

# 2017/18 Annual Report

National Chemical Residue Monitoring Program and Chemistry Food Safety Oversight Program





# Table of Contents

| Summary     |                                                                  | 3 |
|-------------|------------------------------------------------------------------|---|
| What is the | National Chemical Residue Monitoring Program?                    | 4 |
| What is the | Food Safety Oversight Program?                                   | 4 |
| Why does t  | he CFIA conduct the annual NCRMP and FSO Programs?               | 4 |
| Why are the | ere chemical residues in food?                                   | 5 |
| What cause  | s chemical contamination of food?                                | 5 |
| What are th | ne Canadian limits for residues and contaminants in food?        | 6 |
| Maximur     | n Residue Limits (MRLs) for Pesticides                           | 6 |
| Maximur     | n Residue Limits (MRLs) for Veterinary Drugs                     | 6 |
| Regulato    | ry Maximum Levels (MLs) for Contaminants                         | 6 |
| What was s  | ampled?                                                          | 7 |
| How were f  | oods chosen for testing?                                         | 8 |
| Where did t | the NCRMP sampling occur?                                        | 8 |
| Where did t | the FSO Program sampling occur?                                  | 9 |
| How did the | e CFIA test the food samples?                                    |   |
| What tests  | were performed?                                                  |   |
| How were t  | he results assessed?                                             |   |
| What enfor  | cement/follow-up actions were taken?                             |   |
| What did th | e CFIA find?                                                     |   |
| Lower co    | mpliance in domestic eggs                                        |   |
|             | mpliance in imported dairy products                              |   |
| Higher nu   | umbers of non-compliant samples in domestic meat                 |   |
|             | mpliance in imported fresh fruit and vegetables (NCRMP)          |   |
| Similar lo  | wer compliance observed in the FSO Program Imported FFVs samples |   |
| What do th  | e NCRMP and FSO Program results mean?                            |   |
| References  |                                                                  |   |
| Annex A     | Analytical methods                                               |   |
| Annex B     | Results Summary                                                  |   |



## **Summary**

The Canadian Food Inspection Agency (CFIA) is dedicated to safeguarding food, animals and plants, which enhances the health and well-being of Canada's people, environment and economy. The National Chemical Residue Monitoring Program (NCRMP) is an annual CFIA regulatory surveillance program which verifies compliance in foods to Canadian standards and guidelines for chemical residues and contaminants. The data collected from the NCRMP along with other surveillance activities enables the CFIA to identify trends that may warrant additional control strategies to maintain or improve compliance.

The NCRMP is one of several valuable surveillance tools that the CFIA uses to help ensure the very high compliance of foods to Canadian standards year after year. The NCRMP is carried out in accordance with Codex Alimentarius principles and guidelines and is an important part of the CFIA food safety framework that monitors Canadian food for potential chemical hazards. This program provides data to support the Canadian food production system and the integrity of Canada's chemical residue control system. These systems are equivalent to those of our main trading partners like the United States and the European Union.

In 2014 an initiative known as the Food Safety Oversight (FSO) Program was introduced to complement the NCRMP and to increase CFIA's oversight in the non-meat food sectors. In 2016 the CFIA increased sampling and testing of certain fresh fruit and vegetables that were not typically monitored within the program. The increased level of sampling and testing was continued in 2017. Some of these additional FSO program samples were collected at federally registered establishments or importers by inspectors in the same manner as the NCRMP samples. The majority of the FSO samples, however, were collected at retail locations by third party samplers under contract to the CFIA. Sampling of foods at both federally registered establishments and at retail locations offers additional information on the levels of residues and contaminants present in foods in the Canadian market place.

The CFIA communicates non-compliant results from surveillance activities like the NCRMP and the FSO Program to farmers, growers/producers, importers, and retailers to identify areas of concern and to promote the safe use of agricultural chemicals and practices. This ongoing effort ensures that safe and healthy food is continuously available to Canadians.

This report summarizes testing results from both the NCRMP and the fresh fruit and vegetable portion of the FSO Program in food samples collected between April 1, 2017 and March 31, 2018 (hereafter referred to as 2017/18). Nearly 120,000 tests for residues of veterinary drugs, pesticides, metals, and contaminants were performed on approximately 16,000 NCRMP and FSO monitoring samples and generated millions of results, which are summarized in Annex B of this report. Test results from samples taken as part of the NCRMP and FSO Program showed that the overwhelming majority of food on the market meets Canadian standards for chemical residues. The overall compliance rate was determined to be 96.6% which is consistent with past years.



## What is the National Chemical Residue Monitoring Program?

Since 1978 a national program to monitor foods for chemical residues, now known as the National Chemical Residue Monitoring Program (NCRMP), has been in place to ensure that strategies for reducing health risks as they relate to chemical residue and contaminant exposure in food are implemented proactively.

While the CFIA verifies food safety in different ways, the NCRMP is central to maintaining the safety of the food supply with respect to chemical residues and contaminants. The NCRMP is a valuable surveillance tool built on Codex Alimentarius principles<sup>1,2</sup> that allows the CFIA to monitor food products in the Canadian marketplace. The data collected is used to assess health risks by identifying all non-compliances which helps the CFIA refine any follow up activity like directed or compliance sampling, or additional testing, and inspection activities. This allows the CFIA to take proactive measures to improve food safety and helps industry comply with Canadian food safety requirements and standards.

## What is the Food Safety Oversight Program?

In 2014, the Government of Canada introduced an initiative known as the Food Safety Oversight (FSO) Program to complement existing surveillance programs like the NCRMP by providing additional sampling and testing of commodities to specifically increase oversight on fresh fruit and vegetables, fish and seafood and manufactured products. Since fish and seafood and manufactured food products are currently outside the scope of the NCRMP, these results will be highlighted in different reports by the CFIA.

## Why does the CFIA conduct the annual NCRMP and FSO Programs?

The CFIA is responsible for monitoring the safety of inter-provincially traded and imported food products, as well as domestically produced food destined for the Canadian market and export. Imported products must meet the same Canadian regulatory requirements as domestic products. The NCRMP and FSO Programs provide analytical test results on chemical residues and contaminants in foods to ensure that national standards and guidelines are respected by industry. Results are evaluated by the CFIA and any potential health risks from chemical residues present in foods are assessed by Health Canada. The CFIA determines appropriate follow up actions for all chemical residue results exceeding Canadian standards and guidelines. These combined efforts are able to demonstrate that foods consumed by Canadians meet Canadian standards. In addition, the NCRMP provides data that supports the international recognition of a safe and healthy Canadian food supply and market access.



# Why are there chemical residues in food?

Pesticides and other agricultural chemicals are used in conventional agricultural production systems. These chemicals help protect crops from damage by pests, increase yields and expand the geographical location in which crops can be grown. Pesticides must be applied according to label instructions and good agricultural practices, and the resulting residues in food must not exceed established Canadian limits. Food-producing animals may also be exposed to pesticides and other agricultural chemicals. For example, pesticide residues may be present in livestock feed and water, insecticides may be applied directly to animals for the control of ticks or flies, and fumigants may be used to control pests in stored grains and animal houses. While pesticides help protect our food supply, small amounts of pesticide residues may remain in or on our food after they are applied. Establishing science-based maximum residue limits (MRLs) helps ensure that pesticides are being used properly by growers, and provides Canadians with access to a safe food supply<sup>3</sup>.

Food-producing animals may be treated with veterinary drugs. Some drugs are administered to individual animals to treat specific disease conditions, while other drugs are administered to groups of animals, usually through medicated feed or water, for the prevention or treatment of disease or for the purpose of growth promotion. Responsible use of veterinary drugs according to a veterinarian's prescription or label directions should not result in residues that exceed established Canadian limits. In addition, judicious use of antibiotics in food producing animals is an important control step in preventing anti-microbial resistance.

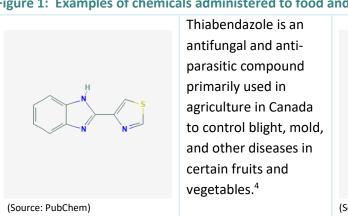
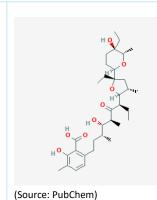
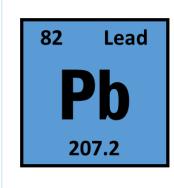



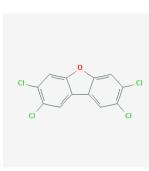

Figure 1: Examples of chemicals administered to food and/or food producing animals



Lasalocid is an antibacterial agent given to food producing animals (chicken, turkey, cattle, calves and lamb). It is used as an aid to prevent coccidiosis and improve feed efficiency and weight gain.<sup>5</sup>


## What causes chemical contamination of food?

Chemical contamination of food products may result from direct or indirect use of or exposure to, contaminated soil, water, or air. Contaminants can include natural toxins, industrial pollutants, and metals arising from food storage conditions, food processing or from contact with food packaging materials. These chemicals generally occur in foods at very low levels, but regardless should be monitored to ensure they do not exceed levels deemed safe for human health.


Toxic metals and trace elements (for example lead and arsenic) can occur in food naturally, or may result from the use of pesticides or other agricultural chemicals, from environmental contamination, or from processing.



### Figure 2: Examples of chemical contaminants found in food and/or food producing animals



While lead is naturally present in rock and soil, extensive use in activities such as mining, smelting and refining metals has resulted in its widespread presence in the environment, including in food and drinking water.



(Source: PubChem)

Polychlorinated dibenzofurans (PCDFs), are a class of compounds that accumulate in the environment. They are formed from processes like waste incineration, but also from natural events like forest fires and volcanic eruptions.

## What are the Canadian limits for residues and contaminants in food?

### Maximum Residue Limits (MRLs) for Pesticides

Pesticide MRLs are established by Health Canada's Pest Management Regulatory Agency (PMRA) and appear in Health Canada's *MRL Database* <u>http://pr-rp.hc-sc.gc.ca/mrl-lrm/index-eng.php</u>. These MRLs apply to the specified raw agricultural commodity as well as to any processed food product that contains the commodity unless otherwise specified. According to section B.15.002 of the *Food and Drug Regulations* (FDR), when no specific pesticide MRL exists for a food commodity, a general MRL of 0.1 milligrams per kilogram (mg/kg) is used for that particular pesticide in that commodity.

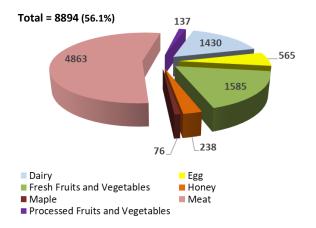
### Maximum Residue Limits (MRLs) for Veterinary Drugs

Veterinary drug MRLs are set by Health Canada's Veterinary Drugs Directorate (VDD) and appear in Health Canada's *List of Maximum Residue Limits (MRLs) for Veterinary Drugs in Foods* <u>https://www.canada.ca/en/health-canada/services/drugs-health-products/veterinary-drugs/maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrls/list-maximum-residue-limits-mrl</u>

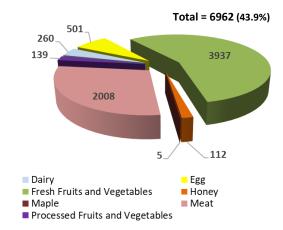
A list of banned drugs in animal-derived foods is specified in section B.01.048 of the *FDR*. Any detected and confirmed level of a banned drug residue in animal-derived foods is considered non-compliant.

### **Regulatory Maximum Levels (MLs) for Contaminants**

Some contaminants and other adulterating substances have regulatory maximum levels in certain foods. These appear on Health Canada's *List of contaminants and other adulterating substances in foods:* <u>https://www.canada.ca/en/health-canada/services/food-nutrition/food-safety/chemical-</u> contaminants/contaminants-adulterating-substances-foods.html#fn\_t1b1 and List of *Maximum Levels for* 


Chemical Contaminants in Foods: <u>https://www.canada.ca/en/health-canada/services/food-nutrition/food-</u>safety/chemical-contaminants/maximum-levels-chemical-contaminants-foods.html.




### What was sampled?

The NCRMP and FSO Programs generated compliance information on seven basic food commodity groups regularly consumed by Canadians. The food commodity groups included both imported and domestic products (Figures 3 and 4). Table 1 lists some examples of products tested within each commodity group. The majority of sampling was conducted in raw meat and fresh fruit and vegetables. These food commodity groups represented the majority of the raw agricultural commodities available on the Canadian market.

# Figure 3: Domestic food samples collected by food commodity group



# Figure 4: Imported food samples collected by food commodity group



#### Table 1: Examples of products tested in 2017/18 by food commodity group

| Food Commodity Group*                 | Examples of products tested                                                                                                                                                         |
|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Meat                                  | <ul> <li>Domestic raw meat from a slaughtered animal (e.g. muscle, liver, kidney and fat)</li> <li>Imported processed (raw and cooked) meat products</li> </ul>                     |
| Fresh Fruit and Vegetables            | <ul> <li>Domestic and imported fresh fruit</li> <li>Domestic and imported fresh vegetables</li> <li>Domestic and imported seeds, tree nuts, and peanuts**</li> </ul>                |
| Processed Products                    | • Domestic and imported processed fruit and vegetable products (e.g. juices, canned and frozen products, etc.)                                                                      |
| Honey                                 | Domestic and imported honey (bulk, packaged)                                                                                                                                        |
| Eggs                                  | Domestic and imported (USA only) shell eggs                                                                                                                                         |
| Dairy                                 | <ul> <li>Domestic raw milk collected at dairy farms</li> <li>Domestic and imported cheeses and yogurts</li> <li>Non-bovine milk products (e.g. from goat and sheep milk)</li> </ul> |
| Maple                                 | Domestic and imported maple products (syrup, butter, sugar, candy, spread)                                                                                                          |
| * Includes products labelled organic. |                                                                                                                                                                                     |

\*\*Seeds, tree nuts and peanuts are included in the Fresh Fruit and Vegetable food commodity group (FSO program only).



## How were foods chosen for testing?

The CFIA's sampling activities were carried out in accordance with internationally accepted principles and guidelines<sup>1,2</sup>. The NCRMP and FSO Program are designed to provide a statistical estimate of the compliance rate of the food production system. If non-compliances for a particular contaminant or residue are not detected in a sample size of about 300, it can be assumed with 95% confidence that the compliance rate for that food is greater than 99%<sup>2</sup>.

The samples selected were unbiased, random, and collected throughout the fiscal year or when available based on production times or seasonality (e.g. domestic fruit and vegetables and domestic honey). The number of samples collected for the NCRMP was determined by taking into consideration past compliance data, the volume of food produced, import transaction information, consumption information, and changes in import or production locations and practices. Year-to-year variation in the number and the location of individual sample types collected can fluctuate considerably. FSO Program samples were selected by identifying the fresh fruit and vegetable products, seeds, peanuts and tree nuts that historically have limited CFIA-generated chemical residue data.

All food samples were collected using a pre-defined sampling schedule based on an internationally accepted approach<sup>1,2</sup>. All food samples must be of an adequate size to represent the product being sampled and provide the laboratory with enough material to carry out all required tests.

