarios of this problem. This includes the hierarchichal algorithm 

proposed by Benedetti et al. (2008), the genetic algorithm proposed by Ballin and Barcaroli (2013) and the 

grouping genetic algorithm proposed by O’Luing, Prestwich and Tarim (2019). Although effective, the 

evaluation function in these algorithms can be costly in terms of running time.  

We add to this work with a simulated annealing algorithm (SAA) (Kirkpatrick, Gelatt and Vecchi, 

1983; Černỳ, 1985). SAAs have been found to work well in problems such as this, where there are many 

local minima and finding an approximate global solution in a fixed amount of computation time is more 

desirable than finding a precise local minimum (Takeang and Aurasopon, 2019). We present a SAA to 

which we have added delta evaluation (see Section 5) to take advantage of the similarity between 

consecutive solutions and help speed up computation times.  

We compared the performance of the SAA on atomic strata with that of the grouping genetic algorithm 

(GGA) in the SamplingStrata package (Ballin and Barcaroli, 2020). This algorithm implements the 

grouping operators described by O’Luing et al. (2019). To do this, we used sampling frames of varying 

sizes containing what we assume to be completely representative details for target and auxiliary variable 

columns.  

Further to the suggestion of a Survey Methodology reviewer, we subsequently compared the SAA with 

a traditional genetic algorithm (TGA) used by Ballin and Barcaroli (2020) on continuous strata. In both 

sets of experiments, we used an initial solution created by the k-means algorithm (Hartigan and Wong, 

1979) in a two-stage process (see Section 2.3 for more details).  

Section 2 provides background information on atomic strata, introduces the SAA and motivates the 

addition of delta evaluation as a means to improve computation time. Two-stage simulated annealing is 

also discussed. Section 3 of the paper describes the cost function and evaluation algorithm. Section 4 

provides an outline of the SAA. Section 5 presents the improved SAA with delta evaluation. Section 6 

provides a comparison of the performance of the SAA with the GGA using an initial solution and fine-

tuned hyperparameters. Section 7 then provides details of the comparison of the SAA with the genetic 

algorithm in Ballin and Barcaroli (2020) on continuous strata. Section 8 presents the conclusions and 

Section 9 suggests some further work. The Appendix contains background details on precision constraints, 

the hyperparameters, and the process of fine-tuning the hyperparameters for both comparisons as well as 

the computer specifications. 
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2. Background information 

 
2.1 Stratification of atomic strata 
 

Atomic strata are created using categorical auxiliary variable columns such as age group, gender or 

ethnicity for a survey of people or industry, type of business and employee size for business surveys. The 

cross-classification of the class-intervals of the auxiliary variable columns form the atomic strata.  

Auxiliary variable columns which are correlated to the target variable columns may provide a gain in 

sample precision or similarity. Each target variable column, ,gy  contains the value of the survey 

characteristic of interest, e.g. total income, for each population element in the sample.  

Once these are created, we obtain summary statistics, such as the number, mean and standard deviation 

of the relevant observed values, from the one or more target variable columns that fall within each atomic 

stratum. The summary information is then aggregated in order to calculate the means and variances for 

each stratum which in turn are used to calculate the sample allocation for a given stratification.  

The partitioning of atomic strata that provides the global minimum sample allocation, i.e. the minimum 

of all possible sample allocations for the set of possible stratifications, is known as an optimal 

stratification. There could be a multiple of such partitionings. Although an optimum stratification is the 

solution to the problem, each stratification represents a solution of varying quality (the lower the cost 

(minimum or optimal sample allocation) the higher the quality). For each stratification, the cost is 

estimated by the Bethel-Chromy algorithm (Bethel, 1985, 1989; Chromy, 1987). A more detailed 

description, and discussion of the methodology for this approach for joint determination of stratification 

and sample allocation, can be found in Ballin and Barcaroli (2013). 

 
2.2 Simulated annealing algorithms 
 

The basic principle of the SAA (Kirkpatrick et al., 1983; Černỳ, 1985) is that it can accept solutions 

that are inferior to the current best solution in order to find the global minima (or maxima). It is one of 

several stochastic local search algorithms, which focus their attention within a local neighbourhood of a 

given initial solution (Cortez, 2014), and use different stochastic techniques to escape from attractive local 

minima (Hoos and Stützle, 2004). 

Based on physical annealing in metallurgy, the SAA is designed to simulate the controlled cooling 

process from liquid metal to a solid state (Luke, 2013). This controlled cooling uses the temperature 

parameter to compute the probability of accepting inferior solutions (Cortez, 2014). This acceptance 

probability is not only a function of the temperature, but also the difference in cost between the new 

solution and the current best solution. For the same difference in cost, a higher temperature means a higher 

probability of accepting inferior solutions.  

For a given temperature, solutions are iteratively generated by applying a small, randomly generated, 

perturbation to the current best solution. Generally, in SAAs, a perturbation is the small displacement of a 
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randomly chosen particle (Van Laarhoven and Aarts, 1987). In the context of our problem, we take 

perturbation to mean the displacement (or re-positioning) of q  (generally 1)q =  randomly chosen atomic 

strata from one randomly chosen stratum to another.  

With a perturbation, the current best solution transitions to a new solution. If a perturbation results in a 

lower cost for the new solution, or if there is no change in cost, then that solution is always selected as the 

current best solution. If the new solution results in a higher cost, then it is accepted at the above mentioned 

acceptance probability. This acceptance condition is called the Metropolis criterion (Metropolis, 

Rosenbluth, Rosenbluth, Teller and Teller, 1953). This process continues until the end of the sequence, at 

which point the temperature is decremented and a new sequence begins.  

If the perturbations are minor, then the current solution and the new solution will be very similar. 

Indeed, in our SAA we are assuming only a slight difference between consecutive solutions owing to such 

perturbations (see Section 4.1 for more details). For this reason we have added delta evaluation, which 

will be discussed further in Section 5, to take advantage of this similarity and help improve computation 

times.  

