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Waksberg Invited Paper Series 
 

 

The journal Survey Methodology has established in 2001 an annual invited paper series in honor of the late 

Joseph Waksberg to recognize his outstanding contributions to survey statistics and methodology. Each year a 

prominent survey statistician is chosen by a four-person selection committee appointed by Survey Methodology 

and the American Statistical Association. The selected statistician is invited to write a paper for Survey 

Methodology that reviews the development and current state of an important topic in the field of survey 

statistics and methodology. The paper reflects the mixture of theory and practice that characterized 

Joseph Waksberg’s work. The recipient of the Waksberg Award is also invited to give the Waksberg Invited 

Address, usually at the Statistics Canada Symposium, and receives an honorarium. 

Please see the announcements at the end of the Journal for information about the nomination and 

selection process of the 2024 Waksberg Award. 

This issue of Survey Methodology opens with the 22th paper of the Waksberg Invited Paper Series. The 

editorial board would like to thank the members of the selection committee Jean Opsomer (Chair), 

Jack Gambino, Maria Giovanna Ranalli and Elizabeth Stuart for having selected Roderick J. Little as the 

author of 2022 Waksberg Award paper. 

 

 

2022 Waksberg Invited Paper 

Author: Roderick J. Little 
 

Roderick Little has published widely on methods for the analysis of data with missing values and 

model-based survey inference, and the application of statistics to diverse scientific areas, including 

medicine, demography, economics, psychiatry, aging and the environment. He is Richard D. Remington 

Distinguished University Professor of Biostatistics at the University of Michigan, where he also holds 

appointments in the Department of Statistics and the Institute for Social Research. He chaired the 

Biostatistics Department at Michigan for 11 years. From 2010 to 2012, Little was the inaugural Associate 

Director for Research and Methodology and Chief Scientist at the U.S. Bureau of the Census. Distinctions 

include the American Statistical Association’s Founder’s Award and Wilks Medal for research 

contributions, and the President’s Invited Address and COPSS Fisher Lectureship at the Joint Statistical 

Meetings. Little is an elected member of the International Statistical Institute, a Fellow of the American 

Statistical Association and the American Academy of Arts and Sciences, and a member of the U.S. 

National Academy of Medicine.  
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1. Roderick J. Little, Department of Biostatistics, University of Michigan. E-mail: rlittle@umich.edu. 

 

Bayes, buttressed by design-based ideas, is the best 

overarching paradigm for sample survey inference 

Roderick J. Little1 

Abstract 

Conceptual arguments and examples are presented suggesting that the Bayesian approach to survey inference 

can address the many and varied challenges of survey analysis. Bayesian models that incorporate features of 

the complex design can yield inferences that are relevant for the specific data set obtained, but also have good 

repeated-sampling properties. Examples focus on the role of auxiliary variables and sampling weights, and 

methods for handling nonresponse. The article offers ten top reasons for favoring the Bayesian approach to 

survey inference. 
 

Key Words: Calibrated Bayes inference; Design-based inference; Penalized splines; Post-stratification; Probability 

proportional to size sampling; Proxy pattern-mixture models; Response propensity; Super-population 
models; Survey weighting. 

 

 

1. Introduction 
 

Bayesian inference is in my view the best overarching inferential paradigm for statistical inference 

from surveys, whether from probability or non-probability samples. See for example Ericson (1969), 

Binder (1982), Rubin (1987), Ghosh and Meeden (1997), Little (2003ab, 2004, 2012, 2015), Sedransk 

(2008) and Fienberg (2011). However, design-based properties of Bayesian inferences are important, 

because “all models are wrong”, and broad acceptance of results requires inferences that have good 

operating characteristics in repeated sampling. In particular, Bayesian models need to incorporate complex 

design features to yield inferences that are approximately calibrated, in the sense that credible intervals 

have close to nominal levels when treated as confidence intervals in repeated sampling (Rubin, 1984, 

2019; Little, 2006). In large samples, flexible working models can avoid strong parametric assumptions 

that lead to potentially biased estimates. 

To focus discussion, consider the problem of deriving a point estimate q  of a finite population 

quantity ,Q  and a 95% interval estimate ( )0.95 ,I l u=  that captures uncertainty in ,q  the interval may have 

a frequentist interpretation as a 95% confidence interval, or a Bayesian interpretation as a 95% posterior 

credible interval for .Q  I think scientists who are not statisticians generally interpret the interval I  in a 

Bayesian way, as a fixed interval capturing the uncertainty about .Q  However, I do not focus unduly on 

the difference in interpretation of 0.95I  under the two paradigms. The 95% nominal value is by convention 

and other levels could be chosen. 

An appealing feature of finite population survey sampling is that it deals with real (though unknown) 

quantities. For “analytic” survey inference, where the focus is on parameters of idealized models of the 

population, such as regression coefficients in a multiple regression model, define the finite population 
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quantity Q  as the estimate of the parameter of interest if the model was fitted to data for the whole 

population, according to some agreed fitting method such as least squares or maximum likelihood (ML). 

A useful feature of this construction is that Q  is then a real quantity, rather than a feature of a simplified 

hypothetical model of the population (e.g., Little, 2004).  

Under the Bayesian paradigm, inference for Q  is based on its posterior predictive distribution given 

the data, for judicious choices of model and prior distribution for unknown parameters. Thus q  may be 

the posterior predictive mean of ,Q  and 0.95I  the 2.5th to 97.5 percentile of the posterior predictive 

distribution, or the limits of the range of values of Q  with the highest posterior density, assuming the 

posterior predictive distribution is unimodal. A useful feature of the Bayesian approach is that “finite 

population corrections” are automatically incorporated in the posterior predictive distribution of finite 

population quantities – as the sample converges to the finite population, the posterior variance tends to 

zero.  

The focus is on developing suitable models and prior distributions. Computation used to be a major 

challenge and is still a practical consideration, though less so now with the advent of Markov Chain 

Monte Carlo methods and rapid advances in Bayesian computation. Thus, the complaint that Bayes is 

conceptually appealing but simply too difficult to implement is harder to sustain than it was, say, thirty 

years ago. 

The remainder of the paper is organized as follows. In Section 2, I introduce some notation and 

describe formally the models and prior distributions required by the Bayesian approach to survey data, 

with and without nonresponse. In Section 3, I describe generally desirable features of an inference about 

,Q  and discuss why I believe the Bayesian paradigm for suitably-chosen models can be more successful 

at achieving these features than the design-based approach. In Section 4 I present a variety of examples, 

intended to illustrate the points in Section 3. I conclude in Section 5 by proposing ten reasons to be 

Bayesian in the survey sampling setting. 

 

2. Notation, and a seminal paper 
 

In this section, I introduce some notation and a seminal paper that underlies much of the thinking in 

this paper. Let ( )1, , NY y y=  and ( )1, , NS S S=  where N   is the number of units in the 

population, iy  is the set of survey variables and iS  is the selection indicator for the thi  unit, with value 1 

when the thi  unit is selected and 0 otherwise. Let Z  represent design information such as stratum or 

cluster indicators, and iz  the value of Z  for unit .i  Consider inference about a finite population quantity 

( ), ,Q Y Z  for example the population total ( )
1

, ,
N

ii
Q Y Z y

=
=  where ( )1, , .NY y y=  A general model-

based approach treats both S  and Y  as random variables, with joint distribution given :Z  

 ( ) ( ) ( ), ,
, , , , , , ,

S Y Z Y Z S Y Z
f S Y Z f Y Z f S Z Y   =  (2.1) 
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where 
Y Z

f  represents the density of survey variables Y  indexed by unknown parameters ,  and 
,S Y Z

f  

represents the model for inclusion indexed by unknown parameters .  For a probability sample with no 

nonresponse, the sampling distribution is known and does not depend on ,Y  that is, 

 ( ) ( ),
, , ;

S Y Z S Z
f S Z Y f S Z =  (2.2) 

design-based methods base inferences on the distribution of statistics in repeated sampling from this 

distribution.  

For a survey with unit nonresponse, inclusion occurs when a unit is selected, and then responds given 

selection. Accordingly, let 1iR =  if selected unit i  responds and 0iR =  otherwise. The model-based 

approach models the joint distribution of ,S  R  and Y  given Z  as 

 ( ) ( ) ( ), , , , ,
( , , , , ) , , , , , , ,

S R Y Z Y Z S Y Z R S Y Z
f S R Y Z f Y Z f S Z Y f R Z Y S    =  (2.3) 

adding to equation (2.1) a model for unit nonresponse with density 
, ,

.
R S Y Z

f  Item nonresponse can also be 

treated by modeling indicators for the patterns of item missingness (e.g., Little, 2003b). 

Treating ,S  R  and Y  as random variables is a key feature of Rubin (1978), which I regard as one of 

the landmark statistics papers in the history of statistics. The paper provides conditions under which the 

missingness and selection mechanisms are ignorable, that is, do not need to be modeled for likelihood-

based inference, extending definitions of ignorability for missing data in Rubin (1976), while providing a 

framework for inference when selection and/or missingness is non-ignorable. The significance of the 

paper for survey sampling is easily missed, because its main focus is on the role of the treatment 

assignment mechanism in the context of inference about causal effects. The assignment mechanism is 

ignorable under random treatment assignment, as in randomized clinical trials. The paper thus lays a 

general framework for causal inferences comparing treatments, and it is for this feature that the paper is 

best known. However, the paper also provides a Bayesian justification for random sampling, as a means of 

avoiding the need for a model for selection.  

In frequentist superpopulation modeling (e.g., Valliant, Dorfman and Royall, 2000), the parameters in 

models are treated as fixed; in Bayesian survey modeling, these parameters are assigned a prior 

distribution, and inferences for ( )Q Y  are based on its posterior predictive distribution given the data. In 

large samples, the prior distribution plays a minor role, and the two approaches yield similar answers for 

comparable models; in particular the ML estimate of a parameter is essentially the mode of the posterior 

distribution under a uniform prior, and as such has a Bayesian interpretation. In small samples, uncertainty 

about the model parameters is propagated when they are integrated out of the posterior distribution. This 

approach to propagating error in parameters allows Bayesian inferences for judiciously chosen models and 

priors to be better calibrated than inferences from superpopulation modeling inferences, in a sense of 
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having better frequentist properties in repeated sampling (Rubin, 1978). So, in my opinion 

“superpopulation modeling is super, but Bayes is better”. 

 

3. Design-based versus model-based inference 
 

The survey sampling literature features many lively controversies (e.g., Smith, 1976, 1994; Kish, 1995; 

Brewer, 2013; Little, 2014) between “design-based” inference, where inference is based on the sampling 

distribution (2.2) and “model-based” inference, where inference is based on model distribution 

( ),
Y Z

f Y Z   if selection is ignorable, or on the full model distribution (2.1) or (2.3) if selection is 

nonignorable or there is nonresponse. I seek inferences that are both design-based and model-based, in 

that they are based on Bayesian models but have good design-based properties. 

Rubin (1984) distinguished between statistical inference for a particular data set, and the properties of 

that inference – consistency, confidence coverage – in repeated sampling. To be broadly credible, the 

inference should also have good repeated-sampling properties. This goal of the “design-based” approach 

should also be a goal of Bayesian models for surveys – the model and prior should be chosen to yield 

inferences with good design-based properties. To achieve this, features of the complex probability sample 

design need to be part of the model – stratification and weighting incorporated via covariates, multistage 

sampling incorporated via hierarchical models. The inclusion of a prior distribution in Bayesian modeling, 

decried by some as yet another assumption to be added to the model, for me provides an additional tool 

over superpopulation modeling. It provides more flexibility than superpopulation modeling, which 

effectively restricts the choice to uniform priors.  

In addition to having good frequentist properties, the inference based on q  and I  needs to be 

appropriate – Rubin (2019) uses the term “relevant” – for the realized data set. Let D  denote the data that 

are the basis for the inference, and D  the particular realization of ,D  the sample and respondent values 

actually obtained. Whether q  and I  are derived from a formal Bayesian model, an estimating equation, 

or some algorithmic procedure, they should provide good inference for the data ,D  not other data sets D  

that may have been obtained. Bayesian methods tend to have this property, because the posterior 

distribution conditions on ;D  but a confidence interval should also be approximately valid when viewed 

as a credible interval that conditions on ,D  if only because this is how a non-statistician tends to interpret 

it. Design-based confidence intervals can be lacking from this perspective, as illustrated in examples 2 and 

4 below.  

To summarize, a common goal of design-based and model-based inference is to arrive at a value of q  

that makes efficient use of the data, has some property like design consistency which implies that it is not 

too far from ,Q  and an interval I  that is as narrow as the information in the data allows, while including 

Q  with a probability close to the nominal 95% value. Rubin (2019) associates these properties with a 

“sage” statistician in his Waksberg lecture.  



Survey Methodology, December 2022 261 
 

 
Statistics Canada, Catalogue No. 12-001-X 

Design-based methods are often rationalized as avoiding the need for a model, because properties like 

design consistency are not based on a model for the data. However, the performance of design-based 

methods often depends on an implicit model, and modifying the estimate based on a more realistic model 

can improve the inference, from a design-based or model-based perspective. This point is illustrated in 

examples 3-5 below.  

The question of the appropriate reference set for repeated sampling properties like confidence intervals 

is fraught with difficulties, specifically on whether to condition on ancillary statistics or on statistics that 

are close to ancillary (e.g., Birnbaum, 1962; Berger and Wolpert, 1988; Ghosh, Reid and Fraser, 2010). 

These questions also arise when assessing the repeated-sampling properties of a Bayesian inference, but 

do not apply to the inference itself because the posterior distribution conditions on .D  

The design-based approach to sample survey inference is too limited in scope, failing to address 

adequately many of the problems of sample surveys in practice. Limitations include the following: 

 

1. Design-based inference is asymptotic, and does not provide valid inferences in small samples. 

Consider the following simple example. 
 

Example 1. Inference about a population mean from a simple random sample. Consider 

inference about a population mean of a variable Y  from a simple random sample of size n  from a 

population of size .N  The standard design-based 95% confidence interval takes the form 

             ( )1.96 1 1 ,y s n N −  (3.1) 

where y  is the sample mean and s  is the sample standard deviation. This interval is asymptotic 

and does not provide valid small sample inferences. In particular, if Y  is continuous, better 

inference is usually obtained by replacing 1.96, the 97.5th percentile of the normal distribution, by 

the 97.5th percentile of a distribution that reflects uncertainty about estimating the variance, such as 

the t distribution with 1n −  degrees of freedom. However, that procedure assumes a normal 

distribution for Y  and hence is not design-based. If Y  is binary with values 0 and 1, then y  is the 

sample proportion, ( )1s y y= −  and (3.1) is the asymptotic Wald interval, which performs very 

poorly in small samples, particularly when the true proportion is near to 0 or 1. The Bayesian 

credible interval for a Jeffreys or uniform prior has much better frequentist properties. See Dean 

and Pagano (2015) and Franco, Little, Louis and Slud (2019) for comparisons of Wald intervals 

with alternatives for complex designs. Design-based inference is often a poor option for small 

samples, and in particular for small area estimation, where a model for Y  is invoked to “borrow 

strength” across areas. 

2. Design-based inference does not handle survey unit or item nonresponse or response errors, because 

these problems require models to yield generally satisfactory results.  
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3. Design-based inference is not prescriptive, in a sense of prescribing the appropriate choice of 

inference method for the data at hand. The appropriate choice of estimator effectively requires an 

implicit model, as in “model-assisted” estimation (e.g., Särndal, Swensson and Wretman, 1992). 

For example, the regression or ratio estimator or incorporating auxiliary information, or the 

Horvitz-Thompson or Hájek estimator for incorporating survey weights, are all based on implicit 

models, and if that model is far from realistic these methods may be severely suboptimal – Basu’s 

(1971) elephants being an extreme and satirical example. Bayesian inference based on more flexible 

models tend to do better, as discussed in example 5 below. 

4. Design-based inference does not address how to provide inferences for non-probability samples, 

which are increasingly prevalent given the expense and difficulty of obtaining true random samples.  

 

Point 4 does not rule out the use of design-based methods for deriving q  and ,I  because we can 

always pretend that we have a probability sample, by assuming a model for the selection indicators S  that 

describe inclusion in the sample, and estimating the unknown parameters in that model (e.g., Elliott and 

Valliant, 2017). Statisticians who use design-based methods for inference from random samples tend to 

favor this “quasi-randomization” approach. However, it shares the limitations of the design-based 

approach for probability samples, namely the inability to handle small samples, missing data or response 

errors; the Bayesian toolkit for these problems is much more extensive. 

 

4. Examples 
 

A variety of examples are offered, admittedly somewhat slanted towards my own work with 

colleagues. I avoid topics such as small area or time series estimation, because the need for modeling is 

well established there. 

 

Example 1 continued. Normal random sample. A common critique of model-based methods is “if I 

base an inference on a model and the model is wrong, the inference must be wrong. Because (to 

paraphrase George Box), all models are wrong, therefore all model-based inference is wrong. So I prefer 

design-based inference, which does not require modeling assumptions”. The reasoning is plausible but it’s 

not that simple. The validity of model-based methods depends both on the design and on the degree and 

nature of model misspecification; the fact that design-based methods do not overtly depend on models 

does not mean they are necessarily superior to methods that do.  

Suppose a simple random sample of size n  is taken from a continuous distribution with unknown 

mean   and standard deviation .  Consider three interval estimates for the population mean: 
 

(i) Interval A is the standard design-based 95% confidence interval, equation (3.1).  
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(ii) Interval B replaces the 97.5th normal percentile in equation (3.1), namely 1.96, by the 97.5th 

percentile of the t  distribution with 1n −  df.  

(iii) Interval C is the 95% posterior credible interval based on a normal model with the Jeffreys’ prior 

distribution ( ), 1 .p     

 

From a frequentist perspective, which of these intervals is the best? Interval A makes no distributional 

assumption on ,Y  and B makes a normal assumption – does that mean that A is superior? If n  is large 

then the intervals are essentially the same, and if n  is small then B is arguably better than A even if the 

data are not normal, because it is reflecting uncertainty about the variance.  

In an informal survey, two thirds of a recent class of our well-trained Ph.D. students preferred B to C, 

on the grounds that it avoids the choice of prior distribution and hence makes fewer assumptions. But B 

and C are equally good or bad, because they are the same procedure! That this interval is an exact 95% 

confidence interval under normality, and is a 95% credible interval for the stated choice of prior, are just 

two properties of the procedure. Judging a method by its overt assumptions is an over-simplification. 

 

Example 2. Simple random sample with a lower bound on the variance (Little, 2006). Suppose in the 

previous example that 7,n =  1, 1.y s= =  The standard t  interval (ignoring finite population corrections) 

is 

 6,975 1 2.447 7 1 0.925y t s n =  =   (4.1) 

if in fact we know that  = 1.5, a better interval is 

 0.975 1 1.96 1.5 7 1 1.11,y z n =   =   (4.2) 

the wider interval reflecting the fact that   is greater than the particular value of s  for this sample. The t 

interval (4.1) has exact confidence coverage, but, given what we know about ,  it is the wrong inference 

for this specific data set: we should not pick it over (4.2) because it is narrower!  

Now suppose we know that   1.5, because of some unaccounted source of additional variation. The 

Bayesian approach then incorporates this information into the prior distribution for ,  resulting in a 

credible interval that is wider than (4.2). What is the frequentist answer? The t confidence interval still has 

exactly nominal coverage in repeated sampling, but it is clearly too narrow as an inference for the 

observed dataset, because it fails to reflect what is known about .  The interval (4.2) is anticonservative, 

despite the fact that it is wider than (4.1) for the realized data set – a property that can happen for 

confidence intervals but cannot happen for credible intervals under a specific model. Asymptotic 

frequentist methods are no help here, so what is the alternative to Bayes in this example? 

A related example arises in one group random-effects analysis of variance, when the least squares 

estimate of the between-group variance is negative – a Bayesian analysis addresses this with a prior 
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distribution on the between-group variance that does not allow negative values. Random-effects and 

mixed-effects models are important to handle clustering in surveys, and Bayesian methods are better than 

ML in this setting.  

 

Example 3. Post-stratification on a categorical covariate. Prediction (as in modeling) is a more reliable 

general approach to inference than weighting (as in design-based inference). I illustrate this general 

statement with the simple example of post-stratification on a single variable .Z  A more complex example 

– Example 7 – is given later. 

Consider an equal probability sample with a single categorical post-stratifying variable ,Z  for which 

known population counts hN  are available for each post-stratum ,h  1, 2, , .h H=  Let hy  be the sample 

mean in post-stratum ,h  based on sample size ,hn  and 
1

,
H

hh
n n

=
=  

1
.

H

hh
N N

=
=  The standard estimate 

of the population mean is the post-stratified mean: 

 PS

1

,
H

h h

h

y P y
=

=   (4.3) 

where h hP N N=  and N  is the population size. This can be viewed as a weighted mean 

 
PS

1 1

,
hnH

i i

h i

y w y
= =

=    

where ( )i h hw N Nn=  is the post-stratification weight for sampled units in poststratum .h  These weights 

can be very large in post-strata with small sample sizes ,hn  which, unlike stratified sampling based on ,Z  

are not under the control of the sampler. These large weights can lead to excessive variability in PS .y  In 

fact, strictly speaking, PSy  does not have a distribution in repeated sampling, because with positive 

probability the sample sizes in some post-strata may be zero. This remains true if the post-strata are 

modified to ensure that the post-strata sample counts are all positive for the observed sample, for example 

by pooling adjacent strata. 

The standard design-based approach to excessive variability of PSy  is to modify the weights ,iw  for 

example by trimming the large ones. However, from a prediction perspective, this is misguided. The 

problem is not the weights – the population proportions  hP  in each post-stratum are known, after all – 

the problem is that sparsity of sample in some post-strata renders the estimates  hy  unreliable. It is the 

estimates in sparse post-strata that need to be modified, not the weights  iw  attached to sampled units. 

The principled way to modify  hy  is to assume a model relating Y  and .Z  The design-based approach, 

by avoiding such a model, leads to the wrong principle – modifying the weights rather than the predictions 

of non-sampled values.  

A related point: a common design-based approximation (Kish, 1992) measures the proportionate 

increase in variance from weighting as ( )1+ cv ,iw  where ( )cv iw  is the coefficient of variation of the 

weights; trimming the weights reduces ( )cv iw  and hence this proportionate increase. However, this rule 
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of thumb is only valid when Y  and Z  are unrelated, in which case post-stratification is useless. If Y  and 

Z  are related and the sample size is not too small, the variance of the post-stratified mean is smaller, not 

larger, than the variance of the unweighted sample mean (Holt and Smith, 1979; Little and Vartivarian, 

2005). The rule of thumb fails because the relationship between Y  and Z  is not modeled.  

What is the Bayesian approach to excessive variability of PS ?y  The latter is the posterior mean for the 

stratified normal model 

 ( ) ( )
iid2 2~, , ,hi h hy G     (4.4) 

 ( ), 1 ,hp     (4.5) 

where ( )2,G a b  denotes the normal (Gaussian) distribution with mean ,a  variance 
2 ,b  and equation (4.5) 

is the Jeffreys’ prior distribution on the mean and standard deviation in each post-stratum. Given a sparse 

sample in some post-strata, the prior distribution needs to be modified to allow borrowing of strength from 

other strata. One approach is to assume the normal random-effects model 

 ( ) ( ) ( )
iid 2 1~, , , , , , ,hp G p          −  (4.6) 

which treats the stratum means as random effects. The variances in each post-stratum might also be treated 

as distinct random effects and assigned a prior distribution, rather than pooled. The posterior mean of Y  

for the prior distribution (4.6) moves the weight iw  of sampled units in post-stratum h  towards one, with 

a degree of shrinkage that depends on the relative size of estimates of   and   (Lazzeroni and Little, 

1998).  

The prior distribution (4.6) makes the non-trivial assumption that the post-stratum means are 

exchangeable. It can be relaxed by restricting the random effects model to a subset of post-strata with 

small sample counts; or the constant mean   in (4.6) might be replaced by a regression on known post-

stratum characteristics ,hC  as in: 

 ( ) ( ) ( )
ind 2 1

0 1 0 1 0 1
~, , , , , , , , , ,h h hp c G c p             −+   (4.7) 

which limits the exchangeability assumption to the errors in the regression of h  on .hc  For extensive 

generalizations of this basic example, see Gelman and Little (1997), Elliott and Little (2000), Elliott 

(2007), Gelman (2007) and Si, Trangucci, Gabry and Gelman (2020). 

 

Example 4. Regression estimator of the mean, given a population auxiliary variable. If the auxiliary 

variable Z  in the previous example is continuous, a common way to incorporate it in the inference is via 

the regression estimate of the mean: 

 ( )REG 1
ˆ ,q y y Z z= = + −   
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where 1̂  is the least squares estimate of the slope of Y  on Z  in the sample, and z  and Z  are 

respectively the sample and population mean of .Z  In a simulation study of five real populations, Royall 

and Cumberland (1981, 1985) assess inferences centered at ,q  with (a) the standard design-based standard 

error based on simple random sampling, namely: 

 ( ) ( ) ( )0.95 reg .
ˆ ˆˆ ˆ= 1.96se , se 1 ,D D D Y ZI y f s n  = −   

where 2

.Y Zs  is the sample residual variance and f n N=  is the sampling fraction; and (b) the prediction 

standard error based on the normal linear regression model with constant variance, namely: 

 

( )

( ) ( ) ( )( ) ( ) ( )( )
0.95 reg 0.975, 2

2 2

1

ˆˆ= 1.96se ,

ˆ ˆˆ ˆse se 1 1 .

M n M

n

M D ii

I y t

z Z f z z n



 

−

=



= + − − −
  

The design-based confidence intervals 0.95DI  exhibit very poor conditional confidence coverage when 

the observed z  deviates substantially from .Z  The model-based confidence interval 0.95MI takes into 

account this lack of balance with respect to ,z  but is vulnerable to model misspecification, specifically 

lack of linearity in the relationship between Y  and Z  or non-constant residual variance. Robust estimates 

of standard error, based on the sandwich estimator or the jackknife, yield intervals with better conditional 

coverage properties, although still sometimes deviating from nominal coverage levels. An alternative 

approach is Bayesian inference based on a more flexible model relating Y  to ,Z  such as the penalized 

spline model: 

 

( ) ( )( )

( ) ( )

( ) ( ) ( )

ind2 2

0

1 1

iid 2

0

~, , spline , , ,

spline , ,

~ 0, , 1, , ; , , , , , 1 , 0 2,

i i i i

p m
pj

i j i p i

j

l p p

y z G z z

z z z

N l m p

   

    

         

+ +
= =

+

= + + −

=   

   

(4.8)

 

where the constants 1 m    are selected fixed knots, and ( )p pu u+ =  if 0u   and 0, otherwise (see, 

for example Ruppert, Wand and Carroll, 2003). The parameter   allows for a variety of common forms 

of heteroskedasticity. The Bayesian standard errors then reflect imbalance in distribution of Z  in the 

sample and population, and the flexibility of the model limits bias from model misspecification. 

Suppose that the target quantity is not the population mean of ,Y  but the least squares slope of Y  on 

Z  in the population. A robust approach is to impute the non-sampled values of Y  using the model (4.8), 

and then estimate the slope of Y  on Z  as the least squares slope estimated on the filled-in population 

data. Uncertainty can be propagated by multiple imputation (Rubin, 1987), a method founded on Bayesian 

ideas. In this context, Little (2004) distinguishes between the “target model” that determines the target 

population quantity of interest, here the linear regression of Y  on ,X  and the “working model” (4.8) that 

is the basis for inference, and is used to predict survey variables for the non-sampled and nonresponding 
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units in the population. Distinguishing between these two models provides for a robust form of Bayesian 

survey inference.  

Szpiro, Rice and Lumley (2010) apply a similar idea in a superpopulation regression setting, and Little 

(2019) argues that this is more straightforward than changing the interpretation of the estimand, the 

approach adopted by Buja, Berk, Brown, George, Pitkin, Zhan and Zhang (2019). Szpiro et al. (2010) 

show that the approach provides a Bayesian interpretation of the sandwich estimator of variance in 

regression, which is asymptotically equivalent to sample reuse estimates of variance like the bootstrap or 

jackknife, which are commonly applied in sample survey settings.  
 

Example 5. Inference for samples with unequal probabilities of selection. For designs with unequal 

selection probabilities, classic papers critiquing the modeling approach to surveys (Kish and Frankel, 

1974; Hansen, Madow and Tepping, 1983) do not include the selection probabilities in the model, yielding 

inferences that are vulnerable to model misspecification. The selection probabilities play an important role 

in robust model-based inference, but as model covariates rather than as sampling weights.  

Consider, for example, inference about a population mean .Y  If iy  is the value of a survey variable Y  

and i  is the selection probability for unit ,i  the usual design-based estimator of the mean of Y  weights 

sampled units (say units 1, , )i n=  by the inverse of i  resulting in the Horvitz-Thompson estimate 

(Horvitz and Thompson, 1952) 

 
1

HT

1

,
n

i i

i

y N y −

=

=   (4.9) 

if the population size N  is known, or the Hájek (1971) estimate 

 HK

1 1

1 ,
n n

i i i

i i

y y  
= =

   
=    
   
   (4.10) 

if N  is estimated. Weighting is a “one size fits all” approach, with sampled units receiving the same 

weight irrespective of the relationship between i  and .iy  This is potentially inefficient – if the 

relationship is weak, weighting simply reduces the precision of the estimate without a compensating 

reduction in bias.  

The modeling approach incorporates the selection probabilities by regressing iy  on .i  The strength 

of relationship between iy  and i  then moderates how the selection probability affects the estimator – if 

the relationship is weak, the regression coefficient of i  is small and the sampling weight has little 

influence. This results in more efficient estimates.  

A linear regression of iy  on i  is vulnerable to bias if the linearity is misspecified, but the impact of 

misspecification can be reduced by choosing a model that results in a design-consistent estimate. Many 

models satisfy this requirement; see for example Firth and Bennett (1998). 

In stratified sampling with stratifying variable ,Z  the natural regression model includes covariates that 

are dummy variables for the strata. The resulting estimate of the population mean of a continuous survey 
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variable Y  is the stratified mean, which has the same form as equation (4.3) but with Z  forming strata 

rather than post-strata. Weighting by the inverse of the selection probability in each stratum and dummy 

variable regression both yield the estimator (4.3) in this situation. The Bayesian approaches to reducing 

variance described in example 3 tend to have less pay-off in the case of stratified sampling than for post-

stratification, because the sampler has control over the sample sizes in each stratum.  

In probability proportional to size (PPS) sampling, the covariate Z  is the size of the unit and 

( )min ,1 .i icz =  Now Z  is a continuous variable, and weighting and regression may yield different 

answers. The approaches can be unified by considering models that yield the design-weighted estimates 

when used to predict the non-sampled units. In particular, ignoring finite population corrections, the HT 

estimate (4.9) is the posterior mean for the “Horvitz Thompson model”: 

 ( ) ( ) ( )
ind2 2 2~, , , , , 1 ,i i i iy z G z z p        (4.11) 

and the Hájek estimate (4.10) is the posterior mean for the “Hájek model”: 

 ( ) ( ) ( )
ind2 2~, , , , , 1 .i i iy z G z p        (4.12) 

These underlying models describe situations where the corresponding design-based estimates are 

optimal. However, they involve strong parametric assumptions. A robust Bayesian modeling approach 

embeds these models within a larger model, such as the penalized spline model (4.8), as proposed by 

Zheng and Little (2003). Zheng and Little (2005) and Chen, Elliott, Haziza, Yang, Ghosh, Little, Sedransk 

and Thompson (2017) provide simulation studies suggesting that this modeling approach can yield 

substantial gains over HT or Hájek estimation, both in terms of efficiency and closer to nominal 

(frequentist) confidence coverage in moderate samples – remember, design-based results are asymptotic. 

The model (4.8) is readily expanded to include other auxiliary variables measured for all the population 

units, and the flexibility of small-sample inferences increased by including proper prior distributions for 

the model parameters.  

Leon-Novelo and Savitsky (2019) consider Bayesian models for the joint distribution of iy  and ,i  

calling models that fix i  a “plug-in” approach. However, assigning a distribution to i  seems to me both 

unnatural and unnecessary in this setting; if i  is recorded for all population units, it can be conditioned in 

the model, as in standard regression approaches that treat covariates as fixed. Even if values of i  for non-

sampled units are not provided to analysts, their values can be predicted via Bayes Theorem, as in 

Zangeneh and Little (2015). 
 

Example 6. Penalized spline of response propensity models. Consider unit nonresponse on a survey 

variable ,Y  when a set of variables say 1, , pX X  are observed for respondents and nonrespondents in 

the sample. The response propensity for unit ,i  ( )1Pr 1 , , , ,i i i ipR x x = =  where   represents 

unknown parameters, plays an important role in both weighting and prediction approaches to survey 
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nonresponse. In nonresponse weighting the sampling weight is multiplied by the nonresponse weight, as 

in 

 

Pr unit is selected and responds

selected Pr   responds selected)  

sampling weight × response weight. 

1 ( )

(1 Pr ( )) (1 ( )

i

i

iw

i=

=

   

Unlike the sampling weight, the response weight is unknown, and the definition needs to be clear on 

what the probability is conditioned. Little (2022) argues that it should condition on auxiliary and survey 

variables, but not on other variables that might affect it. As with sampling weights, weighting by the 

inverse of the estimated response propensity is a “one size fits all” approach that does not take into 

account the strength of relationship between R  and .Y  Penalized Spline of Propensity Prediction (PSPP, 

Zhang and Little, 2009) regresses Y  on a penalized spline of the estimated response propensity, with 

other variables that are observed for respondents and nonrespondents entering parametrically. The spline 

models a flexible relationship between the response propensity and ,Y  providing robustness to model 

misspecification. The balancing property of the propensity score also provides a double robustness 

property, in that the parametric form of the regression on other predictors can be misspecified without 

bias, provided the penalized spline captures the relationship between the propensity and .Y  This method 

performs favorably with weighting methods in simulations (Zhang and Little, 2009; Yang and Little, 

2015), and the fully Bayes version with prior distributions on the parameters propagates error in 

estimating the propensities. 

 

 
Figure 4.1 Data structure for example 7. 
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Example 7. Unit nonresponse with poststratification. Another example where Bayesian and design-

based approaches to inference differ concerns unit nonresponse with post-stratification. Consider the 

setting of Figure 4.1, where Y  is a survey variable subject to nonresponse, X  is a variable observed for 

all units in the sample, and ( )aux

1, , KZ Z Z=  consists of a set of categorical auxiliary variables. The 

joint distribution of auxZ  is observed for survey respondents, and the marginal distributions of ,kZ  

1, , ,k K=  are also observed for the population or sample from external sources. A distinctive feature is 

that the units in the auxiliary data are not linked with the units in the survey. This scenario occurs 

frequently in settings where post-stratification is used for nonresponse adjustment. Define iR  as the 

response indicator for ( ),i iy z  for sample unit ,i  and suppose that  

 ( ) ( ),Pr =1 , , , Pr =1 , ,i i i i i i iR x z y R x z =  (4.13) 

so that this probability does not depend on .iy  Note that if this probability depends on ,iz  the response 

mechanism is missing not at random (MNAR) according to Rubin’s (1976) definition, because values of 

iz  are missing for survey nonrespondents. Zangeneh and Little (2022) consider Bayes and ML estimation 

for data with this pattern. Considering for simplicity models that are i.i.d. over the units ,i  the joint 

distribution of ,X  ,Z  Y  and R  is factored as  

 
( ) ( ) ( )

( ) ( )

, , , , ,, ,

Under Eq. (4.13)

, ,, ,
,

, , , ,  , , , , ,

, , , ,

X Z Y R i i i i i i i i i X Z R i i iY X Z R

i i i X Z R i i iY X Z R

f x z y r f y x z R r f x z r

f y x z f x z r

   

 

= =

=

  

where   and   are distinct parameters (Little and Rubin, 2019, Chapter 6). The parameters   in this 

factorization can thus be estimated from the respondent survey data with 1,iR =  and parameters of the 

joint distribution of X  and Z  are estimated by combining the respondent and auxiliary data on those 

variables.  

Two special cases considered by Zangeneh and Little (2022) are as follows: 

(1) No covariates X  and a single post-stratifier .Z  The missingness assumption in equation (4.13) 

then reduces to ( ) ( )Pr .1 , , Pr 1 ,i i i i iR Z Y R Z = = =  The parameters of the conditional 

distribution of Y  given Z  are estimated from the survey respondents, and the parameters of the 

marginal distribution of Z  are estimated from the auxiliary data on .Z  In particular, if Z  is 

multinomial with ( )Pr i jz j  = =  the ML estimate of j  is simply the proportion of the 

auxiliary counts in post-stratum .j  If, in addition, Y  given Z j=  is assumed normal with mean 

j  and variance 
2 ,j  the resulting ML estimate of the population mean of Y  is simply the 

post-stratified mean given in equation (4.3). This simple example is interesting theoretically, 

because the response mechanism is MNAR but ignorable for likelihood inference; MAR is a 

sufficient but not always necessary condition for ignorability. 

(2) X  is a single categorical variable and Z  is a single categorical post-stratifier. Now the joint 

distribution of ,X  ,Z  and R  is not identified under a saturated model, and requires additional 
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assumptions to identify the model. In particular, a constrained MNAR “RAKE” model assumes 

that the marginal distributions of 1Z  and 2Z  are different for respondents and nonrespondents, 

but the odds ratios of 1Z  and 2Z  are the same for respondents and nonrespondents. This yields 

a just-identified model. Raking the table of respondent counts of 1Z  and 2Z  to the auxiliary 

margins of 1Z  and 2Z  yields ML estimates of   under this RAKE model. (Little and Wu, 

1991; Little, 1993). The post-stratified estimator of the mean of Y  is then  

                    ( ) ( )
rake

1 1

ˆ ˆ ,
J K

jk jk

j k

Y P Y 
= =

=    

where ( )ˆ
jkP   is the proportion of the population with ,X j Z k= =  from raking the respondent 

counts to the margins, and ( )ˆ
jkY   is the estimated mean of Y  given ,X j Z k= =  from the 

model for Y  given X  and .Z  

 

Some comments on this approach are as follows: 

(1) Note again this is a MNAR model, and it is weaker than the MAR model that assumes that 

response depends on X  but not on .Z  As a result, the method tends to be less biased than 

alternative methods that assume MAR for consistent estimates. 

(2) As was the case in example 4, the ML approach to this model does not involve modifying the 

weights applied to the data in cell ,X j Z k= =  using arbitrary distance functions – the ML 

estimates are fully efficient under the assumed model.  

(3) Sparse data in the cells can be addressed by adding proper prior distributions for the parameters 

and applying Bayesian methods. For example, for inference about the parameters   of the 

distribution of Y  given , ,X j Z k= =  one might assume a flat prior on the main effects of X  

and Z  but a normal prior on the interactions, shrinking them towards zero. This achieves 

shrinkage of the cell mean jky  towards the fitted means from an additive model. In frequentist 

terminology, this is a mixed ANOVA model with fixed main effects and random interactions. 

(4) The idea of raking to the X  and Z  margins is familiar, but note that if X  is a stratifier and Z  

is a post-stratifier, the standard approach is to perform one iteration of raking, first matching the 

X  margin and then matching the Z  margin: under the assumed model, raking iteratively is the 

correct procedure. Raking is ML here, but Bayesian forms of raking also can be used to 

propagate parameter uncertainty. 

 

Example 8. Proxy pattern-mixture analysis. Proxy pattern-mixture analysis is a method for assessing 

nonresponse bias for the mean of a survey variable Y  subject to nonresponse, when there is a set of 

covariates observed for nonrespondents and respondents. Historically the amount of missing data, as 

measured by the response rate, has been the most often-used metric for evaluating survey quality. 

However, response rates ignore the information contained in auxiliary covariates observed for 
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nonrespondents. Methods based on the estimated probability of nonresponse such as the R indicator 

(Schouten, Cobben and Bethlehem, 2009) and q2 measure (Särndal and Lundström, 2010) do not take into 

account the strength of association of the survey variable of interest and the probability of response, which 

arguably should be factored into the assessment of bias. These measures assume MAR, but if the auxiliary 

variables are available for nonresponse adjustment, it is deviations from MAR that lead to bias.  

Andridge and Little (2011) propose proxy pattern-mixture analysis (PPMA), a method based on a 

pattern-mixture model for nonresponse that combines in a simple and intuitive way the key features of 

nonresponse adjustment. Let iY  denote the value of a continuous survey outcome and 

( )1 2, , ,i i i ipZ Z Z Z=  denote the values of p  covariates for unit i  in the sample. Only r  of the n  

sampled units respond, so observed data consist of ( ),i iY Z  for 1, ,i r=  and iZ  for 1, , .i r n= +  Let 

R  denote the response indicator, such that for unit i  1iR =  if iY  is observed and 0iR =  if iY  is missing. 

To reduce dimensionality, we replace Z  by a single proxy variable X  that has the highest correlation 

with Y  in the respondent sample. This proxy variable can be estimated by regressing Y  on Z  using the 

respondent data, including important predictors of ,Y  as well as interactions and nonlinear terms where 

appropriate. Specifically, we assume the regression model ( ) 0, 1 ,E Y Z R Z = = +  and let .X Z=  

The joint distribution of ,X  Y  and R  using the following proxy pattern-mixture model, similar in form 

to that discussed in Little (1994):  

 

( ) ( )

( )

( ) ( ) ( )

2

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

, ~ ( , ),

~ Bernoulli

r r r

x y

r r r r

xx xx yy
r

r r r r

xx yy yy

X Y R r G

R

 



   

   

= 

 
  =
 
 
 

  

where 2N  denotes the bivariate normal distribution. Our interest is bias in the marginal mean of ,Y  which 

can be written as ( )(1) (0) .1y y y   = + −  Andridge and Little (2011) assume that 

 ( ) ( )*Pr 1 , ,R Y X f X Y= = +   

for some unspecified function f  and known constant .  Here * (1) (1)

yy xxX X  =  is the proxy X  scaled 

to have the same variance as ,Y  which aids the interpretation of   by putting X  and Y  on the same 

scale. This mechanism is MAR when 0, =  and deviates increasingly from MAR as   increases. With 

this assumption, the parameters are just identified and the ML estimate of the mean of ,Y  averaging over 

patterns, is 

 ( )1 0 1

ˆ
ˆ ,

ˆ 1
y

n r
y x x

n

 




 − + 
= + −  

+   
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where 1 1,x y  are the respondent means of X  and Y  and 0x  is the mean of X  for nonrespondents. The 

index of bias is then the adjustment of the sample mean 1y  implied by this estimate, namely 

 ( )0 1

ˆ
,

ˆ 1

n r
x x

n

 



 − + 
−  

+   
 (4.14) 

where ̂  is the respondent sample correlation. This adjustment incorporates three key factors that affect 

the potential bias in a simple and intuitive manner – the nonresponse rate ( ) ,n r n−  the correlation ̂  

between X  and ,Y  and the deviation of 0x  from 1.x  In particular, the index increases with the 

nonresponse rate and the deviation of the mean of X  for respondents and nonrespondents.  

There is no information about the parameter   in the data – this is generally the case for methods that 

model deviations from MAR. Following Little (1994), Andridge and Little (2011) propose a sensitivity 

analysis, where estimates are generated for a range of values of   between 0 and infinity, specifically 0, 1 

and infinity; the choice of 0 corresponds to MAR, the intermediate choice of 1 implies the bias of Y  is the 

same as the bias of the proxy variable 
* ,X  and the choice of infinity is the most extreme deviation from 

MAR; estimates for this case have the highest variance. As   varies between 0 and infinity, the middle 

factor ( ) ( )ˆ ˆ 1  + +  varies between ̂  (when ˆ
y  is the standard regression estimator of the mean) 

and ˆ1   (when ˆ
y  is the inverse regression estimator proposed by Brown (1990). The sensitivity of the 

estimate to the choice of   is small when ̂  is close to 1, that is we have a strong proxy variable, and 

large when ̂  is close to 0, that is we have a weak proxy variable. So having auxiliary variables that are 

good predictors of the survey outcomes is crucial. 

Bayesian versions of the proxy pattern-mixture model are readily developed, allowing for propagation 

of error in the model parameters. Also, the model can be applied to create multiple imputations of 

nonrespondent values, allowing the incorporation of complex sample design elements into the index.  

More recently, the model has been used to develop indices of departure from random sampling, by 

applying it to model selection rather than nonresponse (Little, West, Boonstra and Hu, 2020; Boonstra, 

Little, West, Andridge and Alvaredo-Leiton, 2021). Refinements in this work are (a) to replace the 

parameter   by ( )1 ,  = +  a better parametrization because   ranges from 0 (MAR) to 1, and (b) 

(with some additional assumptions) to allow missingness also to depend on auxiliary variables orthogonal 

to .X  The method has also been extended to handle binary outcomes (Andridge, West, Little, Boonstra 

and Alvarado-Leiton, 2019) and indices of potential bias in regression coefficients (West, Little, 

Andridge, Boonstra, Ware, Pandit and Alvarado-Leiton, 2021). 

 

5. Conclusion: Ten reasons to be Bayesian for survey inference 
 

My examples are intended to give some idea of the richness of Bayesian modeling possible for survey 

data, but they are far from exhaustive. Bayes is also useful in areas I have not touched on, including 
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multistage sampling, time series, latent class and factor analysis models, measurement error, the 

combination of data from multiple sources, the creation of synthetic data for disclosure avoidance, and so 

on. I conclude by summarizing my reasons for advocating the Bayesian approach to survey inference: 

 

1. The design-based approach is asymptotic, and too limited to handle the varied problems of inference 

from surveys, whether probability or non-probability based. 

2. The Bayesian approach is both unified and flexible enough to handle the various problems 

encountered in surveys, and it includes superpopulation modeling as a form of large-sample inference. 

3. Carefully-chosen Bayesian models can yield credible intervals that have good design-based properties 

in repeated sampling. In particular, weighting, stratification and post-stratification can be modeled via 

covariates, and clustering incorporated via Bayesian hierarchical models. Flexible models that 

incorporate design features render hybrid approaches such as model-assisted estimation (e.g., Särndal, 

Swensson and Wretman, 1992) unnecessary. 

4. Early critiques of the modeling approach concern models that do not incorporate design-features, and 

hence are vulnerable to model misspecification. Such models can and should be avoided.  

5. The Bayesian calculus of integrating out nuisance parameters provides inferences that have good 

frequentist properties in small as well as large samples. 

6. The approach of being design-based for some problems and model-based for others leads to logical 

inconsistencies (see, for example, Little, 2012, Section 4.3); the Bayesian approach yields inferences 

that are unified and logically consistent. 

7. The specification of prior distributions in the Bayesian approach is a strength, not a weakness, because 

it provides additional modeling flexibility. For some problems, weak “objective” priors yield results 

that parallel standard frequentist solutions. For other problems, stronger “subjective” priors provide 

useful answers for models that are not identified, as in MNAR nonresponse.  

8. Computational challenges in the Bayesian approach have been greatly reduced by recent 

methodological advances and expanded computing power. 

9. Modeling puts survey research in the mainstream of statistical modeling for other types of data. The 

particular features of survey research – complex sampling design, and the focus on finite population 

quantities, are well handled by the Bayesian paradigm. 

10. The Bayesian approach does not negate the utility of probability sampling for design, which is 

enormously valuable for achieving robust inferences that limit the need for debatable assumptions 

concerning representativeness of the sample. 
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Statistical inference with non-probability survey samples 

Changbao Wu1 

Abstract 

We provide a critical review and some extended discussions on theoretical and practical issues with analysis 

of non-probability survey samples. We attempt to present rigorous inferential frameworks and valid statistical 

procedures under commonly used assumptions, and address issues on the justification and verification of 

assumptions in practical applications. Some current methodological developments are showcased, and 

problems which require further investigation are mentioned. While the focus of the paper is on non-

probability samples, the essential role of probability survey samples with rich and relevant information on 

auxiliary variables is highlighted. 
 

Key Words: Auxiliary information; Bootstrap variance estimator; Calibration method; Doubly robust estimator; 
Estimating equations; Inverse probability weighting; Model-based prediction; Poststratification; Pseudo 

likelihood; Propensity score; Quota survey; Sensitivity analysis; Variance estimation. 

 

 

1. Introduction 
 

The field of survey sampling distinguishes itself from other areas of statistics with a number of unique 

features. The target population consists of finite number of well defined units, and the population 

parameters can be determined without error, at least conceptually, by conducting a census. Operational 

constraints and administrative convenience for data collection often make it necessary to consider 

stratification, clustering and unequal probability selection. Since the seminal paper of Neyman (1934), 

probability sampling methods have become one of the primary data collection tools for official statistics 

and researchers in health sciences, social and economic studies, business and marketing, agricultural and 

natural resource inventories, and other areas. Probability survey samples have also been used for analytic 

studies involving models and model parameters; see, for instance, Binder (1983), Godambe and 

Thompson (1986), Thompson (1997), Rao and Molina (2015), among others. Probability survey samples 

and design-based inference have been a successful story as part of statistical sciences in the past 80 years. 

In recent years, however, “there has been a wind of change and other data sources are being 

increasingly explored” (Beaumont, 2020). The success of probability survey samples led to more 

ambitious study designs, long and complicated questionnaires and increased burden on respondents. The 

response rates have been declining and the cost of data collection has been soaring over the years. With 

the advances of new technology and the explosion of information over the Internet, there is also a strong 

desire to access real-time statistics. Statistics Canada has launched the so-called modernization initiatives, 

“moving beyond a survey-first approach with new methods and integrating data from a variety of existing 

sources”. 

Non-probability survey samples are one of those data sources which have gained increased popularity 

in recent years. Non-probability samples are not something new to the field of survey sampling. They 

have been used since the early days of conducting surveys. Quota surveys, for instance, lead to 
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non-probability samples, and the method is widely used and can be successful under certain conditions; 

see Section 5 for further discussions. Non-probability survey samples had not gained true momentum in 

the past in survey practice due to the lack of a mature theoretical framework for analyzing the data. 

Nevertheless, they are an available data source that is cheaper and quicker to obtain and have become 

prevalent for online research. Commercial survey firms create and maintain a long list of individuals, 

called the opt-in panels, who agreed to be contacted to participate in surveys either as volunteers or with 

incentives. The precise mechanisms for individuals being included in the panel are typically unknown, 

resulting in panel-based non-probability survey samples. 

The main issue with non-probability survey samples is that they are biased samples and do not 

represent the target population. One might argue that, other than iid samples, most samples are biased, and 

even probability survey samples are biased. The reason that we do not worry about the biased nature of 

probability survey samples is the known inclusion probabilities from the survey design, which lead to 

valid estimation methods through suitable weighting procedures. The real main issue with non-probability 

survey samples thus is the unknown sample inclusion or participation mechanisms. It will become clear 

from discussions in Section 4 that the biased nature of non-probability samples cannot be corrected by 

using the sample itself. It requires additional auxiliary information on the target population. 

This paper provides a critical review and some extended discussions on theoretical and practical issues 

with analysis of non-probability survey samples. Section 2 describes the general setting, commonly used 

assumptions, and inferential frameworks for statistical procedures discussed in the paper. Section 3 

presents model-based prediction approach to non-probability survey samples. Section 4 discusses 

estimation of propensity scores and constructions of propensity score based estimators. Section 5 shows 

the connections between inverse probability weighted estimators and quota surveys with extensions to 

poststratification. Section 6 focuses on techniques as well as issues with variance estimation. In Section 7, 

we address the important question on how to check and verify the required assumptions in practice. Some 

concluding remarks are given in Section 8. 

 
2. Assumptions and inferential frameworks 
 

Suppose that the target population  = 1, 2, ,U N  consists of N  labelled units. Associated with unit 

i  are values ix  and iy  for the auxiliary variables x  and the study variable .y  The discussions focus on a 

single y  but the dataset most likely contains multiple study variables. Let 
1

1

N

y ii
N y −

=
=   be the 

population mean which is the parameter of interest. Let  ( , ),i i Ay i Sx  be the dataset for the non-

probability survey sample AS  with An  participating units. For most practical scenarios, the simple sample 

mean 1=
A

A A ii S
y n y−

  is a biased estimator of y  and hence is invalid. 

 

2.1 Assumptions 
 

Let = ( )i AR I i S  be the indicator variable for unit i  being included in the non-probability sample 

.AS  Note that the variable iR  is defined for all i  in the target population. Let  
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 ( ) ( )= , = =1 , , =1, 2, , .A

i A i i i i iP i S y P R y i N  x x   

We call the A

i  the propensity scores, a term borrowed from the missing data literature (Rosenbaum and 

Rubin, 1983). Some authors use the term participation probabilities; see, for instance, Beaumont (2020) 

and Rao (2021), among others. The propensity scores A

i  characterize the sample inclusion and 

participation mechanisms. They are unknown and require suitable model assumptions for the development 

of valid estimation methods. The following three basic assumptions were used by Chen, Li, and Wu 

(2020), which were adapted from the missing data literature. 

A1 The sample inclusion and participation indicator iR  and the study variable iy  are independent 

given the set of covariates ,ix  i.e., ( ) .i i iR y⊥ x  

A2 All the units in the target population have non-zero propensity scores, i.e., 0,A

i   

=1, 2, , .i N  

A3 The indicator variables 1 2, , , NR R R  are independent given the set of auxiliary variables 

( )1 2, , , .Nx x x  

 

Assumption A1 is similar to the missing at random (MAR) assumption for missing data analysis. 

Under A1, we have ( ) ( ) ( )= =1 , = =1 = .A

i i i i i i iP R y P R x x x  Assumption A2 can be problematic in 

practice; see Section 7 for further discussions. Assumption A3 typical holds when participants are 

approached one at a time but can be questionable when clustered selections are used. It is shown in 

Section 4 that estimation of ( )=A

i i  x  under assumption A1 requires auxiliary information from the 

target population. The ideal scenario is that the complete auxiliary information ( )2, , ,
N1x x x  is 

available. The more practical scenario is that auxiliary information can be obtained from an existing 

probability survey. 

A4 There exists a probability survey sample BS  of size Bn  with information on the auxiliary 

variables x  (but not on )y  available in the dataset  ( , ), ,B

i i Bd i Sx  where B

id  are the design 

weights for the probability sample .BS  

 

The BS  is called the reference probability survey sample. The most crucial part of assumption A4 is 

that the set of auxiliary variables x  is observed in both the non-probability sample AS  and the probability 

sample .BS  A reference probability survey sample is often available in practice but the common set of 

auxiliary variables may not contain all the components to satisfy assumption A1. 

 
2.2 Inferential frameworks 
 

There are three possible sources of variation under the general setting of two samples AS  and :BS  (i) 

The model q  for the propensity scores on the sample inclusion and participation in the non-probability 

survey sample ;AS  (ii) The model   for the outcome regression ( )y x  or imputation; and (iii) The 

probability sampling design p  for the reference probability survey sample .BS  For the three approaches 
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to inference to be discussed in Sections 3 and 4, the reference probability sample BS  is always involved. 

Each of the three approaches requires a joint randomization framework involving p  and one of ( ), .q   

(a) Model-based prediction approach: The p  framework under the joint randomization of the 

outcome regression model   and the probability sampling design .p  

(b) Inverse probability weighting using estimated propensity scores: The qp  framework under the 

joint randomization of the propensity score model q  and the probability sampling design .p  

(c) Doubly robust inference: The qp  framework or the p  framework, with no specification of 

which one. 

 

The inferential framework is the foundation for theoretical development. Consistency of point 

estimators needs to be established under the suitable joint randomization. Theoretical variances typically 

involve two components, one from each source of variation, and correct derivations of the two 

components are the key to the construction of consistent variance estimators under the designated 

inferential framework.  

 
3. Model-based prediction approach  
 

Model-based prediction methods for finite population parameters require two critical ingredients: the 

amount of auxiliary information that is available at the estimation stage and the reliability of the assumed 

model for inference. In the absence of any auxiliary information, the common mean model ( ) 0= ,iE y   

( ) 2= ,iV y  =1, ,i N  may be viewed as reasonable but the model-based prediction estimator 
1ˆ = = ,

A
y A A ii S

y n y −

  although unbiased under the model since ( ) = 0,A yE y −  is generally not an 

acceptable estimator of .y  The variance 2  for the common mean model is typically large and it renders 

the estimator ˆ =
Ay y  with a prediction variance that is too large to be practically useful.  

 

3.1 Semiparametric outcome regression models 
 

Without loss of generality, we assume that x  contains 1 as its first component corresponding to the 

intercept of a regression model. Under the setting described in Section 2, we consider the following 

semiparametric model for the finite population, denoted as :  

 ( ) ( ) ( ) ( ) 2= , , and = , =1, 2, , ,i i i i i iE y m V y v i N  x x β x x  (3.1) 

where the mean function ( , )m    and the variance function ( )v   have known forms, and the ’siy  are also 

assumed to be conditionally independent given the ’s.ix  Let 0β  and 2

0  be the true values of the model 

parameters β  and 2  under the assumed model. The first major implication of assumption A1 is that 

( ) ( ), =1 =i i i i iE y R E y x x  and ( ) ( ), =1 = .i i i i iV y R V y x x  The model (3.1) which is assumed for 

the finite population also holds for the units in the non-probability survey sample .AS  The quasi maximum 
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likelihood estimator β̂  of 0β  is obtained using the dataset  ( , ),i i Ay i Sx  from the non-probability 

survey sample as the solution to the quasi score equations (McCullagh and Nelder, 1989) given by  

 ( )
( )

   
1,

S = ( ) ( , ) = .
A

i

i i i

i S

m
v y m

−




−




x β
β x x β 0

β
 (3.2) 

The semiparametric model (3.1) can be extended to replace ( )iv x  by a general variance function ( )iv   

where = ( , ).i im x β  The quasi maximum likelihood estimation theory covers linear or nonlinear 

regression models with the weighted least square estimators, the logistic regression model and other 

generalized linear models. Let 0= ( , )i im m x β  and ˆˆ = ( , ),i im m x β =1, 2, , .i N  

 
3.2 Two general forms of prediction estimators 
 

There are two commonly used model-based prediction estimators for y  in the presence of complete 

auxiliary information  1, , ;Nx x  see Chapter 5 of Wu and Thompson (2020). Note that 
1

1
( ) = .

N

y ii
E N m  −

=  The two prediction estimators are constructed as  

 
1 2

1 1

1 1
ˆ ˆ ˆ ˆ ˆ= and = .

A A

N N

y i y i i i

i i S i S i

m y m m
N N

 
=   =

  
− + 

  
     (3.3) 

The estimator 
2

ˆ
y  is built based on  1

A A
y i ii S i S

N y y −

 
= +   and uses ˆ =

A
ii S

m
  

1
ˆ ˆ

A

N

i ii i S
m m

= 
−   to predict the unobserved term .

A
ii S

y
  Under a linear regression model where 

( ), ,m =x β x β  the two estimators given in (3.3) reduce to  

 ( )1 2

ˆ ˆ ˆˆ ˆ= and = ,A
y y A A

n
y

N
     − +x xβ x β β  (3.4) 

where 1

1
=

N

ii
N −

=x x  is the vector of the population means of the x  variables and 1

A
A A ii S

n−


= x x  is 

the vector of the simple sample means of x  from the non-probability sample .AS  If the linear regression 

model contains an intercept and β̂  is the ordinary least square estimator, we have 
2 1

ˆˆ ˆ= =y y  xβ  since 

ˆ = 0A Ay − x β  due to the zero sum of fitted residuals. The prediction estimators in (3.4) under a linear 

model only require the population means x  in addition to the non-probability sample .AS  Under the 

setting described in Section 2 with auxiliary information on x  provided through a reference probability 

sample ,BS  we simply replace 
1

ˆ
N

ii
m

=  by ˆ
B

B

i ii S
d m

  for the estimators in (3.3) and substitute x  by 
1ˆˆ =

B

B

B i ii S
N d −

x x  for the estimators in (3.4), where ˆ = .
B

B

B ii S
N d

  The population size N  appearing 

in (3.3) or (3.4) should also be replaced by ˆ
BN  even if it is known. 

 
3.3 Mass imputation 
 

Model-based prediction estimators of y  using a non-probability survey sample on ( , )y x  and a 

reference probability survey sample on x  have traditionally been presented as the mass imputation 

estimator. The study variable y  is not observed for any units in the reference survey sample BS  and hence 
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can be viewed as missing for all .Bi S  Let *

iy  be an imputed value for ,iy .Bi S  The mass imputation 

estimator of y  is then constructed as  

 *

MI

1
ˆ = ,

ˆ
B

B

y i i

i SB

d y
N




  (3.5) 

where ˆ
BN  is defined as before and the subscript “MI” indicates “Mass Imputation” (not “Multiple 

Imputation”). Under the deterministic regression imputation where * ˆ= ,i iy x β  the estimator MI
ˆ

y  reduces 

to the model-based prediction estimator ˆ̂ xβ  as discussed in Section 3.2. 

The mass imputation approach to analyzing non-probability survey samples has the same spirit as 

model-based prediction methods but it opens the door for using more flexible models and imputation 

techniques that have been developed in the existing literature on missing data problems. The approach was 

first examined by Rivers (2007) through the so-called sample matching method. For each ,Bi S  the 

“missing” iy  is imputed as *

i jy y=  for some ,Aj S  where j  is a matching donor from AS  selected 

through the nearest neighbor method as measured by the distance between ix  and .jx  The underlying 

model   for the nearest neighbor imputation method is nonparametric, i.e., ( ) ( )i i iE y m =x x  for some 

unknown function ( ).m   The matching value jy  can be viewed as the predicted value of the missing iy  

under the model. Theoretical properties of estimators based on nearest neighbor imputation were 

discussed by Chen and Shao (2000, 2001) for missing survey data problems. 

The semiparametric model (3.1) can be used for deterministic regression mass imputation. Under 

assumption A1, a consistent estimator β̂  of β  is first obtained from the non-probability sample dataset 

 ( , ), ,i i Ay i Sx  and the estimator β̂  is then used to compute the imputed values ( )* ˆ,i iy m= x β  for 

.Bi S  In other words, the assumption A1 implies the so-called model transportability by Kim, Park, 

Chen and Wu (2021): the model which is built for the non-probability sample can be used for prediction 

with the reference probability sample. The resulting mass imputation estimator MI
ˆ

y  is identical to one of 

the model-based prediction estimators presented in Section 3.2. Asymptotic properties and variance 

estimation for the estimator MI
ˆ

y  using the semiparametric model (3.1) were discussed by Kim et al. 

(2021). 

Under the mass imputation approach, the only role played by the observed iy  for Ai S  is to estimate 

the model parameters .β  The estimator MI
ˆ

y  is constructed using the fitted model and auxiliary 

information from the reference probability sample .BS  It seems that we did not fully use the information 

on the observed iy  given that y  is the main parameter of interest. This led to the research question 

described in Chapter 17 of Wu and Thompson (2020) on “reverse sample matching”. The proposed 

estimator is constructed as * 1 *

A
ˆˆ ( )

A
y i ii S

N d y −


=   using all the observed iy  in the non-probability 

sample, where * *ˆ = .
A

ii S
N d

  The *

id  is a matched survey weight from BS  such that * B

i jd d=  with Bj S  

being the nearest neighbor of Ai S  as measured by .i j−x x  Theoretical properties of the reverse 

matched estimator ˆ
yA  using the nearest neighbor Bj S  to match *

id  with B

jd  have not been formally 

investigated in the existing literature. 
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Wang, Graubard, Katki and Li (2020) proposed a kernel weighting approach to reverse sample 

matching using * ,
B

i ij jj S
d K d


  where ijK  is a kernel distance between ˆ

ip  and ˆ ;jp  see the adjusted 

logistic propensity (ALP) weighting method discussed at the end of Section 4.1.1 on the calculation of ˆ .ip  

They showed that the estimator A
ˆ

y  is consistent under certain regularity conditions. In a recent working 

paper posted on arXiv by Liu and Valliant (2021), the authors discussed issues with the bias and the 

variance of the reverse matched estimator under different randomization frameworks involving one, two 

or all three of the sources ( ), , .p q   The authors also proposed a calibration step over the matched 

weights, which seems to be a promising idea. Further research on this topic is needed. 

