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Abstract 
We introduce generalized autoregressive gamma (GARG) processes, a class of autoregressive 
and moving-average processes that extends the class of existing autoregressive gamma (ARG) 
processes in one important dimension: each conditional moment dynamic is driven by a 
different and identifiable moving average of the variable of interest. The paper provides 
ergodicity conditions for GARG processes and derives closed-form conditional and 
unconditional moments. The paper also presents estimation and inference methods, illustrated 
by an application to European option pricing where the daily realized variance follows a GARG 
dynamic. Our results show that using GARG processes reduces pricing errors by substantially 
more than using ARG processes does. 

Topics: Econometric and statistical methods; Asset pricing 
JEL codes: C58, G12 

Résumé 
Nous présentons les processus gamma autorégressifs généralisés (GARG), une catégorie de 
processus autorégressifs et moyennes mobiles qui est un prolongement de la catégorie 
existante de processus gamma autorégressifs dans une dimension importante : la dynamique 
de chacun des moments conditionnels est influencée par une différente moyenne mobile 
identifiable de la variable d’intérêt. Nous fournissons les conditions d’ergodicité pour les 
processus GARG et en établissons les moments conditionnels et inconditionnels de forme 
fermée. Nous présentons aussi des méthodes d’estimation et d’inférence, puis les appliquons 
à l’évaluation d’options européennes où la variance quotidienne réalisée suit la dynamique des 
processus GARG. Nos résultats montrent que l’utilisation de ces processus réduit les erreurs 
d’évaluation de façon nettement plus importante que les processus gamma autorégressifs. 

Sujets : Méthodes économétriques et statistiques; Évaluation des actifs 
Codes JEL : C58, G12 



1 Introduction

The finance literature has widely relied on autoregressive gamma (ARG) processes to model

variations in the distribution of positive time series. In modeling the term structure of

interest rates, volatility factors are traditionally designed to follow ARG dynamics (Le et

al., 2010; Monfort et al., 2017). In option pricing, when modeling the key component,

the conditional variance, several papers use ARG dynamics (Feunou and Tedongap, 2012;

Majewski et al., 2015). ARG processes have also been used to model intraday financial

market activity, in particular intertrade duration (Gourieroux and Jasiak, 2006; Gourieroux

et al., 1999).

The ARG process studied in Gourieroux and Jasiak (2006) corresponds to the discretiza-

tion of the Cox-Ingersoll-Ross diffusion process (Cox et al., 1985). It is a univariate positive

random process whose cumulant generating function is defined for the scalar u < 1/φ and

given by:

ψt(u) ≡ ln [E [exp (uxt+1) |It]] = ω(u) + α(u)xt, (1)

where It is the sigma algebra generated by (xs, s ≤ t) and

ω(u) = −ν log(1− uφ), and α(u) =
ϕu

1− uφ
, (2)

with ν ≥ 0, φ > 0 and ϕ ≥ 0. It admits the following state space representation:

xt+1

φ
|Ut+1, It ∼ γ (ν + Ut+1)

Ut+1|It ∼ P

(
ϕxt
φ

)
,

where Ut+1 is a latent process that follows a Poisson distribution denoted by P (·) and γ(·)

is the standard gamma distribution.

Gourieroux and Jasiak (2006) provide the following generalization to any order (p, q):

ψt(u) ≡ ln [E [exp (uxt+1) |It]] = ω(u) + α(u)mt, (3)
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where

mt =

p−1∑
j=0

ϕjxt−j +

q∑
k=1

θkmt−j, (4)

ϕ0 = 1 for identification, p ≥ 1 and q ≥ 1.

One implication of this ARG process in definition (3) is that all the conditional cumu-

lants (the derivatives of ψt(u) at u = 0) are driven by the same factor mt. Indeed, we

have

ψ
(n)
t (0) = ω(n)(0) + α(n)(0)mt, (5)

with f (n)(u), the nth order derivative of function f(·) at u.

This suggests that both the conditional expectation and the conditional variance of xt

are driven by mt, and are, therefore, perfectly positively correlated, and that all moments

are highly positively correlated. There is considerable empirical evidence contradicting the

very tight restriction between the first two moments imposed by affine models, in particular

when considering interest-rate and variance modeling (Cieslak and Povala, 2016). Using

swap data, Collin-Dufresne et al. (2004) find that a popular and well-documented three-

factor affine model implies volatility paths that are negatively correlated with the GARCH

volatility estimates of weekly changes in the six-month rate. Andersen and Benzoni (2010)

use intraday Treasury data to show that realized yield volatility is unrelated to principal

components extracted from the cross-section, which proxy for model-implied volatility.

Regarding the dynamic of the stock market, there is also evidence that the expectation of

the realized variance has a distinct dynamic apart from the variance of the realized variance

(Corsi et al., 2008).

Numerous contributions in the literature focus on building complex parametric and

semi-parametric time series models where the first four moments have very distinct dy-

namics. Hansen (1994) and Jondeau and Rockinger (2003) are pioneers in that literature

and have shown that in the first four moments, behavior and persistence are very different.
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For instance, the skewness is strongly persistent while kurtosis is much less so. Chang et al.

(2011) extract non-parametric measures of risk-neutral variance and skewness from option

prices and show that the correlation between option-implied skewness and option-implied

volatility for the S&P500 is -0.06 and the correlation between the average option-implied

skewness and average option-implied volatility for the S&P100 components is 0.05.

This inability of affine dynamics to fit all the moments jointly implies that they cannot

fit the conditional density and, hence, they generate large option pricing errors, as shown

in our empirical investigations. To mitigate these shortcomings of affine models in general,

and ARG in particular, we introduce GARG processes to extend ARG processes in one

important dimension: each conditional moment dynamic is driven by a different moving

average of the variable of interest (xt). Moreover, GARG processes are parsimonious and,

importantly, they maintain one of the key advantages of ARG processes: a closed-form

multi-step ahead distribution. Hence, we are able to add much-needed complexity to the

ARG dynamic while keeping its main advantage, i.e., computing derivative prices in closed-

form.

The key principle of our generalization of ARG processes and affine models in general

to a GARG dynamic is simple: contrary to affine dynamics where all the cumulants are

driven by the same factor mt (see equation (5)), we want each cumulant ψ
(n)
t (0) to be

driven by its own specific factor (say, m
(n)
t ), that is,

ψ
(n)
t (0) = ωn + αnm

(n)
t , (6)

where m
(n)
t is a moving average of xt:

m
(n)
t = xt + θnm

(n)
t−1. (7)

One way to achieve that with a minimal number of additional parameters is to set θn =

βθn, which is equivalent to the following recursive formulation of the conditional cumulant

4



generating function:

ψt (u) = ω(u) + α(u)xt + βψt−1 (θu) for t ≥ 1, (8)

where functions α(·) and ω(·) are given in equation (2). The main theoretical challenge of

this paper is to build a process whose the cumulant generating function has the recursive

formulation in equation (8). We successfully tackle that challenge, and our findings go

beyond ARG dynamics as we extend this result to other positive-valued affine models. This

includes the autoregressive gamma-zero (ARGZero) processes of Monfort et al. (2017), the

integer-valued autoregressive processes (INAR) of Al-Osh and Alzaid (1987), the affine

GARCH models of Heston and Nandi (2000) and Christoffersen et al. (2006).

Our approach is not the only way to enhance ARG and disentangle its moments dynam-

ics. An alternative is to model xt as the sum of independent univariate ARG dynamics,

which we refer to as the multi-factor ARG, or MARG for short. The MARG pioneered by

Le et al. (2010) is the leading framework in discrete-time affine term structure of interest

rate models. Its appeal is simple and intuitive: if one is interested in disentangling the

first K moments, it is enough to sum K independent ARGs. However, as we discuss in

detail in section 5, the MARG loses its analytical tractability when we analyse the dynamic

conditional only on the variable of interest xt. Another approach in option pricing is the

Wishart autoregressive (WAR) process studied in details in Gourieroux et al. (2009), Yu

et al. (2017) and Gourieroux and Sufana (2010). Although this is the leading extension of

the ARG dynamic, it suffers from the same shortcomings as the MARG.

This paper is organized as follows. Section 2 defines the generalized autoregressive

gamma process (GARG), with a conditional distribution from a convolution of non-centered

gamma and the noncentrality parameters written as linear functions of lagged variables.

Section 3 derives the short-term and long-term dynamics of conditional moments. Section

4 discusses ergodicity conditions and derives moments of the unconditional distribution.
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Section 5 compares the GARG and MARG models. Section 6 discusses issues related

to identification and statistical inference. An application to option pricing is presented

in section 7, where we show that the GARG dynamic dominates ARG. A final section

concludes the paper. Proofs and extensions are gathered in the online appendices.