## Where did the NCRMP sampling occur?

The vast majority of NCRMP samples are collected by CFIA inspectors and are taken from individual lots of domestically-produced and imported foods. Domestic samples were collected as close as possible to the point of production in the distribution system (e.g., slaughter establishments, fruit and vegetable packing facilities, etc). Figure 5 illustrates the distribution of where domestically-produced, inter-provincially traded NCRMP food samples were collected in Canada.

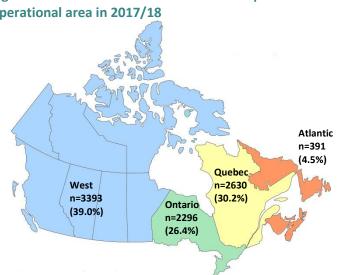



Figure 5: Number of domestic NCRMP samples collected by operational area in 2017/18

There were 8710 domestic NCRMP samples collected across the country with the highest percentage, roughly 39% (3393 samples), originating from the Western Area. Only a small amount, 4.5% (391 samples), originated from the Atlantic region with the remainder collected from Quebec and Ontario at 30.2% and 26.4% respectively. The number of samples collected approximates the amount of food available within each operational area in Canada.



Canadian Food

Of the 6459 imported NCRMP samples that were collected, most were taken at the point of entry into the Canada. The top 10 countries from which NCRMP import samples originated are presented in Table 2. This table indicates that the majority of imported samples, over 64%, originated from the USA and Mexico. NCRMP import samples were collected from products originating from a total of 70 different countries. The number of samples collected by country of origin generally represented the availability of those products on the Canadian market. There were 49 imported samples collected with an unknown country of origin.

Three retail collection surveys were run during the 2017/18 year. These surveys collected domestic and imported non-bovine and organic dairy products, as well as organic meats from retail locations across the country. The surveys were added to fill program data gaps for those products.

| Table 2: Number of import NCRMP samples   |
|-------------------------------------------|
| collected by country of origin in 2017/18 |

| Country<br>of Origin | Number<br>Samples | % Total Import<br>Samples |
|----------------------|-------------------|---------------------------|
| United States        | 3404              | 52.7%                     |
| Mexico               | 762               | 11.8%                     |
| Italy                | 363               | 5.6%                      |
| Chile                | 194               | 3.0%                      |
| Spain                | 149               | 2.3%                      |
| China                | 135               | 2.1%                      |
| France               | 129               | 2.0%                      |
| Costa Rica           | 89                | 1.4%                      |
| Brazil               | 88                | 1.4%                      |
| Great Britain        | 84                | 1.3%                      |
| All others           | 1062              | 16.4%                     |

### Where did the FSO Program sampling occur?

Following a sampling schedule, CFIA inspectors and contracted third party samplers collected samples of individual lots of imported and domestically-produced fresh fruits and vegetables, nuts and seeds. Most samples were collected at retail locations across Canada. Tables 3 and 4 illustrate the breakdown of FSO samples by country of origin and by retail area, respectively.

### **Table 3: Number of domestic FSO samples collected** by retail area in 2017/18

| Retail Area<br>Collected | Number of<br>Samples | % of Domestic<br>Samples |
|--------------------------|----------------------|--------------------------|
| Atlantic                 | 8                    | 4.3%                     |
| Quebec                   | 20                   | 10.9%                    |
| Ontario                  | 56                   | 30.4%                    |
| West                     | 100                  | 54.3%                    |
| Total                    | 184                  | 100%                     |

### **Table 4: Number of import FSO samples collected** by retail area in 2017/18

| Country of<br>Origin | Number of<br>Samples | % Total Import<br>Samples |
|----------------------|----------------------|---------------------------|
| United States        | 223                  | 44.3%                     |
| Mexico               | 104                  | 20.7%                     |
| China                | 41                   | 8.2%                      |
| Chile                | 28                   | 5.6%                      |
| All Others*          | 107                  | 21.3%                     |

Included in this are 20 samples (4.0%) with no available country of origin information at the time of sampling.



## How did the CFIA test the food samples?

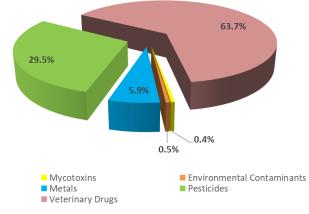
Testing for the NCRMP and FSO Program was performed at ISO/IEC 17025 accredited laboratories, including CFIA and private laboratories under contract with the Government of Canada. Methods used by the laboratories included both single-residue and multi-residue methods. Single-residue methods target only one chemical within a food sample while multi-residue methods can target dozens or even hundreds of chemicals from both similar and different compound classes, e.g. fungicides, insectides, herbicides and organophosphorus pesticides.

### What tests were performed?

The labs conducting this work for CFIA employed over 60 different testing methods to generate the analytical results on nearly 16,000 food samples obtained under the NCRMP and FSO programs in 2017/18. Not every sample was tested with every method, but most samples were analyzed with more than one method, leading to more than 118,000 tests performed for chemical residues and contaminants. Given that many of the methods looked for more than one chemical compound, the 2017/18 NCRMP and FSO monitoring programs generated approximately 6 million individual chemical residue results. The vast majority of those results were not-detected, which is to say that no detectable amount was found for the analyte of interest. Table 5 provides examples of the chemicals and chemical groups by chemistry class. Figures 6 through 9 illustrate the breakdown of testing by chemical class performed by CFIA and contracted laboratories on a per test method basis.

| Chemical class *                             | Examples included in each chemical class                                                                                          |  |  |  |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Veterinary Drugs**                           | Antibiotics, Anti-parasitics, Analgesics, Tranquilizers, Growth<br>Promotants, Steroids and Hormones                              |  |  |  |
| Pesticides                                   | Fungicides, Insecticides or Herbicides                                                                                            |  |  |  |
| Metals                                       | Arsenic, Cadmium, Lead, Mercury, Tin, Copper                                                                                      |  |  |  |
| Environmental Chemicals**                    | Dioxins, Furans, Polychlorinated biphenyls (PCBs), Polyaromatic<br>hydrocarbons (PAHs)                                            |  |  |  |
| Mycotoxins** Aflatoxins M1, Fusarium species |                                                                                                                                   |  |  |  |
| • •                                          | in any one class there are groups of chemicals which may include many hundreds of nd FSO Program methods is available in Annex A. |  |  |  |

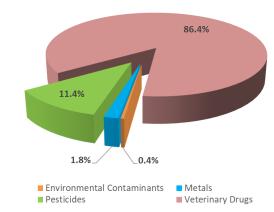
#### Table 5: List of the chemical classes included in the NCRMP and FSO Program


\*\* Chemical testing classes excluded from 2017/18 FSO program

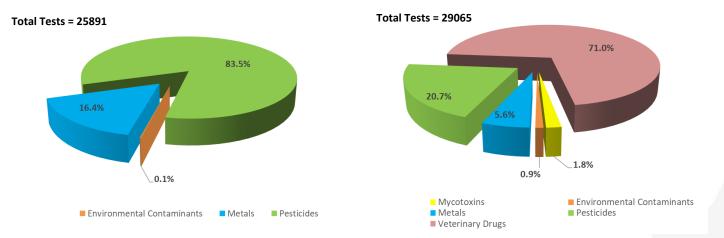


#### Figure 6: Testing by chemical class (all foods)

#### Total Tests = 118166


Canadian Food




## Figure 8: Testing by chemical class in fresh fruit and vegetables

#### Figure 7: Testing by chemical class in meat





### Figure 9: Testing by chemical class in other agrifood products\*



\* Other agrifood products includes dairy products, maple products, honey, shell eggs, and processed fruits and vegetables.

### How were the results assessed?

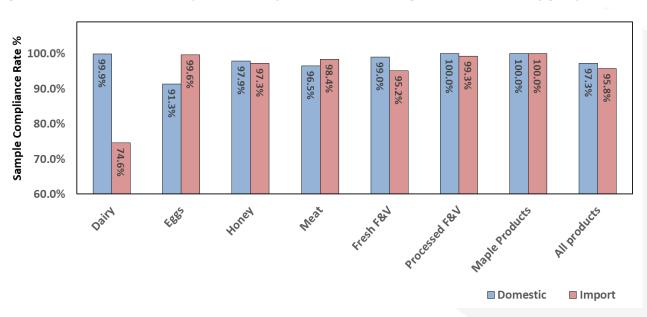
The CFIA assessed all test results against Canadian regulations<sup>7</sup> and limits (MRLs and MLs) or, in certain cases where no Canadian limits exist, guidance levels set by Health Canada. Specifically:

- Each contaminant or residue result was assessed individually, for every sample. •
- Results detected at or below the Canadian limit or guidance level were considered compliant. •
- Results detected above the Canadian limit or guidance level were considered **non-compliant**. For veterinary drug • residues with no MRLs, no amount of that drug is permitted in food. Therefore, result at or exceeding the method limit of quantification, known as the regulatory LOQ, were also considered non-compliant.
- Each banned drug residue detected and adequately confirmed at any level was considered non-compliant.

\*

In the absence of Canadian limits or guidance levels, results were recorded but no assessment decision was made.
 If these results were abnormally high based on previous historical results, they were provided to Health Canada for a health risk assessment. The collected data (i.e., PAH data, dioxins, certain metals, etc.) were provided to Health Canada for potential standard setting, assessing risk, and/or other risk management purposes.

For each food commodity group listed in Table 1 an annual **compliance rate** was calculated, which was the percentage of samples that were compliant compared to the total number of samples collected. Note that if a sample was found to have multiple non-compliances, it was considered 'non-compliant' only once in this report.


## What enforcement/follow-up actions were taken?

All non-compliant sample results were evaluated to determine the appropriate follow-up action. Follow-up actions vary according to the magnitude of the health risk, with the objective of preventing any repeat occurrence or further distribution of items remaining in the marketplace. These actions may have included notification of the producer or importer, notification of the foreign competent authority, follow-up inspections, further directed sampling, or recall of products if Health Canada determined that the product posed an unacceptable health risk to consumers or a certain segment of the population.

## What did the CFIA find?

Data collected from the 2017/18 NCRMP and FSO Program fiscal year are summarized in Annexes B1-B6. The following is a summary of the compliance result outcomes for the samples collected.

The compliance rate is one measure that the CFIA uses to assess the safety of the food supply and gauge the effectiveness of food safety controls in the food production system.





\*

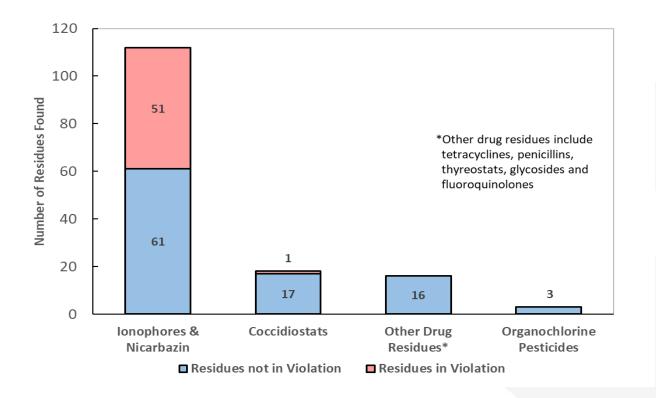

Canadian Food Agence canadienne Inspection Agency d'inspection des aliments

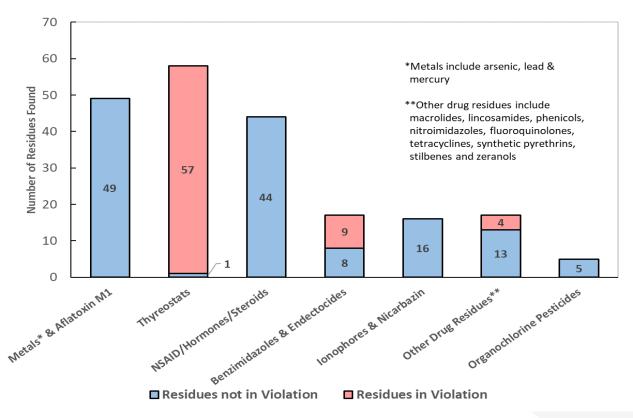
Figure 10 indicates that in the 2017/18 fiscal year 97.3% of domestic foods and 95.8% of imported foods sampled and tested were compliant with Canadian regulations<sup>6</sup>, limits, and guidelines. These results are comparable to the compliance rates observed in previous sampling years. Most food commodity groups had overall compliance rates exceeding 95% in the 2017/18 fiscal year. However, two commodity groups had overall compliance rates below 95%; domestic eggs and imported dairy, with the latter having a rate significantly lower than 95%.

#### Lower compliance in domestic eggs

A compliance rate of 91.3% was observed in domestic eggs, which was less than the program target of 95%. Most of the positive and non-compliant results in domestic eggs, as well as imported eggs, were from residues of nicarbazin and ionophore drugs. These drugs are used to treat enteric parasites in broiler chickens, but they are not approved for administration to laying hens in Canada, so no MRLs have been established in eggs. Therefore, the regulatory LOQ was used to determine compliance of these samples.

Low level residues of nicarbazin and ionophore drugs can occur in eggs due to contaminated feed being fed to laying hens. During the mixing and preparation process, carry-over from a previous batch of feed, where the use of these compounds is permitted, can cause elevated levels to be present, rather than deliberate drug use. Low levels of nicarbazin and ionophore residues in eggs are considered unlikely to pose a human health concern according to Health Canada<sup>7</sup>. Figure 11 indicates the number of veterinary drug and pesticide residues found in domestic shell eggs and includes how many of those residues were in violation of the MRL or regulatory LOQ, which is used to assess compliance when no MRL exists. These residues were the result of performing nearly 4700 tests which looked for tens of thousands of residues.




#### Figure 11: Veterinary Drug and Pesticide Residues Found in Domestic Shell Eggs



In Figure 11, it can be seen that roughly half (46%) of the ionophore and nicarbazin residues found were above the allowed limit and therefore non-compliant. Only 1 of the 18 coccidiostat residues found was above the allowed limit and led to a violation in that sample. While residues for several other veterinary drugs and organochlorine pesticides were found in domestic shell eggs, none of the levels were above the allowed limits. In 2012, Health Canada established guidance that enabled the CFIA to use action levels (for follow-up) for residues of ionophores and nicarbazin in eggs<sup>7</sup>. The action levels were established at a value that is protective of both human and animal health while still being low enough to detect deliberate drug use. The CFIA does not take enforcement or follow-up action on residues detected below the established action levels. Fourty-five of the fifty-one non-compliant ionophore/nicarbazin residues found in domestic shell eggs, or 88%, were below the established Health Canada action levels.

#### Lower compliance in imported dairy products

The types of domestic and imported dairy products sampled under the NCRMP were very different. Most of the domestic dairy samples were raw milk, except for those products collected at retail on organic and non-bovine dairy products, which included milk, cheese, yogourt and frozen yogurt. The imported dairy products sampled were almost entirely cheeses, with a small number of milk, yogourt and frozen yogurt samples from retail. While the preference for the NCRMP is to monitor the raw agricultural commodity, Canada did not import raw milk at the time and therefore these secondary products were sampled instead. Results from the NCRMP indicate that compliance in domestic dairy was very high at 99.9%. However, imported dairy products had the lowest compliance rate (74.6%) of all food commodity groups, mainly due to veterinary drug residues found in cheeses. Figure 12 below shows the number and type of residues found in imported cheeses as well as the number and type that were non-compliant.