The mass imputation approach to analyzing non-probability survey samples leads to an interesting 

research question that is currently under investigation by a doctoral student at University of Waterloo: Is it 

theoretically feasible and practically useful to create a mass-imputed dataset  *( , , ),B

i i i By d i Sx  based 

on the reference probability survey sample that can be used for general statistical inferences? The answer 

clearly depends on the types of inferential problems to be conducted over the imputed dataset. A minimum 

requirement is that the conditional distribution of the study variable y  given the covariates x  is preserved 

for the mass-imputed dataset. The nearest neighbor imputation method and the random regression 

imputation method can be useful for this purpose. Fractional imputation is another possibility, especially 

for binary or ordinal study variables. Multiple imputation is also potentially useful in this direction to 

create multiple mass-imputed datasets. The subscript “MI” in this case might need to be changed to “MI2”, 

meaning “Mass Imputation with Multiple Imputation”. 

 
4. Propensity scores based approach  
 

The propensity scores ( )=1 ,A

i i i iP R y = x  for the non-probability survey sample AS  are 

theoretically defined for all the units in the target population. Estimation of the propensity scores for units 

in ,AS  which plays the most crucial role for propensity scores based methods, requires an assumed model 

on the propensity scores and auxiliary information at the population level. In this section, we first discuss 

estimation procedures for the propensity scores under the setting and assumptions described in Section 2, 

and then provide an overview of estimation methods proposed in the recent literature on the finite 

population mean y  involving the estimated propensity scores. 

 
4.1 Estimation of propensity scores 
 

Under assumption A1, the propensity scores ( ) ( )= =1A

i i i iP R =x x  are a function of the auxiliary 

variables ix  but the functional form can be complicated and is completely unknown. Three popular 

parametric forms ( ),A

i i = x α  in dealing with a binary response can be considered: (i) the inverse logit 

function  
1

1 1 exp( ) ;A

i i
−

= − + x α  (ii) the inverse probit function = ( ),A

i i  x α  where ( )   is the 

cumulative distribution function of (0,1);N  and (iii) the inverse complementary log-log function 
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 =1 exp exp( ) .A

i i − − x α  Nonparametric techniques without assuming an explicit functional form for 

( ) x  are attractive alternatives for the estimation of propensity scores. 

 
4.1.1 The pseudo maximum likelihood method 
 

Let ( , )A

i i = x α  be a specified parametric form with unknown model parameters .α  Under the ideal 

situation where the complete auxiliary information  1 2, , ,
N

x x x  is available and with the independence 

assumption A3, the full log-likelihood function on α  can be written as (Chen et al., 2020)  

 ( ) ( ) ( ) ( )
1

1=1

log 1 = log log 1 .
1

i i

A

AN N
R R

A A Ai
i i iA

i S ii i


  



−

 =

  
= − + −   

−   
 α  (4.1) 

The maximum likelihood estimator of α  is the maximizer of ( ).α  Under the current setting where the 

population auxiliary information is supplied by the reference probability sample ,BS  we replace ( )α  by 

the pseudo log-likelihood function (Chen et al., 2020)  

 ( ) ( )* log log 1 .
1

A B

A
B Ai
i iA

i S i Si

d



 

 
= + − 

− 
 α  (4.2) 

The maximum pseudo-likelihood estimator α̂  is the maximizer of ( )*
α  and can be obtained as the 

solution to the pseudo score equations given by *( ) ( ) .=   =U α α α 0  If the inverse logit function is 

assumed for ,A

i  the pseudo score functions are given by  

 ( ) ( ), .
A B

B

i i i i

i S i S

d 
 

= − U α x x α x  (4.3) 

In general, the pseudo score functions ( )U α  at the true values of the model parameters 0α  are unbiased 

under the joint qp  randomization in the sense that  0( ) ,qpE =U α 0  which implies that the estimator α̂  is 

qp -consistent for 0α  (Tsiatis, 2006). 

Valliant and Dever (2011) made an earlier attempt to estimate the propensity scores by pooling the 

non-probability sample AS  with the reference probability sample .BS  Let AB A BS S S=   be the pooled 

sample without removing any potential duplicated units. Let * 1iR =  if Ai S  and * 0iR =  if .Bi S  

Valliant and Dever (2011) proposed to fit a survey weighted logistic regression model to the pooled 

dataset  *( , , ), ,i i i ABR d i Sx  where the weights are defined as 1id =  if Ai S  and ( )ˆ1B

i i A Bd d n N= −  if 

.Bi S  The key motivation behind the creation of the weights id  is that the total weight 

ˆ
AB B

B

i i Bi S i S
d d N

 
= =   for the pooled sample matches the estimated population size, and the hope is 

that the survey weighted logistic regression model would lead to valid estimates for the propensity scores. 

It was shown by Chen et al. (2020) that the pooled sample approach of Valliant and Dever (2011) does not 

lead to consistent estimators for the parameters of the propensity scores model unless the non-probability 

sample AS  is a simple random sample from the target population. 



Survey Methodology, December 2022 291 
 

 
Statistics Canada, Catalogue No. 12-001-X 

The method of Valliant and Dever (2011) reveals a fundamental difficulty with approaches based on 

the pooled sample .ABS  If the units in the non-probability sample AS  are treated as exchangeable in the 

pooled sample ,ABS  which was reflected by the equal weights = 1id  used in the method of Valliant and 

Dever (2011), the resulting estimates for the propensity scores will be invalid unless AS  is a simple 

random sample. This observation has implications to the validity of nonparametric methods or regression 

tree-based methods to be discussed in Section 4.1.3. 

In a recent paper, Wang, Valliant and Li (2021) proposed an adjusted logistic propensity (ALP) 

weighting method. The method involves two steps for computing the estimated propensity scores. The 

initial estimates, denoted as ˆ
ip  for ,Ai S  are obtained by fitting the survey weighted logistic regression 

model to the pooled sample ABS  similar to Valliant and Dever (2011), with the weights defined as = 1id  

if Ai S  and B

i id d=  if .Bi S  The final estimated propensity scores are computed as ( )ˆ ˆ ˆ1 .A

i i ip p = −  

The key theoretical argument is the equation ( )1A

i i ip p = −  where ( ),A

i AP i S U =   

( )* * ,i A Ap P i S S U=    and *

AS  is a copy of AS  but is viewed as a different set. However, there are 

conceptual issues with the arguments since the probabilities ( )A

i AP i S U =   are defined under the 

assumed propensity scores model with the given finite population ,U  and the assumed model does not 

lead to a meaningful interpretation of the probabilities ( )* * .i A Ap P i S S U=    The latter require a 

different probability space and are conditional on the given .AS  As a matter of fact, one can easily argue 

that under the assumed propensity scores model and conditional on the given ,AS  we have = 1ip  if 

Ai S  and 0ip =  otherwise. 

 
4.1.2 Estimating equations based methods 
 

The pseudo score equations ( ) =U α 0  derived from the pseudo likelihood function *( )α  may be 

replaced by a system of general estimating equations. Let ( , )h x α  be a user-specified vector of functions 

with the same dimension of .α  Let  

 ( ) ( ) ( ) ( ), , , .
A B

B

i i i i

i S i S

d 
 

= − G α h x α x α h x α  (4.4) 

It follows that  0( ) =qpE G α 0  for any chosen ( , ).h x α  In principle, an estimator α̂  of α  can be obtained 

by solving ( ) =G α 0  with the chosen parametric form ( , )A

i i = x α  and the chosen functions ( , ),h x α  

and the estimator α̂  is consistent. 

The estimator α̂  using arbitrary user-specified functions ( , )h x α  is typically less efficient than the one 

based on the pseudo score functions, due to the optimality of the maximum likelihood estimator 

(Godambe, 1960). Some limited empirical results also show that the solution to ( ) =G α 0  can be unstable 

for certain choices of ( , ).h x α  Nevertheless, the estimating equations based methods provide a useful tool 

for the estimation of the propensity scores under more restricted scenarios. For instance, if we let 

( , ) ( , ),=h x α x x α  the estimating functions given in (4.4) reduce to  
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 ( )
( )

.
,

A B

Bi
i i

i S i Si

d
 

= − 
x

G α x
x α

 (4.5) 

The form of ( )G α  in (4.5) looks like a “distorted” version of the pseudo score functions given in (4.3) 

under a logistic regression model for the propensity scores. The most practically important difference 

between the two versions, however, is the fact that the ( )G α  given in (4.5) only requires the estimated 

population totals for the auxiliary variables .x  There are scenarios where the population totals of the 

auxiliary variables x  can be accessed or estimated from an existing source but values of x  at the unit 

level for the entire population or even a probability sample are not available. The use of estimating 

functions ( )G α  given (4.5) makes it possible to obtain valid estimates of the propensity scores for units 

in the non-probability sample. Section 6.3 describes an example where the estimating equations based 

approach leads to a valid variance estimator for the doubly robust estimator of the population mean. 

 
4.1.3 Nonparametric methods and regression-tree based methods 
 

The propensity scores ( )1A

i i iP R = = x  are the mean function ( ) ( )q i i iE R =x x  for the binary 

response .iR  Nonparametric methods for estimating ( ) x  can be an attractive alternative. The major 

challenge is to develop estimation procedures which provide valid estimates of the propensity scores. As 

noted in Section 4.1.1, estimation methods based on the pooled sample AB A BS S S=   may lead to invalid 

estimates. Strategies similar to the one used by Chen et al. (2020) can be theoretically justified under the 

joint qp  framework, where the estimation procedures are first derived using data from the entire finite 

population and unknown population quantities are then replaced by estimates obtained from the reference 

probability sample. 

We consider the kernel regression estimator of ( ).A

i i = x  Suppose that the dataset 

 ( , ), 1, 2, ,i iR i N=x  is available for the finite population. Let ( ) ( )hK t K t h=  be a chosen kernel with 

a bandwidth .h  The Nadaraya-Watson kernel regression estimator (Nadaraya, 1964; Watson, 1964) of 

( ) x  is given by  

 ( )
( )

( )
=1

1

.

N

h j jj

N

h jj

K R

K


=

−
=

−





x x
x

x x
 (4.6) 

A kernel estimator in the form of ( ) x  given in (4.6) usually has no practical values since we do not have 

complete auxiliary information for the finite population. It turns out that for the estimation of propensity 

scores the numerator in (4.6) only requires observations from the non-probability sample due to the binary 

variable ,jR  and the denominator is a population total and can be estimated by using the reference 

probability sample. The nonparametric kernel regression estimator of the propensity scores is given by 

(Yuan, Li and Wu, 2022)  

 ( )
( )

( )
ˆ ˆ , .A

B

h i jj SA

i i AB

j h i jj S

K
i S

d K
 





−
= = 

−





x x
x

x x
 (4.7) 
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The estimator ˆ A

i  given in (4.7) is consistent under the joint qp  framework and the q -model for the 

propensity scores is very flexible due to the nonparametric assumption on ( ). x  The estimated propensity 

scores are easy to compute when the dimension of x  is not too high. Issues with high dimensional x  and 

the choices of the kernel ( )hK   and the bandwidth h  remain as in general applications of kernel-based 

estimation methods. Simulation results reported by Yuan et al. (2022) show that the kernel estimation 

method provides robust results for the propensity scores using the normal kernel and popular choices for 

the bandwidth. 

Chu and Beaumont (2019) considered regression-tree based methods for estimating the propensity 

scores. Their proposed TrIPW method is a variant of the CART algorithm (Breiman, Friedman, Olshen 

and Stone, 1984) and uses data from the combined sample of the non-probability sample and the reference 

probability sample. The method aims to construct a classification tree with the terminal nodes of the final 

tree treated as homogeneous groups in terms of the propensity scores. The estimator of y  is constructed 

based on the final tree and post-stratification. Section 5 contains further details on poststratified 

estimators. 

Statistical learning techniques such as classification and regression trees and random forests have been 

developed primarily for the purpose of prediction. Their use for estimating the propensity scores of non-

probability samples requires further research. It is not a desirable approach to naively apply the methods 

over the pooled sample ABS  without theoretical justifications on the consistency of the final estimators. 

Further research towards this direction should be encouraged. 

 
4.2 Inverse probability weighting 
 

Let ˆ A

i  be an estimate of ( )A

i A iP i S =  x  under a chosen method for the estimation of the 

propensity scores. Two versions of the inverse probability weighted (IPW) estimator of y  are constructed 

as  

 
IPW1 IPW 2

1 1
ˆ ˆ= and = ,

ˆˆ ˆ
A A

i i

A AA
i S i Si i

y y

N N
 

  

   (4.8) 

where N  is the population size and 1ˆ ˆ( )
A

A A

ii S
N  −


=  is the estimated population size. The estimator 

IPW1
̂  is a version of the Horvitz-Thompson estimator and 

IPW 2
̂  corresponds to the Hájek estimator as 

discussed in design-based estimation theory. There are ample evidences from both theoretical 

justifications and practical observations that the Hájek estimator 
IPW 2

̂  performs better than the Horvitz-

Thompson estimator and should be used in practice even if the population size N  is known. 

The validity of the IPW estimators 
IPW1

̂  and 
IPW 2

̂  depends on the validity of the estimated propensity 

scores. Under the assumptions A1 and A2 and the parametric model 
0( , ),A

i i = x α  the consistency of 

IPW1
̂  follows a standard two-step argument. Let 

IPW

1 ,
A

A

i ii S
N y −


=   which is not a computable 

estimator but an analytic tool useful for asymptotic purposes. It follows that ( )IPWq yE  =  and the order 

( ) ( )IPW

1

q AV O n −=  holds under the condition that A

A in N  is bounded away from zero. As a consequence, 
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we have 
IPW y →  in probability as .An →  Under the correctly specified model ( )0,A

i i = x α  for the 

propensity scores, the typical root- n  order ( )1 2

0
ˆ

p AO n−− =α α  holds for commonly encountered scenarios. 

We can show by treating 
IPW1

̂  as a function of α̂  and using a Taylor series expansion that 

( )
IPW1 IPW

1 2ˆ
p AO n  −= +  under some mild finite moment conditions. The consistency of 

IPW2
̂  can be 

established using standard arguments for a ratio estimator (Section 5.3, Wu and Thompson, 2020) where 

( )
1

1 =1 (1).
A

A

i pi S
N o

−
−


+  

 
4.3 Doubly robust estimation 
 

The dependence of the IPW estimator on the validity of the assumed propensity score model is viewed 

as a weakness of the method. The issue is not unique to the IPW estimators and is faced by many other 

approaches involving an assumed statistical model. Robust estimation procedures which provide certain 

degrees of protection against model misspecifications have been pursued by researchers, and the so-called 

doubly robust estimators have been a successful story since the work of Robins, Rotnitzky, and Zhao 

(1994). 

The doubly robust (DR) estimator of y  is constructed using both the propensity score model q  and 

the outcome regression model .  The DR estimator with the given propensity scores ,A

i Ai S  and the 

mean responses ( ),i i im E y= x 1, 2, ,i N=  has the following general form,  

 
DR

1

1 1
= .

A

N
i i

iA
i S ii

y m
m

N N


 =

−
+   (4.9) 

The second term on the right hand side of (4.9) is the model-based prediction of .y  The first term is a 

propensity score based adjustment using the errors i i iy m = −  from the outcome regression model. The 

magnitude of the adjustment term is negatively correlated to the “goodness-of-fit” of the outcome 

regression model. It can be shown that 
DR

  is an exactly unbiased estimator of y  if one of the two 

models q  and   is correctly specified and hence it is doubly robust. The estimator 
DR

  has an identical 

structure to the generalized difference estimator of Wu and Sitter (2001). It is important to note that the 

double robustness property of 
DR

  does not require the knowledge of which of the two models being 

correctly specified. It is also apparent that the estimator 
DR

  given in (4.9) is not computable in practical 

applications. 

Let ˆ A

i  and ˆ
im  be respectively the estimators of A

i  and im  under the assumed models q  and .  

Under the two-sample setting described in Section 2, the two DR estimators of y  proposed by Chen et al. 

(2020) are given by  

 
DR1

ˆ1 1
ˆ ˆ=

ˆ
A B

Bi i
i iA

i S i Si

y m
d m

N N


 

−
+   (4.10) 

and  
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DR 2

ˆ1 1
ˆ ˆ= ,

ˆ ˆˆ
A B

Bi i
i iAA B

i S i Si

y m
d m

N N


 

−
+   (4.11) 

where B

id  are the design weights for the probability sample ,
B

S ( )
1

ˆ ˆ=
A

A A

ii S
N 

−

  and ˆ = .
B

B B

ii S
N d

  

The estimator 
DR 2

̂  using the estimated population size has better performance in terms of bias and mean 

squared error and should be used in practice. 

The probability survey design p  is an integral part of the theoretical framework for assessing the two 

estimators 
DR 1

̂  and 
DR 2

ˆ .  It is assumed that AS  and BS  are selected independently, which implies that 

( ) 1
ˆ ˆ= .

B

NB

p i i ii S i
E d m m

 =   Consistency of the estimators 
DR 1

̂  and 
DR 2

̂  can be established under either 

the qp  or the p  framework. It should be noted that even if the non-probability sample AS  is a simple 

random sample with ,A

i An N =  the doubly robust estimator in the form of (4.9) does not reduce to the 

model-based prediction estimator 
2

ˆ
y  given in (3.3). 

 

4.4 The pseudo empirical likelihood approach 
 

The pseudo empirical likelihood (PEL) methods for probability survey samples have been under 

development over the past two decades. Two early papers on the topic are Chen and Sitter (1999) on point 

estimation incorporating auxiliary information and Wu and Rao (2006) on PEL ratio confidence intervals. 

The PEL approaches are further used for multiple frame surveys (Rao and Wu, 2010a) and Bayesian 

inferences with survey data (Rao and Wu, 2010b; Zhao, Ghosh, Rao and Wu, 2020b). Using the PEL 

methods for general inferential problems with complex surveys has been studied in two recent papers 

(Zhao and Wu, 2019; Zhao, Rao and Wu, 2020a). 

Chen, Li, Rao and Wu (2022) showed that the PEL provides an attractive alternative approach to 

inference with non-probability survey samples. Let ˆ ,A

i Ai S  be the estimated propensity scores under an 

assumed parametric or non-parametric model, .q  The PEL function for the non-probability survey sample 

AS  is defined as  

 ( )PEL
( ) log ,

A

A

A i i

i S

n d p


= p  (4.12) 

where 1= ( , , )
Anp pp  is a discrete probability measure over the An  selected units in ,AS  

1 ˆˆ= ( )A A A

i id N −  and 1ˆ ˆ= ( )
A

A A

jj S
N  −

  which is defined earlier in Section 4. Without using any 

additional information, maximizing ( )PEL
p  under the normalization constraint  

 = 1
A

i

i S

p


  (4.13) 

leads to ˆ = ,A

i ip d .Ai S  The maximum PEL estimator of y  is given by 
PEL

ˆ ˆ= ,
A

i ii S
p y

  which is 

identical to the IPW estimator 
IPW 2

̂  given in (4.8). 

The PEL approach to non-probability survey samples provides flexibilities in combining information 

through additional constraints and constructing confidence intervals and conducting hypothesis tests using 

the PEL ratio statistic. The maximum PEL estimator 
PEL

ˆ ˆ=
A

i ii S
p y

  is doubly robust if ( )1
ˆ ˆ, ,

Anp p  is 



296 Wu: Statistical inference with non-probability survey samples 
 

 
Statistics Canada, Catalogue No. 12-001-X 

the maximizer of ( )PEL
p  under both the normalization constraint and the model-calibration constraint 

given by  

 ˆ ,B

A

i i

i S

p m m


=  (4.14) 

where ( )
1

ˆ ˆ
B

B B B

i ii S
m N d m

−


=   is computed using the fitted values ˆ ,im Bi S  from an assumed outcome 

regression model, .  The equation (4.14) is a modified version of the original model-calibration constraint 

of Wu and Sitter (2001) using the probability sample BS . Chen et al. (2022) contain further details on the 

asymptotic distributions of the PEL ratio statistic and simulation studies on the performances of PEL ratio 

confidence intervals on a finite population proportion. 

 
5. Quota surveys and poststratification 
 

Quota surveys are one of the oldest non-probability survey sampling methods which are still used in 

practice in present days. For a pre-specified overall sample size ,An  quotas of sample sizes are set for 

subpopulations which are defined by demographic variables and social-economic status indicators or other 

characteristic variables suitable for units of the target population. Data collection processes continue until 

quotas for each of the subpopulations are filled. Units from the population are typically approached using 

whatever convenient ways available and there are little or no controls on how units are selected for the 

final sample other than the pre-specified quotas. 

The theory of the IPW estimators for non-probability survey samples provides an opportunity to 

examine scenarios where quota surveys may succeed or fail. For the convenience of notation without loss 

of generality, let AS  be the quota survey sample and x  be the set of categorical variables used for defining 

the subpopulations and setting the quotas. The overall sample can be partitioned into 1=A A AKS S S   

corresponding to the cross-classification of sampled units using the combinations of levels of the x  

variables. For instance, if ( )1 2= ,x x x  with 1x  having two levels and 2x  having three levels, we have a 

total of = 2 3 = 6K   subpopulations defined by .x  Let kn  be the pre-specified size of AkS  and kN  be the 

size of the corresponding subpopulation. Under the assumption A1, the propensity scores ( )A

i i = x  

become a constant for units in the same subpopulation and are given by A

i k kn N =  for the thk  

subpopulation. The IPW estimator 
IPW 2

̂  given in (4.8) reduces to  

 
IPW 2

1 1

1 ˆˆ = = ,
ˆ ˆ

Ak

K K
i

k kAA
k i S ki

y
W y

N


=  =

    (5.1) 

where 1 ,
Ak

k k ii S
y n y−


=  ˆ ˆ ˆ ,A

k kW N N= ˆ
kN  is the size of the thk  subpopulation obtained or estimated from 

external sources, and 
1

ˆ ˆ .
KA

kk
N N

=
=  Under the current setting with the availability of a reference 

probability sample ,
B

S  we form the same partition as cross-classified by levels of x  and obtain 

1 .B B BKS S S=    We can then use ˆ = .
Bk

B

k ii S
N d

  
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The estimator given in (5.1) is the standard poststratified estimator of .y  It requires the information 

on the “stratum weights” ˆ ,kW 1, , ,k K=  which is not available from the sample data itself. Quota 

surveys, combined with the use of the poststratified estimator, can be successful in producing valid 

population estimates for the study variable y  if the following conditions hold: 

(i) The categorical variables x  used in defining the subpopulations and setting the quotas provide 

characterizations of the participation behavior of the units for voluntary surveys.  

(ii) The inclusion of units in the survey is relatively random within each subpopulation and no 

specific groups are intentionally excluded from the survey.  

(iii) The information on the stratum weights corresponding to the cross-classifications in setting the 

quotas can be reliably obtained from external sources.  

(iv) The hardcore nonrespondents in the population who never take any voluntary surveys possess 

similar features to respondents in terms of the study variable .y  

 

The IPW estimators 
IPW1

̂  and 
IPW 2

̂  given in (4.8) may be sensitive to small values of estimated 

propensity scores. The poststratified estimator in the form of (5.1) serves as a robust alternative under 

general scenarios where the dimension of x  is not low and/or some components of x  are continuous. The 

K  strata are formed based on homogeneous groups in terms of the propensity scores. Suppose that 

ˆˆ ( , ),A

i i = x α Ai S  are computed based on a parametric model, .q  Suppose also that A An m K=  with 

the chosen K  where Am  is an integer. Let (1) ( )
ˆ ˆ

A

A A

n    be the estimated propensity scores in 

ascending order. Let 1AS  be the set of the first Am  units in the sequence, 2AS  be the second Am  units in 

the sequence, and so on. The poststratified estimator of y  is computed as 
PST 1

ˆˆ ,
K

k kk
W y

=
=  which has 

the same form of the estimator given in (5.1). The estimates of the stratum weights, ˆ ,kW 1, 2, ,k K=  can 

be obtained by using the reference probability sample BS  as follows. Let  ˆmax : ,A

k i Akb i S= 

1, 2, , 1.k K= −  Let 0 0b =  and 1.Kb =  

(a) Compute ˆˆ ( , ),i i = x α .Bi S  

(b) Define  1
ˆ, ,Bk B k i kS i i S b b−=    1, 2, , .k K=  

(c) Calculate ˆ ,
Bk

B

k ii S
N d


= 1, 2, , .k K=  

 

It is apparent that 1B B BKS S S=    and 
1

ˆ ˆ .
B

K B B

k ik i S
N N d

= 
= =   The estimated stratum weights are 

given by ˆ ˆ ˆ .B

k kW N N=  

The choice of K  needs to reflect the balance between homogeneity of the units within each post-

stratum (in terms of the propensity scores) and the stability of the poststratified estimator (in terms of the 

stratum sample sizes). When the sample size An  is small or moderate, a small number such as 5K =  

should be used. For scenarios where An  is large, a larger K  should be used such that units within the 

same poststratified sample AkS  have similar estimated propensity scores. A practical guidance for the 

choice of K  is to ensure that 30Am   for the poststratified samples. For those who are old enough, do 

you remember the good old days when “the sample size is large” means “ 30”?n   
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6. Variance estimation 
 

Variance estimation under the two sample AS  and BS  setup involves at least two different sources of 

variation. The probability sampling design for the reference sample BS  remains one of the sources 

regardless of the approaches used for non-probability survey samples. Estimation of the variance 

component due to the use of BS  requires either suitable variance approximation formulas or replication 

weights as part of the dataset from the reference probability sample. Our discussion in this section 

assumes that a design-based variance estimator for the survey weighted point estimator based on BS  is 

available. 

 
6.1 Variance estimation for mass imputation estimators 
 

Variance estimation for the model-based prediction estimator ˆ
y  involves first deriving the asymptotic 

variance formula for ( )ˆVar y y −  under the assumed outcome regression model or the imputation 

model   and the probability sampling design ,p  and then using plug-in estimators for various unknown 

population quantities. 

The mass imputation estimator 1 *

MI
ˆˆ

B

B

y B i ii S
N d y −


=   given in (3.5) is a special type of model-based 

prediction estimator, where the model   refers to the one used for imputation and is not necessarily the 

same as the outcome regression model. The imputation method plays a key role in deriving the asymptotic 

variance formula, and the variance estimator needs to be constructed accordingly. Noting that MI
ˆ

y  is a 

Hájek type estimator due to the use of the estimated population size ˆ ,
B

N  derivations of the asymptotic 

variance formula start with putting the true value N  in first and then dealing with MI
ˆ

y  as a ratio 

estimator. Kim et al. (2021) considered variance estimation for 1 *ˆ ,
B

B

y i ii S
N d y −


=   where ( )* ˆ,i iy m= x β  

is the imputed value for iy  based on the semiparametric model (3.1). The asymptotic variance formula is 

developed in two steps. First, a linearized version of ˆ
y  is obtained by using a Taylor series expansion at 

*,β  where *
β  is the probability limit of β̂  such that ( )* 1 2ˆ .p AO n−= +β β  Second, two variance components 

are derived for ( )ˆVar y y −  based on the linearized version using the semiparametric model (3.1) and 

the sampling design for .BS  The process is tedious, which is the case for most model-based variance 

estimation methods. A bootstrap variance estimator turns out to be more attractive for practical 

applications. See Kim et al. (2021) for further details. 

 
6.2 Variance estimation for IPW estimators 
 

The commonly used IPW estimator 
IPW 2

̂  given in (4.8) is valid under the assumed model q  for the 

propensity scores. An explicit asymptotic variance formula for 
IPW 2

̂  can be derived under the joint qp -

framework when the propensity scores are estimated using the pseudo maximum likelihood method or an 

estimating equation based method as discussed in Section 4.1. The theoretical tool is the sandwich-type 

variance formula for point estimators defined as the solution to a combined system of estimating equations 

for both y  and 0 .α  
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Consider the parametric form ( ),A

i i = x α  for the propensity scores, where the model parameters α  

are estimated through the estimating equations (4.4) with user-specified functions ( , ).h x α  The first major 

step in deriving the asymptotic variance formula for 
IPW 2

̂  is to write down the system of joint estimating 

equations for both y  and 0 .α  Let ( ), =η α  be the vector of the combined parameters. The estimator 

( )IPW 2
ˆ ˆ , =η α  is the solution to the system of joint estimating equations ( ) ,n =Φ η 0  where  

 ( )
( )

( ) ( )

1

=1

1 1

1

= .
, ,

B

N A

i i ii

n N B A

i i i i ii i S

N R y

N R N d

 



−

− −

= 

 −
 
 −
 



 
Φ η

h x α h x α
 (6.1) 

The factor 1N −  is redundant but useful in facilitating asymptotic orders. The estimating functions defined 

by (6.1) are unbiased under the joint qp -framework, i.e.,  0( ) ,qpE =Φ η 0  where ( )0 0, .y
=η α  There 

are two major consequences from the unbiasedness of the estimating equations system. First, consistency 

of the estimator η̂  can be argued using the theory of general estimating functions similar to those 

presented in Section 3.2 of Tsiatis (2006). Second, the asymptotic variance-covariance matrix of ˆ ,η  

denoted as ( )ˆAV ,η  has the standard sandwich form and is given by 

 ( )      
1

1

0 0 0
ˆAV ( ) Var ( ) ( ) ,n n nE E

−
−  =      

η η Φ η η    

where ( ) ( ) ,n n=  η Φ η η  which depends on the forms of ( , )A

i i = x α  and ( , ).ih x α  The term 

 0Var ( )nΦ η  consists of two components, one due to the propensity score model q  and the other from 

the probability sampling design for .
B

S  More specifically, we have  0 1 2Var ( ) = ( ) ( ),n q pV V+Φ η A A  

where ( )qV   denotes the variance under the propensity score model q  and ( )pV   represents the design-

based variance under the probability sampling design ,p  and  

 1 2

1

0( )1 1
, = .

( , )( , )
B

AN
Bi i

i i A
i i S i ii

y
R d

N N

 

= 

 −  
=    

  
 A A

h x αh x α
  

The analytic expression for 1( )qV A  follows immediately from ( ) (1 )A A

q i i iV R  = −  and the independence 

among 1, , .
N

R R  The design-based variance component 2( )pV A  requires additional information on the 

survey design for BS  or a suitable variance approximation formula with the given design. 

The asymptotic variance formula for the IPW estimator 
IPW 2

̂  is the first diagonal element of the matrix 

ˆAV( ).η  The final variance estimator for 
IPW 2

̂  can then be obtained by replacing various population 

quantities with sample-based moment estimators. Chen et al. (2020) presented the variance estimator with 

explicit expressions when ( , )A

i i = x α  are modelled by the logistic regression and the α̂  is obtained by 

the pseudo maximum likelihood method. 

 
6.3 Variance estimation for doubly robust estimators 
 

It turns out that variance estimation for the doubly robust estimator is a challenging problem. While 

double robustness is a desirable property for point estimation, it creates a dilemma for variance estimation. 
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The estimator 
DR 2

̂  given in (4.11) is consistent if either the propensity score model q  or the outcome 

regression model   is correctly specified. There is no need to know which model is correctly specified, 

which is the most crucial part behind double robustness. This ambiguous feature, however, becomes a 

problem for variance estimation. The asymptotic variance formula under the model q  is usually different 

from the one under the model ,  and consequently, it is difficult to construct a consistent variance 

estimator with unknown scenarios on model specifications. 

There have been several strategies proposed in the literature on variance estimation for the doubly 

robust estimators. A naive approach is to use the variance estimator derived under the assumed propensity 

score model q  and take the risk that such a variance estimator might have non-negligible biases under the 

outcome regression model. One good news is that, under the propensity score model, the estimation of the 

parameters β  for the outcome regression model has no impact asymptotically on the variance of doubly 

robust estimators. This can be seen by using 
DR 1

̂  of (4.10) as an example. Let ( )ˆˆ , ,i im m= x β  where β̂  is 

obtained based on the working model (3.1) which is not necessarily correct. Let *
β  be the probability limit 

of β̂  such that ( )* 1 2ˆ
p AO n−= +β β  regardless of the true outcome regression model (White, 1982). Let 

( )* *,i im m= x β  and ( , ) ( , ) .m=  a x β x β β  It can be seen that  

 ( )  ( ) ( )
*

* * * 1 2ˆ1 1 1 1 ˆˆ ,
ˆ ˆ

B A B A

B Bi i
i i i i p AA A

i S i S i S i Si i

m m
d m d m o n

N N N N 

−

   


− = − + − +    B β β β   

where  

 ( ) ( )
( )*

* *
,1 1

, .
ˆ

B A

iB

i i A
i S i S i

d
N N  

= − 
a x β

B β a x β  (6.2) 

Since the two terms on the right hand side of (6.2) are both consistent estimators of ( )1 *

=1
, ,

N

ii
N −  a x β  

we conclude that ( )* = (1)poB β  and  

 ( )
*

* 1 2ˆ1 1 1 1
ˆ = .

ˆ ˆ
B A B A

B Bi i
i i i i p AA A

i S i S i S i Si i

m m
d m d m o n

N N N N 

−

   

− − +      

It follows that  

 ( )DR1

*
* 1 21 1

ˆ .
ˆ

A B

Bi i
i i p AA

i S i Si

y m
d m o n

N N




−

 

−
= + +    

The same arguments apply to 
DR 2

ˆ .  We can treat β̂  as if it is fixed in deriving the asymptotic variance for 

DR1
̂  and 

DR 2
̂  under the assumed propensity score model. The techniques described in Section 6.2 can be 

directly used where the first estimating function in (6.1) is replaced by the one for defining 
DR1

̂  or 
DR 2

ˆ .  

See Theorem 2 of Chen et al. (2020) for further details. The variance estimator derived under the 

propensity score model, however, is generally biased under the outcome regression model. 
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Chen et al. (2020) also described a technique using the original idea presented in Kim and Haziza 

(2014) for the construction of the so-called doubly robust variance estimator. The technique is a delicate 

one with some theoretical attractiveness but has various issues for practical applications. We use 
DR1

̂  as 

an example to illustrate the steps for the construction of the doubly robust variance estimator. Let  

 ( )
( )

( )
( )

=1

,1 1
ˆ , , .

,
B

N
i i B

i i i

i i Si

y m
R d m

N N


 

−
= + 

x β
α β x β

x α
  

It follows that 
DR1

ˆˆˆ ˆ= ( , )  α β  if α̂  and β̂  are from the original estimation methods. The first step is to 

modify the estimation of α  and β  such that α̂  and β̂  are obtained as solutions to  

 
( ) ( )ˆ ˆ, ,

= and .
  

=
 

α β α β
0 0

α β
 (6.3) 

Under the logistic regression model q  where  logit ( , )i i =x α x α  and the linear regression model   

where ( ), ,i im =x β x β  the equation system (6.3) becomes  

 
( )

( )
=1

1 1
1 ,

,

N

i i i i

i i

R y
N 

  
− − = 

  
 x β x 0

x α
 (6.4) 

 
( )=1

1 1
.

,
B

N
Bi i
i i

i i Si

R
d

N N 

− = 
x

x 0
x α

 (6.5) 

The estimating equations in (6.5) are unbiased under the joint qp -framework. They are identical to (4.5) 

discussed in Section 4.1.2. The estimating equations in (6.4) are also unbiased under the outcome 

regression model, but they are different from the quasi score equations given in (3.2). The estimators α̂  

and β̂  obtained as solutions to (6.4) and (6.5) are less stable than those from standard methods. In 

addition, the equations system (6.4) and (6.5) will not have a solution if α  and β  are not of the same 

dimension, since the number of equations in (6.4) is decided by the dimension of α  and the number of 

equations in (6.5) is the same as the dimension of .β  The final estimator ( )
DR

ˆˆˆ ˆ , = α β  also suffers from 

efficiency losses when α  and β  are estimated by solving (6.4) and (6.5). 

The reason behind the use of the equations system (6.3) is purely technical. It can be shown through a 

first order Taylor series expansion that the estimators α̂  and β̂  obtained from (6.3) have no impact 

asymptotically on the variance of ( )
DR

ˆˆˆ ˆ , . = α β  This technical maneuver enables that simple explicit 

expressions for the variance ( )DR
ˆ

qpV   under the qp  framework and for the prediction variance 

( )DR
ˆ

p yV  −  under the p  framework can easily be obtained. Construction of the doubly robust 

variance estimator for 
DR

̂  starts with the plug-in estimator for ( )DR
ˆ

qpV   under the propensity scores 

model .q  A bias-correction term is then added to obtain a valid estimator for ( )DR
ˆ

p yV  −  under the 

outcome regression model .  The happy ending of the story is that the bias-correction term has the 

analytic form ( )2 2

=1
1

N A

i i ii
N R  − −  where ( )2 ,i i iE y = x  which is negligible under the propensity 
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score model .q  The bias-corrected variance estimator is valid under either the propensity score model or 

the outcome regression model. 

A doubly robust variance estimator for the commonly used 
DR 2

̂  is not available in the literature. A 

practical solution is to use bootstrap methods. Chen et al. (2022) demonstrated that standard with-

replacement bootstrap procedures applied separately to AS  and BS  provide doubly robust confidence 

intervals using the pseudo empirical likelihood approach to non-probability survey samples when the 

reference sample is selected by single stage unequal probability sampling designs. Complications will 

arise when the probability sample BS  uses stratified multi-stage sampling methods, a known challenge for 

variance estimation with complex surveys. Construction of doubly robust variance estimators for the 

doubly robust estimator 
DR 2

̂  under general settings deserves efforts in future research. 

 
7. Assumptions revisited 
 

Our discussions on estimation procedures for non-probability survey samples are under the 

assumptions A1-A4 and the focuses are on the validity and efficiency of estimators for the finite 

population mean under three inferential frameworks. The theoretical results on model-based prediction, 

inverse probability weighting and doubly robust estimation have been rigorously established under those 

assumptions. It seems that researchers are triumphant in dealing with the emerging area of non-probability 

data sources. However, as pointed out by the 2021 ASA President Robert Santos in his opinion article 

entitled “Using Our Superpowers to Contribute to the Public Good” (Amstat News, May 2021), “Our 

superpowers are only as good as their underlying assumptions, assumptions that are all too often 

embraced with aplomb, yet cannot be proven.” How to check assumptions A1-A4 in practical applications 

of the methods is a question that can never be fully answered, and yet there are steps to follow to boost the 

confidence in using the theoretical results. It is also important to understand the potential consequences 

when certain assumptions become seriously questionable. 

 
7.1 Assumption A1 
 

Assumption A1 states that ( ) ( )=1 , 1 .A

i i i i i iP R y P R = = =x x  It is the most crucial assumption for 

the validity of the pseudo maximum likelihood estimator of Chen et al. (2020) and the nonparametric 

kernel smoothing estimator presented in Section 4.1.3 for the propensity scores, although all other 

assumptions are also involved. It is equivalent to the missing at random (MAR) assumption in the missing 

data literature. It is well understood that the MAR assumption cannot be tested using the sample data 

itself. The same statement holds for assumption A1 with non-probability survey samples. 

In a nutshell, assumption A1 indicates that the auxiliary variables x  included in the non-probability 

sample fully characterize the participation behaviour or the sample inclusion mechanism for units in the 

population. Sufficient attention should be given at the study design stage before data collection, if such a 

stage exists, to investigate potential factors and features of units which might be related to participation 
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and sample inclusion. For human populations, the factors and features may include demographical 

variables, social and economic indicators, and geographical variables. 

Assumption A1 leads to the conclusion that the conditional distribution of y  given x  for units in the 

non-probability sample is the same as the conditional distribution of y  given x  for units in the target 

population. It implies that the auxiliary variables x  should include relevant predictors for the study 

variable .y  With the given datasets AS  and ,BS  sensitivity analysis through comparisons of marginal 

distributions and conditional models can be helpful in building confidence on assumption A1. For 

variables which are available in both AS  and ,BS  one can compare the empirical distribution functions (or 

moments) from AS  to the survey weighted empirical distribution functions (or moments) from .BS  

Marked differences between the two indicate that AS  is a non-probability sample with unequal propensity 

scores. One possible sensitivity analysis on assumption A1 is to select a variable z  which has certain 

similarities to ,y  and a set of auxiliary variables u  with both z  and u  available from AS  and .BS  We fit 

a conditional model z u  using data from AS  and a survey weighted conditional model z u  using data 

from .BS  If u  includes all the key auxiliary variables for assumption A1, we should see the two versions 

of fitted models to be similar to each other. Drastic differences between the two fitted models are a strong 

sign that either the z  is itself an important auxiliary variable for assumption A1 or the assumption is 

questionable. 

 
7.2 Assumption A2 
 

A casual look at assumption A2 may have people believe that it should easily be satisfied in practice, 

since a similar assumption is widely used in missing data analysis and causal inference. It turns out that 

the assumption can be highly problematic, and for scenarios where the assumption fails to hold, the target 

population is different from the one assumed for the estimation methods. It is similar to the frame 

undercoverage and nonresponse problems which are discussed extensively in probability sampling. 

Assumption A2 states that ( )1 , 0A

i i i iP R y = = x  for all .i  It is equivalent to stating that every unit 

in the target population has a non-zero probability to be included in the non-probability sample. If the 

sample was taken by a probability sampling method, this would be the scenario where the sampling frame 

is complete and there are no hardcore nonrespondents. For most non-probability samples, the concept of 

“sampling frame” is often irrelevant or simply a convenient list, and the selection and inclusion of units 

for the sample may not have a structured process. In her presentation at the 2021 CANSSI-NISS 

Workshop, Mary Thompson pointed out that “the statement that the sample inclusion indicator R  is a 

random variable is itself an assumption” for non-probability survey samples. 

Let U  be the set of N  units for the target population. Let  0 and 0 .A

iU i i U =    It is apparent 

that 0U U  and 0U U  when assumption A2 is violated. There are two typical scenarios in practice. 

The first can be termed as stochastic undercoverage, where the non-probability sample AS  is selected 

from 0U  and 0U  itself can be viewed as a random sample from .U  For example, the contact list of an 

existing probability survey is used to approach units in the population for participation in the non-
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probability sample. In this case 0U  consists of units from the probability sample. Another example is a 

volunteer survey where the target population consists of adults in a specific city/region but the participants 

are recruited from visitors to major shopping centers in the region over certain period of time. The 

subpopulation 0U  includes visitors to the chosen locations over the sampling period and it is reasonable to 

assume that 0U  is a random sample from the target population. Let 1iD =  if 0i U  and 0iD =  otherwise, 

1, 2, , .i N=  We have  

 ( ) ( )1 , , 1 0 and 1 , , 0 0i i i i i i i iP R y D P R y D= =  = = =x x   

for 1, 2, , .i N=  If the subpopulation 0U  is formed with an underlying stochastic mechanism such that 

( )1 , > 0i i iP D y= x  for all ,i U  we have  

 ( ) ( ) ( )1 , 1 , , 1 1 , 0A

i i i i i i i i i i iP R y P R y D P D y = = = = = = x x x   

for 1, 2, , .i N=  In other words, the assumption A2 is valid under the scenario of stochastic 

undercoverage for non-probability samples. 

The second scenario is termed as deterministic undercoverage where units with certain features will 

never be included in the non-probability sample. Suppose that participation in the non-probability survey 

requires internet access and a valid email address, and 20% of the population have neither access to the 

internet nor an email address, we have an example where the 20% of the population have zero propensity 

scores. There is no simple fix to the inferential procedures developed under A2. Yilin Chen’s PhD 

dissertation at University of Waterloo (Chen, 2020) contained one chapter dealing with some specific 

aspects of the scenario. 

 
7.3 Assumption A3 
 

Among all the assumptions, this one is less crucial to the validity of the proposed inferential 

procedures. Under assumption A3, the full likelihood function for the propensity scores is given in (4.1). 

For any parametric model on ( ), ,A

i i = x α  the quasi log-likelihood function *( )α  given in (4.2) leads 

to the quasi score functions *( ) ( ) ,=  U α α α  which remains unbiased even if assumption A3 is 

violated. There might be some efficiency loss without assumption A3 in estimating the model parameters 

α  but the estimation methods are still valid under the other three assumptions. 

 
7.4 Assumption A4 
 

It is not difficult to find an existing probability sample from the same target population. It might be 

very hard, however, to have a probability survey sample which contains the desirable auxiliary variables. 

Existing probability surveys are designed with specific aims and scientific objectives, and the auxiliary 

variables included in the survey are not necessarily relevant to the analysis of a particular non-probability 

survey sample. The ultimate goal for satisfying assumption A4 is to identify and gain access to an existing 
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probability survey sample with a rich collection of demographical variables, social and economic 

indicators, and geographical variables. 

A rich-people’s problem (when one has too much money) for assumption A4 may also occur in 

practice when two or more existing probability survey samples are available. How to combine all of them 

for more efficient analysis of non-probability survey samples is a research topic that deserves further 

attention. Some practical guidances on choosing one reference probability sample from available 

alternatives include following considerations. 

(i) Check for availability of important auxiliary variables which are relevant to characterizing the 

participation behavor or having prediction power to the study variables in the non-probability 

sample;  

(ii) Give first preference to the one with a larger set of variables that are common to the non-

probability sample;  

(iii) Assign second preference to the probability sample with a larger sample size;  

(iv) And lastly, use the probability sample for which the mode of data collection is the same as the 

one for the non-probability sample.  

 

It was shown by Chen et al. (2020) that two reference probability survey samples with the same set of 

common auxiliary variables tend to produce very similar IPW estimators but the one with a larger sample 

size leads to better mass imputation estimators. 

 
8. Concluding remarks 
 

In the early years of the 21st century, Web-based surveys started to become popular, which generated 

substantial amount of research interest on the topic (Tourangeau, Conrad and Couper, 2013). Issues and 

challenges faced by web-based and other non-probability survey samples led to the “Summary Report of 

the AAPOR Task Force on Non-probability Sampling” by Baker, Brick, Bates, Battaglia, Couper, Dever, 

Gile and Tourangeau (2013). Among other things, the report indicated that (i) unlike probability sampling, 

there is no single framework that adequately encompasses all of non-probability sampling; (ii) making 

inferences for any probability or non-probability survey requires some reliance on modeling assumptions; 

and (iii) if non-probability samples are to gain wider acceptance among survey researchers there must be a 

more coherent framework and accompanying set of measures for evaluating their quality. 

Survey sampling researchers have been answering the call with intensified explorations on statistical 

inference with non-probability survey samples. The current setting of two samples AS  and ,BS  with the 

non-probability sample AS  having measurements on both the study variable y  and auxiliary variables x  

and the probability sample BS  providing information on ,x  was first considered by Rivers (2007) on 

sample matching using nearest neighbor imputation, which is the original idea leading to the mass 
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imputation method (Kim et al., 2021). The weighted logistic regression using the pooled sample for 

estimating the propensity scores proposed by Valliant and Dever (2011) was the first serious attempt on 

the topic, which serves as a motivation for the pseudo maximum likelihood method developed by Chen 

et al. (2020). Brick (2015) considered compositional model inference under the same setting. Elliott and 

Valliant (2017) provided informed discussions on inference for non-probability samples. Yang, Kim and 

Song (2020) addressed issues with high dimensional data in combining probability and non-probability 

survey samples. 

Statistical inference with non-probability survey samples is part of the more general topic on 

combining data from multiple sources. The term “data integration” is frequently used under this context. 

Combining information from independent probability survey samples has been studied extensively in the 

survey literature; see, for instance, Wu (2004), Kim and Rao (2012) and references therein. Inferences 

with samples from multiple frame surveys are another topic which has been heavily investigated by survey 

statisticians; see Lohr and Rao (2006) and Rao and Wu (2010a) and references therein. In her recent 

Waksberg award invited paper, Lohr (2021) provided an overview on multiple-frame surveys and some 

fascinating discussions on using a multiple-frame structure to serve as an organizing principle for other 

data combination methods. With emerging new data sources and reshaped views on traditional data 

sources such as administrative records, data integration has become a very broad area that calls for 

continued research. Further discussions are provided by Lohr and Raghunathan (2017) on combining 

survey data with other data sources and by Thompson (2019) on combining new and traditional sources in 

population surveys. Kim and Tam (2021) and Yang, Kim and Hwang (2021) discussed data integration by 

combining big data and survey sample data for finite population inference. Yang and Kim (2020) 

contained a review on statistical data integration in survey sampling. 

One of the essential messages that the current paper conveys is the concepts of validity and efficiency 

in analyzing non-probability survey samples. Validity refers to the consistency of point estimators and 

efficiency is measured by the asymptotic variance of the point estimator. Validity is of primary concern 

and efficiency pursuit is a secondary goal when valid alternative approaches are available. Discussions on 

validity and efficiency require a suitable inferential framework and rigorous developments of statistical 

procedures, which is another main message from this paper. Non-probability samples do not fit into the 

traditional design-based or model-based inferential framework for probability survey samples. Standard 

statistical concepts and inferential procedures, however, can be built into a suitable framework for valid 

and efficient inference with non-probability survey samples. 

Non-probability samples may have a very large sample size. Large sample sizes are a double-edged 

sword: when the inferential procedures are valid, large sample sizes lead to more efficient inference; when 

the estimators are biased, large sample sizes make the bias even more pronounced. A non-probability 

survey sample with a 80% sampling fraction over the population does not necessarily provide better 

estimation results than a small probability sample (Meng, 2018). 
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The large sample sizes also make non-probability samples connected to the modern big data problems. 

The role of traditional statistical methods in the era of big data was convincingly argued by Richard 

Lockhart (2018): “Huge new computing resources do not put an end to the need for careful modelling, for 

honest assessment of uncertainty, or for good experiment design. Classical statistical ideas continue to 

have a crucial role to play in keeping data analysis honest, efficient, and effective.” 

Jean-François Beaumont (2020) raised the question “Are probability surveys bound to disappear for 

the production of official statistics?” The short answer is that probability sampling methods and 

probability survey samples will remain as an important data collection tool for many fields, including 

official statistics, and design-based inference will play a crucial role for any evolving inferential 

framework. The current trend of using non-probability samples and data from other sources will continue. 

Valid and efficient statistical inference with non-probability samples requires auxiliary information from 

the target population. A few high quality national probability surveys with carefully designed survey 

variables can play a pivotal role in analysis of non-probability survey samples. 
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Abstract 

Non-probability surveys play an increasing role in survey research. Wu’s essay ably brings together the many 

tools available when assuming the non-response is conditionally independent of the study variable. In this 

commentary, I explore how to integrate Wu’s insights in a broader framework that encompasses the case in 

which non-response depends on the study variable, a case that is particularly dangerous in non-probabilistic 

polling. 
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1. Introduction 
 

Surveys are going through massive changes. Gone are the days of random digit dialing phone surveys 

producing reliably representative samples. Now hardly anyone answers the phone or even responds to 

emails. Pollsters have responded by coming up with a myriad of clever new ways to generate survey 

responses in this unwelcoming environment. 

The most pervasive innovation is, without a doubt, the use of non-probability samples, often via the 

internet. While the implementation varies, the approach typically gathers contact information for a large 

number of people who are willing to respond and then involves selecting a subset from that pool for any 

given survey. These surveys have proven cost-effective and have often – if, perhaps, not always – 

produced serviceable results. 

But are they believable? Most surveys do not have a ground truth against which to assess results; the 

lack of such information is, after all, the reason why someone is conducting the survey. Probability 

samples overcome this problem by relying on theory as the properties of such surveys are well understood. 

For non-probability samples, however, practice has vastly outpaced theory, meaning that the basis for 

believing the results is rather speculative. 

Wu’s paper therefore is a welcome contribution to our understanding of non-probability surveys. He 

focuses on the class of estimators that assume ignorable non-response and puts them in context relative to 

each other and identifies avenues for future work. 

One important point made by Wu is that “there must be a more coherent framework and accompanying 

set of measures for evaluating their quality” (page 305). I heartily concur. In this commentary, I expand on 

this point in three ways. In Section 2 I explore how to do this within the scope of the research he 
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examines. In Section 3 I seek to expand the scope of such a framework, noting that the consequences of 

violations of key assumptions are so much more severe in a non-probability setting that we should build 

our framework to encompass violations of the key missing-at-random (MAR) assumption. In Section 4 I 

then explore what, if anything we can do about it. Finally, in Section 5 I provide a few concluding 

remarks. 

 
2. Non-probability surveys when data is MAR 
 

Wu grounds his analysis with a clear exposition of the four assumptions underlying the models he 

examines. The most important assumption is that data is MAR, meaning that given a set of covariates the 

study variable is independent of the decision to respond. (Although the nomenclature is standard in the 

literature, I cannot resist registering unease with the “missing at random” label. Of course, data is missing 

at random – something that is true even for MAR’s opposite (and also inaptly named) missing-not-at-

random (MNAR). I dream of a day when the nomenclature matches the definition, perhaps by replacing 

MAR with the term “conditional independence” would be a better name. However, I recognize how hard 

it is to change the accepted terms people use.) 

Given these assumptions, Wu divides approaches into those that are model-based, inverse propensity 

weighting (IPW) based and double robust models. In the model-based approaches, we see the range of 

efforts to impute from the observed sample, including mass imputation that, broadly conceived, includes 

flexible sample-matching approaches that allow us to represent a larger population based on observed data 

points that are “close”, variously defined. IPW builds on the same assumptions. Doubly robust estimators 

tend to be newer and attractive for their ability to give researchers two bites at the apple of relying on 

correct assumptions; Wu ably documents the headaches these models bring when we try to do inference 

with them, however. 

While Wu has shown the differences in these approaches, it is useful to appreciate that he is fishing in 

one fairly specific corner of the pond. All models use similar information in similar ways: they all assume 

MAR and provide tools to model or impute the behavior of unobserved people as direct extrapolations 

from the observed data. If college graduates differ from non-college graduates and we have too many 

college graduates, all the MAR-based approaches will extrapolate to the general population directly from 

the data in the sample on two groups in proportion to these groups’ presence in the target population. 

My intuition is that the models considered by Wu are roughly equally useful – and also roughly 

vulnerable to violations of MAR. Or, are there contexts in which we expect the differences across the 

methods to be substantial? Answering this is not easy, of course, but I would be fascinated to learn Wu’s 

perspective on where the main “action” is in non-probability samples and which of the models he 

considers would be best suited to accounting for such problems. 

One possible focus would be on the flexibility across models. At this point, my intuition is that while 

these differences could be substantial in theory, in practice these differences are relatively modest. This is 
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especially true if an experienced researcher with domain knowledge specifies a parametric model with a 

deft touch – including the right interactions and so forth. 

 

3. Non-probability surveys when data is not MAR 
 

We should take very seriously Wu’s call for more coherent framework for analyzing non-probability 

samples. And we should aim big here as a paradigm for non-probability samples is, essentially, a 

paradigm for the whole field given the importance and trajectory of non-probability samples. 

As we think about formulating a framework for polling it is useful to recall George Box’s famous 

aphorism: “Since all models are wrong the scientist must be alert to what is importantly wrong. It is 

inappropriate to be concerned about mice when there are tigers abroad” (Box, 1976). The tiger in non-

probability samples does not live between quota sampling and IPW models. The tiger can almost certainly 

be found instead in the MAR assumption. The violation of this assumption is the signature weakness of 

MAR and any framework for non-probability surveys should therefore start there. 

The issue is that while MAR violations are a problem in probability sampling (arising due to non-

response among the randomly contacted individuals), MAR violations are more serious in a non-

probabilistic world. The idea is formalized in Meng (2018) who provides an identity for the error in a 

survey: 

 ,

data difficultydata quality
data quantity

= .n N R Y Y

N n
Y Y

n
 

−
−  (3.1) 

The first term in the equation is , ,R Y  the correlation in the population between R  and .Y  This 

quantity can be taken to reflect quality of data with regard to sampling. The second term in the Meng 

equation, ,N n n−  relates to the size of the population (capital )N  and the size of the sample (lower 

case ).n  The third term in the Meng equation is ,Y  the standard deviation of .Y  

When , 0,R Y   the sampled mean will be non-zero unless =n N  (meaning the sample is the entire 

population) or = 0Y  (meaning the value of Y  is the same for everyone in the population), neither of 

which are interesting polling contexts. 

This is an identity so even when the expected value of , = 0R Y  there will be some error (as in the case 

of random sampling). However as we move to non-random sampling we can expect the realized 

correlation of R  and Y  to grow. The larger , ,R Y  the larger the sampling error, the exact magnitude of 

which will interact with the other terms. 

The most explosive implication of the Meng equation emerge from the interaction of the first two 

terms. When there is MNAR (meaning there will be specific reason to expect , 0R Y   because R  

depends on ),Y  the actual error depends on the total population. This result is shocking to modern polling 

sensibilities but is vital to appreciate in the context of non-random sampling. 
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We can construct a simple two country world to elaborate on how this works. Suppose that our study 

variable is covid rates and, for the purposes of our example, that covid rates are the same in both 

countries. One country is huge (China, perhaps) and the other is small (Luxembourg perhaps). If we 

randomly sampled 1,000 people in each country we could produce estimates with the same precision for 

each country, despite their massive population differences. 

What happens if we are dealing with a non-random sample of 1,000 people in each country? Suppose 

for simplicity that people’s eagerness for testing is simply a function of their symptoms and that people 

with more symptoms are more likely to have covid. This creates MNAR sampling because opting into the 

sample will be associated with higher expected values of our study variable. 

In China we will get the 1,000 sickest people. They will be really sick, as they will be in something 

like the top 0.00001 percentile. In Luxembourg we will also get the 1,000 sickest people, but you don’t 

have to be as sick to get into this set as you would in a much bigger country. This means that the 1,000 

sickest people in Luxembourg will be in roughly the top 0.2 percentile; still very sick relative to the 

population, but not as skewed as in China. In short, MNAR data will produce an error proportional to the 

population size for a given sample size. 

(Note that true random samples are virtually unheard of given non-response among those who are 

randomly contacted. The actual practice of probability samples can be described as random contact, 

defined as surveys in which people are randomly contacted even as the response among those contacted 

may be non-random. Random contact surveys can violate MAR, but nonetheless have strong virtues. 

Bradley, Kuriwaki, Isakov, Sejdinovic, Meng and Flaxman (2021) and Bailey (2023) show how survey 

error in random contact surveys is proportional to the response rate rather than to the population size.) 

MAR violations in non-probability sampling lead to errors that are proportional to population size. To 

use Box’s metaphor, this is where the tigers are. Hence as we pursue Wu’s exhortation for more coherence 

in how we evaluate new forms of polling, we should aim to agree on a framework that encompasses the 

possibility of MAR violations rather than a framework that assumes away this problem. 

 
4. What to do about MAR violations? 
 

Wu follows much of the literature in shying away from MNAR models. Part of the basis for this is a 

perception that MNAR non-response is essentially intractable. For example, Wu notes somewhat 

pessimistically that “it is well understood that the MAR assumption cannot be tested using the sample data 

itself” (page 302) and that “the biased nature of non-probability samples cannot be corrected by using the 

sample itself” (page 284). 

In terms of guidance for survey researchers concerned about violations of MAR, Wu offers only a 

modest test, which basically consists of finding another variable that is similar to the study variable but 

that is available for the whole population. If only it were that easy! Generations of pollsters have scoured 

data for such variables and yet continue to worry about MNAR, especially when response is non-random. 
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Wu’s framing understates what we can do about MAR violations. These efforts will require 

assumptions, of course, but at least we can relax the severe assumption of MAR. The connection to the 

earlier points is key: since we are going to need assumptions, it is important that we have a framework for 

thinking about which ones are the most consequential so that we can focus our efforts appropriately. The 

Meng equation highlights how MAR violations play a central role in creating error in a non-probabilistic 

sampling world and therefore we should do whatever we can to address that issue. 

A widely known example of a model that can tackle MNAR data is the Heckman (1979) selection 

model. This model allows for – and even estimates the magnitude of – the MAR violations. It is not 

without problems, of course. As a practical matter it requires an exclusion restriction (an assumption that 

one or more variables affect response but not the study variable) and many modern scholars are 

understandably cautious about the Heckman model’s strong parametric assumption. 

Scholars have made considerable progress beyond the Heckman model in dealing with MAR 

violations (Bailey, 2023). The parametric assumption is easy to relax via copula functions (Gomes, 

Radice, Brenes and Marra, 2019). If we are interested in studying determinants of ,Y  there is a substantial 

and growing literature applying highly flexible control functions for MNAR contexts (Das, Newey and 

Vella, 2003; Liu and Yu, 2022). And if we can identify variables that affect propensity to respond but not 

the outcome of interest, multiple methods will model and offset MNAR sampling (Peress, 2010; Sun, Liu, 

Miao, Wirth, Robins and Tchetgen-Tchetgen, 2018). 

 
5. Conclusion 
 

Wu’s paper ably and usefully summarizes the state of the literature of analysis of non-probability 

survey data under the assumption of MAR. He also highlights a critical need for the field to coalesce 

around a more coherent framework to evaluate these and other polling innovations. 

In this note, I build off Wu’s work to propose a framework that not only encompasses the MAR 

models analyzed by Wu, but MNAR models as well, as the violation of the MAR assumption is something 

particularly relevant and harmful for non-probability surveys. 
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This discussion attempts to add to Wu’s review of inference from non-probability samples, as well as to 

highlighting aspects that are likely avenues for useful additional work. It concludes with a call for an organized 

stable of high-quality probability surveys that will be focused on providing adjustment information for non-

probability surveys. 
 

Key Words: Pseudo-weighting; Propensity score; Doubly-robust estimation; Sensitivity analysis. 

 

 

1. Introduction 
 

Thanks to Dr. Changbao Wu for an excellent review of the previous work and open issues for 

statistical inference from non-probability samples. Given the large and rapidly developing work in this 

area, Dr. Wu was understandably unable to cover all of it; my own understanding has blinders as well but 

I will touch on a few additional approaches that relate to topics he considered. I will also discuss the issue 

of modeling versus weighting for different inferential targets, and use his discussion and conclusions to 

highlight the critical importance of probability samples – in particular high-quality studies that focus on 

estimation of relevant covariates – to improve inference for the profusion of non-probability samples used 

as replacements for traditional probability samples in many research and official statistics settings. To 

avoid notation confusion, all notation will follow that of Wu, except where new notation is required. 

Section 2 reviews additional approaches to combining data from probability and non-probability 

surveys. Section 3 briefly reviews the issue of weighting versus modeling when adjusting non-probability 

survey data. Section 4 reviews some recent developments in sensitivity analyses of standard assumptions 

for adjusting non-probability survey data using probability survey data. Section 5 concludes with call to 

systematically design a set of probability surveys with the explicit purpose of adjusting non-probability 

surveys. 

 
2. Additional approaches to combining data from probability and 

non-probability surveys 
 

Dr. Wu’s paper follows the general prescription of 1) using model estimation and subsequent 

calibration to probability-sample-estimated covariate distributions, 2) developing propensity score 

estimates based on discrepancies between the probability- and non-probability sample data, and 3) doubly-
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robust methods that combine 1) and 2) in a manner such that only one of the two underlying models needs 

to be correct. 