2 Specification

2.1 GARG dynamics

We consider a univariate positive random process xt with t ≥ 1 and generalize the ARG

process to the GARG process, built through the following state space representation:

xt+1 = Z̄t+1 + 1[t>0]

[
t−1∑
j=0

Z
(j)
t+1

]
, t ≥ 0, (9)

where 1[·] is an indicator function, and for t > 0, Z̄t+1 and Z
(j)
t+1 with j = 0, ..., t − 1 are

t + 1 conditionally (conditional on It) independent random variables with the following

state-space representation:

Z
(j)
t+1

φj
|U (j)

t+1, It ∼ γ
(
νj + U

(j)
t+1

)
(10)

U
(j)
t+1|It ∼ P

(
ϕjxt−j
φj

)
, (11)

where

νj = νβj, φj = φθj, ϕj = ϕβjθj. (12)

The cumulant generating function of Z̄t+1 is βtψ0 (θ
tu) , with

ψ0 (u) =
ϕ

1− βθ

θu

1− θφu
µ− ν

1− βθ
ln (1− θφu) . (13)

The GARG has five parameters, ν, φ, ϕ, β and θ, with the following restrictions:

ν, φ, ϕ, β, θ ≥ 0, βθ < 1. (14)

The ARG dynamic is nested within the GARG and is obtained by setting β = 0 or θ = 0.
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2.2 Alternative formulation of the GARG

The parametric forms for the coefficients νj, φj and ϕj given in equation (12) bear no par-

ticular intuition or economic meaning. These forms are chosen to get a recursive dynamic

for the cumulant generating function (8).

We can now establish the main result of this paper.

Proposition 1 Let us assume that the positive-valued univariate process of interest xt

follows the dynamics described in equations (9), (10), and (11). Then, for a scalar u such

that 1−uφj > 0 for all j > 0, the conditional cumulant generating function of xt+1 (ψt(u))

exists and evolves according to the following recursive dynamic:

ψt (u) = ω(u) + α(u)xt + βψt−1 (θu) for t ≥ 1, (15)

where functions α(·) and ω(·) are given in equation (2).

The condition for the existence of the cumulant generating function in equation (15) is

1−uφj > 0 for all j > 0. That condition is equivalent to u < 1
φ
minj≥0

{(
1
θ

)j}
. Hence, the

set of values for u depends on θ:

 θ ≤ 1, u ≤ 1
φθ
;

θ > 1, u ≤ 0.

The fact that the cumulant generating

function only exists for negative arguments when θ > 1 is an argument for constraining θ

to be below one. Indeed, in most applications, we would build positive processes that are

obtained as linear combinations of GARG processes with positive loadings. We show in

section 4 that θ ≤ 1 is a necessary condition for weak ergodicity.

Equation (15) is an alternative formulation of the new model. In other words, the GARG

dynamic has two equivalent formulations: The first one is the state-space representation

given by equations (9), (10) and (11), which is useful for the simulation of the GARG

dynamic. The second one is specified by means of the conditional cumulant generating

function (ψt(·)) and is given by equation (15). All the results and implications of this

paper use the second formulation of the model.
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The GARG dynamics are nested within the class of generalized affine models introduced

by Feunou and Meddahi (2009). Belonging to the class of generalized affine dynamics is

essential for the derivation of closed-form multi-step ahead dynamics. While Feunou and

Meddahi (2009) focus on building dynamics on the cumulant generating function directly,

which presents some challenging theoretical issues, the GARG dynamic is well defined by

construction, and the recursion given by equation (15) is a well-defined cumulant generating

function at any point in time t.

Proof of Proposition 1 Using equation (9) and the fact that all the Zs on the right-hand

side are conditionally independent, we have:

ψt (u) = lnEt
[
exp

(
uZ̄t+1

)]
+

t−1∑
j=0

lnEt

[
exp

(
uZ

(j)
t+1

)]
.

By assumption,

lnEt
[
exp

(
uZ̄t+1

)]
= βtψ0

(
θtu
)
,

and the state-space representation given by equations (10) and (11) implies that

lnEt

[
exp

(
uZ

(j)
t+1

)]
= βjω(θju) + βjα(θju)xt−j.

Hence,

ψt (u) = βtψ0

(
θtu
)
+

t−1∑
j=0

βj
[
ω(θju) + α(θju)xt−j

]
= ω(u) + α(u)xt + βtψ0

(
θtu
)
+

t−1∑
j=1

βj
[
ω(θju) + α(θju)xt−j

]
= ω(u) + α(u)xt + β

{
βt−1ψ0

(
θt−1θu

)
+

t−2∑
k=0

βk
[
ω(θkθu) + α(θkθu)xt−1−k

]}
= ω(u) + α(u)xt + βψt−1 (θu) ,

which establishes proposition 1.
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2.3 Extensions

Our model can be generalized in several directions. In sections 1.3, 1.4 and 1.5 of the

Appendix we show that other positive-valued affine models such as the GARCH models of

Heston and Nandi (2000) and Christoffersen et al. (2006) and the integer-valued autoregres-

sive (INAR) of Al-Osh and Alzaid (1987) can also be generalized using similar techniques.

We also discuss a multivariate and a multi-lag extension of the GARG dynamic in sections

1.1 and 1.2 of the Appendix.

Here we extend our generalization of the ARG to the autoregressive gamma-zero (ARG0)

of Monfort et al. (2017) which is essential for term structure of interest rates modelling at

the zero-lower bound as it encompasses a zero-point mass, which is not possible with ARG

dynamic.

Generalized autoregressive gamma-zero processes First, both the ARG0 and the

ARG can be written within a single affine framework (also known as extented-ARG pro-

cesses) as follows:

ψt(u) ≡ ln [E [exp (uxt+1) |It]] = ω0(u) + α(u)xt, (16)

where It is the sigma algebra generated by (xs, s ≤ t), and

ω0(u) = −ν log(1− uφ) +
ξu

1− uφ
and α(u) =

ϕu

1− uφ
. (17)

The ARG dynamic is obtained by setting ξ = 0 while the ARG0 dynamic is obtained by

setting ν = 0. Using the decomposition of xt+1 given in equation (9), we generalize these

extented-ARG processes in the following state-space representation:

Z
(j)
t+1

φj
|U (j)

t+1, It ∼ γ
(
νj + U

(j)
t+1

)
U

(j)
t+1|It ∼ P

(
ξj + ϕjxt−j

φj

)
,
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where νj, φj and ϕj are given in equation (12) and ξj ≡ ψ(βθ)j. Using the same steps as for

the generalization of the ARG dynamic, we show that the cumulant generating function of

the generalized autoregressive gamma-zero processes follows a recursion similar to equation

(15):

ψt (u) = ω0(u) + α(u)xt + βψt−1 (θu) for t ≥ 1. (18)

For the remainder of this paper, we focus on the GARG dynamic given by equations (9),

(10) and (11). However, all our findings apply to any of the extensions discussed in this

section. To keep that degree of generality, we will not use the explicit expression of functions

α(·) and ω(·) given in equation (2).

3 Conditional moments dynamic

3.1 Moments dynamic

In this section, we derive the dynamics of conditional moments, including expectation, vari-

ance, skewness and kurtosis. As equation (15) specifies the dynamic of the log-conditional

moment generating function (cumulant generating function), it is convenient to derive the

law of motion of conditional cumulants (derivatives of the cumulant generating function at

0). From equation (15), we have

ψ
(n)
t (0) = ω(n)(0) + α(n)(0)xt + βθnψ

(n)
t−1 (0) , (19)

in particular,

ψ′
t (0) = ω′(0) + α′(0)xt + βθψ′

t−1 (0) (20)

ψ′′
t (0) = ω′′(0) + α′′(0)xt + βθ2ψ′′

t−1 (0) . (21)

All positive affine processes considered in this paper share one important property: all

derivatives ω(n)(0) and α(n)(0) are positive for all n. We can also easily establish that xt
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is an ARMA(1,1) with the autoregressive parameter α′ (0) + βθ and the moving average

parameter βθ. Indeed, using equation 20, we have

xt+1 = ψ′
t (0) + xt+1 − ψ′

t (0)︸ ︷︷ ︸
ut+1

= ω′ (0) + α′ (0)xt + βθψ′
t−1 (0)︸ ︷︷ ︸

=ψ′
t(0)

+ ut+1

= ω′ (0) + α′ (0)xt + βθ(xt − ut)︸ ︷︷ ︸
ψ′

t−1(0)

+ ut+1 = ω′ (0) + (α′ (0) + βθ)xt + ut+1 − βθut (22)

3.2 Importance of parameters β and θ

Equation (19) implies that:

ψ
(n)
t (0) =

ω(n)(0)

1− βθn
+ α(n)(0)

(
∞∑
j=0

(βθn)j xt−j

)
. (23)

Consequently, each conditional cumulant (i.e., ψ
(n)
t (0) for a given n) is driven by its own

factor (m
(n)
t ):

m
(n)
t =

∞∑
j=0

(βθn)j xt−j, (24)

which is a moving average of the variable of interest xt. Hence, with only two additional

parameters (β and θ), we are able to generate a parsimonious generalization of ARG pro-

cesses that disentangles the dynamics of all the conditional moments. Further, the ability

to disentangle moments dynamics stems from parameter θ. Indeed, when θ = 1, all the

conditional cumulants are driven by the same factor,
∑∞

j=0 β
jxt−j, and thus are perfectly

positively correlated.