#### Figure 12: Residues Found in Imported Cheeses



While there are Canadian MRLs established for some veterinary drugs in milk, none have been established for residues in secondary products derived from milk. In the absence of MRLs for cheese and other dairy products, drug residues detected at or above the regulatory LOQ are assessed as non-compliant. These LOQs can be quite low and the results do not necessarily represent a risk to human health. Furthermore, most of the imported cheese residues found to be non-compliant (81%) were due to residues of thiouracil. Thiouracil has been used in the past to increase weight gain in animals prior to slaughter. These veterinary drugs are no longer permitted for use in food-producing animals in Canada and there are no established MRLs. The presence of thiouracil residues in ruminant liver however has been attributed to dietary consumption of 50 sulphur-rich Brassica species, rather than the use of veterinary drugs<sup>8</sup>. Brassica are a genus of plants that include many vegetable crops that form the diet of both humans (broccoli, kale, etc.) and animals (canola)<sup>9</sup>. It is therefore likely that the presence of thiouracil in imported cheese was due to dairy cattle being fed diets containing brassicas such as canola. Thiouracil may be secreted in the milk and subsequently detected in secondary products such as cheese. Health Canada has indicated that the levels detected in imported cheese were not expected to result in a risk to human health<sup>10</sup>. Health Canada and the CFIA have set an action level for thiouracil in dairy products in order to identify residues which may be from non-permitted drug use. Out of the 57 imported cheeses found to be non-compliant for thiouracil, only 11 results were found to be above the action limit.

#### Higher numbers of non-compliant samples in domestic meat

Canadian meat samples tested under the NCRMP are collected exclusively at slaughter facilities across the country. The samples consisted of unprocessed raw meat, and included muscle, fat, kidney, liver and occasionally other tissues. For imported meat the NCRMP is limited to sampling what arrives at the border, which was mainly muscle, both cooked and uncooked, as well as processed meat (e.g. sausage, ready-to-eat products, nuggets, etc.). Although the compliance rates for both domestic and imported meat were high (96.5% and 98.4% respectively), more non-compliant samples (n=169) were observed in domestic samples versus imported samples (n=32). This difference in compliance rates between domestic and imported meat was mainly due to veterinary drug residues and can be attributed to the types of domestic and imported samples tested. A greater number (and amount) of residues was expected in domestic meat samples because they often occur or accumulate at higher levels, and for longer periods of time, in tissues such as liver, fat, and kidney, which were targeted as part of NCRMP domestic sampling. Meat samples that are further processed and/or precooked also tend to have less of these same residues.

The compliance rates for the domestic major and minor meat species and production/market classes are presented in Tables 6 and 7, respectively. Most major domestic meat species and their production/market classes (e.g. for bovine – beef, veal, cow) exceeded 95% compliance for veterinary drug residues, pesticide residues, and contaminants. Minor meat species had (generally) lower compliance (mostly from veterinary drug residues). In Canada, most minor species and lamb/mutton do not have many established MRLs for veterinary drug residues. As a result, when residues of veterinary drugs are detected in minor species' meat products, mainly from extra-label drug use (i.e., the administration of a drug to a species or to treat a condition that does not appear on the product label), they are considered non-compliant with Canadian regulations<sup>6</sup>. Residue levels detected in minor species were typically lower than the MRLs established for the same drug in other major meat species, and therefore these products are not expected to result in a risk to human health.



species

| Meat<br>Species/Class | # of<br>Samples | # of<br>Violations | Percent (%)<br>Compliance | Meat<br>Species/Class | # of<br>Samples | # of<br>Violations | Percent (%)<br>Compliance |
|-----------------------|-----------------|--------------------|---------------------------|-----------------------|-----------------|--------------------|---------------------------|
| Pork                  | 589             | 0                  | 100.0                     | Lamb/Mutton           | 338             | 69                 | 79.6                      |
| Beef                  | 574             | 7                  | 98.8                      | Cow                   | 333             | 9                  | 97.3                      |
| Chicken               | 559             | 3                  | 99.5                      | Sow                   | 328             | 2                  | 99.4                      |
| Veal                  | 479             | 4                  | 99.2                      | Fowl                  | 289             | 3                  | 99.0                      |
| Horse                 | 372             | 5                  | 98.7                      | Turkey                | 266             | 6                  | 97.7                      |
| All major<br>species  | 4127            | 108                | 97.4                      |                       |                 |                    |                           |

### Table 6: Compliance rate by major meat species or production/market class in 2017/18

#### Table 7: Compliance rate by minor meat species or production/market class in 2017/18

| Meat<br>Species/Class | # of<br>Samples | # of<br>Violations | Percent (%)<br>Compliance | Meat<br>Species/Class | # of<br>Samples   | # of<br>Violations | Percent (%)<br>Compliance |
|-----------------------|-----------------|--------------------|---------------------------|-----------------------|-------------------|--------------------|---------------------------|
| Bison                 | 192             | 6                  | 96.9                      | Wild Boar             | 30                | 1                  | 96.7                      |
| Duck                  | 160             | 10                 | 93.8                      | Goat                  | 23                | 6                  | 73.9                      |
| Piglet                | 119             | 1                  | 99.2                      | Elk                   | 21                | 7                  | 66.7                      |
| Rabbit                | 99              | 19                 | 80.8                      | Deer                  | 6                 | 1                  | 83.3                      |
| Game Bird             | 83              | 10                 | 88.0                      | Other*                | 3                 | 0                  | 100.0                     |
| All minor             | 736             | 61                 | 91.7                      | *Includes Water I     | Buffalo (n=2), ai | nd Ostrich (n=1)   |                           |

### Lower compliance in imported fresh fruit and vegetables (NCRMP)

In 2017/18 the overall compliance rate for imported fresh fruit and vegetables (FFVs) collected under the NCRMP and FSO was similar to previous years at 95.2%. Starting in the 2015/16 sampling year the CFIA implemented new pesticide test methods, which increased the scope of testing and the sensitivity of the applied methodology. This allowed a greater number of pesticides to be detected, and at much lower levels, than in previous years. Even with this greater sensitivity, the overall compliance for pesticides in imported FFVs was consistent with what has been observed in previous years.

A lower rate of compliance is observed in imported FFV samples (94.9%) collected under the NCRMP as compared with domestic FFV samples (99.0%). This difference can be attributed to the lower number (and type) of pesticides registered for use in Canada in comparison to the total number (and type) registered and used in the countries from which the non-compliant samples originated. Many of the pesticides detected from foreign countries, including the United States and Mexico, are not registered in Canada. This is because many of the FFVs that are grown in more southern climates are not grown in Canada, and/or because Canada does not have the same pest pressures as those countries and therefore do not require their use.



For detected pesticide residues with no established Canadian MRLs, such as those used in other countries but not registered in Canada, the general MRL of 0.1 ppm is used to assess compliance. For many of the pesticide results detected in imported FFV samples the levels exceeded the general MRL which meant that the results were non-compliant with Canadian regulations. Although the compliance rate was generally higher in domestic FFVs, as is illustrated in Tables 8 and 9 below, the results are not necessarily an indication that imported FFVs are unsafe to consume.

# Table 8: Top 10 non-compliant imported FFVscollected under the 2017/18 NCRMP

| Product           | # of    | Percent (%) |
|-------------------|---------|-------------|
| Туре*             | Samples | Compliance  |
| Dragon Fruit      | 11      | 54.5        |
| Yam               | 11      | 72.7        |
| Рарауа            | 23      | 73.9        |
| Fresh Herbs (all) | 36      | 75.0        |
| Реа               | 16      | 75.0        |
| Banana            | 84      | 79.8        |
| Asian Vegetables  | 10      | 80.0        |
| Kale              | 22      | 81.8        |
| Avocado           | 29      | 82.8        |
| Sweet Potato      | 58      | 86.2        |

# Table 9: Top 10 non-compliant domestic FFVscollected under the 2017/18 NCRMP

| Product           | # of    | Percent (%) |
|-------------------|---------|-------------|
| Туре*             | Samples | Compliance  |
| Fresh Herbs (all) | 12      | 83.3        |
| Blueberry         | 24      | 91.7        |
| Parsnip           | 15      | 93.3        |
| Strawberry        | 20      | 95.0        |
| Mushroom          | 33      | 97.0        |
| Cucumber**        | 83      | 98.8        |
| Apple             | 248     | 99.2        |
| Potato            | 168     | 99.4        |
| Tomato**          | 91      | 100.0       |
| Carrot            | 46      | 100.0       |

\*Information is presented for product types that have a minimum of 10 samples collected in 2017/18.

\*\*Includes greenhouse grown samples.

### Similar lower compliance observed in the FSO Program Imported FFVs samples

A similar pattern of more non-compliant samples (resulting from pesticide residues) were observed in imported FFVs samples collected under the FSO Program. There were 16 out of 503 non-compliant imported samples (96.8% compliance rate) and 3 out of 184 non-compliant domestic samples (98.4% compliance rate) collected under FSO sampling. While the FFV product types collected under the FSO were similar to the NCRMP, there were some differences in the sampling strategy. FSO sampling had a greater focus on collecting herbs, berries, and minor crops in the 2017/18 sampling year. Tables 10 and 11 show the top 5 imported and domestic non-compliant FFV products collected under FSO sampling. All of the nut and seed samples that were collected under the FSO program in 2017/18 were found to be 100% compliant for pesticides and contaminants.

# Table 10: Top 5 non-compliant imported FFVscollected under the 2017/18 FSO program

| Product           | Number  | Percent (%) |
|-------------------|---------|-------------|
| Туре*             | Samples | Compliance  |
| Arugula           | 18      | 83.3        |
| Apricot           | 17      | 88.2        |
| Raspberry         | 28      | 89.3        |
| Fresh Herbs (all) | 31      | 90.3        |
| Blackberry        | 34      | 91.2        |

# Table 11: Top 5 non-compliant domestic FFVscollected under the 2017/18 FSO program

| Product<br>Type*  | Number<br>Samples | Percent (%)<br>Compliance |
|-------------------|-------------------|---------------------------|
| Cranberry         | 12                | 91.7                      |
| Chard             | 16                | 93.8                      |
| Seed - Hemp       | 30                | 100.0                     |
| Kale              | 16                | 100.0                     |
| Fresh Herbs (all) | 14                | 100.0                     |

\*Information is presented for product types that have a minimum of 10 samples collected in 2017/18.

## What do the NCRMP and FSO Program results mean?

The overall combined NCRMP and FSO sample compliance rate in the 2017/18 fiscal year was 96.6%, which was consistent with rates seen in previous years. Similar overall compliance rates were observed for domestic and imported products, with the exception of a few food commodity groups, where the type of products being tested (e.g. raw milk vs cheese, raw meat vs cooked meat) was likely responsible for the observed differences. These specific cases have been discussed in more detail in the sections above.

The results obtained through the NCRMP and FSO Program enabled the CFIA to take appropriate follow-up actions on non-compliant food samples, to identify trends in the prevalence of chemical residues and contaminants in the Canadian food supply, and to further optimize the Agency's surveillance activities and other control measures to minimize potential health risks to Canadians. The NCRMP data were routinely provided to Health Canada and used in health risk assessments of various chemical residues and contaminants in food. These data were also shared with Canada's major trading partners, including the United States and the European Union.



## References

- Codex Alimentarius Commission. RECOMMENDED METHODS OF SAMPLING FOR THE DETERMINATIN OF PESTICIDE RESIDUES FOR COMPLIANCE WITH MRLS. CAC/GL 33-1999. 1999.
   Available at URL: http://www.fao.org/fao-who-codexalimentarius/thematic-areas/pesticides/en/
- 2. Codex Alimentarius Commission. *GUIDELINES FOR THE DESIGN AND IMPLEMENTATION OF NATIONAL REGULATORY* FOOD SAFETY ASSURANCE PROGRAMME ASSOCIATED WITH THE USE OF VETERINARY DRUGS IN FOOD PRODUCING ANIMALS. CAC/GL 71-2009. Revision 2014.

Available at URL: <a href="http://www.fao.org/fao-who-codexalimentarius/codex-texts/guidelines/en/">http://www.fao.org/fao-who-codexalimentarius/codex-texts/guidelines/en/</a>

- 3. Health Canada (HC). Pesticide Management Regulatory Agency. Pesticides and food safety. Accessed April 27, 2021. Available at URL: <u>https://www.canada.ca/en/health-canada/services/about-pesticides/pesticides-food-safety.html</u>
- 4. Tomlin, C. The Pesticide Manual 10<sup>th</sup> Edition. 1994. Farnham UK & Cambridge UK: British Crop Protection Council and The Royal Society of Chemistry.
- Canadian Food Inspection Agency. Compendium of Medicating Ingredient Brochures. Medicating ingredient brochure for Decoquinate (DEC). Accessed May 5, 2021. Available at URL: <u>https://inspection.canada.ca/animal-health/livestock-feeds/medicating-ingredients/lasalocid-sodium/eng/1331062251297/1331062327299</u>
- Canadian Food Inspection Agency (CFIA). List of Acts and Regulations. Accessed April 30, 2021. Available at URL: <u>http://inspection.gc.ca/about-the-cfia/acts-and-regulations/list-of-acts-and-regulations/eng/1419029096537/1419029097256</u>
- 7. Health Canada (HC). Personal Communication. 2012.
- Vanden Bussche J, Kiebooms JA, De Clercq N, Deceuninck Y, Le Bizec B, De Brabander HF, Vanhaecke L. Feed or Food Responsible for the Presence of Low-Level Thiouracil in Urine of Livestock and Humans? J Aric Food Chem. 2011. 59(10):5786-92.
- Agriculture and Agri-Food Canada (AAFC). Crop Profile for Brassica Vegetables in Canada, 2015. Accessed May 5, 2021. Available at URL: <u>http://publications.gc.ca/collections/collection\_2018/aac-aafc/A118-10-33-2015-eng.pdf</u>
- 10. Health Canada (HC). Personal Communication. 2011.