Accordingly, and as mentioned in the introduction, we present a SAA with delta evaluation and 

compare it with the GGA when both are combined with an initial solution. We also compare it with a 

genetic algorithm used by Ballin and Barcaroli (2020) on continuous strata. We provide more background 

details on initial solutions in Section 2.3 below. 

 
2.3 Two-stage simulated annealing 
 

A two stage simulated annealing process, where an initial solution is generated by a heuristic algorithm 

in the first stage, has been proposed for problems such as the cell placement problem (Grover, 1987; Rose, 

Snelgrove and Vranesic, 1988) or the graph partitioning problem (Johnson, Aragon, McGeoch and 

Schevon, 1989). Lisic, Sang, Zhu and Zimmer (2018) combined an initial solution, generated by the k-

means algorithm, with a simulated annealing algorithm, for a problem similar in nature to this problem, 

but where the sample allocation as well as strata number are fixed, and the algorithm searches for the 

optimal arrangement of sampling units between strata. 

The simulated annealing algorithm used by Lisic et al. (2018) starts with an initial solution 

(stratification and sample allocation to each stratum) and, for each iteration, generates a new candidate 

solution by moving one atomic stratum from one stratum to another and adjusting the sample allocation 

for that stratification. Each candidate solution is then evaluated to measure the coefficient of variation 

(CV) of the target variables and is accepted, as the new current best solution, if its objective function is 

less than the preceding solution. Inferior quality solutions are also accepted at a probability, ,  which is a 

function of a tunable temperature parameter and the change in solution quality between iterations. The 

temperature cools, at a rate which is also tunable, as the number of iterations increases. 
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Following this work, Ballin and Barcaroli (2020) recommended combining an initial solution, 

generated by k-means, with the grouping and traditional genetic algorithms. They demonstrate that the k-

means algorithm provides better starting solutions when compared with the starting solution generated by 

a stochastic approach. We also combine a k-means initial solution with the SAA in the experiments 

described in Sections 6 and 7. 

 
3. The joint stratification and sample allocation problem 
 

Our aim is to partition L  atomic strata into H  non-empty sub-populations or strata. A partitioning 

represents a stratification of the population. We aim to minimise the sample allocation to this stratification 

while keeping the measure of similarity less than or equal to the upper limit of precision, .g  This 

similarity is measured by the CV of the estimated population total for each one of G  target variable 

columns, ˆ .gT  We indicate by hn  the sample allocated to stratum h  and the survey cost for a given 

stratification is calculated as follows: 

 ( )1

1

, , ‍
H

H h h

h

C n n C n
=

 =    

where hC  is the average cost of surveying one unit in stratum h  and hn  is the sample allocation to 

stratum .h  In our analysis hC  is set to 1.  

The variance of the estimator is given by: 
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where hN  is the number of units in stratum h  and 2

,h gS  is the variance of stratum h  for each target 

variable column .g  

As mentioned above g  is the upper precision limit for the CV for each ˆ :gT  
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The problem can be summarised in this way:  
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To solve the allocation problem for a particular stratification with the Bethel-Chromy algorithm the upper 

precision constraint for variable g  can be expressed as follows: 
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with ,h g  and replace the problem summary with the following: 
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  The Bethel-Chromy algorithm uses Lagrangian multipliers to derive a solution for each .hn  
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and g  is the Lagrangian multiplier (Benedetti et al., 2008). The algorithm starts with a default setting for 

each g  and uses gradient descent to converge to a final value for them. 

 
4. Outline of the simulated annealing algorithm 
 

The SAA with delta evaluation is described in Algorithm 1 below. We then describe the heuristics we 

have used in the SAA. Delta evaluation is explained in more detail in Section 5. 
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Algorithm 1 Simulated annealing algorithm 
 

Function SIMULATEDANNEALING (S  is the starting solution, f  is the evaluation function (Bethel-Chromy algorithm), best is the 
current best solution, BSFSF is the best solution found so far, maxit is the maximum number of sequences, J  is the length of 
sequence, 

maxT  is the starting temperature, 
minT  is the minimum temperature, DC is the Decrement Constant, 

%maxL  is a % of L  
(number of atomic strata), ( 1)P H +  is the probability of a new stratum, 1,H +  being added)  
 

maxT T  
 best   S  
 ( ) ( )Cost best f best        ►using Bethel-Chromy algorithm  
 while i maxit &&

minT T  do 
  if RANDOM ( )0,1 1 / J  then 
   for 1l =  to L  do 
    if RANDOM ( )0,1 ( )1P H +  then 
     move atomic stratum l  to new stratum 1H +  ►see Section 4.3 
    end if 
   end for 
  end if 

  for 1j =  to J  do 
   if 1i =  & 1j =  then 

%maxq L L=   
   else if 1i =  & 1j   then ( )0.99q ceiling q=     ►0.99 is not tunable 
   else if 1i   then 1q =   
   end if 
   Randomly select h  and h  
   next   PERTURBATION(best) 
           ►Assign q  atomic strata from h  and h  
   Cost(next) ( )f best       ►using delta evaluation 
   ΔE COST ( )next −  COST ( )best   
   if Δ 0E   then 
    best next   
   else if RANDOM ( )0,1

( )E
Te
−

  then    ►Metropolis Criterion 
    best next   
   end if 

   if best = BSFSF  then 
    BSFSF best  
   end if 

  end for 
  *T T DC  
 end while 

 return BSFSF  
end function 

 
4.1 Perturbation 
 

Consider the following solution represented by the stratification: 

      1, 3 , 2 , 4, 5, 6 .   

The integers within each stratum represent atomic strata. In perturbation, the new solution below is 

created by arbitrarily moving atomic strata, in this example 1,q =  from one randomly chosen stratum to 

another. 