To confirm and complete this central point, we compute the implied correlation between

two conditional cumulants at different orders n and m. If ρ < 1, we establish (section 2 of

the Appendix) that the correlation between ψ
(n)
t (0) and ψ

(m)
t (0) is given by

Corr
(
ψ

(n)
t (0), ψ

(m)
t (0)

)
=

√√√√√√1−
[
β(θn−θm)
1−β2θn+m

]2
1−

[
β(θn−θm)

ξ

]2 , (25)
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where

ξ ≡ (1− ρβθn) (1− ρβθm)ϑ+
βθn

1− ρβθm
+

βθm

1− ρβθn
,

with

ρ ≡ α′ (0) + βθ, (26)

and ϑ = 1−ρ2+(α′(0))2

α′(0)(1−ρβθ) . From equation (25), it is readily apparent that θ = 1 implies that all

the cumulants are perfectly correlated and, thus, θ ̸= 1 is essential to break the tight links

between moments that are inherent within ARG processes.

3.3 Initial cumulant ψ0(u) and the dynamic of x1

In practice, when computing the conditional cumulant function through recursion (15),

we need a starting cumulant function ψ0(u). We set ψ0(u) to the unconditional average

E [ψt (u)]. This is similar to the practice in the GARCH literature, where the initial vari-

ance is typically set to the unconditional expectation of the conditional variance process.

Under the conditions ρ < 1 and βθn < 1, we show in section 2 of the Appendix that the

unconditional expectation of ψ
(n)
t (0) is given by

E
[
ψ

(n)
t (0)

]
=
α(n)(0)ω′(0) + (1− ρ)ω(n)(0)

(1− ρ) (1− βθn)
. (27)

We can thus derive the unconditional expectation of ψt(u) using the following identity:

E [ψt (u)] =

∞∑
n=1

un

n!
E
[
ψ
(n)
t (0)

]
=

∞∑
n=1

un

n!

α(n)(0)µ+ ω(n)(0)

1− βθn
= µ

{ ∞∑
n=1

un

n!

α(n)(0)

1− βθn

}
+

{ ∞∑
n=1

un

n!

ω(n)(0)

1− βθn

}
,

where µ ≡ ω′(0)
1−ρ is the unconditional expectation of xt. Using functions ω(u) and α(u)

defined in equation (2), we deduce that

E [ψt (u)] =
ϕ

1− βθ

θu

1− θφu
µ− ν

1− βθ
ln (1− θφu) . (28)

It is also worth stressing that E [ψt (u)] is not the unconditional cumulant function of xt.

Later we discuss the conditions required for the unconditional distribution (and hence the
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unconditional cumulant function) of xt to exist. Since ψ0(u) given in equation (28) is

the cumulant generating function of x1, it implies that x1 has the following state-space

representation:

x1
θφ

|U ∼ γ

(
ν

1− βθ
+ U

)
U ∼ P

(
ϕ

1− βθ

µ

φ

)
. (29)

3.4 Multi-horizon dynamic

Like affine models, an important characteristic of GARG processes is the existence of a

closed-form forecast of any nonlinear transformation of a GARG process at any horizon.

This characteristic enables financial applications such as closed-form bonds and option

pricing. The multi-horizon cumulant generating function defined as

ψt (u;h) ≡ ln [Et [exp (uxt+h)]]

is computed analytically in section 3.1 of the Appendix where we establish that:

ψt (u;h) =
h∑
j=1

βj−1ψt
(
θj−1uj

)
+

h∑
j=2

j−2∑
i=0

βiω
(
θiuj

)
for h ≥ 2 (30)

uh = u, uτ =
h∑

i=τ+1

βi−(τ+1)α
(
θi−(τ+1)ui

)
for 1 ≤ τ ≤ h− 1.

The derivatives of ψt (u;h) at u = 0 give closed-form expressions of moments of the time t

distribution of xt+h. We show in section 3.2 of the Appendix that

ψ
(n)
t (0;h) =

n∑
k=1

D◦h−1

n

(
C̄n
)
[n, k]

[
ψ
(k)
t (0)− ω(k) (0)

1− βθk

]

+

n∑
k=1

[
βθkD◦h−1

n

(
C̄n
)
+
(
1− βθk

)(h−1∑
τ=0

D◦τ
n

(
C̄n
))]

[n, k]
ω(k) (0)

1− βθk
, (31)

where

C̄n ≡

 1 01×n−1

0n−1×1 0n−1×n−1

 , Dn (X) ≡ Bn (XAn) + βXΘn, (32)
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Θn ≡


θ1 0 0

0
. . . 0

0 0 θn

 , An ≡


α(1) (0)

...

α(n) (0)

 , Bn (z) ≡


B1,1 (z) 0 0

...
. . . 0

Bn,1 (z) · · · Bn,n (z)

 , (33)

with Bn,k being the partial or incomplete exponential Bell polynomial, D◦h
n the function

Dn compounded h times with itself and M [n, k] the (n, k)th entry of a generic matrix M .

We provide the definition and explicit expression of Bn,k in section 4.3 of the Appendix.

4 Ergodicity and unconditional distribution

4.1 Weak ergodicity

This section discusses weak ergodicity conditions, which are conditions under which the

distribution at horizon h tends to a limiting distribution. For more on ergodicity, see

Darolles et al. (2006), where the focus is on affine processes. Weak ergodicity is equivalent to

the convergence of the multi-horizon cumulant generating function, which is also equivalent

to the convergence of the h-step ahead n-th conditional cumulant ψ
(n)
t (0;h) derived in

equation (31) as h increases and for all n.

Let us denote X (n)
h ≡ D◦h

n

(
C̄n
)
, where matrix C̄n and matrix function Dn(·) are given

in equation (32). ψ
(n)
t (0;h) converges if and only if

lim
h→∞

h∑
τ=0

X (n)
τ <∞. (34)

A necessary condition for the convergence of the series
∑h

τ=0X
(n)
τ is limh→∞X (n)

h = 0,

which implies that limh→∞ ψ
(n)
t (0;h) is independent of t. In section 4.1 of the Appendix,

we show the following result:

Proposition 2 ψ
(n)
t (0;h) converges as h increases if and only if ρ < 1 and βθj < 1 for

j = 1, ..., n.
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Recall that ρ ≡ α′ (0) + βθ = ϕ+ βθ, thus the following corollary:

Corollary 1 If ϕ < 1, βθ < 1− ϕ, and θ ≤ 1, the h-step ahead conditional distribution of

a GARG process converges as h increases.

Assuming that ϕ < 1, βθ < 1 − ϕ, and θ ≤ 1, let us denote Yn ≡ limh→∞
∑h

τ=0 X
(n)
τ . We

have

ψ(n)
∞ ≡ lim

h→∞
ψ

(n)
t (0;h) =

n∑
k=1

Yn [n, k]ω(k) (0) ,

and the cumulant generating function of the unconditional distribution is

ψ∞(u) =
∞∑
n=1

ψ(n)
∞
un

n!
=

∞∑
n=1

{
n∑
k=1

Yn [n, k]ω(k)(0)

}
un

n!
.

Unlike the unconditional expectation of the conditional cumulant generating function E (ψt(u)) ,

which has been characterized analytically and shown to belong to the gamma distribution

family (see equation (28)), we have not been able to compute ψ∞(u) in closed-form and

thus are unable to assess whether the unconditional distribution belongs to a known family

of distribution. It is important to stress again that ψ∞(u) ̸= E (ψt(u)). Indeed,

ψ∞ (u) ≡ ln (E [exp (uxt+1)]) = ln (E [exp (ψt (u))]) ̸= E [ψt (u)] .

Finally, the weak ergodicity implies the existence of an invariant distribution whose cumu-

lant generating function is ψ∞ (u) , such that if the process is initialized from its invariant

distribution, it is stationary.

4.2 Autocorrelation functions

Various methods exist for examining serial dependence in stationary GARG processes.

In this section, we consider the first- and second-order autocorrelograms. Our goal is to

show how the flexibility (throughout parameters β and θ) of GARG impacts the serial

dependence of the series of interest xt.
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4.2.1 Autocorrelation of the level

Since xt is an ARMA(1,1) (see discussions at the end of section 3.1) and if ρ < 1 and

βθ2 < 1 (which is equivalent to the covariance-stationarity of xt), we have

Corr (xt, xt+h) = ρh−1Corr(xt, xt+1) if h ≥ 1,

with

Corr (xt, xt+1) = α′(0)

[
1− (βθ)2 − α′(0)βθ

1− (βθ)2 − 2α′(0)βθ

]
.

4.2.2 Autocorrelation of the squared values of the process

The second-order autocorrelogram represents the serial dependence in squared values of

the process. Let us denote zt ≡ (xt, ε
2
t , x

2
t )

⊤
, where εt ≡ xt−ψ′

t−1 (0). zt is a VARMA(1,1)

since its conditional expectation

Mz,t−1 =
(
ψ′
t−1 (0) , ψ

′′
t−1 (0) , ψ

′′
t−1 (0) + ψ′

t−1 (0)
2)⊤

is a VAR(1). Indeed, we have

Et−1 [Mz,t] = Kz + ΦzMz,t−1,

where

Kz ≡


ω′(0)

ω′′(0)

ω′′(0) + ω′(0)2

 , Φz ≡


ρ 0 0

α′′(0) βθ2 0

φ1 φ2 ρ2


φ1 = α′′(0) + 2ω′(0)ρ, φ2 = βθ2 + α′(0)2 − ρ2.

Hence, using the conditions ρ < 1 and βθn < 1 for n ≤ 4, we have

cov(zt+h, zt) = Φh−1
z cov(zt+1, zt).