# Annex A Analytical methods

Table A-1: Analytes included in selective multi-residue methods for pesticide residues by food commodity group

| Program              | Food Commodity Group                              | Analytes                                                                                                                                                                                                                   |
|----------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carbamates           | Dairy<br>Egg<br>Meat                              | 3-hydroxyCarbofuran, Aldicarb, Aldicarb Sulfone, Aldicarb,<br>sulfoxide, Bendiocarb, Bufencarb, Carbaryl, Carbofuran,<br>Dioxacarb, Isoprocarb, Methiocarb, Methiocarb Sulfoxide,<br>Methomyl, Oxamyl, Promecarb, Propoxur |
| Chlorinated Phenols  | Dairy<br>Egg<br>Meat                              | 2,3,4,5 TetraChlorophenol, 2,3,4,6 TetraChlorophenol, 2,3,5,6<br>TetraChlorophenol, Pentachlorophenol                                                                                                                      |
| Glyphosate           | Fresh fruits and vegetables<br>Processed products | AMPA, Glyphosate                                                                                                                                                                                                           |
| Phenoxy Herbicides   | Fresh fruit and vegetables<br>Processed products  | 2,4,5-T, 2,4-D, 2,4-DB, Acifluorfen, Bentazon, Bromoxynil,<br>Chloramben, Clopyralid, Dicamba, Dichlorprop, Dithiopyr,<br>Fenoprop, MCPA, MCPB, Mecoprop, Picloram, Triclopyr                                              |
| Synthetic Pyrethrins | Dairy<br>Egg<br>Meat                              | Cyfluthrin (I,II,III,IV), Cyhalothrin-lambda, Cypermethrin,<br>Deltamethrin, Esfenvalerate, Fenvalerate, Flucythrinate,<br>Fluvalinate, Permethrin (Total), Permethrin cis, Permethrin trans                               |

# Table A-2: Analytes included in multi-residue method (with LC-MS/MS & GC-MS/MS detection) for pesticide residue analysis in fresh fruit and vegetables, honey, and processed products (PESTICIDES-GCLC)

| 3-hydroxyCarbofuran          | Demeton-S                | Griseofulvin            | Piperonyl butoxide   |
|------------------------------|--------------------------|-------------------------|----------------------|
| 5-hydroxythiabendazole (P/H) | Demeton-S-methyl         | Halofenozide (F/P)      | Piperophos           |
| Abamectin                    | Demeton-s-methyl sulfone | Haloxyfop               | Pirimicarb           |
| Acephate                     | Demeton-s-methyl         | Heptachlor              | Pirimiphos-ethyl     |
|                              | sulfoxide                |                         | 100 M                |
| Acetamiprid                  | Des-ethyl Atrazine       | Heptachlor epoxide endo | Pirimiphos-methyl    |
| Acetochlor                   | Desmedipham              | Heptachlor epoxide exo  | Prallethrin (P/H)    |
| Acibenzolar-s-methyl         | Desmetryn                | Heptenophos             | Pretilachlor         |
| Aclonifen                    | Di-allate                | Hexachlorobenzene       | Primisulfuron-methyl |
| Alachlor                     | Dialofos                 | Hexaconazole            | Prochloraz           |
| Alanycarb                    | Diazinon                 | Hexaflumuron (F/P)      | Procymidone          |
| Aldicarb                     | Diazinon-o-analogue      | Hexazinone              | Prodiamine           |
| Aldicarb Sulfone             | Dichlobenil              | Hexythiazox (F/P)       | Profenofos           |
| Aldicarb sulfoxide (F/P)     | Dichlofenthion           | Hydramethylnon (F/P)    | Profluralin          |
| Aldrin                       | Dichlofluanid            | Imazalil                | Promecarb            |
| Allidochlor                  | Dichloran                | Imazamethabenz-methyl   | Prometon             |
| Ametryn                      | Dichlormid               | Imazethapyr             | Prometryne           |
| Aminocarb                    | Dichlorvos               | Imidacloprid            | Pronamide            |
| Amitraz                      | Diclobutrazole           | Indoxacarb              | Propachlor           |
| Anilofos                     | Diclocymet               | Iodofenphos             | Propamocarb          |



| Aramite                | Diclofop-methyl     | Ipconazole           | Propanil              |
|------------------------|---------------------|----------------------|-----------------------|
| Aspon                  | Dicofol             | Iprobenfos           | Propargite            |
| Atrazine               | Dicrotophos         | Iprodione            | Propazine             |
| Azaconazole            | Dieldrin            | Iprovalicarb         | Propetamphos          |
| Azinphos-ethyl         | Diethatyl-ethyl     | Isazophos            | Propham               |
| Azinphos-methyl        | Diethofencarb       | Isocarbamide         | Propiconazole         |
| Azoxystrobin           | Difenoconazole      | Isofenphos           | Propoxur              |
| Benalaxyl              | Diflubenzuron       | Isoprocarb           | Propyzamide           |
| Bendiocarb             | Dimethachlor        | Isopropalin          | Prothioconazole (F/P) |
| Benfluralin            | Dimethametryn       | Isoprothiolane       | Prothiophos           |
| Benfuracarb (F/P)      | Dimethenamid (F/P)  | Isoproturon          | Pymetrozine           |
| Benodanil              | Dimethoate          | Isoxadifen-ethyl     | Pyracarbolid          |
| Benomyl                | Dimethomorph        | Isoxathion           | Pyraclostrobin        |
| Benoxacor              | Dimetilan           | Kresoxim-methyl      | Pyraflufen-ethyl      |
| Bensulide              | Dimoxystrobin       | Leptophos            | Pyrazophos            |
| Benzoximate (F/P)      | Diniconazole        | Lindane or gamma-BHC | Pyrethrin             |
| Benzoylprop-ethyl      | Dinitramine         | Linuron              | Pyridaben (F/P)       |
| BHC Alpha              | Dinotefuran         | Lufenuron (F/P)      | Pyridalyl             |
| BHC beta               | Dioxacarb           | Malaoxon             | Pyridaphenthion       |
| Bifenazate (F/P)       | Dioxathion          | Malathion            | Pyridate              |
| Bifenox                | Diphenamid          | Mandipropamid        | Pyrifenox             |
| Bifenthrin             | Diphenylamine       | Mecarbam             | Pyrimethanil          |
| Biphenyl               | Dipropetryn         | Mefenacet (F/P)      | Pyriproxyfen          |
| Bitertanol             | Disulfoton          | Mepanipyrim          | Pyroquilon            |
| Boscalid               | Disulfoton sulfone  | Mephosfolan          | Pyroxsulam            |
| Bromacil               | Diuron              | Mepronil (F/P)       | Quinalphos            |
| Bromophos              | DNOC                | Mesotrione (F)       | Quinomethionate       |
| Bromophos-ethyl        | Dodemorph           | Metaflumizone (F/P)  | Quinoxyfen            |
| Bromopropylate         | Dodine (P/H)        | Metalaxyl            | Quintozene            |
| Bromuconazole          | Edifenphos          | Metazachlor          | Quizalofop            |
| Bufencarb              | Emamectin B1a       | Metconazole (F/P)    | Quizalofop-ethyl      |
| Bupirimate             | Emamectin B1b (F/P) | Methabenzthiazuron   | Schradan              |
| Buprofezin             | Endosulfan alpha    | Methamidophos        | Secbumeton            |
| Butachlor              | Endosulfan beta     | Methidathion         | Sethoxydim (P/H)      |
| Butafenacil            | Endosulfan sulfate  | Methiocarb           | Siduron (F/P)         |
| Butocarboxim           | Endosulfan Total    | Methiocarb sulfone   | Simazine              |
| Butocarboxim sulfoxide | Endrin              | Methiocarb Sulfoxide | Simeconazole          |
| Butoxycarboxim (F/P)   | EPN                 | Methomyl             | Simetryn              |
| Butralin               | Epoxiconazole       | Methoprotryne        | Spinetoram            |



| Butylate               | EPTC                   | Methoxychlor                      | Spinosyn A          |
|------------------------|------------------------|-----------------------------------|---------------------|
| Cadusafos              | Erbon                  | Methoxyfenozide                   | Spinosyn D          |
| Captafol               | Esfenvalerate          | Methyl - trithion                 | Spirodiclofen       |
| Captan                 | Etaconazole            | Methyl Pentachlorophenyl sulphide | Spiromesifen        |
| Captan metabolite THPI | Ethalfluralin          | Metobromuron                      | Spirotetramat       |
| Carbaryl               | Ethiofencarb           | Metolachlor                       | Spiroxamine         |
| Carbendazim            | Ethiofencarb sulfone   | Metolcarb                         | Sulfallate          |
| Carbetamide            | Ethiofencarb sulfoxide | Metosulam                         | Sulfentrazone       |
| Carbofenthion          | Ethion                 | Metoxuron                         | Sulfotep            |
| Carbofuran             | Ethiprole              | Metribuzin                        | Sulprophos          |
| Carbosulfan            | Ethirimol              | Mevinphos-cis                     | ТСМТВ               |
| Carboxin               | Ethofumesate           | Mevinphos-trans                   | Tebuconazole        |
| Carfentrazone-ethyl    | Ethoprop               | Mexacarbate                       | Tebufenozide        |
| Chlorantraniliprole    | Ethoprophos (F)        | Mirex                             | Tebufenpyrad        |
| Chlorbenside           | Ethylan                | Molinate                          | Tebupirimfos        |
| Chlorbromuron          | Etofenprox             | Monocrotophos                     | Tebuthiuron (F/P)   |
| Chlorbufam             | Etoxazole              | Monolinuron                       | Tecnazene           |
| Chlordane              | Etridiazole            | Myclobutanil                      | Teflubenzuron (F/P) |
| Chlordane cis (F/P)    | Etrimfos               | Naled                             | Temephos (F/P)      |
| Chlordane trans (F/P)  | Famoxadone (F/P)       | Napropamide                       | Tepraloxydim        |
| Chlordimeform          | Fenamidone             | Naptalam                          | Terbacil            |
| Chlorfenapyr           | Fenamiphos             | Neburon                           | Terbufos            |
| Chlorfenson            | Fenamiphos sulfone     | Nitenpyram                        | Terbumeton          |
| Chlorfenvinphos        | Fenamiphos sulfoxide   | Nitralin                          | Terbutryne          |
| Chlorfluazuron (F/P)   | Fenarimol              | Nitrapyrin                        | Terbutylazine       |
| Chlorflurenol-methyl   | Fenazaquin             | Nitrofen                          | Tetrachlorvinphos   |
| Chloridazon            | Fenbuconazole          | Nitrothal-isopropyl               | Tetraconazole       |
| Chlorimuron-ethyl      | Fenchlorphos or Ronnel | Norflurazon                       | Tetradifon          |
| Chlormephos            | Fenfuram               | Novaluron                         | Tetraiodoethylene   |
| Chlorobenzilate        | Fenhexamid             | Nuarimol                          | Tetramethrin        |
| Chloroneb              | Fenitrothion           | o,p'-DDD or o,p'-TDE              | Tetrasul            |
| Chloropropylate        | Fenobucarb (F/P)       | o,p'-DDE                          | Thiabendazole       |
| Chlorothalonil         | Fenoxanil              | o,p'-DDT                          | Thiacloprid         |
| Chloroxuron            | Fenoxycarb             | Octhilinone                       | Thiamethoxam        |
| Chlorpropham           | Fenpropathrin          | Ofurace                           | Thiazopyr           |
| Chlorpyrifos           | Fenpropidin            | Omethoate                         | Thidiazuron (F/P)   |
| Chlorpyrifos-methyl    | Fenpropimorph          | Ortho-phenylphenol                | Thiobencarb         |
| Chlorthiamid           | Fenpyroximate          | Oxadiazon                         | Thiodicarb          |
| Chlorthion             | Fenson                 | Oxadixyl                          | Thiofanox           |



| Chlorthiophos                 | Fensulfothion         | Oxamyl               | Thiofanox sulfone   |
|-------------------------------|-----------------------|----------------------|---------------------|
| Chlortoluron                  | Fenthion              | Oxamyl-oxime         | Thiofanox sulfoxide |
| Chlozolinate                  | Fenthion oxon         | Oxycarboxin          | Thiophanate-methyl  |
| Clethodim (F/P)               | Fentrazamide          | Oxychlordane         | Tolclofos-methyl    |
| Clodinafop-propargyl          | Fenuron (F/P)         | Oxydemeton-methyl    | Tolfenpyrad         |
| Clofentezine                  | Fenvalerate           | Oxyfluorfen          | Tolyfluanid         |
| Clomazone                     | Fipronil              | p,p'-DDD or p,p'-TDE | Toxaphene B         |
| Cloquintocet-mexyl            | Fipronil Desulfinyl   | p,p'-DDE             | Tolyfluanid         |
| Clothianidin                  | Flamprop-isopropyl    | p,p'-DDT             | Tralkoxydim         |
| Coumaphos                     | Flamprop-methyl       | Paclobutrazol        | Tralomethrin (F/P)  |
| Crotoxyphos                   | Flonicamid (F/P)      | Paraoxon             | Triadimefon         |
| Crufomate                     | Fluazifop-butyl       | Parathion            | Triadimenol         |
| Cyanazine                     | Flubendiamide         | Parathion-methyl     | Tri-allate          |
| Cyanofenphos                  | Fluchloralin          | Pebulate             | Triazophos          |
| Cyanophos                     | Flucythrinate         | Penconazole          | Tribufos            |
| Cyazofamid                    | Fludioxonil           | Pencycuron           | Trichlorfon         |
| Cycloate                      | Flufenoxuron (F/P)    | Pendimethalin        | Tricyclazole        |
| Cycloxydim                    | Flumetralin           | Penoxsulam           | Trietazine          |
| Cycluron                      | Fluometuron (F/P)     | Pentachloroaniline   | Trifloxystrobin     |
| Cyfluthrin I,II,III,IV        | Fluorochloridone      | Pentachlorobenzene   | Trifloxysulfuron    |
| Cyhalothrin-lambda            | Fluorodifen           | Permethrin           | Triflumizole        |
| Cymoxanil (F/P)               | Fluquinconazole (F/P) | Permethrin cis       | Triflumuron (F/P)   |
| Cypermethrin                  | Flusilazole           | Permethrin trans     | Trifluralin         |
| Cyprazine                     | Flusilazole           | Phenmedipham         | Triforine           |
| Cyproconazole                 | Flutriafol            | Phenthoate           | Trimethacarb        |
| Cyprodinil                    | Fluvalinate           | Phorate              | Triticonazole (F/P) |
| Cyromazine                    | Folpet                | Phorate sulfone      | Vamidothion (F/P)   |
| Dacthal or chlorthal-dimethyl | Fonofos               | Phosalone            | Vernolate           |
| delta-HCH or delta-lindane    | Formetanate           | Phosmet              | Vinclozolin         |
| Deltamethrin                  | Fuberidazole          | Phosphamidon         | Zinophos            |
| delta-trans-allethrin         | Furalaxyl (F/P)       | Picolinafen          | Zoxamide            |
| Demeton-O                     | Furathiocarb          | Picoxystrobin        |                     |

(F/P) = Fresh fruit and vegetables and processed products only; (P/H) = Processed products and honey only; (F) – Fresh fruit and vegetables only