      1, 3, 2 , , 4, 5, 6 .   

The first stratum gains an additional atomic stratum  2  to become  1, 3, 2 ,  whereas the middle or 

second stratum has been “emptied” (and is deleted), and there remains only two strata. Strata are only 

emptied when the last remaining atomic stratum has been moved to another stratum. 
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To clarify how this works in the algorithm: each solution is represented by a vector of integers ‒ 

atomic strata which have the same integer are in the same stratum. A separate vector of the unique integers 

in the solution represents the strata. For example, the first solution  1, 3 ,  2 ,  4, 5, 6  would be 

represented by the vector  1 2 1 3 3 3  and the strata would be represented by the vector 

 1 2 3 .  When the new solution is created, the second stratum has been removed and is no longer part 

of the solution. That is to say, the vector for the new solution is:  1 1 1 3 3 3  and the strata vector 

is  1 3 . With stratum 2 removed, and for clarity, we rename stratum 3 to 2 so that this solution becomes: 

 1 1 1 2 2 2 ,  and the strata are now represented by the vector  1 2 .  Strata  1 2  will remain in 

any further solutions unless another stratum is “emptied” or a new stratum is added. 

 

4.2 Evaluation and acceptance 
 

Each new solution is evaluated using the Bethel-Chromy algorithm and the Metropolis acceptance 

criterion is applied. If accepted, the new solution differs from the previous solution only by the above 

mentioned perturbation. If it is not accepted, we continue with the previous solution, and again try moving 

q  randomly chosen atomic strata between two randomly selected strata. 

 

4.3 Sequences and new strata 
 

This continues for the tunable length of the sequence, .J  This should be long enough to allow the 

sequence to reach equilibrium. However, there is no rule to determine .J  At the commencement of each 

new sequence, we have H  strata in the current best solution. With a fixed probability of 1 ,J  an 

additional stratum is added. If a new stratum is to be added, the SAA loops through each atomic stratum 

and moves it to a new stratum, which is called 1,H +  because each stratum is labelled sequentially from 1 

to H  (see Section 4.1), at a tunable probability, ( )1 .P H +  The algorithm runs for a tunable number of 

sequences, maxit. 

 

4.4 Temperature 
 

The temperature is decremented from a starting temperature, max ,T  to a minimum temperature, min ,T  or 

until maxit has been reached. As we are starting with a near optimal solution, we select maxT  as no greater 

than 0.01 and we set minT  to be 11.1.0 10−  

This is to allow for the advanced nature of the search, and allows the algorithm to focus more on the 

search for superior solutions, with an ever-reducing probability of accepting inferior solutions. However, a 

low temperature, ,T  does not always equate to a low probability of acceptance.  

Small positive differences in solution quality (where the new solution has a marginally inferior quality 

to the current best solution), Δ ,E  occur often because we are starting with a good quality initial solution. 

Figure 4.1 demonstrates the probability of such solutions being accepted, 
( )Δ

,
E

Te
−

 increases the smaller this 

difference becomes for the same .T  Nonetheless, Figure 4.1 also demonstrates that for the same changes 

in solution quality as the T  decreases, the probability also decreases (and it behaves increasingly like a 

hill climbing algorithm). 
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Figure 4.1 Probability of accepting an inferior solution as a function of ΔE  and T.  

 

 

 

 

 

 

 
 

 

 

 

 

 

 
5. Improving the performance of the simulated annealing algorithm 

using delta evaluation 
 

As outlined earlier, the only difference between consecutive solutions is that q  atomic strata have been 

moved from one group into another. As with the other heuristics, q  is also tunable, and for the first 

sequence we have added the option of setting 1q   and reducing q  for each new solution in the first 

sequence until 1.q =  The reason for this is that, where 1,q   the increased size of the perturbation can 

help reduce the number of strata. In this case, we set q  as a tunable percentage of the solution size, or of 

the number of atomic strata, ,L  to be partitioned. After the first sequence 1.q =  

Furthermore, as the strata are mutually exclusive, this movement of q  atomic strata from one stratum 

to another does not affect the remaining strata in any way. Ross, Corne and Fang (1994) introduce a 

technique called delta evaluation, where the evaluation of a new solution makes use of previously 

evaluated similar solutions, to significantly speed up evolutionary algorithms/timetabling experiments. We 

use the similar properties of two consecutive solutions to apply delta evaluation to the SAA. It follows, 

therefore, that in the first sequence q  should be kept low and the reduction to 1q =  should be swift.  

The Bethel-Chromy algorithm requires the means and variances for each stratum in order to calculate 

the sample allocation. However, we use the information already calculated for the remaining 2H −  strata, 

and simply calculate for the two strata affected by the perturbation. Thus, the computation for the means 

and variances of the H  strata is reduced to a mere subset of that otherwise required.  

Now recall that the Bethel-Chromy algorithm starts with a default value for each ,g  and uses gradient 

descent to find a final value for each .g  This search continues up to when the algorithm reaches a 

minimum step-size threshold, or alternatively exceeds a maximum number of iterations. This minimum 
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threshold is characterised by 𝜖, which is set as 111.0 10−  in Ballin and Barcaroli (2020), and the 

maximum number of iterations is 200. We make the assumption that this search will be substantially 

reduced if we use the g  values from the evaluation of the current solution as a starting point for the next 

solution.  

The above two implementations of delta evaluation result in a noticeable reduction in computation 

times as demonstrated in the experiments described below. 

 
6. Comparing the performance of the two algorithms 

 
6.1 Evaluation plan 
 

In this section, we outline the comparison of the performance of the grouping genetic algorithm with 

the simulated annealing algorithm. We used a number of data sets of varying sizes in these experiments. 

There are a number of regions in each data set (labelled here as domains). An optimal stratification and 

minimum sample allocation was selected for each domain.  