We provide closed-form expressions for cov(zt+1, zt) and V ar [zt] in section 6.2 of the Ap-

pendix.
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4.3 How β and θ impact unconditional moments

We consider different values for β and θ and fix ν = 0.039, φ = 0.017, and ϕ = 0.252. These

values are the results of the estimation on realized variance data (see section 7.1). Figure 1

plots unconditional moments as functions of β and θ and reveals interesting insights. First,

unsurprisingly low values for β imply a model very close to the original ARG. When β is

low, the model is broadly similar for different values of θ. Similarly, when θ is low the model

is broadly similar for different values of β. This is not surprising since θ is only identified if

β is sufficiently different from zero and vice versa. While the volatility increases with β, the

skewness and kurtosis decrease with β. The same findings apply when looking at variation

across θ. The skewness and kurtosis decrease with θ, but the volatility increases with θ. In

conclusion, adding θ < 1 improves the ability of the new model to fit highly skewed and

fat-tailed time series.

Turning to the correlation between cumulants given by equation (25) and plotted in

the last row of Figure 1, we observe that the correlations between cumulants decrease with

β, with a perfect correlation for low values of β. For very high values of β, the correlation

between cumulants decreases, with θ reaching values as low as 0.8. There is a U-shaped

pattern as a function of θ for the medium value of β. In conclusion, adding parameters β

and θ breaks the tight link between cumulants that is embedded in ARG dynamics and

affine models in general. Finally, in the ARG dynamic the autocorrelogram of the level is

very similar to that of the squared values of the process, as shown by the first plot in the

second row of Figure 1. We can see how increasing θ and thus departing progressively from

the affine structure enables the disentanglement of these autocorrelograms.
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5 Comparison with multi-factor affine models

Our discussion so far has focused on a simple extension of a single-factor ARG process

(and affine processes in general). Our proposal is similar to the generalization of the AR

dynamic to ARMA or ARCH to GARCH. Our approach is not the only way to enhance

ARG and disentangle its moments dynamics. An alternative is to model xt as the sum

of independent univariate ARG dynamics, which we refer to as the multi-factor ARG, or

MARG for short. The MARG pioneered by Le et al. (2010) is the leading framework in

the discrete-time affine term structure of interest rate models. Its appeal is simple and

intuitive: if one is interested in disentangling the first K moments, it is enough to sum

K independent ARGs. However, as we discuss in detail in this section, the MARG loses

its analytical tractability when we analyse the dynamic conditional only on the variable of

interest xt. In option pricing, the Wishart autoregressive (WAR) process studied in detail in

Gourieroux et al. (2009), Yu et al. (2017) and Gourieroux and Sufana (2010) is the leading

extension of the ARG dynamic. The WAR has the same shortcomings as the MARG.

The MARG resembles our model specification given in equation (9), where the multi-

ple latent factors are assumed to be independent both conditionally and unconditionally.

Formally, the MARG is given by

xt+1 =
K∑
k=1

akxt+1,k, (35)

where ak > 0; k = 1, · · · , K and xt+1,k; k = 1, · · · , K are independent ARG processes.

A MARG may seem less constrained than our GARG model given in equation (9). First,

each latent factor xt+1,k has its own set of parameters while the parameters for the factors

(Z
(j)
t+1) in the GARG model given in equation (9) are all related, as shown in equation (12).

Second, while the xt+1,k, k = 1, · · · , K in equation (35) are independent, their counter-

parts (the Z
(j)
t+1) in equation (9) are conditionally independent but are dependent uncondi-

tionally. In fact, the conditional distribution of Z
(j)
t+1 depends only on xt−j and not on Z

(j)
t .
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In other words, although in the GARG dynamic, the Z
(j)
t+1 are latent, their distributions

depend only on the observed process of interest xt. This property enables us to compute

analytically the distribution of xt+1 conditional on its own past, without resorting to any

filtering procedure. This is not the case of the MARG, which requires a filtering procedure.

In fact, it is fair to compare the two models when we derive the distribution of xt+1

conditional on its own past implied by the MARG dynamic.

5.1 Cumulant generating of xt+1 conditional on (xs, s ≤ t).

To avoid cumbersome mathematical derivations, we focus on the case K=2. We can also,

without loss of generality, assume that ak = 1, as the ak are not separately identifiable for

the parameters of the latent process xt+1,k. In fact, akxt+1,k is also an ARG process. Hence,

we have

xt = x1t + x2t

Et [exp (uxjt+1)] = exp (ωj (u) + αj (u)xjt)

ωj(u) = −νj log(1− uφj), and αj(u) =
ϕju

1− uφj
.

Similar to equation (1), ψt(u) denotes the one-step ahead cumulant generating function of

xt+1 conditional on its own past. Formally, we have ψt(u) ≡ ln [E [exp (uxt+1) |It]], where

It is the sigma algebra generated by (xs, s ≤ t). We show the following result in section 8

of the Appendix:

Proposition 3 The dynamic of ψt(u) implied by the MARG dynamic is given by

ψt+1 (u) = ω1 (u) + ω2 (u) + α2 (u)xt+1 + ln

∫ exp
(
ω̃ (iy, u) + α̃ (iy, u)xt + ψt

(
θ̃ (iy, u)

)
− iyxt+1

)
dy∫

exp (ψt (iy)− iyxt+1) dy


(36)

where

θ̃ (y, u) ≡ α−1
0 (α1 (y + α0 (u))− α2 (y))

ω̃ (y, u) ≡ ω2 (y)− ω2

(
θ̃ (y, u)

)
+ ω1 (y + α0 (u))− ω1

(
θ̃ (y, u)

)
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α̃ (y, u) ≡ α2 (y)− α2

(
θ̃ (y, u)

)
, α0 (u) ≡ α1 (u)− α2 (u) .

The two dynamics to compare are given by equation (36) for the MARGmodel and equation

(8) for the GARG model. While both models express the conditional cumulant generating

function recursively, the recursion for the GARG is simple as it has a closed-form expression

while the one for the MARG is non-linear and requires computing tedious integrals.

5.2 Mean and variance of xt+1 conditional on (xs, s ≤ t)

We push the comparison one step further by evaluating the first two moments implied

by equation (36). This is done by taking the first two derivatives of equation (36) with

respect to u. To ease the mathematical derivations, we focus on the case φ1 = φ2 = φ,

which implies that both the MARG and the GARG have the same number of parameters.

φ1 = φ2 = φ implies that the MARG dynamic collapses to the ARG dynamic if and only

if ϕ1 = ϕ2.

The following proposition, proven in sections 8.1 and 8.2 of the Appendix, gives the

dynamic of the first two moments:

Proposition 4 The dynamic of ψ′
t(0) implied by the MARG dynamic is given by

ψ′
t+1 (0) = (ν1 + ν2)φ+

(ϕ1 + ϕ2)

2
xt+1 +

(ϕ1 + ϕ2)

2

∫ (
ψ′
t (iy)− ψ̃′

t (iy)
)
eψt(iy)−iyxt+1dy∫

eψt(iy)−iyxt+1dy
. (37)

The dynamic of ψ′′
t (0) implied by the MARG dynamic is given by

ψ′′
t+1 (0) = (ν1 + ν2)φ

2 + 2ϕ2φxt+1 −
(
ψ′
t+1 (0)− (ν1 + ν2)φ− ϕ2xt+1

)2
(38)

+

∫ [
ϕ1ψ̄

′′
t (iy) +

(
ψ̄′
t (iy)

)2
+ 2φψ̄′

t (iy)− 2φϕ2
ψ̄′

t(iy)
1−iyφ + ϕ2φ

2(ϕ1−ϕ2)ν1
(1−iyφ)2

]
eψt(iy)−iyxt+1dy∫

eψt(iy)−iyxt+1dy

where

ψ̃t (u) = −ν ln (1− uφ) +
ϕuxt
1− uφ

, ν ≡ 2 (ν2ϕ1 + ν1ϕ2)

ϕ1 + ϕ2
, ϕ ≡ 2ϕ1ϕ2

ϕ1 + ϕ2
,

and

ψ̄t (u) ≡ ϕ1ψt (u)−
(ϕ1 + ϕ2)

2
ψ̃t (u) .
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Equations (37) and (38) contain integrals that complicate our analysis. To solve these

integrals and gather more intuition, we resort to approximations by assuming that

ψt (iy) ≈
(
ψ′
t (0)− ψ̃′

t (0)
)
iy +

(
ψ′′
t (0)− ψ̃′′

t (0)
) (iy)2

2
+ ψ̃t (iy) . (39)

Combining equations (37) and (38) with the approximation given in equation (39) leads to

the following corollary:

Corollary 2 The dynamics of ψ′
t(0) and ψ

′′
t (0) implied by the MARG dynamic are given

by

ψ′
t+1 (0) = (ν1 + ν2)φ+

(ϕ1 + ϕ2)

2

[(
2ψ′

t (0)− ψ̃′
t (0)

)
+

(
2ψ′′

t (0)− ψ̃′′
t (0)

ψ′′
t (0)

)
(xt+1 − ψ′

t (0))

]
(40)

and

ψ′′
t+1 (0) = (ϕ1ϕ2 − 1)φ2 (ν1 + ν2) + 2φ

(
ψ′
t+1 (0)− ϕ1ϕ2ψ

′
t (0)

)
+

(
ϕ1 + ϕ2

2

)2
(
2ψ′′

t (0)− ψ̃′′
t (0)

ψ′′
t (0)

)
ψ̃′′
t (0) .