# Table A-3: Analytes included in multi-residue method (with GC-MS/MS detection) for pesticide residue analysis in fresh fruit and vegetables and processed products (PESTICIDES-F)

| 3-hydroxyCarbofuran  | Cyprazine                    | Fluorochloridone        | Pentachlorobenzene     |
|----------------------|------------------------------|-------------------------|------------------------|
| Acephate             | Cyproconazole                | Fluorodifen             | Pentachlorothioanisole |
| Acetamiprid          | Cyprodinil                   | Flusilazole             | Permethrin (Total)     |
| Acetochlor           | Cyromazine                   | Fluvalinate             | Permethrin cis         |
| Acibenzolar-s-methyl | Dacthal (chlorthal-dimethyl) | Folpet                  | Permethrin trans       |
| Acrinathrin          | delta-HCH (delta-lindane)    | Fonofos                 | Phenthoate             |
| Alachlor             | Deltamethrin                 | Heptachlor              | Phorate                |
| Aldicarb             | delta-trans-allethrin        | Heptachlor epoxide endo | Phorate sulfone        |
| Aldicarb sulfone     | Demeton-O                    | Heptachlor epoxide exo  | Phosalone              |
| Aldicarb sulfoxide   | Demeton-S                    | Heptenophos             | Phosmet                |
| Aldrin               | Demeton-S-methyl             | Hexachlorobenzene       | Phosphamidon           |
| Allidochlor          | Des-ethyl Atrazine           | Hexaconazole            | Piperonyl butoxide     |
| Ametryn              | Desmetryn                    | Hexazinone              | Pirimicarb             |
| Aminocarb            | Di-allate                    | Hexythiazox             | Pirimiphos-ethyl       |
| Aramite              | Dialofos                     | Imazalil                | Pirimiphos-methyl      |
| Aspon                | Diazinon                     | Indoxacarb              | Prochloraz             |
| Atrazine             | Diazinon o analogue          | lodofenphos             | Procymidone            |
| Azinphos-ethyl       | Dichlobenil                  | Iprobenfos              | Profenofos             |
| Azinphos-methyl      | Dichlofenthion               | Iprodione               | Profluralin            |
| Azoxystrobin         | Dichlofluanid                | lsazophos               | Promecarb              |
| Benalaxyl            | Dichloran                    | Isofenphos              | Prometon               |
| Bendiocarb           | Dichlormid                   | Isofenphos-methyl       | Prometryne             |
| Benfluralin          | Dichlorvos                   | Isoprocarb              | Pronamide              |
| Benodanil            | Diclobutrazole               | Isopropalin             | Propachlor             |
| Bensulide            | Diclofop-methyl              | Isoprothiolane          | Propamocarb            |
| Benzoylprop-ethyl    | Dicofol                      | Kresoxim-methyl         | Propanil               |
| BHC Alpha            | Dicrotophos                  | Leptophos               | Propargite             |
| BHC beta             | Dieldrin                     | Lindane (gamma-BHC)     | Propazine              |
| Bifenox              | Diethatyl-ethyl              | Linuron                 | Propetamphos           |
| Bifenthrin           | Dimethachlor                 | Malaoxon                | Propham                |
| Biphenyl             | Dimethoate                   | Malathion               | Propiconazole          |
| Boscalid             | Dimethomorph                 | Mecarbam                | Propoxur               |
| Bromacil             | Dinitramine                  | Metaconazole            | Propyzamide            |
| Bromophos            | Dioxacarb                    | Metalaxyl               | Prothiophos            |
| Bromophos-ethyl      | Dioxathion                   | Metazachlor             | Pymetrozine            |
| Bromopropylate       | Diphenamid                   | Methamidophos           | Pyracarbolid           |
| Bufencarb            | Diphenylamine                | Methidathion            | Pyraclostrobin         |
| Bupirimate           | Disulfoton                   | Methiocarb              | Pyrazophos             |
| Buprofezin           | Disulfoton sulfone           | Methiocarb Sulfoxide    | Pyrethrin              |



| Butachlor             | DNOC                  | Methomyl                 | Pyridaben         |
|-----------------------|-----------------------|--------------------------|-------------------|
| Butralin              | Edifenphos            | Methoprotryne            | Pyridalyl         |
| Butylate              | Endosulfan alpha      | Methoxychlor             | Pyriproxyfen      |
| Captafol              | Endosulfan beta       | Methyl - trithion        | Quinalphos        |
|                       |                       | Methyl Pentachlorophenyl |                   |
| Captan                | Endosulfan sulfate    | sulphide                 | Quinomethionate   |
| Carbaryl              | Endosulfan Total      | Metobromuron             | Quintozene        |
| Carbendazim           | Endrin                | Metolachlor              | Schradan          |
| Carbetamide           | EPN                   | Metribuzin               | Secbumeton        |
| Carbofenthion         | EPTC                  | Mevinphos-cis            | Simazine          |
| Carbofuran            | Erbon                 | Mevinphos-trans          | Simetryn          |
| Carbosulfan           | Esfenvalerate         | Mexacarbate              | Spinosyn A        |
| Carboxin              | Etaconazole           | Mirex                    | Sulfallate        |
| Chlorbenside          | Ethalfluralin         | Molinate                 | Sulfotep          |
| Chlorbromuron         | Ethion                | Monocrotophos            | Sulprophos        |
| Chlorbufam            | Ethofumesate          | Monolinuron              | тсмтв             |
| Chlordane             | Ethoprophos           | Myclobutanil             | Tebuconazole      |
| Chlordane cis         | Ethylan               | Naled                    | Tebufenozide      |
| Chlordane trans       | Etridiazole           | Nitralin                 | Tecnazene         |
| Chlordimeform         | Etrimfos              | Nitrapyrin               | Terbacil          |
| Chlorfenapyr          | Fenamidone            | Nitrofen                 | Terbufos          |
| Chlorfenson           | Fenamiphos            | Nitrothal-isopropyl      | Terbumeton        |
| Chlorfenvinphos (e+z) | Fenamiphos sulfone    | Norflurazon              | Terbutryne        |
| Chlorflurenol-methyl  | Fenamiphos sulfoxide  | Nuarimol                 | Terbutylazine     |
| Chloridazon           | Fenarimol             | o,p'-DDD (o,p'-TDE)      | Tetrachlorvinphos |
| Chlormephos           | Fenbuconazole         | o,p'-DDE                 | Tetradifon        |
| Chlorobenzilate       | Fenchlorphos (Ronnel) | o,p'-DDT                 | Tetraiodoethylene |
| Chloroneb             | Fenfuram              | Octhilinone              | Tetramethrin      |
| Chloropropylate       | Fenhexamid            | Omethoate                | Tetrasul          |
| Chlorothalonil        | Fenitrothion          | Ortho-phenylphenol       | Thiabendazole     |
| Chlorpropham          | Fenoxycarb            | Oxadiazon                | Thiobencarb       |
| Chlorpyrifos          | Fenpropathrin         | Oxadixyl                 | Thiodicarb        |
| Chlorpyrifos-methyl   | Fenpropimorph         | Oxamyl                   | Tolclofos-methyl  |
| Chlorthiamid          | Fenson                | Oxycarboxin              | Tolyfluanid       |
| Chlorthion            | Fensulfothion         | Oxychlordane             | Toxaphene B       |
| Chlorthiophos         | Fenthion              | Oxydemeton-methyl        | Tralomethrin      |
| Chlozolinate          | Fenthion oxon         | Oxyfluorfen              | Triadimefon       |
| Clomazone             | Fenvalerate           | p,p'-DDD (p,p'-TDE)      | Triadimenol       |
| Coumaphos             | Fipronil              | p,p'-DDE                 | Tri-allate        |
| Crotoxyphos           | Fipronil Desulfinyl   | p,p'-DDT                 | Triazophos        |
| Crufomate             | Fipronil Sulfone      | Paraoxon                 | Tribufos          |
| Cyanazine             | Flamprop-isopropyl    | Parathion                | Tricyclazole      |



| Cyanofenphos                | Flamprop-methyl | Parathion-methyl   | Trifloxystrobin |
|-----------------------------|-----------------|--------------------|-----------------|
| Cyanophos                   | Fluchloralin    | Pebulate           | Triflumizole    |
| Cycloate                    | Flucythrinate   | Penconazole        | Trifluralin     |
| Cyfluthrin (I, II, III, IV) | Fludioxonil     | Pendimethalin      | Vernolate       |
| Cyhalothrin-lambda          | Flufenacet      | Penoxsulam         | Vinclozolin     |
| Cypermethrin                | Flumetralin     | Pentachloroaniline | Zinophos        |

# Table A-4: Analytes included in multi-residue method (with LC-MS/MS) for pesticide residue analysis in fresh fruit and vegetables and processed products (PESTICIDES-LC)

| 3-hydroxyCarbofuran    | Dimethametryn          | Indoxacarb           | Pyraclostrobin   |
|------------------------|------------------------|----------------------|------------------|
| Abamectin (F)          | Dimethenamid           | Ipconazole (F)       | Pyraflufen-ethyl |
| Acetamiprid (F)        | Dimethomorph           | Iprovalicarb         | Pyridalyl        |
| Acetochlor             | Dimetilan (F)          | Isocarbamide         | Pyridaphenthion  |
| Aclonifen              | Dimoxystrobin (F)      | Isoprocarb           | Pyridate         |
| Aldicarb               | Diniconazole           | Isoproturon (F)      | Pyrifenox        |
| Aldicarb Sulfone       | Dinotefuran (F)        | Isoxadifen-ethyl (F) | Pyrimethanil     |
| Aldicarb sulfoxide     | Dioxacarb              | Isoxathion           | Pyriproxyfen     |
| Anilofos (F)           | Dipropetryn            | Linuron              | Pyroquilon (F)   |
| Azaconazole            | Diuron                 | Mandipropamid (F)    | Pyroxsulam (F)   |
| Benomyl                | Dodemorph              | Mepanipyrim          | Quinoxyfen       |
| Benoxacor              | Emamectin B1a          | Mephosfolan          | Quizalofop       |
| Bitertanol             | Epoxiconazole          | Methabenzthiazuron   | Quizalofop-ethyl |
| Boscalid (F)           | Ethiofencarb           | Methidathion         | Schradan         |
| Bromuconazole          | Ethiofencarb sulfone   | Methiocarb           | Simeconazole (F) |
| Butafenacil            | Ethiofencarb sulfoxide | Methiocarb sulfone   | Spinosyn A       |
| Butocarboxim (F)       | Ethiprole (F)          | Methiocarb Sulfoxide | Spinosyn D       |
| Butocarboxim sulfoxide | Ethirimol              | Methomyl             | Spirodiclofen    |
| Cadusafos              | Ethoprop               | Methoxyfenozide      | Spiromesifen     |
| Carbaryl               | Ethoprophos            | Metolcarb            | Spirotetramat    |
| Carbendazim            | Etofenprox             | Metosulam (F)        | Spiroxamine      |
| Carbetamide (F)        | Etoxazole              | Metoxuron            | Sulfentrazone    |
| Carbofuran             | Famoxadone (F)         | Mexacarbate          | Tebufenozide     |
| Carbosulfan            | Fenamidone             | Molinate             | Tebufenpyrad     |
| Carfentrazone-ethyl    | Fenazaquin             | Monocrotophos        | Tebupirimfos     |
| Chlorantraniliprole    | Fenhexamid             | Napropamide          | Tepraloxydim     |
| Chlorbromuron          | Fenoxanil              | Naptalam             | Tetraconazole    |
| Chloridazon            | Fenoxycarb (F)         | Neburon              | Thiabendazole    |
| Chlorimuron-ethyl      | Fenpropidin            | Nicotine (F)         | Thiacloprid      |
| Chloroxuron            | Fenpropimorph          | Norflurazon (F)      | Thiamethoxam     |



| Chlorthiamid               | Fenpyroximate         | Novaluron (F)        | Thiazopyr           |
|----------------------------|-----------------------|----------------------|---------------------|
| Chlortoluron               | Fentrazamide          | Ofurace              | Thiodicarb          |
| Clodinafop-propargyl       | Fluazifop-butyl       | Oxadixyl             | Thiofanox           |
| Clofentezine (F)           | Flubendiamide (F)     | Oxamyl               | Thiofanox sulfone   |
| Cloquintocet-mexyl         | Flucarbazone-sodium   | Oxamyl-oxime         | Thiofanox sulfoxide |
| Clothianidin               | Fluoxastrobin (F)     | Oxycarboxin          | Thiophanate-methyl  |
| Cyanofenphos               | Fluroxypyr (F)        | Paclobutrazol        | Tolfenpyrad (F)     |
| Cyazofamid (F)             | Flutolanil            | Pencycuron           | Tolyfluanid         |
| Cycloxydim                 | Flutriafol            | Penoxsulam           | Tralkoxydim         |
| Cycluron                   | Forchlorfenuron       | Picolinafen          | Trichlorfon         |
| Cyromazine                 | Formetanate           | Picoxystrobin        | Tricyclazole        |
| Demeton-s-methyl sulfone   | Fosthiazate           | Piperophos           | Trietazine          |
| Demeton-s-methyl sulfoxide | Fuberidazole          | Pretilachlor         | Trifloxysulfuron    |
| Desmedipham                | Furathiocarb          | Primisulfuron-methyl | Triforine           |
| Dialofos (F)               | Griseofulvin (F)      | Prodiamine           | Trimethacarb        |
| Diclocymet                 | Haloxyfop             | Propamocarb          | Zinophos            |
| Diethofencarb              | Imazamethabenz-methyl | Propoxur             | Zoxamide            |
| Difenoconazole             | Imidacloprid          | Pymetrozine          |                     |