The sum of the samples for all domains provides the total sample size. The sample size, or cost of the 

solution, defines the solution quality. For more details on domains refer to Ballin and Barcaroli (2013). 

The aim of these experiments was to consider whether the SAA can attain comparable solution quality 

with the GGA in less computation time per solution thus resulting in savings in execution times.  

However, we also compared the total execution times as this is a consequence of the need to train the 

hyperparameters for both algorithms. More details are available in the Appendix. 

We tabulate the results of these experiments in Section 6.4 where for comparison purposes we express 

the SAA results as a ratio of those for the GGA.  

 
6.2 Comparing the number of solutions generated 
 

After the first iteration the GGA retains the elite solutions, ,E  from the previous iteration. These are 

calculated by the product of the elitism rate (the proportion of the chromosome population which are elite 

solutions), ,RE  and the chromosome population size (the number of candidate solutions in each iteration), 

.PN  As E  have already been evaluated they are not evaluated again.  

For this reason, we compared the evaluation times for the evaluated solutions in the GGA with all 

those of the SAA. For the GGA, the total number of evaluated solutions, GGAsol ,N  is a function of the 

number of domains, ,D  the chromosome population size, the non-elite solutions (calculated by the 

product of 1 RE−  and ),PN  and the number of iterations, .I  For more details on the implementation of 

GGAs (e.g. elite solutions, elitism rate, chromosome population) we refer the reader to (Falkenauer, 1998) 

 ( ) ( )( )( )( )GGAsol 1 1 .P P RN D N N E I=  +  −  −   
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For the simulated annealing algorithm, the maximum number of solutions, SAAsol ,N  is the number of 

domains, ,D  by the number of sequences, maxit, by the length of sequence, .J  Recall that the SAA also 

stops if the minimum temperature has been reached ‒ hence we refer to the maximum number of solutions 

rather than the total. For comparability purposes however, because the temperature is decremented only at 

the end of each sequence and we have a small number of sequences in the experiments below we assume 

the full number of solutions has been generated 

 SAAsol .N D maxit J=     

 

6.3 Data sets, target and auxiliary variables 
 

Table 6.1 provides a summary by data set of the target and auxiliary variables.  

 

Table 6.1 

Summary by data set of the target and auxiliary variables 
 

Dataset Target variables Description Auxiliary 

variables 

Description 

Swiss Municipalities Surfacebois wood area POPTOT total population 

Airbat area with buildings Hapoly municipality area 

American 

Community Survey, 

2015 

HINCP Household income 

past 12 months 

BLD Units in structure 

VALP Property value TEN Tenure 

SMOCP Selected monthly 

owner costs 

WKEXREL Work experience of householder and spouse 

INSP Fire/hazard/flood 

insurance yearly 

amount 

WORKSTAT Work status of householder or spouse in 

family households 

HFL House heating fuel 

YBL When structure first built 

US Census, 2000 HHINCOME total household 

income 

PROPINSR Annual property insurance cost 

COSTFUEL annual home heating fuel cost 

COSTELEC Annual electricity cost 

VALUEH House value 

Kiva Loans term_in_months duration for which the 

loan was disbursed 

sector high level categories, e.g. food 

lender_count the total number of 

lenders 

currency currency of the loan 

loan the amount in USD activity more granular category, e.g. fruits & 

vegetables 

region region name within the country 

partner_id ID of the partner organization 

UN Commodity 

Trade Statistics data 

trade_usd value of the trade in 

USD 

commodity type of commodity e.g. “Horses, live except 

pure-bred breeding” 

flow whether the commodity was an import, export, 

re-import or re-export 

category category of commodity, e.g. silk or fertilisers 
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The target and auxiliary variables for the Swiss Municipalities data set were selected based on the 

experiment described in Ballin and Barcaroli (2020). Accordingly, POPTOT and HApoly were converted 

into categorical variables using the k-means clustering algorithm. However, we used more domains and 

iterations in our experiment. More information on this data set is provided by Barcaroli (2014). 

For the remaining experiments we selected target and auxiliary variables which we deemed likely to be 

of interest to survey designers. Further details on the American Community Survey, 2015 (U.S. Census 

Bureau, 2016), the U.S. Census, 2000 (Ruggles, Genadek, Goeken, Grover and Sobek, 2017), Kiva Loans 

(Kiva, 2018), and the UN commodity trade statistics data (United Nations, 2017) metadata are available in 

O’Luing et al. (2019). 

A further summary by data set of the number of records and atomic strata, along with a description of 

the domain variable, is provided in Table 6.2 below. 

 
Table 6.2 

Summary by data set of the number of records and atomic strata and a description of the domain variable 
 

Data set  Number of records Number of atomic strata, L Domain variable 

Swiss Municipalities 2,896 579 REG 

American Community Survey, 2015 619,747 123,007 ST (the 51 states) 

US Census, 2000 627,611 517,632 REGION 

Kiva Loans 614,361 84,897 country code 

UN Commodity Trade Statistics data 352,078 351,916 country or area 

 
6.4 Results 
 

As mentioned previously, we used an initial solution in each experiment that is created by the 

KmeansSolution algorithm (Ballin and Barcaroli, 2020). We then compared the performance of the 

algorithms in terms of average computation time (in seconds) per solution and solution quality. Table 6.3 

provides the sample size, execution times and total execution times for the SAA and GGA. 