 

2.1 Propensity score estimators 
 

Rivers (2007) appears to have been the first to suggest estimating propensity score using logistic 

regression with membership in the non-probability sample as the outcome and taking the reciprocal of the 

resulting propensity scores to use as inclusion weights. This approach was formalized further in Valliant 

and Dever (2011). Separately, using simple results from Bayes’ theorem and discriminant analysis first 

described in Elliott and Davis (2005), Elliott, Resler, Flannagan and Rupp (2010) and Elliott (2013) 

developed a somewhat different estimator of the form  

 ( ) ( ) ( )
( )
( )

ˆ or , ,
ˆˆ , = .

ˆ or , ,

A A B iA

i i A B

B A B i

P i S i S i S
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P i S i S i S


  
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x α
x α

x α
 (2.1) 

( )ˆ or , ,A A B iP i S i S i S   x α  can be obtained using logistic regression, or using one of the suite of 

machine learning-type approaches such as support vector machines (Soentpiet, 1999), targeted maximum 

likelihood estimation (Van Der Laan and Rubin, 2006), or Bayesian Additive Regression Trees (BART) 

(Chipman, George and McCulloch, 2010), and ( )ˆ or , ,A B B iP i S i S i S   x α  obtained as 

( )ˆ1 or , , .x αA A B iP i S i S i S−     In principle ( ) =1 B

B iP i S d  is known since sampling probabilities 

are known for all elements of the population, including those in the non-probability sample, but in practice 

analysts with access only to public use data may have to estimate this as well. (In addition, B

id  may 

include calibration and non-response adjustments that are not known for the non-probability sample 

elements.) This last point is critical as use of the probability sample to develop propensity scores using 

only the discrepancies between the non-probability sample and the probability sample will be biased 

unless the probability sample used an equal probability (epsem) design, as noted by Wu. 

In contrast, Chen, Li and Wu (2020) shows that using a pseudo-likelihood approach to estimating 

( )ˆ ,A

i i x α  directly from the population likelihood for the indicators ( )AI i S  as a function of ix  yields 

an estimator that does not require ( )BP i S  for elements in the non-probability sample under the 

restriction that ( ),A

i i x α  follows a generalized linear model with a canonical link, i.e., logistic regression. 

(None of these approaches actually has the correct intercept to obtain a true propensity score; however, 

as noted in Wu, weighted estimation usually uses Hájek-type estimators [using weights to estimate a 

population total for denominators; Hájek, 1971] so that propensity scores estimated up to a normalizing 

constant are sufficient.) 

 
2.2 Doubly-robust estimators 
 

If inference is focused on a particular variable Y  available only in the non-probability sample, we can 

return to the model-assisted estimators that date back to Cassel, Särndal and Wretman (1976), which posit 

a model for the expectation ( ) = .xi i iE y m  Combining this with propensity score estimates of the 
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probability of being in the non-probability sample (which we are treating as an “unknown probability 

sample” – more about this under Assumptions below) yields estimators of the form  

 
ˆ1 1

ˆ
ˆ ˆˆ

A B

Bi i
i iAA B

i S i Si

y m
d m

N N 

−
+   (2.2) 

corresponding to DR 2̂  of (4.11) in Wu. The intuition is that any bias due to the model misspecification in 

estimation of im  in 1
ˆ

ˆ
B

B

B

i ii SN
d m

  will be equal to and opposite in sign of 
ˆ1

ˆ ˆ

i i

A A
A i

y m

i SN 

−

  if the model for 
A

i  is correctly specified. Conversely, if the model for A

i  is misspecified but im  is correctly specified, 

ˆ
i iy m−  will be iid with mean zero and consequently 

ˆ1
ˆ ˆ

i i

A A
A i

y m

i SN 

−

  will also have mean 0, yielding an 

unbiased estimator. Chen, Valliant and Elliott (2019) used LASSO for prediction in combination with 

generalized regression estimators (McConville, Breidt, Lee and Moisen, 2017) when X  is of high 

dimension. As Wu notes, Wu and Sitter (2001) show the equivalence between GREG applied to predicted 

values and DR estimators of the form in (2.2), which indicates that the Chen et al. (2019) approach was 

equivalent to (2.2) with LASSO estimation for im  and an assumption of simple random sampling for the 

non-probability sample. 

A disadvantage of using (2.1) as opposed to Chen et al. (2020) as the estimator of ,A

i  and thus of ,A

id  

is the requirement that the probability sample weights B

id  be known or at least estimated for the non-

probability sample. An advantage of using (2.1), is that non-linear models and machine learning methods 

can be used in estimation. Rafei, Flannagan and Elliott (2020) uses BART to estimate both im  and ,A

i  

reducing the impact of potential model misspecification. Simulations showed considerable improvement 

in bias and variance reduction over the method of Chen et al. (2020) when the linear models is 

misspecified. Variance estimation can proceed by adapting Rubin’s multiple imputation rules: from M  

independent draws from BART, the mean of the variances computed treating the draw of A

id  as known 

using standard complex sample design estimators and added to 
1M

M

+
 times the variance of the point 

estimates computed across the draws of A

id  yield an approximately unbiased variance estimator. 

An alternative approach to doubly-robust estimation uses the fact that the propensity score is the 

coarsest possible “balancing score” that contains all of the information about the association between the 

sampling indicator and the outcome of interest. This has led to the development of mean estimators that 

use smooth functions of weights to produce consistent estimators that can be more efficient when weights 

are highly variable or only weakly related to the outcome (Elliott and Little, 2000; Zheng and Little, 

2005). Zhou, Elliott and Little (2019) extended this idea into the causal inference setting in non-

randomized settings, in which probability of assignment to a treatment or exposure (propensity score) is 

estimated as a function of covariates ( ),Z iP x α  using logistic regression, and then non-observed potential 

outcomes zY  under treatment arm i iz z   for observed treatment iz  are imputed from  

 ( )( ) ( )* * 2ˆ ˆˆ ˆ~ ( , ) ( , ), ,Z

i Z i Z Z i i ZY N s P g P +x α θ x α x β  (2.3) 
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where *P  is the logit transformation of ,P  *ˆ( )Z Zs P θ  denotes a penalized spline with fixed knots (Eilers 

and Marx, 1996) of propensity, and *ˆ( , )Z i Zg P x β  is a general function of covariates including the 

propensity scores. The resulting estimator is doubly robust in the sense that if either ( ),Z iP x α  or 
*ˆ( ) = ( , )z

Z i ZE Y g P x β  is correctly specified, ( )zY  will be approximately unbiased; see Zhang and Little 

(2009). This can be implemented in the non-probability setting by replacing ˆ ( , )Z iP x α  in the mean model 

for (2.3) with ˆ A

i  estimated using (2.1) to obtain a draw of ( ).b

iY  (Note this requires obtaining ˆ A

i  for the 

probability sample elements requiring prediction.) Inference can proceed by obtaining =1, ,b B  draws 

from the posterior distribution of the estimated population quantity of interest, e.g., for the population 

mean  

 
( )( ) ( ) ( )

( ) = R A

b b b

i i i ii S i Sb
N Y y Y

Y
N

 
+ − 

  

where now ( )b

iN  is a estimate of the population represented by the weight R

id  obtained from a finite 

population Bayesian bootstrap (Little and Zheng, 2007); more complete FBPP extensions to complex 

sample designs that include clustering and stratification are available in Dong, Elliott and Raghunathan 

(2014). 

As in the estimation of (2.1), the non-parametric (spline) component of (2.3) can be replaced with other 

machine-learning estimators; see Chapter 4 of Rafei (2021) for implementation using Gaussian processes. 

Also, extensions to non-normal models are direct, although not necessarily computational easy. 

 
2.3 Poststratified estimators 
 

Wu also describes the use of poststratified estimators in the context of quota sampling, which is not 

only a very old form of non-probability sampling but indeed the standard before Neyman made the case 

for stratified random sampling (Neyman, 1934). Wu’s Section 5 suggests a robust alternative to the 

propensity score estimates obtained by ordering observations in the probability sample by ˆ ,i  stratifying 

into K  strata based on this ordering, and computing the predicted proportion of the population belonging 

to the thk  stratum as proportion of the sample weights kW  in this stratum using the probability sample, 

with  

 
PST

ˆˆ = k k

k

W y   (2.4) 

where ky  is the mean within the thk  stratum in the non-probability sample. Wu notes the tradeoff between 

choosing K  to be large enough to retain homogeneity within units but small enough to obtain stable 

estimates of ,ky  suggesting 30 as the old “rule of thumb” for “large [enough] sample sizes”. I would add 

that a more formal approach discussed in Little (1986) suggests a method to generate strata (there in the 

context of non-response adjustment) that minimizes mean square error by maximizing the 
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between-stratum-to-within-stratum variance. It would seem such an approach would be appropriate to 

consider in the non-probability post-stratified estimator as well. 

A more direct approach to obtain estimates using a post-stratified type estimator is multilevel 

regression and poststratification (Wang, Rothschild, Goel and Gelman, 2015; Downes and Carlin, 2020). 

Here only data from the non-probability sample is used in the outcome model:  

 ( )[ ] 0 [ ]= T j

k i k l k

j

E Y a + +x β  (2.5) 

where =1, ,k K  indexes the poststratum developed from =1, ,j J  variables, 2

[ ] ~ (0, )j

l k ja N   for 

=1, , jl L  and [ ]l k  maps the postratum cell k  to the appropriate category l  of variable .j  The 

poststratifed estimator is still given by (2.4) with ˆ
kW  now replaced with known population totals ;kW  

posterior inference is obtained though posterior draws of 0 ,  ,β  and [ ]

j

l ka  to obtain a draw of  

 ( ) ( ) ( ) ( )

PST 0 [ ]

1
ˆ = .b b T b j b

k k l k

k i k jk

W a
n

 


  
+ +  

   
  x β   

Though not technically doubly-robust, it has been shown to work well in some applications where J  is 

large enough to capture all of the important discrepancies between the probability and non-probability 

sample, and the non-probability sample is sufficiently large to allow reasonably accurate estimation of 

[ ].
j

l ka  In the absence of known joint distributions of a high dimensional ,X  this approach has the 

weakness of relying on estimated distributions, which are unstable. A possible alternative might be replace 

the simple ky  with (2.5) in Wu’s poststratified estimator (2.4), using the fact that the sampling weights 
R

id  summarize the information about X  in the probability sample similar to that of the propensity score 

for non-probability sample. 

 
3. Weighting vs. modeling for the general user 
 

Wu’s paper and the above addendums tend to follow the long-trodden path regarding weighting versus 

modeling in the finite population inference setting, dating back at least to Hansen, Madow and Tepping 

(1983). In thinking about this choice I believe it is important to distinguish between models used to derive 

so-called descriptive parameters – in the sense of Kalton (1983) – and models that are of interest in and of 

themselves, so-called analytic parameters in regression models, latent classes analysis, etc. For the former 

distinguishing a descriptive target of interest Y  from potential modeling covariates X  has the advantage 

of creating doubly-robust estimators that are targeted to a single descriptive parameter. This also requires 

assumptions such as A1 in Section 2.1 (propensity score does not depend on Y  conditional on ).X  When 

models themselves are the targets of interest, it may be that developing weights via propensity scores to 

account for selection bias and, as Wu notes, employing standard weighted estimating equations may be the 

most sensible choice, since typically a wide number of models may be considered. This comes at the cost 
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of double robustness, since there is usually no attempt to model the analytic parameter directly. 

Developing ways to extend double-robustness into a broader class of model parameter estimates may be a 

fruitful exercise. 

 
4. Unverifiable assumptions: Recent developments in sensitivity 

analysis 
 

Wu provides four key assumptions required to correct for selection bias in non-probability surveys 

using data from probability surveys: they can be roughly summarized as “selection at random” or SAR 

(covariates in the non-probability sample explain the probability of selection in the non-probability 

sample); “positivity” (all elements in the population have a non-zero probability of selection into the non-

probability sample); “independence” (elements are selected independently into the non-probability 

sample); and “common covariates” (there exists a probability survey with covariates whose subset 

matched the covariates required for the MAR assumption to hold). It might be worth noting that the first 

two assumptions basically require the non-probability survey to be a probability survey “in disguise” – 

that is, there really are non-zero probabilities of selection into the non-probability survey for all elements 

in the population, but we as analysts just do not know what they are. 

In practice neither of these assumptions probably hold precisely. Some recent work has focused on the 

failure of the first, the SAR assumption. Some existing measures borrowed from the non-response 

literature have been repurposed here: for example, the R-indicator measure (Schouten, Cobben and 

Bethlehem, 2009), which in this context is the measure of the variability in the probabilities of selection in 

the non-probability sample:  

 

2

=1 =1

1ˆ ˆ ˆ= 1 2
1

A An n
A A

i j a

i ja

R n
n

 
 

− − 
−  
    

R̂  can range between 0 and 1, where 1 is achieved when probabilities of selection are constant – 

suggesting something akin to a simple random sample, with less chance for selection bias – and 0 – 

suggesting all elements are either included with probability 1 or 0, maximizing the risk of selection bias. 

Of course, in the absence of the outcome Y  in the probability sample, there is no way to directly assess 

selection bias. Hence recent work has extended Andridge and Little (2011), which develops a sensitivity 

analysis using a pattern-mixture model, wherein selection into non-probability sample is allowed to 

depend entirely on a scalar reduction to the covariates ,X  entirely on the outcome ,Y  or some convex 

combination thereof. Little, West, Boonstra and Hu (2020), Andridge, West, Little, Boonstra and 

Alvarado-Leiton (2019), and West, Little, Andridge, Boonstra, Ware, Pandit and Alvarado-Leiton (2021) 

consider sensitivity to this assumption in the estimation of the mean of a normally distributed variable, the 

mean of a binary outcome, and the regression parameters in a linear regression model, respectively, in 

non-probability samples. By varying the convex mixing parameter ,  sensitivity to the SAR assumption 
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can be assessed. Boonstra, Little, West, Andridge and Alvarado-Leiton (2021) finds that these “standard 

measures of bias” (SMB) compare favorably with alternatives such as R̂  in a simulation study. An 

important point to note is that the methods that extend Andridge and Little (2011) do not depend on 

assumption of common covariates in a probability sample. This suggests that methods that use information 

available in the probability sample to assess SAR are an open area for development. 

The second assumption – positivity – is also unlikely to exist precisely in many practical settings. My 

own work in this area has focused on naturalistic driving studies, which typically involve convenience 

samples in a limited geographical area: for example, the Second Strategic Highways Research Program 

(SHRP2) recruited drivers in six specific geographic regions across the United States (Transportation 

Research Board (TRB) of the National Academy of Sciences, 2013). This corresponds to the second 

scenario given by Wu in Section 7.2, where only a subpopulation has any chance of being selected into the 

non-probability sample, which as he notes has “no simple fix”. Following his notation of D  providing an 

indicator of membership in the subpopulation, it would seem that if , A

i i i iD Y ⊥ X  – that is, if the 

distribution of , YX  is the same for = 0D  and =1D  after weighting for A

i  within the =1D  stratum – 

then lack of positivity would have no impact on inference. This is likely a tall order in the most general 

settings but might be reasonably well approximated if the analysis of interest involves a subset of , YX  

that is only weakly associated with D  even before adjustment. 

Finally, regarding the fourth assumption – existence of a probability sample with available X  – I very 

much second Wu’s observation that methods to take advantage of multiple probability surveys need more 

development. However, it remains more likely that a researcher will struggle to find a single probability 

sample with sufficient covariates than struggle with a surfeit of options (Wu’s “rich person’s problem”). 

To this end I will conclude with a call to action by the survey community. 

 
5. Probability sampling in the 21st century: Now more than ever 
 

I learned statistics, and particularly survey statistics, near the end of the 20th century, when probability 

sampling was the unchallenged touchstone of survey design. I was first introduced to the problem of 

making inference from non-probability samples in the late 00’s in the context of injury analysis using 

Crash Injury Research (CIREN) data, where analysts were treating a highly-restricted sample of 

individuals in passenger vehicle crashes as if they were a random sample of crash victims and 

consequently finding non-sensible results (Elliott et al., 2010). About the same time web surveys were 

exploding in popularity and survey statisticians were somewhat at a loss as to how to make inference from 

such data. I will admit to a rather paternalistic attitude at the time – I almost avoided trying to do research 

in this area because I thought it would only encourage “bad behavior” regarding sample design. I did not 

think I could single-handedly stop it, but I did not want to participate in what I perceived as the 

downgrading of science. I came to recognize, however, that many of these new data sources have 

advantages beyond what can be achieved through the traditional probability sample, certainly within 
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limited budgets. This is above and beyond the increasing challenges to implementing probability surveys, 

especially in general populations, due to non-response, lack of adequate sampling frames, etc. 

However, I remain concerned that the idea that we have developed methods to deal with the limitations 

of non-probability surveys means that probability sampling is passe is becoming entrenched among 

scientists and policy makers with limited statistical training, despite efforts like those of Bradley, 

Kuriwaki, Isakov, Sejdinovic, Meng and Flaxman (2021) and Marek, Tervo-Clemmens, Calabro et al. 

(2022). However, as Wu’s review notes, the absence of probability samples unmoors the non-probability 

sample from the possibility of even partial calibration or other adjustment approaches (although sensitivity 

analyses such as those SMB approaches noted above do not require benchmarking probability samples). 

Hence I believe it is increasingly critical for an organized and ideally government funded stable of high-

quality probability surveys to be put into place for routine data collection. Some of these obviously 

already exist – the US Census’ American Community Survey and the National Center for Health Statistics 

National Health Interview Survey premier among them – but going forward I believe it would be valuable 

for statistical agencies to explicitly coordinate around the need for high quality probability surveys to 

serve a role as analytic partners to the non-probability survey world rather than just as stand-alone 

products. This means thinking carefully about important covariates across a variety of public health and 

social science roles in which survey data play a role. Choices will have to be made given limited budget 

constraints, and at the same time provisions should be made for sufficient funding to retain the quality 

needed for adjustment. Finally, while some methods do not require microdata and thus can use summary 

measures such as those avaiable in the American Communities Survey, other will require such data, which 

likely means new areas of research to be explored in the fields of privacy and confidentiality research as 

applied to the combining of data from probability and non-probability surveys. 
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Abstract 

Strong assumptions are required to make inferences about a finite population from a nonprobability sample. 

Statistics from a nonprobability sample should be accompanied by evidence that the assumptions are met and 

that point estimates and confidence intervals are fit for use. I describe some diagnostics that can be used to 

assess the model assumptions, and discuss issues to consider when deciding whether to use data from a 

nonprobability sample. 
 

Key Words: Convenience sample; Diagnostics; Imputation; Probability sample; Survey quality; Survey weights. 

 

 

1. Introduction 
 

Many thanks to Changbao Wu for his stimulating review and assessment of methods for making 

inferences from nonprobability samples. I especially appreciate his thoughtful examination of the strong 

assumptions needed to derive the bias and variance of estimates. 

Wu reviews three approaches for estimating the finite population mean y  of a variable y  that is 

measured in a nonprobability sample AS  of size .An  Because this sample is not representative of the 

population (and hence the sample mean Ay  is likely biased for estimating ),y  each approach relies on 

information from a high-quality probability sample BS  of size :Bn  BS  does not measure y  but it contains 

a set of auxiliary variables x  that are also observed in .AS  

In the model-based predictive approach, a model is developed on AS  to predict y  from .x  The mass 

imputation (MI) estimator, for example, uses the model to impute an estimate *

iy  of iy  for every member 

of the probability sample .BS  Then the population total of y  is estimated by *‍,
B

B

i ii S
d y

  where B

id  is 

the design weight of unit i  in .BS  

In the inverse propensity weighting (IPW) approach, a model is developed predicting the probability 
A

i  that population unit i  appears in AS  as a function of .x  Then unit i  in AS  is assigned weight 

1 ˆA A

i iw =  and the population total is estimated by ‍.
A

A

i ii S
w y

  

Wu also reviews a “doubly robust” estimator of y  that, by combining the predictive and IPW 

estimators, is approximately unbiased under the assumptions if either model is correctly specified. In this 

discussion, I will concentrate on the predictive and IPW approaches because these methods generalize 

more easily for multivariate analyses and estimating population characteristics other than means. 

In Section 2, I explore assumptions needed for inference from nonprobability samples and diagnostics 

for assessing them. Then, in Section 3, I look at some questions to ask when deciding which approach (if 

any) to use for inference. 
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2. Model assumptions and diagnostics 
 

Probability sampling gained widespread use after the theory was developed in the 1930s and 1940s 

because it provided a mathematically justified solution to the problem of how to generalize from a sample 

to a population. Under minimal assumptions, a full-response probability sample produces approximately 

unbiased estimates of population quantities, accompanied by confidence intervals that have approximately 

correct coverage probabilities. It is the only method that is guaranteed to produce accurate confidence 

intervals without making assumptions about the unsampled members of the population. A probability 

sample is representative because of the procedure by which it is drawn. 

All other methods require huge assumptions. The major assumptions for the predictive and IPW 

methods, given in Section 2.1 of Wu’s article, are: (A1) y  and the random variable indicating 

participation in AS  are independent given ,x  (A2) every unit in the population has 0,A

i   and (A3) the 

random variables indicating participation in AS  are independent given .x  These assumptions imply that 

the auxiliary information x  is rich enough to develop inverse propensity weights that remove selection 

bias for ,y  and that a model developed on AS  to predict y  from x  will also apply to units not in .AS  

Statistical properties of the estimators are developed assuming that (A1) - (A3) are true and that the 

models adopted for weighting or imputation are correctly specified. Under those conditions, the estimated 

population mean is approximately unbiased with variance given by the appropriate theorem. But, as Wu 

points out, that variance estimate is conditional on the assumptions being satisfied; if the assumptions are 

not met, it will severely underestimate the true mean squared error and give a misleading impression of 

the estimate’s trustworthiness. If An  and Bn  are large but (A1) is violated, the bias might be 10 

percentage points but the reported standard error of an MI or IPW estimate will be close to zero. In 

practice, many nonprobability samples will violate the assumptions: Mercer, Lau and Kennedy (2018) 

found, when weighting online opt-in samples with rich auxiliary information, that “even the most effective 

adjustment strategy was only able to remove about 30% of the original bias”. 

The assumptions cannot be fully tested because they involve missing data ‒ population members 

missing from AS  and y  values missing from .BS  But, as with nonresponse adjustments in probability 

samples (Lohr, 2022, Chapter 8), one can perform model checks and diagnostics using available 

information, with the recognition that these might not catch all model deficiencies. 

 

Compare statistics from the nonprobability sample with those from other data sources 
 

Wu suggests comparing empirical distribution functions of variables in x  from AS  with the survey-

weighted empirical distribution functions from .BS  Differences may indicate that observations in AS  have 

unequal propensity scores or that the x  variables are measured differently in AS  than in BS  (see 

Section 3). One can also compare empirical distributions from AS  with those from another probability 

survey .CS  

If IPW is used, one can also compare propensity-score-weighted empirical distribution functions from 

AS  with those from BS  and other surveys. This should be done only for variables not used in the 
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weighting, since the propensity score weights have already adjusted for imbalances in weighting variables. 

Dutwin and Buskirk (2017), for example, constructed propensity weights for a nonprobability sample 

through raking on marginal totals and then compared the cross-tabulations of those raking variables. 

Wu also suggests treating a variable z  that is measured in both AS  and BS  as a response variable, and 

comparing conditional models for z u  fitted on AS  and ,BS  where u  is a subset of x  (excluding ).z  

Differences in the two models can indicate that z  is needed as an auxiliary variable, and may also raise 

questions of how well the set of measured auxiliary variables satisfy assumption (A1). 

In an example from Kim, Park, Chen and Wu (2021), the estimated percentage of persons who 

volunteer was 24.8% from the Current Population Survey (the gold-standard estimate), but the MI and 

IPW estimates from AS  were both close to 50% with reported standard error less than one percentage 

point. The standard error, computed under the model assumptions, did not account for the selection bias of 

AS  with respect to volunteerism ‒ a bias that could not be removed using demographics, home ownership, 

and medical insurance as model covariates. 
 

Compare results from the IPW and MI approaches 
 

An alternative to using the doubly robust estimator for analysis is to use each model to identify 

potential deficiencies of the other. Possible investigations include comparing the empirical distribution of 

y  from AS  (using the inverse propensity weights) with the empirical distribution of *y  from BS  (using 

the imputed values and the survey weights). Similarly, as suggested by Chipperfield, Chessman and Lim 

(2012), one can compare estimated domain means from AS  and BS  for a set of domains 1, , .d D=   One 

might also compare imputations for y  fit to the unweighted data set AS  with imputations developed on 

AS  with inverse propensity weights. 

Simulation studies are valuable for checking the small-sample behavior when the assumptions are met, 

but are of limited value for exploring sensitivity to model assumptions. These explore model deviations 

devised by the investigators, but real surveys can diverge from the model in many unanticipated ways. 
 

Perform model diagnostics 
 

Of course, for either the IPW or model-predictive approach, analysts should employ standard 

regression diagnostics such as examining residuals and influential observations to examine model fit and 

sensitivity to outliers, and document the checks that were done. 

For the IPW approach, it is also desirable to examine characteristics of the final weights. The 

coefficient of variation of the weights provides a rough measure of the amount of adjustments that were 

needed to make sample AS  “representative”. A low coefficient of variation, however, does not necessarily 

mean the sample is representative; this may merely reflect inadequacy of the available auxiliary 

information for developing weights. For example, suppose a quota sample from an opt-in internet panel is 

drawn to match the population with respect to the auxiliary variables. The inverse propensity weights will 

have little variation because the x  variables were used to form the quota classes, but the sample may still 

produce biased estimates of y  variables such as internet usage or volunteering. 
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The graphical methods proposed by Makela, Si and Gelman (2014) for assessing weight adjustments in 

surveys can be used with IPW as well. Brick (2015) suggested looking at the magnitude of the IPW 

adjustments in the weighting cells. One can also examine the distribution of the weights within domains of 

interest. 

The inverse propensity weights can also provide information about assumption (A2). A domain that 

has high weights relative to other domains may have undercoverage in .AS  Dever (2018) proposed 

investigating assumption (A2) by identifying individuals in BS  who have no close match in .AS  

Bondarenko and Raghunathan (2016) reviewed and proposed graphical and numerical diagnostic tools 

for assessing and improving imputation models. None of these diagnostics, however, will test the 

assumption that the regression model fit on AS  applies to units not in .AS  Just as Ay  may be a biased 

estimator of ,y  regression coefficients derived from AS  may also be biased, and the model constructed 

from AS  to predict y  from x  might not apply to other parts of the population. 
 

Take a small probability sample to investigate assumptions 
 

The preceding steps can identify some model deficiencies, but cannot fully test assumptions (A1) and 

(A2). But one can test the imputation model by obtaining data about y  on a probability subsample of .BS  

Similarly, one could take a probability sample from population members not in AS  to check inferences 

from the IPW approach, or observe y  on a subsample of units in BS  that are similar to those with high 

weights in ,AS  or that have no close match in .AS  

 
3. When should one use nonprobability samples? 
 

Wu describes methods for combining information from probability and nonprobability samples after 

the decision has been made to do so. A first question, however, is whether the operation should be done at 

all. It may be desired to use a nonprobability sample because no high-quality probability sample measures 

,y  and it is thought that “any information is better than no information”. But is that true? 

Suppose that, despite the careful model-fitting and model-checking, key statistics are still biased. 

Could reporting a flawed statistic be worse than reporting no statistic? Bad statistics, once published, can 

circulate for a long time ‒ even after more rigorous studies show that they are biased. In 1975, advice 

columnist Ann Landers asked her readers to respond to the question “If you had it to do over again, would 

you have children?” About 70% of the 10,000 persons who mailed a response said they would not have 

children in a do-over. This statistic is still cited, even though it is from a convenience sample, has been 

contradicted by numerous other studies, and is nearly 50 years old (Lohr, 2022). It is also unlikely that 

predictive modeling or IPW would have corrected the selection bias affecting Landers’ statistic, which 

occurred within all demographic groups. 

With these issues in mind, here are some questions that could be asked when deciding whether to use 

estimates from a nonprobability sample and, if so, which statistical method to use for making inferences. 
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• How will the statistics be used? Estimates from the nonprobability sample might serve well for 

developing a marketing strategy or for an exploratory sociological study, but might not be 

deemed reliable enough for estimating unemployment or the number of persons requiring food 

assistance. Statistics from a nonprobability sample should be accompanied by evidence that the 

estimates are fit for use. 

• What is the quality of the data in ?AS  Administrative records such as tax records have a 

different quality profile than a survey of volunteers recruited through an internet advertisement. 
 

If the population for AS  is well-defined (for example, tax filers), it may be better to report 

statistics for that population than to attempt to generalize to the population of .BS  For tax 

records, many persons below preset income thresholds have 0A

i =  and assumption (A2) is 

violated. Instead, a multiple-frame approach might be adopted, where a different data source is 

used to estimate y  for the parts of the population not in AS  (Lohr, 2021). 

Since all of the models rely on auxiliary information ,x  it is important to have AS  and BS  

measure the x  variables the same way. If income is used as an auxiliary variable, the same 

questions should be used to define income in both surveys, and income should be measured for 

the same unit (person or household). 

Kennedy (2022) suggested that some respondents to opt-in online surveys may provide 

incorrect demographic information or bogus answers to questions; if that occurs, model 

predictions will be flawed. It may even be possible for outsiders desiring a specific outcome to 

manipulate the data in AS  ‒ for example, an organization might arrange for the survey to be 

taken by a set of volunteers whose claimed demographic characteristics match those of the 

population but who give the “desired” answer for .y  Some proponents of nonprobability 

samples argue that low-response-rate probability samples also require weighting adjustments or 

imputation, but there is one important difference: the probability survey may have nonresponse, 

but the initial sample is selected randomly and cannot be manipulated by outside organizations. 

If the data in AS  are low-quality, is it worth spending the time to construct models? As Louis 

(2016) said, “Space-age procedures will not rescue stone-age data”. 

 

• How detailed is the auxiliary information? If AS  is large, and the auxiliary information is 

specific enough to be able to identify specific records, then linking records between AS  and BS  

would be a better method for combining the data. Imputation or IPW would be used if the 

auxiliary information x  is rich enough to give good predictions of iy  or ,A

i  but not rich 

enough to permit accurate linkage. If there is little auxiliary information, however, then one 

would expect low variation in the propensity scores or imputed values, and the methods may 

give poor predictions ‒ with little information to diagnose potential problems. 

• What analyses are desired? Wu discusses estimating the population mean, but the analyst may 

also want to look at relationships between y  and other variables, or estimate means or medians 
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for subgroups. The choice of method depends in part on the variables that are available in AS  

and .BS  If AS  contains many response variables whose relationship is of interest, the IPW 

approach might be preferred. 

If it is desired to explore relationships between y  and variables measured only in ,BS  imputation 

might be a better choice. Here, though, the analyst should be careful to acknowledge the 

imputation when presenting results ‒ if, say, linear regression is used for the imputation, the 

correlation calculated on BS  is not between variable u  and variable ,y  but between u  and ˆ.x β
T  

 

• What are the implications for data equity? Jagadish, Stoyanovich and Howe (2021) defined 

“representation equity” as “increasing the visibility of underrepresented groups that have been 

historically disadvantaged or suppressed in the data record”. 

Nonprobability samples have the potential to improve data equity. They can increase the sample 

size and visibility of rare population subgroups ‒ a large data set AS  might contain 10,000 

members of the subgroup, while even a full-response probability survey with Bn = 60,000 

might contain only ten. Or the nonprobability sample may contain population members who are 

underrepresented in the probability survey because they are out of scope, undercovered in the 

sampling frame, or prone to nonresponse. In these situations, AS  provides information about 

groups that are not as well represented in the probability survey. 

On the other hand, historically disadvantaged groups may be underrepresented in all data 

sources, including .AS  For example, a large nonprobability sample of electronic health records 

will be able to generate estimates for more population subgroups than a small probability 

sample about health. But persons without health insurance or access to medical care are 

underrepresented. In this situation, relying on AS  to produce population estimates may 

reinforce inequities. If the estimates are used to distribute resources, then, as the program is 

implemented, more data will be collected in the areas getting those resources and will validate 

their needs, but no such follow-up will be done in areas that are inaccurately determined to 

receive no resources. The feedback loop will propagate the inequitable representation in data 

sources. 

The MI and IPW methods have different data equity implications. Imputation assigns a 

predicted value of y  to each observation in ,BS  and the imputed y  value may differ from the 

y  value the respondent would have supplied if asked ‒ particularly if the respondent is in a 

subgroup that is unrepresented or misrepresented in .AS  Will the model give accurate 

predictions for historically underrepresented subgroups? Did the respondents to BS  give 

informed consent for y  to be imputed? 

IPW assumes that the propensity scores can be estimated from auxiliary information. Is that 

information rich enough to give accurate weights? Are some subgroups unrepresented in ?AS  It 
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may be useful to compare the results from the two methods, and from other data sources if 

available, for historically underrepresented population subgroups.  

 

Wu’s critical review raises many important issues for persons interested in using nonprobability 

samples to make inferences about the population. I especially appreciate his assessment of the strong 

assumptions needed for the model-based methods, and applaud the emphasis on addressing these 

problems during the survey design stage. 
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Comments on “Statistical inference with non-probability 

survey samples” ‒ Miniaturizing data defect correlation: A 

versatile strategy for handling non-probability samples 

Xiao-Li Meng1 

Abstract 

Non-probability samples are deprived of the powerful design probability for randomization-based inference. 

This deprivation, however, encourages us to take advantage of a natural divine probability that comes with 

any finite population. A key metric from this perspective is the data defect correlation (ddc), which is the 

model-free finite-population correlation between the individual’s sample inclusion indicator and the 

individual’s attribute being sampled. A data generating mechanism is equivalent to a probability sampling, in 

terms of design effect, if and only if its corresponding ddc is of N-1/2 (stochastic) order, where N is the 

population size (Meng, 2018). Consequently, existing valid linear estimation methods for non-probability 

samples can be recast as various strategies to miniaturize the ddc down to the N-1/2 order. The quasi design-

based methods accomplish this task by diminishing the variability among the N inclusion propensities via 

weighting. The super-population model-based approach achieves the same goal through reducing the 

variability of the N individual attributes by replacing them with their residuals from a regression model. The 

doubly robust estimators enjoy their celebrated property because a correlation is zero whenever one of the 

variables being correlated is constant, regardless of which one. Understanding the commonality of these 

methods through ddc also helps us see clearly the possibility of “double-plus robustness”: a valid estimation 

without relying on the full validity of either the regression model or the estimated inclusion propensity, 

neither of which is guaranteed because both rely on device probability. The insight generated by ddc also 

suggests counterbalancing sub-sampling, a strategy aimed at creating a miniature of the population out of a 

non-probability sample, and with favorable quality-quantity trade-off because mean-squared errors are much 

more sensitive to ddc than to the sample size, especially for large populations. 
 

Key Words: Data defect index; Design probability; Divine probability; Device probability; Design-based inference; 
Model-assisted survey estimators; Non-response bias. 

 

 

1. Distinguish among design, divine, and device probabilities 
 

1.1 What can statistics/statisticians say about non-probability samples? 
 

Dealing with non-probability samples is a delicate business, especially for statisticians. Those who 

believe statistics is all about probabilistic reasoning and inference may question if statistics has anything 

useful to offer to the non-probabilistic world. Whereas such questioning may reflect the inquirers’ 

ignorance about or even hostility towards statistics, taking the question conceptually, it deserves 

statisticians’ introspection and extrospection. What kind of probabilities are we referring to when the 

sample is non-probabilistic? The entire probabilistic sampling theory and methods are built upon the 

randomness introduced by powerful sampling mechanisms, which then yields the beautiful designed-

based inferential framework without having to conceive anything else is random (Kish, 1965; Wu and 

Thompson, 2020; Lohr, 2021). When that power ‒ and beauty ‒ is taken away from us, what’s left for 

statisticians? 
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A philosophical answer by some statisticians would be to dismiss the question altogether by declaring 

that there is no such thing as probability sample in real life. (I was reminded by Andrew Gelman about 

this sentiment when I sought his comments on this discussion article. See 

https://statmodeling.stat.columbia.edu/2014/08/06 for a related discussion.) By the time the data arrive at 

our desk or disk, even the most carefully designed probability sampling scheme would be compromised 

by the imperfections in execution, from (uncontrollable) defects in sampling frames to non-responses at 

various stages and to measurement errors in the responses. In this sense, the notion of probability sample 

is always a theoretical one, much like efficient market theory in economics, which offers a mathematically 

elegant framework for idealization and for approximations, but should never be taken literally (e.g., Lo, 

2017). 

The timely article by Professor Changbao Wu (Wu, 2022) provides a more practical answer, by 

showcasing how statisticians have dealt with non-probability samples in the long literature of sample 

surveys and (of course) observational studies, especially for causal inference; see Elliott and Valliant 

(2017) and Zhang (2019) for two complementary overviews addressing the same challenge. To better 

understand how probability theory is useful for non-probability samples, it is important to recognize (at 

least) three types of probabilistic constructs for statistical inference, as listed in Section 1.2. Non-

probability samples take away only one of the three, and as a result, they typically force a stronger 

reliance on the other two. 

With these conceptual issues clarified, the rest sections discuss a unified strategy for dealing with non-

probability samples. Section 2 reviews a fundamental identity for estimation error, which has led to the 

construction of data defect correlation (Meng, 2018). Section 3 then discusses how this construct suggests 

the unified strategy. Section 4 demonstrates the strategy respectively for the qp  and p  settings in Wu 

(2022). Section 5 then applies the strategy to the two settings simultaneously to reveal an immediate 

insight into the celebrated double robustness, as reviewed in Wu (2022). Inspired by the same construct, 

Section 6 explores counterbalancing sampling as an alternative strategy to weighting. Section 7 concludes 

with a general call to treat probability sampling theory as an aspiration instead of the centerpiece of survey 

and sampling research. 

 

1.2 A trio of probability constructs 
 

The first of the three named constructs below, design probability, is self-explanatory. It is at the heart 

of sampling theory and reified by practical implementation, however imperfect the implementation might 

be. The distinction between the next two, divine probability and device probability, may be more nuanced 

especially at practical levels. But their conceptual differences are no less important than distinguishing 

between an estimand and an estimator. Fittingly, the data recording or inclusion indicator, a key quantity 

in modeling non-probability samples, provides a concrete illustration of all three probabilistic constructs; 

see the leading paragraph of Section 4. 
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Design Probability. A paramount concept and tool for statistics – and for general science ‒ is randomized 

replications (Craiu, Gong and Meng, 2022). By designing and executing a probabilistic mechanism to 

generate randomized replications, we create probabilistic data that can be used directly for making 

verifiable inferential statements. Besides probabilistic sampling in surveys, randomization in clinical 

trials, bootstraps for assessing variability, permutation tests for hypothesis testing, and Monte Carlo 

simulations for computing are all examples of statistical methods that are built on design probability. Non-

probability samples, by definition, do not come with such design probability, at least not an identified one. 

Hence, the phrase non-probability samples should be understood as a short hand for “samples without an 

identified design probability construct”. 

It is worth to remind ourselves, however, that there is a potential for design probabilities to come back 

in a substantial way especially for large non-probability data sets, such as administrative data, due to the 

adoption of differential privacy (Dwork, 2008), for example by US Census Bureau (see the editorial by 

Gong, Groshen and Vadhan, 2022, and the special issue in Harvard Data Science Review it introduces). 

Differential privacy methods inject well-designed random noise into data for the purpose of protecting 

data privacy while not unduly sacrificing data utility. Like the design probability used for probabilistic 

sampling, the fact that the noise-injecting mechanism is designed by the data curator, and is made publicly 

known, renders the transparency that is critical for valid statistical inference by the data user (Gong, 

2022). The area of how to properly analyze non-probability data with differential privacy protection is 

wide open. Even more so is the fascinating area of how to take into account the existing defects in non-

probability data when designing probabilistic protection mechanisms for data privacy to avoid adding 

unnecessary noise. Readers who are interested in forming a big picture of the statistical issues involved in 

data privacy should consult the excellent overview article by Slavkovic and Seeman (2022) on the general 

area of “statistical data privacy”. 

Divine Probability. In the absence of design probability for randomization-based inference, in order to 

conduct a (conventional) statistical inference, we typically conceptualize that the data at hand is a 

realization of a generative probabilistic mechanism given by nature or God. (I learned about the term 

“God’s model” during my PhD training, which I took as an expression for faith or something beyond 

human control, rather than reflecting one’s religious belief. The phrase “divine” is adopted here with a 

similar connotation.) We do so regardless of whether we believe or not that the world is intrinsically 

deterministic or stochastic (e.g., see David Peat, 2002; Li and Meng, 2021). We need to assume this divine 

probability primarily because of the restrictive nature of the probabilistic framework to which we are so 

accustomed. For example, in order to invoke the assumption of missing at random, we need to conjure a 

probabilistic mechanism under which the concept “missing at random” (Rubin, 1976) can be formalized. 

As Elliott and Valliant (2017) emphasized, the quasi-randomization approach, which corresponds to the 

qp  framework of Wu (2022), “assumes that the nonprobability sample actually does have a probability 

sampling mechanism, albeit one with probabilities that have to be estimated under identifying 
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assumptions”. That is, we replace the design probability by a divine probability that we have faith for its 

existence, which then typically is treated as the “truth” or at least as an estimand. 

Conceptually, therefore, we need to recognize that the assumption of any particular kind of divine 

probability is not innocent, as otherwise we will not need to rely on our faith to proceed. Nor is it always 

necessary. Any finite population provides a natural histogram for any quantifiable attributes or a 

contingency table for any categorizable attributes of its constituents, and hence it induces a divine 

probability without referencing any kind of randomness, conceptualized or realized, if our inferential 

target is the finite population itself (not a super-population that generates it, for example). The empirical 

likelihood approach takes advantage of this natural probability framework, which also turns out to be 

fundamental for quantifying data quality via data defect correlation (see Meng, 2018). The same emphasis 

was made by Zhang (2019), whose unified criterion was based on the same identity for building data 

defect correlation; see Section 2 below. 

Device Probability. By far, most probabilities used in statistical modeling are devices for expressing our 

belief, prior knowledge, assumptions, idealizations, compromises, or even desperation (e.g., imposing a 

prior distribution to ensure identifiability since nothing else works). Whereas modeling reality has always 

been a key emphasis in the statistical literature, we inevitably must make a variety of simplifications, 

approximations, and some times deliberate distortions in order to deal with practical constraints (e.g., the 

use of variational inference for computational efficiency; see Blei, Kucukelbir and McAuliffe (2017)). 

Consequently, many of these device probabilities do not come with a requirement of being realizable, or 

even coherent mathematically (e.g., the employment of incompatible conditional probability distributions 

for multiple chain imputation; see Van Buuren and Oudshoorn (1999)). Nor are they easy or even possible 

to be validated, as Zhang (2019) investigated and argued in the context of non-probability sampling, 

especially with the superpopulation modeling approach, which corresponds to the p  framework of Wu 

(2022). Nevertheless, device probabilities are the workhorse for statistical inferences. Both quasi-

randomization approach and super-population modeling rely on such device probabilities to operate, as 

shown in Wu (2022) and further discussed in Sections 4-5 below. The lack of design probability can only 

encourage more device probabilities to make headway. To paraphrase Box’s famous quote “all models are 

wrong, but some are useful”, all device probabilities are problematic, but some are problem-solving. 

 

1.3 Let’s reduce “Garbage in, package out” 
 

In a nutshell, probabilistic constructs are more needed for non-probability samples than probability 

ones precisely because of the deprivation of the design probability. Therefore, dealing with non-

probability samples is not a new challenge for statisticians. If anything is new, it is the availability of 

massive amounts of large and non-probabilistic data sets, such as administrative data and social media 

data, and the accelerated need to combine multiple sources of data, most of which inherently are non-

probabilistic because they are not collected for statistical inference purposes (e.g., Lohr and Rao, 2006; 

Meng, 2014; Buelens, Burger and van den Brakel, 2018; Beaumont and Rao, 2021). Contrary to common 
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belief, the large sizes of “big data” can make our inference much worse, because of the “big data paradox” 

(Meng, 2018; Msaouel, 2022) when we fail to take into account the data quality in assessing the errors and 

uncertainties in our analyses; see Section 6.1. 

It is therefore becoming more pressing than ever to greatly increase the general awareness of, and 

literacy about, the critical importance of data quality, and how we can use statistical methods and theories 

to help to reduce the data defect. The central concern here goes beyond the common warning about 

“garbage in, garbage out” ‒ if something is recognized as garbage, it would likely be treated as such 

(likely, but not always, because as Andrew Gelman reminded me that “many researchers have a strong 

belief in procedure rather than measurement, and for these people the most important thing is to follow 

the rules, not to look at where their data came from”). The goal is to prevent “garbage in, package out” 

(Meng, 2021), where low quality data are auto-processed by generic procedures to create a cosmetically 

attractive “AI” package and sold to uninformed consumers or worse, to those who seek “data evidence” to 

mislead or disinform. Properly handling non-probability samples obviously does not resolve all the data 

quality issues, but it goes a very long way in addressing an increasingly common and detrimental problem 

of lack of data quality control in data science. 

I therefore thank Professor Changbao Wu for a well timed and designed in-depth tour of “the must-

sees” of the large sausage-making factory for processing non-probability samples. It adds considerably 

more detailed and nuanced exhibitions to the general tour by Elliott and Valliant (2017), which includes 

excellent illustrations on many forms and shapes of non-probability samples as well as their harms. It also 

showcases theoretical and methodological milestones for us to better appreciate the millstones displayed 

in the intellectual tour by Zhang (2019), which challenges statisticians and data scientists in general to 

understand better the quality, or rather the lack thereof, of the products we produce and promote. 

Together, this trio of overview articles form an informative tour for anyone who wants to join the force to 

address the ever-increasing challenges of non-probability data. Perhaps the best tour sequence starts with 

Elliott and Valliant (2017) to form a general picture, with Wu (2022)’s as the main exhibition of 

methodologies, and ends with Zhang (2019) to generate deep reflections on some specific challenges. For 

additional common methods for dealing with non-probability samples, such as multilevel modeling and 

poststratification, readers are referred to Gelman (2007), Wang, Rothschild, Goel and Gelman (2015) and 

Liu, Gelman and Chen (2021). 

As a researcher and educator, I have been beating similar drums but often frustrated by the lack of time 

or energy to engage deeply. I am therefore particularly grateful to Editor Jean-François Beaumont for 

inviting me to help to ensure Professor Wu’s messages are loud and clear: data cannot be processed as if 

they were representative unless the observed data are genuinely probability samples (which is extremely 

rare); many remedies have been proposed and tried, but many more need to be developed and evaluated. 

Among them, the concept of data defect correlation is a promising general metric to be explored and 

expanded, as demonstrated below. 
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2. A finite-population deterministic identity for actual error 
 

To demonstrate the fruitfulness of the finite-population framework, consider the estimation of the 

population mean, denoted by ,G  of { ( ) : },i iG G X i= N  where {1, , }N=N  indexes a finite 

population, and the ’siX  are data collected on individual .i  For each ,i  let 1iR =  if iG  (or rather )iX  is 

recorded in our sample, and 0iR =  otherwise; hence the sample size is 
=1

.
N

R ii
n R=  We stress that this 

is an all-encompassing indicator, which can (and should) be decomposed into 
(1) ( ), , ,J

i i iR r r=  when 

the data collection consists of J  stages (e.g., 
(1)

ir  indicates whether or not the thi  individual is sampled, 

and 
(2)

ir  whether the individual responded or not once sampled). 

Let { , }iW i S  be a set of weights to be determined, where the index set { : 1},iS i R= =  such that 

0.ii S
W


  Let WG  be the weighted sample average, expressible in three ways: 

 
=1

=1

E ( )
,

E ( )

N

i i i i ii S i I I I
W N

i I Ii S i ii

W G RW G R G
G

W RRW





= = =
 

 
 (2.1) 

where ,I I IR R W=  and E I
 is taken with respect to the uniform distribution over the index set .N  The 

first expression in (2.1) simply defines a weighted sample average. With the help of ,iR  the second 

expression turns the sample averages into finite-population averages. This trivial re-expression is 

fundamental because it explicates the role of iR  in influencing the behavior of WG  as an estimator of .G  

The third expression reveals a divine probability through ,I  the finite-population index (FPI) variable, by 

utilizing the fact that averaging is the same as taking expectation over a uniformly distributed random 

index .I  All finite-population moments then can be expressed via E .I
 

In particular, we can express the actual error of WG  via the following identity, where the first 

expression can be traced back to Hartley and Ross (1954), who used it to express biases in ratio 

estimators. The second expression was given in Meng (2018) with a slightly different (but equivalent) 

expression:   

 
,

Cov ( , )
.

E [ ]

WI I I
W GR G

I I W

N nR G
G G

R n
 

−
− = =    (2.2) 

Here 
,

Corr ( , )I I IR G
R G =  is the finite-population correlation between IR  and ,IG  

2

G  is the finite-

population variance of ,IG  and 
Wn  is the effective sample size due to using weights (Kish, 1965) 

 
2

,
1 CV

R
W

W

n
n =

+
 (2.3) 

with CVW
 being the coefficient of variation (i.e., standard deviation/mean) of { , }.iW i S  

The expression (2.2) is an algebraic identity because it holds for any instances of 

 ( , ), .i i iG RW iN  Hence no model assumptions are imposed, not even the assumption that R  (or any 

quantity) is random, echoing the comment by Mary Thompson, as quoted in Wu (2022), that “the sample 
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inclusion indicator R  is a random variable is itself an assumption”. The only requirement is that the 

recorded iG  is unchanged from the ’siG  in the target population. (But note this requirement has two 

components: (1) there is no over-coverage, that is, everyone in the sample belongs to the target population, 

e.g., no non-eligible voters are surveyed when the target population is eligible voters, and (2) there is no 

measurement error; extensions to the cases with measurement errors are available, but not pursued in this 

article.) When we use equal weights, the three factors on the right-hand side of (2.2) reflect respectively 

(from left to right) data defect, data sparsity, and problem difficulty, as detailed in Meng (2018) and 

further illustrated in Bradley, Kuriwaki, Isakov, Sejdinovic, Meng and Flaxman (2021) in the context of 

COVID-19 vaccination surveys. 

In particular, when all weights are equal, 
,R G

  is termed as data defect correlation (ddc) in Meng 

(2018) because it measures the lack of representativeness of the sample via capturing the dependence of 

inclusion/recording indicator on the attributes ‒ the higher the dependence, the more biased the sample 

average becomes for estimating population averages. With the basic strategies of probabilistic sampling or 

inverse probability weighting, ddc will be zero on average because E( ) 1,i iW R =  and it is of 
1 2( )pO N −

 

order because it is essentially an average of N  independent terms (Meng, 2018). Our general goal here 

therefore is to bring down ddc to 
1 2( )pO N −

 for non-probability samples, which we shall refer to as 

“miniaturizing ddc” because 1 2N −  is typically a minuscule number in practice. 

When we use weights, the first term 
,R G

  captures the data defect that still exists after the weighting 

adjustment, since no weights are perfect in practice. Identity (2.2) shows the impact of the weights on both 

data quality and data quantity. The impact on the nominal effective sample size 
Wn  is never positive 

because 
W Rn n  as seen in (2.3). Incidentally, the exactness of (2.3) reveals that this well-known 

expression is in fact not an approximation (which is often attributed to Kish (1965)), but an exact formula 

for the reduction of the sample size due to weighting if the weighting had no impact on ddc. However, 

weighting can have a major positive impact on reducing the overall error by judiciously choosing weights 

to significantly decrease ddc, though apparently at the price of .W Rn n  Of course, this is exactly the aim 

of the quasi-randomization framework, as discussed below. Most importantly, however, (2.2) leads to a 

unified insight about the variety of methods reviewed in Wu (2022), including an intuitive explanation of 

the doubly robust property, which has been receiving increased attention for integrating data sources 

including both probability and non-probability samples (e.g., Yang, Kim and Song, 2020). 

Indeed, Zhang (2019, Section 3.1) used the first expression in (2.2) to define a unified non-parametric 

asymptotic (NPA) non-informativeness assumption, which requires that the numerator Cov ( , )I I IR G  

goes to zero, while keeping the denominator E [ ]I IR  positive, as .N →  This unification permits 

Zhang (2019) to evaluate the quasi-randomization approach and regression modeling via a common 

criterion. The ddc framework echoes this unification, as discussed in Section 3 below, with Section 4 

stressing the same broad message as emphasized by Zhang (2019). Section 5 harvests another low-

hanging fruit of the ddc formulation, since it provides an immediate explanation of the celebrated double 

robustness. Section 6 then ventures into a much harder area of engineering a more representative 
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sub-sample out of a large non-representative sample, a worthwhile trade-off because data quality is far 

more important than data quantity (Meng, 2018), as briefly reviewed below. 

 
3. A unifying strategy based on data defect correlation 
 

In the setup of Wu (2022), for each individual ,i  we have a set of attributes { , },i i iA y= x  where y  is 

the attribute of interest, and x  is auxiliary, which is useful in two ways. First, reducing the sampling bias 

due to non-probability sampling becomes possible when the non-probability mechanism can be (fully) 

explained by .x  Second, by taking advantage of the relationships between iy  and ,ix  we can improve the 

efficiency of our estimation. As a starting point, Wu (2022) assumes that we have two data sources 

available, which we denote via two recording indicators, R  and 
*.R  The main source of the data is a non-

probability sample, where we observe both iy  and xi  for { : 1},ii S i R  =  but the recording indicator 

iR  is determined by a mechanism uncontrolled by any (known) design probability. A second source is 

(assumed to be) a probability sample, where we observe xi  only, for 
* *{ : 1}.ii S i R  =  This second 

sample provides information to estimate population auxiliary information that is useful for estimating 

population quantities about ,y  such as its mean. Hence this setup is closely related to the setup where 
* ;S S =N  see Tan (2013). 

Now for any function ( ),m x  let ( ), .i iz y m i= − x N  Clearly we can estimate the population 

mean E ( )N I Iy y=  via estimating E ( )I Iz z=  and  E ( ) .I Im m= x  From the second sample, m  can 

be estimated unbiasedly since it involves x  only. We therefore can focus on estimating ,z  while 

recognizing that a more principled approach is to set up a likelihood or Bayesian model to estimate all 

unknown quantities jointly (Pfeffermann, 2017). Applying identity (2.2) with G z=  then tells us that our 

central task is to choose the weight { , }iW i S  and/or the m  function to miniaturize the ddc 
,

.
R z

  For 

our current discussion, it is easier to explain everything via the covariance   

 
,

1

1
Cov ( , ) Cov ( , ( )) ( )

N

I I I I I I I I i i iR z
i

c R z W R y m W R z z
N =

 = − = −x  (3.1) 

instead of the correlation 
,R z

  because Cov ( , )I I IR z  is a bi-linear function in 
IR  and .Iz  However, 

,
,

R z
  being standardized, is more appealing theoretically and for modelling purposes; see Sections 6 

and 7. 

The expression in (3.1) tells us immediately how to make it zero in expectations operationally, and in 

what sense conceptually. For whatever probability we impose on iR  (to be specified in late sections), let 

Pr ( 1 ),i iR = = A  which we assume will depend on iA  only. Then the linearity of the covariance 

operator implies that the average covariance with respect to the randomness in iR  is given by 

 ( )
,

E[ ] Cov , ( ) ,I I I I IR z
c W y m= −A x  (3.2) 
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where { , }.iA i= A N  Similarly, if one is willing to posit a joint model for  ( , ),i iR y iN  

conditioning on X  in the independence form ( )1 , ,N

i i i iP R y= x  then 

 ( ),
E[ ] Cov ,E ( ) ( ) .I I I I I IR z

c W y m= −X x x  (3.3) 

Very intuitively, one can ensure a zero covariance or correlation between two variables by making 

either of them a constant. The two choices then would lead to respectively the quasi-randomization 

approach by making 1I IW    and the super-population approach by making E[ ] ( )x xI I Iy m−  a 

constant (e.g., zero). The fact that either one is sufficient to render zero covariance (under the joint model) 

yields the double robustness, because it does not matter which one. But clearly these are not the only 

methods to achieve a zero correlation/covariance or double robustness, an emphasis of Kang and Schafer 

(2007) in their attempt to demystify the doubly robust approach (Robins, Rotnitzky and Zhao, 1994; 

Robins, 2000; Scharfstein, Rotnitzky and Robins, 1999). See also Tan (2007, 2010) for discussions and 

comparisons of an array of estimators, including those corresponding to only the quasi-randomization 

approach or only the super-population approach, some of them are doubly robust. 

Indeed, because formula (2.2) is an identity for the actual error, any asymptotically unbiased (linear) 

estimators of the population mean must imply its corresponding ddc is asymptotically unbiased for zero, 

and vice versa, with respect to the randomness in R  or in { , }.R y  However, it is possible for ddc to be 

asymptotically unbiased for zero, without assuming any model is correctly specified – see Section 5 for an 

example. (This “double-plus robustness” is different from the “multiple robustness” of Han and Wang 

(2013), which still needs to assume the validity of at least one of the posited multiple models.) These two 

observations suggest that any general sufficient and necessary strategy for ensuring asymptotically 

consistent/unbiased (linear) estimators for the population mean would be equivalent to miniaturizing ddc. 

As an example of a unified insight that otherwise might not be as intuitive, expression (3.2) suggests 

that we should include our estimate of 
I  as a part of the predictor in the regression model ( ),Im x  since 

that can help to reduce the correlation between 
I IW   and ( ),I I Iz y m= − x  especially when we use 

constant weights .IW  Using ˆ
I  as a predictor for y  is generally hard to motivate purely from the 

regression perspective, especially when we assume y  and R  are independent given x  (typically a 

necessary condition to proceed, as discussed in the next section). However, expression (3.2) tells us that 

for the purpose of estimating the mean of ,y  it is not absolutely necessary to fit the correct regression 

model ( ).m x  Rather, it is sufficient to ensure the “residual” 
Iz  is as uncorrelated with 

I IW   as I  varies. 

However, it is critically important to recognize that it is not sufficient to ensure zero or small correlation 

only among the observed data, because Cov ( , 1)I I I I IW z R =  tells us little about 

Cov ( , 0).I I I I IW z R =  In the setting of Wu (2022), our ability to extrapolate from 1IR =  to 0IR =  

depends on the availability of the (independent) auxiliary data indexed by 
* 1,IR =  which allow us to 

observe some ’sIx  for which 0.IR =  

The strategy of including propensity estimates as a predictor has been found beneficial in related 

literature. For example, Little and An (2004) included the logit of ̂  in their imputation model, and 
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reported the inclusion enhanced the robustness of the imputed mean to the misspecification of the 

imputation model. The method was further developed and enhanced by Zhang and Little (2009) and by 

Tan, Flannagan and Elliott (2019), who used the term “Robust-squared” to emphasize the enhanced 

robustness. In a more recent article on such a strategy for non-probability samples, Liu et al. (2021) 

emphasized the importance of including the estimated propensity ˆ
i  “as a predictor” in ˆ( , )m x   (using 

notation in this article). Furthermore, in the literature of targeted maximum likelihood estimation (TMLE) 

for semi-parametric models for dealing with non-probability data (van der Laan and Rubin, 2006; Luque-

Fernandez, Schomaker, Rachet and Schnitzer, 2018) (also see Scharfstein et al. (1999); Tan (2010)), the 

variables ˆ
I IR   and ˆ(1 ) (1 )I IR − −  are called clever covariates and are used in the regression 

models for .Iy  The implementations and theories of TMLE, and the related Collaborative TMLE 

(van der Laan and Gruber, 2009, 2010), are mathematically more involved than those under finite-

population settings as discussed below, but the insights gained from (3.2)-(3.3) can provide us with 

helpful intuitions on understanding the essence of such methods. 

 
4. Quasi-randomization or super-population implementations 
 

In a nutshell, the quasi-randomization approach focuses on making 
I IW   a constant variable (induced 

by FPI ).I  When our sample is genuinely selected by a probabilistic scheme by design, then 

Pr ( 1 ),i i iR = = x  for ,iN  is a design probability, free of ,iy  but it can depend on xi  for example 

when xi  includes a stratifying variable. When the design probability is unavailable, we first need to 

invoke a divine probability. This could be a natural one given by the finite population, such as the 

propensity Pr ( 1 )i I I I iR A A = = =  induced by FPI, where { , },i i iA y= x  or an imagined super-

population one such as the ’siR  being generated independently from Ber ( ),i  where 

Pr ( 1 ) 0.i i iR A = =   This positivity assumption is necessary if the finite population is pre-specified, 

or its imposition defines the finite population that can be studied. (This is a practically rather relevant 

consideration, such as in election polling, where the finite population may not be always pre-specified 

even theoretically.) Since these divine probabilities are unknown and serve as our estimand, we need to 

assume some device probabilities, such as via a generalized linear model ( , )xi i ig y =  to proceed, even 

though we don’t really believe in any particular choice of .g  

For our current discussion, suppose our divine probability is given by the super-population Bernoulli 

model. Let 
=1

,
N

R ii
n R=  and ( ) Pr ( 0 ) 1 (1 ),R i N ip n =  = − −A A  where { , }.iA i= A N  

Because the iR  here is controlled by a divine probability, the sample size 
Rn  is no longer a design 

variable to be conditioned upon in our replication scheme; it is generally no longer an ancillary statistic. 

Nevertheless, we should condition on 0,Rn   a universal requirement for constructing data-driven 

estimates for .G  Fortunately this conditioning does not create mathematical complications to the 

simplicity granted by the independence among ,i i N  as functions of .iA  This is because 

( ) Pr ( 1 , 0) ( ) ,i i R iR n p  =  =A A A  but the normalizing constant ( )Ap  ‒ which depends on 
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the entire A  ‒ is not relevant for the developments in this article, such as assigning weights that are 

proportional to 
1( ).i

−
A  

Consequently, under this divine probability, which corresponds to (the true model for) the q -model 

setting in Wu (2022), we have for any chosen ,IW  by (3.1) 

 
,

1

E ( , 0) = Cov ( E[ , 0], ( ))

( ) Cov ( , ( )),

R I I I R I IR z

I I I I I

c n W R n y m

p W y m−

  −

= −

A A x

A x
 

(4.1)
 

where E  is with respect to the (unknown) divine probability over 
IR  (for fixed ).I  It follows then that, 

regardless of whether we want to ensure zero expectation in (3.2) or in (4.1), we will impose 1,I IW    

that is, 
1,I IW  −  the well-known inverse probability weighting. Therefore, if our postulated model q  

permits us to reliably capture i  in reality, then 
1 2

,
( )pR z

c O N −=  because it has mean zero (with respect 

to the divine probability), and it is a weighted average of N  essentially independent Bernoulli variables, 

as seen in (3.1). 

This is a randomization oriented approach because it treats the entire finite population attribute values 

A  as fixed, and the hypothetical replications are generated only by repeated realizations of the recording 

indicator .IR  Of course, in general, the values of { , }i i N  are unknown, and worse they are 

inestimable from a non-probability sample without further assumptions. To proceed, we pose assumptions 

such as missing at random, i.e., Pr ( 1 ) Pr ( 1 ),i i i iR A R= = = x  and the requirement of an auxiliary 

sample so that we have some values of xi  with 0.iR =  We also have choices on how to estimate the 

inclusion propensity Pr ( =1 ),i i iR = x  parametrically or non-parametrically. These assumptions, 

requirements, and estimation methods are all essential for practical implementation, as carefully reviewed 

and discussed by Wu (2022); also see Tan (2010) for a detailed comparison of various estimation 

strategies. Nevertheless, the overarching idea of quasi-randomization methods is to choose 
IW  to free 

I I IR W R=  from I  in expectation over the posited hypothetical replications, to regain the freedom 

guaranteed by probability sampling. 