(F) = Fresh fruit and vegetables only

# Table A-5: Analytes included in multi-residue method (with GC-MS/MS detection) for pesticide residue analysis in nuts and seeds (PESTICIDES-N-GC)

| Acephate             | Cyprazine                    | Flumetralin             | Penconazole            |
|----------------------|------------------------------|-------------------------|------------------------|
| Acibenzolar-s-methyl | Cyproconazole                | Fluorochloridone        | Pendimethalin          |
| Acrinathrin          | Cyprodinil                   | Fluorodifen             | Pentachloroaniline     |
| Alachlor             | Dacthal (chlorthal-dimethyl) | Flusilazole             | Pentachlorothioanisole |
| Aldrin               | delta-HCH (delta-lindane)    | Fluvalinate             | Permethrin cis         |
| Allidochlor          | Deltamethrin                 | Folpet                  | Permethrin trans       |
| Ametryn              | delta-trans-allethrin        | Fonofos                 | Phenthoate             |
| Aminocarb            | Demeton-O                    | Heptachlor              | Phorate                |
| Aramite              | Demeton-S                    | Heptachlor epoxide endo | Phorate sulfone        |
| Aspon                | Demeton-S-methyl             | Heptenophos             | Phosalone              |
| Atrazine             | Des-ethyl atrazine           | Hexachlorobenzene       | Phosmet                |
| Azinphos-ethyl       | Desmetryn                    | Hexaconazole            | Phosphamidon           |
| Azinphos-methyl      | Di-allate                    | Hexazinone              | Phthalimide            |
| Azoxystrobin         | Diazinon                     | Hexythiazox             | Piperonyl butoxide     |
| Benalaxyl            | Diazinon o analogue          | Imazalil                | Pirimicarb             |
| Bendiocarb           | Dichlobenil                  | Iodofenphos             | Pirimiphos-ethyl       |
| Benfluralin          | Dichlofenthion               | Iprobenfos              | Pirimiphos-methyl      |
| Benodanil            | Dichlofluanid                | Iprodione               | Prochloraz             |



| Benzoylprop-ethyl        | Dichloran             | Isazophos           | Procymidone       |
|--------------------------|-----------------------|---------------------|-------------------|
| BHC Alpha                | Dichlormid            | Isofenphos          | Profenofos        |
| BHC beta                 | Dichlorvos            | Isofenphos-methyl   | Profluralin       |
| Bifenox                  | Diclobutrazole        | Isopropalin         | Promecarb         |
| Bifenthrin               | Diclofop-methyl       | Isoprothiolane      | Prometon          |
| Biphenyl                 | Dicofol               | Kresoxim-methyl     | Prometryne        |
| Bromacil                 | Dicrotophos           | Leptophos           | Pronamide         |
| Bromophos                | Dieldrin              | Lindane (gamma-BHC) | Propachlor        |
| Bromophos-ethyl          | Diethatyl-ethyl       | Linuron             | Propanil          |
| Bromopropylate           | Dimethachlor          | Malaoxon            | Propargite        |
| Bupirimate               | Dimethoate            | Malathion           | Propazine         |
| Buprofezin               | Dinitramine           | Mecarbam            | Propetamphos      |
| Butachlor                | Dioxathion            | Metalaxyl           | Propham           |
| Butralin                 | Diphenamid            | Metazachlor         | Propiconazole     |
| Butylate                 | Diphenylamine         | Metconazole         | Prothiophos       |
| Captafol                 | Disulfoton            | Methamidophos       | Pyracarbolid      |
| Captan                   | Disulfoton sulfone    | Methidathion        | Pyrazophos        |
| Captan metabolite (THPI) | Edifenphos            | Methoprotryne       | Pyridaben         |
| Carbetamide              | Endosulfan alpha      | Methoxychlor        | Quinalphos        |
| Carbofenthion            | Endosulfan beta       | Methyl - trithion   | Quinomethionate   |
| Carboxin                 | Endosulfan sulfate    | Metobromuron        | Quintozene        |
| Chlorbenside             | Endrin                | Metolachlor         | Secbumeton        |
| Chlorbromuron            | EPN                   | Metribuzin          | Simazine          |
| Chlorbufam               | EPTC                  | Mevinphos-cis       | Simetryn          |
| Chlordane cis            | Erbon                 | Mevinphos-trans     | Sulfallate        |
| Chlordane trans          | Esfenvalerate         | Mexacarbate         | Sulfotep          |
| Chlordimeform            | Etaconazole           | Mirex               | Sulprophos        |
| Chlorfenapyr             | Ethalfluralin         | Monocrotophos       | ТСМТВ             |
| Chlorfenson              | Ethion                | Monolinuron         | Tebuconazole      |
| Chlorfenvinphos (e+z)    | Ethofumesate          | Myclobutanil        | Tecnazene         |
| Chlorflurenol-methyl     | Ethoprophos           | Naled               | Terbacil          |
| Chloridazon              | Ethylan               | Nitralin            | Terbufos          |
| Chlormephos              | Etridiazole           | Nitrapyrin          | Terbumeton        |
| Chlorobenzilate          | Etrimfos              | Nitrofen            | Terbutryne        |
| Chloroneb                | Fenamiphos            | Nitrothal-isopropyl | Terbutylazine     |
| Chloropropylate          | Fenamiphos sulfoxide  | Norflurazon         | Tetrachlorvinphos |
| Chlorothalonil           | Fenarimol             | Nuarimol            | Tetradifon        |
| Chlorpropham             | Fenbuconazole         | o,p'-DDD (o,p'-TDE) | Tetraiodoethylene |
| Chlorpyrifos             | Fenchlorphos (Ronnel) | o,p'-DDT            | Tetramethrin      |
| Chlorpyrifos-methyl      | Fenfuram              | Octhilinone         | Tetrasul          |
| Chlorthiamid             | Fenitrothion          | Omethoate           | Thiobencarb       |
| Chlorthion               | Fenpropathrin         | Ortho-phenylphenol  | Tolclofos-methyl  |



| Chlorthiophos               | Fenpropimorph      | Oxadiazon           | Tolyfluanid     |
|-----------------------------|--------------------|---------------------|-----------------|
| Chlozolinate                | Fenson             | Oxadixyl            | Triadimefon     |
| Clomazone                   | Fensulfothion      | Oxycarboxin         | Triadimenol     |
| Coumaphos                   | Fenthion           | Oxychlordane        | Tri-allate      |
| Crotoxyphos                 | Fenvalerate        | Oxyfluorfen         | Triazophos      |
| Crufomate                   | Fipronil           | p,p'-DDD (p,p'-TDE) | Tribufos        |
| Cyanazine                   | Fipronil sulfone   | p,p'-DDE            | Tricyclazole    |
| Cyanophos                   | Flamprop-isopropyl | p,p'-DDT            | Trifloxystrobin |
| Cycloate                    | Flamprop-methyl    | Paraoxon            | Triflumizole    |
| Cyfluthrin (I, II, III, IV) | Fluchloralin       | Parathion           | Trifluralin     |
| Cyhalothrin-lambda          | Fludioxonil        | Parathion-methyl    | Vernolate       |
| Cypermethrin                | Flufenacet         | Pebulate            | Vinclozolin     |

# Table A-6: Analytes included in multi-residue method (with LC-MS/MS detection) for pesticide residue analysis in nuts and seeds (PESTICIDES-N-LC)

| 3-hydroxyCarbofuran    | Dimethomorph           | Ipconazole           | Pymetrozine      |
|------------------------|------------------------|----------------------|------------------|
| Abamectin              | Dimetilan              | Iprovalicarb         | Pyraclostrobin   |
| Acetamiprid            | Dimoxystrobin          | Isocarbamide         | Pyraflufen-ethyl |
| Acetochlor             | Diniconazole           | Isoprocarb           | Pyridalyl        |
| Aldicarb               | Dinotefuran            | Isoproturon          | Pyridaphenthion  |
| Aldicarb Sulfone       | Dioxacarb              | Isoxadifen-ethyl     | Pyridate         |
| Aldicarb sulfoxide     | Dipropetryn            | Isoxathion           | Pyrifenox        |
| Anilofos               | Diuron                 | Linuron              | Pyrimethanil     |
| Azaconazole            | Dodemorph              | Mandipropamid        | Pyriproxyfen     |
| Benoxacor              | Emamectin B1a          | Mepanipyrim          | Pyroquilon       |
| Bitertanol             | Epoxiconazole          | Mephosfolan          | Pyroxsulam       |
| Boscalid               | Ethiofencarb           | Methabenzthiazuron   | Quinoxyfen       |
| Bromuconazole          | Ethiofencarb sulfone   | Methidathion         | Quizalofop       |
| Butafenacil            | Ethiofencarb sulfoxide | Methiocarb           | Quizalofop-ethyl |
| Butocarboxim           | Ethiprole              | Methiocarb sulfone   | Schradan         |
| Butocarboxim sulfoxide | Ethirimol              | Methiocarb Sulfoxide | Simeconazole     |
| Cadusafos              | Ethoprop               | Methomyl             | Spinosyn A+D     |
| Carbaryl               | Etofenprox             | Methoxyfenozide      | Spirodiclofen    |
| Carbendazim            | Etoxazole              | Metolcarb            | Spiromesifen     |
| Carbetamide            | Famoxadone             | Metosulam            | Spirotetramat    |
| Carbofuran             | Fenamidone             | Metoxuron            | Spiroxamine      |
| Carbosulfan            | Fenazaquin             | Mexacarbate          | Sulfentrazone    |
| Carfentrazone-ethyl    | Fenhexamid             | Molinate             | Tebufenozide     |
| Chlorantraniliprole    | Fenoxanil              | Monocrotophos        | Tebufenpyrad     |
| Chlorbromuron          | Fenoxycarb             | Napropamide          | Tebupirimfos     |



| Chloridazon                | Fenpropidin           | Naptalam             | Tepraloxydim        |
|----------------------------|-----------------------|----------------------|---------------------|
| Chlorimuron-ethyl          | Fenpropimorph         | Neburon              | Tetraconazole       |
| Chloroxuron                | Fenpyroximate         | Nicotine             | Thiabendazole       |
| Chlortoluron               | Fentrazamide          | Norflurazon          | Thiacloprid         |
| Clodinafop-propargyl       | Fluazifop-butyl       | Novaluron            | Thiamethoxam        |
| Clofentezine               | Flubendiamide         | Ofurace              | Thiazopyr           |
| Cloquintocet-mexyl         | Flucarbazone-sodium   | Oxadixyl             | Thiofanox           |
| Clothianidin               | Fluoxastrobin         | Oxamyl               | Thiofanox sulfone   |
| Cyanofenphos               | Fluroxypyr            | Oxamyl-oxime         | Thiofanox sulfoxide |
| Cyazofamid                 | Flutolanil            | Oxycarboxin          | Thiophanate-methyl  |
| Cycloxydim                 | Flutriafol            | Paclobutrazol        | Tolfenpyrad         |
| Cycluron                   | Forchlorfenuron       | Pencycuron           | Tralkoxydim         |
| Cyromazine                 | Formetanate           | Penoxsulam           | Trichlorfon         |
| Demeton-s-methyl sulfone   | Fosthiazate           | Picolinafen          | Tricyclazole        |
| Demeton-s-methyl sulfoxide | Fuberidazole          | Picoxystrobin        | Trietazine          |
| Desmedipham                | Furathiocarb          | Piperophos           | Trifloxysulfuron    |
| Dialofos                   | Griseofulvin          | Pretilachlor         | Triforine           |
| Diclocymet                 | Haloxyfop             | Primisulfuron-methyl | Trimethacarb        |
| Diethofencarb              | Imazamethabenz-methyl | Prodiamine           | Zinophos            |
| Difenoconazole             | Imidacloprid          | Propamocarb          | Zoxamide            |
| Dimethametryn              | Indoxacarb            | Propoxur             |                     |

# Table A-7: Analytes included in multi-residue method (with GC-MS/MS detection) for pesticide residue analysis in meat and poultry (PESTICIDES-M)

| 3-hydroxyCarbofuran           | Clothianidin                | Fluridone                | Oxamyl              |
|-------------------------------|-----------------------------|--------------------------|---------------------|
|                               |                             | Fluroxypyr-1-methylhepyl |                     |
| Acephate                      | Coumaphos                   | ester                    | Oxychlordane        |
| Acetamiprid                   | Cyfluthrin (I, II, III, IV) | Fluvalinate              | p,p'-DDD (p,p'-TDE) |
| Alachlor                      | Cyhalothrin-lambda          | Fonofos                  | p,p'-DDE            |
| Alachlor metabolite(2-chloro- |                             |                          |                     |
| 2',6'-diethylanilide)         | Cypermethrin                | Heptachlor               | p,p'-DDT            |
| Aldicarb                      | delta-HCH (delta-lindane)   | Heptachlor epoxide endo  | Parathion           |
| Aldicarb Sulfone              | Deltamethrin                | Heptachlor epoxide exo   | Parathion-methyl    |
| Aldicarb sulfoxide            | Des-ethyl Atrazine          | Hexachlorobenzene        | Permethrin (Total)  |
| Aldrin                        | Diazinon                    | Hexazinone               | Phorate             |
| Aminocarb                     | Dichlofenthion              | Imazalil                 | Phorate sulfone     |
| Atrazine                      | Dichlorvos                  | Imidacloprid             | Piperonyl butoxide  |
| Azinphos-methyl               | Dicofol                     | Indoxacarb               | Profenofos          |
| Azoxystrobin                  | Dieldrin                    | Isoprocarb               | Promecarb           |
| Bendiocarb                    | Difenoconazole              | Lindane (gamma-BHC)      | Pronamide           |



| Benoxacor             | Diflubenzuron         | Linuron              | Propachlor        |
|-----------------------|-----------------------|----------------------|-------------------|
| BHC Alpha             | Dimethoate            | Malathion            | Propanil          |
| BHC beta              | Dioxacarb             | Metalaxyl            | Propetamphos      |
| Bifenthrin            | Disulfoton            | Methidathion         | Propiconazole     |
| Boscalid              | Diuron                | Methiocarb           | Propoxur          |
| Bufencarb             | Endosulfan alpha      | Methiocarb sulfone   | Pyraclostrobin    |
| Buprofezin            | Endosulfan beta       | Methiocarb Sulfoxide | Pyridaben         |
| Carbaryl              | Endosulfan sulfate    | Methomyl             | Pyriproxyfen      |
| Carbofenthion         | Endrin                | Methoxychlor         | Quizalofop-ethyl  |
| Carbofuran            | Endrin Ketone         | Methoxyfenozide      | Resmethrin        |
| Carbosulfan           | Esfenvalerate         | Metolachlor          | Simazine          |
| Carboxin              | Ethion                | Metribuzin           | Tebufenozide      |
| Carfentrazone-ethyl   | Ethofumesate          | Mirex                | Tefluthrin        |
| Chlordane             | Fenchlorphos (Ronnel) | Myclobutanil         | Terbufos          |
| Chlordane cis         | Fenoxaprop-ethyl      | Nonachlor cis        | Tetrachlorvinphos |
| Chlordane trans       | Fenpropathrin         | Nonachlor trans      | Tetraconazole     |
| Chlorfenvinphos (e+z) | Fenthion              | Norflurazon          | Thiabendazole     |
| Chloroneb             | Fenvalerate           | o,p'-DDD (o,p'-TDE)  | Thiamethoxam      |
| Chlorpropham          | Fipronil              | o,p'-DDE             | Thiobencarb       |
| Chlorpyrifos          | Fipronil Desulfinyl   | o,p'-DDT             | Tribufos          |
| Chlorpyrifos-methyl   | Fipronil Sulfide      | Ortho-phenylphenol   | Trifloxystrobin   |
| Clofentezine          |                       |                      |                   |

# Table A-8: Analytes included in multi-residue method (with GC/MS/MS & GC/MS detection) for organochloride pesticide residue analysis in dairy and egg (PESTICIDES-OC)

| Alachlor                                               | Dicofol                         | Heptachlor epoxide endo | Oxychlordane         |
|--------------------------------------------------------|---------------------------------|-------------------------|----------------------|
| Alachlor metabolite(2-chloro-<br>2',6'-diethylanilide) | Dieldrin                        | Heptachlor epoxide exo  | p,p'-DDD or p,p'-TDE |
| Aldrin                                                 | Diethylacetanilide Chloride (D) | Hexachlorobenzene       | p,p'-DDE             |
| BHC Alpha                                              | Endosulfan alpha                | Lindane or gamma-BHC    | p,p'-DDT             |
| BHC beta                                               | Endosulfan beta                 | Methoxychlor            | Permethrin (D)       |
| Chlordane (D)                                          | Endosulfan sulfate              | Mirex                   | Permethrin cis       |
| Chlordane cis                                          | Endosulfan Total (D)            | Myclobutanil            | Permethrin trans     |
| Chlordane trans                                        | Endrin                          | o,p'-DDD or o,p'-TDE    | Quizalofop-ethyl     |
| Chlorpyrifos                                           | Fenchlorphos or Ronnel          | o,p'-DDE                | Tefluthrin           |
| Cyfluthrin I,II,III,IV                                 | Heptachlor                      | o,p'-DDT                |                      |