 
Table 6.3 

Summary by data set of the sample size and evaluation time for the grouping genetic algorithm and simulated 

annealing algorithm 
 

Data set GGA SAA 

Sample  

size 

Execution  

time 

(seconds) 

Total  

Execution  

time (seconds) 

Sample  

size 

Execution  

time 

(seconds) 

Total  

Execution  

time (seconds) 

Swiss Municipalities 128.69 753.82 10,434.30 125.17 248.91 8,808.63 

American Community Survey, 2015 10,136.50 13,146.25 182,152.46 10,279.44 517.76 6,822.42 

US Census, 2000 228.81 2,367.36 36,298.35 224.75 741.75 8,996.85 

Kiva Loans 6,756.19 15,669.11 288,946.79 6,646.67 664.30 7,549.87 

UN Commodity Trade Statistics data 3,216.68 6,535.97 88,459.22 3,120.07 1,169.26 12,161.80 
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The total execution time is the sum of the execution times for 20 evaluations of the GGA and SAA 

algorithms (by the MBO (model-based optimisation) function in the R package mlrMBO (Bischla, 

Richterb, Bossekc, Hornb, Thomasa and Langb, 2017)) using 20 sets of selected hyperparameters (i.e. one 

set for each evaluation). Details on the precision constraints and hyperparameters for each experiment can 

be found in the Appendix. Table 6.4 expresses the SAA results as a ratio of those for the GGA.  

 
Table 6.4 

Ratio comparison of the sample sizes, execution times, and total execution times for the grouping genetic 

algorithm and simulated annealing algorithm 
 

Data set Sample size Execution time (seconds) Total execution time (seconds) 

Swiss Municipalities 0.97 0.33 0.84 

American Community Survey, 2015 1.01 0.04 0.04 

US Census, 2000 0.98 0.31 0.25 

Kiva Loans 0.98 0.04 0.03 

UN Commodity Trade Statistics data 0.97 0.18 0.14 

 
As can be seen, the sample sizes are similar, however, the SAA shows significantly lower execution 

and total execution times. When these experiments are run in parallel, for cases where there is a large 

number of domains, there may not be enough cores to cover all domains in one run. Indeed, it may take 

several parallel runs to complete the task, and this will affect mean evaluation time. The computer 

specifications are provided in Table A.2. Table 6.5 shows the number of solutions evaluated by each 

algorithm to obtain the results shown in Table 6.3. It also provides a ratio comparison of the average 

execution time (in seconds) per solution. 

 
Table 6.5 

Number of solutions and ratio comparison of execution time (per second) between the grouping genetic 

algorithm and simulated annealing algorithm 
 

Data set Number of  

solutions evaluated 

Average execution time 

 per solution (seconds) 

GGA SAA GGA SAA Proportion 

Swiss Municipalities 840,140 210,000 0.0009 0.0012 1.3210 

American Community Survey, 2015 2,550,510 459,000 0.0052 0.0011 0.2188 

US Census, 2000 10,872 36,000 0.2177 0.0206 0.0946 

Kiva Loans 2,190,730 730,000 0.0072 0.0009 0.1272 

UN Commodity Trade Statistics data 2,395,026 1,539,000 0.0027 0.0008 0.2784 

 
The above results indicate that the GGA has evaluated more solutions to find a solution of similar 

quality to the SAA in all cases, except for the US Census, 2000 experiment. However, we also can see that 

the SAA takes less time to evaluate each solution in all cases except for the Swiss Municipalities 

experiment. The average execution time for each experiment can be considered in the context of the size 
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of the data set, parallelisation, and the particular sets of hyperparameters used for the GGA and SAA. In 

addition to this, there is also memoisation in the evaluation algorithm for the GGA, and the gains obtained 

by delta evaluation by the SAA.  

Gains are more noticeable for larger data sets, because of the size of the solution and number of atomic 

strata in each stratum. As the strata get larger in size, the movement of q  atomic strata from one stratum 

to another (where q  is small) will have a smaller impact on solution quality and, therefore, the delta 

evaluation will be quicker. 

 
7. Comparison with the continuous method in SamplingStrata 
 

We also compared the SAA with the traditional genetic algorithm which Ballin and Barcaroli (2020) 

have applied to partition continuous strata. We used the target variables outlined in Table 6.1 above as 

both the continuous target and auxiliary variables (for clarity we outline them again in Table 7.1 below) 

along with the precision constraints outlined in Table A.1 (the Appendix). In practice, the target variable 

would not be exactly equal to the auxiliary variable though it is common for the auxiliary variable to be an 

imperfect version (for example an out-of-date or a related variable) available on the sampling frame. We 

invite the reader to consider this when reviewing the results of the comparisons below. It is also worth 

noting that initial solutions were created for both algorithms using the k-means method. Details on the 

training of hyperparameters for these experiments also can be found in the Appendix. 

 
Table 7.1 

Summary by data set of the target and auxiliary variable descriptions for the continuous method 
 

Dataset Target variables Auxiliary variables Description 

Swiss Municipalities Surfacebois Surfacebois wood area 

Airbat Airbat area with buildings 

American Community Survey, 2015 HINCP HINCP Household income (past 12 months) 

VALP VALP Property value 

SMOCP SMOCP Selected monthly owner costs 

INSP INSP Fire/hazard/flood insurance (yearly amount) 

US Census, 2000 HHINCOME HHINCOME total household income 

Kiva Loans term_in_months term_in_months duration for which the loan was disbursed 

lender_count lender_count the total number of lenders 

loan loan the amount in USD 

UN Commodity Trade Statistics data trade_usd trade_usd value of the trade in USD 

 
The attained sample sizes are compared in Table 7.2 below where the sample size for the SAA is 

expressed as a ratio of the TGA. After the hyperparameters were fine-tuned (see Section A.6) the resulting 

sample sizes are comparable. 
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Table 7.2 

Ratio comparison of the sample sizes for the traditional genetic algorithm and simulated annealing algorithm 

on the continuous method 
 

Data set TGA SAA Ratio 

Swiss Municipalities 128.69 120.00 0.93 

American Community Survey, 2015 4,197.68 3,915.48 0.93 

US Census, 2000 192.71 179.89 0.93 

Kiva Loans 3,062.33 3,017.79 0.99 

UN Commodity Trade Statistics data 3,619.42 3,258.52 0.90 

 
Table 7.3 compares the execution times for the set of hyperparameters that found the sample sizes for 

each algorithm in Table 7.2 above, as well as the total execution times taken to train that set of 

hyperparameters. 