Complementarily, the super-population approaches aim to miniaturize 
,R z

c  via making the other 

variable in 
,

,
R z

c  that is, 
Iz  free of I  in expectation, but over a different hypothetical replication scheme. 

Here the idea is to choose an ( )xim  that is a good approximation to iy  such that the residual 

( )xi i iz y m= −  will be zero in expectation conditioning on .x  Typically, this is done by considering a 

joint model for { , }i iR y  given ,ix  and with a specific regression model ( ),y x  using the notation in 

Wu (2022). It is important to recognize that, although we only specify the regression model iy  given ,ix  

we must include iR  in the replications in order to capture the possible dependence of iR  on the entire 

{ , },i i iA y= x  which is the key concern for non-probability samples. Indeed, it is this joint specification 

that permits the adoption of the missing at random assumption to reduce ( , ) ( ),i i i i iP y R P y=x x  

which in turn permits us to focus on specifying a single regression model ( )xi iy  for both observed 

and unobserved individuals. Therefore, when we write E ,  we mean the expectation with respect to   
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 1
( , ) ( ) ( , ) (1 ) ( ),i iR R

i i i i i i i i i i i iP R y P R P y R y  −
= = −x x x x  (4.2) 

where Pr ( 1 )xi i iR = =  is left unspecified, unlike with the quasi-randomization approach. 

It follows then that, conditioning on { , }X xi i= N  and 0,Rn   which does not alter ( )XP y  

because y  and R  are independent given ,X  we have 

 
1

,
E( , 0) [ ( )] Cov ( , E[ ] ( )).R I I I I I IR z

c n p W y m− = −X X x x  (4.3) 

Clearly, (4.3) becomes zero when we choose ( ) E [ ]x xI I Im y=  and that the   model is (first-order) 

correctly specified, that is, E [ ] E[ ].I I I Iy y =x x  This summarizes the super-population approach, and 

it renders 
1 2

,
( )pR z

c O N −=  for similar reasons as given for the quasi-randomization framework. 

 
5. Quasi-randomization and super-population implementations 
 

Once a joint model for { , }i iR y  is set up, of course we can use it for estimating both i  and the 

regression function ( ),m x  each of which is made possible by the availability of the auxiliary probability 

sample, and the assumption of missing at random. But as shown before, correctly specifying and 

estimating one of them is sufficient for miniaturizing 
,

.
R z

c  However, from (4.3), in order for the 

covariance/correlation to be zero, neither multiplicative correction to 
I  via 

IW  nor the additive 

adjustment for E( )xI Iy  via ( )xIm  need to be correct. All we need is that, after the correction or 

adjustment, what is left would be uncorrelated with each other. The aforementioned framework of 

Collaborative TMLE was built essentially on this insight (e.g., see Section 3.1 of van der Laan and 

Gruber, 2009), though the heavy mathematical treatments in its literature might have discouraged readers 

to seek such intuitive understanding.  

To provide a simple illustration, consider a finite population that is an i.i.d. sample from a super-

population model:  

 
3

0

E[ ] , ~ (0,1).k

k

k

y x x x N
=

=   (5.1) 

The non-probability sample is generated by a mechanism R  such that ( ) ( )Pr 1 , ,R y x x= =  that is, 

it is determined by the magnitude of x  only. Suppose we mis-specify the function form for   (e.g., the 

divine model may not be monotone in ,x  but the device model such as the conventional logistic link is), 

as well the regression model by choosing 
2

0 1 2( ) .m x b b x b x= + +  Since 2x  is uncorrelated with x  or 
3x  under ~ (0,1),x N  we know that our least-square estimator for 2b  would still be valid for 2  even 

under the mis-specified regression model. This turns out to be sufficient to ensure the asymptotic 

unbiasedness (as )N →  of the following “doubly robust” estimator for ,Ny =  the finite-population 

mean,  
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( )

( )

*

1 1

*

1 =1

ˆ ˆ( ( )) ( )
ˆ ,

N N

i i i i i ii i

N N

i i ii i

R w x y m x R m x

R w x R


= =

+

=

−
= +
 

 
 (5.2) 

where 
*R  indicates the auxiliary sample (of x  only). Or equivalently,  

 
( ) ( )( )

( )( )
( )( )

( )

*

*

ˆCov , ˆCov ,
ˆ ,

EE

I I I I I I I I

N

I II I I

R w x y m x R m x
y

RR w x
+

−
− = +  (5.3) 

which makes it clearer that any bias in ̂+  is controlled by the covariance (or correlation) involving ,R  

since the covariance involving 
*R  is already miniaturized by the assumption that the auxiliary sample is 

probabilistic (which, for simplicity, is assumed to be a simple random sample). 

Here ( )w x  is any weight function such that ( )
3

E ,x w x
      where the expectation is with 

respect to ~ (0,1),x N  and 
2

0 1 2
ˆˆ ( ) ,m x b b x x= + +  with 2̂  being the least-square estimator for 2  

from the biased sample, and 0b  and 1b  can be chosen arbitrarily. Because the finite-population 

covariance/correlation between ( ) ( )I Ix w x  and 
k

Ix  is 
1 2( ),pO N −

 for 1k =  and 3,k =  the 

misfitted parts for   or m  do not contribute to the ddc (asymptotically) since they are uncorrelated with 

each other under the super-population model, leading to further robustness going beyond “double 

robustness”. This of course does not mean that we can misfit a model arbitrarily and still obtain valid 

estimators, but it does imply that having at least one model being correct is a sufficient, but not necessary, 

condition for the validity of the doubly robust estimators. 

It is also worth stressing that, in formatting the regression model, we do not necessarily need to invoke 

a device probability, e.g., a super-population regression model, because the FPI variable provides a finite-

population regression via applying the least-squares method to regress iy  on , .i ix N  This regression 

fitting itself says little about whether the resulting regression line ˆ ( )xy m=  is a good fit to ( , )xi iy  or 

not. However, the example above indicates that, for the purpose of estimating the population average of 

,y  the lack of fit may not matter that much, as long as the “residual” ˆ ( )xI I Iz y m= −  has little 

correlation with ,I IW   as two functions of the FPI variable .I  Indeed, as discussed in Section 3, we can 

consider including ˆ
I  in the regression model ˆ ˆ( , ).I Im x  How effective this strategy is in general is a 

topic of further research. 

 
6. Counterbalancing sub-sampling 

 
6.1 The devastating impact of data defect on effective sample size 
 

A key finding, which has surprised many, from studying the data quality issue is how small the size of 

our “big data” is when we take into account the data defect. To prove this mathematically, we can equate 

the mean-squared error (MSE) of WG  in (2.1), with the MSE of a simple random sampling estimator of 

size 
eff .n  This yields (see Meng (2018) for derivation):  
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 eff 2 2

, ,

1 1
,

1 E[ ] 1

W W

W WR G R G

f f
n

f f 
 

− −
 (6.1) 

where W Wf n N=  and the expectation E  is with respect to the conditional distribution of R  given .Wn  

It is worthwhile to note that this (conditional) distribution can involve all three types of probability 

discussed in Section 1.2 because the variations in R  can come from multiple sources. For example, in 

typical opinion surveys, there will be (1) design probability in the sampling indicator, (2) divine 

probability in formulating the non-response mechanism, and (3) device probability for estimating the 

mechanism and the weights. 

Expression (6.1) is the weighted version/extension of the expression given in Meng (2018) with equal 

weights, which reveals the devastating impact of a seemingly tiny ddc. Suppose our sample is 1% of the 

population, and it suffers from a half-percent ddc. Applying (6.1) (with equal weights) with Wf = 0.01 

and 
,R G

 = 0.005 yields 
effn  404 regardless of the sample size .Rn  In the case of the 2020 US 

presidential election, 1% of the voting population is about 1.55 million people, and hence the loss of 

sample size due to a half percent ddc is about 1 - (404 / 1,550,000) > 99.97%. Such seemingly impossible 

losses have been reported in both election studies (Meng, 2018) and COVID vaccination studies (Bradley 

et al., 2021). A most devastating consequence of such losses is the “big data paradox”: the larger the 

(apparent) data size, the surer we fool ourselves because our false confidence (in both technical and literal 

sense) goes up with the erroneous data size, while the actual coverage probability of the incorrectly 

constructed confidence intervals become vanishingly small (Meng, 2018; Msaouel, 2022). 

A positive implication from this revelation, however, is that we can trade much data quantity for data 

quality, and still end up having statistically more accurate estimates. Of course, in order to reduce the bias, 

we will need some information about it. If we have reliable information on the value of ddc, we can 

directly adjust for the bias in estimating the population average corresponding to the ddc, for example by a 

Bayesian approach, similar to that taken by Isakov and Kuriwaki (2020) in their scenario analysis. 

Furthermore, if we have sufficient information to construct reliable weights, we can use the weights to 

adjust for selection biases as commonly done. Nevertheless, even in such cases, it may still be useful to 

create a representative miniature of the population out of a biased sample for general purposes, which for 

example can eliminate many practitioners’ anxiety and potential mistakes for not knowing how to 

properly use the weights. Indeed, few really know how to deal with weights, because “Survey weighting is 

a mess” (Gelman, 2007). 

However, creating a representative miniature out of a biased sample in general is a challenging task, 

especially because ddc can (and will) vary with the variable of interest. Nevertheless, just as weighting is 

popular tool despite it being far from perfect, let us explore representative miniaturization and see how far 

we can push the idea. The following example therefore is purely for brainstorming purposes, by looking 

into a common but challenging scenario, where we have reasonable information or understanding on the 

direction of the bias, that is, the sign of the ddc, but rather vague information about its magnitude. A good 

example is non-representativeness of election polls because voters tend to not want to disclose their 
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preferences when they plan to vote for a socially unpopular candidate; we therefore know the direction of 

the bias, but not much about its degree other than some rough guesses (e.g., a range of 10 percentage 

points). 

 
6.2 Creating a less biased sub-sample 
 

The basic idea is to use such partial information about the selection bias to design a biased sub-

sampling scheme to counterbalance the bias in the original sample, such that the resulting sub-samples 

have a high likelihood to be less biased than the original sample from our target population. That is, we 

create a sub-sampling indicator ,IS  such that with high likelihood, the correlation between 
I IS R  and 

IG  

is reduced, compared to the original , ,R G  to such a degree that it will compensate for the loss of sample 

size and hence reduce the MSE of our estimator (e.g., the sample average). We say with high likelihood, in 

its non-technical meaning, because without full information on the response/recording mechanism, we can 

never guarantee such a counterbalance sub-sampling (CBS) would always do better. However, with 

judicious execution, we can reduce the likelihood of making serious mistakes. 

To illustrate, consider the case where y  is binary. Let 1 0 ,r r = −  where yr  is the propensity of 

responding/reporting for individuals whose responses will take value :y  Pr ( 1 ).y I I Ir R y y= = =  If the 

sample is representative, then like , ,R G    is miniaturized, meaning that it is on the order of 1 2.N −  This 

is most clearly seen via the easily verifiable identity (see (4.1) of Meng, 2018) 

 
,

Cov ( , ) (1 )
= ,

(1 ) (1 )

I I I R R
R y

y R f f

p p p p


−
 =

− −
 (6.2) 

where Pr ( 1)I Ip y= =  and Pr ( 1),R I If R= =  which is the original sampling rate. A key ingredient of 

CBS is to determine = ( 1 , 1)y I I I Is P S y y R= = =  for 0,1,y =  that is, the sub-sampling probabilities 

of individuals who reported 1y =  and 0,y =  respectively. 

To determine the beneficial choices, let Pr ( 1 1)S I I If S R= = =  be the sub-sampling rate, and 

1 1 0 0.S s r s r = −  Then by applying (2.2) (with equal weights) and (6.2) to both the sample average and 

the sub-sample average, we see that the sub-sample average has smaller (actual) error in magnitude if and 

only if  

 

2 2 2

2 .S S
S

S R R

f
f f f

      
       

   
 (6.3) 

Writing 1 0r r r=  and 1 0 ,s s s=  the right-hand side of (6.3) becomes  

 

2
2

* * 1
(1 ) ,

1

rs
sp p

r

 −
 + −    

− 
 (6.4) 
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where 
* Pr ( 1 1)I I Ip y R= = =  is observed in the original sample, which should remind us that 

*p  may 

be rather different from the p  we seek, because of the biased R -mechanism. 

An immediate choice to satisfy (6.4) is to set 1,s r−=  which of course typically is unrealistic because 

if we know the value of ,r  then the problem would be a lot simpler. To explore how much leeway we 

have in deviating from this ideal choice, let 1,r = −  we can then show that (6.4) is equivalent to  

  *( 1) [1 (1 ) ] ( 1) 2 0.s p s − + + − +   (6.5) 

This tells precisely the permissible choices of s  without over-correcting (in the magnitude of the resulting 

bias):   

(i)  When 1,r   i.e., 0,   we can take any s  such that  

 
*

*

[1 (1 ) ]
1;

1 (1 )

p
s

p




+− −
 

+ +
 (6.6) 

(ii)  When 1,r   i.e., 0,   we can take any s  such that  

 

*

*

1 (1 )
1 .

[1 (1 ) ]

p
s

p



 +

− −
 

+ +
 (6.7) 

This pair of results confirms a number of our intuitions, but also offers some qualifications that are not 

so obvious. Since we sub-sample to compensate for the bias in the original sample, s  and r  must stay on 

the opposite side of 1, i.e., ( 1) ( 1) ( 1) 0,s r s − − = −   as seen in (6.6)-(6.7). To prevent over 

corrections, some limits are needed, but it is also possible that the initial bias is so bad that no sub-

sampling scheme can make things worse, which is reflected by the positivizing function [ ]x +  in the two 

expressions above. However, the expressions for the limits as well as for the thresholds to activate the 

positivizing functions are not so obvious. Nor is it obvious that these expressions depend on the unknown 

p  indirectly via the observed 
*,p  and hence only prior knowledge of r  is required for implementing or 

assessing CBS. 

This observation suggests that it is possible to implement a beneficial CBS when we can borrow 

information from other surveys (or studies) where the response/recording behaviors are of similar nature. 

For example, we may learn that a previous similar survey had r = 1.5 (e.g., those with 1y =  had 6% of 

chance to be recorded, and those with 0y =  had only 4% chance). Taking into account the uncertainty in 

the similarity between the two surveys, we might feel comfortable to place (1.2, 1.8) as the plausible range 

for r  in the current study. Suppose we observe 
*p = 0.6, this means that the maximum ‒ over the range 

r (1.2, 1.8) ‒ of the lower bound on the permissible s  as given in (6.6) is 

 
[1 (1 0.6) ( 1)] [1.4 0.4 ] 1.4 0.4 1.2

= 0.7.
1 1.6( 1) 1.6 0.6 1.6 1.2 0.6

r r

r r

+ +− − − − − 
= 

+ − −  −
 (6.8) 
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Therefore, as long as we choose [0.7,1),s  we are unlikely to over-correct. The price we pay for this 

robustness is that the resulting sub-sample is not as good quality as it can be, for example, when the 

underlying r  for the current study is indeed 1.5 (in expectation). Choosing any [0.7,1)s  will not 

provide the full correction as provided by 1s r= = 0.67, that is, the sub-sample average will still have a 

positive bias but with a smaller MSE compared to the original sample average. Of course both the 

feasibility and effectiveness of such CBS need to be carefully investigated before it can be recommended 

for general consumption, especially going beyond binary .y  The literature on inverse sampling (Hinkins, 

Oh and Scheuren, 1997; Rao, Scott and Benhin, 2003) is of great relevance for such investigations, 

because it also aims to produce simple random samples via subsampling, albeit with a different motivation 

(to turn complex surveys into simple ones for ease of analysis). 

 
7. Probability sampling as aspiration, not prescription 
 

As it should be clear from the definition of ddc, it is not directly estimable from the biased sample 

alone. One therefore naturally would (and should) question how useful ddc is or could be. The answer 

turns out to be an increasingly long one thanks to ddc being model-free and hence a versatile data quality 

metric for both probability samples and non-probability samples. Its usefulness for generating theoretical 

insights is demonstrated by its role in quantifying the data quality-quantify trade-off via effective sample 

size as seen in (6.1), in understanding simulation errors in quasi-Monte Carlo as explored in Hickernell 

(2016), and in anticipating the “double-plus robustness” phenomenon as presented in Section 5. Its 

methodological usages are illustrated by the scenario analyses for the 2020 US Presidential election 

(Isakov and Kuriwaki, 2020) and for the COVID-19 vaccination assessments (Bradley et al., 2021). Its 

practical implications can be found in epidemiological studies (Dempsey, 2020), particle physics 

(Courtoy, Houston, Nadolsky, Xie, Yan and Yuan, 2022), and political polling (Bailey, 2023). 

Not surprisingly, these practical applications found the notion of ddc and the underlying error 

decomposition (2.2) helpful because of the non-probability samples they need to deal with, either due to 

distortions to the probability samples such as by a biased non-response mechanism or due to selection 

biases in the first place such as selective COVID-19 testing. Professor Wu’s overview, and the many 

references cited there and in this discussion, should make it clear that non-probability samples are almost 

surely everywhere. I am invoking this strong probabilistic phrase not merely for its humorous value. When 

we consider the unaccountably many possible values for the mean of ddc, the probability ‒ however we 

construct it to capture the wild west of data collection processes out there ‒ that it will land precisely on 

zero must be zero. This zero mean is a necessary condition for the sample to be a probability sample, 

because a probability sample implies that ddc must be of the order of 1 2N −  order (Meng, 2018), which is 

impossible when its mean is non-zero (asymptotically). This observation suggests that we should move 

away from our tradition of treating probability sampling as a centerpiece and then try to model the much 

larger world of non-probability samples as “deviations” from it. Instead, we should start with studying 

samples with general collection mechanisms using tools or concepts such as ddc, and then treat (design) 
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probability samples as the very special, ideal case ‒ always an aspiration, but never the only prescription 

for action. 
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Comments on “Statistical inference with non-probability 

survey samples” 

Zhonglei Wang and Jae Kwang Kim1 

Abstract 

Statistical inference with non-probability survey samples is a notoriously challenging problem in statistics. We 

introduce two new methods of nonparametric propensity score technique for weighting in the non-probability 

samples. One is the information projection approach and the other is the uniform calibration in the reproducing 

kernel Hilbert space. 
 

Key Words: Information projection; Uniform function calibration; Data integration. 

 

 

1. Introduction 
 

We would like to congratulate Dr. Changbao Wu on the outstanding work in non-probability sampling. 

Even though probability sampling served as a golden standard tool for finite population inference in the 

past decades, it has recently become tarnished gold due to low response rates and high costs. Non-

probability sampling, on the other hand, is popular due to its feasibility and low cost (Couper, 2000; 

Kaplowitz, Hadlock and Levine, 2004). More importantly, non-probability sampling, such as a web 

survey, can quickly gather up-to-date information when compared to a probability sample. However, 

because the selection mechanism is unavailable for non-probability sampling, failing to correct the 

selection bias in analyzing a non-probability sample may result in inefficiency or even erroneous 

inference. As a result, adjusting the selection bias for a non-probability sample is a fundamental topic for 

survey sampling researchers, and this work presents the most comprehensive answers to this subject. 

Dr. Wu’s research, in particular, includes a thorough examination of propensity score (PS) techniques. 

Those PS techniques, on the other hand, have drawbacks. First, even for a correctly specified PS model, 

the inverse probability weighting estimator may be inefficient due to small estimated propensity scores. 

One alternative is post-stratification, as stated in Section 5 of the paper, although there is no clear 

guidance on how to choose .K  Furthermore, in practice, correctly specifying a PS model is difficult. 

While doubly robust estimation can help to safeguard a bad PS model, the final estimator is problematic 

when both the PS and regression models are incorrect (Kang and Schafer, 2007). 

To overcome the misspecification of the PS model, Dr. Wu has mentioned several nonparametric 

methods, including a kernel method and a tree-based method. In this discussion, we would like to expand 

on this direction and provide two more methods to augment the study. One is based on a density ratio 

model using information projection (Csiszár and Shields, 2004), and the other is by uniformly calibrating 

functions over a reproducing kernel Hilbert space (RKHS). As explained by Wahba (1990), RKHS is a 

very flexible function space for approximation. Instead of estimating the propensity scores, we aim at 
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estimating the sampling weights  1( ) :A

i Ai S −   to avoid possible inefficiency due to small estimated 

propensity scores. 

Denote AS  and BS  to be the index sets for the non-probability and reference probability samples, 

respectively, and the corresponding sample sizes are An  and .Bn  Let  ( , ) :i i Ay i Sx  and 

 ( , ) :B

i i Bd i Sx  be available, where iy  and ix  are the study variable and auxiliary vector for the thi  

unit and B

id  is the design weight for .Bi S  

The paper is organized as follows. In Section 2, we introduce the information projection approach. In 

Section 3, we introduce the basic idea of uniform calibration. Some concluding remarks are made in 

Section 4. 

 
2. Information projection approach 
 

Suppose that we are interested in estimating parameter 0θ  defined through  ( ; , ) = 0,NE U Yθ X  

where ( )NE   is the expectation with respect to the population empirical distribution Pr{( , )Y =X  
1( , )}=i iy N−

x  for 1, ,i N=  and 0 otherwise, and ( ); ,U yθ x  is a certain estimating function. For 

example, ( ); ,U y y = −x  corresponds to 1

=1

N

y ii
N y −=   in the paper. We wish to obtain an estimator 

of 1( ) ,A

i
−  ( )Pr 1 , ,A

i i i iR y = = x  and 1iR =  if Ai S  and 0 otherwise. 

To estimate  1( ) : ,A

i Ai S −   we may use the relationship in the density ratio function. First, we 

consider a super-population model ,  and let 0 ( , )f yx  and 1 ( , )f yx  be the density functions of ( , )yx  

given 0R =  and 1,R =  respectively. Denote the density ratio function to be  

 0

1

( , )
( , ) ,

( , )

f y
r y

f y
=

x
x

x
  

and by the Bayes formula, we have  

 1 Pr ( 0)
( ) 1 ( , ).

Pr ( 1)

A i
i i i

i

R
r y

R
 − =

= +
=

x  (2.1) 

Thus, there is a one-to-one relationship between 1( )A

i
−  and ( , ).i ir yx  

Under assumption A1, we can show that ( , ) ( ).r y r=x x  In this section, we make a more general 

assumption that there exists T

1( ) ( ( ), , ( ))Lb b=b x x x  such that  

 ( ).R Y⊥ b x  (2.2) 

Rosenbaum and Rubin (1983) called ( )b x  in (2.2) balancing scores. 

To estimate the density ratio function ( ),r x  we minimize the Kullback-Leibler divergence  

 0 0 1 0( ) = log( ) dQ f f f f   (2.3) 
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with respect to 0f  subject to some constraint, where both 0f  and 1f  are absolutely continuous with 

respect to a  -finite measure .  Regarding the constraint, we may use the following one  

  1 0Pr( 1) ( ) ( ) (d ) Pr ( 0) ( ) ( ) (d ) = ( ) ,i iR f R f E = + = b x x x b x x x b X  (2.4) 

where ( )E   is the expectation with respect to the super-population model .  That is, given 1 ( ),f x  we can 

find 0 ( )f x  to minimize (2.3) under a calibration constraint with respect to ( ).b x  

By Lemma 3.1 of Wang and Kim (2021), the optimized conditional density function satisfies  

 
 

 

T

T

1*

0 1

1 1

exp ( )
( ) ( ) ,

exp ( )
f f

E
=

 
 

λ b x
x x

λ b x
 (2.5) 

where 1λ  is chosen to satisfy (2.4). Note that the solution (2.5) is equivalent to  

   T

0 1log ( ; ) ( )r = +x λ λ b x  (2.6) 

for the density ratio function ( ),r x  where T T

0 1= ( , ) ,λ λ  and 0  is a normalizing constant satisfying 

1( ; ) ( ) (d ) 1.r f  = x λ x x  Thus, the information projection finds the best model for propensity score 

function. 

Once the model is determined as in (2.6), we need to estimate the model parameters. Because of the 

moment constraints in (2.4), the sample-version estimating equation for λ  is the calibration equation 

given by  

    T

0 1

=1

1 1
1, ( ) 1 exp ( ) = 1, ( ) .

B

N
BA A

i i i i i

i i SA

n n
R d

N n N




  −
+ +   

   
 b x λ b x b x  (2.7) 

Here, since  ( )E b X  is not available, we use its estimate 1 ( ).
B

B

i ii S
N d−

 b x  Once the parameter 

estimate λ̂  is obtained, we can construct  

  T

0 1

1 ˆ ˆˆ = 1 exp ( )A
i i

A

n

n
 

−
+ + λ b x   

as the final PS weights. The parameter of interest can be estimated by solving 
1 ˆ ( ; , ) = 0

A
i i ii S

N U y−

 θ x  for .θ  

Wang and Kim (2021) developed this framework under the non-probability sampling setup where ix  

are available throughout the finite population. Consistency and the asymptotic normality can be developed 

under the assumption that  ( ; , )E U Yθ x x  lies in the linear space generated by  1 ( ), , ( ) .Lb bx x  

Instead of assuming the availability of  : 1, ,i i N=x  as in Wang and Kim (2021), there only exists a 

reference probability sample  ( , ) : .B

i i Bd i Sx  If the probability sample BS  is a census, then the method 

above reduces to the one considered by Wang and Kim (2021), except that we consider a finite population 

parameter 0 .θ  In Section 11.2 of Kim and Shao (2021), the information projection approach is called the 
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maximum entropy method and applied to the data integration problem. In the simulation study presented 

in example 11.1 of the book, the proposed information projection method shows better performance than 

the methods of Chen, Li and Wu (2020) and Elliott and Valliant (2017). 

 
3. Uniform calibration approach 
 

Calibration is commonly used to improve the representativeness of a non-probability sample, but 

existing methods, including the information projection approach mentioned in Section 2, are based on 

calibrating a set of pre-specified functions. However, it is hard to correctly specify them for calibration in 

practice. In this section, we propose a general framework for uniformly calibrating functions in an RKHS. 

Instead of considering a parametric form for ( )E Y x  in (3.1), we only assume ( ) ( ),i i iE y m =x x  

where ( )m x  is a smooth function satisfying certain conditions. 

We still consider (2.1) under the assumption A1. Instead of assuming a set of pre-specified functions 

( ),b x  we propose to estimate  :i Ar i S  by the following optimization,  

 

2

1 22 2
0

2 2

( , )
ˆ argmin ( ) ,sup H

A
u H

uS u
Q

u u
 

 

   
 = − + 
    

γ

γ
γ γ  (3.1) 

where ( )1= , , ,Nr rγ  = 0ir  for ,Ai S  0γ  is equivalent to 0ir   for 1, , ,i N=  H  is an RKHS,  

 ( )

2

1 1, 1 1 ( ) ( ) ,
A B

B

i i i i

i S i SA

N
S u N r u N d u

n

− −

 

    
= + − −   

     
 γ x x  (3.2) 

2 1 2

2
( ) ( ) ,

A B
A B ii S S

u n n u−

 
= +  x  

H
u  is the norm associated with the RKHS, ( )AQ γ  is a general 

penalty on γ  to avoid overfitting, and 1  and 2  are two tuning parameters; see Wahba (1990) for a 

detailed introduction about the RKHS. 

The intuition for the optimization (3.1) is briefly discussed. First, if ir  approximates the true density 

ratio ( )ir x  well, the bias of the first term in (3.1) is negligible for estimating 1

=1
( )

N

ii
N u−  x  for .u H  

Besides, 1 ( )
B

B

i ii S
N d u−

 x  is design-unbiased. Thus, ( , )S uγ  balances two estimators for 
1

=1
( ),

N

ii
N u−  x  and it is small if ir  approximately equals ( )ir x  for .Ai S  However, ( , )S uγ  is not scale 

invariant, and we have 2( , ) ( , )S cu c S u=γ γ  for cℝ. Thus, we use 
2

2
u  to make it scale-invariant. The 

term 
2

1 H
u  is used to penalize the smoothness of the function u  for .u H  There exist different 

choices for ( )AQ γ . For example,  
2

1( ) 1 ( 1)
A

A A ii S
Q Nn r−


= + −γ  corresponds to penalizing extreme 

values for the sampling weights, and Wong and Chan (2018) investigated a similar problem assuming the 

availability of { : 1, , }.i i N=x  The optimization (3.1) can be viewed as a “minmax” problem, and if 

,m H  the estimated density ratios  ˆ :i Ar i S  may lead to a reasonably good estimator  

 1ˆ ˆ1 1 .
A

uc i i

i S A

N
N r y

n
 −



   
= + −  

   
  (3.3) 
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Uniform calibration is a new method for non-probability sampling, and there are some technical 

challenges in (3.1). For example, how to incorporate the design properties of BS  when establishing the 

theoretical properties of (3.3) has not be fully investigated, and we have finished a working paper about 

this topic (Wang, Mao and Kim, 2022). The kernel-based method is computationally expensive, especially 

when the sample sizes are large. It may be interesting to propose a more computationally efficient 

algorithm for the uniform calibration problem. One possible answer is to consider some other functional 

spaces, such as the one spanned by B-splines. In addition, it is also of interest to consider how to 

incorporate more than one reference probability sample, and how to formulate a uniform calibration if we 

have different covariates in different reference probability samples. 

 
4. Concluding remarks 
 

Propensity score weighting is an important tool for correcting selection bias in the nonprobability 

sampling. Dr. Changbao Wu made significant contributions on this important topic. In addition to the two 

additional methods, the empirical likelihood (EL) approach of Qin, Leung and Shao (2002) is potentially 

useful as another tool for propensity score weighting. In particular, the EL-based weighting method is 

applicable even under informative sampling. Further investigation on this direction will be explored 

elsewhere. 
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Abstract 

This response contains additional remarks on a few selected issues raised by the discussants. 
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Let me start by thanking the Editor of Survey Methodology, Jean-François Beaumont, for organizing 

the discussions and putting together a glamour array of discussants. Each discussant looked at the topic of 

non-probability survey samples, and more generally topics on data integration and combining data from 

multiple sources, with some unique perspectives. I have enjoyed reading the discussions and I believe they 

are significant contributions to dealing with non-probability and other types of samples with selection 

bias. In what follows, I will make some additional remarks on a few selected issues raised by the 

discussants. 

 

Michael A. Bailey 
 

Dr. Bailey focused on the limitations of the estimation methods I presented under the assumptions A1-

A4, and called for further development when these assumptions, and the so-called “MAR assumption” A1 

in particular, are violated. Bailey used non-probabilistic polling as an example to argue that “non-response 

(can indeed) depends on the study variable” and the danger of A1 being violated is real. 

While the criticism on the limitations of the methods reviewed in my paper is fair and square, the 

statements “(Wu) is fishing in one fairly specific corner of the pond” and “shying away from MNAR 

models” seem to show significant underappreciation on the importance of methodological development 

under the standard assumptions A1-A4 which were used by several authors on non-probability survey 

samples. First of all, the assumption A1 is on the participation (or inclusion/selection) mechanism for non-

probability samples, which is not the same as “non-response”. There are many scenarios where these 

assumptions can indeed be justified, especially for surveys using web- or phone-panels where the initial 

participation in those panels depends largely on certain demographic variables. Second, participation 

behaviour in non-probability surveys can be confounded by certain study variables during data collection 

in the same way we face in probability surveys on non-response, which is exactly how the current 

literature on non-probability surveys has been evolving in dealing with those issues. Third, any 

methodological advances in addressing the so-called “MNAR models” for non-probability surveys would 

require the foundation and thorough understanding established under the assumptions A1-A4. 
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Bailey also stated that “while MAR violations are a problem in probability sampling (arising due to 

non-response among randomly contacted individuals), MAR violations are more serious in a non-

probability world”. I heartily concur. As a matter of fact, violations of the positivity assumption A2 are as 

serious as violations of the “MAR assumption” A1, and the two are intercorrelated. Violations of A2 

imply that ( , ) 0x
A

i A i iP i S y =  =  for some units in the target population, leading to the 

undercoverage problem that is as notorious as non-response. When A2 is violated but A1 holds, it is often 

believed that model-based prediction estimators can mitigate the biases due to undercoverage. Under the 

assumption A1 the sample inclusion indicator variable R  and the study variable y  are conditionally 

independent given ,x  which implies that  

 ( , 1) ( ).i i i i iE y R E y= =x x  (1) 

It follows that a valid prediction model xy  can be built using the observed data {( , ), }x
Ai iy i S  (i.e., 

units with 1).iR =  Unfortunately, the equation (1) implicitly requires ( 1 ) 0,i iP R = x  and prediction-

based estimators are not immune to potential undercoverage biases. Bailey’s call for “a framework that 

encompasses the possibility of MAR violations” is in line with some of the current research effort on 

dealing with undercoverage and “non-ignorable” participation mechanisms for non-probability survey 

samples. See, for instance, Chen, Li and Wu (2023), Cho, Kim and Qiu (2022) and Yuan, Li and Wu 

(2022), among others. In a nutshell, valid statistical inferences under those scenarios require either 

external data such as a validation sample or additional assumptions such as the existence of instrumental 

variables. 

I am on the exact same page of discontent as Bailey with the “missing at random” label, since the term 

might be confused with “randomly missing” (Wu and Thompson, 2020, page 195). The term “ignorable” 

is also an unfortunate choice of terminology for missing data and causal inference literature, since it 

certainly cannot be ignored by the data analyst (Rivers, 2007). I use the standard term “propensity scores” 

for non-probability samples, while several other authors are in favour of “participation probabilities”, 

including Beaumont (2020) and Rao (2021). 

 

Michael R. Elliott 
 

Dr. Elliott discussed several issues with augmented materials and an expanded list of references. They 

are important additions to the current topic, especially the reviews on “additional approaches to combining 

data from probability and non-probability surveys” and sensitivity analysis on “unverifiable assumptions”. 

Elliott’s discussions on distinctions between descriptive parameters and analytic parameters and 

weighting versus modelling raised the critical issue of efficiency of the IPW estimators in practice. It has 

been known for probability survey samples that the inverse probability weighted Horvitz-Thompson 

estimator of the population total yT  is extremely inefficient (in terms of large variance) when the sample 

selection probabilities i  are unequal but have very weak correlation to the study variable ,y  although 

the estimator remains unbiased under such scenarios. Basu’s elephant example (Basu, 1971) described a 
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“convincing case” where the inverse probability weighted and unbiased Horvitz-Thompson estimator 

failed miserably, leading to the dismissal of the circus statistician. Discussions on weighting versus 

modelling, i.e., the IPW estimators versus model-based prediction estimators for descriptive population 

parameters, are highly relevant for both theoretical developments and practical applications. Our job as a 

statistician in dealing with non-probability survey samples could be very much in limbo unless we develop 

solid guidelines and diagnostic tools for choosing suitable approaches with the given dataset and 

inferential problems. 

Elliott echoed my call for a few large scale probability surveys with rich information on auxiliary 

variables with the statement “it is increasingly critical for an organized and ideally government funded 

stable of high-quality probability surveys to be put into place for routine data collection”. His comments 

on new areas of research on issues with privacy and confidentiality due to the need for microdata under 

the context of analyzing non-probability survey samples are a visionary call and deserve an increased 

amount of attention from the research community. 

 

Zhonglei Wang and Jae Kwang Kim 
 

Dr. Wang and Dr. Kim presented two new approaches to propensity score based estimation, one uses 

the so-called information projection through a density ratio model and the other employs uniformly 

calibration functions over a reproducing kernel Hilbert space. These are new adventures in the field, and 

Kim and his collaborators have the experience and the analytic power to move the research forward. 

The starting point for both approaches is the following equation which connects the propensity scores 

to the density ratios,  

 0

1

( 0) ( , )1
1 .

( 1 , ) ( 1) ( , )

x

x x

i i i

i i i i i i

P R f y

P R y P R f y

=
= +

= =
  

The propensity scores ( 1 , )x
A

i i i iP R y = =  only require the model on 1iR =  given xi  and .iy  

Justification of the equation given above, however, requires a joint randomization framework involving 

both the model q  for the propensity scores and the superpopulation model   on ( , ).yx  From a 

consistency view point regarding the final estimator of the finite population mean of ,y  the joint 

framework imposes very little restrictions if the density ratios are modelled nonparametrically. The 

consequential impact of the approach is on variance and variance estimation. Variance of an estimator 

under a joint randomization framework involves more than one component, and variance estimation has 

further complications if nonparametric procedures are involved. Efficiency comparisons between the 

proposed methods and some of the existing methods need to be carried out under suitable settings. I am 

eager to see further developments on the proposed methods. 

 

Sharon L. Lohr 
 

Dr. Lohr’s extended discussions on diagnostic tools for assessing model assumptions are highly 

valuable to the topic. Her explorations of existing ideas and methods and the adaptations to the current 
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setting highlight the seemingly different but deeply connected issues faced by both nonprobability and 

probability survey samples. One such issue is the undercoverage problem (i.e., violations of assumption 

A2) and the interweave of assumptions A1 and A2. Lohr was rightfully concerned with prediction based 

estimators where the prediction model of y  given x  is built based on the nonprobability sample 
A

S  and 

the mass imputation estimator is computed using observed x  in the reference probability sample ,
B

S  a 

scenario where each of the two assumptions A1 and A2 does not stand alone. The undercoverage problem 

is an example where “space-age procedures will not rescue stone-age data”. Lohr advocated to “take a 

small probability sample to investigate assumptions”, which is of necessity in theory since rigorously 

defendable methods under certain scenarios require validation samples. Developments of compromising 

strategies with existing data sources, however, are more appealing but also more challenging in practice. 

Lohr’s observation “nonprobability samples have the potential to improve data equity” is an important 

one, since inclusion of units from groups which may be invisible in probability samples can be boosted 

relatively easily for nonprobability samples. Lohr also observed that “historically disadvantaged groups 

may be underrepresented in all data sources, including (nonprobability samples)”. Addressing the issue of 

data equity with nonprobability survey samples presents both opportunities and challenges. 

Lohr’s question “when should one use nonprobability samples” is a tough one. The same question can 

be asked for any other statistical methods. We do not seem to always question the validity of the methods 

and the usefulness of the results in many other scenarios due to our unchecked confidence that the 

required assumptions seem to be reasonable. For nonprobability samples, we have a more vulnerable 

situation regarding assumptions, and assessments and diagnostics of these assumptions are more difficult 

than cases with controlled experiments and/or more structured data. From this view point, Lohr’s extended 

discussion on assessing assumptions should be read with deep appreciation. In practice, an important 

confidence booster on the assumptions is the thorough investigation at the “design stage”, if such a stage 

can be conceived prior to data collection, on variables which might be related to participation behaviour, 

and to include these variables as part of the sample with further exploration of existing data sources 

containing these variables. 

 

Xiao-Li Meng 
 

Dr. Meng’s discussion, with the formal title “Miniaturizing data defect correlation: A versatile strategy 

for handling non-probability samples”, should be a standalone discussion paper itself. Meng weaved 

through a number of issues in estimating a finite population mean with a nonprobability sample, and 

explored strategies and directions for constructing an approximately unbiased estimator using the central 

concept of the so-called data defect correlation (ddc). The discussions are fascinating and thought-

provoking, and will surely generate more discussions and research endeavours on implications of the ddc. 

I would like to use this opportunity to comment briefly on the ddc in relation to three basic concepts in 

probability sampling: sampling strategy, undercoverage, and model-assisted estimation. It is not a 

nostalgia for the good old days when probability sampling was the golden standard but rather an 
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appreciation of how research in survey sampling has been evolving and the potential usefulness of the ddc 

in dealing with nonprobability survey samples. 

The term sampling strategy refers to the pair of sampling design and estimation method (Thompson, 

1997, Section 2.4; Rao, 2005, Section 3.1). The two components go hand in hand and are the backbone of 

conventional probability survey sampling theory. For the estimation of the population total yT  of the study 

variable y  using a probabiliity sample S  with first order inclusion probabilities i , the Horvitz-

Thompson estimator 
HT

ˆ
y i ii S

T d y


=  with the weight 
1

i id  −=  is the unique unbiased estimator among 

a class of linear estimators (Wu and Thompson, 2020). The theoretical argument for the result is 

straightforward due to the known inclusion probabilities i  under the given sampling design. Using the 

notation of Meng, the ddc involves three variables: the study variable ,G  the weight variable ,W  the 

sample inclusion indicator ,R  and is defined as the finite population correlation coefficient between 

R RW=  and .G  The ddc implicitly puts R  and W  as an inseparable pair for any inference strategy, 

with R  corresponding to the unknown “design” and W  for the “estimation method”. With the unknown 

“design” characterized by the unknown “divine probabilities” I  for the nonprobability sample, Meng 

showed through his equation (3.3) that 
1

I IW  −  is essentially a required condition for unbiased 

estimation of G  if nothing is assumed on the outcome regression model. The result provides a 

justification of the use of inverse probability weighted (IPW) estimator for nonprobability samples as the 

only sensible choice if a superpopulation model on the study variable is not involved. 

The problem of undercoverage has been discussed extensively in the existing literature on probability 

sampling. For nonprobability samples the issue is closely related to the violation of the positivity 

assumption A2 as discussed in Section 7.2 of my paper and my comments to the discussions of Bailey, 

Elliott and Lohr, with additional details given in Chen et al. (2023). Let 0 1,U U U=   where 1U  is the 

uncovered subpopulation with ( 1 , ) 0.A

i i i iP R y = = =x  Let 0 1,N N N= +  where 0N  and 1N  are 

respectively the sizes of the two subpopulations 0U  and 1.U  Let CovI  and 
(0)Cov I  denote respectively 

the covariance with respect to the discrete uniform distribution over U  and 0.U  It can be shown that  

  (0)

0 1 1 0 0 0
ˆCov ( , ) Cov ( , ) ( ) ,I I I I I IR G R G G G N N = − −  (2) 

where k kN N =  for 0,1,k =  0
ˆ ,ii S

N W


=  S  is the set of units for the nonprobability sample, and 

0G  and 1G  are respectively the population means of 0U  and 1U  for the study variable .G  Equation (2) 

has two immediate implications. First, if the estimation method is valid in the sense that the value of 
(0)Cov ( , )I I IR G  is small, then the bias of the estimator WG  due to undercoverage depends on 1  (i.e., the 

size of the uncovered subpopulation 1)U  and 1 0G G−  (i.e., the difference between 0U  and 1),U  a 

statement which has previously been established under probability sampling. Second, the equation reveals 

a scenario for potential counterbalancing: A biased estimator WG  for the “sampled population mean” 0G  

can be less biased for the target population mean G  if 
(0)Cov ( , )I I IR G  and 1 0G G−  have the same plus 

or minus sign. 
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Meng’s discussions on quasi-randomization and/or super-population using the ddc provided a much 

deeper understanding on doubly robust estimation. Historically, model-assisted estimation started to 

emerge in survey sampling in the early 1970s, and the approach has the same spirit of double robustness. 

The generalized difference estimator of the population mean 
1

=1

N

y ii
N y −=   as discussed in Cassel, 

Särndal and Wretman (1976) is given by  

 
GD

=1

1
ˆ ,

N
i i

y i

i S ii

y c
c

N




− 
= + 

 
   (3) 

where S  is a probability sample, the ’si  are the first order inclusion probabilities, and 1 2{ , , , }Nc c c  

is an arbitrary sequence of known numbers. The estimator 
GD

ˆ
y  is exactly unbiased for y  under the 

probability sampling design p  for any sequence ,ic  and is also model-unbiased if we choose 

( ).i i i ic m E y= = x  Cassel et al. (1976) showed a main theoretical result that the choice i ic m=  is 

optimal leading to minimum model-based expectation of the design-based variance 
GD

ˆ{ ( )}p yE V   when 

the model has certain structure in variance. The first part of the results on unbiasedness is under ( p  or 

);  the second part on optimality is under ( p  and ).  Note that the estimator ˆ
GDy  with the choice 

ˆ
i ic m=  has exactly the same structure of the doubly robust estimator discussed extensively in the missing 

data and causal inference literature since the 1990s, with the “divine probabilities” i  being unknown and 

estimated in the latter cases. 

The use of ddc in practice requires additional information from the population. Meng’s proposal of 

creating a representative miniature out of a biased sample echoes the call for a validation sample with a 

small size, since such a sample “can (also) eliminate many practitioners’s anxiety and potential mistakes 

for not knowing how to properly use the weights”. 

“There is no such thing as probability sample in real life” is probably a defendable statement for 

human populations. Probability samples, however, do exist in other fields such as business and 

establishment surveys, agricultural surveys, and natural resource inventory surveys; see Wu and 

Thompson (2020) for further detail. For humans, any rigorous rules and precise procedures are almost 

surely as aspiration, not prescription. 
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Are deep learning models superior for missing data 

imputation in surveys? Evidence from an empirical 

comparison 

Zhenhua Wang, Olanrewaju Akande, Jason Poulos and Fan Li1 

Abstract 

Multiple imputation (MI) is a popular approach for dealing with missing data arising from non-response in 

sample surveys. Multiple imputation by chained equations (MICE) is one of the most widely used MI 

algorithms for multivariate data, but it lacks theoretical foundation and is computationally intensive. Recently, 

missing data imputation methods based on deep learning models have been developed with encouraging 

results in small studies. However, there has been limited research on evaluating their performance in realistic 

settings compared to MICE, particularly in big surveys. We conduct extensive simulation studies based on a 

subsample of the American Community Survey to compare the repeated sampling properties of four machine 

learning based MI methods: MICE with classification trees, MICE with random forests, generative adversarial 

imputation networks, and multiple imputation using denoising autoencoders. We find the deep learning 

imputation methods are superior to MICE in terms of computational time. However, with the default choice of 

hyperparameters in the common software packages, MICE with classification trees consistently outperforms, 

often by a large margin, the deep learning imputation methods in terms of bias, mean squared error, and 

coverage under a range of realistic settings. 
 

Key Words: Deep learning; Hyperparameter selection; Missing data; Multiple imputation by chained equations; 

Simulation studies; Survey data. 

 

 

1. Introduction 
 

Many sample surveys suffer from missing data, arising from unit nonresponse, where a subset of 

participants do not complete the survey, or item nonresponse, where missing values are concentrated on 

particular questions. In opinion polls, nonresponse may reflect either refusal to reveal a preference or lack 

of a preference (De Leeuw, Hox and Huisman, 2003). If not properly handled, missing data patterns can 

lead to biased statistical analyses, especially when there are systematic differences between the observed 

data and the missing data (Rubin, 1976; Little and Rubin, 2019). Complete case analysis on units with 

completely observed data is often infeasible and may lead to large bias in most situations (Little and 

Rubin, 2019). As a result, many analysts account for the missing data by imputing missing values and then 

proceeding as if the imputed values are true values. 

Multiple imputation (MI) (Rubin, 1987) is a popular approach for handling missing values. In MI, an 

analyst creates 1L   completed datasets by replacing the missing values in the sample data with plausible 

draws generated from the predictive distribution of probabilistic models based on the observed data. In 

each completed dataset, the analyst can then compute sample estimates for population estimands of 

interest, and combine the sample estimates across all L  datasets using MI inference methods developed 

by Rubin (1987), and more recently, Rubin (1996), Barnard and Meng (1999), and Reiter and 
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Raghunathan (2007), and Harel and Zhou (2007). In MI, the estimated variance of an estimand consists of 

both within-imputation and between-imputation variances, and thus takes into account the inherent 

variability of the imputed values. Note that in survey studies, single imputation, e.g., via matching or 

regression, remains to be common for dealing with missing data, where the variance is estimated via the 

delta method or resampling methods (Chen and Haziza, 2019; Haziza and Vallée, 2020). 

 

1.1 Model-based imputation 
 

There are two general modeling strategies for MI. The first strategy, known as joint modeling (JM), is 

to specify a joint distribution for all variables in the data, and then generate imputations from the implied 

conditional (predictive) distributions of the variables with missing values (Schafer, 1997). The JM strategy 

aligns with the theoretical foundation of Rubin (1987), but it can be challenging to specify a joint model 

with high-dimensional variables of different types. Indeed, most popular JM approaches, such as “PROC 

MI” in SAS (Yuan, 2011), and “AMELIA” (Honaker, King and Blackwell, 2011) and “norm” in R 

(Schafer, 1997), make a simplifying assumption that the data follow multivariate Gaussian distributions, 

even for categorical variables, which can lead to bias (Horton, Lipsitz and Parzen, 2003). Recent research 

developed flexible JM models based on advanced Bayesian nonparametric models such as Dirichlet 

Process mixtures (Manrique-Vallier and Reiter, 2014; Murray and Reiter, 2016). However, these methods 

are computationally expensive, and often struggle to scale up to high-dimensional cases. 

The second strategy is called fully conditional specification (FCS, van Buuren, Brand, Groothuis-

Oudshoorn and Rubin (2006)), where one separately specifies a univariate conditional distribution for 

each variable with missing values given all the other variables and imputes the missing values variable-by-

variable iteratively, akin to a Gibbs sampler. The most popular FCS method is multiple imputation by 

chained equations (MICE) (van Buuren and Groothuis-Oudshoorn, 2011), usually implemented with 

specifying generalized linear models (GLMs) for the univariate conditional distributions (Raghunathan, 

Lepkowski, Van Hoewyk and Solenberger, 2001; Royston and White, 2011; Su, Gelman, Hill and Yajima, 

2011). Recent research indicates that specifying the conditional models by classification and regression 

trees (CART, Breiman, Friedman, Olshen and Stone (1984) and Burgette and Reiter (2010)) 

comprehensively outperforms MICE with GLM (Akande, Li and Reiter, 2017). A natural extension of 

MICE with CART is to use ensemble tree methods such as random forests, rather than a single tree 

(Breiman, 2001; Doove, Van Buuren and Dusseldorp, 2014). 

MICE is appealing in large-scale survey data because it is simple and flexible in imputing different 

types of variables. However, MICE has a key theoretical drawback that the specified conditional 

distributions may be incompatible, that is, they do not correspond to a joint distribution (Arnold and Press, 

1989; Gelman and Speed, 1993; Li, Yu and Rubin, 2012). Despite this drawback, MICE works 

remarkably well in real applications and numerous simulations have demonstrated it outperforms many 

theoretically sound JM-based methods; see van Buuren (2018) for case studies. However, MICE is also 

computationally intensive (White, Royston and Wood, 2011) and generally cannot be parallelized. 

Moreover, popular software packages for implementing MICE with GLMs, e.g., mice in R (van Buuren 
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and Groothuis-Oudshoorn, 2011), often crash in settings with high dimensional non-continuous variables, 

e.g., categorical variables with many categories (Akande et al., 2017). 

 

1.2 Imputation with deep learning models 
 

Recent advances in deep learning greatly expand the scope of complex models for high-dimensional 

data. This advancement brings the hope that a new generation of missing data imputation methods based 

on deep learning models may address the theoretical and computational limitations of existing statistical 

methods. For example, deep generative models such as generative adversarial networks (GANs, 

Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville and Bengio (2014)) are naturally 

suitable for producing multiple imputations because they are designed to generate data that resemble the 

observed data as much as possible. A method in this stream is the generative adversarial imputation 

network (GAIN) of Yoon, Jordon and Schaar (2018). Multiple imputation using denoising autoencoders 

(MIDA, Gondara and Wang (2018) and Lu, Perrone and Unpingco (2020)), is another generative method 

based on deep neural networks trained on corrupted input data in order to force the networks to learn a 

useful low-dimensional representation of the input data, rather than its identity function (Vincent, 

Larochelle, Bengio and Manzagol, 2008; Vincent, Larochelle, Lajoie, Bengio, Manzagol and Bottou, 

2010). Several methods have been proposed for missing value imputation in time-series data using 

variational autoencoders (Fortuin, Baranchuk, Rätsch and Mandt, 2020) or recurrent neural networks 

(Lipton, Kale and Wetzel, 2016; Monti, Bronstein and Bresson, 2017; Cao, Wang, Li, Zhou, Li and Li, 

2018; Che, Purushotham, Cho, Sontag and Liu, 2018; Yoon, Zame and van der Schaar, 2018). 

Deep learning based MI methods have several advantages, at least theoretically, over the traditional 

statistical models, including (i) they avoid making distributional assumptions; (ii) can readily handle 

mixed data types; (iii) can model nonlinear relationships between variables; (iv) are expected to perform 

well in high-dimensional settings; and (v) can leverage graphics processing unit (GPU) power for faster 

computation. Several papers report encouraging performance of deep learning based MI methods 

compared to MICE (e.g., Yoon, Jordon and Schaar, 2018). However, such conclusions are made based on 

limited evidence. First, the studies are usually based on small simulations or several well-studied public 

“benchmark” datasets, such as those described in Section 5, which do not resemble survey data. Second, 

the evaluations are usually based on a few overall performance metric, e.g., the overall predictive mean 

squared error or accuracy. Such metrics may not give a full picture of the comparisons and sometimes can 

be even misleading, as will be illustrated later. Third, given the uncertainty of the missing data process, it 

is crucial to examine the repeated sampling properties of imputation methods, but these have been rarely 

evaluated. Finally, hyperparameter tuning is crucial for machine learning models and different tuning can 

result in dramatically different results, but few details are provided on hyperparameter tuning and its 

consequences on the performance of imputation methods. 

Motivated by these limitations, in this paper we carry out extensive simulations based on real survey 

data to evaluate MI methods with a range performance metrics. Specifically, we conduct simulations 

based on a subsample from the American Community Survey to compare repeated sampling properties of 
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four aforementioned MI methods: MICE with CART (MICE-CART), MICE with random forests (MICE-

RF), GAIN, and MIDA. We find that deep learning based MI methods are superior to MICE in terms of 

computational time. However, MICE-CART consistently outperforms, often by a large margin, the deep 

learning methods in terms of bias, mean squared error, and coverage, under a range of realistic settings. 

This contradicts previous findings in the machine learning literature, and raises questions on the 

appropriate metrics for evaluating imputation methods. It also highlights the importance of assessing 

repeated-sampling properties of imputation methods. Though we focus on multiple imputation in this 

paper, we note that the aforementioned MI methods are readily applicable to generate single imputation 

when L  is set to 1. Extensive empirical evidences suggest that the within-imputation variance usually 

dominates the between-imputation variance in MI. As such, we expect the patterns between different 

imputation methods observed here also stand if these methods are used for single imputation. 

The remainder of this article is organized as follows. In Section 2, we review the four MI methods used 

in our evaluation. In Section 3, we describe a framework with several metrics for evaluating imputation 

methods. In Section 4, we describe the simulation design and results with large-scale survey data, and in 

Section 5 we summarize evaluation results on the benchmark datasets used in machine learning literature. 

Finally, in Section 6, we conclude with a practical guide for implementation in real applications. 

 
2. Missing data imputation methods 
 

We first introduce notation. Consider a sample with n  units, each of which is associated with p  

variables. Let ijY  be the value of variable j  for individual ,i  where =1, ,j p  and 1, , .i n=  Here, Y  

can be continuous, binary, categorical or mixed binary-continuous. For each individual ,i  let 

( )1, , .Yi i ipY Y=  For each variable ,j  let ( )1 , , .Yj j njY Y=  Let ( )1, , n=Y Y Y  be the n p  matrix 

comprising the data for all records included in the sample. We write ( )obs mis, ,Y Y Y=  where obsY  and 

misY  are respectively the observed and missing parts of .Y  We write ( )mis mis,1 mis,, , ,Y Y Y p=  where 

mis, jY  represents all missing values for variable ,j  with 1, , .j p=  Similarly, we write 

( )obs obs,1 obs,, , p=Y Y Y  for the corresponding observed data. 

In MI, the analyst generates values of the missing data misY  using pre-specified models estimated with 

obs ,Y  resulting in a completed dataset. The analyst then repeats the process to generate L  completed 

datasets, 
( ) : 1, , ,Y
l l L=  that are available for inference or dissemination. For inference, the analyst 

can compute sample estimates for population estimands in each completed dataset 
( )

,Y
l

 and combine 

them using MI inference rules developed by Rubin (1987), which will be reviewed in Section 3. 

 

2.1 MICE with classification tree models 
 

Under MICE, the analyst begins by specifying a separate univariate conditional model for each 

variable with missing values. The analyst then specifies an order to iterate through the sequence of the 

conditional models, when doing imputation. We write the ordered list of the variables as ( ) ( )( )1
, , .Y Y

p
 

Next, the analyst initializes each ( )mis,
.Y

j
 The most popular options are to sample from (i) the marginal 
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distribution of the corresponding ( )obs,
,Y

j
 or (ii) the conditional distribution of ( )jY  given all the other 

variables, constructed using only available cases. 

After initialization, the MICE algorithm follows an iterative process that cycles through the sequence 

of univariate models. For each variable j  at each iteration ,t  one fits the conditional model 
( ) ( 1)

( ) obs,( ) ( ) ( )( ,{ : }, { : }).Y Y Y Y
t t

j j k kk j k j−   Next, one replaces 
( )

( )

mis,

t

j
Y  with draws from the implied 

model ( ) ( ) ( 1)

mis,( ) obs,( ) ( ) ( )( ,{ : }, { : }).Y Y Y Y
t t t

j j k kk j k j−   The iterative process continues for T  total iterations 

until convergence, and the values at the final iteration make up a completed dataset 
( ) ( )( )obs mis, .Y Y Y
l T=  

The entire process is then repeated L  times to create the L  completed datasets. We provide pseudocode 

detailing each step of the MICE algorithm in the supplementary material. 

Under MICE-CART, the analyst uses CART (Breiman et al., 1984) for the univariate conditional 

models in the MICE algorithm. CART follows a decision tree structure that uses recursive binary splits to 

partition the predictor space into distinct non-overlapping regions. The top of the tree often represents its 

root and each successive binary split divides the predictor space into two new branches as one moves 

down the tree. The splitting criterion at each leaf is usually chosen to minimize an information theoretic 

entropy measure. Splits that do not decrease the lack of fit by an reasonable amount based on a set 

threshold are pruned off. The tree is then built until a stopping criterion is met; e.g., minimum number of 

observations in each leaf. 

Once the tree has been fully constructed, one generates 
( )

( )

mis,

t

j
Y  by traversing down the tree to the 

appropriate leaf using the combinations in 
( ) ( 1)({ : }, { : }),Y Y
t t

k kk j k j−   and then sampling from the 

( )
obs

j
Y  values in that leaf. That is, given any combination in 

( ) ( 1)({ : }, { : }),Y Y
t t

k kk j k j−   one uses the 

proportion of values of 
obs

jY  in the corresponding leaf to approximate the conditional distribution 
( ) ( 1)

( ) obs,( ) ( ) ( )( , { : }, { : }).Y Y Y Y
t t

j j k kk j k j−   The iterative process again continues for T  total iterations, 

and the values at the final iteration make up a completed dataset. 

MICE-RF instead uses random forests for the univariate conditional models in MICE (e.g., Stekhoven 

and Bühlmann, 2012; Shah, Bartlett, Carpenter, Nicholas and Hemingway, 2014). Random forests (Ho, 

1995; Breiman, 2001) is an ensemble tree method which builds multiple decision trees to the data, instead 

of a single tree like CART. Specifically, random forests constructs multiple decision trees using 

bootstrapped samples of the original, and only uses a sample of the predictors for the recursive partitions 

in each tree. This approach can reduce the prevalence of unstable trees as well as the correlation among 

individual trees significantly, since it prevents the same variables from dominating the partitioning process 

across all trees. Theoretically, this decorrelation should result in predictions with less variance (Hastie, 

Tibshirani and Friedman, 2009). 

For imputation, the analyst first trains a random forests model for each ( )jY  using available cases, 

given all other variables. Next, the analyst generates predictions for mis, jY  under that model. Specifically, 

for any categorical ( ) ,Y
j

 and given any particular combination in 
( ) ( 1)({ : }, { : }),Y Y
t t

k kk j k j−   the 

analyst first generates predictions for each tree based on the values 
obs

jY  in the corresponding leaf for that 

tree, and then uses the most commonly occurring majority level of among all predictions from all the 
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trees. For a continuous ( ) ,Y
j

 the analyst instead uses the average of all the predictions from all the trees. 

The iterative process again cycles through all the variables, for T  total iterations, and the values at the 

final iteration make up a completed dataset. A particularly important hyperparameter in random forests is 

the maximum number of trees .d  

For our evaluations, we use the mice R package to implement both MICE-CART and MICE-RF, and 

retain the default hyperparameter setting in the package to mimic the common practice in real world 

applications. Specifically, we set the minimum number of observations in each terminal leaf to 5 and the 

pruning threshold to 0.0001 in MICE-CART. In MICE-RF, the maximum number of trees d  is set to be 

10. 

 

2.2 Generative Adversarial Imputation Network (GAIN) 
 

GAIN (Yoon, Jordon and Schaar, 2018) is an imputation method based on GANs (Goodfellow et al., 

2014), which consist of a generator function G  and a discriminator function .D  For any data matrix 

( )obs mis, ,Y Y Y=  we replace misY  with random noise, ,ijZ  sampled from a uniform distribution. The 

generator G  inputs this initialized data and a mask matrix ,M  with  0,1ijM   indicating observed 

values of ,Y  and outputs predicted values for both the observed data and missing data, ˆ .Y  The 

discriminator D  utilizes ( )obs mis
ˆ ˆ,=Y Y Y  and a hint matrix H  of the same dimension to identify which 

values are observed or imputed by ,G  which results in a predicted mask matrix ˆ .M  The hint matrix, 

sampled from the Bernoulli distribution with p  equal to a “hint rate” hyperparameter, reveals to D  partial 

information about M  in order to help guide G  to learn the underlying distribution of .Y  

We first train D  to minimize the loss function, ( )ˆ, ,M MDL  for each mini-batch of size :in  

 ( ) ( ) ( ) ( )
=1 =1

ˆ ˆ ˆ, log 1 log 1 .
in J

D ij ij ij ij

i j

L M M M M= + − −M M  (2.1) 

Next, G  is trained to minimize the loss function (2.2), which is composed of a generator loss, 

( )ˆ, ,M MGL  and a reconstruction loss, ( )ˆ, , .Y Y MML  The generator loss (2.3) is minimized when D  

incorrectly identifies imputed values as being observed. The reconstruction loss (2.4) is minimized when 

the predicted values are similar to the observed values, and is weighted by the hyperparameter :  

 ( ) ( ) ( )ˆ ˆ ˆ ˆ, , , , , , ,G ML L L= +Y Y M M M M Y Y M  (2.2) 

 ( ) ( )
=1 =1

ˆ ˆ, log 1 ,
in J

G ij ij

i j

L M M= −M M  (2.3) 

 ( ) ( ) ( )rec

=1 =1

ˆ ˆ, , 1 , ,
in J

M ij ij ij

i j

L M L Y Y= −Y Y M  (2.4) 

where  

 ( )
( )

2

rec

ˆ if is continuous
ˆ,

ˆlog if is categorical.

ij ij ij

ij ij

ij ij ij

Y Y Y
L Y Y

Y Y Y

 −
= 
−

 (2.5) 
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In our experiments, we model both G  and D  as fully-connected neural networks, each with three 

hidden layers, and   hidden units per hidden layer. The hidden layer weights are initialized uniformly at 

random with the Xavier initialization method (Glorot and Bengio, 2010). We use leaky ReLU activation 

function (Maas, Hannun and Ng, 2013) for each hidden layer, and a softmax activation function for the 

output layer for G  in the case of categorical variables, or a sigmoid activation function in the case of 

numerical variables and for the output of .D  We facilitate this choice of output layer for numerical 

variables by transforming all continuous variables to be within range (0, 1) using the MinMax 

normalization:    * min ( ) max ( ) min ( ) ,ij ij j j jY Y Y Y Y  = − −  where min ( )jY  and max( )jY  are the 

minimum and maximum of variable ,j  respectively. After imputation, we transform each value back to 

its original scale. We generate multiple imputations using several runs of the model with varying initial 

imputation of the missing values. 