(D) = Dairy only



## Table A-9: Analytes included in selective multi-residue methods for veterinary drugs in specific food commodity

#### groups

| Drogram                      | Food Commo                    | Food Commodity                                                                                                                                                                                                                                                                         |  |  |  |
|------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Program                      | Group                         | Analytes                                                                                                                                                                                                                                                                               |  |  |  |
| β-agonists                   | Dairy<br>Egg<br>Meat          | Brombuterol, Cimaterol, Clenbuterol, Clenpenterol, Clenproperol,<br>Fenoterol, Formoterol, Free Ractopamine, Free Zilpaterol, Isoxsuprine,<br>Mabuterol, Mapenterol, Metaproterenol, OH-Me-Clenbuterol,<br>Ractopamine, Ritodrine, Salbutamol, Terbutaline, Tulobuterol,<br>Zilpaterol |  |  |  |
| Benzimidazoles               | Dairy<br>Egg<br>Meat          | 2-aminosulfone albendazole, 5-hydroxythiabendazole, Albendazole,<br>Albendazole Sulfone, Albendazole Sulfoxide, Cambendazole,<br>Carbendazim, Fenbendazole, Fenbendazole Sulfone, Flubendazole,<br>Levamisole, Mebendazole, Oxfendazole, Oxibendazole, Thiabendazole                   |  |  |  |
| Carbadox /<br>Desoxycarbadox | Meat                          | Desoxycarbadox, Methylenequinoxaline-2-carboxylic acid,<br>Quinoxaline-2-carboxylic acid                                                                                                                                                                                               |  |  |  |
| Ceftiofur                    | Dairy<br>Egg<br>Meat          | Ceftiofur, Desfuroyl ceftiofur Cystine Disulfide                                                                                                                                                                                                                                       |  |  |  |
| Coccidiostats                | Egg<br>Meat                   | Amprolium, Buquinolate, Clopidol, Decoquinate, Diclazuril,<br>Dinitolmide, Halofuginone, Lasalocid, Maduramicin, Monensin,<br>Narasin, Nicarbazin, Robenidine, Salinomycin, Toltrazuril Sulfone                                                                                        |  |  |  |
| Dipyrone                     | Dairy<br>Meat                 | 4-aminoantipyrine, 4-formylaminoantipyrine, 4-<br>methylaminoantipyrine, Dipyrone                                                                                                                                                                                                      |  |  |  |
| Endectocides                 | Dairy<br>Egg<br>Meat          | Abamectin, Doramectin, Emamectin B1a, Eprinomectin, Ivermectin, Moxidectin                                                                                                                                                                                                             |  |  |  |
| Fluoroquinolones             | Dairy<br>Egg<br>Honey<br>Meat | Ciprofloxacin, Danofloxacin, Desethylene-ciprofloxacin, Difloxacin,<br>Enoxacin, Enrofloxacin, Flumequine, Marbofloxacin, Nalidixic Acid,<br>Norfloxacin, Ofloxacin, Orbifloxacin, Oxolinic Acid, Pipemidic acid,<br>Sarafloxacin, Sparfloxacin                                        |  |  |  |
| Gestagens                    | Dairy<br>Meat                 | Chlormadinone Acetate, Megestrol Acetate, Melengestrol Acetate                                                                                                                                                                                                                         |  |  |  |
| Glycosides                   | Dairy<br>Egg<br>Honey<br>Meat | Amikacin, Apramycin, Dihydrostreptomycin, Gentamicin, Hygromycin<br>Kanamycin, Neomycin, Spectinomycin, Streptomycin, Tobramycin                                                                                                                                                       |  |  |  |
| Macrolides                   | Dairy<br>Honey<br>Meat        | Clindamycin, CP 60,300 (as Tulathromycin equivalents), Erythromycin,<br>Josamycin, Lincomycin, Oleandomycin, Pirlimycin, Spiramycin,<br>Tilmicosin, Tylosin                                                                                                                            |  |  |  |
| Macrolides /<br>Lincosamides | Dairy<br>Egg<br>Honey<br>Meat | Clindamycin, CP 60,300 (as Tulathromycin equivalents), Desmycosin,<br>Erythromycin, Gamithromycin, Josamycin, Lincomycin, Neospiramycin,<br>Oleandomycin, Pirlimycin, Spiramycin, Tildipirosin, Tilmicosin,<br>Tulathromycin, Tylosin, Tylvalosin                                      |  |  |  |



Canadian Food Inspection Agency

Agence canadienne d'inspection des aliments

|                                        | Food Commodity        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Program                                | Group                 | Analytes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Multi-Class Drugs                      | Meat                  | Amoxicillin, Ampicillin, Amprolium, Cefazolin, Cephalexin,<br>Chloramphenicol, Chlortetracycline, Ciprofloxacin, Clindamycin,<br>Clopidol, Cloxacillin, Danofloxacin, Desacetyl Cephapirin, Desethylene-<br>ciprofloxacin, Desfuroyl ceftiofur Cystine Disulfide, Dicloxacillin,<br>Doxycycline, Enrofloxacin, Erythromycin, Fenbendazole, Florfenicol,<br>Flunixin, Gamithromycin, Josamycin, Ketoprofen, Lincomycin,<br>Meloxicam, Nafcillin, neosaxitoxin, Neospiramycin, Norfloxacin,<br>Novobiocin, Ofloxacin, Oleandomycin, Oxacillin, Oxytetracycline,<br>Penicillin G, Pirlimycin, Sarafloxacin, Spiramycin, Sulfabenzamide,<br>Sulfacetamide, Sulfachloropyridazine, Sulfadiazine, Sulfadimethoxine,<br>Sulfadoxine, Sulfathoxypyridazine, Sulfaguanidine, Sulfamerazine,<br>Sulfamethazine, Sulfathiazole, Tetracycline, Thiamphenicol, Tiamulin<br>Hydrogen Fumarate, Tilmicosin, Trimethoprim, Tulathromycin, Tylosin |
| NSAIDs                                 | Dairy                 | 5-Hydroxyflunixin, Diclofenac, Flunixin, Ibuprofen, Ketoprofen,<br>Mefenamic Acid, Meloxicam, Naproxen, Phenylbutazone, Tolfenamic<br>Acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| NSAID/Hormone/Steroid/<br>Tranquilizer | Meat                  | 19-Nortestosterone, 20-Dihydroprednisolone, 20-Dihydroprednisone,<br>Acepromazine, alpha Trenbolone, Altrenogest, Azaperol, Azaperone,<br>Beclomethasone, beta Trenbolone, Betamethasone, Boldenone,<br>Butorphanol, Carazolol, Carprofen, Chlorpromazine, Detomidine,<br>Dexamethasone, Dianabol, Diclofenac, Epi-19-nortestosterone, Epi-<br>testosterone, Etodolac, Firocoxib, Flumethasone, Flunixin,<br>Haloperidol, Ketoprofen, Mefenamic Acid, Meloxicam,<br>Methylprednisolone, Naproxen, Niflumic Acid, Oxyphenbutazone,<br>Phenylbutazone, Prednisolone, Prednisone, Progesterone,<br>Propionylpromazine, Testosterone, Tolfenamic Acid, Triamcinolone,<br>Acetonide, Vedaprofen, Xylazine                                                                                                                                                                                                                              |
| Phenylbutazone/<br>Diclofenac          | Meat                  | Diclofenac, Oxyphenbutazone, Phenylbutazone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Steroids                               | Dairy<br>Meat         | 19-Nortestosterone, 20-Dihydroprednisolone, 20-Dihydroprednisone,<br>alpha Trenbolone, Beclomethasone, beta Trenbolone,<br>Betamethasone, Boldenone, Carprofen, Dexamethasone, Dianabol,<br>Epi-19-nortestosterone, Epi-testosterone, Etodolac, Flumethasone,<br>Flunixin, Ketoprofen, Mefenamic Acid, Meloxicam,<br>Methylprednisolone, Naproxen, Niflumic Acid, Prednisolone,<br>Progesterone, Testosterone, Tolfenamic Acid, Triamcinolone<br>Acetonide, Vedaprofen                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sulfonamides                           | Dairy<br>Egg<br>Honey | Dapsone, Ormetoprim, Sulfabenzamide, Sulfacetamide,<br>Sulfachloropyridazine, Sulfadiazine, Sulfadimethoxine, Sulfadoxine,<br>Sulfaethoxypyridazine, Sulfaguanidine, Sulfamerazine, Sulfameter,<br>Sulfamethazine, Sulfamethizole, Sulfamethoxazole,<br>Sulfamethoxypyridazine, Sulfamonomethoxine, Sulfamoxole,<br>Sulfanilamide, Sulfaphenazole, Sulfapyridine, Sulfaquinoxaline,<br>Sulfathiazole, Sulfisomidine, Sulfisoxazole, Trimethoprim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



| Program             | Food Commodity                | Food Commodity                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|---------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| riogram             | Group                         | Analytes                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Sulfonamides-M      | Meat                          | Dapsone, Ormetoprim, Sulfabenzamide, Sulfacetamide,<br>Sulfachloropyridazine, Sulfadiazine, Sulfadimethoxine, Sulfadoxine,<br>Sulfaethoxypyridazine, Sulfaguanidine, Sulfamerazine, Sulfameter,<br>Sulfamethazine, Sulfamethizole, Sulfamethoxazole,<br>Sulfamethoxypyridazine, Sulfamonomethoxine, Sulfamoxole,<br>Sulfanilamide, Sulfaphenazole, Sulfapyridine, Sulfaquinoxaline,<br>Sulfathiazole, Sulfisomidine, Sulfisoxazole, Trimethoprim |  |  |
| Tetracyclines       | Dairy<br>Egg<br>Honey<br>Meat | Chlortetracycline, Doxycycline, Epi-Chlortetracycline, Epi-<br>Oxytetracycline, Epi-Tetracycline, Oxytetracycline, Tetracycline                                                                                                                                                                                                                                                                                                                  |  |  |
| Thyreostats         | Dairy<br>Egg<br>Meat          | Mercaptobenzimidazole, Methylthiouracil, Phenylthiouracil, Propylthiouracil, Tapazole, Thiouracil                                                                                                                                                                                                                                                                                                                                                |  |  |
| Trenbolone Acetate  | Meat                          | alpha Trenbolone, beta Trenbolone                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Zeranol / Stilbenes | Dairy<br>Meat                 | Dienestrol, Diethylstilbestrol, Hexestrol, Taleranol, Zearalanone,<br>Zearalenol – Alpha, Zearalenol – Beta, Zearalenone, Zeranol                                                                                                                                                                                                                                                                                                                |  |  |



# Table A-10: Analytes included in multi-residue method for veterinary drugs analysis in dairy and honey (IONOPHORES)

| Lasalocid       | Monensin | Nicarbazin  |
|-----------------|----------|-------------|
| Maduramicin (H) | Narasin  | Salinomycin |

(H) = Honey only

## Table A-11: Analytes included in multi-residue method for veterinary drugs analysis in dairy, egg and meat (IONOPHORES/NICARBAZIN)

| Decoquinate (D) | Maduramicin (D/M) | Narasin    | Salinomycin |
|-----------------|-------------------|------------|-------------|
| Lasalocid       | Monensin          | Nicarbazin |             |

(D) = Meat only; (D/M) = Dairy and meat only

# Table A-12: Analytes included in multi-residue method for veterinary drugs analysis in dairy, egg, honey and meat (NITROFURANS)

| AHD (Nitrofurantoin Metabolite) | AOZ (Furazolidone Metabolite)  | DNSAH (Nifursol metabolite) |
|---------------------------------|--------------------------------|-----------------------------|
| AMOZ (Furaltadone Metabolite)   | SEM (Nitrofurazone metabolite) |                             |

# Table A-13: Analytes included in multi-residue method for veterinary drugs analysis in dairy, egg, honey and meat (MULTI-CLASS ANTIBIOTICS)

| Amoxicillin (D/E/M)           | Enrofloxacin        | Oleandomycin (M)                 | Sulfamethazine                 |
|-------------------------------|---------------------|----------------------------------|--------------------------------|
| Ampicillin (D/E/M)            | Erythromycin        | Oxacillin (D/E/M)                | Sulfamethizole (D/E)           |
|                               |                     |                                  | ,                              |
| Amprolium (M)                 | Fenbendazole (M)    | Oxolinic Acid (D/E)              | Sulfamethoxazole (D/E)         |
| Cefazolin (M)                 | Florfenicol (M)     | Oxytetracycline                  | Sulfamethoxypyridazine (D/E/M) |
| Cephalexin (M)                | Flumequine (D/E)    | Penicillin G (D/E/M)             | Sulfamonomethoxine (D/E)       |
| Chloramphenicol (H/M)         | Flumequine (D)      | Penicillin V (D/E)               | Sulfanilamide (M)              |
| Chlortetracycline             | Flunixin (M)        | Pirlimycin (M)                   | Sulfapyridine (D/E/H)          |
| Ciprofloxacin                 | Fumagillin (H)      | Ractopamine (M)                  | Sulfaquinoxaline (D/E/M)       |
| Clindamycin (M)               | Gamithromycin (M)   | Sarafloxacin                     | Sulfathiazole                  |
| Clopidol (M)                  | Josamycin (D/E/M)   | Spiramycin (D/E/M)               | Sulfisoxazole (D/E)            |
| Cloxacillin (D/E/M)           | Ketoprofen (M)      | Streptomycin (H)                 | Tetracycline                   |
| CP 60, 300 (M)                | Lincomycin          | Sulfabenzamide (M)               | Thiamphenicol (M)              |
| Danofloxacin                  | Marbofloxacin (D/E) | Sulfacetamide (M)                | Tiamulin Hydrogen Fumarate (M) |
| Desacetyl Cephapirin (M)      | Meloxicam (M)       | Sulfachloropyridazine<br>(D/E/M) | Tildipirosin (M)               |
| Desethylene-ciprofloxacin (M) | Monensin (H)        | Sulfadiazine                     | Tilmicosin (D/E/M)             |



| Desfuroyl ceftiofur Cystine<br>Disulfide (M) | Nafcillin (D/E/M)   | Sulfadimethoxine (D/E/M)  | Trimethoprim (D/E/M) |
|----------------------------------------------|---------------------|---------------------------|----------------------|
| Desmycosin (H)                               | Neospiramycin (M)   | Sulfadoxine (D/E/M)       | Tulathromycin (M)    |
| Dicloxacillin (D/E/M)                        | Norfloxacin (D/E/M) | Sulfaethoxypyridazine (M) | Tylosin              |
| Difloxacin (D/E/H)                           | Novobiocin (M)      | Sulfaguanidine (M)        | Tylvalosin (M)       |
| Doxycycline                                  | Ofloxacin (M)       | Sulfamerazine             | Zilpaterol (M)       |

(M) = Meat only; (D) = Dairy only; (H) = Honey only; (H/M) = Honey and meat only; (D/E) = Dairy and egg only; (D/E/M) = Dairy, egg and meat only; (D/E/H) = Dairy, egg, and honey only