 

Table 7.3 

Ratio comparison of the execution times and total execution times for the traditional genetic algorithm and 

simulated annealing algorithm on the continuous method 
 

Data set TGA SAA Ratio comparison 

Execution  
time  

(seconds) 

Total  
execution  

time 

(seconds) 

Execution  
time  

(seconds) 

Total  
execution  

time 

(seconds) 

Execution  
time  

(seconds) 

Total  
execution  

time 

(seconds) 

Swiss Municipalities 753.82 10,434.30 213.44 1,905.82 0.28 0.18 

American Community Survey, 2015 22,016.95 227,635.51 13,351.19 169,115.92 0.61 0.74 

US Census, 2000 3,361.90 46,801.78 51.94 1,147.36 0.02 0.02 

Kiva Loans 3,232.78 48,746.61 300.16 4,149.06 0.09 0.09 

UN Commodity Trade Statistics data 29,045.23 326,931.63 73.18 1,287.38 0.003 0.004 

 
These results indicate a significantly lower execution time for the SAA for the attained solution 

quality. The computational efficiency gained by delta evaluation in the training of the recommended 

hyperparameters is also evident in the total execution times. For the American Community Survey, 2015 

experiment significantly more solutions were generated by the SAA than the TGA as a result of the given 

hyperparameters and this impacts the execution and total execution times (see also Table 7.4). Table 7.4 

compares the number of solutions generated by the traditional genetic algorithm with the simulated 

annealing algorithm. 

 
Table 7.4 

Comparison of the number of solutions generated by the traditional genetic algorithm and simulated 

annealing algorithm on the continuous method 
 

Data set Number of solutions evaluated 

TGA SAA 

Swiss Municipalities 840,140 175,000 
American Community Survey, 2015 918,102 5,100,000 
US Census, 2000 43,272 18,000 
Kiva Loans 146,730 292,000 
UN Commodity Trade Statistics data 20,521,026 85,500 
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In all cases except for Kiva Loans and the American Community Survey, 2015 the SAA has generated 

fewer solutions. The low number of solutions generated by both algorithms for the US Census, 2000 

experiment may indicate that the initial k-means solution was near the global minimum. The American 

Community Survey, 2015 results indicate that the SAA generated significantly more solutions to get to a 

comparable sample size with the TGA. As we are moving, predominantly, 1q =  atomic strata between 

strata such changes in this case had limited impact on solution quality from one solution to the next. 

However, the gains achieved by delta evaluation meant that more solutions were evaluated per second 

leading to a more complete search and a lower sample size being attained. 

For these experiments, the TGA took longer to find a comparable sample size in all cases. As pointed 

out in O’Luing et al. (2019), traditional genetic algorithms are not as efficient for grouping problems as 

the grouping genetic algorithm because solutions tend to have a great deal of redundancy. We would, 

therefore, propose that the GGA be applied also to continuous strata. On the basis of the above analysis, 

and the performance of SAAs in local search generally speaking along with the added gains in efficiency 

from delta evaluation, we would also propose that the SAA be considered as an alternative to the 

traditional genetic algorithm. 

 
8. Conclusions 
 

We compared the SAA with the GGA in the case of atomic strata and the TGA in the case of 

continuous strata (Ballin and Barcaroli, 2020). The k-means algorithm provided good starting points in all 

cases. When the hyperparameters have been fine-tuned all algorithms attain results of similar quality.  

However, the execution times for the recommended hyperparameters are lower for the SAA than for 

the GGA with respect to atomic strata and traditional genetic algorithm with respect to continuous strata. 

Delta evaluation also has advantages in reducing the training times needed to find the suitable 

hyperparameters for the SAA. 

The GGA might benefit from being extended into a memetic algorithm by using local search to quickly 

improve a chromosome before adding it to the GGA chromosome population. 

The SAA, by using local search (along with a probabilistic acceptance of inferior solutions), is well 

suited to navigation out of local minima and the implementation of delta evaluation enables a more 

complete search of the local neighbourhood than would otherwise be possible in the same computation 

time. 

 
9. Further work 
 

The perturbation used by the SAA randomly moves q  atomic strata, where mainly 1,q =  from one 

stratum to another. This stochastic process is standard in default simulated annealing algorithms. 
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However, as we are using a starting solution where there is already similarity within the strata, this 

random process could easily move an atomic stratum ( )1q =  to a stratum where it is less suited than the 

stratum it was in. This suggests the presence of a certain amount of redundancy in the search for the global 

minimum. 

Lisic et al. (2018) conjecture that the introduction of nonuniform weighting in atomic strata selection 

could greatly improve performance of (their proposed) simulated annealing method by exchanging atomic 

strata near stratum boundaries more frequently than more important atomic strata. We agree that, for this 

algorithm, it would be more beneficial if there was a higher probability that an atomic stratum which was 

dissimilar to the other atomic strata was selected. We could then search for a more suitable stratum to 

move this atomic stratum to. 

To achieve this we could first randomly select a stratum, and then measure the Euclidean distance of 

each atomic stratum from that stratum medoid, weighting the chance of selection of the atomic strata in 

accordance with their distance from the medoid. At this point, an atomic stratum is selected using these 

weighted probabilities. 

The next step would be to use a K-nearest-neighbour algorithm to find the stratum medoid closest to 

that atomic stratum and move it to that stratum. This simple machine learning algorithm uses distance 

measures to classify objects based on their K  nearest neighbours. In this case, 1,k =  so the algorithm in 

practice is a closest nearest neighbour classifier. 

This additional degree of complexity to the algorithm may offset the gains achieved by using delta 

evaluation, particularly as the problem grows in size, thus reducing the number of solutions evaluated in 

the same running time. It might be more effective to use the column medians as an equivalent to the 

medoids. This could assist the algorithm find better quality solutions.  