To implement GAIN in our evaluations, we use the same architecture as the one in Yoon, Jordon, and 

Schaar (2018). We set 100, =    equal to the number of features of the input data, and tune the hint rate 

on a single simulation. Following the common practice in the GAN literature (Berthelot, Schumm and 

Metz, 2017; Ham, Jun and Kim, 2020), we track the evolution of GAIN’s generator and discriminator 

losses, and manually tune the hint rate so that the two losses are qualitatively similar. Specifically, we first 

coarsely select the hint rate among {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Then we determine the final 

value by an additional fine tuning step. In the MAR scenario, for example, after observing that the optimal 

value is in the range (0.1, 0.2), we perform a search among {0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 

0.19}. Finally, we set the optimal hint rate for MCAR and MAR scenarios to be 0.3 and 0.13, respectively. 

We train the networks for 200 epochs using stochastic gradient descent (SGD) and mini-batches of size 

512 to learn the parameter weights. We use the Adam optimizer to adapt the learning rate, with an initial 

rate of 0.001 (Kingma and Ba, 2014). 

 

2.3 Multiple Imputation using Denoising Autoencoders (MIDA) 
 

MIDA (Gondara and Wang, 2018; Lu et al., 2020) extends a class of neural networks, denoising 

autoencoders, for MI. An autoencoder is a neural network model trained to learn the identity function of 

the input data. Denoising autoencoders intentionally corrupt the input data in order to prevent the 

networks from learning the identity function, but rather a useful low-dimensional representation of the 

input data. The MIDA architecture consists of an encoder and decoder, each modeled as a fully-connected 

neural network with three hidden layers, with   hidden units per hidden layer. We first perform an initial 

imputation on missing values using the mean for continuous variables and the most frequent label for 

categorical variables, which results in a completed data 0 .Y  The encoder inputs 0 ,Y  and corrupts the 

input data by randomly dropping out half of the variables. The corrupted input data is mapped to a higher 

dimensional representation by adding   hidden units to each successive hidden layer of the encoder. The 

decoder receives output from the encoder, and symmetrically scales the encoding back to the original 

input dimension. All hidden layers use a hyperbolic tangent (tanh) activation function, while the output 

layer of the decoder uses a softmax (sigmoid) activation function in the case of categorical (numerical) 
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variables. Multiple imputations are generated by using multiple runs with the hidden layer weights 

initialized as a Gaussian random variable. 

Following Lu et al. (2020), we train MIDA in two phases: a primary phase and fine-tuning phase. In 

the primary phase, we feed the initially imputed data to MIDA and train for primeN  epochs. In the fine-

tuning phase, MIDA is trained for tuneN  epochs on the output in the primary phase, and produces the 

outcome. The loss function is used in both phases and closely resembles the reconstruction loss in GAIN:  

 ( )
( ) ( )

( )

0

0

0

2
ˆ1 if is continuous

ˆ, ,
ˆ1 log if is categorical.

ij ij ij ij

ij ij ij

ij ij ij ij

M Y Y Y
L Y Y M

M Y Y

 − −
= 
− −


Y

 (2.6) 

To implement MIDA in our evaluations, we use the same architecture and tune the hyperparameters in a 

single simulation as in Lu et al. (2020). We plot the evolution of loss function ,L  and select the number of 

additional units   among {1, 2, 3, 4, 5, 6, 7 ,8, 9, 10} to reduce the loss. In our experiments, we set   

equal to the number of features of the input data and add 7=  hidden units to each of the three hidden 

layers of the encoder. We train the model for prime 100N =  epochs in the primary phase and tune 2N =  

epochs in the fine-tuning phase. Similar as in GAIN, we learn the model parameters using SGD with mini-

batches of size 512, and use the Adam optimizer to adapt the learning rate with the initial rate being 0.001. 

 
3. Simulation-based evaluation of imputation methods 
 

Methods for missing data imputation are usually evaluated via real-data based simulations 

(van Buuren, 2018). Namely, one creates missing values from a complete dataset according to a missing 

data mechanism (Little and Rubin, 2014), imputes the missing values by a specific method, and then 

compares these imputed values with the original “true” values based on some metrics. 

We first give a quick review of Rubin’s MI combination rules. Let Q  be the target estimand in the 

population, and 
( )lq  and 

( )lu  be the point and variance estimate of Q  based on the thl  imputed dataset, 

respectively. The MI point estimate of Q  is 
( )

=1
,

L l

L l
q q L=  and the corresponding estimate of the 

variance is equal to ( )1 1 ,L L LT L b u= + +  where 
( )( )

2

=1
= ( 1),

L l

L Ll
b q q L− −  and 

( )

=1
= .

L l

L l
u u L  

The confidence interval of Q  is constructed using ( ) ( )~ 0, ,L Lq Q t T−  where vt  is a t -distribution with 

( )  ( )
2

1 1 (1 1 )L LL u L b = − + +  degrees of freedom. 

The first step in our simulation-based evaluation procedure is choosing a dataset with all values 

observed, which is taken as the “population”. We then choose a set of target estimands Q  and compute 

their values from this population data, which are taken as the “ground truth”. The estimands are usually 

summary statistics of the variables or parameters in a down-stream analysis model, e.g., a coefficient in a 

regression model (Tang, Song, Belin and Unützer, 2005; Huque, Carlin, Simpson and Lee, 2018). Second, 

we randomly draw without replacement H  samples of size n  from the population data, and in each of 

sample ( )1, ,h H=  create missing data according to a specific missing data mechanism and pre-fixed 

proportion of missingness. Third, for each simulated sample with missing data, we create L  imputed 

datasets using the imputation method under consideration and construct the point and interval estimate of 
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each estimand using Rubin’s rules. Lastly, we compute performance metrics of each estimand from the 

quantities obtained in the previous step. 

In the empirical application, we select a large complete subsample from the American Community 

Survey (ACS) ‒ a national survey that bears the hallmarks of many big survey data ‒ as our population. 

Since discrete variables are prevalent in the ACS, as well as in most survey data, we focus on the marginal 

probabilities of binary and categorical variables; e.g., a categorical variable with K  categories has 1K −  

estimands. To evaluate how well the imputation methods preserve the multivariate distributional 

properties, similar to Akande et al. (2017), we also consider the bivariate probabilities of all two-way 

combinations of categories in binary and categorical variables. Another useful metric is the finite-sample 

pairwise correlations between continuous variables. For continuous variables, the common estimands are 

mean, median or variance. To facilitate meaningful comparisons of the results between the categorical and 

continuous variables, we propose to discretize each continuous variable into K  categories based on the 

sample quantiles. We then evaluate these binned continuous variables as categorical variables based on the 

aforementioned estimands of marginal and bivariate probabilities. 

For each estimand ,Q  we consider three metrics. The first metric focuses on bias. To accommodate 

close-to-zero estimands that are prevalent in probabilities of categorical variables, we consider the 

absolute standardized bias (ASB) of each estimand :Q  

 
( ) ( )

= 1

ASB = ,
H

h

L

h

q Q H Q−   (3.1) 

where 
( )h

Lq  is the MI point estimate of Q  in simulation .h  

The second metric is the relative mean squared error (Rel.MSE), which is the ratio between the MSE 

of estimating Q  from the imputed data and that from the sampled data before introducing the missing 

data:  

 

( )( )
( )( )

2

=1

2

=1

Rel.MSE = ,

H h

Lh

H h

h

q Q

Q Q

−

−




 (3.2) 

where 
( )h

Lq  is defined earlier, and 
( )hQ  is the prototype estimator of ,Q  i.e., the point estimate from the 

complete sampled data in simulation .h  

The third metric is coverage rate, which is the proportion of the %  (e.g., 95%) confidence intervals, 

denoted by CIh

  ( )=1, , ,h H  in the H  simulations that contain the true :Q  

  
=1

Coverage = CI .
H

h

h

Q H1  (3.3) 

We recommend conducting a large number of simulations (e.g., 100)H   to obtain reliable estimates 

of MSE and coverage. This would not be a problem for deep learning algorithms, which can be typically 

completed in seconds even with large sample sizes. However, it can be computationally prohibitive for the 
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MICE algorithms when each of the simulated data is large (e.g., =100,000n  in some of our simulations). 

In the situation that one has to rely on only a few or even a single simulation for evaluation, we propose a 

modified metric of bias. Specifically, for each categorical variable or binned continuous variable ,j  we 

define the weighted absolute bias (WAB) as the sum of the absolute bias weighted by the true marginal 

probability in each category:  

 
( )

= 1

Weighted absolute bias = ,
K

h

jk jk jk

k

Q q Q−  (3.4) 

where K  is the total number of categories, jkQ  is the population marginal probability of category k  in 

variable ,j  and 
( )h

jkq  is its corresponding point estimate in simulation .h  We can also average the 

weighted absolute bias over a number of repeatedly simulated samples. 

The above procedure and metrics differ from the common practice in the machine learning literature. 

For example, many machine learning papers on missing data imputation conduct simulations on 

benchmark datasets, but these data often have vastly different structure and features from survey data and 

thus are less informative for the goal of this paper. One such dataset is the Breast Cancer dataset in the 

UCI Machine Learning Repository (Dua and Graff, 2017), which has only 569 sample units and no 

categorical variables. Also, these simulations are usually based on randomly creating missing values of a 

single dataset repeatedly rather than on drawing repeated samples from a population, and thus fails to 

account for the sampling mechanism. Moreover, these evaluations often use metrics focusing on accuracy 

of individual predictions rather than distributional features. Specifically, the most commonly used metrics 

are the root mean squared error (RMSE) and accuracy (Gondara and Wang, 2018; Yoon, Jordon and 

Schaar, 2018; Lu et al., 2020). Both metrics can be defined in an overall or variable-specific fashion, but 

the machine learning literature usually focuses on the overall version. The overall RMSE is defined as  

 
( )

2

=1

=1

ˆ

RMSE = ,

n

ij ij iji j

n

iji j

M Y Y

M

− 

 
 (3.5) 

where ijY  is the value of continuous variable j  for individual i  in the complete data before introducing 

missing data, and ˆ
ijY  is the corresponding imputed value. For non-missing values (i.e., =1),ijM  ˆ .ij ijY Y=  

The (overall) accuracy is defined for categorical variables, namely it is the proportion of the imputed 

values being equal to the corresponding original “true” value:  

 
( )

cat

cat

=1

=1

ˆ =
Accuracy = ,

n

ij ij iji j S

n

iji j S

M Y Y

M





 

 

11
 (3.6) 

where catS  is the set of categorical variables. 

A number of caveats are in order for the RMSE and accuracy metrics. First, they are usually computed 

on a single imputed sample as an overall measure of an imputation method, but this ignores the 
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uncertainty of imputations. Second, both RMSE and accuracy are single value summaries and do not 

capture the multivariate distributional feature of data. Third, RMSE does not adjust for the different scale 

of variables and can be be easily dominated by a few outliers; also, it is often computed without 

differentiating between continuous and categorical variables. Lastly, when there are multiple ( )L  imputed 

data, a common way is to use the mean of the L  imputed value as ˆ
ijY  in (3.5), but the statistical meaning 

of the resulting metrics is opaque. This is particularly problematic for categorical variables. For these 

reasons, we warn against using the overall RMSE and accuracy as the only metrics for comparing 

imputation methods, and one should exercise caution when interpreting them. 

 
4. Evaluation based on ACS 
 

In this section, we evaluate the four imputation methods described in Section 2 following the 

procedure and metrics described in Section 3. For simplicity, in the following discussions we use CART 

and RF to denote MICE-CART and MICE-RF, respectively.  

 

4.1 The “population” data 
 

We use the one-year Public Use Microdata Sample from the 2018 ACS to construct our population. 

The 2018 ACS data contains both household-level variables ‒ for example, whether or not a house is 

owned or rented ‒ and individual-level variables ‒ for example, age, income and sex of the individuals 

within each household. Since individuals nested within a household are often dependent, and the 

imputation methods we evaluate generally assume independence across all observations, we set our unit of 

observation at the household-level, where independence is more likely to hold. We first remove units 

corresponding to vacant houses. Next, we delete units with any missing values, so that we only keep the 

complete cases. Within each household, we also retain individual-level data corresponding only to the 

household head and merge them with the household-level variables, resulting in a rich set of variables 

with potentially complex joint relationships. 

It is often challenging to generate plausible imputations for ordinal variables with many levels when 

there is very low mass at the highest levels, as is the case for some variables in the ACS data. Following 

Li, Baccini, Mealli, Zell, Frangakis and Rubin (2014), we treat ordinal variables with more than 10 levels 

as continuous variables. We also follow the approach in Akande et al. (2017) to exclude binary variables 

where the marginal probabilities violate 10np   or ( )1 10;n p−   this eliminates estimands where the 

central limit theorem is not likely to hold. For each categorical variable with more than two levels but less 

than 10 levels where this might also be a problem, we merge the levels with a small number of 

observations in the population data. For example, for the household language variable, we recode the 

levels from five to three (English, Spanish, and other), because the probability of speaking neither English 

nor Spanish in the full population is less than 8.8%. 

The final population data contains 1,257,501 units, with 18 binary variables, 20 categorical variables 

with 3 to 9 levels, and 8 continuous variables. We describe the variables in more detail in the 

supplementary material. We compute the population values of the estimands Q  described in Section 3, 
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including all marginal and bivariate probabilities of discrete and binned continuous variables. We vary the 

size of the simulated samples from 10,000 to 100,000, and simulate missing data according to either 

missing completely at random (MCAR) or missing at random (MAR) mechanisms in each of these 

scenarios. 

 

4.2 Simulations with n = 10,000 
 

We first randomly draw H = 100 samples of size n = 10,000, and set 30% of each sample to be 

missing under either MCAR or MAR. CART or RF takes around 2.8 and 9.2 hours, respectively, to create 

L = 10 imputed datasets with default parameters on a standard desktop computer with a single central 

processing unit (CPU). The deep learning methods are much faster because they leverage GPU computing 

power when implemented on the GPU-enabled TensorFlow software framework (Abadi, Agarwal, 

Barham, Brevdo, Chen, Citro, Corrado, Davis, Dean, Devin, Ghemawat, Goodfellow, Harp, Irving, Isard, 

Jia, Jozefowicz, Kaiser, Kudlur, Levenberg, Mané, Monga, Moore, Murray, Olah, Schuster, Shlens, 

Steiner, Sutskever, Talwar, Tucker, Vanhoucke, Vasudevan, Viégas, Vinyals, Warden, Wattenberg, 

Wicke, Yu and Zheng, 2015). GAIN takes roughly 1.5 minutes and MIDA takes roughly 4 minutes to 

create L = 10 completed datasets using a GeForce GTX 1660 Ti GPU. Note that it is infeasible to 

manually tune the hyperparameter in each of the 100 simulations in each scenario for the deep learning 

models. So for each scenario, we have randomly selected one simulation, and tune the hyperparameters 

using the procedure described in Section 2. We then apply these selected hyperparameters to all 

simulations. 

 

4.2.1 MCAR scenario 
 

To create the MCAR scenario, we randomly set 30% of the values of each variable to be missing 

independently. Table 4.1 displays the distributions of the estimated ASB and relative MSE of all the 

marginal and bivariate probabilities in the imputed data by the four imputation methods.  

Overall, for the estimands of marginal and bivariate probabilities of the categorical and binned 

continuous variables, MICE with CART significantly outperforms all other three methods, with 

consistently yielding the smallest ASB and relative MSE. RF is the second best, also consistently 

outperforming the deep learning methods. The advantage of the MICE algorithms is particularly 

pronounced in the upper (e.g., 75% and 90%) quantiles, indicating that GAIN and MIDA imputations 

have large variations over repeated samples and variables. Indeed, MIDA and GAIN lead to ultra long 

tails in estimating the summary statistics of the variables. For example, for bivariate probabilities of 

binned continuous variables, the 90% percentile of the ASB from MIDA and GAIN is approximately 20 

and 27 times, respectively, of that from CART. The discrepancy is even bigger for relative MSE. There is 

no consistent pattern in comparing MIDA and GAIN. Specifically, for continuous variables, MIDA 

generally outperforms GAIN, but the difference is small except for the upper percentiles, where GAIN 

tends to produce very large bias and relative MSE. For categorical variables, GAIN outperforms MIDA 

half of the time, but again leads to the largest variation in imputations across the variables. Moreover, an 

interesting and somewhat surprising observation is that MICE with CART consistently outperforms RF ‒ 

sometimes by a large magnitude ‒ regardless of the choice of estimand or metric. 
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Table 4.1 

Distributions of absolute standardized bias ( 100)  and relative mean squared error of all marginal and 

bivariate probabilities based on the imputations by the four MI methods, when n = 10,000 and 30% values 

MCAR 
 

 Quantiles Marginal Bivariate 

CART RF GAIN MIDA CART RF GAIN MIDA 

ASB ( 100)  Cat.  10% 0.05 0.47 0.76 0.98 0.15 1.14 1.21 1.54 
25% 0.13 1.25 1.48 2.22 0.40 2.83 3.08 3.93 
50% 0.27 2.80 3.22 4.69 1.05 6.74 7.14 8.47 
75% 0.64 5.86 7.18 8.86 2.51 13.59 17.03 15.23 
90% 1.14 10.01 19.55 14.41 5.34 22.33 26.92 21.90 

B.Cont.  10% 0.06 0.24 7.25 2.73 0.19 1.30 6.05 4.80 
25% 0.10 1.05 12.86 8.36 0.43 3.24 17.61 12.01 
50% 0.21 3.59 27.30 18.51 1.02 6.61 34.29 24.07 
75% 0.43 5.43 30.21 26.84 1.90 11.76 49.38 39.54 
90% 0.81 8.49 46.41 31.36 3.42 20.79 90.90 64.65 

Rel.MSE Cat.  10% 1.05 1.67 2.50 3.38 0.96 1.11 2.75 2.98 
25% 1.16 2.40 4.97 9.03 1.08 1.61 4.33 4.75 
50% 1.37 5.99 10.37 14.89 1.25 3.35 7.40 8.16 
75% 1.49 10.25 27.73 26.16 1.48 9.07 14.87 15.80 
90% 1.62 16.22 97.33 40.16 1.89 23.91 36.37 27.92 

B.Cont.  10% 1.19 1.50 44.06 4.35 0.82 0.86 7.40 2.05 
25% 1.30 1.77 74.42 13.82 0.92 1.11 14.80 4.90 
50% 1.44 3.31 139.24 72.57 1.07 1.90 32.26 13.76 
75% 1.55 6.71 284.00 150.35 1.26 4.09 88.78 47.56 
90% 1.64 19.69 603.38 451.44 1.54 10.80 282.29 127.15 

“Cat.” means categorical variables and “B.Cont.” means binned continuous variables. 

CART = Classification and regression trees; RF = Random forests; GAIN = Generative adversarial imputation network;  

MIDA = Multiple imputation using denoising autoencoders. 

 

All methods generally yield less biased estimates (i.e., smaller ASB) of the marginal probabilities than 

the bivariate probabilities. This illustrates preserving multivariate distributional features is more 

challenging than univariate ones. The advantage of CART over the other methods is comparatively larger 

when estimating bivariate estimands than univariate ones. Interestingly, the relative MSE tends to be 

higher for the marginal probabilities than the bivariate probabilities. This is likely due to the fact that the 

denominator in the definition of relative MSE in (3.2) is the MSE from the sampled data before 

introducing missing data, which tends to be smaller for marginal probabilities than bivariate probabilities. 

CART yields MSEs that are very close to the corresponding MSEs from the sampled data before 

introducing missing data; i.e., the relative MSE is close to 1. On the contrary, both deep learning methods, 

and GAIN in particular, can result in exceedingly large relative MSE for many estimands. 

Figures 4.1 displays the estimated coverage rates of the 95% confidence intervals for the marginal and 

bivariate probabilities. The patterns on coverage between different methods is similar to those on bias and 

MSE. Specifically, CART tends to result in coverage rates that are close to the nominal 95% level, with 

the median consistently being around 95% and tight interquartile range. In contrast, RF, GAIN and MIDA 

all result in coverage rates that are much farther off from the nominal 95% level. For example, the median 

coverage rates under both GAIN and MIDA are all under 0.60, and are even less than 0.30 for continuous 

variables. A closer look into the prediction accuracy of each variable reveals that GAIN and MIDA tend to 

generate imputations that are biased toward the most frequent levels, and GAIN in particular generally 

produces narrower intervals than the other methods. This once again provides evidence of significant bias 

under the deep learning methods. All methods tend to result in higher median coverage rates for the 
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bivariate probabilities than the marginal probabilities, although the left tails are generally longer for the 

former than the latter. 

 

Figure 4.1 Coverage rate of the 95% confidence interval for all marginal and bivariate probabilities obtained 

from the four imputation methods in the simulations with n = 10,000 and 30% values MCAR.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 The red dashed line is 0.95. 

 CART = Classification and regression trees; RF = Random forests; GAIN = Generative adversarial imputation network;  

MIDA = Multiple imputation using denoising autoencoders. 

 

4.2.2 MAR scenario 
 

We also consider a MAR scenario, which is more plausible than MCAR in practice. We set six 

variables ‒ age, gender, marital status, race, educational attainment and class of worker ‒ to be fully 

observed. It would be cumbersome to specify different MAR mechanism for each of the remaining 40 

variables, so we randomly divide them into three groups, consisting of 10, 15, and 15 variables. We then 

specify a separate nonresponse model by which to generate the missing data for the variables in each 

group. Specifically, we postulate a logistic model per group, conditional on the fully observed six 

variables, based on which we then generate binary missing data indicators for each variable in that group. 

This process results in approximately 30% missing rate for each of the 40 variables. We describe the 

models in more detail in the supplementary material. 

Table 4.2 displays the distributions of the ASB and relative MSE of all the marginal and bivariate 

probabilities from the four methods. All methods yield larger ASB and relative MSE under the MAR 

scenario than the previous MCAR scenario. This is expected because MAR is a stronger assumption than 
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MCAR that requires conditioning on more information. Nonetheless, the overall patterns of relative 

performance between the methods remain the same as those under MCAR. Specifically, CART once again 

produces estimates with the least ASB and relative MSE ‒ by an even larger margin then under MCAR ‒ 

among the four methods, followed by RF, and then MIDA and GAIN. One notable observation is the 

deteriorating performance of the deep learning methods, particularly GAIN, in imputing continuous 

variables, sometimes resulting in several hundreds fold of relative MSE than CART. This indicates the 

huge uncertainties associated with GAIN in imputing continuous variables. 

 
Table 4.2 

Distributions of absolute standardized bias ( 100)  and relative mean squared error for all methods, when 

n = 10,000 and 30% values MAR, over all possible marginal and bivariate probabilities 
 

 Quantiles  Marginal Bivariate 

CART RF GAIN MIDA CART RF GAIN MIDA 

ASB ( 100)  Cat.  10% 0.05 0.13 0.15 0.14 0.15 0.71 0.76 0.89 

25% 0.11 0.44 0.62 0.61 0.40 2.23 2.55 3.20 

50% 0.29 2.13 3.05 4.55 1.08 6.06 6.85 8.14 

75% 1.04 4.98 6.63 10.22 2.49 13.43 16.78 16.19 

90% 1.80 10.49 18.91 17.00 5.68 24.06 28.04 25.36 

B.Cont.  10% 0.07 0.29 0.33 0.33 0.27 1.17 10.87 6.18 

25% 0.17 1.07 9.64 3.13 0.69 3.49 23.67 16.26 

50% 0.67 3.14 32.86 23.85 1.58 7.83 38.52 31.17 

75% 1.20 6.95 39.57 36.09 3.40 15.20 53.59 47.34 

90% 3.40 12.39 63.45 41.99 5.94 25.16 97.47 85.44 

Rel.MSE Cat.  10% 1.00 1.00 1.00 1.00 0.97 1.00 1.53 1.93 

25% 1.08 1.82 2.56 4.75 1.04 1.39 3.78 4.03 

50% 1.33 4.33 19.03 15.13 1.25 3.00 10.42 8.38 

75% 1.72 13.08 55.07 33.36 1.59 9.56 27.45 16.95 

90% 2.27 18.70 101.91 48.44 2.23 27.44 64.01 32.85 

B.Cont.  10% 1.00 1.00 1.00 1.00 0.88 0.90 11.19 2.96 

25% 1.38 1.83 90.98 8.49 1.00 1.16 20.15 6.87 

50% 1.70 4.57 207.58 96.08 1.18 2.29 45.25 21.33 

75% 2.12 11.47 692.67 239.69 1.50 6.95 125.39 70.90 

90% 3.12 50.56 1342.23 806.43 2.12 18.07 459.78 205.14 
“Cat.” means categorical variables and “B.Cont.” means binned continuous variables. 

CART = Classification and regression trees; RF = Random forests; GAIN = Generative adversarial imputation network;  
MIDA = Multiple imputation using denoising autoencoders. 

 
Figures 4.2 displays the estimated coverage rates of the 95% confidence intervals for the marginal and 

bivariate probabilities, under each method. Similar as the case of bias and MSE, all methods generally 

result in lower coverage rates under MAR than MCAR, with visibly longer left tails in some cases, but the 

overall patterns comparing between the methods remain the same. Specifically, CART still tends to result 

in coverage rates that are above 90%, while the other three methods have consistently lower coverage rate. 

In particular, both GAIN and MIDA result in extremely low ‒ below 7% – median coverage rates for 

continuous variables. This is closely related to the previous observation of the large uncertainty of the 

deep learning methods in imputing continuous variables. 
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Figure 4.2 Coverage rates of the 95% confidence intervals for all marginal and bivariate probabilities 

obtained from four methods in the simulations with n = 10,000 and 30% values MAR.  

 

 

 

 

 

 

 

 

 

 

 

 
 

 The red dashed line is 0.95. 

 CART = Classification and regression trees; RF = Random forests; GAIN = Generative adversarial imputation network;  

MIDA = Multiple imputation using denoising autoencoders.  

 

Finally, to illustrate that evaluating only the overall RMSE and accuracy metrics may be misleading, 

we display the mean and empirical standard errors of the overall RMSE and accuracy over the 100 

simulations in Table 4.3, where MCAR is in the top panel and MAR is in the bottom panel. Under both 

missing data mechanisms, for the continuous variables, MIDA leads to the smallest overall RMSE, 

followed by CART, and with RF and GAIN being last. For the categorical variables, CART and GAIN 

lead to the highest overall accuracy, with MIDA being closely behind and RF last. These patterns, not 

surprisingly, differ from those reported earlier based on marginal and bivariate probabilities and different 

metrics. As discussed in Section 3, overall RMSE and accuracy do not capture the distributional features 

of multivariate data or the repeated sampling properties of the imputation methods.  

 

Table 4.3 

Overall RMSE on continuous variables and overall accuracy on categorical variables averaged over 100 

simulations  
 

Mechanism Metric CART RF GAIN MIDA 

MCAR  RMSE  0.128 (0.002) 0.159 (0.003) 0.161 (0.008) 0.112 (0.002) 

Accuracy 0.785 (0.001) 0.658 (0.003) 0.782 (0.002) 0.752 (0.004) 

MAR RMSE  0.130 (0.003) 0.154 (0.004) 0.145 (0.009) 0.110 (0.002) 

Accuracy 0.819 (0.001) 0.704 (0.003) 0.820 (0.002) 0.780 (0.007) 

The empirical standard errors in the parenthesis.  

The top panel is under MCAR and the bottom panel is under MAR, all with 30% missing data. 
CART = Classification and regression trees; RF = Random forests; GAIN = Generative adversarial imputation network;  
MIDA = Multiple imputation using denoising autoencoders. 
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4.3 Simulations with n = 100,000 and 30% MCAR 
 

Deep learning models usually require a large sample size to train. Therefore, to give MIDA and GAIN 

a more favorable setting as well as to investigate the sensitivity of our results to variations in sample size, 

we generate a simulation scenario of H = 10 samples with n = 100,000 under MCAR. That is, we 

randomly set 30% of the values of each variable to be missing independently. Here we only generate 10 

simulations due to the huge computational cost of MICE for samples with this size. In this scenario, we 

omit RF because the previous results in Section 4.2 have shown that RF is consistently inferior to CART 

in terms of performance and computation. We use CART, GAIN, and MIDA to create L = 10 completed 

datasets. 

Because it usually requires a much larger number of simulations to reliably calculate MSE and 

coverage, here we focus on the weighted absolute bias metric (3.4). Table 4.4 displays the distributions of 

the estimated weighted absolute bias, averaged over 10 simulations, of the marginal probabilities of the 

categorical and binned continuous variables. Overall, the patterns comparing between the four methods 

remain consistent with those observed in Section 4.2. Specifically, CART again results in the smallest 

weighted absolute difference in both categorical and continuous variables, and the advantage is 

particularly pronounced with continuous variables. For example, for categorical variables, MIDA and 

GAIN result in a median of weighted absolute bias at least 9 and 11 times, respectively, larger than 

CART. The advantage of CART grows to about 30 and 60 times over MIDA and GAIN, respectively, for 

continuous variables. Moreover, CART performs robustly across variables, evident from the small 

variation in the weighted absolute bias, e.g., 0.07 for 10% percentile and 0.33 for 90% percentile among 

the categorical variables. In contrast, both deep learning models result in much larger variation across 

variables; e.g., 0.57 for 10% percentile and 2.92 for 90% percentile among the categorical variables under 

MIDA, and even larger for GAIN. In summary, other than computational time, MICE with CART 

significantly outperforms MIDA and GAIN in terms of bias and variance regardless of the sample size. 

 

Table 4.4 

Distributions of the weighted absolute bias ( 100)  averaged over 10 simulated samples, each with n = 100,000 

and 30% values MCAR 
 

Quantiles Categorical Binned Continuous 

CART GAIN MIDA CART GAIN MIDA 

10% 0.07 0.43 0.57 0.10 5.52 1.98 

25% 0.11 1.11 1.02 0.11 6.65 2.78 

50% 0.15 1.74 1.40 0.12 7.36 4.04 

75% 0.24 3.77 2.07 0.13 9.40 6.50 

90% 0.33 4.63 2.92 0.15 11.31 7.72 

CART = Classification and regression trees; GAIN = Generative adversarial imputation network;  
MIDA = Multiple imputation using denoising autoencoders. 

 
4.4 Role of hyperparameters in tree-based MICE 
 

The pattern that CART outperforms RF is surprising, because the common knowledge is that ensemble 

methods are usually superior to single tree methods. But the same pattern was also observed in another 
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recent study (Wongkamthong and Akande, 2021). We investigate the role of the key hyperparameter in 

RF ‒ the maximum number of trees d  ‒ in the simulations. We randomly selected a simulated data of size 

n = 10,000 and 30% of entries being MCAR. We use the mice package to fit RF with different number 

of trees: 2, 5,10,15, 20,d =  where 10d =  is the default setting. The relative MSE of the imputed 

categorical variables fitted using each d  value, as well as that using CART, is shown as trajectories in 

Figure 4.3, which reveals a consistent pattern: the upper quantiles ‒ particularly those above 50% ‒ of the 

relative MSE deteriorates rapidly as the maximum number of trees in RF increases, while the lower 

quantiles, e.g., 10%, 25%, remain stable. We found a similar pattern with the standardized bias metric and 

continuous variables, and thus the results are omitted here. This suggests that larger number of trees in RF 

‒ at least as implemented in the mice package ‒ leads to much longer tail in the distribution of the bias 

and MSEs. This is likely due to overfitting. We cannot exclude the possibility that a more customized 

hyperparameter tuning of RF may outperform CART in some applications. However, such case-specific 

fine-tuning of the MICE algorithm is generally not available for the vast majority of MI consumers who 

relies on the default setting of popular packages like mice. 

 

Figure 4.3 Quantiles of the relative mean squared error over all marginal and bivariate probabilities of 

categorical and binned continuous variables, under CART and RF with various number of trees, 

for a simulation sample with n = 10,000 and 30% values MCAR. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5. Evaluation based on “benchmark” datasets 
 

To verify the evaluations in the GAIN and MIDA papers (Gondara and Wang, 2018; Yoon, Jordon and 

Schaar, 2018; Lu et al., 2020), we also compared the two deep learning models with CART based on the 
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five benchmark datasets and simulation procedure (different from our proposed framework) used in these 

papers. Details of these datasets and simulations are presented in the supplementary material. The sample 

sizes of these data are generally not large enough to be considered as population data from which we can 

repeatedly sample from without replacement, so we are unable to evaluate them in a meaningful way 

using absolute standardized bias, relative MSE or coverage. We therefore evaluate the methods primarily 

on the weighted absolute bias metric. In summary, CART again consistently and significantly outperforms 

MIDA and GAIN in terms of weighted absolute bias for both categorical and continuous variables, across 

all five benchmark datasets. The difference in performance is particularly pronounced with continuous 

variables. We also calculated the overall MSE and accuracy as those papers did. Except for one dataset, 

we could not reproduce the results reported in these papers, even with the authors’ code. One possible 

reason is that the process of tuning and selecting model hyperparameters may not be clearly documented, 

which is true in the present case. More details are provided in the online supplementary material. 

 
6. Conclusion 
 

Recent years have seen the development of many machine learning based methods for imputing 

missing data, raising the hope of improving over the more traditional imputation methods such as MICE. 

However, efforts in evaluating these methods in real world situations remain scarce. In this paper, we 

adopt an evaluation framework real-data-based simulations. We conduct extensive simulation studies 

based on the American Community Survey to compare repeated sampling properties of two MICE 

methods and two deep learning imputation methods based on GAN (GAIN) and denoising autoencoders 

(MIDA). 

We find that the deep learning models hold a vast computational advantage over MICE methods, 

partially because they can leverage GPU power for high-performance computing. However, our 

simulations as well as evaluation on several “benchmark” data suggest that MICE with CART 

specification of the conditional models consistently outperforms, usually by a substantial margin, the deep 

learning models in terms of bias, mean squared error, and coverage under a wide range of realistic 

settings. In particular, GAIN and MIDA tend to generate unstable imputations with enormous variations 

over repeated samples compared with MICE. One possible explanation is that deep neural networks excel 

at detecting complex sub-structures of big data, but may not suit for data with simple structure, such as the 

simulated data used here. Another possibility is that the sample sizes in our simulations are not adequate 

to train deep neural networks, which usually required much more data compared to traditional statistical 

models. 

These results contradict previous findings based on the single performance metric of overall mean 

squared error in the machine learning literature (e.g., Gondara and Wang, 2018; Yoon, Jordon and Schaar, 

2018; Lu et al., 2020). This discrepancy highlights the pitfalls of the common practice in the machine 

learning literature of evaluating imputation methods. It also demonstrates the importance of assessing 

repeated-sampling properties on multiple estimands of MI methods. An interesting finding is that 

ensemble trees (e.g., RF) do not improve over a single tree (e.g., CART) in the context of MICE, which 

matches the findings in another recent study (Wongkamthong and Akande, 2021). Combined with the fact 
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that the former is more computationally intensive than the latter, we recommend using MICE with CART 

instead of RF in practice. 

Our study has a few limitations. First, there are many deep learning methods that can be adapted to 

missing data imputation and all may have different operating characteristics. We choose GAIN and MIDA 

because both generative adversarial network and denoising autoencoders are immensely popular deep 

learning methods, and the imputation methods based on them have been advertised as superior to MICE. 

Nonetheless, it would be desirable to examine other deep learning based imputation methods in future 

research. Second, performance of machine learning methods is highly dependent on hyperparameter 

selection. So it can be argued that the inferior performance of GAIN and MIDA may be at least partially 

due to sub-optimal hyperparameter selection. However, practitioners would most likely rely on default 

hyperparameter values for any machine learning based imputation methods, which is indeed what we have 

adopted in our simulations and thus represents the real practice. Third, we did not consider the joint 

distribution between any categorical and continuous variables, but our evaluations within categorical and 

continuous variables have yielded consistent conclusions. Lastly, as any simulation study, one should 

exercise caution in generalizing the conclusions. By carefully selecting the data and metrics, we have 

attempted to closely mimic the settings representative of real survey data so that our conclusions are 

informative for practitioners who deal with similar situations. Additional evaluation studies based on 

different data are desired to shed more insights on the operating characteristics and comparative 

performances of different missing data imputation methods. Data, code, and supplementary material for 

the paper are available at: https://github.com/zhenhua-wang/MissingData_DL. 
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Multilevel time series modelling of antenatal care coverage in 

Bangladesh at disaggregated administrative levels 

Sumonkanti Das, Jan van den Brakel, Harm Jan Boonstra and Stephen Haslett1 

Abstract 

Multilevel time series (MTS) models are applied to estimate trends in time series of antenatal care coverage at 

several administrative levels in Bangladesh, based on repeated editions of the Bangladesh Demographic and 

Health Survey (BDHS) within the period 1994-2014. MTS models are expressed in an hierarchical Bayesian 

framework and fitted using Markov Chain Monte Carlo simulations. The models account for varying time 

lags of three or four years between the editions of the BDHS and provide predictions for the intervening years 

as well. It is proposed to apply cross-sectional Fay-Herriot models to the survey years separately at district 

level, which is the most detailed regional level. Time series of these small domain predictions at the district 

level and their variance-covariance matrices are used as input series for the MTS models. Spatial correlations 

among districts, random intercept and slope at the district level, and different trend models at district level and 

higher regional levels are examined in the MTS models to borrow strength over time and space. Trend 

estimates at district level are obtained directly from the model outputs, while trend estimates at higher 

regional and national levels are obtained by aggregation of the district level predictions, resulting in a 

numerically consistent set of trend estimates. 
 

Key Words: Cross-sectional Fay-Herriot model; Hierarchical Bayesian approach; MCMC simulation; Small area 
estimation; Demographic and Health Surveys. 

 

 

1. Introduction 
 

Demographic and Health Surveys have been widely used in over 90 countries for estimating national 

and sub-national level indicators on fertility, family planning, child mortality, child health, maternal 

health, and nutrition of children and women (DHS, 2021). In the sampling design of the Bangladesh 

Demographic and Health Survey (BDHS), administrative units lower than the sub-national level (7 

divisions), such as 64 districts and more than 450 sub-districts (second and third administrative hierarchies 

respectively), are not accounted for. Consequently sample sizes are too small to estimate any indicator 

under division level with standard design-based estimators. Over the time period 1994-2014 seven surveys 

have been conducted, providing time series of direct estimates at the national level and division level on 

aforementioned indicators to monitor progress in declining maternal and neonatal mortality in Bangladesh. 

However, for optimal allocation of resources and policy making, reliable statistical information at the 

more detailed regional level of districts is required. For these regions, small area estimation models are 

developed in this paper. Small area estimation refers to a class of model based estimation procedures that 

improve upon the accuracy of direct domain estimates by increasing the effective sample size in each 

separate domain with sample information observed in other domains or preceding reference period. This is 

often referred to as borrowing strength over space or time, respectively (Rao and Molina, 2015). 
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The BDHS is conducted repeatedly with varying time lags of 3 or 4 years between two consecutive 

surveys. Seven editions for the period of 1994 until 2014 are included in this study. In this paper 

multivariate multilevel time series (MTS) models are developed to produce reliable trend estimates of 

antenatal care (ANC) coverage at district level as well as division and national levels. These models are 

developed in an hierarchical Bayesian framework and fitted using Markov Chain Monte Carlo 

simulations. The advantage of a multivariate time series approach is that it takes advantage of all available 

information by modelling cross-sectional and temporal correlations among districts and reference periods. 

The models are defined at an annual frequency and therefore properly account for the varying time lags of 

3 or 4 years between the subsequent survey occasions. On top of that the MTS models provide predictions 

for the years without survey data. 

Two related response variables are considered in this paper: whether no or at least four antenatal 

consults have been received, abbreviated as ANC0 and ANC4. Direct estimates along with variance 

estimates are calculated from the cross-sectional data of the seven BDHS surveys at the most detailed 

regional level of districts and are used as input for the MTS model. A drawback of this approach is that 

additional auxiliary information, available from two censuses, cannot be included in the MTS models. The 

censuses are conducted with intervals of ten years. This implies that the same values of auxiliary 

information, available from a particular census are used in two or even three subsequent editions of the 

BDHS conducted after this census but preceding the next census. This creates shocks in the MTS 

predictions during periods in which information from a new census becomes available. This problem is 

circumvented by developing the following two-step approach. As a first step, cross-sectional Fay-Herriot 

(FH) models (Fay and Herriot, 1979) are applied to each survey occasion using the direct estimates at the 

district level and their smoothed standard errors. The census auxiliary information is used to improve 

these cross-sectional FH models. In a second step, these cross-sectional FH estimates are used as input in 

the MTS model. Note that the cross-sectional FH predictions for a particular survey year are correlated. 

The MTS models account for this correlation by using the full variance-covariance matrices of the cross-

sectional FH predictions as input for the MTS model. The advantage of this two-step approach is that it 

removes large sampling errors from the direct estimates and stabilizes the input series for the MTS 

models. This relies, however, on the assumption that the input series for the MTS models are not biased 

due to miss-specification of the cross-sectional FH models. To avoid this, a careful model selection and 

evaluation process for the cross-sectional FH models in the first step is required. 

The MTS models borrow strength over time and space in several ways. Cross-sectional relations are 

modelled using fixed effects as well as district-level random intercepts and slopes, either independent or 

correlated. Spatial correlations among districts are also considered. Smooth trends and local level trends at 

district, division and national level are used to model temporal and cross-sectional correlations. Instead of 

defining a full correlation matrix between the trend disturbance terms at the district level, trends are 

defined at the division level, which are shared by all underlying districts. Deviations from this overall 

trend are modelled with trends at the district level. This is a parsimonious way of modelling 
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cross-sectional relations between districts (Boonstra and van den Brakel, 2019). Trend estimates at the 

district level are obtained directly from the model outputs, while trends at division and national levels are 

obtained by aggregation of the district level predictions. The advantage of producing estimates for higher 

aggregation levels by aggregating predictions from the most detailed regional level is that all publication 

tables are numerically consistent by definition. Estimates for districts for the non-surveyed years and 

districts not covered in the surveyed years are also predicted based on the estimated time series models. 

The MTS models developed in this paper are extensions of the FH model. Rao and Yu (1994) extended 

FH model to borrow strength over time by assuming area-specific random effects follow a first-order 

autoregressive AR(1) model over time independently across areas. Datta, Lahiri, Maiti and Lu (1999), and 

You and Rao (2000) generalized a time-series extension of the FH model following Rao and Yu (1994) in 

hierarchical Bayes framework by considering area-specific error terms follow first-order random walk 

model over time instead of AR(1) process. Datta, Lahiri and Maiti (2002) also used a random walk model 

for the time component to estimate median income of four-person families by state using time series and 

cross-sectional data using empirical Bayes estimation method. Marhuenda, Molina and Morales (2013) 

extended Rao and Yu (1994) model to a spatio-temporal version of FH model by incorporating additional 

assumption that area-specific random effects follow a first order simultaneously autoregressive process 

(Pratesi and Salvati, 2008) to include spatial correlation among data from neighboring areas. These 

extensions are very specific to only area-level random effects component. In the spatio-temporal FH 

model considered in this study, random effects can be specified at various disaggregation levels beside the 

target detailed level domains to incorporate spatial, temporal and spatio-temporal correlations among the 

data. In this regard, the considered hierarchical Bayesian model is more flexible than the other extension 

of the FH model. Other relevant accounts of multilevel time-series models and state space models 

extending the FH model to borrow strength over both time and space, include You, Rao and Gambino 

(2003); You (2008); Pfeffermann and Burck (1990); Pfeffermann and Tiller (2006); Bollineni-Balabay, 

van den Brakel, Palm and Boonstra (2017); Boonstra and van den Brakel (2022, 2019) and Boonstra, 

van den Brakel and Das (2021). 

The remainder of this article is organized as follows. In Section 2 the need for reliable low regional 

statistical information to evaluate Sustainable Development Goals related to maternal and neonatal 

mortality in Bangladesh is described. Section 3 briefly describes the data sources and the computation of 

direct estimates and variance estimates from the BDHS survey data, along with transformations of direct 

estimates and the Generalized Variance Function (GVF) approach for smoothing the variance estimates, 

which both improve model fitting. Section 4 describes the hierarchical Bayesian time series multilevel 

modelling framework. The models selected for ANC0 and ANC4 are presented in Section 5, along with a 

brief discussion of the model building process. Section 6 provides a discussion on the trend estimates 

based on the developed models, and some model evaluation results are illustrated in Section 7. The paper 

concludes with a discussion in Section 8. 
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2. Need for reliable regional statistics on maternal and neonatal 

mortality in Bangladesh 
 

Bangladesh has made remarkable progress in reducing the maternal mortality ratio (MMR) and 

neonatal mortality rate (NMR) following the target of Millennium Development Goals 4 and 5. However, 

both the indicators MMR (170 per 100,000 live births (WHO, UNICEF and Others, 2014)) and NMR (28 

per 1,000 live births (NIPORT, 2015a)) are still reasonably high compared to the Sustainable 

Development Goals (SDGs) of reducing MMR to 70 per 100,000 live births and NMR to 12 deaths per 

1,000 live births in Bangladesh (BBS, 2020). Poor utilization of maternal health services such as antenatal 

care (ANC), skilled birth attendance (SBA) at delivery, and postnatal care (PNC) (NIPORT, 2016), is 

considered as one of the major reasons for these high mortality rates. Receiving sufficient ANC during 

pregnancy is important since it also increases usage of SBA and PNC (Mrisho, Obrist, Schellenberg, 

Haws, Mushi, Mshinda, Tanner and Schellenberg, 2009). 

The most recent household survey indicates that the majority of pregnant women (75%) in Bangladesh 

receive ANC from medically trained providers. However, the proportion of women that receive WHO-

recommended 4+  ANC is much less at 37% (BBS and UNICEF, 2019). These data suggest that 

Bangladesh lags behind in reaching the national target of 50% 4+  ANC utilization by the year 2016. To 

address this gap and to meet the target of the third SDG 3 of increasing 4+ ANC coverage to 98% by 2030 

(NIPORT, 2015b), the country needs a comprehensive strategy and specific milestones. National level 

trends of ANC coverage indicate that the proportion of women having no ANC care (ANC0) improved to 

only 17.2% in 2019 from 85% in 1994, while the proportion of women who obtained at least four ANC 

(ANC4) increased to 37% in 2019 from 6% in 1994. The improvement of the indicators over this period 

varies by division. The most marked improvement is observed for the Khulna division where ANC0 and 

ANC4 shifted from about 70% and 5% to about 12% and 40%, respectively. The poorest development has 

been observed in Sylhet division. 

The facilities for ANC services vary considerably within Bangladesh. There are community clinics and 

family welfare centers at the union level (also non-government organisation clinics), upazila health 

complexes at sub-district level and district and tertiary hospitals at district level. Moreover, the access to 

private doctors varies according to the level of urbanization as well as the distance between the 

district/sub-district and the corresponding Metropolitan cities, particularly the capital city Dhaka. This 

inequality in the access to ANC is also explicitly visible at the division level. At disaggregated 

administrative levels such as district and sub-district, it can be expected that inequalities are even larger. 

There are, however, no studies that confirm this hypothesis, mainly because sufficient detailed survey data 

at those levels are not available. Recent evidence from disaggregated level studies on poverty, child 

nutrition and morbidity indicate high levels of inequality at both district and sub-district levels (Haslett 

and Jones, 2004; Haslett, Jones and Isidro, 2014; Das, Kumar and Kawsar, 2020; Hossain, Das and 

Chandra, 2020). 
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3. Data sources and input estimates 

 
3.1 Data sources 
 

Since 1993-94 the BDHS has been conducted under the authority of the National Institute of 

Population Research and Training (NIPORT) of the Ministry of Health and Family Welfare (MOHFW) to 

evaluate existing health and social programs and to design new strategies for improving the health status 

of the country’s women and children. Until 2018, eight BDHS surveys have been conducted: in 1993-94, 

1996-97, 2000, 2004, 2007, 2011, 2014 and 2017-18. In this study, the survey data over the period 1994-

2014 have been used since the district level location of the surveyed clusters is not disclosed in the most 

recent BDHS 2017-18. Over the period of 1994-2014, three Population and Housing Censuses have been 

conducted, in 1991, 2001 and 2011. Full census data are not available, but only 10% of Census 1991 data, 

10% of Census 2001 data and 5% of Census 2011 data are publicly available from IPUMS-International 

(https://international.ipums.org). A number of district-level contextual variables have been generated and 

used in the development of cross-sectional FH models to produce input estimates for the MTS models. 

 
3.2 Direct estimates 
 

The variables analysed in this paper are ANC0 and ANC4. Bangladesh is divided into 7 sub-national 

regions, called divisions. These divisions are further divided into 64 districts, which is the most detailed 

regional level considered in this study. As a first step, estimates and variance estimates of the two target 

variables at the district level are obtained from each survey year’s unit-level data using the standard 

design-based direct survey estimator (hereafter denoted by DIR), where the survey weights are used to 

account for the sampling design and for non-response. 

In this study, reproductive age ever-married women who have given birth within the last three years 

before a survey year are considered as the target population. Since in the census population such 

pregnancy related information is not available, area-specific population size is estimated by the number of 

reproductive age ever-married women available in the three Censuses. This means that even though the 

area-specific sample sizes are based on a census, there is some uncertainty about them, which is ignored in 

the SAE models. See Das, van den Brakel, Boonstra and Haslett (2021) for more details about division 

and district specific population sizes. 

The BDHS uses a two-stage stratified sample of households. The strata are formed from divisions and 

sub-divisions according to their urban-rural characterization. The primary sampling units (PSUs) are the 

enumeration areas of the Population and Housing Census created to have an average of about 120 

households (slightly vary over census). In the first stage, PSUs are selected with probabilities proportional 

to PSU size, i.e., the number of households. In the second stage, a complete household listing is carried 

out in all selected PSUs and then about 30 households are selected from each PSU using systematic 

sampling. The response rates among eligible women have been over 95% in all BDHS years. Though the 

sample size of the ever-married women is greater than 10,000 in all the surveys, in this study only the 
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ever-married women who had a child birth in the three years preceding the survey year are considered, 

and therefore sample sizes are smaller. At the district level, mean sample sizes vary between 60 and 114, 

with some districts having less than 10 or even no observed women. 

Sampling weights are calculated based on selection probabilities. These weights are then adjusted for 

household and individual non-response. The direct estimate for the population proportion in a certain 

domain i  for survey year t  is computed as the sample mean   
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where y  is the response variable of interest, its  is the set of ever-married women in domain i  for which y  

is observed in year ,t  and ijtw  is the survey weight for person j  living in area i  in year .t  Note that the 

weights ijtw  are scaled such that the sum over the weights in the sample is equal to the net sample size. 

The corresponding variance estimates are approximated as   
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where itn  is the number of ever-married women observed in domain i  at the survey year .t  Initially, the 

variance was approximated by calculating the variance among the estimated PSU totals as if they were 

selected by using stratified sampling with replacement, known as the ultimate sampling unit variance 

approximation. This resulted in zero variance estimates for a few domains. Variance approximation (3.2) 

avoids these zero variance estimates, and otherwise results in variance estimates comparable with the 

initial approximation where PSUs were assumed to be selected with replacement. In the first MTS model, 

denoted by MTS-I, these direct estimates are used as the input series. 

 
3.3 Cross-sectional Fay-Herriot estimates 
 

An issue with the MTS-I model is the use of census data as auxiliary variables in the MTS model. 

Because the time gap between two subsequent censuses is 10 years whereas the BDHS is conducted every 

3 or 4 years, the census covariates remain the same until the new census data are available. Including these 

census data as covariates in the MTS-I models will bias estimates of trends and period-to-period changes. 

One way to take advantage of the census information is to model the direct estimates at the district level in 

separate cross-sectional FH models using relevant contextual variables extracted from the census data. It is 

also expected that the use of on-time available census auxiliary variables in repetitive cross-sectional FH 

models may affect regression coefficients and the accuracy of model predictions of the dependent 

variable, but not the predictions of the dependent variable itself. Compared to the direct estimates used in 

MTS-I, these cross-sectional FH models also provide better estimates by already borrowing some strength 

over districts. 
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The cross-sectional FH estimates and their standard errors are used as input for a second model, 

denoted by MTS-II. The cross-sectional FH estimates are correlated due to their common fixed effect 

components, which is ignored in MTS-II. Therefore a third MTS model, denoted by MTS-III, is developed 

using cross-sectional FH estimates and their full covariance matrix as input. 

The fixed and random effect components for the survey-specific cross-sectional FH models are shown 

in Appendix Tables A.2 and A.3. For all the models, random effects are assumed to follow a normal 

distribution. Non-normal models have been considered for the random effects (Laplace and horseshoe) 

and the sampling error (t-distribution) as alternatives for the normal distribution. This, however, did not 

improve the model fit. 

 
3.4 Generalized variance functions 
 

In the FH and MTS models, the variance estimates of the direct estimates are largely treated as fixed 

given quantities. Since these variance estimates can be very noisy, they are smoothed using a GVF before 

using them in the FH and MTS models. It is understood that a district without sample information is 

considered as missing and is therefore not considered in the model development approach. The cross-

sectional FH model can produce estimates and standard errors for these out-of-sample domains. These 

synthetic estimates are, however, not used in the development of the MTS-II and MTS-III models to allow 

for a better comparison with the MTS-I model. 

The GVFs are regression models that relate the variance estimates to predictors such as sample size, 

survey design variables, and point estimates (Wolter (2007), Chapter 7). For both ANC0 and ANC4, the 

following GVF is used:   

 ˆlogse( ) = log log( 1) Divisionit it itY Y m   + + + + +∈𝑖𝑡 , (3.3) 

where ˆse( )itY  is the standard error of ˆ
itY  in (3.1), itm  the number of sampling units contributing to district 

i  in year t  and Division  is a categorical variable with 7 levels. Since we cannot trust the direct estimates 

for very small ,itm  the 
itY  on the right hand side of (3.3) are simple smoothed estimates   
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where 
[ ]d i tY  denotes the mean for division ( 1d d =  to 7) to which district i  belongs, in year .t  As 

mentioned by a referee, a composite regression estimator can be used as an alternative for (3.4). 

The regression errors ∈𝑖𝑡 , are assumed to be independent and normally distributed with a common 

variance parameter 2.  The GVFs are fitted only to districts with non-zero standard errors of the direct 

estimates. The predicted (smoothed) standard errors based on the fitted models are   

 ( )2

pred
ˆ ˆˆ ˆ ˆ ˆse ( ) = exp log log( 1) Division 2 ,it it itY Y m    + + + + +  (3.5) 
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where ̂  is 0.03 for ANC0 and 0.003 for ANC4, respectively. The R-squared values for both models are 

quite high 0.79 for ANC0 and 0.99 for ANC4. Note that the exponential back-transformation in (3.5) 

includes a bias correction, which in this case has only a small effect. This approach is used to get 

smoothed standard errors for the cross-sectional FH models and MTS-I model. 

 
3.5 Transformations of input series 
 

Square root, log and log-ratio transformation are considered as a variance stabilizing transformation, 

see Sakia (1992). The square root transformation is applied to ANC4 data (the MTS models and the cross-

sectional FH models) since this transformation reduces the correlation between point estimates and their 

standard errors of the input series, reduces heterogeneity, improves the convergence of the MCMC 

simulation, and reduces the skewness of proportion data if they take values close to the lower boundary of 

zero. For ANC0, the square root transformation is only used for the year specific cross-sectional FH 

models in 2011 and 2014 only. In the other years, no transformation is applied. In all three MTS models, 

no transformation is applied for ANC0 since the square root transformation for the input series increases 

the dependency between direct estimates and standard errors. 

Let ˆ ˆ= ( )it itY +Y  denote the square root transformed direct estimates, where   is a small number 

(0.005), necessary because for some districts direct estimates equal zero. Using a first order Taylor 

approximation it can be shown that ( )ˆ ˆ ˆse( ) se( ) 2 .it it itY Y  +Y  

If the GVF (3.3) is applied to the standard errors of the untransformed direct estimates, then the 

standard errors for domains with a very small number of sampling units can become unreasonably large 

due to the linearisation approximation. This issue is avoided by applying the GVF to the standard errors of 

the transformed estimates, i.e., ˆse( ).itY  

 
4. Time series multilevel modelling 
 

In this study, direct estimates and their standard errors are available for the survey years 1994, 1997, 

2000, 2004, 2007, 2011 and 2014. To account for the varying time-lags of 3 or 4 years between the 

subsequent survey years, the MTS models are defined at an annual frequency, (i.e., values refer to a 

reference period of one year) at the most detailed regional level of the 64 districts. With a time span of 21 

years, there are 1,344 domain-year combinations. With seven available survey years, the model is fitted to 

the 448 domain-year observations. The years between two subsequent surveys are defined as missing in 

the model. In this way the period-to-period evolution of the trend is specified correctly and the model 

provides predictions for the missing domain-year combinations. 

For convenience let us now denote by ˆ
itY  the input series for the time series models for either ANC0 or 

ANC4 in year t  and domain .i  This can be the untransformed direct estimates, the square root 

transformed direct estimates or the model predictions obtained with the cross-sectional FH models. Here 



Survey Methodology, December 2022 409 
 

 
Statistics Canada, Catalogue No. 12-001-X 

domain index i  runs from 1 to = 64dM  and time index t  from 1 to = 21.T  We further combine these 

estimates into a vector 11 1 1
ˆ ˆ ˆ ˆ ˆ( , , , ) ,

d dM T M TY Y Y Y Y =  a vector of dimension = .dM M T  

 
4.1 Model structure 
 

The multilevel models considered take the general linear additive form   

 ( ) ( )ˆ ,Y X Z v e 



= + +  (4.1) 

where X  is a M p  design matrix for a p -vector of fixed effects ,  and the ( )Z   are ( )M q   design 

matrices for ( )q  -dimensional random effect vectors ( ).v   Here the sum over   runs over several possible 

random effect terms at different levels, such as local level and smooth trends at district and division levels, 

white noise at the most detailed level of the M  domains, etc. This is explained in more detail below. In 

formula (4.1) 11 1( , , , )
d dM M Te e e e =  denotes, depending on the input series, the sampling errors of the 

direct estimates or the prediction errors of the cross-sectional FH model. The errors are taken to be 

normally distributed as ~ (0, )e N   where 
=1 .T

t t =   If the input series are the untransformed direct 

estimates, then t  is the covariance matrix for the untransformed direct estimates observed in year .t  If 

the input series are transformed, then t  is the covariance matrix for the transformed direct estimates, as 

described in Subsection 3.5. If the input series are the predictions based on the cross-sectional FH models, 

then t  contains the estimated mean squared errors of the FH predictions. Under MTS-II, t  is diagonal 

and ignores the correlations between the domain predictions. Under MTS-III, t  is a full covariance 

matrix that also accommodates the correlations between domain predictions. 

Based on the distribution of the sampling errors e  in (4.1), the likelihood function conditional on fixed 

and random effects parameters can be defined as   

 ( ) ( )ˆ ˆ, , ,p Y N Y  =   (4.2) 

where ( ) ( )X Z v 


 = +  is the linear predictor. For the errors e  a Student-t distribution instead of the 

normal distribution can be considered to give smaller weight to more outlying observations, following 

West (1984). 

The fixed effect part of   can contain components like an intercept, a linear trend, main effects for 

division and district and possibly the second-order interactions for linear trends and division or district. 

The vector   of fixed effects is assigned a normal prior ( ) (0,100 ),pp N I =  with xI  the identity matrix 

of dimension .x x  This is only very weakly informative as a standard error of 10 is very large relative to 

the scales of the (transformed) direct estimates and the covariates used. 

The second term on the right hand side of (4.1) consists of a sum of contributions to the linear 

predictor by random effects or varying coefficient terms. The random effect vectors ( )v   for different   

are assumed to be independent, but the components within a vector ( )v   are possibly correlated to 
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accommodate temporal or cross-sectional correlation. To describe the general model for each vector ( )v   

of random effects, we suppress superscript   in what follows for notational convenience. 

Each random effects vector v  is assumed to be distributed as   

 ~ (0, ),v N A V  (4.3) 

where V  and A  are d d  and l l  covariance matrices, respectively, and A V  denotes the Kronecker 

product of A  with .V  The total length of v  is ,q dl=  and these coefficients may be thought of as 

corresponding to d  effects allowed to vary over l  levels of a factor variable. If, e.g., V  corresponds to 

division, then V  defines 7d =  different random effects that correspond to the 7 categories of division. If 

subsequently A  corresponds to time, then = 21l  years. In that case each of the 7 effects can vary over its 

21 levels (years in this case). Each random effect generated for a division   year combination is shared by 

all districts belonging to that division in that particular year. 

The covariance matrix A  describes the covariance structure among the levels of the factor variable, 

and is assumed to be known. Instead of covariance matrices, precision matrices 1

AQ A−=  are actually 

used, because of computational efficiency (Rue and Held, 2005). The covariance matrix V  for the d  

varying effects can be parameterized in one of three different ways: (i) a full parameterized covariance 

matrix, (ii) a diagonal matrix with unequal diagonal elements, and (iii) a diagonal matrix with equal 

diagonal elements. The scaled-inverse Wishart prior is used as proposed in O’Malley and Zaslavsky 

(2008) and recommended by Gelman and Hill (2007) when a full covariance matrix is assumed, while 

half-Cauchy priors are used for the standard deviations when the covariance matrix is assumed diagonal 

with equal or unequal elements. In case of diagonal variances, half-Cauchy priors are better default priors 

than the more common inverse gamma priors (Gelman, 2006). 

The following random effect structures are considered in the model selection procedure:   

1. Random intercepts for the dM  domains. In this case =
dMA I  and V  is a scalar variance 

parameter. This implies ,it iv t=   and 2~ (0, ).i IN   

2. First or second order random walks at different aggregation levels. A first order random walk or 

local level trend at district level is defined as it itv L=  with , 1it i t itL L −= +  and 2

1,~ (0, ).it R iN   

A second order random walk or smooth trend model at district level is defined as it itv L=  with 

, 1 , 1,it i t i tL L R− −= +  , 1it i t itR R −= +  and 2

2,~ (0, ).it R iN   Both kind of trends can be defined 

similarly at the division or national level. See Rue and Held (2005) for the specification of the 

precision matrix AQ  for first and second order random walks. A full covariance matrix for the 

trend innovations can be considered to allow for cross-sectional besides temporal correlations, 

or a diagonal matrix with different or equal variance parameters to allow for temporal 

correlations only. In the case of equal variances, 2 2

1, 1R i R =  and 2 2

2, 2 , .R i R i =   First and 

second order random walk components at district level are denoted below by RW1_District  

and RW2_District  respectively. At division level they are denoted by RW1_Division  and 

RW2_Division.  
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3. The first order random walks as used in our models cannot capture an overall level as the 

corresponding random effects are constrained to sum to zero over time. Similarly, the second 

order random walks cannot capture both level and linear trend. This means that level and linear 

trend must be accommodated by other model terms, as either fixed or random effects. District-

level intercepts have already been discussed under item 1. To also include linear trends by 

district, this component can be extended to random intercepts and slopes linear in time. In that 

case V  can be either a 2 2  general covariance matrix  

           
2

2
= ,I IS I S

IS I S S

V
   

   

 
 
 

  

accounting for correlations between intercepts and slopes, or a diagonal matrix with diagonal 

elements 2

I  and 2

S  the variances of the radom intercept and slopes respectively. This model 

component is referred to as RIS_District  below.  