# Table A-14: Analytes included in multi-residue method for veterinary drugs analysis in dairy, egg, honey, and meat (NITROIMIDAZOLES)

| Dimetridazole         | Ipronidazole            | Ronidazole |
|-----------------------|-------------------------|------------|
| Hydroxy Dimetridazole | Ipronidazole metabolite | Tinidazole |
| Hydroxy Metronidazole | Metronidazole           |            |

## Table A-15: Analytes included in multi-residue method for veterinary drugs analysis in dairy, egg, and meat (NSAID/HORMONE/STEROID)

| 19-Nortestosterone     | Boldenone              | Etodolac           | Oxyphenbutazone         |
|------------------------|------------------------|--------------------|-------------------------|
| 20-Dihydroprednisolone | Butorphanol (M)        | Firocoxib (M)      | Phenylbutazone          |
| 20-Dihydroprednisone   | Carazolol (M)          | Flumethasone       | Prednisolone            |
| Acepromazine (M)       | Carprofen              | Flunixin           | Prednisone              |
| alpha Trenbolone       | Chlorpromazine (M)     | Haloperidol (M)    | Progesterone (M)        |
| Altrenogest (M)        | Detomidine (M)         | Ketoprofen         | Propionylpromazine (M)  |
| Azaperol (M)           | Dexamethasone          | Mefenamic Acid     | Testosterone            |
| Azaperone (M)          | Dianabol               | Meloxicam          | Tolfenamic Acid         |
| Beclomethasone         | Diclofenac             | Methylprednisolone | Triamcinolone Acetonide |
| beta Trenbolone        | Epi-19-nortestosterone | Naproxen           | Vedaprofen              |
| Betamethasone          | Epi-testosterone       | Niflumic Acid      | Xylazine (M)            |

(M) = Meat only

# Table A-16: Analytes included in multi-residue method for veterinary drugs analysis in dairy, egg, honey and meat (PENICILLINS)

| Amoxicillin   | Cephapirin (D) | Nafcillin    | Penicillin V |
|---------------|----------------|--------------|--------------|
| Ampicillin    | Cloxacillin    | Oxacillin    |              |
| Ceftiofur (D) | Dicloxacillin  | Penicillin G |              |

(D) = Dairy only



### Table A-17: Analytes included in multi-residue method for veterinary drugs analysis in dairy, egg, honey and meat (PHENICOLS)

| Chloramphenicol                     | Florfenicol | Florfenicol amine | Thiamphenicol (D/E/M) |
|-------------------------------------|-------------|-------------------|-----------------------|
| (D/E/M) = Dairy, egg, and meat only | ,           |                   |                       |

ᄁᇊ n) y, egg,

### Table A-18: Analytes included in multi-residue method for veterinary drugs analysis in dairy, egg and meat (TRANQUILIZER)

| Acepromazine | Butorphanol (M) | Detomidine (M)     | Xylazine |
|--------------|-----------------|--------------------|----------|
| Azaperol     | Carazolol       | Haloperidol        |          |
| Azaperone    | Chlorpromazine  | Propionylpromazine |          |

(M) = Meat only

### Table A-19: Analytes included in multi-residue method for metals in dairy, egg, fresh fruit and vegatables, honey, maple<sup>1</sup>, meat, processed products (METALS)

| Aluminum  | Chromium    | Magnesium  | Thallium (D) |
|-----------|-------------|------------|--------------|
| Antimony  | Cobalt      | Manganese  | Tin          |
| Arsenic   | Copper      | Mercury    | Titanium     |
| Beryllium | Iron        | Molybdenum | Uranium (D)  |
| Boron     | Lead        | Nickel     | Vanadium (D) |
| Cadmium   | Lithium (D) | Selenium   | Zinc         |

(D) = Dairy only.

<sup>1</sup>Maple products are tested for lead only.



### Table A-20: WHO 2005 Toxic Equivalency Factors (TEFs) for dioxins and dioxin-like compounds

| Analyte Name                    | TEF     |
|---------------------------------|---------|
| Chlorinated dibenzo-p-dioxins   |         |
| 2,3,7,8-TCDD                    | 1       |
| 1,2,3,7,8-PeCDD                 | 1       |
| 1,2,3,4,7,8-HxCDD               | 0.1     |
| 1,2,3,6,7,8-HxCDD               | 0.1     |
| 1,2,3,7,8,9-HxCDD               | 0.1     |
| 1,2,3,4,6,7,8-HpCDD             | 0.01    |
| 1,2,3,4,6,7,8,9-OCDD            | 0.0003  |
| Chlorinated dibenzofurans       |         |
| 2,3,7,8-TCDF                    | 0.1     |
| 1,2,3,7,8-PeCDF                 | 0.03    |
| 2,3,4,7,8-PeCDF                 | 0.3     |
| 1,2,3,4,7,8-HxCDF               | 0.1     |
| 1,2,3,6,7,8-HxCDF               | 0.1     |
| 1,2,3,7,8,9-HxCDF               | 0.1     |
| 2,3,4,6,7,8-HxCDF               | 0.1     |
| 1,2,3,4,6,7,8-HpCDF             | 0.01    |
| 1,2,3,4,7,8,9-HpCDF             | 0.01    |
| 1,2,3,4,6,7,8,9-OCDF            | 0.0003  |
| Polychlorinated biphenyls       |         |
| 3,3',4,4'-TeCB (PCB 77)         | 0.0001  |
| 3,4,4',5-TeCB (PCB 81)          | 0.0003  |
| 2,3,3',4,4'-PeCB (PCB 105)      | 0.00003 |
| 2,3,4,4',5-PeCB (PCB 114)       | 0.00003 |
| 2,3',4,4',5-PeCB (PCB 118)      | 0.00003 |
| 2',3,4,4',5-PeCB (PCB 123)      | 0.00003 |
| 3,3',4,4',5-PeCB (PCB 126)      | 0.1     |
| 2,3,3',4,4',5-HxCB (PCB 156)    | 0.00003 |
| 2,3,3',4,4',5'-HxCB (PCB 157)   | 0.00003 |
| 2,3',4,4',5,5'-HxCB (PCB 167)   | 0.00003 |
| 3,3',4,4',5,5'-HxCB (PCB 169)   | 0.03    |
| 2,3,3',4,4',5,5'-HpCB (PCB 189) | 0.00003 |



### Table A-21: Analytes included in polychlorinated biphenyl (PCB) analytical method

| Number   | Congener Name                    | Number   | Congener Name                            |
|----------|----------------------------------|----------|------------------------------------------|
| PCB #001 | 2-Chlorobiphenyl                 | PCB #128 | 2,2',3,3',4,4'-Hexachlorobiphenyl        |
| PCB #003 | 4-Chlorobiphenyl                 | PCB #129 | 2,2',3,3',4,5-Hexachlorobiphenyl         |
| PCB #004 | 2,2'-Dichlorobiphenyl            | PCB #137 | 2,2',3,4,4',5-Hexachlorobiphenyl         |
| PCB #008 | 2,4'-Dichlorobiphenyl            | PCB #138 | 2,2',3,4,4',5'-Hexachlorobiphenyl        |
| PCB #010 | 2,6-Dichlorobiphenyl             | PCB #141 | 2,2',3,4,5,5'-Hexachlorobiphenyl         |
| PCB #015 | 4,4'-Dichlorobiphenyl            | PCB #149 | 2,2',3,4,5',6-Hexachlorobiphenyl         |
| PCB #018 | 2,2',5-Trichlorobiphenyl         | PCB #151 | 2,2',3,5,5',6-Hexachlorobiphenyl         |
| PCB #019 | 2,2',6-Trichlorobiphenyl         | PCB #153 | 2,2',4,4',5,5'-Hexachlorobiphenyl        |
| PCB #022 | 2,3,4'-Trichlorobiphenyl         | PCB #155 | 2,2',4,4',6,6'-Hexachlorobiphenyl        |
| PCB #028 | 2,4,4'-Trichlorobiphenyl         | PCB #156 | 2,3,3',4,4',5-Hexachlorobiphenyl         |
| PCB #033 | 2',3,4'-Trichlorobiphenyl        | PCB #157 | 2,3,3',4,4',5'-Hexachlorobiphenyl        |
| PCB #037 | 3,4,4'-Trichlorobiphenyl         | PCB #158 | 2,3,3',4,4',6-Hexachlorobiphenyl         |
| PCB #040 | 2,2',3,3'-Tetrachlorobiphenyl    | PCB #167 | 2,3',4,4',5,5'-Hexachlorobiphenyl        |
| PCB #041 | 2,2',3,4-Tetrachlorobiphenyl     | PCB #168 | 2,3',4,4',5',6-Hexachlorobiphenyl        |
| PCB #044 | 2,2',3,5-Tetrachlorobiphenyl     | PCB #169 | 3,3',4,4',5,5'-Hexachlorobiphenyl        |
| PCB #049 | 2,2',4,5'-Tetrachlorobiphenyl    | PCB #170 | 2,2',3,3',4,4',5-Heptachlorobiphenyl     |
| PCB #052 | 2,2',5,5'-Tetrachlorobiphenyl    | PCB #171 | 2,2',3,3',4,4',6-Heptachlorobiphenyl     |
| PCB #054 | 2,2',6,6'-Tetrachlorobiphenyl    | PCB #177 | 2,2',3,3',4',5,6-Heptachlorobiphenyl     |
| PCB #060 | 2,3',4,4'-Tetrachlorobiphenyl    | PCB #178 | 2,2',3,3',5,5',6-Heptachlorobiphenyl     |
| PCB #066 | 2,3',4,4'-Tetrachlorobiphenyl    | PCB #180 | 2,2',3,4,4',5,5'-Heptachlorobiphenyl     |
| PCB #070 | 2,3',4',5-Tetrachlorobiphenyl    | PCB #183 | 2,2',3,4,4',5',6-Heptachlorobiphenyl     |
| PCB #074 | 2,4,4',5-Tetrachlorobiphenyl     | PCB #187 | 2,2',3,4',5,5',6-Heptachlorobiphenyl     |
| PCB #077 | 3,3',4',4'-Tetrachlorobiphenyl   | PCB #188 | 2,2',3,4',5,6,6'-Heptachlorobiphenyl     |
| PCB #081 | 3,4,4',5-Tetrachlorobiphenyl     | PCB #189 | 2,3,3',4,4',5,5'-Heptachlorobiphenyl     |
| PCB #087 | 2,2',3,4,5'-Pentachlorobiphenyl  | PCB #191 | 2,3,3',4,4',5',6-Heptachlorobiphenyl     |
| PCB #095 | 2,2',3,5',6-Pentachlorobiphenyl  | PCB #193 | 2,3,3',4',5,5',6-Heptachlorobiphenyl     |
| PCB #099 | 2,2',4,4',5-Pentachlorobiphenyl  | PCB #194 | 2,2',3,3',4,4',5,5'-Octachlorobiphenyl   |
| PCB #104 | 2,2',4,6,6'-Pentachlorobiphenyl  | PCB #199 | 2,2',3,3',4,5,6,6'-Octachlorobiphenyl    |
| PCB #105 | 2,3,3',4,4'-Pentachlorobiphenyl  | PCB #201 | 2,2',3,3',4,5,5',6'-Octachlorobiphenyl   |
| PCB #110 | 2,3,3',4',6'-Pentachlorobiphenyl | PCB #202 | 2,2',3,3',5,5',6,6'-Octachlorobiphenyl   |
| PCB #114 | 2,3,4,4',5-Pentachlorobiphenyl   | PCB #203 | 2,2',3,4,4',5,5',6-Octachlorobiphenyl    |
| PCB #118 | 2,3',4,4',5-Pentachlorobiphenyl  | PCB #205 | 2,3,3',4,4',5,5',6-Octachlorobiphenyl    |
| PCB #119 | 2,3',4,4',6-Pentachlorobiphenyl  | PCB #206 | 2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl |
| PCB #123 | 2',3,4,4',5-Pentachlorobiphenyl  | PCB #208 | 2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl |
| PCB #126 | 3,3',4,4',5-Pentachlorobiphenyl  | PCB #209 | Decachlorobiphenyl                       |



# Table A-22: Analytes included in the polycyclic aromatic hydrocarbon (PAH) analytical method in egg, freshfruits and vegetables, processed products, honey and meat

| Acenaphthene         | Chrysene               |
|----------------------|------------------------|
| Acenaphthylene       | Dibenzo(a,h)anthracene |
| Anthracene           | Fluoranthene           |
| Benzo(a)anthracene   | Fluorene               |
| Benzo(a)pyrene       | Indeno(1,2,3-cd)pyrene |
| Benzo(b)fluoranthene | Naphthalene            |
| Benzo(g,h,i)perylene | Phenanthrene           |
| Benzo(k)fluoranthene | Pyrene                 |

#### Table A-23: Toxic Equivalency Factors (TEFs) for individual polycyclic aromatic hydrocarbons (PAHs)<sup>1-4</sup>

| Analyte Name                              | TEF   |
|-------------------------------------------|-------|
| Acenaphthene <sup>1</sup>                 | 0.001 |
| Acenaphthylene <sup>1</sup>               | 0.001 |
| Anthracene <sup>1</sup>                   | 0.01  |
| Benzo(a)anthracene <sup>1,2,3,4</sup>     | 0.1   |
| Benzo(a)pyrene <sup>1,2,3,4</sup>         | 1     |
| Benzo(b)fluoranthene <sup>1,2</sup>       | 0.1   |
| Benzo(g,h,i)perylene <sup>1,4</sup>       | 0.01  |
| Benzo(k)fluoranthene <sup>1,4</sup>       | 0.1   |
| Chrysene <sup>1,2,4</sup>                 | 0.01  |
| Dibenzo(a,h)anthracene <sup>1,3,4</sup>   | 1     |
| Fluoranthene <sup>1</sup>                 | 0.001 |
| Fluorene <sup>1</sup>                     | 0.001 |
| Indeno(1,2,3-cd)pyrene <sup>1,2,3,4</sup> | 0.1   |
| Naphthalene <sup>1</sup>                  | 0.001 |
| Phenanthrene <sup>1</sup>                 | 0.001 |
| Pyrene <sup>1</sup>                       | 0.001 |

<sup>1</sup>Nisbet, I.C.T.; LaGoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharm. 1992,16, 290–300.

<sup>2</sup>Collins, J.F.; Brown, J.P.; Alexeeff, G.V.; Salmon, A.G. Potency Equivalency Factors for Some Polyciclic Aromatic Hydrocarbons and Polycyclic Aromatic Hydrocarbon Derivatives; Regulatory Toxicology and Pharmacology 28, 45-54 (1998) (EPA)

<sup>3</sup> EPA (United States Environmental Protection Agency), *Provisional Guidance for Quantitative Risk Assessment of Polycyclic Aromatic Hydrocarbons.* 1993. p. 17

<sup>4</sup>Canadian Council of Ministers of the Environment, Canadian Soil Quality Guidelines for Carcinogenic and Other Polycyclic Aromatic Hydrocarbons (Environmental and Human Health Effects). 2008, Environment Canada. p. 218.