However, the above suggestions may only be effective at an advanced stage of the search, where the 

atomic strata in each stratum are already quite similar. 
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Appendix 

 
Background details on the comparisons in Sections 6 and 7 

 
A.1 Precision constraints 
 

The target upper precision levels for these experiments, i.e. coefficients of variation, for each of the 

five experiments are provided in Table A.1 below. 

 
Table A.1 

Summary by data set of the upper limits for the coefficients of variation 
 

Data set CV 

Swiss Municipalities 0.1 

American Community Survey, 2015 0.05 

US Census, 2000 0.05 

Kiva Loans 0.05 

UN Commodity Trade Statistics data 0.05 

 
We selected an upper precision level of 0.1 for the Swiss Municipalities data set in keeping with the 

level set for the experiment in Ballin and Barcaroli (2020). We used an upper precision level of 0.05 for 

the remaining experiments, given that the upper CV levels generally set by national statistics institutes 

(NSIs) tend to be between 0.01 and 0.1, and, for this reason, results for CVs in the mid-point of this range 

are of interest.  

 
A.2 Processing platform 
 

Table A.2 below provides details of the processing platform used for these experiments. 

 
Table A.2 

Specifications of the processing platform 
 

Specification Details Notes 

Processor AMD Ryzen 9 3950X 16-Core Processor, 3493 Mhz  

Cores 16 Core(s)  

Logical processors 32 Logical Processor(s) 32 cores in R 

System model X570 GAMING X  

System type x64-based PC  

Installed physical memory (RAM) 16.0 GB  

Total virtual memory 35.7 GB  

OS name Microsoft Windows 10 Pro  
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In all cases, R version 4.0 or greater was used. We used the foreach (Microsoft Corporation and 

Weston, 2020a) and doParallel (Microsoft Corporation and Weston, 2020b) packages to run the 

experiments in parallel. The number of cores used in the experiments was 31 (32 less 1) and this means 

that in the three experiments with more than 31 domains (American Community Survey 2015, Kiva Loans, 

UN Commodity Trade Statistics data) the foreach algorithm continued to loop through the available cores 

until a solution had been found for all domains. 

 
A.3 Hyperparameters for the grouping genetic algorithm and simulated 

annealing algorithm 
 

Tables A.3 and A.4 below outline the number of domains in each experiment, along with number of 

iterations and chromosome population size for the grouping genetic algorithm and along with the number 

of sequences, length of sequence, and starting temperature for the simulated annealing algorithm. 

Section A.4 provides details on fine-tuning the hyperparameters. For more details on the hyperparameters 

of the GGA we refer the reader to Ballin and Barcaroli (2013) and O’Luing et al. (2019) and of the SAA 

to Sections 2.2 and 4. 

 
Table A.3 

Summary by data set of the hyperparameters for the grouping genetic algorithm for each domain 
 

Data set Domains Number  

of  

iterations, I 

Chromosome 

population  

size, p
N  

Mutation  

chance 

Elitism  

rate,  

R
E  

Add  

strata  

factor 

Swiss Municipalities 7 4,000 50 0.0053360 0.4 0.0037620 

American Community Survey, 2015 51 5,000 20 0.0008134 0.5 0.0610529 

US Census, 2000 9 100 20 0.0000007 0.4 0.0000472 

Kiva Loans 73 3,000 20 0.0007221 0.5 0.0685005 

UN Commodity Trade Statistics data 171 1,000 20 0.0004493 0.3 0.0866266 

 
Table A.4 

Summary by data set of the hyperparameters for the simulated annealing algorithm for each domain 
 

Data set Domains Number of 

sequences, 

maxit 

Length of 

sequence,  

J  

Temperature, 

T  

Decrement 

constant,  

DC  

% of L for 

maximum 

q value, 

max%
L  

Probability  

of new 

stratum, 

( )1P H +  

Swiss Municipalities 7 10 3,000 0.0000720 0.5083686 0.0183356 0.0997907 

American Community Survey, 2015 51 3 3,000 0.0002347 0.6873029 0.0076477 0.0291729 

US Census, 2000 9 2 2,000 0.0006706 0.5457192 0.0189395 0.0806919 

Kiva Loans 73 5 2,000 0.0009935 0.7806557 0.0143925 0.0317491 

UN Commodity Trade Statistics data 171 3 3,000 0.0007902 0.5072737 0.0234728 0.0013775 
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A.4 Fine-tuning the hyperparameters for the grouping genetic algorithm and 

simulated annealing algorithm 
 

In order to fine-tune the initial parameters or hyperparameters we used sequential model-based 

optimization (Hutter, Hoos and Leyton-Brown, 2010). We first generated an initial design of 

hyperparameters from the value ranges described for the GGA in Table A.5 and in Table A.6 for the SAA 

below using the latin hypercube design method (McKay, Beckman and Conover, 2000). 