4. Spatial random effects: random intercepts varying over the spatial location of districts following 

an intrinsic conditional autoregressive (ICAR) model (Besag and Kooperberg, 1995), defined as 

( )2

( )~ ( ) ,i i i nb i i i Sp iv v N v a a −   for each spatial effect conditional on the others. Here 

( )nb i  is the set of domains neighbouring domain i  and ia  the number of domains neighbouring 

domain i . See Rue and Held (2005) for the specification of the precision matrix .AQ  This 

spatial component is referred to later as Spatial_District. 

5. White noise: to allow for random unexplained variation, white noise at the most detailed 

domain-by-year level can be included. In this case MA I=  and V  a scalar variance parameter. 

This implies 2~ (0, ).it WN   

 

We also investigated generalisations of (4.3) to non-normal distributions of random effects by 

implementing Student-t, horseshoe prior (Carvalho, Polson and Scott, 2010) and Laplace (Tibshirani, 

1996; Park and Casella, 2008). These alternative distributions have fatter tails allowing for occasional 

large effects. However, these distributions did not improve results for the considered target variables in 

terms of model information criteria as well as the underlying trend predictions. Therefore the normal 

distribution is used for all random effect components. The exact lay out of the final MTS models for 

ANC0 and ANC4 are specified in Subsections 5.1 and 5.2 respectively. 

 

4.2 Model estimation 
 

The models are fitted using Markov Chain Monte Carlo (MCMC) sampling, in particular the Gibbs 

sampler (Geman and Geman, 1984; Gelfand and Smith, 1990). See Boonstra and van den Brakel (2022) 

for a specification of the full conditional distributions. The models specified in Subsection 4.1 are run in R 

(R Core Team, 2015) using package mcmcsae (Boonstra, 2021). The Gibbs sampler is run in parallel for 

three independent chains with randomly generated starting values. In the model building stage 1,000 

iterations are used, in addition to a “burn-in” period of 100 iterations. This was sufficient for reasonably 
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stable Monte Carlo estimates of the model parameters and trend predictions. For the selected model we 

use a longer run of 1,000 burn-in plus 5,000 iterations of which the draws of every fifth iteration are 

stored. This leaves 3  1,000 = 3,000 draws to compute estimates and standard errors. The convergence of 

the MCMC simulation is assessed using trace and autocorrelation plots as well as the Gelman-Rubin 

potential scale reduction factor (Gelman and Rubin, 1992), which diagnoses the mixing of the chains. For 

the longer simulation of the selected model all model parameters and model predictions have potential 

scale reduction factors below 1.01 and sufficient effective numbers of independent draws. 

Many models of the form (4.1) have been fitted to the data. For the comparison of models using the 

same input data we use the Widely Applicable Information Criterion or Watanabe-Akaike Information 

Criterion (WAIC) (Watanabe, 2010, 2013) and the Deviance Information Criterion (DIC) (Spiegelhalter, 

Best, Carlin and van der Linde, 2002). We also compare the models graphically by their model fits and 

trend predictions at three aggregation levels. 

 
5. Selected models and model prediction 
 

5.1 MTS model for ANC0 
 

No transformation for the input series of the direct estimates or the FH estimates is considered. The 

following fixed effect components are included in the selected models for MTS-I, MTS-II, and MTS-III: 

 1 Division . Division * . ,yr c yr c+ + +  (5.1) 

where .yr c  denotes the standardized quantitative year variable, which defines a fixed effect linear trend. 

Similarly Division * .yr c  defines a fixed effect linear trend for each separate division. The random effects 

part of the three models is shown in Table 5.1. If multiple varying effects are modeled, then there is a 

choice between scalar, diagonal or full covariance matrix V  in (4.3). For variation over time, second order 

random walks RW2_Division  and RW2_District  were finally selected. White noise components are 

considered but not included in the final model since it did not further improve the model fit.   

 
Table 5.1 

Summary of the random effect components for the selected time series multilevel model for ANC0. The second 

and third columns refer to the varying effects with covariance matrix V  in (4.3), whereas the fourth column 

refers to the factor variable associated with A  in (4.3). The last column contains the total number of random 

effects for each component 
 

Model Component Formula V Variance Structure Factor A # of Effects 

RIS_District  1 .yr c+  full District 128 

RW2_Division  Division scalar RW2(yr) 147 

RW2_District  District scalar RW2(yr) 1,344 

Spatial_District  1 scalar Spatial(District) 64 
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The linear predictor of the selected model can be written, element-wise for district i  and year ,t  as 

 ( ) ( )

[ ] ,yr div

it it i t i it j i t ix z u u s   = + + + + +  (5.2) 

where   is the vector of fixed effects corresponding to the covariates itx  as specified in (5.1), i  are 

random intercepts varying by district, tz  denotes the .yr c  variable for year ,t  and ( )yr

i  are the 

corresponding random slopes varying by district. These random intercepts and slopes are jointly 

distributed as   

 

2
iid

( ) 2

0
~ , .

0

i I I S

yr

i I S S

N
   

   

     
      
     

 (5.3) 

The second-order random walk effects at district and division level are distributed as   

 
( )

iid 2

( 1) ( 2) 2

iid( ) ( ) ( ) ( ) 2

[ ] [ ]( 1) [ ]( 2) 2

~2 (0, )

~2 0, ( ) ,

it i t i t R

div div div div

j i t j i t j i t R

u u u N

u u u N





− −

− −

− +

− +
 (5.4) 

where [ ]j i  should be read as division j  to which district i  belongs. Finally, the spatial effects is  are 

distributed as   

 
ind 2

( )

1 1
~ , ,i i i i Sp

i nb ii i

s s N s
a a

 


 
 
 

  (5.5) 

where ia  is the size of the set ( )nb i  of neighbouring districts of district .i  Priors for the covariance matrix 

in (5.3) and the other variance parameters are chosen as described in Section 4.1. For identifiability of the 

model components, the following constraints are imposed:   

 

=1 =1

( ) ( )

[ ] [ ]

=1 =1

=1

= 0 and = 0 for all districts ,

= 0 and = 0 for all divisions ,

= 0.
d

T T

it it

t t

T T
div div

j i t j i t

t t

M

i

i

u tu i

u tu j

s

 

 



 (5.6) 

Note that RW2 trends are specified at division and district levels, both with a scalar variance structure. A 

division level trend is shared by all underlying districts. Deviations of each district from this division-level 

trend is modeled with RW2 trends at district level. This is a parsimonious alternative to borrow strength 

over time and space, compared to modelling RW2 trends at the district level only with a full covariance 

matrix (Boonstra and van den Brakel, 2019). 

 
5.2 MTS model for ANC4 
 

The square-root transformation is applied to the input series of the direct and FH estimates of ANC4 

for models MTS-I, MTS-II, and MTS-III. For MTS-I the GVF (3.3) is applied to the transformed standard 
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errors to obtain the variance matrix ,  as explained at the end of Subsection 3.5. For the fixed effect 

component a factor variable called “Region” has been created based on the degree of urbanization 

following Rahman, Mohiuddin, Kafy, Sheel and Di (2019). The variable has four levels; 1 for three big 

cities Dhaka, Chittagong and Gazipur, 2 for other nine regional big cities (Barisal, Bogra, Comilla, 

Khulna, Mymensing, Narayanganj, Rajshahi, Rangpur, Sylhet), 3 for three hilly districts (Bandarban, 

Khagrachhari and Rangamati) and 4 for the remaining districts. This variable mainly helped to adjust the 

estimates for the three hilly districts which have very few (even no) information in the considered seven 

surveys. The final model has the following fixed effects components:   

 1 Division . Region.yr c+ + +  (5.7) 

The interaction between “Division” and “yr.c” (like in the ANC0 model) was found to be insignificant in 

the ANC4 model. The random effect components for ANC4 model shown in Table 5.2 are very similar to 

those used for the model of ANC0 (shown in Table 5.1). A local level trend instead of smooth trend at 

division level (RW1_Division in Table 5.2) has been considered since the smooth trend component 

(RW2_Division, as in Table 5.1) resulted in some bias in the national and divisional trends. Also, the 

model with RW1_Division component gives better scores for the information criteria compared to the 

model with RW2_Division component. White noise components are considered but not included in the 

final model since it did not further improve the model fit. 

 

Table 5.2 

Summary of the random effect components for the selected multilevel time series model for ANC4. The second 

and third columns refer to the varying effects with covariance matrix V  in (4.3), whereas the fourth column 

refers to the factor variable associated with A  in (4.3). The last column contains the total number of random 

effects for each term 
 

Model Component Formula V Variance Structure Factor A # of Effects 

RIS_District  1 .yr c+  full District 128 

RW1_Division  Division scalar RW1(yr) 147 

RW2_District  District scalar RW2(yr) 1,344 

Spatial_District  1 scalar Spatial(District) 64 

 
Alternatively, the model can be expressed as in (5.2), where now   and itx  correspond to the fixed 

effects specification (5.7). The only other difference is that the division-level trends are now modelled as a 

first-order random walk: 

 ( )iid ( ) 2

[ ] [ ]( 1) 1
~ 0, ( ) ,div

j i t j i t Ru u N −−  (5.8) 

where for identifiability reasons the constraint ( )

=1
= 0

T div

jtt
u  is imposed for all division .j  As in the case 

of ANC0, RW1 trends are specified at division and RW2 trends at the district levels, both with a scalar 

variance structure as a parsimonious way to borrow strength over time and space. 
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5.3 Trend estimation 
 

Trend estimates are computed based on the MCMC simulation results. In a first step, for each MCMC 

replicate, an M -dimensional vector containing predictions at the most detailed level of all year-district 

combinations is computed as   

 ( ) ( ) ( ) ( , )= ,r r rX Z v 



  +   (5.9) 

where superscript ( )r  indexes the retained MCMC draws. Note that ( )r  also includes predictions for the 

years without survey observations. Since a square root transformation was applied to the ANC4 series, 

initially the following back-transformation for the vectors ( )r  was considered following Boonstra et al. 

(2021): 

 ( )
2

( ) ( ) 2 ˆ= ( ) se( ) .r r

it  + Y  (5.10) 

The second term on the right hand side is a (relatively small) bias correction using the transformed and 

smoothed standard errors. The bias correction stems from the fact that the design expectation of the direct 

estimates can be written as   

 ( ) ( )2 2 2ˆˆ( ) = ( ) = ( ) = var ( ),E Y E E  + +Y E E   

where E  is the vector of sampling errors after transformation, assumed to be normally distributed with 

standard errors ˆse( ).itY  A difficulty with the data at hand is that the bias correction can only be applied to 

the survey years, since standard errors are only available for those years. Applying the bias correction only 

for the survey years distorts the trend estimates, as illustrated in Das, van den Brakel, Boonstra and Haslett 

(2021). In case of MTS-I model, the impact of this bias correction is most clear for those domains with 

zero direct estimates particularly for Chittagong hilly districts. The impact of the bias correction is less in 

case of MTS-II and MTS-III models since the estimated standard errors of the FH estimates are already 

smoothed enough and consistent. However, at national and division levels this bias correction causes some 

overestimation in some survey years for all the trends based on the MTS models. Therefore, the bias 

correction for the square root transformation is not applied in the trend estimates but only used in the 

calculation of cross-sectional FH estimates. 

Trend estimates with their standard errors at the most detailed level of districts for all years are 

obtained by taking the mean and the standard deviation over the MCMC replications ( ) ,r  respectively. 

Trends at the divisional and national levels are obtained by aggregating each MCMC replication from the 

most detailed regional level of districts, using the number of ever-married women as a weighting variable. 

Subsequently, trend estimates and their standard errors are obtained by taking the mean and the standard 

deviation over these aggregated MCMC replications. 

 
6. Results 
 

The trends of ANC0 and ANC4 shown in the figures consist of five types of estimates with their 

approximate 95% confidence intervals: (i) weighted direct estimates (DIR) at the surveyed year (black 
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error-bar line), (ii) cross-sectional FH estimates at the surveyed year (green error-bar line), (iii) estimates 

based on MTS-I model (red line), (iv) estimates based on MTS-II (green line) and (v) estimates based on 

MTS-III model (blue line). 

 

6.1 ANC0 
 

The national level trends of ANC0 are shown in Figure 6.1. The figure shows that the DIR and cross-

sectional FH estimates are very similar at the survey years with approximately equal 95% CI. This can be 

expected for figures at the national level, since the gain in precision obtained with a small area prediction 

model with respect to a direct estimator becomes smaller as the sample size increases. During the initial 

period 1994-2000, the national level trend based on the MTS-I model follows the DIR and cross-sectional 

FH estimates, while the trends based on MTS-II and MTS-III models are slightly higher. For the period 

2004-2010, the trend based on MTS-I model is slightly higher than the trends based on MTS-II and MTS-

III models. The differences are, however, very small. 

The trends at division level, shown in Figure 6.2, indicate that the trends under MTS-I are very similar 

to those based on MTS-II and MTS-III models with some small exceptions in Dhaka, Khulna and 

Rajshahi divisions. The differences in Dhaka and Khulna division may cause most of the differences in 

the national level trends. 

The trends based on the MTS-II and MTS-III models are almost identical at national and division 

levels. This is supported by the estimated variance components of the division-level smooth-trend random 

component under the developed two models ( )

2
ˆ( :div

R  about 0.020) given in Table 6.1. However, there are 

more substantial differences in the trends under MTS-II and MTS-III at the district level, see Figures 6.3 

and 6.4. See Das, van den Brakel, Boonstra and Haslett (2021) for plots for all districts. The trends based 

on the MTS-III model are smoother than those based on the MTS-II model, which is a result of the smaller 

values of the estimated variance component 2
ˆ

R  under MTS-III (see Table 6.1). 

 

Table 6.1 

Posterior means of standard deviation parameters of random components of MTS-I, MTS-II, MTS-III models 

for ANC0. No superscript refers to district level, superscripts (div) refers to division level 
 

Model ˆ (SE)
I

  ˆ (SE)
S

  ˆ (SE)
IS

  ˆ (SE)
Sp

  
( )

2
ˆ (SE)

div

R
  

2
ˆ (SE)

R
  

MTS-I 0.083 (0.013) 0.054 (0.007) 0.168 (0.171) 0.068 (0.032) 0.019 (0.003) 0.024 (0.002) 

MTS-II 0.069 (0.012) 0.033 (0.004) 0.254 (0.180) 0.071 (0.028) 0.020 (0.003) 0.013 (0.002) 

MTS-III 0.062 (0.013) 0.027 (0.013) 0.227 (0.201) 0.067 (0.030) 0.020 (0.003) 0.009 (0.001) 

 
The trends at the district level have a tendency to follow the pattern of their respective division level 

trend shown in Figure 6.2. This is particularly the case for domains with a relatively small number of 

observations such as districts Bandarban, Khagrachnari and Rangamati in Figure 6.3 that belong to 

Chittagong division in Figure 6.2. To reduce this tendency, an MTS model was developed by removing 

smooth trend component RW2_Division  at division level in Table 5.1. This, however, resulted in highly 

smooth unrealistic trends at the national and divisional levels. In a similar way, to examine the need for a 
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spatial component, MTS models were developed with and without considering the spatial component 

(Spatial_District  in Table 5.1). It is observed that the spatial component makes the estimates more 

plausible for those districts with small or zero sample sizes. See for example the trends of Bandarban and 

Rangamati districts of Chittagong division. 

The MTS-I model shows upward trends for some districts during the period of 1994-2000. These 

developments are unplausible from a subject matter point of view and are nicely corrected by the MTS-II 

and MTS-III models that use the FH estimates as input series. See for example Noakhali, Bandarban, 

Rangamati, Narayanganj, Rajbari, and Narail districts in Figure 6.3. Some districts have volatile trends 

according to the DIR estimates and MTS-I model during the whole period mainly due to variation in the 

sample size. See for example, Bandarban, Bhola, Khagrachhari, Kishoreganj and Rangamati in 

Figure 6.3, Chapai Nababganj, Feni, Jhalokati, Joypurhat, and Pabna districts in Figure 6.4. From a 

subject matter point of view a smooth decreasing trend for ANC0 coverage is expected. In particular the 

turning points that are visible in several districts arround 2007 and 2011 are not expected. The trends 

based on the MTS-II and MTS-III models ignore most of these volatilities and show reasonable smooth 

trends for these districts and are therefore more realistic compared to MTS-I. Nevertheless, the fits of all 

three models are compatible with the observed data. MTS-II appears to be a nice compromise between 

models I and III. 

 
Figure 6.1 National level trends of ANC0 in Bangladesh: (i) DIR (black error-bar line), (ii) cross-sectional 

FH (green error-bar line), (iii) MTS-I (red line), (iv) MTS-II (green line) and (v) MTS-III (blue 

line). 
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Figure 6.2 Division level trends of ANC0 in Bangladesh: (i) DIR (black error-bar line), (ii) cross-sectional FH 

(green error-bar line), (iii) MTS-I (red line), (iv) MTS-II (green line) and (v) MTS-III (blue line). 
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Figure 6.3 District level trends of ANC0 in Bangladesh: (i) DIR (black error-bar line), (ii) cross-sectional FH 

(green error-bar line), (iii) MTS-I (red line), (iv) MTS-II (green line) and (v) MTS-III (blue line). 
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Figure 6.4 District level trends of ANC0 in Bangladesh: (i) DIR (black error-bar line), (ii) cross-sectional FH 

(green error-bar line), (iii) MTS-I (red line), (iv) MTS-II (green line) and (v) MTS-III (blue line). 
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In most cases models MTS-II and MTS-III behave similarly. However, model MTS-III, which 

accounts for correlation among the cross-sectional FH estimates, overestimates ANC0 for some districts 

(such as Chapai Nababganj, Lalmonirhat and Shariatpur districts in Figure 6.4) and also slightly 

underestimate the trend in some districts (such as Khagrachari, Rangamati, and Shirajganj districts in 

Figure 6.3) compared to the cross-sectional FH estimates. Again MTS-II seeks a compromise between 

smooth trends under MTS-III and more volatile trends under MTS-I in most of the districts and appears to 

be the preferred model for estimating trends of ANC0. 

 

6.2 ANC4  
 

The national level trend of ANC4 shown in Figure 6.5 shows a linear upward increase from 6% in 

1994 to about 31% in 2014. Like ANC0, the DIR and cross-sectional FH estimates of ANC4 are very 

similar at the survey years with approximately equal 95% CI. Trends estimated from the MTS-I (red line), 

MTS-II (green line) and MTS-III (blue line) show very similar patterns. Compared to the DIR and cross-

sectional FH estimates, the trend of MTS-I is slightly lower in 2007 and 2014. Trends under MTS-II and 

MTS-III in survey year 2011 are somewhat larger compared to the DIR and cross-sectional FH estimates. 

The trends at division level are shown in Figure 6.6. The three MTS models give very similar trend 

estimates. Some differences occur in Chittagong, Dhaka and Rangpur divisions. With MTS-I the trend is 

slightly higher compared to the DIR and FH estimates for Rangpur division over the 1994-2000 period. 

For MTS-II and MTS-III, the trend is somewhat higher in Rajshahi division during 2011-2014 period 

compared to the DIR and FH estimates. All three MTS models show slightly bow-shaped 95% CI bands in 

between two subsequent survey years, which indicates slightly higher uncertainty during the non-survey 

years compared to the survey years. 

 

Figure 6.5 National level trends of ANC4 in Bangladesh: (i) DIR (black error-bar line), (ii) cross-sectional 

FH (green error-bar line), (iii) MTS-I (red line), (iv) MTS-II (green line) and (v) MTS-III (blue 

line). 
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Figure 6.6 Division level trends of ANC4 in Bangladesh: (i) DIR (black error-bar line), (ii) cross-sectional FH 

(green error-bar line), (iii) MTS-I (red line), (iv) MTS-II (green line) and (v) MTS-III (blue line). 
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Although the trends based on MTS-II and MTS-III are almost identical at national and division levels, 

the estimated variance components of both model differ considerably as follows from Table 6.2. These 

differences lead to substantial differences in the trend estimates at the district level for MTS-II and MTS-

III. Plots for some of the districts are provided in Figures 6.7 and 6.8. See Das, van den Brakel, Boonstra 

and Haslett (2021) for plots of all districts. Similar to ANC0, the trends of ANC4 under MTS-III are 

smoother than those under MTS-II. The smaller variance components of MTS-III also result in narrower 

confidence bands compared to MTS-II. 
 

Table 6.2 

Posterior means of standard deviation parameters of random components of MTS-I, MTS-II, MTS-III models 

for ANC4. No superscript refers to district level, superscripts (div) refers to division level 
 

Model ˆ (SE)
I

  ˆ (SE)
S

  ˆ (SE)
IS

  ˆ (SE)
Sp

  
( )

1
ˆ (SE)

div

R
  

2
ˆ (SE)

R
  

MTS-I 0.060 (0.010) 0.033 (0.005) 0.428 (0.178) 0.047 (0.026) 0.012 (0.004) 0.009 (0.001) 

MTS-II 0.046 (0.007) 0.022 (0.003) 0.501 (0.162) 0.035 (0.018) 0.016 (0.003) 0.004 (0.001) 

MTS-III 0.038 (0.006) 0.018 (0.006) 0.522 (0.165) 0.027 (0.016) 0.014 (0.003) 0.002 (0.001) 

 

The trend estimates under MTS-I are volatile and show unexpected downward trends for some 

districts, see for example Bhola and Pirojpur districts of Barisal division, Gazipur, Kishoreganj and 

Manikganj of Dhaka division, Bogra, Chapai Nababganj and Rajshahi districts of Rajshahi division, and 

Habiganj district of Sylhet division in Figure 6.7. From a subject matter point of view, such strong 

movements and turning points are not expected for ANC4 coverage. Therefore it appears that MTS-I 

follows the DIR estimates too strongly. The trends under MTS-II generally ignore these volatilities and 

show reasonably smooth trends for these districts. The trends under MTS-III are even smoother for some 

of these districts, as for example Bogra and Habiganj districts in Figure 6.7, and Mymensingh and Sylhet 

districts in Figure 6.8. 

The main difficulty arises for the three hilly districts of Chittagong division, i.e., Khagrachhari, 

Rangamati, and Lakshmipur (the first two districts are plotted in Figure 6.8). MTS-I shows very poor 

trend estimates for ANC4 over the whole period mainly due to the erratic DIR estimates, which are either 

zero or highly inconsistent in most of the surveys. The cross-sectional FH estimates are more robust and 

consequently MTS-II and MTS-III show reasonable upward trends for ANC4. It is expected that women 

residing in urbanized and better socioeconomic areas are supposed to receive more ANC visits compared 

to those residing in rural and poor socioeconomic areas. MTS-I shows in some districts lower and in other 

districts higher than expected trend estimates over the whole time period. For example, the trend obtained 

with MTS-I for Narsingdi in Figure 6.8, which is a highly urbanized district of Dhaka division, is lower 

than expected. Similarly the trend under MTS-I Munshiganj in Figure 6.8, which is a less urbanized 

district of Dhaka is higher than expected. Similarly the trend estimates under MTS-I are over the whole 

period higher than expected in Meherpur district of Khulna division, Lalmonirhat and Panchagarh 

districts of Rangpur division. The trend estimates under MTS-II and MTS-III seem more plausible 

because the cross-sectional FH estimates appear to be more realistic than the DIR estimates. Overall, as in 

the case of ANC0, MTS-II is a good compromise between MTS-I and MTS-III. 
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Figure 6.7 District level trends of ANC4 in Bangladesh: (i) DIR (black error-bar line), (ii) cross-sectional FH 

(green error-bar line), (iii) MTS-I (red line), (iv) MTS-II (green line) and (v) MTS-III (blue line). 
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Figure 6.8 District level trends of ANC4 in Bangladesh: (i) DIR (black error-bar line), (ii) cross-sectional FH 

(green error-bar line), (iii) MTS-I (red line), (iv) MTS-II (green line) and (v) MTS-III (blue line). 
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7. Model assessment  
 

In this study, models were selected based on the WAIC, DIC and graphical comparisons of their trend 

predictions at three hierarchical levels. In addition to these model diagnostics, three discrepancy measures 

are defined to evaluate and compare the time-series multilevel models. The first two measures are the 

Relative Bias (RB) and Absolute Relative Bias (ARB), which express the differences between model 

estimates and direct estimates, as percentage of the latter. For a given model, RBit  and ARBit  for domain 

i  and (survey) year t  are defined as   

 
ˆ ˆ( )

RB = 100%,
ˆ

it it
it

it

Y

Y

 −
  (7.1) 

 
ˆ ˆ

ARB = 100%
ˆ

it it

it

it

Y

Y

 −
  (7.2) 

with ˆ
it  the model prediction and ˆ

itY  the direct estimate. The third discrepancy measure is the Relative 

Reduction of the Standard Errors (RRSE), which measures the percentage of reduction in standard error of 

the model-based estimates compared to the direct estimates, i.e.,   

 ( )ˆˆ ˆRRSE 100% se( ) se( ) se( ).it it it itY Y=  −  (7.3) 

The RRSE measure should not be interpreted too strictly, since design-based and model-based standard 

errors are conceptually different quantities. However, both are commonly used as measures of uncertainty, 

and once reasonable models that sufficiently account for variations over all levels of interest have been 

selected, based on other criteria, it is informative to use the RRSE as one of the comparison measures. 

These three discrepancy measures are calculated at national, division and district (i.e., most detailed) 

levels. The distributions of these measures are presented in terms of the minimum value, 1st quartile 1( ),Q  

median, mean, 3rd quartile 3( )Q  and maximum value. 

Additionally, observed coverage rate (CR expressed in %) for 95% confidence interval of the 

considered cross-sectional FH and MTS models are calculated at division and district levels by identifying 

whether the estimated 95% confidence interval (CI) of ˆ
it  contains the direct estimates ˆ( ).itY  Coverage at 

the district level is the percentage of district by year combinations (about 7 64  domains) where the 

direct estimate is included in the CI of ˆ .it  Coverage at the division level is the percentage of division by 

year combinations (7 7  domains) where the direct estimate is included in the CI of ˆ .it  Coverage rates 

are defined in a similar way for each survey year by averaging over all available districts in one particular 

survey year. Finally coverage is calculated for each division seperately by averaging over the 7 survey 

years. 

The distributions of the RBit  (7.1), ARBit  (7.2) and RRSEit  (7.3) for three administrative levels are 

provided in Tables 7.1, 7.2, and 7.3 for ANC0 and ANC4 for the cross-sectional FH, MTS-I, MTS-II, and 

MTS-III models. Table 7.1 shows that FH and MTS-I models provide lower mean RB for ANC0 and 
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ANC4 at all three levels, while MTS-II provides slightly lower mean RB compared to MTS-III model at 

the district level. The ARB distributions in Table 7.2 show that the performance of MTS-II is in between 

MTS-I and MTS-III for all administrative levels except the national level for ANC4. The ARB values are 

the lowest for the cross-sectional FH model. It is also observed that the ARB increases as the domain 

sample size becomes smaller. Table 7.3 shows that MTS-II has the highest RRSE values at national and 

division levels, while at district level this model shows slightly lower RRSE than the MTS-III model for 

both ANC0 and ANC4. The variance reduction increases as the domain sample sizes become smaller. The 

reason that standard errors for the trends at national and division level under MTS-II are smaller than 

MTS-III is because under MTS-II the covariances between the cross-sectional FH predictions at the 

district level in the input series are ignored. These covariances are predominantly positive and therefore 

the standard errors of trends at aggregated levels are higher and more realistic under MTS-III. The higher 

RB, ARB and RRSE values for models MTS-II and MTS-III are a consequence of the more smooth trends 

obtained under both models. Small variances under smooth trends imply a larger amount of bias with 

respect to the direct estimates. As discussed in Section 6, these trends are more plausible compared to the 

cross-sectional FH model and MTS-I model, since from a subject matter point of view a smooth decreases 

for ANC0 and increase for ANC4 are expected. 

 

Table 7.1 

Summary statistics of relative bias (RB, in %) at different aggregation levels for the SAE estimates of ANC0 

and ANC4 
 

Parameter Aggregation 

level 

Model Min. 
1

Q  Median Mean 
3

Q  Max. 

ANC0 Nation FH -0.48 -0.20 0.23 0.08 0.37 0.47 

MTS-I -1.84 -0.68 0.54 -0.05 0.73 0.88 

MTS-II -1.16 -0.55 0.29 0.41 1.19 2.43 

MTS-III -1.53 -0.80 -0.57 -0.02 0.60 2.35 

Division FH -0.68 -0.48 -0.36 0.05 0.50 1.31 

MTS-I -0.99 -0.50 -0.31 0.05 0.64 1.41 

MTS-II -0.77 0.04 0.15 0.59 1.08 2.50 

MTS-III -1.44 -0.37 0.13 0.15 0.89 1.35 

District FH -8.77 -1.72 0.14 0.31 1.67 12.41 

MTS-I -10.35 -1.24 -0.49 -0.66 0.30 1.87 

MTS-II -7.87 -1.15 0.77 1.25 2.89 18.34 

MTS-III -10.05 -2.63 0.89 1.34 3.91 21.43 

ANC4 Nation FH -1.65 -0.62 0.07 -0.07 0.65 1.04 

MTS-I -4.09 -1.60 0.05 1.00 3.19 7.88 

MTS-II -1.85 0.27 1.98 1.91 3.80 5.07 

MTS-III -2.00 -1.35 1.06 1.11 3.10 5.23 

Division FH -1.33 -0.60 -0.13 0.24 0.43 3.47 

MTS-I -1.17 -0.25 -0.04 -0.07 0.32 0.59 

MTS-II -0.50 0.68 1.18 1.55 1.70 5.39 

MTS-III -2.08 0.31 0.73 1.24 1.92 5.58 

District FH -17.83 -4.85 0.40 2.08 6.78 64.77 

MTS-I -16.32 -3.80 -0.56 -0.42 2.98 15.57 

MTS-II -22.00 -5.30 0.57 4.57 12.47 84.31 

MTS-III -29.92 -8.23 0.57 6.12 14.07 124.63 
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This conclusion is confirmed by the CR values shown in Table 7.4. The CRs for the cross-sectional FH 

models are too high, indicating that the FH predictions tend too much to the direct estimates. The CR 

levels are reasonably good for MTS-I, substantially lower for MTS-II and the lowest for MTS-III. The 

lower coverage rates of MTS-II and MTS-III at the district level is reflected by the corresponding higher 

ARB and higher RRSE. These findings show that MTS-I model predictions are more volatile and tend to 

the direct estimates, MTS-III model predictions are highly smoothed, and MTS-II model predictions seem 

like a reasonable compromise between MTS-I and MTS-III model predictions, particularly at the district 

level. 

 
 
Table 7.2 

Summary statistics of absolute relative bias (ARB, in %) at different aggregation levels for the SAE estimates 

of ANC0 and ANC4 
 

Parameter Aggregation 

level 

Model Min. 
1

Q  Median Mean 
3

Q  Max. 

ANC0 Nation FH 0.04 0.27 0.42 0.34 0.46 0.48 

MTS-I 0.26 0.63 0.75 0.87 0.99 1.84 

MTS-II 0.29 0.44 0.58 1.05 1.59 2.43 

MTS-III 0.49 0.61 0.96 1.18 1.61 2.35 

Division FH 0.39 0.50 0.65 0.90 1.20 1.84 

MTS-I 0.48 0.66 0.78 1.39 2.13 2.90 

MTS-II 0.79 0.96 1.56 1.78 2.14 3.88 

MTS-III 1.00 1.14 1.41 1.88 2.43 3.61 

District FH 1.08 2.73 4.17 5.12 5.84 15.94 

MTS-I 1.48 3.93 6.58 7.53 9.02 26.67 

MTS-II 3.15 6.46 10.31 11.32 14.50 33.01 

MTS-III 4.15 8.65 12.54 13.49 16.98 38.16 

ANC4 Nation FH 0.07 0.25 0.92 0.76 1.08 1.65 

MTS-I 0.05 1.60 2.47 3.09 4.00 7.88 

MTS-II 0.97 1.68 1.98 2.71 3.80 5.07 

MTS-III 1.06 1.19 1.46 2.46 3.53 5.23 

Division FH 0.98 1.40 1.71 1.87 2.06 3.47 

MTS-I 1.96 3.06 4.31 4.07 4.64 6.82 

MTS-II 2.18 3.66 4.68 4.33 5.07 6.00 

MTS-III 3.66 4.60 5.36 5.27 5.63 7.46 

District FH 1.93 7.64 12.91 14.29 17.60 64.77 

MTS-I 3.86 14.27 18.72 20.61 28.10 53.45 

MTS-II 7.07 19.47 26.22 28.51 35.88 84.31 

MTS-III 8.62 21.36 29.32 33.13 41.00 124.63 
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Table 7.3 

Summary statistics of relative reduction of standard errors (RRSE in %) at different aggregation levels for 

the SAE estimates of ANC0 and ANC4 
 

Parameter Aggregation 

level 

Model Min. 
1

Q  Median Mean 
3

Q  Max. 

ANC0 Nation FH -0.65 4.03 8.10 8.00 12.72 15.01 

MTS-I -0.03 1.35 4.01 3.67 5.82 7.33 

MTS-II 4.07 7.90 13.71 12.89 17.47 21.68 

MTS-III -3.52 1.02 3.30 3.69 7.15 9.67 

Division FH 2.99 5.82 7.56 7.03 8.64 9.75 

MTS-I 2.66 4.00 5.32 5.16 6.65 6.84 

MTS-II 8.47 12.74 13.70 13.12 14.34 15.53 

MTS-III 3.30 4.71 5.21 5.47 6.12 8.16 

District FH -1.60 7.17 10.20 9.98 12.04 21.61 

MTS-I 7.91 15.16 17.81 18.06 21.15 27.47 

MTS-II 12.60 27.84 34.08 33.80 38.46 48.53 

MTS-III 19.48 32.61 38.40 37.79 41.55 52.71 

ANC4 Nation FH 8.58 11.22 11.66 13.71 14.49 24.32 

MTS-I 6.64 12.16 14.60 14.75 18.50 20.66 

MTS-II 17.79 22.87 23.56 25.12 27.99 32.75 

MTS-III 10.33 16.58 19.45 18.15 21.04 22.04 

Division FH 11.08 11.80 14.07 14.23 16.39 18.08 

MTS-I 11.82 14.31 14.46 15.78 18.18 19.17 

MTS-II 20.32 24.96 27.39 26.34 28.15 30.45 

MTS-III 15.49 20.37 21.75 21.72 24.51 25.05 

District FH 0.34 11.62 16.77 17.63 22.60 38.62 

MTS-I 17.79 27.84 30.48 30.93 33.65 43.40 

MTS-II 29.58 43.37 46.86 48.10 54.96 66.75 

MTS-III 35.63 48.88 51.75 52.94 59.31 70.35 

 
 
Table 7.4 

Observed coverage rate (CR in %) of the model predictions for 95% confidence interval at district and 

division levels as well as district level by survey years for the SAE estimates of ANC0 and ANC4 
 

Parameter Model Year wise CR at District Level Overall CR by Level 

1994 1997 2000 2004 2007 2011 2014 District Division 

ANC0 FH 100.00 98.33 100.00 100.00 100.00 98.36 100.00 99.53 100.00 

MTS-I 100.00 90.00 93.44 88.52 93.22 98.36 100.00 94.81 100.00 

MTS-II 88.33 63.33 70.49 67.21 71.19 75.41 91.53 75.10 95.92 

MTS-III 83.33 53.33 50.82 52.46 61.02 55.74 79.66 62.22 95.92 

ANC4 FH 98.15 98.28 100.00 100.00 100.00 100.00 90.20 98.36 100.00 

MTS-I 87.04 84.48 68.33 76.27 81.97 96.72 100.00 84.58 95.92 

MTS-II 44.44 51.72 50.00 52.54 62.30 65.57 76.47 57.55 97.96 

MTS-III 44.44 41.38 40.00 38.98 50.82 55.74 72.55 48.70 97.96 

 
 



430 Das et al.: MTS modelling of antenatal care coverage in Bangladesh at disaggregated administrative levels 
 

 
Statistics Canada, Catalogue No. 12-001-X 

8. Discussion 
 

In this study, multilevel time-series (MTS) models have been developed for the percentage of women 

receiving no antenatal consult (ANC0) and the percentage of women receiving at least 4 antenatal consults 

(ANC4) in Bangladesh, using only seven editions of the Bangladesh Demographic and Health Survey 

(BDHS) over the period of 1994-2014. Time series models are defined at an annual frequency where years 

without a survey edition are treated as missing. In this way, the model accounts for the varying time gaps 

between the subsequent editions of the BDHS and produce predictions in the years without sample 

surveys. Trends are produced at three regional levels, namely the national level, a break down in 7 

divisions and a breakdown in 64 districts. 

In the first model (MTS-I) year-domain-specific direct estimates and their standard errors are used as 

input in the MTS model. Trends obtained under this model, are rather volatile since the trend estimates 

tend to follow the direct estimates. Another drawback of the MTS-I model is that it hampers the use of 

auxiliary information from two available censuses, since values for the auxiliary information from a 

particular census does not change in two or three subsequent editions of the survey. To use this census 

information, it is proposed to develop cross-sectional Fay-Herriot (FH) models for each survey year 

separately. In a second MTS model, MTS-II, these FH estimates and their standard errors are used as input 

series. In a third model, called MTS-III, the FH estimates with their full covariance matrices, are used as 

input series. This MTS model properly accounts for the cross-sectional correlations between the FH 

estimates. The overall model for MTS-II and MTS-III is then a two-step non-iterated process, for which 

the first stage is producing the FH estimates. 

The models are developed at the most detailed regional level of districts. Division and national level 

trends are estimated by aggregating predictions of the district level trends. In this way, figures at different 

aggregation levels are numerically consistent by definition. 

Compared to other time series small area estimation models proposed in the literature, our models 

contain more structure, since dynamic trend models are specified at different aggregation levels. This is 

necessary to obtain accurate aggregated predictions for the divisions and the national level and is a more 

parsimonious way of modelling cross-sectional correlations. Further model regularization was considered 

by specifying global-local priors. This, however, did not further improve the model fits. 

In small area estimation, domain estimates are often benchmarked to the direct estimates at the national 

level for numerical consistency and as an attempt to reduce the bias in the model based domain 

predictions. In this application the trend estimates at the national level under the MTS models are already 

very close to the direct estimates. Therefore we do not consider an additional benchmark step. 

All three time series models provide estimates with improved accuracy. Because MTS-II ignores the 

predominantly positive correlations between the cross-sectional FH input series, the standard errors of the 

trends at aggregated levels are actually too small. Since MTS-III accounts for these correlations, the 

standard errors for national and division trends are larger but also more realistic. The MTS-II model, 

however, seems to provide most plausible trends for both response variables, particularly at the district 

level, by compromising volatility in the trends under the MTS-I model and flatness in the trends under the 

MTS-III model. This choice is supported by the fact that these variables are likely to be relatively smooth 
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over time. Fitting these models to the series of ANC0 and ANC4 is therefore certainly suitable in concept. 

This also justifies the interpolation of the trends for the years without sample surveys. Our approach can 

be useful also for many developing countries with repeated DHS surveys, since these are typically 

observed with varying time lags and mainly depend on census information that is not updated within two 

or three subsequent editions of the survey. 

Using predictions of the cross-sectional FH models as input series for the MTS models, is proposed as 

a practical solution to make better use of the available census information. The additional advantage of 

this approach is that it stabilizes the input series for the MTS models by removing large sampling errors 

from the direct estimates. This requires, however, a careful model selection and evaluation process for the 

cross-sectional FH models, since model miss-specification of the cross-sectional FH models can result in 

biased input series with estimated standard errors that underestimate the real uncertainty. 

One limitation of this study is related to the bias correction for the square root transformation that is 

applied to ANC4. The bias correction can only be applied to the trend estimates in the survey years. This 

results in awkward increases of point estimates if the sampling error is not smoothed enough, particularly 

for the domains with small sample size. This hampers estimation of period-to-period changes between 

survey years and non-survey years. Therefore the bias correction is only applied to the cross-sectional FH 

models and not to the MTS models. 

The prevalence of ANC0 and ANC4 visits are negatively correlated, so a multivariate model may be an 

interesting alternative to the univariate models used here. The two series could be combined with the 

series of the remainder category in a single multivariate model. This, however, requires a multinomial 

model that has the advantages that it may further improve the precision of the estimates and guarantees 

that the predictions take values in their admissible range, and that the predictions over the categories add 

up to hundred percent. The multinomial model is, however, not easy to implement. Particularly in this 

study the variance-covariance matrix can be difficult to estimate for the districts with small number of 

observation. Furthermore, Datta et al. (2002) shows that univariate models may provide as good results as 

multivariate models proposed in Ghosh, Nangia and Kim (1996), while being simpler to implement. The 

extension of our univariate models to a multinomial model is therefore left for further research. 

For ANC0, the national level shows a downward trend. The decline in the trend temporarily stopped 

during 2004-2011. The trend of ANC4 shows steady increase over the considered study period. Division 

level trends for ANC0 show a steady decline for all the divisions except Dhaka, Chittagong and Sylhet 

divisions. The trends for these three divisions remained stable during the period of 2004-2011 which 

mainly causes the flat trend at the national level of ANC0. On the other hand, at the division level ANC4 

shows almost linear upward trends for most of the divisions except Dhaka and Chittagong. The greatest 

improvement is observed for Khulna and Rangpur divisions where the trends of ANC4 reach to more than 

40% in 2014. District-level trends help to identify highly vulnerable districts in terms of the two 

considered response variables. Though the national level trend of ANC0 declines to about 21% in 2014, a 

few districts get below 10% (Dhaka, Jhenaidaha, and Meherpur) while a considerable number of districts 

still have ANC0 higher than 35% (Bhola, cox’s Bazar, Kishoregonj, Noakhali, Sunamganj, Sirajgonj, and 

three Chittagong hill tract districts). For ANC4, a few districts have estimates above 50% (Dhaka, 
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Nilphamari, and Panchagarh) and most of the districts with high ANC0 have ANC4 estimates less than 

20%. These district level trends might help policy makers to focus on vulnerable hotspots where both 

ANC0 and ANC4 indicators are still poor. Obviously, detailed level trends might help policy makers to 

take actions for reducing disaggregated level inequalities in the race to achieve SDGs. 
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Appendix 
 

Table A.1 

District level contextual variables generated from Census 1991, Census 2001, and Census 2011 data for ANC0 
 

Variable Definition 

Division Barishal, Chittagong, Dhaka, Khulna, Rajshahi, Rangpur, Sylhet. 

Region (1) Densely populated Dhaka, Chittagong and Gazipur districts, 

(2) 9 regional districts with big cities, 

(3) 3 hilly districts (Bandarban, Khagrachhari and Rangamati), 

(4) 49 other districts (less urbanized areas). 

Chittagong Chittagong Division? 

Dhaka  Dhaka Division? 

Khulna  Khulna Division? 

Rangpur  Rangpur Division? 

Rajshahi  Rajshahi Division? 

P_U5  Proportion of Under-5 children. 

P_W  Proportion of women aged 15-49 years.  

P_MW  Proportion of married women aged 15-49 years. 

P_MW_Prim_Edu  Proportion of married women aged 15-49 years 

having primary education. 

P_MW_Sec_Edu  Proportion of married women aged 15-49 years having 

at least secondary education. 

P_HH_No_Edu_W  Proportion of household (HH) with illiterate 

women aged 15-49 years. 

P_HH_Prim_Edu_W  Proportion of household (HH) with primary educated 

women aged 15-49 years. 

P_HH_High_Edu_W  Proportion of household (HH) with higher educated 

women aged 15-49 years. 

P_HH_Sec_Edu_Head  Proportion of HH with at least secondary educated HH head. 
+P_Ru_HH_4  Proportion of rural HH of size 4 and more.  

P_Ru_HH_Elec  Proportion of rural HH with electricity.  

P_Ru_HH_Sing_Moth  Proportion of rural HH with single mother. 

P_HH_U5_Sec_Edu_W  Proportion of HH having under-5 children and women aged 

-49 years having at least secondary education. 
+P_HH_2 _U5  Proportion of HH with 2 or more under-5 children.  

P_Ru_HH_U5  Proportion of rural HH with under-5 children. 
+P_Ru_HH_2 _U5  Proportion of rural HH with 2 or more under-5 children.  
+P_Ur_HH_2 _U5  Proportion of urban HH with 2 or more under-5 children.  
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Table A.2 

Fixed and Random effects of survey-year specific FH models for ANC0 
 

Survey 

Year 

Transformation Fixed Effects Random 

Effect 

Census 

Data 

1994 No +1+ Division + P_HH_High_Edu_W + P_Ur_HH_2 _U5  RI: District level 

Random Intercept 

1991 

1997 No 1+ Division + P_MW_Sec_Edu + P_HH_Sec_Edu_Head  RI 1991 

2000 No 1+ Division + P_Ru_HH_U5 + P_W  RI 1991 

2004 No 1+ Division + P_HH_U5_Sec_Edu_W + P_MW  RI 2001 

2007 No +1+ Division + P_U5 + P_Ru_HH_Size_4  RI 2001 

2011 SQRT 1+ Division + sqrt (P_Ru_HH_U5) + sqrt (P_MW)  RI 2011 

2014 SQRT +1+ Division + sqrt (P_Ur_HH_2 _U5) + sqrt (P_Ru_HH_Elec)  RI 2011 

 
Table A.3 

Fixed and Random effects of survey-year specific FH models for ANC4 
 

Survey 

Year 

Transformation Fixed Effects Random 

Effect 

Census 

Data 

1994 SQRT +1+ Division + sqrt (P_Ru_U5) + sqrt (P_HH_2 _U5)  
++ sqrt (P_Ur_HH_2 _U5)  

RI: District level 

Random Intercept 

1991 

1997 SQRT 1+ Division +  

sqrt (P_HH_U5_Sec_Edu_W) + log(P_HH_Sec_Edu_Head)  

RI 1991 

2000 SQRT 1+ Khulna + Region +  

P E I Esqrt (P_MW rim du) + sqrt (P_HH_Wlli du)  

RI 1991 

2004 SQRT 1+ Division + sqrt (P_HH_U5_Prim_Edu_W) + sqrt (P_W)  RI 2001 

2007 SQRT +1+ Rangpur + Region + sqrt (P_U5) + sqrt (P_Ru_HH_Size_4 )  RI 2001 

2011 SQRT 1+ Rangpur + Chittagong +  

sqrt ((P_HH_U5_Sec_Edu_W) + sqrt (P_W)  

RI 2011 

2014 SQRT 1+ Rangpur + Chittagong + Rajshahi + Region +  

sqrt (P_W) + sqrt (P_Ru_HH_Sing_Mot)  

RI 2011 
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Optimal linear estimation in two-phase sampling 

Takis Merkouris1 

Abstract 

Two-phase sampling is a cost effective sampling design employed extensively in surveys. In this paper a 

method of most efficient linear estimation of totals in two-phase sampling is proposed, which exploits 

optimally auxiliary survey information. First, a best linear unbiased estimator (BLUE) of any total is formally 

derived in analytic form, and shown to be also a calibration estimator. Then, a proper reformulation of such a 

BLUE and estimation of its unknown coefficients leads to the construction of an “optimal” regression 

estimator, which can also be obtained through a suitable calibration procedure. A distinctive feature of such 

calibration is the alignment of estimates from the two phases in an one-step procedure involving the combined 

first-and-second phase samples. Optimal estimation is feasible for certain two-phase designs that are used 

often in large scale surveys. For general two-phase designs, an alternative calibration procedure gives a 

generalized regression estimator as an approximate optimal estimator. The proposed general approach to 

optimal estimation leads to the most effective use of the available auxiliary information in any two-phase 

survey. The advantages of this approach over existing methods of estimation in two-phase sampling are 

shown both theoretically and through a simulation study. 
 

Key Words: Auxiliary information; Best linear unbiased estimation; Calibration; Generalized regression estimation; 

Double sampling. 

 

 

1. Introduction 
 

The two-phase sampling design, also called double sampling, has traditionally been used in sample 

surveys as a cost-effective survey method. In the first phase, a relatively large sample is drawn from the 

target population to provide auxiliary information that is inexpensive to collect. This sample forms a 

highly informative frame from which a subsample is drawn in the second phase to collect information on 

the items of interest. Also, two-phase sampling has been increasingly used as a mechanism for handling 

nonresponse. Särndal, Swensson and Wretman (1992) provide an extensive account of such uses of two-

phase sampling. Groves and Heeringa (2006), and Brick and Tourangeau (2017) discuss the important role 

of two-phase sampling in responsive designs when costly actions are taken for reduction of non-response 

bias. Other applications of two-phase sampling, which have emerged in recent survey practice, involve 

various forms of integration of separate surveys. In one such case, a first-phase sample serves as a frame 

for the second-phase sample for a multitude of similar surveys (Turmelle and Beaucage, 2013). In another 

case, a primary large survey is used as a frame for another smaller survey with a larger set of survey items 

(Australian Bureau of Statistics, 2004). 

Auxiliary information in two-phase sampling may be available at different levels. Some information is 

at the level of the whole population, and other information is at the level of the first-phase sample or the 

second-phase sample. Much research has been devoted to the use of such information for improved 

estimation of population totals or means; see Särndal et al. (1992), Hidiroglou and Särndal (1998), 

Hidiroglou (2001), Estevao and Särndal (2002, 2009), Wu and Luan (2003), Chen and Kim (2014), and 
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references therein. In general, two approaches are identified in this literature for incorporating auxiliary 

information into the estimation process. The generalized regression approach and the calibration approach; 

the two phases of sampling imply two regression fits or two successive calibrations. Under certain 

conditions the two approaches lead to identical estimators, but this is not so in general. Variance 

estimation of these two-phase estimators has been studied extensively; see, for example, Sitter (1997), 

Fuller (1998), Kim and Sitter (2003), Kim, Navarro and Fuller (2006), Hidiroglou, Rao and Haziza 

(2008), Kim and Yu (2011), Beaumont, Beliveau and Haziza (2015). 

Irrespective of the regression or calibration formulation of the existing estimation procedures, the 

resulting estimators for a target variable are in effect linear combinations of Horvitz-Thompson estimators 

of various totals (or means), including the estimator for the target variable derived from the second-phase 

sample and estimators for auxiliary variables derived from both first-phase and second-phase sample. 

Taking a formal approach to optimal estimation, in this paper we consider the most efficient linear 

combination of available estimators from both phases, based on the principle of best linear unbiased 

estimation. We show that the derived, in analytic form, best linear unbiased estimator (BLUE) possesses a 

useful orthogonality property and that it can be alternatively constructed as calibration estimator, linear in 

the values of the associated variable and incorporating the auxiliary information into the calibrated design 

weigs. Estimation of the unknown coefficients of this BLUE, using all available auxiliary information 

from both phases of sampling, gives an “optimal” estimator, analogous to the single-phase optimal 

regression estimator of Montanari (1987) and Rao (1994). This estimator is a large-sample approximation 

of the BLUE, with the estimated coefficients minimizing its estimated approximate (large sample) 

variance, and preserving the orthogonality property of the BLUE. With a proper reformulation of the 

BLUE, the optimal estimator can also be obtained through a suitable calibration procedure. The distinctive 

feature of such calibration is the convenient one-step procedure of aligning estimates from the two phases 

using the combined first-and-second phase samples. Optimal estimation is feasible for certain two-phase 

designs that are used often in large scale surveys. For general designs, an alternative one-step calibration 

procedure gives a novel generalized regression estimator as a convenient approximation to the optimal 

estimator. 

The proposed general method of estimation guides the construction of calibration estimators in any 

particular case of two-phase survey, making the most effective use of the available auxiliary information. 

It also provides an insig into existing less efficient estimation methods when these are placed into the 

framework of optimal estimation. The advantages of the proposed method over existing methods are 

shown both theoretically and through a simulation study. 

The paper is organized as follows. The structure of the two-phase sampling design, and notation, are 

introduced in Section 2. The derivation of the BLUE for the standard type of auxiliary information in two-

phase sampling, and its alternative construction as a calibration estimator, are described in Section 3. The 

two-phase optimal estimator and its calibration equivalent are presented in Section 4. The approximation 

of the optimal estimator by a generalized regression estimator is discussed in Section 5. Comparisons with 
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existing methods are presented in Section 6. A simulation study is presented in Section 7. The paper 

concludes with a discussion in Section 8.  

 
2. Two-phase sampling design: Structure and notation 
 

Let  1, , , ,U k N=  denote a finite population of N  units. A first-phase sample 
1s  of size 

1n  is 

drawn from the population ,U  using a sampling design that defines inclusion probability 
1 1( )k P k s =   

for unit ,k U  and joint inclusion probability 
1 1( , )kl P k l s =   for units , .k l U  Then, a second-phase 

sample 
2s  of size 

2n  is drawn from 
1s  using a sampling design that defines conditional inclusion 

probability 2 2 1( )k P k s s =   for 
1,k s  and joint conditional inclusion probability 2 2 1( , )kl P k l s s =   

for units 
1, .k l s  Assuming that 

1 0k   for all k U  and 
2 0k   for all 

1,k s  the first-phase design 

weig for 
1k s  is 

1 11 ,k kw =  the conditional second-phase design weig for 
2k s  is 

2 21 ,k kw =  and 

the overall design weig for 
2k s  is 

1 2 .k k kw w w=  

The standard type of auxiliary variables in two-phase sampling (see, for example, Särndal et al. (1992)) 

involves a vector of auxiliary variables ,x  partitioned as 
1 2( , )  =x x x  by p  and q  components of it, with 

population total kU
=xt x  and known total 

1 1kU
=xt x  of 

1.x  The value 
kx  is observed for every unit 

1,k s  whereas for a d -dimensional vector of target variables ,y  with total ,kU
=yt y  the value 

ky  is 

observed only for the units 
2.k s  In some surveys, components of the vector 

2x  are also target variables. 

An unbiased estimator of the total ,yt  the common Horvitz-Thompson (HT) estimator, given by 

2

,k ks
w=yt y  is obtained using the second-phase sample 

2 ,s  while two HT estimators of the total ,xt  

given by 
1

1
ˆ

k ks
w=xt x  and 

2

,k ks
w=xt x  are obtained using the samples 

1s  and 
2 ,s  respectively. In the 

derivation of results involving these estimators we will use the vector notation 2 ,=yt Y w  1 1
ˆ ,=xt X w  

2 ,=xt X w  
1 11 1

ˆ ,=xt X w  where 
1w  and w  denote the vectors of design weigs for samples 

1s  and 
2 ,s  

respectively, 
1X  and 

11X  denote the sample 
1s  matrices of x  and 

1x  of dimensions 
1 ( )n p q +  and 

1 ,n p  respectively, and 
2 ,Y  

2X  denote the sample 
2s  matrices of y  and x  of dimensions 

2n d  and 

2 ( ).n p q +  

The primary target of estimation is the total .yt  However, for better understanding of the construction 

of the proposed estimators, and because components of the vector 
2x  may also be target variables, a 

unified approach to the estimation of both yt  and 
xt  will be taken.  

 
3. Best linear unbiased estimation in two-phase sampling 
 

3.1 An analytic form of the best linear unbiased estimator 
 

For more efficient estimation of the totals yt  and ,xt  incorporating all the available information from 

both phases through the correlation of y  and ,x  we consider the best linear unbiased estimators (BLUE), 

denoted by ˆB

yt  and ˆ ,B

xt  which are minimum-variance linear unbiased combinations of the four estimators 

,yt  ˆ ,xt  ,xt  
1 1

ˆ−x xt t  and given in matrix form by  
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 ( ) ( )
1 1

ˆ ˆ ˆ ˆ, , , , ,B B   
    = −y x y x x x xt t t t t t tP  (3.1) 

where 1 1 1( ) ,− − − = W V W W VP  the matrix W  has entries 1’s and 0’s and satisfies 

1 1

ˆ ˆ( , , , ) = ( , ) ,E          − y x x x x y xt t t t t W t t  and V  is the covariance matrix of 
1 1

ˆ ˆ( , , , ) .     −y x x x xt t t t t  It follows 

that 1 1ˆ ˆVar ( , ) ( ) .B B  − −  = y xt t W V W  This typical formulation of best linear unbiased estimation has been 

explored in two other areas of survey sampling; see Wolter (1979), Jones (1980), Fuller (1990), and 

Chipperfield and Steel (2009). In the present context, a more practical formulation, which leads also to the 

representation of the BLUE as a calibration estimator, is as follows. 

Writing the two linear combinations in (3.1) in expanded form and using the condition of unbiasedness 

ˆ( )BE =y yt t  and ˆ( ) ,BE =x xt t  it is easy to show that the matrix P  of the coefficients in these linear 

combinations satisfies  

 
1 2 3 4 2 2 4

1 2 3 4 2 2 4

= ,
−   

=    
−  

y y y y y y y

x x x x x x x

B B B B I B B B

B B B B 0 B I B B
P   

and then the two components of the BLUE in (3.1) are written in the regression form  

 1 1

1 1

2 4

2 4

ˆ ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) ( ).

B

B

= + − + −

= + − + −

y y y x x y x x

x x x x x x x x

t t B t t B t t

t t B t t B t t
 (3.2) 

Now we can write (3.1) as  

 

1 1

ˆˆ
= ,

ˆˆ

B

B

   − 
+       −    

x xyy

x xxx

t ttt

t ttt
B  (3.3) 

where the matrix B  consists of the second and fourth columns of ,P  and has the easily derived variance-

minimizing value  

 

1 1 1 1

1
ˆ ˆ

Cov , Var .
ˆ ˆ

−

      − − 
= −            − −           

x x x xy

x x x xx

t t t tt

t t t tt
B  (3.4) 

Next write  

 
1 111*

2 2 2

, , ,
−    

= =     
     

X X 0 0w
w Ψ

X 0 Y Xw
=X  (3.5) 

so that  

 

1

* *
ˆ

, ,
ˆ

 −  
 = =    

  

x x y

x x

t t t
w Ψ w

t t
X  (3.6) 

and B  may then be expressed as 
1

* * *Cov( , ) Var( ) .
−

   =  Ψ w w wB X X  For the calculation of 

variances and covariances we define *
w  at the population level as *

1( , ) ,U U U
  =w w w  where the thk  

element of 
1Uw  is 1 1 1(1 ) ,

kU k kw I=  the indicator variable 
1I  denoting inclusion of a population unit in 
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1 ,s  and the thk  element of 
Uw  is  1 2 1 21 ( ) ,

kU k k k kw I I =  the indicator variable 
2I  denoting inclusion 

of a population unit in 
2s  conditional on the selection of sample 

1.s  We may now write * *

U U
 =w wX X  

and * * ,U U
 =Ψ w Ψ w  where 

UX  and 
UΨ  are the population counterparts of X  and ,Ψ  respectively; all 

submatrices in X  and Ψ  are expanded to population level, having N  rows. Then, denoting 
*ˆ =t Ψ w  

and 
*ˆ ,=t wX X  we get  

 
1 1

* *ˆ ˆ ˆCov ( , ) Var ( ) Var ( ) Var ( ) .U U U U U U

− −
    = =   t t t Ψ w w X XB X X X  (3.7) 

A useful more analytic expression of B  is then obtained using the following Lemma; the proof is in the 

Appendix.  

 
Lemma 1  

 
1 1*

1

Var( ) Var ( )
Var ( ) ,

Var ( ) Var ( )

U U

U

U U

 
=  
 

w w
w

w w
 (3.8) 

where  1 1 1 1 1 1Var( ) ( ) ,U kl k l k l    = −w   1 2 1 2 1 2 1 2 1 2Var( ) ( ) .U kl kl k k l l k k l l         = −w  

Using (3.7) and (3.8), it is easy to show that (3.4) is expressed as  

 
1 1

1 1

1 1

1

ˆ ˆ ˆ ˆCov( , ) Var ( ) Cov( , ) Var ( )
.

ˆ ˆCov( , ) Var ( )

− −

−

    − − −    =
 

    

y x x x x y x x

x x x

t t t t t t t t

I t t t

B  (3.9) 

Implicit in this representation of B  is the property ˆ ˆCov( , ) Var ( ),=x x xt t t  following from (3.8), implying 

that ˆ ˆVar( ) Var ( ) Var ( ),− = −x x x xt t t t  and the property 
1 1

ˆ ˆ ˆCov( , ) Cov ( , ),=x x x xt t t t  implying 

1

ˆ ˆCov( , )− =x x xt t t 0  (this covariance being the off-diagonal block of *Var( ) ).U U U
 wX X  Then (3.2) can 

be written explicitly as  

 
1 1 1 1

1 1 1 1

1

1

1

ˆ ˆ ˆ ˆCov( , ) Var ( ) ( )

ˆ ˆ ˆCov( , ) Var ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆCov( , ) Var ( ) ( ).

B

B

−

−

−

 = − − − − 

 + − 

 = + − 

y y y x x x x x x

y x x x x

x x x x x x x

t t t t t t t t t

t t t t t

t t t t t t t

 (3.10) 

In view of the property 
1

ˆ ˆCov( , ) ,− =x x xt t t 0  it follows immediately that  

 
1 1 1

1 1 1

1

1

1

ˆ ˆ ˆ ˆVar ( ) Var ( ) Cov( , ) Var ( ) Cov ( , )

ˆ ˆ ˆCov( , ) Var ( ) Cov ( , )

ˆ ˆ ˆ ˆ ˆ ˆ ˆVar ( ) Var ( ) Cov( , ) Var ( ) Cov ( , ).

B

B

−

−

−

  = − − − − 

  −  

  = −  

y y y x x x x y x x

y x x y x

x x x x x x x

t t t t t t t t t t

t t t t t

t t t t t t t

 (3.11) 
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Remark 3.1. Every component or linear combination of components of ˆB

yt  is BLUE for the 

corresponding total. Also, as evident from (3.11), the efficiency of ˆ ,B

yt  relative to ,yt  depends on the 

strength of correlation of y  with 
1 2( , ),=x x x  as well as on the difference in sample size (and possibly in 

sampling design) for the samples 
1s  and 

2 .s  

Remark 3.2. Because of the orthogonality property 
1

ˆ ˆCov( , ) ,− =x x xt t t 0  the coefficient of any of the 

terms ˆ −x xt t  and 
1 1

ˆ−x xt t  in (3.10) would not change if the other one would be set equal to 0  in (3.2). 

For instance, the BLUE for yt  based on ˆ( , , )y x xt t t  would be ˆB

yt  as in (3.10) but without the last term. 

This is easily worked out as a special case of the full setup 
1 1

ˆ ˆ( , , , ).−y x x x xt t t t t  This orthogonality 

property explains the additive reduction of variance noticed in the first equation of (3.11). 