(41)

We verify numerically that these approximations are accurate. In fact, we show that

the same dynamic is obtained when Kalman filters methods are used (see Monfort et

al., 2017). First, the two moments dynamics are interrelated since to compute the time

t+ 1 expectation (ψ′
t+1 (0)), we need past variance (ψ′′

t (0)) and vice versa. This contrasts

with the GARG dynamic where each cumulant dynamic is computed independently. This

connection between moments dynamics is at the heart of our problematic. Second, the

dynamic here is non-linear, which complicates the temporal aggregation. This is in contrast

to the linear dynamic of the GARG. It is important to stress that the model is affine when

we condition on the unknown unobserved component but becomes non-affine if we condition

on the observed variable xt. This paper is about the dynamic of xt conditional on the past

of xt. However, we nonetheless investigate the MARG empirically in section 7.
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6 Statistical Inference

The univariate GARG has five parameters, ϕ, φ, ν, β, θ; the goal of this section is to discuss

their estimation and statistical inference. First, the five parameters are well identified. In

section 6.1 of the Appendix, we discuss an identification approach that consists of expressing

ϕ, φ, ν, β and θ as functions of quantities that can be directly estimated: the unconditional

mean, variance, skewness and the first two autocorrelations. We have also run simulation

exercises to establish heuristically the identification of the five parameters. The results are

displayed in Tables 1 and 2 of the Appendix. In this section we review standard estimation

methods such as the pseudo-maximum likelihood and the maximum likelihood and show

that they can be used for the estimation of GARG processes. This implies that standard

statistical inferences related to these methods remain valid in the context of the GARG

dynamic.

6.1 Maximum likelihood estimators

We exploit the Fourier inversion formula to compute the conditional density as follows:

ft (xt+1) =
1

π

∫ ∞

0

Re
[
e−iuxt+1+ψt(iu)

]
du, (42)

where i stands for the imaginary unit. This enables the estimation of the GARG’s param-

eters through the maximum likelihood (ML) procedure and the use of standard inference

to compute standard errors. Because a numerical inversion is involved, some practical

challenges could arise.

6.2 Pseudo-maximum likelihood estimators

Since conditional moments are available in closed-form, the GARG can be estimated using

pseudo-maximum likelihood. The order-2 pseudo-maximum likelihood estimators are the

22



solutions of:

(ϕ̂, ν̂, φ̂, β̂, θ̂)′ = arg max
ϕ,ν,φ,β,θ

T∑
t=1

{
−1

2
log
(
ψ′′
t−1(0)

)
− 1

2

(
xt − ψ′

t−1(0)
)2

ψ′′
t−1(0)

}
, (43)

where ψ′′
t−1(0) and ψ

′
t−1(0) are computed recursively using equation (19).

Because GARG processes have a closed-form conditional characteristic function, one al-

ternative to the ML-based method is the empirical characteristic function (ECF) estimation

method. Finally, some applications in the stochastic volatility and term structure of in-

terest rates literatures require latent factors. In sections 6.2, 6.3 and 6.4 of the Appendix,

we discuss the ECF estimator, the generalized method of moments and the generalized

method of moments.

7 Empirical analysis: Option pricing model

7.1 Fitting the historical joint dynamic of S&P 500 returns and

realized variances

In this section we denote the day t stock price and return by St and Rt, with Rt ≡

ln (St/St−1). We design an option pricing model where returns and realized variances (RVt)

are modeled jointly in line with the literature (Majewski et al., 2015; Christoffersen et al.,

2014). Our measure of realized variances, RVt on day t, is the sum of the squared 5-min

log-returns observed within day t. To highlight the usefulness of the GARG process, we

assume that the realized variance follows a GARG dynamic (instead of the ARG dynamic),

that is,

Rt+1 = ln (St+1/St) = r +

(
λ− 1

2

)
RVt+1 +

√
RVt+1εt+1 (44)

εt+1 ∼ i.i.dN(0, 1)

RVt+1 ∼ GARG (ϕ, φ, ν, β, θ) , (45)
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where r is the risk-free rate (calibrated to the sample average of the 3-month Treasury Bill

rate) and λ is interpreted as the price of risk as it indicates the variation in the equity

risk-premium per unit of variation in the realized variance. Equation (44) is well motivated

empirically by several studies in the literature (Andersen et al., 2001; Andersen et al.,

2007), where it is shown that time t return conditional on time t realized variance follows

a Gaussian distribution. The remaining challenge is to model the conditional distribution

of the realized variance. Many studies have relied on the ARG process; we will instead

assume a GARG dynamic, as in equation (45).

7.1.1 Benchmark models

Our benchmark models are variants of the ARG(p,q) model defined in equations (3) and

(4), that is,

ψt(u) ≡ ln [E [exp (uRVt+1) |It]] = ω(u) + α(u)mt, (46)

where

1. ARG0: mt = RVt

2. ARG1: mt = RVt + θ1mt−1

3. ARG2: mt = RVt + θ1mt−1 + θ2mt−2.

4. MARG: We also add the MARG model discussed in section 5, formally

RVt = x1,t + x2,t

xj,t ∼ ARG(νj, φ, ϕj), with j = 1, 2.

Note that both the ARG2 and the MARG models have the same number of parameters (5)

as the GARG. Before giving details on option pricing, we evaluate the relative performance

of GARG processes in fitting salient facts of the dynamic of the observed realized variance

series.
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7.1.2 Data and empirical results

The empirical investigation begins by obtaining daily historical realized variances for the

S&P 500 index from oxford-man.ox.ac.uk. The data cover the period from January 01,

2000, to December 31, 2017. Table 1 contains the maximum likelihood estimation for the

benchmark ARG processes and the GARG process on daily historical realized variances.

The likelihood and BIC figures indicate that the GARG is the best performing model.

Unsurprisingly, the likelihood ratio tests favor all the alternative specifications against the

basic ARG model (ARG0). To better gauge the ability of the different models to fit the

data, we report the observed sample mean, variance, skewness and kurtosis and compare

them with each model’s implied moments. Contrary to ARG models, the GARG is able to

match these unconditional moments.

To further shed light on these results, we plot sample autocorrelations and cross-

correlations in Figure 1 of the Appendix. The top left panel displays the realized variance’s

autocorrelation function across models. The other panels display the cross-correlations

between the level and the squared, corr(RVt, RV
2
t+h), the cross-correlation between the

squared and the level, corr(RV 2
t , RVt+h), and the autocorrelation of the squared corr(RV 2

t , RV
2
t+h).

We can see that none of the ARG models are able to capture the long memory inherent

in the observed variance dynamic. In contrast, the GARG dynamic better matches the

sample autocorrelograms.

To diagnose the different models, we extract the conditional mean Et−1 [xt] and the

conditional variance V art−1 [xt] , then compute the standardized residuals as

zt ≡
xt − Et−1 [xt]√
V art−1 [xt]

.

In principle, the better a model is at fitting the conditional mean (the first conditional

cumulant), the smaller the autocorrelation in zt. In the same vein, the better a model

is at fitting the conditional variance (the second conditional cumulant), the smaller the

25



autocorrelation in z2t . Figure 2 displays the autocorrelograms of the level and square of

the standardized residuals zt along with 95% confidence bounds and depicts interesting

insights. Only the GARG model is able to extract the first two moments dynamics with

great accuracy as its autocorrelograms lie mostly within the confidence bounds. The basic

ARG model, ARG0, is unable to fit both moments, especially the conditional mean. The

other two versions of the ARG processes, ARG1 and ARG2, are able to fit the second

moment with the same accuracy as the GARG dynamic but at the cost of the first moment

fitting. This highlights the central point of our proposal: there is a tension between fitting

the first two moments that are inherent in the ARG dynamic, which we are able to overcome

with the GARG process. The MARG model provides a clear improvement over ARG

dynamics regarding the first moment, but it is still outperformed by the GARG dynamic

on both dimensions.

The physical properties of the realized variance dynamic we have investigated above are

likely to have important implications for the models’ ability to fit a large panel of options.

This is the task we now turn to.

7.2 Option pricing

7.2.1 Risk-neutral estimation

Similar to the ARG processes, the GARG processes are built to enable closed-form option

prices. In this exercise, we assume that the joint dynamic given by equations (44) and (45)

is under the risk-neutral probability measure. This implies that r is the risk-free rate and

λ = 0. We provide full details on option pricing under the GARG and MARG dynamics

in sections 7.2 and 8.2 of the Appendix. We estimate the different models by optimizing

their fit on option data. This analysis aims at exploring the ability of each specification

to properly match the risk-neutral distribution embedded in option contracts. We start
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by presenting the key features of the option data panel used in our empirical analysis

and then study the performance of the various models relying on the implied volatility

root-mean-squared-error.

7.2.2 Option data

We use European-style options written on the S&P 500 index. The observations span

the period January 10, 1996, to August 28, 2013. This data set is available through

OptionMetrics, which supplies data for the U.S. option markets. In line with the literature,

we only include out-of-the-money (OTM) options with maturities ranging from 15 to 180

days. This selection procedure is intended to guarantee that the contracts considered are

liquid. We also filter out options that violate basic no-arbitrage criteria. For each maturity

quoted on Wednesdays, we select only the six most liquid strike prices, which amounts to

a data set of 21,283 option contracts. To ease calculation and interpretation, OTM put

prices are converted into corresponding in-the-money call values, by exploiting the call-put

parity relationship. We provide a detailed description of option data in section 7.3 of the

Appendix.