 
Table A.5 

Ranges for fine-tuning the hyperparameters for the grouping genetic algorithm 
 

Value type 

Iterations Population  

size 

Mutation  

chance 
Elitism  

rate, 
R

E  

Add  

strata factor 

Discrete Discrete Numeric Discrete Numeric 

Value range Lower 

value 

Upper 

value 

Increments Lower 

value 

Upper 

value 

Increments Lower 

value 

Upper 

value 

Lower 

value 

Upper 

value 

Increments Lower 

value 

Upper 

value 

Swiss 
Municipalities 

500 5,000 500 10 50 10 0 0.10 0.1 0.5 0.1 0 0.1 

American 

Community Survey, 

2015 

1,000 5,000 1,000 10 20 10 0 0.001 0.1 0.5 0.1 0 0.1 

Kiva Loans 1,000 3,000 1,000 10 20 10 0 0.001 0.1 0.5 0.1 0 0.1 

UN Commodity 

Trade Statistics data 

500 1,000 500 10 20 10 0 0.001 0.1 0.5 0.1 0 0.1 

US Census, 2000 50 100 50 10 20 10 0 0.000001 0.1 0.5 0.1 0 0.0001 

 
Table A.6 

Ranges for fine-tuning the hyperparameters for the simulated annealing algorithm 
 

Value type 

Number of  

sequences, maxit 

Length of  

sequence, J  

Temperature, 

T  

Decrement 

constant, DC 

% L for 

maximum q 

value, 
max%

L  

Probability 

of new 

stratum, 

( )1P H +  

Discrete Discrete Numeric Numeric Numeric Numeric 

Value range Lower 

value 

Upper 

value 

Increments Lower 

value 

Upper 

value 

Increments Lower 

value 

Upper 

value 

Lower 

value 

Upper 

value 

Lower 

value 

Upper 

value 

Lower 

value 

Upper 

value 

Swiss 
Municipalities 

10 50 10 1,000 3,000 1,000 0 0.001 0.5 1 0.0001 0.025 0 0.1 

American 

Community 

Survey, 2015 

1 3 1 1,000 3,000 1,000 0 0.001 0.5 1 0.0001 0.025 0 0.1 

Kiva Loans 1 5 1 1,000 2,000 1,000 0 0.001 0.5 1 0.0001 0.025 0 0.1 

UN 

Commodity 

Trade 
Statistics data 

1 3 1 1,000 3,000 1,000 0 0.001 0.5 1 0.0001 0.025 0 0.1 

US Census, 

2000 

1 2 1 1,000 2,000 1,000 0 0.001 0.5 1 0.0001 0.025 0 0.1 

 
As some of the hyperparameter value ranges were discrete, we used a random forest with regression 

trees to develop a surrogate learner model. After this, a confidence bound using a lambda value, ,  to 

control the trade-off between exploitation and exploration was used as the acquisition function. The focus 
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search approach (Bischla et al., 2017) was used to optimise the acquisition function which, in turn, was 

used to propose the hyperparameters which were evaluated using the surrogate function (which is a 

cheaper alternative to using the GGA or SAA algorithms). From these, the most promising 

hyperparameters were then evaluated by the GGA or SAA and the hyperparameters and solution costs 

added to the initial design. The process was then repeated for a set number of iterations and the best 

performing hyperparameters and solution outcomes were selected. We implemented this using the MBO 

function with the parameters outlined in Table A.7. These are distinct from the parameters being fine-

tuned, which are outlined in Tables A.5 and A.6 above. 

 
Table A.7 

Parameters used in the MBO Function 
 

MBO parameters Value 

Initial Design size (Latin Hypercube Design method) 10 

Iterations, number of  10 

Number of Trees 500 

Lambda,   5 

Focus Search Points 1,000 

 
As can be seen from the limited scope of the MBO function parameters this was not an exhaustive fine-

tuning of the hyperparameters for the GGA and SAA. The aim of these experiments was to consider 

whether the SAA can attain comparable solution quality with the GGA in less computation time per 

solution thus resulting in savings in execution times. However, we also compared the total execution times 

as this is a consequence of the need to train the hyperparameters for both algorithms.  

Tables outlining the hyperparameters, in each of the 20 fine-tuning iterations, for each experiment are 

available from the authors on request. The first 10 sets of hyperparameters were randomly generated from 

the ranges laid out in Tables A.5 and A.6. The ranges selected were identified using practical knowledge 

of the algorithms and data. The second 10 sets reflects the MBO function’s attempts to learn the 

hyperparameters that best lead each algorithm towards the optimal solution using the previous solutions as 

a guide. 

 
A.5 Hyperparameters for the traditional genetic algorithm and simulated 

annealing algorithm 
 

Tables A.8 and A.9 outline the hyperparameters for the tradtional genetic algorithm and the simulated 

annealing algorithm. The add strata factor option is not available for the traditional genetic algorithm and, 

therefore, is not included in Table A.8. More details on fine-tuning the hyperparameters are provided in 

Section A.6. 
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Table A.8 

Hyperparameters for the traditional genetic algorithm 
 

Data set Iterations Population size Mutation chance Elitism rate, 
RE  

Swiss Municipalities 4,000 50 0.0053360 0.4 

American Community Survey, 2015 1,000 20 0.0009952 0.1 

US Census, 2000 400 20 0.0002317 0.4 

Kiva Loans 200 20 0.0817285 0.5 

UN Commodity Trade Statistics data 5,000 30 0.0005599 0.2 

 
Table A.9 

Hyperparameters for the simulated annealing algorithm 
 

Data set Number 

of sequences, 

maxit 

Length of 

sequence,  

J  

Temperature,  

T  

Decrement 

constant, DC 

% for  

maximum q 

value, 
max%

L  

Probability 

of new 

stratum, 

( )1P H +  

Swiss Municipalities 5 5,000 0.02311057 0.9427609 0.3736443 0.0229361 
American Community Survey, 2015 50 2,000 0.00000005 0.9528952 0.0001021 0.0000008 

US Census, 2000 1 2,000 0.00002000 0.9665631 0.0221147 0.0160408 

Kiva Loans 2 2,000 0.00053839 0.8660943 0.0014281 0.0216320 
UN Commodity Trade Statistics data 2 250 0.00067481 0.9309940 0.0203113 0.0149499 

 
A.6 Fine-tuning the hyperparameters for the traditional genetic algorithm 

and simulated annealing algorithm 
 

We fine-tuned the hyperparameters for the TGA and SAA using the same methodology described in 

Section A.4. Tables outlining the hyperparameters, in each of the 20 fine-tuning iterations, for each 

experiment are available from the authors on request. The first 10 sets were randomly generated using 

practical knowledge of the algorithms and data to define upper and lower bounds for each hyperparameter. 

In the second 10 sets the MBO function attempts to optimise the hyperparameters using the previous 

solutions as a guide. 
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