Remark 3.3. The BLUE ˆB

xt  in (3.10) can also be produced using the reduced setup 
1 1

ˆ ˆ( , )−x x xt t t  in 

(3.1). The same best linear estimator, for a single target variable, has been derived differently in the 

context of general single-phase sampling by Fuller and Isaki (1981) and Montanari (1987). In particular, 

for the auxiliary variable 
1x  we have 

1 1

ˆ .B =x xt t  Next, it can be easily verified that the BLUE in (3.1) can be 

alternatively derived in two steps of best linear unbiased estimation using the setup ˆ( , , ),B B B

y x xt t t  where 

1 1 1 1

1
ˆ ˆ ˆCov( , ) Var ( ) ( )B

−

 = + − y y y x x x xt t t t t t t  and 
1 1 1 1

1
ˆ ˆ ˆCov( , ) Var ( ) ( )B

−

 = + − x x x x x x xt t t t t t t  are the 

BLUEs generated by the one-phase setups 
1 1

ˆ( , )−y x xt t t  and 
1 1

ˆ( , ),−x x xt t t  respectively. It can be shown 

through tedious algebra, that another, more explicit, BLUE setup that is equivalent to that in (3.1) is 

2 2 1 1 1 1

ˆ ˆ( , , , , ).− −y x x x x x xt t t t t t t  This attests that the compact setup in (3.1) provides the most efficient linear 

estimation of yt  and 
xt  using all available relevant estimates. 

 
3.2 The two-phase BLUE as calibration estimator 
 

Using the notation leading to (3.7), and setting ˆ ˆ ˆ( , )B B B  =Ψ y xt t t  and *Var( ),UΔ w=  we may express the 

BLUE in (3.3) as ˆ ˆ ˆ( ),B = + −Ψ Ψt t t tX XB  where 1= ( )U U U U

− Ψ Δ ΔB X X X  and 
1

( , ) ,  = xt 0 tX  or in the 

more suggestive form  

 ( )* 1 *ˆ = ( ) .B

U U U U U U U

−   + −
 Ψt Ψ w Δ Δ t wXX X X X  (3.12) 

It appears from (3.12) that ˆB

Ψt  has the form of a calibration estimator, with population vector of calibrated 

weigs ( )* * 1 *( )U U U U U U U

− = + −c w Δ t wXX X X X  and vector of calibration totals .tX  This is formalized 

in the following theorem; the proof is in the Appendix.  

Theorem 1. The vector ( )* * 1 *( )U U U U U U U

− = + −c w Δ Δ t wXX X X X  minimizes the generalized least-

squares distance * * 1 * *( ) ( )U U U U

−− −c w Δ c w  subject to the constraints * ,U U
 =c tXX  i.e., 

1 =U U U U
 X c X c  

and 
11 1 ,U U

 = xX c t  where 
1( , )U Uc c  corresponds to 

1( , ).U Uw w  

Theorem 1 states that best linear unbiased estimation using the setup 
1 1

ˆ ˆ( , , , )−y x x x xt t t t t  is essentially 

a calibration procedure whereby the two estimates ˆ
xt  and 

xt  of 
xt  are calibrated to each other, i.e., they 

are aligned, and the estimate 
1

ˆ
xt  is calibrated to the total 

1
.xt  We may now write formally the BLUE ˆB

Ψt  
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as a calibration estimator 
*ˆ ,B

U U
=Ψt c  with its two components given in the simple linear forms 

ˆB

U U
=yt Y c  and ˆ .B

U U
=xt X c  

The alternative two-step construction of the BLUE noted in Remark 3.3 above can also be carried out 

through a two-step calibration procedure involving *

Uw  in both steps. Indeed, partitioning 
UX  by its two 

column submatrices as 
12 1( , ),U U U=X X X  and noting that 

112 1
ˆ ˆCov( , ) ,U U

 = − =x x xΔ t t t 0X X  it is easy to 

decompose the vector *

Uc  as  

 
( )

( )
1

* * 1 *

12 12 12 12

1 *

1 1 1 1

= ( )

( ) .

U U U U U U U

U U U U U

−

−

 + −

 + −x

c w Δ Δ 0 w

Δ Δ t w

X X X X

X X X X
 (3.13) 

In the rig hand side of (3.13), the sum of the first and second terms results from calibration with constraint 
*

12 1U U U U U U
  = − =c X c X c 0X  only, while the sum of the first and third terms results from calibration with 

constraint 
1

*

1U U
 = xc tX  only. 

Now setting 
1 1Var ( )U=Δ w  and 

2 Var ( ),U=Δ w  these variances being specified by (3.8), it follows 

easily from (3.13) that the optimal calibration estimators ˆB

yt  and ˆB

xt  in (3.10) can be written in the explicit 

form, which will be recalled later,  

 

   

1 1

1 1

1

2 1 2 1

1

1 1 1 1 1

1

1 1 1 1 1

ˆ ˆ( )

ˆ( ) ( )

ˆ ˆ ˆ( ) ( ).

B

U U U U U U U U

U U U U

B

U U U U

−

−

−

   = + − − −

 + −

 = + −

y y x x

x x

x x x x

t t Y Δ X Y Δ X X Δ X X Δ X t t

Y Δ X X Δ X t t

t t X Δ X X Δ X t t

 (3.14) 

 
4. Optimal linear estimation in two-phase sampling 

 
4.1 The two-phase optimal estimator 
 

The matrix B  in (3.7) comprises variances and covariances which need to be estimated. In view of 

ˆVar ( ) U U
=t ΔX X X  and ˆ ˆCov( , ) ,U U

=Ψt t Ψ ΔX X  and recalling (3.8), the obvious unbiased estimates are 

Var̂ ˆˆ( ) =t ΔX X X  and Cov̂ ,ˆˆ ˆ( , ) = 
Ψt t Ψ ΔX X  where the 

1 2 1 2( ) ( )n n n n+  +  matrix ˆ =Δ Var̂ *( )Uw  has 

diagonal blocks  1 1 1 1 1 1 1
ˆ = ( )kl k l k l kl     −Δ ,  2 1 2 1 2 1 2 1 2 1 2 1 2

ˆ = ( ) ,kl kl k k l l k k l l kl kl           −Δ  

and off-diagonal blocks 12
ˆ ,Δ  21 12

ˆ ˆ= Δ Δ  with  12 1 1 1 1 1 1 2
ˆ = ( ) ,kl k l k l kl l      −Δ  and ,X  Ψ  are the 

sample matrices in (3.5). 

We now obtain, as elements of the matrices Var̂ ˆ( )tX  and Cov̂ ˆ ˆ( , ),Ψt tX  the unbiased estimates of all 

variances and covariances in (3.9), i.e, Var̂ 1 1 1
ˆˆ( ) = ,

xt X Δ X  Var̂ 2 2 2
ˆ( ) = ,

xt X Δ X  Var̂
1 11 1 11

ˆˆ( ) = ,
xt X Δ X  

Cov̂
1 2 21 11

ˆˆ( , ) = ,
x xt t X Δ X  Cov̂ 2 21 1

ˆˆ( , ) = ,
y xt t Y Δ X  Cov̂

1 2 21 11
ˆˆ( , ) = ,

y xt t Y Δ X  Cov̂ 2 2 2
ˆ( , ) = .

y xt t Y Δ X  

However, the matrix Var̂ ˆ( )tX  includes also the elements Cov̂ 1 12 2
ˆˆ( , ) = ,

x xt t X Δ X  and Cov̂
1

ˆ ˆ( , ) =−x x xt t t  

11 1 1 11 12 2
ˆ ˆ , −X Δ X X Δ X  which clearly do not retain the properties ˆ ˆCov( , ) Var ( )=x x xt t t  and 

1

ˆ ˆCov( , ) ,− =x x xt t t 0  respectively. Unbiased estimates for the variances and covariances in (3.9) could be 
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directly used, but then the estimate of the simple form B  in (3.9) could not be expressed as 
1ˆ ˆ( ) ,− Δ ΔX X X  and thus the resulting estimator would not retain the calibration form of the BLUE in 

(3.12). This complication is circumvented using the following reformulation. Reset 
* ,w  X  and Ψ  as  

 

1 1 1 1

*

2 2 2

1 11 1 1

, , = ,

− − −     
     

= =     
     
     

w X 0 Y X

w w X 0 Ψ Y X

w 0 X Y X

X  (4.1) 

where the sample matrices 
1,X  

2 ,X  
11X  and 

2Y  are as before, and 
1Y  is the matrix of y  for sample 

1s  

with dummy values 
ky  for 

2.k s  Clearly, *wX  and *Ψ w  are exactly as in (3.6). Then, having as 

before 
*ˆ =t wX X  and 

*ˆ = ,
Ψt Ψ w  we obtain again 

1
ˆ ˆ ˆCov( , ) Var ( ) ,

−

 =  Ψt t tX XB  where 
*ˆVar( ) Var ( )U U U

=t wX X X  and 
* ,ˆ ˆCov( , ) Var ( )U U

=Ψt t Ψ wX X  as in (3.7) but with * ,Uw  
UX  and 

UΨ  

being the population counterparts of the redefined 
* ,w  ,X  .Ψ  An extension of Lemma 1 to the redefined 

*
w  gives  

 

1 1 1

*

1 1

1 1 1

Var ( ) Var ( ) Var ( )

Var ( ) Var ( ) Var ( ) Var ( ) ,

Var ( ) Var ( ) Var ( )

U U U

U U U U

U U U

 
 

=  
 
 

w w w

w w w w

w w w

  

where 
1Var ( )Uw  and Var ( )Uw  are the same as in Lemma 1. It is easy now to verify that again B  may 

be expressed analytically as in (3.9), and the two components of the BLUE are identical to those given by 

(3.10). More importantly, it follows from this special form of *Var( )Uw  that we have again 

ˆVar ( ) U U
=t ΔX X X  and ˆ ˆCov( , ) ,U U

=Ψt t Ψ ΔX X  where now 
1 2 1= diag( , , )−Δ Δ Δ Δ  and 

1 ,Δ  
2Δ  as 

already defined. Thus we obtain again the BLUE in the calibration form of (3.12), and the retained 

orthogonal decomposition of the vector of calibrated weigs in (3.13) leads readily to the expression (3.14). 

Now the orthogonality property 
12 1U U
 =Δ 0X X  is induced by the block-diagonal structure of the 

redefined ,UX  rather than by the special structure of the initial matrix Δ  used in (3.12). 

For the reconstructed BLUE we now have the unbiased estimates Var̂ ˆˆ( ) =t ΔX X X  and Cov̂ ˆ ˆ( , ) =Ψt tX
ˆ ,Ψ ΔX  where ,X  Ψ  are the sample matrices in (4.1), and 1 2 1

ˆ ˆ ˆ ˆ= diag( , , )−Δ Δ Δ Δ  with 1
ˆ ,Δ  2Δ̂  as defined 

at the beginning of the section. From these we rederive easily the unbiased estimates of the variances and 

covariances in (3.9), but two of the elements of the sample matrix ˆΨ ΔX  which involve 
1 ,Y  namely 

1 1 1
ˆY Δ X  and 1 1 11

ˆ ,Y Δ X  require special consideration. The dummy (unobserved) values 
ky  for 

2 ,k s  

necessary for expanding 
1Y  to the population matrix 

UY  in the reconstructed BLUE, are set equal to zero, 

and the values 
ky  for 

2k s  are then necessarily weiged by 
21 .k  Then 1 1 1

ˆY Δ X  and 1 1 11
ˆY Δ X  reduce to 

2 21 1
ˆY Δ X  and 2 21 11

ˆ ,Y Δ X  which are the unbiased estimates Cov̂ ˆ( , )y xt t  and Cov̂
1

ˆ( , ),y xt t  respectively. The 

estimated B  in (3.9) is now given by  

 

1 1

2 2 2 2 21 1 2 2 2 1 1 1 2 21 11 11 1 11

1

1 1 11 11 1 11

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ .

ˆ ˆ

− −

−

           − −
      

=  
     

Y Δ X Y Δ X X Δ X X Δ X Y Δ X X Δ X

I X Δ X X Δ X

B   
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The BLUE ˆ ˆ ˆ( )B = + −Ψ Ψt t t tX XB  with estimated B  will be called optimal linear unbiased estimator, 

optimal estimator in short, denoted by ˆˆ ˆ ˆ( ),O = + −Ψ Ψt t t tX XB  with its two components given by  

 
1 1

1 1

1

2 2 2 2 21 1 2 2 2 1 1 1

1

2 21 11 11 1 11

1

1 1 11 11 1 11

ˆ ˆ ˆ ˆˆ ˆ( )

ˆ ˆ ˆ( )

ˆ ˆˆ ˆ ˆ( ).

O

O

−

−

−

      = + − − −
   

  + −
 

  = + −
 

y y x x

x x

x x x x

t t Y Δ X Y Δ X X Δ X X Δ X t t

Y Δ X X Δ X t t

t t X Δ X X Δ X t t

 (4.2) 

This is the sample version of the BLUEs in (3.14), with estimated coefficients. In particular, ˆO

xt  is the 

customary single-phase optimal estimator of 
xt  using 

1x  as auxiliary variable, and data from the full first-

phase sample 
1;s  see Montanari (1987) and Rao (1994). 

Remark 4.1. When 
2n  is very close to 

1 ,n  the optimal estimator ˆO

yt  can be quite unstable because of 

the near singularity of the inverted matrix in the coefficient of ˆ ,−x xt t  and thus can become very 

inefficient; see, though, later Remark 6.1 on two-phase designs in which this is not an issue. Generally this 

is not a realistic setting in two-phase sampling, where 
2n  is typically much smaller than 

1.n  

Following the construction of 2 21 1
ˆY Δ X  and 2 21 11

ˆY Δ X  as two of the estimates in ˆ ,B  it transpires that 

these two bilinear forms can be written alternatively as 1 1 1
ˆY Δ X  and 1 1 11

ˆ ,Y Δ X  respectively, where 
1Y  is a 

weiged version of 
1Y  in which 

2k k k=y y  if 
2k s  and 0k =y  if 

2.k s  Then 
* *ˆ , = =Ψt Ψ w Ψ w  

where Ψ  is Ψ  in (4.1) with 
1Y  in place of 

1 ,Y  and B̂  can be written compactly as 
1ˆ ˆ ˆ( ) ,− =Ψ Δ ΔB X X X=  where 1 2 1

ˆ ˆ ˆ ˆdiag( , , ).= −Δ Δ Δ Δ  Henceforth, Δ̂  will be meant to be the matrix 

1 2 1
ˆ ˆ ˆdiag( , , ).−Δ Δ Δ  

As in Montanari (1987) and Rao (1994) for the single-phase optimal estimator, for large samples 
1s  

and 
2s  the optimal estimator ˆˆ ˆ ˆ( )O = + −Ψ Ψt t t tX XB  approximates the BLUE ˆ ,B

Ψt  and thus it is 

approximately unbiased. Furthermore, the variance of ˆO

Ψt  approximates that of ˆ ,B
t  which works out 

easily to be 
1

ˆ ˆ ˆ ˆ ˆ ˆ ˆVar( ) Var ( ) Cov ( , ) Var ( ) Cov ( , ),B
−

  = −  Ψ Ψ Ψ Ψt t t t t t tX X X  i.e., the compact form of (3.11). 

Then, using the estimates Var̂ ˆ( )Ψt  and Cov̂ ˆ ˆ( , ),Ψt tX  derived earlier, we obtain the estimated approximate 

variance of ˆO

Ψt  as AV̂ ˆ( )O =Ψt Var̂ ˆ( ) −Ψt Cov̂ ˆ ˆ( , )Ψt tX [Var̂( t̂X )]
1− Cov̂′ ˆ ˆ( , ).Ψt tX  From this we derive the 

computationally convenient expressions AV̂ 1

2 2 2 1 1
ˆ ˆ ˆ ˆˆ( ) ( ) ,O −   = −yt Y Δ Y Δ Δ ΔX X X X   where 1Ψ  is the 

first column submatrix of ,Ψ  and AV̂
1

1 1 1 1 1 11 11 1 11 11 1 1
ˆ ˆ ˆ ˆˆ( ) = .O

−

    −
 xt X Δ X X Δ X X Δ X X Δ X  

 

4.2 The two-phase optimal estimator as calibration estimator 
 

The optimal estimator ˆˆ ˆ ˆ( ),O = + −Ψ Ψt t t tX XB  with 
1ˆ ˆ ˆ( ) ,− = Δ ΔB X X X  takes the form  

 * 1 *ˆ ˆˆ ( ) ( ) ,O −   = + −
 Ψt Ψ w Δ Δ t wXX X X X   

of a calibration estimator, with vector of calibration totals tX  and sample vector of calibrated weigs 

( )* * 1 *ˆ ˆ( )− = + −c w Δ Δ t wXX X X X  satisfying * . =c tXX  This is established formally by the 

following theorem; the proof is similar to that of Theorem 1, and is omitted.  
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Theorem 2. The vector 
* * 1 *ˆ ˆ( ) ( )− = + −c w Δ Δ t wXX X X X  minimizes the generalized least-squares 

distance 
* * 1 * *ˆ( ) ( )−− −c w Δ c w  subject to the constraints * , =c tXX  i.e., 

1 1 2
 =X c X c  and 

111 1 , = xX c t  

where 
1( , )c c  corresponds to 

1( , ).w w  

The sample vector *
c  admits the same orthogonal decomposition as its population counterpart *

Uc  in 

(3.13). We may now write formally the optimal estimator ˆO

Ψt  as a calibration estimator 
*ˆ ,O =Ψt Ψ c  which 

in view of * =c tXX  is generated by the simultaneous calibration of the two estimates ˆ
xt  and 

xt  of 
xt  to 

each other, and of the estimate 
1

ˆ
xt  to the total 

1
.xt  

Now, in expanded form the vector *
c  is  

 

1 1

1

1 1 1 2 2 2 1 1 11

* 1

2 2 2 2 2 2 1 1 1

1
3 1 1 11 11 1 11

ˆ ˆ ˆ ˆ[ ] ( )

ˆ ˆ ˆ ˆ[ ] ( ) .

ˆ ˆ ˆ( ) ( )

−

−

−

  + − − 
  

 = =  + − −  
    + −   

x x

x x

x x

w Δ X X Δ X X Δ X t tc

c c w Δ X X Δ X X Δ X t t

c w Δ X X Δ X t t

 (4.3) 

Then, using the partition 
12 1( , ),=X X X  where 

12X  and 
1X  are the two orthogonal column submatrices 

of X  shown in (4.1), the two constraints are written as *

12 2 2 1 1
  = − =c X c X c 0X  and 

1

*

1 11 3 . = = xc X c tX  

It also follows from (4.3) that 
*ˆO =t Ψ c  implies (4.2). Regarding the two components of ˆO

Ψt  we observe 

that 1 1 2 2 1 3 1 3
ˆ = ,O    = − + +xt X c X c X c X c  and that  

  
2

1 3 1 2 2 3 1 2 2
ˆ ( ) ( ) .O

k k k k ks
c c c = − + = − +yt Y c c Y c y   

The explicit expression of ˆ ,O

yt  in terms of sample units, is  

 

( )( )

2 2 2 1

2 2 1 1

1 12 1 1 1

2 1

1

2 1

1

1 1 1 1 1

ˆ ˆˆ

ˆ ˆ ˆ( )

ˆ ˆ ˆ( ),

O

kl k l kl k ls s s s

kl k l kl k ls s s s

kl k l kl k ls s s s

−

−

  = +  −  
 

   −  −
 

 +   −

   

   

   

y y

x x

x x

t t y x y x

x x x x t t

y x x x t t

 (4.4) 

where 1
ˆ

kl  and 2
ˆ

kl  are the thkl  elements of 1Δ̂  and 2
ˆ ,Δ  respectively. Formula (4.4) is simplified in 

certain two-phase designs employed in important large scale surveys; examples of such surveys are 

presented in Hidiroglou and Särndal (1998) and Turmelle and Beaucage (2013). Specifically, this is the 

case when independent sampling (Poisson, or stratified Poisson) is used in one of the two phases, that is, 

when 
1 1 1kl k l  =  or 

2 2 2 .kl k l  =  The simplification is considerable in the case of independent sampling 

in both phases. Then, both 1Δ̂  and 2Δ̂  are diagonal, with diagonal elements 1 1 1
ˆ (1 ) ((1 ) 1)kk k k  = −  

and 2 1 2 1 2
ˆ (1 ) ((1 ) 1),kk k k k k    = −  respectively, and (4.4) involves only single summations. Other 

two-phase designs in which (4.4) involves single summations only, although 1Δ̂  and 2Δ̂  are not diagonal, 

involve simple random sampling or stratified simple random sampling in either phase; for an example of a 

survey with such two-phase design see Hidiroglou (2001). In general, however, the optimal estimator may 

not be practical because it requires the use of first-phase and second-phase joint inclusion probabilities 

1kl  and 
2 ,kl  which are not known for some complex sampling designs. Even when these joint 
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probabilities are known, but the matrices 1Δ̂  and 2Δ̂  are not diagonal, the estimated coefficient B̂  and, 

hence, the optimal estimator may be unstable in very small samples ‒ especially if the dimension of the 

auxiliary vector x  is large. These difficulties may be overcome, at some loss of optimality, by employing 

simple approximations of the variances and covariances in ˆ ;B  for approximate variance estimates based 

only on first order inclusion probabilities see, for example, Haziza, Mecatti and Rao (2008) and references 

therein. A computationally very convenient approximation of B̂  leading to a two-phase estimator that 

belongs to the class of generalized regression estimators is described in the next section. 

 
5. A two-phase generalized regression estimator 
 

A variant of 1ˆ ˆ ˆ( )− =Ψ Δ ΔB X X X  that is computationally efficient, but generally suboptimal, is the 

generalized regression (GREG) coefficient GR 1ˆ ( ) ,− =Ψ Λ ΛB X X X  where Ψ  is as in (4.1) and with 

0k =y  if 
2 ,k s  and Λ  is the “weiging” matrix 

1 2 1diag( , , ),Λ Λ Λ  with 
1 1 1diag{ }k kw q=Λ  and 

2 2diag{ },k kw q=Λ  and with 
1 ,kq  

2kq  being positive constants. This gives the GREG estimator  

 GR GR GR GR *ˆ ˆ ˆˆ ˆ ˆ( ) ( ) .
 = + − = + −Ψ Ψt t t t t Ψ wX X XB B XB  (5.1) 

Note that GRB̂  is optimal in the sense of least squares, i.e., it minimizes the quadratic distance 
GR GRˆ ˆ( ) ( ),

 − −Ψ Λ ΨXB XB  involving the residuals GRˆ 
−Ψ XB  in 

GRˆ ,Ψt  whereas the coefficient B̂  

minimizes ˆ ˆˆ( ) ( ) , − −Ψ Δ ΨXB XB  the estimated approximate variance of the optimal estimator ˆ .O

Ψt  In 

this sense 
GRˆ
Ψt  is an approximation to ˆ .O

Ψt  The two components of 
GRˆ ,Ψt  similar in structure to the 

components of ˆO

Ψt  in (4.2), are  

 

   

 

 

1 1

1 1

1GR

2 2 2 1 1 1 2 2 2 1 1 1

1

1 1 11 11 1 11

1GR

1 1 11 11 1 11

ˆ ˆ( )

ˆ( )

ˆ ˆ ˆ( ).

−

−

−

   = + + + −

 + −

 = + −

y y x x

x x

x x x x

t t Y Λ X Y Λ X X Λ X X Λ X t t

Y Λ X X Λ X t t

t t X Λ X X Λ X t t

 (5.2) 

The GREG estimator 
GRˆ
xt  is the standard single-phase GREG estimator based on 

1s  and the auxiliary 

variable 
1.x  The GREG estimator 

GRˆ ,yt  with the two orthogonal regression terms shown in (5.2), is 

expressed explicitly in terms of sample units as  

 

( ) ( )
2 2 1

1 12 1

1
GR

1 2 2 1

1

1 1 1 1 1

ˆ ˆ( ) ( )

ˆ( ),

k k k k k k k k k ks s s

k k k k k ks s

−

−

     = +  +   +  −
   

 +   −

  

 

y y x x

x x

t t y x x x x x t t

y x x x t t

  

where 
1 1 1k k kw q =  and 

2 2k k kw q =  are the thk  element of 
1Λ  and 

2 ,Λ  respectively. The constants 

ikq  should be specified as ,ik iq n=  to account for the differential in the sample size of ;is  see Merkouris 

(2004) for a justification in the context of calibrating combined samples. An equivalent adjustment of the 

weigs in 
1k  and 

2k  can be made through the multiplication of 
1kw  in 

1k  by 
2 1 .n n =  Values of 

ikq  
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that convert the GREG estimator 
GRˆ
yt  to the optimal estimator ˆO

yt  can be specified for two-phase sampling 

designs for which optimal estimation is possible, as in the similar context of matrix sampling (Merkouris, 

2015). For the simple example involving Poisson sampling in both phases, this specification is 

1 1 1(1 )k k kq  = −  and 
2 1 2 1 2(1 ),k k k k kq    = −  rendering 

1Λ  and 
2Λ  identical to 1Δ̂  and 2

ˆ .Δ  

The vector of calibrated weigs associated with the GREG estimator 
GRˆ
Ψt  is 

GR * 1 *( ) ( ).− = + −c w Λ Λ t wXX X X X  It has the same form as *
c  in (4.3), but with 

1Λ  and 
2Λ  in 

place of 
1−Δ  and 

2 ,Δ  and minimizes the generalized least-squares distance GR * 1 GR *( ) ( )−− −c w Λ c w  

subject to the constraints GR . =c tXX  The partition 
12 1( , ),=X X X  defined after (4.3), allows the 

orthogonal decomposition of the vector *
c  

 

1

GR * 1 *

12 12 12 12

1 *

1 1 1 1

( ) ( )

( ) ( ).

−

−

 = + −

 + −x

c w Λ Λ 0 w

Λ Λ t w

X X X X

X X X X
 (5.3) 

In the rig hand side of (5.3), the sum of the first and second terms would result from calibration with 

constraint GR

12
 =c 0X  only, while the sum of the first and third terms would result from calibration with 

constraint 
1

GR

1
 = xc tX  only. The practical implication of this is that the vector *

c  could be formed by 

concatenating the weig vectors generated by two separate calibrations, i.e., calibration of 
1( , )  w w  using 

1 2( , )  −X X  followed by calibration of 
1w  using 

11.X  However, the one-step calibration procedure 

generating GR
c  is more convenient. 

On the basis of its Taylor linearization, the GREG estimator 
GRˆ
yt  in (5.1) is approximately (for large 

samples) unbiased. Furthermore, denoting by e  the matrix of sample residuals GRˆ ,


−Ψ XB  the estimated 

approximate variance of GR GR *ˆˆ = +yt t e wXB  is the estimated variance of *,e w  i.e., AV̂ GRˆ( ) =yt Var̂
* ˆ( ) , =e w e Δe  whereas the estimated variance of the HT estimator yt  is Var̂ ( ) =yt Var̂ *

2 2 2
ˆ( ) ,

 =Ψ w Y Δ Y  

with 1Ψ  being the first column submatrix of .Ψ  

Now using the calibration form GR


Ψ c  of 

GRˆ
yt  and the orthogonal decomposition (5.3) of 

GR ,c  we 

easily obtain the decomposition 
11 12 1

ˆ ˆ , = − −x xe Ψ β βX X  where 
1

12 12 12
ˆ = ( )−

 
xβ Ψ Λ ΛX X X  and 

1

1

1 1 1
ˆ ( )−

 =xβ Ψ Λ ΛX X X  are the coefficients of ˆ −x xt t  and 
1 1

ˆ ,−x xt t  respectively. Note that 1 12
ˆ − xΨ βX  

is the matrix of residuals in the GREG estimator 
GR ˆˆ ˆ( )= + −

x

y y x x xt t β t t  resulting from calibration 

involving only 
12 ,X  and 

11 1
ˆ − xΨ βX  is the matrix of residuals in the GREG estimator 

1

1 1 1

GR ˆˆ ˆ( )= + −
x

y y x x xt t β t t  resulting from calibration involving only 
1.X  Then, using the orthogonality of 

1X  and 
12 ,X  it is shown without difficulty that  

 AV̂ GRˆ( ) −yt Var̂ ( ) =yt AV̂
GRˆ( ) −

x

yt Var̂ ( ) +yt AV̂ 1
GRˆ( ) −

x

yt Var̂ ( ),yt   

which implies that the reduction of variance due to using the two auxiliary variables 
1x  and x  in the 

regression (also calibration) procedure is additive. Thus, recalling Remark 3.2, the generalized regression 

estimator retains this additivity property of the BLUE of .yt  
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6. Comparisons with existing methods 
 

An earlier approach to optimal linear estimation in two-phase sampling designs, involving the standard 

type of auxiliary information considered in Sections 2 to 5, is described in Hidiroglou (2001). The 

formulation starts with postulating a regression form for the estimator of ,yt  for univariate ,y  which is 

identical to the form of the estimator ˆB

yt  in the first line of (3.2), and then the two unknown coefficients 

are determined so as to minimize the variance of this estimator. In estimating the two coefficients, the 

identities ˆ ˆVar( ) Var ( ) Var ( )− = −x x x xt t t t  and 
1

ˆ ˆCov( , ) =−x x xt t t 0  were ignored in the first and the 

second coefficient, respectively, and variances and covariances in both coefficients involving first-phase 

estimators were estimated using the second-phase sample only, thereby ignoring relevant information 

from the larger part of the first-phase sample. The resulting estimator was not shown to be a calibration 

estimator. In fact, this version of optimal estimator cannot be constructed as a calibration estimator. As a 

practicable variant of this, Hidiroglou (2001) considered a GREG estimator whose two coefficients (of 

1 1

ˆ−x xt t  and ˆ )−x xt t  can be justified either by assuming different regression models for each phase or by 

two successive calibrations. The same GREG estimator had been proposed earlier by Hidiroglou and 

Särndal (1998), but with no reference to optimal estimation. In the calibration approach of Hidiroglou and 

Särndal (1998), the estimator 
1

ˆ
xt  is first calibrated to its total 

1
,xt  using 

1 ,s  and the GREG estimator 
1

GRˆ
x x

t  

of 
xt  is then generated using the calibrated weigs, denoted by 

1 .kw  Then the overall weig for 
2k s  is 

formed as 
1 2 .k k kw w w=  In a second calibration involving 

2s  and ,kw  the estimator 
xt  is calibrated to 

1

GRˆ .
x x

t  The resulting calibrated weigs of 
2s  are then used to generate the GREG estimator of ,yt  denoted 

here by 
HSˆ .yt  

Estevao and Särndal (2002, 2009) proposed a simpler version of the estimator 
HSˆ ,yt  in which the overall 

design weigs 
1 2=k k kw w w  for 

2k s  are used in the second calibration. Using current notation, this 

estimator, denoted here by 
ESˆ ,yt  can be expressed in regression form as  

 
( )

( )  
1 1

1ES

2 2 2 2 2 2

11

2 2 2 2 2 2 1 1 11 11 1 11

ˆ ˆ( )

ˆ( ).

−

−−

 = + −

   + −

y y x x

x x

t t Y Λ X X Λ X t t

Y Λ X X Λ X X Λ X X Λ X t t
 (6.1) 

Here the standard weiging matrices 
1 1diag{ }kw=Λ  and 

2 diag{ }kw=Λ  are used. Estevao and Särndal 

(2009) showed that this estimator is asymptotically equivalent to the estimator 
HSˆ .yt  For the estimator 

ESˆ
yt  

in (6.1), Estevao and Särndal (2002) provide two linear regression representations corresponding to the 

two calibration steps. Replacing y  by x  in (6.1) gives 
ESˆ ,xt  which is identical to 

GRˆ
xt  in (5.2). 

In comparison, the regression estimator proposed in Section 5 is motivated by the single-step 

calibration structure of the optimal two-phase estimator, of which it serves as practical approximation. It 

derives its statistical and computational efficiency, relative to competing regression estimators assessed in 

this section, from a single-step calibration procedure involving the combined first-phase and second-phase 

samples, and in which first-phase and second-phase estimated totals are calibrated to each other. As a 

consequence, the regression coefficients of the terms 
1 1

ˆ−x xt t  and ˆ −x xt t  incorporate information from 

the full sample 
1 ,s  as in the optimal estimator, and because of that they are more stable estimates of their 
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population counterparts. An empirical comparison of the proposed regression estimator with the 

competing regression estimators is included in the simulation study in Section 7. 

Replacing 
1Λ  and 

2Λ  by 1Δ̂  and 2Δ̂  in (6.1) converts the coefficient of the GREG estimator 
1

GRˆ
x x

t  

generated by the first step calibration into the coefficient Cov̂
1

ˆ ˆ( , ) [x xt t Var̂
1

1ˆ( )]−xt  of the single-phase 

optimal regression estimator 
1

ˆ ,O

x x
t  and the coefficient of the GREG estimator 

ESˆ
yt  generated by the second 

step calibration into the coefficient Cov̂ ( , ) [y xt t Var̂ 1( )] .−

xt  This latter coefficient may be viewed as 

pseudo-optimal since 
1

ˆO

x x
t  is treated as constant in the second step calibration, generating a pseudo-

optimal estimator 
PSOˆ .yt  In turn, if in place of the sample matrices 1Δ̂  and 2Δ̂  in (6.1) we use the 

population matrices 
1Δ  and 

2Δ  we construct the pseudo-BLUE  

 
( )

( ) ( )
1 1

1PSB

2 2

1 1

2 2 1 1 1 1 1

ˆ ˆ( )

ˆ( ),

U U U U

U U U U U U U U

−

− −

 = + −

   + −

y y x x

x x

t t Y Δ X X Δ X t t

Y Δ X X Δ X X Δ X X Δ X t t
 (6.2) 

where the coefficients of ˆ −x xt t  and 
1 1

ˆ−x xt t  are, respectively, 
1

Cov( , ) Var ( )
−

  y x xt t t  and 

1 1

11
ˆ ˆ ˆCov( , ) Var ( ) Cov( , ) Var ( ) .

−−
     y x x x x xt t t t t t  Thus, the GREG estimator (6.1) may be viewed as an 

approximation of 
PSOˆ ,yt  which is the estimator 

PSBˆ
yt  with estimated coefficients (in analogy with the 

relationship of the optimal estimator ˆO

yt  and the BLUE ˆ ,B

yt  in (4.2) and (3.14)). The pseudo-BLUE 

estimator 
PSBˆ ,xt  obtained from (6.2) by replacing y  with ,x  is identical to the BLUE ˆ ,B

xt  in (3.14). On the 

other hand, the estimators ˆB

yt  and 
PSBˆ
yt  are identical only under the condition of the following proposition; 

see proof in the Appendix.  

Proposition 1. The estimators ˆB

yt  and 
PSBˆ
yt  are identical only if 

1 2 ,=Δ Δ  for a constant .  
 

Remark 6.1. The condition of Proposition 1 holds if the same equal-inclusion probability design is used 

in both phases; the constant   is then a function of the sample inclusion probabilities. Two-phase designs 

that satisfy this condition are SRS and Bernoulli in both phases, as well as their stratification versions with 

identical stratification and proportional sample allocation in both phases. The practical importance of this 

is that for these designs the sample counterparts of ˆB

yt  and 
PSBˆ ,yt  i.e., ˆO

yt  and 
PSOˆ ,yt  will be for large 

samples almost identical. Furthermore, 
1 2=Δ Δ  implies that the minus sign in the coefficient of ˆ −x xt t  

in (3.14) and (4.2) could change to plus sign, with 1 −  factoring out, and thus the singularity problem 

identified in Remark 4.1 will not exist. 

Remark 6.2. It is simple to verify that 
PSOˆ
yt  is a calibration estimator, constructed by a two-step 

calibration procedure (as with the 
ESˆ
yt  estimator). Also, like 

ESˆ ,yt  the estimator 
PSOˆ
yt  is formed using the 

calibrated weigs of the second-phase sample only. 

Finally, it should be mentioned that a “design-optimal regression estimator”, not having the calibration 

property, has been proposed by Chen and Kim (2014) for a specific application and auxiliary variable 

setup. Also, a calibration estimator that is optimal under a model-assisted framework, and with 
2x  as the 

only auxiliary vector, has been proposed by Wu and Luan (2003). 
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7. Simulation study 
 

We have conducted a simulation study to assess the performance of the proposed two-phase estimators 

of the total ,yt  for scalar variables ,y  
1x  and 

2 ,x  and compare them with the competing regression 

estimators considered above. Distributions of these variables were specified as follows. The distribution of 

1x  is the lognormal with mean and variance parameters 
1 1

2( 4, 4).x x = =  The distribution of 
2x  is 

specified by the linear model 
2 15x x= + + 𝜖, where 𝜖 ~ (0,N 𝜎𝜖

2), and the distribution of y  is specified by 

the linear model 
1 210 2 3 ,y x x = + + +  where 2~ (0, ).N    The value of 𝜎𝜖

2 determines the linear 

relationship between 
2x  and 

1 ,x  as defined by the population square correlation coefficient 
1 2

2

, ,x xr  and the 

value of 2

  determines the linear relationship of y  with 
1x  and 

2 ,x  as defined by the coefficient of 

determination 
1 2 1 2 1 2 1 2

2 2 2 2

, , , , , ,[ 2 ] (1 ).y x y x y x y x x x x xr r r r r r r= + − −  

Three values, 0, 0.25, 0.75, were specified for 
1 2

2

, ,x xr  and two values, 0.25 and 0.75, for 
2 ,r  giving six 

combinations of values 
1 2

2 2

,( , ).x xr r  For the value 
1 2

2

, 0,x xr =  in particular, the bivariate lognormal 

distribution for 
1 2( , )x x  with parameters 

1 1

2( 4, 4),x x = =  
2 2

2( 9, 9)x x = =  and zero correlation was 

used. The required values of 𝜎𝜖
2 and 2

  are readily determined, while values for 
1

2

,y xr  and 
2

2

,y xr  are 

implicitly specified. For each of these six combinations, a population of size =N 50,000 was simulated 

by generating values from the distributions of the components of the vector 
1 2( , , ).y x x  Four combinations 

of first-phase and second-phase sample sizes 
1 2( , )n n  with fixed 

1n  and varying 
2n  were specified, i.e., 

(3,000; 2,000), (3,000; 1,500), (3,000; 1,000), (3,000; 500), thus creating a total of 24 simulation settings. 

Three different two-phase sampling designs were considered. Simple random sampling (SRS) without 

replacement was first used in both phases. For this sampling design, denoted by (SRS, SRS), the BLUE 

ˆB

yt  in (3.10) and its exact variance in (3.11) can be calculated. Using the fact that under SRS the 

correlation of the HT estimators for two totals is identical to the correlation coefficient of the associated 

variables, tedious but straigforward algebra gives the relative difference (RDV) of variances of the 

estimators ˆB

yt  and yt  as  

 
1

2 21 2 2 1
,

1 2 1 2

ˆVar ( ) Var ( ) ( ) ( )
= .

Var ( ) ( ) ( )

B

y y

y x

y

t t N n n n N n
r r

t n N n n N n

− − −
+

− −
  

The percent RDV is the measure of the efficiency of the BLUE ˆB

yt  relative to the HT estimator .yt  This 

exact maximum efficiency will serve to measure the closeness of the approximation of the BLUE by the 

optimal estimator, for the different sample sizes, as well as the efficiency of the other competing 

estimators relative to the HT estimator. Notice that as 
2n  tends to zero, the RDV tends to 

2 ,r  and as 
2n  

tends to 
1 ,n  the RDV tends to 

1

2

,y xr  (the efficiency of the BLUE based on 
1s  and 

1).x  The second two-

phase design, denoted by (STRSRS, SRS), was stratified simple random sampling (STRSRS) and SRS in 

the first and second phase, respectively. The simulated populations were stratified by the size of the 

variable ,y  with three strata of sizes 
1 =N 30,000, 

2 =N 15,000, 
3 =N 5,000 and proportional allocation 

of the sample 
1s  to the three strata ‒ giving equal inclusion probabilities in each of the two phases. For this 

design too, the BLUE ˆB

yt  and its exact variance can be calculated. The third two-phase design, denoted by 
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(SRS, PPSS), involved SRS in the first phase and probability proportional to size systematic sampling 

(PPSS) in the second phase, using as size measure the simple transformation 
2 215 0.5z x= +  of the 

variable 
2 ;x  using 

2x  as size would result in 
2 2

ˆ .x xt t=  In this case the BLUE ˆB

yt  (and the optimal 

estimator ˆ )O

yt  cannot be calculated, because of the unknown probabilities 
2 .kl  However, GREG 

estimators can be calculated. 

For each of these three two-phase designs, and all the 24 simulation settings, sampling was repeated 

30,000 times, and each time we computed the estimators ,yt  ˆ ,O

yt  GRˆ ,yt  ES

ŷt  and HSˆ ,yt  to obtain their 

empirical bias and variance. In all these cases, the simulation showed that the bias of all estimators was 

negligible, even for the smaller subsample sizes 
2 .n  Thus their comparison is based on their variances 

relative to the benchmark variance of the HT estimator .yt  Specifically, the efficiency of each of the 

competing estimators ˆ ,O

yt  
GRˆ ,yt  

ES

ŷt  and 
HS

ŷt  is assessed through the percent relative difference between its 

empirical variance and the empirical variance of the estimator ;yt  for example, for 
GR

ŷt  the relative 

difference is GRˆVar( ) Var ( ) Var ( ).y y yt t t −   The relative difference shows the reduction of the variance 

of the particular estimator relative to the variance of the basic estimator .yt  

In the (SRS, SRS) design, the exact efficiency of the BLUE ˆ ,B

yt  relative to the HT estimator ,yt  

increases as 
2n  decreases and as we move to higher values of 

2

2 2

,( , ),y xr r  confirming Remark 3.1; see 

column 2 of Table 7.1. It is also confirmed that the efficiency of ˆB

yt  tends to 2r  as 
2n  decreases, faster for 

higher 
1 2

2

, .x xr  This maximum efficiency is closely approximated by the empirical efficiency of ˆ ,O

yt  even 

for the smaller subsample sizes 
2 ;n  see column 3 of Table 7.1. For the (STRSRS, SRS) design the exact 

efficiency of ˆB

yt  is shown in column 6 of Table 7.1, exhibiting a pattern similar to that in the (SRS, SRS). 

This efficiency is closely approximated by the empirical efficiency of ˆ ;O

yt  see column 7 of Table 7.1. In 

both (SRS, SRS) and (STRSRS, SRS) the approximation of ˆB

yt  by ˆO

yt  is a little weaker in some settings 

involving the largest value of 
2 ,n  for the reason given in Remark 4.1. 

Although the estimator ˆO

yt  can be calculated in the (SRS, SRS) and (STRSRS, SRS) designs, the 

performance of the more practical, and of general applicability, calibration (GREG) estimators 
GR

ŷt  and 
ES

ŷt  is of great interest. For (SRS, SRS), the empirical efficiencies of these estimators are shown in 

columns 4 and 5 of Table 7.1. The negative sign indicates loss of efficiency with respect to the HT 

estimator. The efficiency of 
GR

ŷt  approximates closely the efficiency of ˆ ,O

yt  except for the four settings 

specified by 
1 2

2

,x xr = 0, 2r = 0.25, 0.75 and 
2n = 2,000; 1,500; in particular, when 

2n = 2,000 the estimator 
GR

ŷt  is a little less efficient than the estimator .yt  In contrast, the estimator 
ES

ŷt  is less efficient than the 

estimator yt  in six settings, when 
1 2

2

,x xr = 0, 2r = 0.25, 0.75 and 
2n = 2,000; 1,500; 1,000; substantially 

less efficient when 
2n = 2,000; 1,500. The highlig in columns 4 and 5 is that the estimator 

GR

ŷt  is much 

more efficient than the estimator 
ES

ŷt  in all settings, more so for higher values of 
2n  and for the higher 

values of 
2

2 2

,( , );y xr r  this indicates that 
GR

ŷt  is more effective in using information from the complement of 

2s  and in exploiting higher correlations of y  with 
1x  and 

2 .x  The efficiency of the estimator 
HS

ŷt  was 

virtually identical with that of 
ESˆ ,yt  in all three designs, and hence is not reported in Table 7.1. For 

(STRSRS, SRS), the empirical efficiencies of the calibration estimators 
GR

ŷt  and 
ES

ŷt  are shown in 
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columns 8 and 9 of Table 7.1. It should be noted that the correlations within the strata are much weaker 

than the correlations for the whole population (shown in Table 7.1). Also, the HT estimator yt  is highly 

efficient because of the stratification, especially for the larger values of 
2 .n  The estimator GR

ŷt  is less 

efficient than the estimator yt  in 3 of the 24 settings, involving 
2n = 2,000, while for the rest its efficiency 

increases greatly as 
2n  decreases, approaching the efficiency of ˆ .O

yt  The estimator ES

ŷt  is less efficient 

than the estimator yt  in 12 settings. The estimator GR

ŷt  is much more efficient than the estimator ES

ŷt  in all 

settings, more so for higher values of 
2n  and as we move from 2r = 0.25 to 2r = 0.75, and considerably 

more than in the (SRS, SRS) design. 

 

Table 7.1 

Percent efficiency of ˆ ,
B

y
t  ˆ ,

O

y
t  

GRˆ ,
y

t  
ESˆ
y

t  relative to 
y

t  
 

 (SRS, SRS)  (STRSRS, SRS)  (SRS, PPSS) 

2
n  ˆB

y
t  ˆO

y
t  GRˆ

y
t  ESˆ

y
t   ˆB

y
t  ˆO

y
t  GRˆ

y
t  ESˆ

y
t   GRˆ

y
t  ESˆ

y
t  

 2

 = 292.41,  
1 2

2

,x xr = 0.00,  
1

2

,y xr = 0.04,  
2

2

,y xr = 0.21,  2r = 0.25 

2,000 11.54 10.09 -1.66 -26.88  16.74 13.69 -23.49 -79.94  -5.51 -30.38 

1,500 15.00 13.84 10.91 -13.61  20.01 17.80 7.22 -38.46  4.57 -20.69 

1,000 18.41 17.68 17.79 -0.71  22.22 21.20 19.34 -11.76  9.69 -10.22 

500 21.74 20.62 20.77 11.29  23.81 22.34 22.75 7.84  11.24 0.67 

 2

 = 32.15,  
1 2

2

,x xr = 0.00,  
1

2

,y xr = 0.13,  
2

2

,y xr = 0.62,  2r = 0.75 

2,000 34.35 31.21 -4.23 -80.22  52.31 48.02 -66.06 -232.15  -21.68 -107.41 

1,500 44.84 42.34 33.09 -41.49  61.53 59.02 24.66 -108.30  15.95 -74.74 

1,000 55.10 53.80 53.83 -2.25  67.58 65.48 59.17 -30.84  36.49 -39.03 

500 65.16 63.87 63.90 34.31  71.85 70.53 70.41 27.83  45.55 2.00 

 𝜎𝜖
2 =12.11,  2

 = 632.52,  
1 2

2

,x xr = 0.25,  
1

2

,y xr = 0.12,  
2

2

,y xr = 0.24,  2r = 0.25 

2,000 16.70 16.89 16.69 9.88  17.14 15.56 2.08 -23.18  10.24 3.03 

1,500 18.85 19.02 19.52 13.57  20.26 19.45 16.46 -3.21  13.83 7.08 

1,000 20.97 20.79 20.52 16.50  22.38 21.07 21.04 6.84  13.03 8.04 

500 23.04 22.28 21.67 19.64  23.91 22.84 23.41 16.40  11.57 9.38 

 𝜎𝜖
2 =12.11,  2

 = 70.68,  
1 2

2

,x xr = 0.25,  
1

2

,y xr = 0.36,  
2

2

,y xr = 0.71,  2r = 0.75 

2,000 49.70 48.33 46.89 25.33  53.11 50.78 20.11 -38.15  35.49 11.64 

1,500 56.23 55.48 56.46 38.08  61.86 60.63 53.81 8.36  46.33 22.98 

1,000 62.63 62.20 61.35 48.69  67.71 66.38 66.10 34.90  47.91 30.19 

500 68.90 68.09 65.58 59.65  71.90 70.99 71.00 55.27  47.68 38.93 

 𝜎𝜖
2 =1.33,  2

 = 340.40,  
1 2

2

,x xr = 0.75,  
1

2

,y xr = 0.22,  
2

2

,y xr = 0.24,  2r = 0.25 

2,000 23.36 23.67 23.01 10.81  18.09 15.47 -6.07 -46.54  16.62 3.38 

1,500 23.78 23.63 24.19 13.85  20.83 19.60 14.52 -17.17  19.77 7.95 

1,000 24.20 23.83 23.15 16.97  22.68 21.67 21.58 0.86  17.04 10.02 

500 24.61 23.54 22.24 19.92  24.01 22.39 22.98 13.24  14.52 11.77 

 𝜎𝜖
2 =1.33,  2

 = 37.82,  
1 2

2

,x xr = 0.75,  
1

2

,y xr = 0.67,  
2

2

,y xr = 0.72,  2r = 0.75 

2,000 69.84 67.98 65.10 26.96  60.26 56.75 32.34 -27.50  56.65 13.24 

1,500 71.17 69.57 70.70 38.91  66.25 64.49 59.73 14.39  65.49 26.11 

1,000 72.47 71.26 69.17 49.62  70.17 68.80 68.69 40.44  61.00 35.28 

500 73.74 72.19 67.58 60.66  72.94 71.12 71.10 56.90  54.67 44.54 

SRS = Simple random sampling; STRSRS = stratified simple random sampling; PPSS = probability proportional to size systematic. 

 
For (SRS, PPSS), the empirical efficiencies of the calibration estimators 

GR

ŷt  and 
ES

ŷt  are shown in 

columns 10 and 11 of Table 7.1. The pattern of these efficiencies is very similar to that in the (SRS, SRS) 

design. This is particularly so for the efficiency of 
GR

ŷt  relative to 
ESˆ ,yt  which is not included in Table 7.1 
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but can be easily derived using the displayed efficiencies of GR

ŷt  and ES

ŷt  relative to .yt  The HT estimator 

yt  itself is more efficient with this two-phase design, which explains why the efficiency of the two 

calibration estimators GR

ŷt  and ES

ŷt  relative to yt  is somewhat lower than in the (SRS, SRS) and (STRSRS, 

SRS) designs. 

The whole simulation study was repeated with the simulated population for the vector 
1 2( , , )y x x  

generated from a trivariate lognormal distribution with the specified correlation structures. For all three 

designs (SRS, SRS), (SRS, PPSS) and (STRSRS, SRS), the results (not shown here) were very similar to 

those based on the linear model for y  used above. 

It is of interest to consider the setup of auxiliary variables in which the scalar variable 
1x  is augmented 

to 
1(1, ),x  with known totals 

1
( , ).xN t  Then in the (SRS, SRS) design, in which construction of the BLUE 

ˆB

yt  and the optimal estimator ˆO

yt  is feasible, using the complete setup 
1 2(1, , )x x  in calibration gives the 

same ˆB

yt  and practically the same ˆB

yt  as when using 
1 2( , ).x x  It would also convert the regression 

estimator GR

ŷt  to ˆO

yt  (using the same adjustment 
21 k  of 

1Y  as in ˆ ),O

yt  and the regression estimator ES

ŷt  

estimator to the pseudo-optimal estimator 
PSO

ŷt  (defined in Section 6). These properties are derived from 

known theory, see for example Merkouris (2004, 2015), more directly for 
ES

ŷt  and the second regression 

term of GR

ŷt  and the optimal ˆ ,O

yt  irrespective of any specific functional relationship of y  with 
1 2(1, , ).x x  

Then, the three sample-based estimators would show virtually identical empirical behavior. This follows 

from Proposition 1, which gives the condition (satisfied by specific designs, including (SRS, SRS)) under 

which the pseudo-optimal regression estimator PSO

ŷt  is asymptotically equivalent to the proposed optimal 

estimator ˆ .O

yt  Experimental calculations have confirmed this equivalence. In the (STRSRS, SRS) design 

too, using 
1 2(1, , )x x  gives the same ˆB

yt  and ˆO

yt  as when using 
1 2( , ),x x  and converts the 

GR

ŷt  and 
ES

ŷt  

estimators to the ˆO

yt  and 
PSO

ŷt  estimators, respectively. However, by Proposition 1 the equivalence of the 

latter two estimators, and hence of 
GR

ŷt  and 
ESˆ ,yt  does not hold in this sampling design. 

 
8. Discussion 
 

The described method of optimal and regression estimation for two-phase sampling involves a single-

step calibration of the weigs of the combined first-and-second phase samples. Thus, using a single set of 

calibrated weigs that incorporate all the available information from the two phases, a substantially 

improved estimate of the total of a target variable can be obtained, as shown by the simulation study. 

These weigs could be used to calculate other weiged statistics, including means, ratios, quantiles and 

regression coefficients. The framework of the method is general enough to encompass complex designs 

with multiple stages and different stratification at the two phases, as well as various types of auxiliary 

variables known at the population or sample level ‒ ten different cases of auxiliary information are 

identified in Estevao and Särndal (2002). Furthermore, the method may be extended to multi-phase 

sampling designs through the appropriate calibration setup. 
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Estimation of a total for any domain (subpopulation) of interest, ,dU U  can be carried out readily 

using the calibrated weigs and summing the weiged sample values of the variable of interest over .dU  For 

the resulting domain estimator to be optimal linear estimator, the domain estimates of ,yt  
1

xt  and 
2xt  

need to be combined linearly, by carrying out optimal calibration at the domain level with domain 

calibration totals and with the appropriate modification of the matrix .X  A number of calibration options, 

regarding the use of the available auxiliary information at the population, domain and two-phase sample 

levels, could be considered for the most efficient estimation of domain totals in any particular application. 

Related work in Merkouris (2010) would be helpful in this context. 

The estimated approximate variances of the two-phase optimal estimator and the two-phase regression 

estimator, based on Taylor linearization, were given in Sections 4.1 and Section 5, respectively. For the 

two-phase regression estimator, replication methods of variance estimation, such as the jackknife method 

or the bootstrap method, could be alternatively applied, or would be the only option when first-phase or 

second-phase joint inclusion probabilities are not known. There is extensive literature on such replication 

methods for existing regression estimators in two-phase sampling. The single-step calibration feature of 

the proposed regression estimation method may be helpful in this direction; detailed study of this is 

beyond the scope of this paper.  
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Appendix 

 
Proof of Lemma 1 
 

The symmetric matrix *Var( )Uw  has the form of (3.8) but with 
1Cov( , )U Uw w  as off-diagonal block. 

The thkl  element of the matrix 
1Var ( )Uw  is  

 1 1 1 1 1 1 1 1 1 1 1 1 1Cov( , ) [ ( ) ( ) ( )] ( ) .
k lU U k l k l k l kl k l k lw w E I I E I E I       = − = −   

The thkl  element of the matrix Var ( )Uw  is  

 

1 2 1 2 1 2 1 2 1 2 1 2

1 1 1 2 2 2 1 1 2 2 1 1 2 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2

Cov( , ) = [ ( ) ( ) ( )]

= [ ( ( )) ( ( )) ( ( ))]

= [ ] ,

k lU U k k l l k k l l k k l l

k l k l k k l l k k l l

kl kl k k l l k k l l

w w E I I I I E I I E I I

E I I E I I E I E I E I E I

   

   

         

−

−

−

  

where 
1E  and 

2E  denote expectation under first and second phase of sampling, respectively. Using 

similar arguments it follows that the thkl  element of the matrix 
1Cov( , )U Uw w  is 
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 1 1 1 2 1 1 2 1 1 2 1 1 1 1 1Cov( , ) = [ ( ) ( ) ( )] = ( ) .
k lU U k l l k l l k l l kl k l k lw w E I I I E I E I I        − −   

This shows that 1 1 1Cov( , ) = Cov( , )
k l k lU U U Uw w w w  and thus 

1 1Cov( , ) = Var ( ),U U Uw w w  which completes 

the proof. 

 
Proof of Theorem 1 
 

Matrix *Var( )UΔ w=  is nonsingular if and only if 
1Var ( ) Var ( )U U−w w  is nonsingular. This follows 

from a general result on inverses of partitioned matrices (see Harville, 2008, page 98). But 

1 1Var ( ) Var ( ) = Var ( ),U U U U− −w w w w  because 
1 1Cov( , ) = Var ( ),U U Uw w w  and therefore Var ( )U −w  

1Var ( )Uw  is nonsingular, being a variance-covariance matrix. Next, to find the vector *

Uc  that minimizes 
* * 1 * *( ) ( )U U U U

−− −c w Δ c w  subject to the constraints * ,U U
 =c tXX  consider the function =F  

* * 1 * * *( ) ( )U U U U U U

−  − − −c w Δ c w λ cX  where λ  is a vector of Langrange multipliers. We then get the system 

of equations  

 

1 * *

*

*

= 2 ( ) =

.

U U U

U

U U

−
− −



 − =

F
Δ c w λ 0

c

c t 0X

X

X
  

Multiplying the first equation by ,U
 ΔX  using *

U U
 =c tXX  and solving for λ  gives 

( )1 *= 2( ) .U U U U

− −λ Δ t wXX X X  Inserting this into the first equation and solving for *

Uc  gives 

( )* * 1 *( ) .U U U U U U U

− = + −c w Δ Δ t wXX X X X  

 

Proof of Proposition 1 
 

Clearly, the coefficients of ˆ −x xt t  in (3.14) and (6.2) are identical if 
1 2 .=Δ Δ  Next, using the 

partition 
1 2( , ),U U U=X X X  the coefficient of 

1 1

ˆ−x xt t  in (6.2) is expressed as follows. First we obtain  

 

( )

 
 

1

1 1 2 1 1 2 2 1 1 1

2 2 1 1 2 1 2

2 2 1 2 2 2 2 1 1

2 1 11 1 1 1 12 2 1 1

2 2 21 1 1 1 22 2 1 1

( , )

( ) ( )

( ) ( ) ,

U U U U U U

U U U U U U U U U

U U U U U U

U U U U U U

U U U U U U

A A

A A

−

−      
   =    

     

  = +

  + +

X Δ X X Δ X X Δ X
Y Δ X X Δ X X Δ X Y Δ X X

X Δ X X Δ X X Δ X

Y Δ X X Δ X X Δ X

Y Δ X X Δ X X Δ X

  

where 
11 ,A  

12 ,A  
21 ,A  

22A  are derived by algebra of inverses of partitioned matrices. In particular,  

 1 1

11 1 2 1 12 2 2 1 1 2 1= ( ) ( ) ( )U U U U U UA A− −  −X Δ X X Δ X X Δ X   

and 1

21 22 2 2 1 1 2 1( ) ( ) .U U U UA A − = − X Δ X X Δ X  Then,  

 

1

11 1 1 1 12 2 1 1 1 2 1 1 1 1 12

21 1 1 1 22 2 1 1 22

( ) ( ) ( )

( ) ( ) = ,

U U U U U U U U

U U U U

A A A

A A A

−   + = +

 +

X Δ X X Δ X X Δ X X Δ X B

X Δ X X Δ X B
  

where 
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 1

2 1 1 2 2 1 1 2 1 1 1 1( ) ( ).U U U U U U U U

−   = −B X Δ X X Δ X X Δ X X Δ X   

It is then easy to verify that if 
1 2 ,=Δ Δ  we have 1

1 2 1 1 1 1( )U U U U −  =X Δ X X Δ X I  and .=B 0  It follows 

that ( )
1

2 2 1 1 1 1 ,U U U U U U U U

−
   =Y Δ X X Δ X X Δ X Y Δ X  and thus the coefficients of 

1 1

ˆ−x xt t  in (3.14) and 

(6.2) are also identical. 
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Bayesian spatial models for estimating means of sampled and 

non-sampled small areas 

Hee Cheol Chung and Gauri S. Datta1 

Abstract 

In many applications, the population means of geographically adjacent small areas exhibit a spatial variation. 

If available auxiliary variables do not adequately account for the spatial pattern, the residual variation will be 

included in the random effects. As a result, the independent and identical distribution assumption on random 

effects of the Fay-Herriot model will fail. Furthermore, limited resources often prevent numerous sub-

populations from being included in the sample, resulting in non-sampled small areas. The problem can be 

exacerbated for predicting means of non-sampled small areas using the above Fay-Herriot model as the 

predictions will be made based solely on the auxiliary variables. To address such inadequacy, we consider 

Bayesian spatial random-effect models that can accommodate multiple non-sampled areas. Under mild 

conditions, we establish the propriety of the posterior distributions for various spatial models for a useful class 

of improper prior densities on model parameters. The effectiveness of these spatial models is assessed based 

on simulated and real data. Specifically, we examine predictions of statewide four-person family median 

incomes based on the 1990 Current Population Survey and the 1980 Census for the United States of America. 
 

Key Words: Conditional autoregression; Current Population Survey; Fay-Herriot model; Intrinsic autoregression; Mixed 

effects; Simultaneous autoregression; non-sampled small areas. 

 

 

1. Introduction 
 

Sample surveys provide useful data in estimating various characteristics of a population of interest. 

Surveys are generally designed so that design-based estimators have adequate accuracy. However, when it 

comes to estimating a sub-population characteristic, a design-based direct estimate, based solely on data 

from that sub-population alone, is usually inaccurate as the accessible sample size is small and sometimes 

nonexistent. Sub-populations that lack a reasonable sample size to produce reliable direct estimates are 

known as small areas. Also, limited resources often preclude many sub-populations from selecting in the 

sample, creating non-sampled small areas. For example, the American Community Survey (ACS) is 

conducted to produce reliable statistics for the U.S. counties. However, the ACS usually samples about 

one-third of the counties resulting in many non-sampled small areas. 

To enhance the accuracy of direct estimates of small areas, a model-based approach has been widely 

used to facilitate borrowing information from direct estimates of other domains and other auxiliary data. 

In many applications, supplementary information from other surveys and administrative data provide 

useful covariates. A model-based estimate of an area is produced by suitably shrinking its direct estimate 

(if available) to a synthetic regression estimate based on auxiliary variables. The improvement in 

prediction greatly depends on to what extent the sub-population means of the characteristic are related to 

the auxiliary variables. If a small area has no direct estimate, the traditional independent random-effects 

model of Fay and Herriot (1979) estimates estimates the mean by a synthetic regression estimate alone. 
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Fay and Herriot (1979) proposed a useful model for developing estimates of small area means based on 

direct survey estimates (if available) and computed synthetic regression estimates from auxiliary variables. 

This model, which is essentially a mixed linear model, is popularly known as the Fay-Herriot (FH) model 

in small area estimation. For 1, , ,i m=  let iY  be the direct estimate of the small area characteristic i  

obtained from a survey. Also let ix  and β  be the p -component vectors of covariates and corresponding 

regression coefficients, respectively. Denoting the sampling error of iY  as ,ie  the independent FH model 

can be written as 

 , , 1, , ,i i i i i iY e v i m = + = + =x β
T

 (1.1) 

where ’sie  and random effects ’siv  1, , ,i m=  are all independently distributed with ~ (0, ),i ie N D  and 
i.i.d. 2~ (0, ).i vv N   Sampling variances ,iD  1, ,i m=  are taken as known, whereas the regression 

parameter   and model error variance 
2 ,v  called model parameters, are unknown quantities. For non-

sampled areas with auxiliary variables, only the second part of (1.1) holds for .i  

There has been extensive research on the independent FH model and its many variants. While Fay and 

Herriot (1979) used an empirical Bayes (EB) approach, subsequently, Prasad and Rao (1990), Datta and 

Lahiri (2000) and Datta, Rao and Smith (2005) used the frequentist approach and derived the second-order 

mean squared error (MSE) of empirical best linear unbiased predictor (EBLUP) of i  and various second-

order approximate unbiased estimators of the MSE’s (see Datta and Lahiri, 2000). However, Ghosh 

(1992) proposed a hierarchical Bayesian (HB) approach for the Fay-Herriot model (see also Datta et al. 