7.2.3 Fitting options

We explore the performance of the different models by relying on the implied volatility root-

mean-squared error (IVRMSE) (see Appendix 7.3 for details). Table 2 contains the results

of the option-based estimation. Clearly, our option-fitting strategy yields accurate param-

eter estimates, as evidenced by fairly small standard errors and sizeable model likelihoods.

Because we are fitting the model only on options, the estimates correspond to risk-neutral

parameters. The proposed GARG model clearly outperforms the alternative ARG specifi-

cations, as it delivers the highest likelihood value, the lowest BIC and the smallest global

IVRMSE. Specifically, the GARG model offers about 10% and 20% improvement over the
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benchmark ARG0 model in terms of log-likelihood and IVRMSE, respectively. While the

MARG model outperforms the ARG dynamics, it has a marginally lower IVRMSE than the

GARG. At the bottom of the table, we report P-values of the Diebold-Mariano Test (see

Diebold and Mariano, 2002) to assess whether differences in pricing errors across models

are statistically significant. We test ARG1 against ARG0, ARG2 against ARG1 and fi-

nally, GARG against ARG2. The results indicate P-values of 0 except for the test of ARG2

against ARG1, implying that ARG0 errors are statistically significantly higher than ARG1,

while GARG errors are statistically lower than ARG2. There is no statistical difference

between ARG1 and ARG2 option pricing errors.

7.2.4 Model fit by moneyness, maturity and VIX levels

We now scrutinize the overall performance results reported in the bottom panel of Table

2. To this end, we report the IVRMSE by moneyness, maturity and VIX levels in Table 3.

We see that all models offer a satisfactory performance (low IVRMSEs) in matching at-the-

money options contracts. By contrast, fitting deep OTM call and put options seems more

challenging. Interestingly, the ability of the various specifications to match the observed

option-implied volatility appears consistent across the term structure of the options, as

the IVRMSEs are of comparable magnitude. Moreover, the performance of these models

tends to deteriorate nearly monotonically as a function of the VIX level. This observation

suggests that the ability of the models to generate realistic option prices weakens in highly

volatile times. Nevertheless, the GARG model dominates the other models along the

moneyness, maturity, and VIX level dimensions. However, we would have expected the fit

to be significantly better for long-maturities since the GARG process is able to generate

slowly decaying autocorrelations. The fit in this longer maturity dimension would certainly

improve using a higher order GARG dynamic, which we introduce in section 1.2 of the

Appendix.
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8 Conclusion

This study introduces the generalized autoregressive gamma (GARG) dynamic. The GARG

is a parsimonious generalization of ARG dynamics able to overcome tight links between

conditional moments that are implicit within ARG processes. The GARG dynamic enables

each moment to be driven by its specific moving average of the variable of interest. Besides,

the new process maintains the practical advantage of ARG dynamics and affine models in

general: it has a closed-form multi-step ahead moment generating function. Empirically, we

show that the GARG dynamic dominates ARG in fitting the historical dynamic of realized

variance, and most importantly in describing the behavior of a large panel of option prices.

Our generalization so far has focused on models with finite moments at all orders, which

clearly restricts applications to a certain type of financial data. Generalization to processes

with infinite moments is an exciting topic for future research.
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Figure 1: Unconditional moments

These figures represent unconditional moments as functions of β and θ. We set ν = 0.039, φ = 0.017, ϕ = 0.252.
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Figure 2: Autocorrelograms of residuals

These figures plot the autocorrelation of the level and the squared values of the standardized residual zt. For each model,

we extract the implied conditional mean Et−1 [xt] and the implied conditional variance V art−1 [xt] , then compute the

standardized residuals as zt ≡ (xt − Et−1 [xt]) /
√
V art−1 [xt]. The horizontal dashed lines represent the upper and lower

confidence bounds. The sample begins from January 01, 2000, and ends December 31, 2017.
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Table 1: Estimation using Historical Realized Variance

This table shows maximum likelihood estimation results for four different models. We used daily historical realized variances

for the S&P 500 index from January 01, 2000, to December 31, 2017. We report the estimated parameters (Est) with their

corresponding standard errors (SE).

ARG Models MARG Model GARG Model

ARG0 ARG1 ARG2 MARG GARG

Parameters Est SE Est SE Est SE Est SE Est SE

ϕ 0.711 5.14E-03 0.362 6.53E-03 0.371 7.54E-03 0.954 1.53E-02 0.252 4.18E-04

φ 8.19E-03 5.93E-05 6.71E-03 4.79E-05 6.69E-03 4.83E-05 0.011 3.36E-05 0.017 6.97E-05

ν 1.017 0.034 0.978 0.042 0.975 0.042 0.013 2.06E-02 0.039 1.62E-04

θ1 0 0.531 8.29E-03 0.440 0.027

θ2 0 0 0.081 0.021

β 1.171 5.91E-03

θ 0.619 3.12E-03

ϕ2 0.914 6.00E-03

ν2 0.198 1.88E-02

Model Properties Obs

Avg 16.98 16.98 17.00 17.00 16.98 16.98

Vol 18.27 16.91 15.44 15.37 18.27 18.27

Skew 2.74 1.96 1.49 1.47 2.05 2.19

Kurt 12.07 8.69 6.20 6.13 10.04 9.80

AC(1) 0.67 0.71 0.57 0.57 0.93 0.67

Log Likelihoods 13320 13577 13580 13597 14025

BIC -5.94 -6.05 -6.05 -6.07 -6.25

LR P-Value, H0: ARG0 0.00 0.00 0.00 0.00
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Table 2: Estimation using Options

This table shows estimation results for six different models. We used Wednesday closing out-of-the-money (OTM) call and

put contracts from OptionMetrics for the period beginning January 10, 1996, and ending August 28, 2013. We report the

estimated parameters (Est) along with their corresponding standard errors (SE). The second-to-last row shows the implied

volatility root-mean-squared errors (IVRMSEs). For comparison, the second-to-last row reports the IVRMSE ratio of each

specification to the benchmark ARG0 model.

ARG Models MARG Model GARG Model

ARG0 ARG1 ARG2 MARG GARG

Parameters Est SE Est SE Est SE Est SE Est SE

ϕ 0.938 7.65E-06 0.016 8.17E-05 0.016 8.28E-05 0.962 1.43E-04 0.020 5.15E-05

φ 2.90E-05 1.74E-07 9.50E-04 3.72E-05 9.49E-04 1.07E-05 1.88E-05 8.82E-07 1.75E-04 1.23E-05

ν 0.219 1.51E-05 0.032 1.20E-03 0.032 6.20E-05 0.145 9.43E-03 4.84E-03 3.07E-06

θ1 0 0.974 1.41E-04 0.963 2.12E-04

θ2 0 0.011 7.18E-05

β 1.079 1.13E-06

θ 0.897 4.66E-07

ϕ2 0.547 1.17E-02

ν2 0.697 4.77E-02

Model Properties

Log Likelihoods 31554 37271 37273 37845 38236

BIC -2.96 -3.50 -3.50 -3.55 -3.59

LR P-Value, H0: ARG0 0.00 0.00 0.00 0.00

Avg. Model IV 20.54 20.74 20.74 20.78 20.80

Variance Persistence

0.938 0.9905 0.9904 0.998 0.9801

Option Errors

IVRMSE 5.493 4.199 4.199 3.945 3.862

Ratio to ARG0 1.000 0.764 0.764 0.720 0.703

DM test P-Value 0.00 0.156 0.00 0.00
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Table 3: IVRMSE Option Error by Moneyness, Maturity

Panel A reports IVRMSE for contracts sorted by moneyness. Panel B reports IVRMSE for contracts sorted by days to

maturity (DTM). The IVRMSE is expressed in percentage.
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Panel A: IVRMSE by Moneyness

ARG0 6.284 4.721 4.739 5.465 5.737 5.318

ARG1 5.183 2.985 3.046 3.335 4.018 4.414

ARG2 5.184 2.985 3.045 3.335 4.017 4.413

MARG 4.032 3.078 2.924 3.676 4.202 5.727

GARG 3.985 2.757 2.910 3.034 3.375 4.490
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Panel B: IVRMSE by Maturity

ARG0 5.845 5.205 5.525 5.673 5.532 5.525

ARG1 4.344 4.270 4.076 3.937 4.265 4.356

ARG2 4.344 4.270 4.075 3.937 4.264 4.355

MARG 4.208 4.094 3.943 3.528 3.886 3.724

GARG 3.736 3.953 3.710 3.677 4.293 3.947
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Appendix for “Generalized Autoregressive
Gamma Processes”
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1 Extensions of the GARG

1.1 The multivariate case

In order to build the multivariate generalized autoregressive gamma process, we need two com-
ponents, which are a standard version of the multivariate gamma distribution and a multivariate
Poisson distribution. For the first component, we follow the approach in Carpenter and Diawara
(2007). Z = (Z1, ..., Zn) follows a standard multivariate gamma distribution of parameters
(k0, k1, ..., kn) (with 0 ≤ k0 ≤ min1≤n ki) denoted by Mγ(k0, k1, ..., kn) and Zi = Y0 + Yi, where
Y0, Y1, ..., Yn are n independent random variables that follow univariate standard gamma distri-
bution with respective parameters k0,k1 − k0,...,kn − k0.