(2005)). In the Bayesian framework, the FH model in (1.1) can be expressed as the following HB model: 

 
ind2

1
~, , , , ( , ), 1, , ,i m v i iY N D i m    =β  (1.2) 

 
ind2 2~, ( , ), 1, , ,i v i vN i m   =β x β

T
 (1.3) 

 
2 2( , ) ( , ),v vg  β β  (1.4) 

where ( )g   is a suitably chosen function of β  and 
2 ,v  which expresses a prior probability density 

function (pdf) for these parameter. An EB predictor for ,i  which does not require a prior pdf as in (1.4), 

was originally developed by Fay and Herriot (1979). While a standard EB approach usually 

underestimates the measure of uncertainty of the EB estimator of ,i  the HB approach facilitates 

quantification of uncertainty due to estimation of unknown model parameters, β  and 
2.v  The uncertainty 

is fully captured by the posterior distribution of the model parameters. 

In model-based estimations, random effects are of great importance in capturing the remaining 

variability of the ’si  that is not explained by the regression model. In real applications, small areas 

generally involve features such as population size, ethnicity, age-group, and education level, which might 

affect the variability of small area effects. Furthermore, when disease prevalence rates are of interest, it is 

reasonable to assume that random effects of adjacent small areas are correlated in a certain way. In such 
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cases, the FH model given in (1.1), which we refer to as the independent FH random-effects model, 

oversimplifies and misspecifies the distribution of random effects by assuming a common and 

independent distribution. Opsomer, Claeskens, Ranalli, Kauermann and Breidt (2008) and Rao, Sinha and 

Dumitrescu (2014) proposed nonparametric small area estimation models, which capture spatial proximity 

effect using the P-spline function. However, these approaches require additional computational cost for 

model inference and uncertainty quantification. 

In this work, we propose spatial FH models which effectively account for heteroscedasticity and spatial 

dependence of the small area effects. We take a fully Bayesian approach by specifying a class of 

noninformative priors on the model parameters and model spatial dependence of small area random 

effects by four widely used autocorrelation structures. These include simultaneous autoregressive and 

three types of conditional autoregressive models. There is an abundance of literature on spatial models 

under the Bayesian framework. Sun, Tsutakawa and Speckman (1999) studied an HB model with the 

conditional and intrinsic autoregressive models on the random effects. The same models were considered 

by Speckman and Sun (2003) in the context of Bayesian spline smoothing. For small area estimation, You 

and Zhou (2011) modeled small area effects using a conditional autoregressive model. As an extension of 

the time series FH model (Datta, Lahiri, Maiti and Lu, 1999), Torabi (2012) proposed a spatio-temporal 

model with intrinsic autoregressive random effects. Porter, Holan, Wikle and Cressie (2014) proposed an 

extension of the FH model with functional covariates and intrinsic autoregressive random effects. Porter, 

Wikle and Holan (2015) incorporated the conditional autoregressive random effects on the multivariate 

FH model. 

The existing Bayesian spatial small area estimation models consider a proper prior on 
2

v  even though 

the specification of a proper prior will require subject matter expertise. Furthermore, all existing models 

assume a conditional autoregressive structure on the random effects. The main contributions of this paper 

are as follows. First, to the best of our knowledge, the proposed models in Section 2 (Section 2.1) include 

most of the popularly used spatial structures. Second, in Section 2.2, we further extend the spatial models 

to estimate means of several non-sampled small areas with no direct estimates. The non-sampled area 

mean i  is estimated by borrowing strength from the auxiliary variables of the area and, for spatial 

models, from the regression residuals of its neighboring areas. Third, for all proposed models, we provide, 

in Section 2.3, sufficient conditions for posterior propriety for a class of improper noninformative priors 

on model parameters. Interestingly, the sufficient conditions do not depend on the assumed spatial model, 

provided that the model yields a positive definite covariance matrix for the random effects. We provide 

rejection sampling steps for simulating from the posterior of the proposed models in Section 3. The 

effectiveness of the proposed spatial models is demonstrated in Sections 4 and 5. We apply the spatial 

models to simulated datasets and real survey data from the Current Population Survey (CPS). We compare 

various spatial models in Section 5 to estimate four-person family median incomes for the forty-nine 

contiguous states of the U.S. based on the CPS data and appropriate covariates from the previous Census 

and administrative data. Our data analysis and simulation studies reveal that proposed spatial models 
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significantly improve prediction accuracy and reduce the measure of uncertainty, posterior standard 

deviation. We provide concluding remarks in Section 6. All technical details are provided in Appendix. 

 
2. Some spatial alternatives to the independent FH model 

 
2.1 Incorporating spatial random effects 
 

Let 1( , , )mY Y=Y
T
 be the m -component vector with the direct estimates of m  small areas, and 

1diag{ }m

i iD ==D  be the m m  diagonal matrix with the sampling variances of the direct estimates. We 

denote by 1( , , )θ m = T
 the m -component vector of small area means. Also, let xi  ℝ

p  be the p -

component vector of auxiliary variables (including the intercept term) for the thi  small area, and 

1[ , , ] .m=X x x
T

 A special case of the HB model given in (1.2)-(1.4) can be expressed as 

 
2, , ~ ( , ),v mNY θ β θ D  (2.1) 

 
2 2, ~ ( , ),v m v mN θ β Xβ I  (2.2) 

 
2( , ) 1,v  β  (2.3) 

where β  is the p -component regression coefficient vector, 
2

v  is the model error variance, and mI  is the 

identity matrix of order .m  The uniform prior (2.3) on the model parameters is a popularly used 

noninformative prior, and the resulting posterior pdf is proper provided that 2.m p +  See Berger (1985) 

and Datta and Smith (2003) for detailed discussion. 

The model (2.2) assumes that ,i  1, , ,i m=  are independently distributed over the small areas with 

common random effects variance 
2.v  In many small area estimation problems, however, the area 

characteristic of interest is closely related to geographical factors such as population size, ethnicity, age-

group and education level. When available covariates do not fully explain such spatial association, the 

independence and equal variance assumptions of random effects fail, and inference based on the 

hierarchical model (2.1)-(2.3) may generate unreliable estimates, consequently resulting in erroneous 

decisions. Figure 2.1 illustrates spatial associations of the 1990 Census 4-person family median incomes 

of (scaled by $1,000) the 49m =  states of the U.S., including the District of Columbia. Simulated data 

with the same Moran’s I value are also displayed for comparison, where Moran’s I is a measure for spatial 

autocorrelation. The simulated data are generated under the SAR model (defined below) with  = 0.8 

matching the location and scale with the Census data. The two panels demonstrate the existence of spatial 

dependence in the 1990 Census 4-person family median incomes. In practice, covariates capable of fully 

capturing existing spatial variation are not always available, and the problem can be exacerbated if lurking 

variables exist, as they introduce additional variability that cannot be explained by the independently and 

identically distributed (i.i.d.) random effects. 
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Figure 2.1 Graphical illustrations of the 1990 Census 4-person family median incomes of the =m 49 states 

of U.S. and simulated data.  
 

 

 

 

 

 

 

 

- The simulated data are generated under the SAR model (defined below) with  = 0.8 and have the same Moran’s I estimate. 

- AL = Alabama, AZ = Arizona, AR = Arkansas, CA = California, CO = Colorado, CT = Connecticut, DE = Delaware, DC = District of Columbia, FL = 
Florida, GA = Georgia, ID = Idaho, IL = Illinois, IN = Indiana, IA = Iowa, KS = Kansas, KY = Kentucky, LA = Louisiana, ME = Maine, MD = Maryland, 

MA = Massachusetts, MI = Michigan, MN = Minnesota, MS = Mississippi, MO = Missouri, MT = Montana, NE = Nebraska, NV = Nevada, NH = 
New Hampshire, NJ = New Jersey, NM = New Mexico, NY = New York, NC = North Carolina, ND = North Dakota, OH = Ohio, OK = Oklahoma, 
OR = Oregon, PA = Pennsylvania, RI = Rhode Island, SC = South Carolina, SD = South Dakota, TN = Tennessee, TX = Texas, UT = Utah, VT = 

Vermont, VA = Virginia, WA = Washington, WV = West Virginia, WI = Wisconsin, WY = Wyoming. 

 

To address this issue, we propose to use spatially correlated random effects. Let { } ,ij ijw=W  

1 , ,i j m   be the adjacency matrix which plays an important role in capturing spatial dependency. In 

particular, 1ijw =  if the thi  and 
thj  small areas are connected via geographical boundary or through other 

mechanisms (for example, air traffic), and 0,ijw =  otherwise. Also, 0iiw =  for 1, , .i m=  The off-

diagonal entries, ’s,ijw  need not be binary; they can take other positive values, such as the “length” of the 

geographical border or volumes of air traffic between the two areas. Since the adjacency matrix W  is 

symmetric, its eigenvalues are real. We denote the thi  largest eigenvalue of W  by ( ),i W  such that 

1( ) ( ).m  W W  Since W  is non-null and 
=1

0,
m

iii
w =  we get as a result that 1( ) 0 ( ).m  W W  

Let 
. =1

m

i ijj
w w=  be the sum of the thi  row of W  and . =1diag{ } .m

i iw=L  Assuming that diagonal elements 

of L  are positive, i.e., all small areas have at least 1 neighboring area, we define 
1 .−=W L W  Since W  is 

a row stochastic matrix, all of its eigenvalues are between 1−  and 1, with at least one of them is 1. 

Consequently, 1 ( ) 1. =W  Moreover, W  and 1 2 1 2

. =1 . =1diag{ } diag{ }m m

i i i iw w− −
W  have the same set of 

eigenvalues, and the latter matrix is symmetric. So all the eigenvalues of W  are real, and ( )m W  will be 

negative. We consider four alternative spatial dependencies associated with random effects, which are 

represented by the following positive definite precision matrices (excluding the scale parameter 
2 ) :v  

             

SAR :

       

2 ( ) ( ) ( ),m m  = − −Ω I W I W
T

    

( 1,1), −  (2.4) 

             

SCAR :

     

3 ( ) ,m = −Ω I W

                           

1 1

1( ( ) , ( ) ),m  − − W W  (2.5) 

             

CAR :

      

4 ( ) , = −Ω L W

                            

1 1

1( ( ) , ( ) ),m  − − W W  (2.6) 

             

LCAR :

    

5 ( ) (1 ) ,m  = + −Ω R I

                 

(0,1),  (2.7) 

where   is the spatial dependence parameter that represents the strength of spatial dependence (Hodges, 

2019, Chapter 5.2) and R  is defined as 4 (1) .= = −R Ω L W  Since the eigenvalues of m −I W  are 

 1990 Census 4-person family median income Moran’s I: 0.44              Simulated under SAR with rho = 0.8 Moran’s I: 0.44 

(29, 32.2] 
(32.2, 33.4] 
(33.4, 36.5] 
(36.5, 37.2] 
(37.2, 38] 
(38, 40] 
(40, 41.6] 
(41.6, 43.6] 
(43.6, 46.7] 
(46.7, 55.1] 

(31.1, 37.4] 
(37.4, 39.6] 
(39.6, 40.9] 
(40.9, 42.6] 
(42.6, 43.2] 
(43.2, 44.1] 
(44.1, 46.2] 
(46.2, 48.2] 
(48.2, 49.8] 
(49.8, 51.7] 
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between 0 (the smallest eigenvalue) and 1 ( )m− W  (the largest eigenvalue, 1),  the matrix R  is 

nonnegative definite. Each precision matrix is guaranteed to be positive definite as long as   is in the 

range specified in the respective definition. 

The adjacency matrix W  of the simultaneous autoregressive (SAR) model (Whittle, 1954) is row-

normalized so that   can vary from 1−  to 1 while preserving the positive definiteness (Banerjee, Carlin 

and Gelfand, 2003, Chapter 4.4). The model (2.5) is a simple version of conditional autoregressive (CAR) 

model (Rao and Molina, 2015, Chapter 9.6.2), where diagonal entries of the precision matrix are all equal 

to one. Even though the diagonal elements of a precision matrix are all equal, the diagonal elements of the 

inverse may not be all equal, leading to heteroscedasticity of random effects. We call this model the 

simple conditional autoregressive (SCAR) model. The model (2.6) is widely used conditional 

autoregressive model (CAR; Banerjee et al., 2003; Besag and Kooperberg, 1995; You and Zhou, 2011), 

where diagonal entries of the precision matrix are the number of neighborhoods of the corresponding area. 

The upper limit of   is 
1

1 ( ) 1, − =W  and in the case of 1, =  the model with 4 (1)Ω  is referred to as the 

intrinsic autoregressive (IAR) model (Banerjee et al., 2003, Chapter 4.3). The model (2.7) is a conditional 

autoregressive model, which we call Leroux’s conditional autoregressive (LCAR), whose precision matrix 

is given by the convex combination of 4 (1)=R Ω  and .mI  This model has been considered by Leroux, 

Lei and Breslow (2000); MacNab (2003); You and Zhou (2011), where the thi  diagonal element of R  is 

the number of neighborhoods of the thi  small area, and the 
th( , )i j  off-diagonal element is 1−  if the thi  

and the 
thj  small areas are connected and 0 otherwise. 

The conditional autoregressive models, SCAR, CAR, and LCAR, assume that i  depends only on 

neighboring small area means. In other words, i  is correlated with ’s,j  ,j i  only through the means 

of surrounding areas. On the contrary, the SAR model assumes that i  is dependent on all other j  

concurrently, ,j i  but has stronger (weaker) correlations for neighboring (remote) areas. The 

independent FH model can be viewed as a special case of the SAR, SCAR, or LCAR model with 0. =  

For notational convenience, we include the independent FH model as part of our model by taking its 

precision matrix 1 ( ) ,m =Ω I  although it is free from .  

We consider the following HB spatial models incorporating the five spatial dependencies defined in 

(2.4)-(2.7): 

 
2, , , ~ ( , ),v mN Y θ β θ D  (2.8) 

  
12 2, , ~ ( , ( ) ), 1, , 5,v m v kN k   
−

=θ β Xβ Ω  (2.9) 

 
2 2( , , ) ( ) ( ),β βv vg h     ℝ 2, 0,  ,p

v k kl u     (2.10) 

where 
2

v  is the model scale parameter, 
2( )vg   and ( )h   are suitable functions of 

2

v  and ,  kl  and ku  

are the lower and upper bounds of   under the thk  model. We avoid the term “model error variance” for 
2

v  as diagonal entries of ( )k Ω  vary across small areas and are not necessarily all one. 
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2.2 Estimation of population means of non-sampled small areas  
 

In this section, we consider the case when, in the survey, there are several non-sampled small areas that 

have no direct estimates. In many applications, limited resources frequently preclude the inclusion of 

many subpopulations in the sample, resulting in non-sampled small areas. In this section, we consider the 

case when, in the survey, there are several non-sampled small areas that have no direct estimates. In many 

applications, limited resources frequently preclude the inclusion of many subpopulations in the sample, 

resulting in non-sampled small areas. Non-sampled small areas are sometimes referred to as misaligned 

areas (Trevisani and Gelfand, 2013) when they arise from domain misalignment between the direct 

estimate and auxiliary variables. For any of these non-sampled areas, the prediction of its mean from any 

non-spatial model is only based on its synthetic estimator. We propose to exploit spatial dependencies in 

predicting area means of non-sampled small areas. The predictions of the proposed models are obtained 

by modifying its synthetic estimator, using the vector of regression residuals, with more emphasis on the 

regression residuals of the neighboring areas. 

Without loss of generality, let there be 1m  non-sampled small areas and 
1 1, ,m mY Y+  be the direct 

estimates of the 2 1m m m= −  sampled small areas. Based on the direct estimates of 2m  sampled areas, we 

consider the following HB models: 

 
2

2

(2) (2) (2), , , ~ ( , ),v mN Y θ β θ D  (2.11) 

  ( )12 2, , ~ , ( ) , 1, , 5,v m v kN k   
−

=θ β Xβ Ω  (2.12) 

 
2 2( , , ) ( ) ( ),β βv vg h     ℝ 2, 0,  ,p

v k kl u     (2.13) 

where 
1(2) 1( , , ) ,m mY Y+=Y

T  
1(2) = 1diag{ } ,m

i i mD +=D  and 
1(2) 1( , , ) ,m m +=θ

T  which is the subvector of θ  

corresponding to the sampled areas. 

 

2.3 Propriety of the posterior distributions 
 

In this section, we establish propriety of the posterior distributions of spatial small area models given 

in (2.8)-(2.10) and (2.11)-(2.13). Let ( )I   be the indicator function taking the value 1 when its argument is 

true and 0 otherwise. We first provide general conditions for the posterior propriety of the proposed 

models.  

Theorem 1. For all the HB spatial models given in (2.8)-(2.10) and (2.11)-(2.13), the posterior probability 

density functions are proper if the following conditions hold for some positive constant 0 :c   

(a) 
2 2 2

0
( ) ( ) .v v vg I c d  



    

(b) 
*2 ( ) 2 2 2 2

0
( ) ( ) ( ) .m p

v v v vg I c d   


− −     

(c) ( ) ,
k

k

u

l
h d    

 

where 
*m m=  for (2.8)-(2.10), and 

*

1m m m= −  for (2.11)-(2.13). 
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If ( )g   is a proper pdf, then (a) holds true automatically, and (b) is satisfied if 
* .m p  The condition 

*m p  is obvious since at least p  observations are needed to estimate p  components of β  when no 

substantive information about it is available. Also, any bounded function of   satisfies ( )c  in Theorem 1 

as their supports are all bounded. In particular, under the popular family of noninformative priors 

 
2 2( , , ) ( ) ( ),β βv v k kI l u    −   ℝ 2, 0,p

v   (2.14) 

the posterior pdfs are proper under the following conditions.  

Corollary 1. For any of the HB spatial models given in (2.8)-(2.9) and (2.11)-(2.12) with the prior in 

(2.14), the posterior pdf is proper as long as 1   and 
* 2 2 .m p  + −  

For the uniform prior with 0 =  (which will be used in this paper), the propriety of the posterior 

distributions for models (2.8)-(2.9) are guaranteed as long as the number of small areas is greater than 

2.p +  For the models incorporating non-sampled areas given in (2.11)-(2.12), the second condition of 

Corollary 1.1 becomes 1 2,m m p−  +  and thus, the posterior pdfs are proper as long as the number of 

non-sampled areas is fewer than 2,m p− −  or at least 3p +  areas have sample. 

 
3. Simulating posterior distributions 
 

In this section, we illustrate the rejection sampling steps to obtain independent posterior samples from 

the posterior distributions of proposed models. We assume that the components of the small area mean 

vector θ  are arranged so that (1) (2)( , ) ,=θ θ θ
T T T  where (1)θ ℝ 1m  and (2)θ ℝ 2m  are the small area mean 

vectors corresponding to the non-sampled and sampled areas, respectively. For notational convenience, we 

denote the precision matrix of the thk  spatial model by 
2 1( ) ( )v k −=Ω Ω  and the permissible range of   

by ( , )l u  suppressing the model index .k  

We first derive the marginal posterior density of 
2( , )v   and provide subsequent sampling procedures. 

Let 
2 1m m0  be the 2 1m m  null matrix and 

2 1 2
[ , ]m m m=M 0 I  such that (2) .=θ Mθ  We also let (2) .=X MX  

Integrating out θ  from the model (2.11)-(2.12), we have 
2

2

(2) (2), , ~ ( , ),v mN Y β X β Δ  where 
1

(2) .−= +Δ D MΩ M
T  Subsequent marginalization of β  gives the marginal posterior density 2

(2)( , )vp   y  

as 

 
 1 1 1 11

(2) (2) (2) (2) (2) (2)22

(2) 1 21 2 1

(2) (2)

exp ( )
( , ) ( ).vp I l u  

− − − −

−

 − −
 

  
y Δ Δ X X Δ X X Δ y

y
Δ X Δ X

T T T

T
 (3.1) 

Furthermore, we have conditional posterior distributions of β  and θ  as 

 2 , , ~ ( , ),v pN β y γ Γ  (3.2) 

 
2, , , ~ ( , ),v mN θ β y μ Ψ  (3.3) 
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where 1 1

(2) (2)( ) ,− −
Γ X Δ X= T 1

(2) (2) ,
−=γ ΓX Δ y

T
* *= ( ),− −μ y ΨΩ y Xβ

1* (2)( , ) ,m=y 0 y
T T T  and 1 1

(2)

− −= +Ψ M D M
T  

.Ω  Accordingly, we can obtain a independent posterior sample via rejection sampling from (3.1) and 

subsequent samplings from (3.2) and (3.3). For the data with no non-sampled area, we have desired 

sampling procedures by setting m=M I  and * .=y y  

 
4. A simulation study 
 

In this section, we compare prediction performances of the independent FH model and the four spatial 

models in the absence of informative covariates with multiple non-sampled areas. Excluding Hawaii and 

Alaska, we consider contiguous 49m =  states of the U.S., including the District of Columbia. To evaluate 

the quality of prediction in the absence of direct estimates, we do not simulate direct estimates of 

randomly chosen 1 0.15 = 7m m=    states. These areas are Delaware, Massachusetts, Michigan, Nebraska, 

Rhode Island, South Dakota, and Texas. This results in 2 42m =  areas which have direct estimates. 

To make simulation settings realistic, we mimic the 1989 4-person family median income (median 

income) data described in Section 5. We generate replicated datasets so that Moran’s I values of each 

replicated small area means, 1, , ,m   are approximately centered around 0.44, the Moran’s I value of 

the 1990 Census median income. Direct estimates are generated with the sampling variances 
21, , mD D  

of the 1990 Current Population Survey (CPS) estimates. These sampling variances of sampled small areas 

range from 1.95 to 25.03 with the mean of 9.08, where dollar amounts are scaled by $1,000. For each 

setting, we consider 100S =  replicated datasets. 

 
Data generation: Let 

21

2 =1

m

ii
D m D−=   and 2

(2) =1diag{ } .m

i iD=D  We set  = 0.85 and 
2 2v D =  and 

consider two independent covariates 1x  and 2x  with SAR spatial dependence, i.e., 

 ( )1

1 2 3, ~ , ( ) .m mN 
−

x x 0 Ω  Then, letting 1 2( , ) (2,1)  =T T
 and 1 1 2 2 , = +μ x x  we generate small 

area means and direct estimates from the following independent FH model: 

 
2

2

(2) (2) (2) (2)~ ( , ), ~ ( , ),m v m mN Nθ μ I Y θ θ D   

where the components of (2)Y  and (2)θ  correspond to the 2m  sampled small areas as defined below 

equation (2.13). The covariate 1 2( )x x  introduces stronger (weaker) spatial pattern to the ’s,i  and 

accordingly, we call 1x 2( )x  as the strong (weak) covariate. Moran’s I values of 100 replicated small area 

means range from 0.115 to 0.713 with mean 0.449. 

We consider two different covariate settings to examine how the spatial models can capture extra 

variability introduced by the spatial dependence from a missing covariate, i.e., 2[ , ]m=X 1 x  and 

1[ , ],m=X 1 x  where m1  represents the m -component vector of ones. Excluding any of the covariates from 

the fitted model will leave the spatial variation of that covariate to the residual. We do not consider the full 

model involving both the covariates since that model will fully capture μ  and leave no spatial variability 
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unexplained; consequently, the independent FH model will be sufficient to capture the variability of the 

i.i.d. random effects. 
 

Posterior simulations: For all models proposed, independent posterior samples can be obtained by the 

rejection sampling scheme outlined in Section 3. The sampling procedure begins with the rejection 

sampling from the marginal posterior distribution of 
2( , )v   and continues with successive samplings of 

the rest of the parameters from the conditional posterior distributions. However, when the marginal 

posterior density of 
2( , )v   is concentrated at or around the boundaries of ,  a proposal distribution 

must be carefully specified to have a sufficiently high acceptance rate, which may require adaptive 

specification a proposal distribution for each replicated dataset. To avoid such difficulties, we use 

Hamiltonian Monte Carlo algorithm with the R package rstan (Stan Development Team, 2018). We fit 

the HB model (2.11)-(2.13) with each combination of covariates for 1, , 5.k =  For each model, we run 

four parallel Hamiltonian Monte Carlo chains (No-U-Turn Sampler) for 2,500 iterations after 5,000 burn-

in iterations. We keep every 10th iteration and concatenate the four chains to obtain a posterior sample of 

size 10,000. The R codes implementing the rejection sampling step described in Section 3 and the stan 

models are available at https://github.com/heech31/spatial_sae. 
 

Measures of performance: With the posterior sample under each model, we predict the true small area 

mean vector, 
( ) ( ) ( )

1( , , ) ,s s s

m =θ
T

 of the ths  replicated dataset using the posterior mean, which we denote 

by 
( ) ( ) ( )

1
ˆ ˆ ˆ( , , ) .s s s

m =θ
T

 Let A  be a subset of {1, , },m  which is determined by indices only of the 

sampled or non-sampled small areas. For a given subset ,A  we calculate the mean squared prediction 

error, 
( ) ( ) ( ) 2ˆMSPE ( ) ,s s s

i ii
m 


= − AA

 where m =A A  is the number of areas in .A  We then 

average ( )MSPE s  over S  replications to compute the average empirical mean squared prediction error 

(AeMSPE), where 

 ( ) ( ) ( ) 2

=1 =1

1 1 1 ˆAeMSPE MSPE ( ) .
S S

s s s

i i

s s iS S m
 



= = −  
AA

 (4.1) 

We also evaluate the uncertainty of the predictions using the average posterior standard deviation 

(APSD) defined as 1 1 ( )

=1
sd( ),

S s

is i
S m − −

 A A
 where 

( )sd( )s

i  is the posterior standard deviation of .i  

By setting the independent FH model as a reference model, we consider the following ratios: 

 
1 1

AeMSPE APSD
AeMSPE Ratio , APSD Ratio ,

AeMSPE APSD

k k
k k− = − =  (4.2) 

where the subscript k  indicates that the quantity is calculated from the posterior sample under the thk  

model. These ratios measure improvements in AeMSPE and APSD achieved by fitting a spatial model 

over the independent FH model. A ratio less than 1 indicates superiority of the spatial model, otherwise 

the independent FH model is better. The smaller the ratio is, the more superior a spatial model is. 
 

Model comparison: Various plots of Figure 4.1 summarize the ratios when the strong covariate 1x  is 

excluded from the fitted models. We categorize AeMSPE-Ratios and APSD-Ratios under each replication 
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into three groups based on the Moran’s I values of ’s,i  namely the lowest, middle, and biggest thirds, 

respectively. The first row summarizes the prediction results for the seven non-sampled areas. As 

expected, spatial models show remarkable improvement in AeMSPE and APSD, and the improvements 

are greater when Moran’s I values are larger. In terms of AeMSPE, the SAR and LCAR models produce 

at least 20%, 30%, and 50% more accurate predictions when Moran’s I values are in the first, second, and 

third groups, respectively. In terms of the uncertainty of prediction, predictions of the SAR and LCAR 

models have 10% smaller APSD for the first and second groups. In the third group, the SAR model shows 

more than 25% reduction in APSD. 

 
Figure 4.1 AeMSPE-Ratios and ASPDE-Ratios for predictions with the weak covariate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Vertical bars are drawn for the ratios, where a bar shorter than 1 represents better (smaller) AeMSPE or APSD for the corresponding model 
relative to the independent FH model. 

- SAR = Simultaneous autoregressive, SCAR = Simple conditional autoregressive, CAR = Conditional autoregressive, LCAR = Leroux’s conditional 
autoregressive, AeMSPE = Average empirical mean squared prediction error, APSD = Average posterior standard deviation. 

 
For the sampled areas with direct estimates, the improvements in AeMSPE are less than 10% for the 

first group but more than 15% and 25% for the second and third groups (grouped by Moran’s I values), 

respectively. Additionally, predictions from spatial models have a lower level of uncertainty, and for the 

third group, the SAR model predictions have more than 10% smaller ASPD. 

Similarly, various plots of Figure 4.2 summarize the ratios when the weak covariate 2x  is excluded 

from the fitted models. In general, the spatial models continue to produce better predictions over the 
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independent FH model. The LCAR model performs the best overall for the seven non-sampled areas, 

resulting in a reduction of over 10% in AeMSPE for the first and second groups, respectively, and around 

25% in AeMSPE for the third group. In terms of uncertainty, the spatial models show more than 5% but 

less than 10% smaller APSD. For the sampled small areas, the SAR and LCAR models show an AeMSPE 

reduction of around 5%-13%, but APSD reductions are less than 5%. Unlike the previous results with the 

weak covariate, the improvements in AeMSPE and APSD are comparable across three groups that are 

categorized by Moran’s I values. This is because the Moran’s I values of small area means are mostly 

determined by the strong covariate, and once the strong covariate is present in the model to explain the 

spatial variability, the spatial variability in the residuals do not vary markedly across the three groups. We 

regroup the ratios in terms of the Moran’s I values of the residuals obtained by regressing the strong 

covariate on the small area means, and summarize the ratios in Figure 4.3. Under this categorization, the 

LCAR model shows the best performance illustrating 5%, 10%, and 15% AeMSPE reductions for the 

first, second, and third groups, respectively. It can be also seen that the bigger the Moran’s I value is, the 

more improvement the spatial models achieve. 

 
Figure 4.2 AeMSPE-Ratios and ASPDE-Ratios predictions of non-sampled and sampled area means with the 

strong covariate.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- Vertical bars are drawn for the ratios, where a bar shorter than 1 represents better (smaller) AeMSPE or ASPDE for the corresponding model 
relative to the independent FH model. 

- SAR = Simultaneous autoregressive, SCAR = Simple conditional autoregressive, CAR = Conditional autoregressive, LCAR = Leroux’s conditional 
autoregressive, AeMSPE = Average empirical mean squared prediction error, APSD = Average posterior standard deviation. 
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Figure 4.3 AeMSPE-Ratios and ASPDE-Ratios for predictions of non-sampled and sampled area means with 

the strong covariate. Results are grouped by the Moran’s I values of the residuals, where the 

residuals are obtained by regressing the strong covariate on the small area means.  
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

- Vertical bars are drawn for the ratios, where a bar shorter than 1 represents better (smaller) AeMSPE or ASPDE for the corresponding model 
relative to the independent FH model. 

- SAR = Simultaneous autoregressive, SCAR = Simple conditional autoregressive, CAR = Conditional autoregressive, LCAR = Leroux’s conditional 
autoregressive, AeMSPE = Average empirical mean squared prediction error, APSD = Average posterior standard deviation. 

 
5. Application to the Current Population Survey data  
 

In this section, we evaluate the spatial models in terms of their prediction accuracy for some state-level 

population median incomes. The U.S. Department of Health and Human Service (HHS) annually needed 

accurate data for median incomes for states to implement a welfare program. While accurate national 

median income data are available from the Current Population Survey (CPS), the CPS data do not provide 

accurate state-level median income data. To supply accurate statistics to the HHS, the U.S. Census Bureau 

considered model-based small area estimation methods by utilizing auxiliary data from other federal 

programs. We apply proposed spatial models to estimate 1989 four-person family median incomes for the 

contiguous forty-nine U.S. states, including the District of Columbia. We use the direct estimates of 1990 

CPS and compare our predictions with the more reliable statistics from the long form from the 1990 

Census, i.e., we consider the statistics from the long form from the 1990 Census as the true values. 

Prediction performances are measured using all small areas and a subset of areas after leaving out multiple 

direct estimates. 
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5.1 Four-person family median income estimation 
 

Let i  be the true four-person family median income of the thi  state for the year 1989, where 

1, , 49.i =  The states of Alaska and Hawaii are excluded as they are not geographically connected to the 

mainland. Let iY  be the direct estimate of i  from the 1990 CPS. The covariates of interest are 1980 

Census median income 1ix  and an adjusted 1980 Census median income 2ix . The adjusted Census median 

income 2ix  is defined as ( ),1989 ,1979 1PCI PCI ,i i ix  1, , ,i m=  where ,1979PCIi  and ,1989PCIi  are the 1979 

and 1989 per capita incomes of the thi  state provided by the Bureau of Economic Analysis of the U.S. 

Department of Commerce. It has been known that the adjusted Census median income is a good covariate 

which very effectively accounts for the variability of the small area median income. 

With the noninformative prior (2.14) with 0, =  we fit all five models as described by (2.8)-(2.10) 

with 1 2[ , , ]m=X 1 x x  and 1[ , ],m=X 1 x  where for the second covariate setting, we exclude the adjusted 

Census median income from the fitted model. For each model considered, we run 4 parallel HMC chains 

for 2,500 iterations after 5,000 burn-in iterations using rstan (Stan Development Team, 2018). We 

retain every th10  iteration and concatenate the 4 chains to obtain a posterior sample of size 10,000. For all 

models and parameters, the potential scale reduction factors ˆ( ;R  Gelman and Rubin, 1992) are all one 

indicating no lack of convergence. The potential scale reduction factors are provided in Figure 5.1 and 

Table 5.1. 

Using the posterior means, ˆ ’s,i  we calculate the squared prediction errors from respective ’si  and 

obtain the mean squared prediction error (MSPE), defined in Section 4, by averaging the 49m =  squared 

deviations. The average posterior standard deviations (APSD) associated with ˆ ’si  are used to quantify 

the uncertainty of predictions, and the widely applicable information criterion (WAIC; Watanabe and 

Opper, 2010) is used to evaluate and compare the models, where a smaller WAIC value indicates a better 

model fit.  

 
Figure 5.1 The potential scale reduction factor R̂  of all parameters when no non-sampled area exists. 

 

 

 

 

 

 

 

 

 

- All values are practically one indicating no evidence of lack of convergence. 

- FH = Fay-Herriot, SAR = Simultaneous autoregressive, SCAR = Simple conditional autoregressive, CAR = Conditional autoregressive, 
LCAR = Leroux’s conditional autoregressive. 
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Table 5.1 

The potential scale reduction factor R̂  of the hyperparameter 2
v

 and   and corresponding 95% upper 

confidence limit for the dataset with no non-sampled area 
 

Hyperparameter Covariate 

included 

Potential scale reduction factor (upper 95% confidence limit) 

FH SAR SCAR CAR LCAR 
2

v  1 2,x x  0.995 (1.017) 0.987 (1.010) 0.995 (1.018) 0.985 (1.007) 1.008 (1.031) 

1x  0.993 (1.015) 0.991 (1.012) 0.999 (1.022) 0.987 (1.009) 0.987 (1.01) 

  
1 2,x x  – 1.005 (1.028) 0.997 (1.023) 0.998 (1.036) 0.994 (1.017) 

1x  – 1.005 (1.025) 0.997 (1.016) 0.998 (1.017) 1.019 (1.039) 

Note: All upper limits are within the acceptable range, below 1.1 (Gelman, Carlin, Stern, Dunson, Vehtari and Rubin, 2013, Chapter 11.5), 

indicating no evidence of lack of convergence. 

- FH = Fay-Herriot, SAR = Simultaneous autoregressive, SCAR = Simple conditional autoregressive, CAR = Conditional autoregressive, 

LCAR = Leroux’s conditional autoregressive. 

 
Table 5.2 summarizes various evaluation measures we considered and the respective percentage 

improvements (PI) of MSPE, APSD. When both covariates are available, the LCAR model has 

approximately 14% smaller MSPE and 4% smaller APSD than the independent FH model. In terms of 

MSPE, the second best performing model is the SAR having approximately 9.5% smaller MSPE. When 

only 1x  (week covariate) is included in the fitted model, the SAR model has approximately 40% smaller 

MSPE and 14% smaller APSD than the independent FH model. The CAR and LCAR models show 

competitive performances having approximately 36% smaller MSPE and 13% smaller APSD over the 

independent FH model. By removing the strong covariate 2x  from the full model, the MSPE of the SAR 

and LCAR models increase approximately 66% and 84%, respectively, whereas the MSPE of the 

independent FH model increases more than 150%. 

 
Table 5.2 

Mean squared prediction error, average posterior standard deviation, and respective percentage 

improvements (PI) of spatial models over the independent FH model 
 

Covariate 

Included 
1

x , 
2

x  
1

x  

MSPE MSPE-PI APSD APSD-PI WAIC MSPE MSPE-PI APSD APSD-PI WAIC 

FH 2.88 – 1.93 – 259.06 (7.13) 7.27 – 2.31 – 267.75 (8.44) 

SAR 2.61 9.55% 1.94 0.34% 261.46 (7.47) 4.34 40.22% 1.98 14.25% 265.76 (8.16) 

SCAR 3.03 -5.14% 1.95 -0.91% 259.37 (7.01) 5.62 22.62% 2.22 3.52% 263.41 (7.29) 

CAR 2.64 8.47% 1.91 1.24% 261.61 (7.86) 4.62 36.35% 2.01 12.97% 263.32 (7.96) 

LCAR 2.47 14.50% 1.85 4.19% 261.79 (8.01) 4.54 37.51% 1.97 14.36% 263.35 (8.08) 

- FH = Fay-Herriot, SAR = Simultaneous autoregressive, SCAR = Simple conditional autoregressive, CAR = Conditional autoregressive, 

LCAR = Leroux’s conditional autoregressive, MSPE = Mean squared prediction error, APSD = Average posterior standard deviations, 

WAIC = Widely applicable information criterion. 

 
In terms of the goodness of fit, the independent FH model shows the best fit (the smallest WAIC) 

when both covariates are included. Conversely, when only 1x  (week covariate) is included in the fitted 
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model, the independent FH model shows the worst fit having the largest WAIC value. However, 

considering the standard errors given in parentheses, there is no significant difference in the model fit.  

Table 5.3 summarizes the posterior distributions of   in terms of the posterior mean, mode, and 

standard deviation. When all covariates are included in the fitted model, the posterior distributions of   

indicate no strong spatial dependency having posterior means centered around zero with large standard 

deviations. In contrast, when only 1x  (week covariate) is included in the fitted model,   becomes very 

significant illustrating the posterior distributions concentrated near the upper limit of its support. 

In summary, when the weak covariate does not adequately explain existing spatial variation, the spatial 

models produce significantly better predictions accounting for the spatial variation. When no substantial 

spatial variation remains in the residual, they make marginally better predictions than the independent FH 

model without sacrificing model fit. 

 
Table 5.3 

Posterior mean/mode (standard deviation) of   
 

Covariate included SAR SCAR CAR LCAR 

1 2,x x  0.10/0.40 (0.48) -0.06/0.04 (0.14) 0.21/0.83 (0.55) 0.57/0.80 (0.27) 

1x  0.76/0.80 (0.14) 0.14/0.17 (0.04) 0.93/0.99 (0.09) 0.85/0.97 (0.13) 

Note: The first and second rows of the table respectively summarizes posterior distributions of   when both covariates and only 1x  are included 

in the fitted model. 

- SAR = Simultaneous autoregressive, SCAR = Simple conditional autoregressive, CAR = Conditional autoregressive, LCAR = Leroux’s 

conditional autoregressive. 

 
5.2 Estimation of some non-sampled state means excluding their CPS values 
 

In this section, we evaluate the spatial models in terms of their prediction accuracy for non-sampled 

small areas using the 1980 Census median income 1.x  Specifically, we randomly exclude CPS estimates 

(direct estimates) of multiple states at each instance and make predictions for ’si  of the excluded states. 

As there are 49 small areas (states), we created 12 datasets that lack direct estimates for 1 4m =  or 5 areas, 

where 1m  is the number of non-sampled small areas as in Section 2.2. Excluded states for each dataset are 

listed in Table 5.4. 

For each dataset, we fit the independent FH model and four spatial models as specified in (2.11)-(2.13) 

with the noninformative prior (2.13) with 0 =  running HMC chains under the same setting as in 

Section 5.1. The R̂  values show no evidence of lack of convergence, where detailed values are provided 

in Figure 5.2 and Table 5.5. For each non-sampled area, the squared prediction error 
2ˆSPE ( )i i i = −  and 

posterior standard deviation sd ( )i  are obtained for each model. Based on these, the prediction 

performance is compared with the following ratio: for 1, ,i m=  and 2, , 5,k =  
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1 1

SPE sd ( )
SPE Ratio = , PSD Ratio =

SPE sd ( )

ki k i
ki ki

i i




− −  (5.1) 

where sd ( )k i  is the posterior standard deviation of i  under the thk  model. A value of 

SPE Ratio (PSD Ratio )ki ki− −  less than one indicates that the thk  spatial model has a smaller squared 

prediction error (posterior standard deviation) than the independent FH model. In Figures 5.3 and 5.4, we 

display the ratios using a red and blue color scheme to denote ratios greater than and less than one, 

respectively, where a darker color represents a more extreme value. 

Overall, SAR, SCAR, CAR, and LCAR models exhibit smaller SPEs in 35, 41, 36, and 36 states, 

respectively. The SCAR model has the greatest number of states in which its predictions perform better 

than those of the independent FH model, but the overall improvements are the least. In more than 35 

states, the SAR, CAR, and LCAR models produce more accurate predictions than the independent FH 

model, and in three states (New Mexico, Oregon, and Wisconsin), their SPEs are more than 100 times 

smaller. For California, Minnesota, and South Carolina, all spatial models make worse predictions than 

the independent FH model. California and Minnesota have much higher median incomes than surrounding 

states, whilst South Carolina has a significantly lower median income. Among the 49 states, these three 

states have the second, seventh, and nineteenth smallest local Moran’s I values. This illustrates that if the 

small area mean of an non-sampled area is significantly different from the means of surrounding areas, 

then the spatial models may produce inferior predictions. The model that demonstrates the best fit in terms 

of WAIC is either the SCAR, CAR, or LCAR model, where the exact numbers are provided in Table 5.4. 

 
Table 5.4 

States whose CPS estimates are excluded for each dataset and corresponding widely applicable information 

criterion (WAIC) 
 

Excluded states FH SAR SCAR CAR LCAR 

AZ MS OK SD 246.15 (7.79) 244.37 (7.50) 241.71 (6.67) 242.46 (7.50) 242.21 (7.57) 

AR CO DE TN 245.79 (7.83) 241.23 (7.69) 241.05 (6.70) 239.70 (7.61) 239.85 (7.69) 

MD MI NV WV 246.06 (7.83) 242.23 (7.58) 241.34 (6.78) 240.13 (7.32) 240.02 (7.43) 

MT NC NE NY 248.91 (8.10) 245.97 (9.51) 243.85 (6.87) 242.88 (8.34) 242.40 (8.36) 

DC GA ID ND 245.07 (7.91) 241.02 (6.61) 240.09 (6.44) 239.16 (6.75) 239.48 (6.75) 

AL MO VT WY 245.57 (8.31) 245.13 (7.67) 242.74 (7.38) 242.89 (7.65) 243.36 (7.66) 

FL LA UT WA 247.38 (7.39) 245.64 (7.29) 243.08 (6.44) 243.25 (7.20) 243.48 (7.33) 

MA MN SC TX 248.32 (9.73) 242.43 (8.95) 244.75 (8.83) 240.99 (8.69) 240.34 (8.56) 

KY RI VA WI 243.86 (8.09) 241.74 (7.06) 240.05 (6.76) 239.04 (6.91) 238.87 (6.90) 

IL IN NH PA 244.69 (7.10) 245.12 (7.41) 243.31 (6.59) 244.45 (7.60) 244.39 (7.68) 

CA ME NJ OH 248.62 (8.54) 244.06 (8.26) 245.28 (7.68) 242.00 (7.78) 242.01 (7.90) 

CT IA KS NM OR 239.86 (7.95) 239.81 (7.76) 237.28 (7.29) 237.78 (7.75) 237.75 (7.60) 

Note: The numbers in parentheses are the standard errors of WAIC estimates. 

- FH = Fay-Herriot, SAR = Simultaneous autoregressive, SCAR = Simple conditional autoregressive, CAR = Conditional autoregressive, 

LCAR = Leroux’s conditional autoregressive. 

- AL = Alabama, AZ = Arizona, AR = Arkansas, CA = California, CO = Colorado, CT = Connecticut, DE = Delaware, DC = District of 

Columbia, FL = Florida, GA = Georgia, ID = Idaho, IL = Illinois, IN = Indiana, IA = Iowa, KS = Kansas, KY = Kentucky, LA = Louisiana, 

ME = Maine, MD = Maryland, MA = Massachusetts, MI = Michigan, MN = Minnesota, MS = Mississippi, MO = Missouri, MT = Montana, 

NE = Nebraska, NV = Nevada, NH = New Hampshire, NJ = New Jersey, NM = New Mexico, NY = New York, NC = North Carolina, ND = 

North Dakota, OH = Ohio, OK = Oklahoma, OR = Oregon, PA = Pennsylvania, RI = Rhode Island, SC = South Carolina, SD = South Dakota, 

TN = Tennessee, TX = Texas, UT = Utah, VT = Vermont, VA = Virginia, WA = Washington, WV = West Virginia, WI = Wisconsin, WY = 

Wyoming. 
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Table 5.5 

The potential scale reduction factor R̂  of the hyperparameter 2
v

 and   and corresponding 95% upper 

confidence limit for the 12 datasets with non-sampled areas 
 

 Excluded states FH SAR SCAR CAR LCAR 

Potential scale 

reduction factor 

(upper 95% 

confidence limit)  

of 2

v  

AZ MS OK SD  0.991 (1.013) 1.012 (1.036) 0.995 (1.017) 1.005 (1.028) 1.005 (1.030) 

AR CO DE TN  0.997 (1.019) 1.010 (1.034) 0.999 (1.023) 0.985 (1.008) 0.984 (1.007) 

MD MI NV WV  0.992 (1.015) 1.007 (1.030) 1.023 (1.047) 1.001 (1.025) 1.011 (1.035) 

MT NC NE NY  0.990 (1.012) 0.984 (1.009) 0.997 (1.020) 0.999 (1.024) 0.983 (1.006) 

DC GA ID ND  1.002 (1.024) 1.007 (1.032) 1.001 (1.024) 1.011 (1.036) 0.997 (1.020) 

AL MO VT WY  0.997 (1.019) 1.006 (1.030) 0.998 (1.021) 1.002 (1.026) 1.019 (1.045) 

FL LA UT WA  1.014 (1.037) 1.005 (1.027) 1.002 (1.025) 0.999 (1.023) 1.019 (1.043) 

MA MN SC TX  1.008 (1.031) 1.001 (1.025) 1.003 (1.025) 0.994 (1.019) 1.007 (1.032) 

KY RI VA WI  1.011 (1.034) 1.005 (1.029) 1.009 (1.033) 0.989 (1.011) 1.011 (1.035) 

IL IN NH PA  0.992 (1.013) 1.018 (1.041) 0.992 (1.013) 0.989 (1.014) 0.989 (1.012) 

CA ME NJ OH  1.002 (1.025) 1.009 (1.033) 1.001 (1.024) 1.011 (1.035) 1.003 (1.026) 

CT IA KS NM OR  0.997 (1.018) 1.008 (1.032) 1.007 (1.030) 1.009 (1.034) 1.012 (1.041) 

Potential scale 

reduction factor 

(upper 95% 

confidence limit)  

of   

AZ MS OK SD  – 1.005 (1.026) 1.001 (1.029) 1.004 (1.040) 0.995 (1.018) 

AR CO DE TN  – 1.019 (1.042) 0.993 (1.018) 1.000 (1.034) 1.005 (1.028) 

MD MI NV WV  – 1.005 (1.027) 0.992 (1.017) 0.988 (1.021) 1.002 (1.026) 

MT NC NE NY  – 1.001 (1.024) 0.999 (1.030) 0.986 (1.023) 0.998 (1.023) 

DC GA ID ND  – 0.999 (1.020) 0.995 (1.024) 0.991 (1.026) 1.000 (1.024) 

AL MO VT WY  – 1.003 (1.026) 1.011 (1.037) 0.989 (1.025) 1.008 (1.031) 

FL LA UT WA  – 1.004 (1.025) 0.996 (1.026) 1.000 (1.033) 1.005 (1.029) 

MA MN SC TX  – 1.002 (1.041) 1.014 (1.045) 0.984 (1.018) 0.996 (1.02) 

KY RI VA WI  – 1.010 (1.032) 0.990 (1.016) 0.993 (1.031) 0.986 (1.009) 

IL IN NH PA  – 1.030 (1.055) 0.993 (1.016) 0.994 (1.029) 1.003 (1.025) 

CA ME NJ OH  – 1.003 (1.026) 0.997 (1.026) 0.996 (1.032) 0.989 (1.012) 

CT IA KS NM OR  – 1.017 (1.040) 0.997 (1.022) 1.009 (1.044) 0.981 (1.003) 
Note: All upper limits are within the acceptable range, below 1.1 (Gelman et al., 2013, Chapter 11.5), indicating no evidence of lack of 

convergence. 

- FH = Fay-Herriot, SAR = Simultaneous autoregressive, SCAR = Simple conditional autoregressive, CAR = Conditional autoregressive, 

LCAR = Leroux’s conditional autoregressive. 
- AL = Alabama, AZ = Arizona, AR = Arkansas, CA = California, CO = Colorado, CT = Connecticut, DE = Delaware, DC = District of 

Columbia, FL = Florida, GA = Georgia, ID = Idaho, IL = Illinois, IN = Indiana, IA = Iowa, KS = Kansas, KY = Kentucky, LA = Louisiana, 

ME = Maine, MD = Maryland, MA = Massachusetts, MI = Michigan, MN = Minnesota, MS = Mississippi, MO = Missouri, MT = Montana, 
NE = Nebraska, NV = Nevada, NH = New Hampshire, NJ = New Jersey, NM = New Mexico, NY = New York, NC = North Carolina, ND = 

North Dakota, OH = Ohio, OK = Oklahoma, OR = Oregon, PA = Pennsylvania, RI = Rhode Island, SC = South Carolina, SD = South Dakota, 

TN = Tennessee, TX = Texas, UT = Utah, VT = Vermont, VA = Virginia, WA = Washington, WV = West Virginia, WI = Wisconsin, WY = 

Wyoming. 

 

Figure 5.2 The potential scale reduction factor R̂  of all parameters, where R̂  values of the 12 datasets are 

all combined. 

 

 

 

 

 

 

 

 

 

- All values are practically one indicating no evidence of lack of convergence. 

- FH = Fay-Herriot, SAR = Simultaneous autoregressive, SCAR = Simple conditional autoregressive, CAR = Conditional autoregressive, 
LCAR = Leroux’s conditional autoregressive. 
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Figure 5.3 SPE-Ratios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- The values smaller (larger) than one are represented in blue (red) color and indicate a spatial model has a smaller (larger) squared deviation. 

- SAR = Simultaneous autoregressive, SCAR = Simple conditional autoregressive, CAR = Conditional autoregressive, LCAR = Leroux’s conditional 
autoregressive. 

 

Figure 5.4 PSD-Ratios. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- The values smaller (larger) than one are represented in blue (red) color and indicate a spatial model has a smaller (larger) posterior standard 
deviation. 

- SAR = Simultaneous autoregressive, SCAR = Simple conditional autoregressive, CAR = Conditional autoregressive, LCAR = Leroux’s conditional 
autoregressive. 

 

            SAR                                                                                                     SCAR 

(0, 0.01] 

(0.01, 0.1] 

(0.1, 0.2] 

(0.2, 0.5] 

(0.5, 1] 

(1, 2] 

(2, 10] 

(10, 60] 

(0, 0.01] 

(0.01, 0.1] 

(0.1, 0.2] 

(0.2, 0.5] 

(0.5, 1] 

(1, 2] 

(2, 10] 

(10, 60] 

            CAR                                                                                                     LCAR 

(0, 0.01] 

(0.01, 0.1] 

(0.1, 0.2] 

(0.2, 0.5] 

(0.5, 1] 

(1, 2] 

(2, 10] 

(10, 60] 

(0, 0.01] 

(0.01, 0.1] 

(0.1, 0.2] 

(0.2, 0.5] 

(0.5, 1] 

(1, 2] 

(2, 10] 

(10, 60] 

 

            SAR                                                                                                     SCAR 

(0.33, 0.5] 

(0.5, 1] 

(1, 1.25] 

(1.25, 1.5] 

(1.5, 2] 

(0.33, 0.5] 

(0.5, 1] 

(1, 1.25] 

(1.25, 1.5] 

(1.5, 2] 

            CAR                                                                                                     LCAR 

(0.33, 0.5] 

(0.5, 1] 

(1, 1.25] 

(1.25, 1.5] 

(1.5, 2] 

(0.33, 0.5] 

(0.5, 1] 

(1, 1.25] 

(1.25, 1.5] 

(1.5, 2] 



482 Chung and Datta: Bayesian spatial models for estimating means of sampled and non-sampled small areas 
 

 
Statistics Canada, Catalogue No. 12-001-X 

 

6. Conclusions 
 

In this paper, we followed a Bayesian approach to investigate four spatial random-effects models as 

alternatives to the independent Fay-Herriot model to estimate small area means. In particular, we 

considered four spatial models with different autocorrelation structures. We further extended the spatial 

models to allow multiple small areas without any direct estimates in predicting small area means for all 

the areas. For a class of noninformative priors, we established the propriety of posterior densities of the 

proposed models for both setups. 

A simulation study in Section 4 illustrates that prediction accuracy can be greatly improved by 

considering spatial models when effective covariates are unavailable. Datta, Hall and Mandal (2011) noted 

that the prediction accuracy of small area estimation models largely depends on the availability of good 

covariates. In other words, when suitable covariates are unavailable, the independent Fay-Herriot model 

may not provide a significant advantage over direct estimates. The simulation results indicated that, in 

such cases, the spatial models considerably increase the prediction accuracy by exploiting information 

from adjacent areas. 

We applied the proposed spatial random-effects models to estimate four-person family median 

incomes. Even when a good covariate exists, the spatial models exhibited noticeable improvements in 

terms of mean squared deviation and average posterior standard deviations. When a good covariate is 

unavailable, spatial models provided significantly more accurate median income predictions with much 

smaller variability, which agrees with the simulation results. Furthermore, the SAR and LCAR models 

provide more precise small area estimates when direct estimates of some states are excluded in model 

fitting. 

In summary, the spatial models considered in this paper outperform the independent Fay-Herriot 

model. A significant improvement can be expected when effective covariates are unavailable. Since useful 

covariates are not always available, the utility of the proposed models in small area estimation can be 

substantial. Our simulation study and real data analysis demonstrate no clear winner among the proposed 

models. Nonetheless, the SAR and LCAR models show better performance compared with other spatial 

models. Also, the LCAR model performs robustly well with simulated data from the SAR model and real 

data with unknown spatial dependence. Thus, in the context of real applications where true dependency is 

unknown, we recommend the LCAR model. 

 This work assumes that all areas have at least one neighborhood. In real applications, however, there 

are many situations that data contain small areas with no neighborhood (stand-alone areas). Although the 

proposed models can accommodate stand-alone areas by adjusting the diagonal entries of the precision 

matrices as in Brown, Datta and Lazar (2017), we find that this approach results in a counterintuitive 

prior, where stand-alone areas have smaller prior random effect variances than areas with neighborhoods. 

Also, we find that this prior can considerably deteriorate predictions of stand-alone areas. This is a 

practically important problem as many countries have islands, and this will possibly be our future research 

to pursue.  
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Appendix 
 

A. Proof of the propriety of the posterior pdf 
 

Proof of Theorem 1. For convenience of notation, we denote ( )k Ω  by ,kΩ  and, for a given square 

matrix ,A  the determinant of A  is denoted by .A  We use K  to denote a generic positive constant, not 

depending on the variables we are integrating out. 

Let 1 0m   be the number of small areas with no direct estimates and let 2 1.m m m= −  Also, let (2)Y  be 

the 2 1m   vector with direct estimates of the sampled small areas. Without loss of generality, we assume 

that 1, , m   are arranged so that (1) (2)( , ) .=θ θ θ
T T T  Let 

1(2) = 1{ }m

i i mD +=D  be the diagonal matrix with 

sampling variances corresponding to the components of (2)Y  and 
1

.maxm i m iD  =   

The joint pdf of 2

(2) , , , vY θ β  and   is given by 

 
2

2 2 1 2

(2) (2) (2) (2)( , , , , ) ( , ) ( , ) ( ) ( ),v m m v vf N N g h    −=y θ β y θ D θ Xβ Ω  (A.1) 

where 
2 (2) (2) (2)( , )mN y θ D  is the normal pdf with mean (2)θ  and covariance matrix (2) .D  The posterior pdf 

2

(2)( , , , )v  θ β y  will be proper if and only if the function 2

(2)( , , , , )vf  y θ β  is integrable with respect 

to 
2, , vθ β  and .  Since 

 
2 (2) (2) (2) (2) (2) (2) (2)

1
( , ) exp ( ) ( ) ,

2
mN K



 
 − − − 

 
y θ D y θ y θ

T   

we have from (A.1) 

 

2 2 1 2

(2) (2) (2) (2) (2)

2 1 2

(1)

1
( , , , , ) exp ( ) ( ) ( , ) ( ) ( )
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1
exp ( ) ( ) ( , ) ( ) ( ),

2

v m v v

m v v

f K N g h

K d N g h

    

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

−

−

 
 − − − 

 

 
= − − − 

 


y θ β y θ y θ θ Xβ Ω

y θ y θ y θ Xβ Ω

T

T

 

(A.2)

 

where (1) (2)( , ) .=y y y
T T T  By integrating both sides of (A.2) with respect to ,θ  we get 

 2 2 2 1

(2) (1)( , , , , ) ( ) ( ) ( , ) .v v m m vf d Kg h N d      − + y θ β θ y Xβ I Ω y  (A.3) 

Partition X  as 1 2[ , ] ,=X X X
T

 where 1X
T

 is 1m p  and 2X
T

 is 2 .m p  We assume that rank 2( ) .p=X  Let 

1 (2)( , ) ,m=d 0 y
T T T  (1)( , )= y β T T T  and 
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 1

2 1

1

, 2

.
m

m m

 −
=  
  

I X
G

0 X

T

T
  

Then, we can write 

 ,− = −y Xβ d G   

where G  is 1( ),m m p +    is 1( ) 1.m p+   Hence, (A.3) can be written as 

 2 2 2 1

(2) (1)( , , , , ) ( ) ( ) ( , ) .v v m m vf d Kg h N d d      − + y θ β θ G I Ω y  (A.4) 

By integrating both sides of (A.4) with respect to ,β  we get 

 2 2 2 1

(2)( , , , , ) ( ) ( ) ( , ) .v v m m vf d d Kg h N d      − + y θ β θ β d G I Ω   (A.5) 

Since rank 2( ) ,p=X  we immediately get that rank 1( ) .m p= +G  Thus G  has full column rank. We 

denote 1m p+  by .q  For 2, , 5,k =  we now derive upper bounds for 

 
1/2

2 1 2 1 11
exp ( ) ( ) ( )

2
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 


T   

which will be integrable with respect to 
2

v  and   as follows. 

 

A.1 Details for the SCAR Model 
 

We first consider the CAR model where 2.k =  Let WP  be an orthogonal matrix such that 

=1diag{ }m

i i= =W WP WP T  Then 
1 1

2 ( ) { } , − −= −W WΩ P I P T
 and hence, 
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where * = Wd P d
T

 and * .= WG P G
T

 Suppose the rows of *G  corresponding to distinct q  indices 

1{ , , } {1, , }qi i m  are linearly independent. We denote these rows by * ,
ki

g
T  1, , .k q=  Let A  be the 

q q  non-singular matrix * *
1

[ , , ]
qi i

g g
T  and 1( , , )q = =η AT  Note that 

 
*

2

2 1 1

2 2 1
=1

( )
( ) ( ) ( )  .

(1 )
d G I Ω d G 

kk

k

q
ii

m v

k v i

d 
 

   

− −

−

−
− + − 

+ −
T   

From this, we get that 
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where 0K   is a finite generic constant. Also, we know that 

  
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By (A.6) and (A.7), we get 
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for any positive number .N  Recall that 
1 1

1< .m  − −  We know 1 i −  is an eigenvalue of 2 .Ω  Thus, 

for 
1 1

1 ,m  − −   for 1, , ,i m=  1 0.i−   Also, 
=1

(1 ) .
m

ii
m− =  These imply that 0 1 .i m −   

Then from (A.8), we get 
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From (A.5) and (A.9), it follows under the conditions of the theorem that the desired integral 
2 2

(2)( , , , , )y θ β θ βv vf d d d d     is finite. 

 

A.2 Details for the SAR Model 
 

We now consider 3k =  for the SAR model. With 
1 2 1 2

* ,− −=W L WL  we have 
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w =  and 

1 1.−    

Note that the eigenvalues 1, , m   of *W  are all real (since *W  is symmetric). Also, *W  and W  

have identical eigenvalues. Being a stochastic matrix, W  has at least one eigenvalue which is one and the 

remaining eigenvalues are bounded above by 1, that is 1i   and 1.max i i =  As 1 1−    and 

1 0,i−   2

3 =1
= (1 ) 0.

m

ii
− Ω  Thus, the eigenvalues of 3Ω  are positive and bounded above by 

2 .m  Let (1) min il l=  and ( ) max ,m il l=  where =1diag{ } .m

i il=L  Then (1) 0l   and ( )ml  is bounded above. By 

writing 
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we have 
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Letting 
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WP  be the matrix of eigenvectors of *W  such that * =1 *
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where 
1 2 ,=r L d  

1 2 ,=S L G  
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T  a submatrix of ,S  is non-singular. Note that 1S  is determined by .W  

Using (A.11) we get 
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Based on (A.10) and (A.12), we get that 
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where we use the fact that 1 1−    and 1 1i−    to claim 0 1 2.i −   From (A.5) and (A.13), it 

follows by proceeding along the lines we did for the CAR model that the desired integral 
2 2

(2)( , , , , )y θ β θ βv vf d d d d     is finite under the conditions of the theorem. 

 

A.3 Details for the CAR Model 
 

We now consider 4k =  for the IAR model where 

 
1 2 1 2

4 *( ) .m = − = −Ω L W L I W L   

Let  2 1 1 2 2 1 1 2

4 4 *( ) .m v v m    − − − −= + = + −Σ I Ω L L I W L  Then 
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where * (1)min{ ,1}.mk l=  Proceeding along the same line as in (A.11), we get that 
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Again, as we had for the two previous cases, we can use (A.14) and (A.15) to establish that the desired 

integral is finite under the conditions stated in the theorem. 

 

A.4 Details for the LCAR Model 
 

Finally, we consider 5,k =  where for the LCAR case we have 

 5 (1 ) .m = + −Ω R I   

Suppose 1, , mr r  are the eigenvalues of R  and RP  is an orthogonal matrix such that 

1diag{ } .m

i ir ==R RP RP
T  Since R  is a non-negative definite matrix, 0,ir   1, , ,i m=  and 

=1 =1
tr ,

m m

i ii i
r l= = R  implying that 1, , mr r  are all bounded between 0 and 

=1
.

m

ii
l l=  Then we can 

write 

  5 =1diag{ 1 } ,R RΩ P P
m

i ir = + − T   

and claim that for 0 1,   the eigenvalues of 5Ω  are all positive and bounded above by 

1
1 1.

m

ii
r l

=
+ = +  Then, with ,= Rr P d

T
 and ,= RS P G

T
 we can establish an inequality similar to (A.11). 

Note that the nonsingular matrix 1S  is a submatrix of S  and is free from .  Boundedness of the 

eigenvalues of 5Ω  will lead to an inequality similar to (A.14). Finally, we get the desired integral is finite 

under the conditions of the theorem. 
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