For the second component we assume that U = (U1, ..., Un) follows a standard multivariate
distribution of parameters (λ1, ..., λn) (with 0 ≤ min1≤n λi) denoted by MP (λ1, ..., λn) and
U1, ..., Un, are n independent random variable univariate random variables that follow a standard
univariate Poisson distribution with respective parameters λ1, ..., λn

The multivariate GARG process is built through the following state space representation:

xt+1 = Z̄t+1 + 1[t>0]

t−1∑
j=0

Z
(j)
t+1

 , (1)

where Z̄t+1, Z
(j)
t+1 for j = 0, ..., t − 1 are t + 1 conditionally (conditional on It) independent

random variables, Z̄t+1 ∼ βtψ0 (θ
tu), and

Z
(j)
t+1

φ(j)
=

(
Z

(j)
1,t+1

φ
(j)
1

, ...,
Z

(j)
n,t+1

φ
(j)
n

)′

|U (j)
t+1, It ∼ Mγ

(
ν
(j)
0 + U

(j)
0,t+1, ν

(j)
1 + V

(j)
1,t+1, ..., ν

j
(n) + V

(j)
n,t+1

)
V

(j)
i,t+1 = U

(j)
0,t+1 + U

(j)
i,t+1, i = 1, ..., n

U
(j)
t+1 =

(
U

(j)
0,t+1, U

(j)
1,t+1, ..., U

(j)
n,t+1

)
|It ∼ MP

(
ϕ
(j)′

0 xt−j ,
ϕ
(j)′

1 xt−j

φ
(j)
1

, ...,
ϕ
(j)′

n xt−j

φ
(j)
n

)
,

where
ν
(j)
i = νjβ

j , φ
(j)
i = φiθ

j
i , ϕ

(j)
i = βjθjiϕi.

We show in the next section that

ψt (u) = ω(u) + α(u)xt + βψt−1 (θu) , (2)

where

ω (u) = −ν0 ln

(
1−

n∑
i=1

φiui

)
−

n∑
i=1

(νi − ν0) ln (1− φiui) ,

and

α (u) =

∑n
i=1 φiui

1−
∑n
i=1 φiui

ϕ0 +

n∑
i=1

ui
1− uiφi

ϕi,

θ = diag(θ1, ..., θn) and 0 ≤ ν0 ≤ min (νi)
n
i=1.

Le et al. (2010) obtain a version of the multivariate autoregressive gamma process by imposing
ν0 = 0 , ϕ0 = 0 and β = 0 or θ = 0. It is important to mention that in Le et al.’s setting,
conditionally on information known at time t, the components of the vector xt+1 are independent.
This is different from our set-up, where ν0 ̸= 0 or ϕ0 ̸= 0.

Our multivariate version does not boil down to a multivariate process where each entry is
conditionally independent given the past. However, Granger causality can be obtained with the
following Poisson intensities:

U
(j)
t+1 ∼ P

(
ΦjXt−j

φj

)
,

where the ratio is taken element-by-element, Φj is a matrix and Xt is a vector.
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Cumulant generating function of multivariate GARG processes. The derivation of the
cumulant generating function of multivariate GARG processes starts with equation 1:

xt+1 = Z̄t+1 +

t−1∑
j=0

Z
(j)
t+1,

with Z̄t+1, Z
(j)
t+1 for j = 0, ..., t − 1, t + 1 conditionally (conditional on It) independent random

variables, Z̄t+1 ∼ βtψ0 (θ
tu). Then

ψt(u) = lnEt [exp (u
′xt+1)] = lnEt

exp
u′

Z̄t+1 +

t−1∑
j=0

Z
(j)
t+1


= βtψ0

(
θtu
)
+

t−1∑
j=0

lnEt

[
exp

(
u′Z

(j)
t+1

)]
,

since Z̄t+1, Z
(j)
t+1 for j = 0, ..., t− 1 are conditionally independent.

Et

[
exp

(
u′Z

(j)
t+1

)]
= Et

[
exp

(
n∑
i=1

φ
(j)
i ui

Z
(j)
i,t+1

φ
(j)
i

)]
= Et

[
exp

(
n∑
i=1

φ
(j)
i ui

Z
(j)
i,t+1

φ
(j)
i

)∣∣∣∣∣U (j)
t+1

]

= Et

exp


−
(
ν
(j)
0 + U

(j)
0,t+1

)
ln
(
1−

∑n
i=1 φ

(j)
i ui

)
+
(
ν
(j)
0 + U

(j)
0,t+1

)∑n
i=1 ln

(
1− φ

(j)
i ui

)
−
∑n
i=1

(
ν
(j)
i + U

(j)
0,t+1 + U

(j)
i,t+1

)
ln
(
1− φ

(j)
i ui

)

 ,

where
ν
(j)
i = νjβ

j , φ
(j)
i = φiθ

j
i , ϕ

(j)
i = βjθjiϕi. (3)

Thus

Et

[
exp

(
u′Z

(j)
t+1

)]
= exp

(
−ν(j)0 ln

(
1−

n∑
i=1

φ
(j)
i ui

)
+ ν

(j)
0

n∑
i=1

ln
(
1− φ

(j)
i ui

)
−

n∑
i=1

ν
(j)
i ln

(
1− φ

(j)
i ui

))

×Et

exp
 −U (j)

0,t+1 ln
(
1−

∑n
i=1 φ

(j)
i ui

)
+ U

(j)
0,t+1

∑n
i=1 ln

(
1− φ

(j)
i ui

)
−
∑n
i=1

(
U

(j)
0,t+1 + U

(j)
i,t+1

)
ln
(
1− φ

(j)
i ui

)  ,
which implies that

Et

[
exp

(
u′Z

(j)
t+1

)]
= exp

(
ω(j) (u)

)
Et

[
exp

(
−U (j)

0,t+1 ln

(
1−

n∑
i=1

φ
(j)
i ui

)
−

n∑
i=1

U
(j)
i,t+1 ln

(
1− φ

(j)
i ui

))]

= exp

(
ω(j) (u) +

(
1

1−
∑n
i=1 φ

(j)
i ui

− 1

)
ϕ
(j)′
0 xt−j +

n∑
i=1

(
1

1− φ
(j)
i ui

− 1

)
ϕ
(j)′
i xt−j
φi

)
= exp

(
ω(j) (u) + α(j) (u)

′
xt−j

)
,

where

ω(j) (u) = −ν(j)0 ln

(
1−

n∑
i=1

φ
(j)
i ui

)
−

n∑
i=1

(
ν
(j)
i − ν

(j)
0

)
ln
(
1− φ

(j)
i ui

)
α(j) (u) =

∑n
i=1 φ

(j)
i ui

1−
∑n
i=1 φ

(j)
i ui

ϕ
(j)
0 +

n∑
i=1

ui

1− uiφ
(j)
i

ϕ
(j)
i .

Replacing ν
(j)
i , φ

(j)
i and ϕ

(j)
i by their values given in equation (3), one obtains

ω(j) (u) = βjω(θj u), α(j) (u) = βjα(θj u),
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with

ω (u) = −ν0 ln

(
1−

n∑
i=1

φiui

)
−

n∑
i=1

(νi − ν0) ln (1− φiui)

α (u) =

∑n
i=1 φiui

1−
∑n
i=1 φiui

ϕ0 +

n∑
i=1

ui
1− uiφi

ϕi.

Recall that

ψt (u) = βtψ0

(
θtu
)
+

t−1∑
j=0

lnEt

[
exp

(
u′Z

(j)
t+1

)]

= βtψ0

(
θtu
)
+

t−1∑
j=0

βj
[
ω(θj u) + α(θj u)′xt−j

]
.

Hence,
ψt (u) = ω(u) + α(u)xt + βψt−1 (θu) .

1.2 Multilags version

This paper focuses on the GARG of order (1, 1), but a generalization to any order (p, q) is defined
as follows:

ψt (u) = ω(u) +

p∑
j=1

αj(u)xt+1−j +

q∑
i=1

βiψt−i (θiu) . (4)

We establish that the recursion given by equation (4) is a well-defined cumulant generating
function dynamic (see Feunou and Meddahi, 2009 for details on these issues). Equation (4)
implies that xt is an ARMA(p, q).

1.3 Extension of the Heston and Nandi model

The Heston and Nandi (2000) model is arguably the most popular discrete-time option pricing
model. It is an affine-GARCH model where the dynamic of the conditional variance is given by

xt+1 = w + bxt + a (εt+1 − c
√
xt)

2
, (5)

where
εt+1 ∼ i.i.dN (0, 1) .

Heston and Nandi (2000) show that the log-conditional moment generating function xt+1 is affine
in xt:

ψt(u) = ln {Et [exp (uxt+1)]} = ωhn (u) + αhn (u)xt,

where

ωhn (u) = uw − 1

2
ln (1− 2ua)

αhn (u) = ub+
uac2

1− 2ua
.

Using the exact same steps following the generalisation of the ARG process, we are able to
generalize the Heston and Nandi model by decomposing xt+1 as in equation (1) and by specifying

the following state-space for Z
(j)
t+1:

Z
(j)
t+1 = wj + bjxt−j + Z̄

(j)
t+1,
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where

Z̄
(j)
t+1

φj

∣∣∣∣∣U (j)
t+1, It ∼ γ

(
νj + U

(j)
t+1

)
U

(j)
t+1

∣∣∣ It ∼ P

(
ϕjxt−j
φj

)
and

wj = (βθ)
j
w, bj = (βθ)

j
b, νj =

βj

2
, ϕj = ac2 (βθ)

j
, φj = 2θja.

We show that the cumulant generating function of the new dynamic is recursive:

ψt (u) = ωhn(u) + αhn(u)xt + βψt−1 (θu) for t ≥ 1. (6)

1.4 Extension of the IG GARCH process

The IG GARCH process of Christoffersen et al. (2006) is also a dynamic for the conditional
variance xt that is affine but non-Gaussian, and builds on inverse-Gaussian innovations instead.
The process is specified as follows:

xt+1 = w + bxt + cyt+1 + a
x2t
yt+1

,

where

yt+1|xt ∼ IG

(
xt
η2

)
.

The IG GARCH is affine. Indeed, Christoffersen et al. (2006) establish that

Et [exp (uxt+1)] = exp (ωig (u) + αig (u)xt) ,

where

ωig (u) = uw − 1

2
ln
(
1− 2uaη4

)
αig (u) = ub+

1

η2

(
1−

√
(1− 2uaη4) (1− 2uc)

)
.

In the same vein as the ARG and the Heston-Nandi GARCH, we are able to generalize the IG
GARCH by decomposing xt+1 as in equation (1) and by specifying the following state-space for

Z
(j)
t+1:

Z
(j)
t+1 = wj + bjxt−j + cjy

(j)
t+1 + aj

x2t−j

y
(j)
t+1

+ ε
(j)
t+1,

where

y
(j)
t+1|xt ∼ IG

(
xt−j
η2j

)
,
ε
(j)
t+1

φj
∼ γ

(
βj − 1

)
and

wj ≡ βjθjw, bj ≡ βjθjb, cj ≡ θjc, η2j ≡ η2

βj
, aj ≡ θjβ2ja, φj ≡ 2ajη

4
j .

We show that the cumulant generating function of the new dynamic is recursive:

ψt (u) = ωig(u) + αig(u)xt + βψt−1 (θu) for t ≥ 1. (7)
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1.5 Generalized INAR processes

In risk analysis, the variable of interest xt is often integer-valued and measures the number of
claims in period t. The processes in this class are called integer-valued autoregressive (INAR)
and have been explored in the time series and insurance literature (see Darolles et al., 2006 for a
detailed discussion). The INAR is an affine model with a linear conditional cumulant generating
function similar to those of ARG dynamics:

ψt(u) ≡ ln [E [exp (uxt+1) |It]] = ωinar(u) + αinar(u)xt, (8)

where It is the sigma algebra generated by (xs, s ≤ t),

ωinar(u) = λ (exp(u)− 1) , and αinar(u) = ln (ρ exp(u) + 1− ρ) , (9)

where 0 < ρ < 1 and λ > 1. Using the decomposition of xt+1 given in equation (1) we generalize
this INAR process in the following state-space:

Z
(j)
t+1 = θj

βjxt−j∑
i=1

y
(j)
i,t+1 + ε

(j)
t+1

 ,

y
(j)
i,t+1 =

{
1
0

; Pr
[
y
(j)
i,t+1 = 1

]
= ρ,

ε
(j)
t+1 ∼ P

(
λβj

)
,

where β and θ are positive integers. Through straightforward derivations, we establish that the
generalized INAR processes follow a recursion similar to equation (2):

ψt (u) = ωinar(u) + αinar(u)xt + βψt−1 (θu) for t ≥ 1. (10)

For the remainder of this appendix, we focus solely on the univariate case with the following
expression of functions α(u) and ω(u):

ω(u) = −ν log(1− uφ) and α(u) =
ϕu

1− uφ
, (11)

with ν ≥ 0 φ > 0 and ϕ ≥ 0.

2 Computing E [ψt (u)] and Corr
(
ψ
(n)
t (0), ψ

(m)
t (0)

)
Since εt ≡ xt − ψ′

t−1 (0) is a martingale difference, we have

ψ′
t (0) = ω′(0) + (α′(0) + βθ)ψ′

t−1 (0) + α′(0)εt. (12)

Hence, the conditional expectation, ψ′
t (0) , is a AR(1), implying that xt is a ARMA(1,1).

Using the same rationale, we have(
ψ′
t (0)

ψ
(n)
t (0)

)
=

(
ω′(0)
ω(n)(0)

)
+

[
α′(0) + βθ 0
α(n)(0) βθn

](
ψ′
t−1 (0)

ψ
(n)
t−1 (0)

)
+

(
α′(0)
α(n)(0)

)
εt, (13)

which implies that

(
ψ′
t (0)

ψ
(n)
t (0)

)
is a VAR(1), in particular

(
xt
ε2t

)
is a VARMA(1,1).1 It

follows that the nth order cumulant ψ
(n)
t (0) is mean-stationary if and only if ρ < 1 and βθn < 1,

where
ρ ≡ α′ (0) + βθ. (14)

1Indeed,

(
ψ′
t (0)

ψ
(2)
t (0)

)
= Et

[(
xt+1

ε2t+1

)]
, and since

(
ψ′
t (0)

ψ
(2)
t (0)

)
is a VAR(1), it implies that

(
xt
ε2t

)
is a

VARMA(1,1).
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In that case, the unconditional mean is given by

E
[
ψ
(n)
t (0)

]
=
α(n)(0)ω′(0) + (1− ρ)ω(n)(0)

(1− ρ) (1− βθn)
. (15)

We can thus derive the unconditional expectation of ψt(u) using the following identity:

E [ψt (u)] =

∞∑
n=1

un

n!
E
[
ψ
(n)
t (0)

]
=

∞∑
n=1

un

n!

α(n)(0)µ+ ω(n)(0)

1− βθn

= µ

{ ∞∑
n=1

un

n!

α(n)(0)

1− βθn

}
+

{ ∞∑
n=1

un

n!

ω(n)(0)

1− βθn

}
,

where µ ≡ ω′(0)
1−ρ is the unconditional expectation of xt. Using functions ω(u) and α(u) defined

in equation (11), we deduce that

E [ψt (u)] =
ϕ

1− βθ

θu

1− θφu
µ− ν

1− βθ
ln (1− θφu) . (16)

It is also worth stressing that E [ψt (u)] is not the unconditional cumulant function of xt. Later we
discuss the required conditions for the unconditional distribution (and hence the unconditional
cumulant function) of xt to exist. Since ψ0(u) given in equation (16) is the cumulant generating
function of x1, it implies that x1 has the following state-space representation:

x1
θφ

|U ∼ γ

(
ν

1− βθ
+ U

)
U ∼ P

(
ϕ

1− βθ

µ

φ

)
. (17)

Equation (13) implies that the vector

(
ψ′
t (0)

ψ
(n)
t (0)

)
is covariance-stationary if and only if ρ < 1

and βθn < 1. This result can easily be generalized to the vector

(
ψ
(n)
t (0)

ψ
(m)
t (0)

)
for two positive

integers n and m.

(
ψ
(n)
t (0)

ψ
(m)
t (0)

)
is covariance-stationary if and only if ρ < 1, βθn < 1 and

βθm < 1. In that case, the unconditional covariance is given by

Cov
(
ψ
(n)
t (0), ψ

(m)
t (0)

)
= E

[
ψ
(2)
t (0)

](
ϑ+

βθn

1− ρβθn
+

βθm

1− ρβθm

)
α′(0) (1− ρβθ)α(n)(0)α(m)(0)

(1− ρ2) (1− β2θn+m)
,

which implies that the correlation is

Corr
(
ψ
(n)
t (0), ψ

(m)
t (0)

)
=

√√√√√√1−
[
β(θn−θm)
1−β2θn+m

]2
1−

[
β(θn−θm)

ξ

]2 , (18)

where

ξ ≡ (1− ρβθn) (1− ρβθm)ϑ+
βθn

1− ρβθm
+

βθm

1− ρβθn
,

and ϑ =
1−ρ2+(α′(0))

2

α′(0)(1−ρβθ) . From equation (18), it is readily apparent that θ = 1 implies that all the

cumulants are perfectly correlated, and thus θ ̸= 1 is essential to break the tight link between
moments that are inherent within ARG processes.
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3 Multi-step ahead cumulant generating function and cu-
mulants

3.1 Multi-step ahead cumulant generating function

We denote the h-step ahead cumulant generating function by ψt (u;h) , that is,

ψt (u;h) ≡ ln [Et [exp (uxt+h)]]

Et [exp (uxt+h+1)] = Et [Et+h [exp (uxt+h+1)]]

= Et [exp (ψt+h (u))]

= Et

[
exp

(
βhψt

(
θhu

)
+

h−1∑
i=0

βi
(
ω
(
θiu
)
+ α

(
θiu
)
xt+h−i

))]

= exp

(
βhψt

(
θhu

)
+

h−1∑
i=0

βiω
(
θiu
))

Et

[
exp

(
h−1∑
i=0

βiα
(
θiu
)
xt+h−i

)]

Ψt

(
u(h);h

)
≡ ln

Et
exp

 h∑
j=1

u
(h)
j xt+j



Et

exp
h+1∑
j=1

u
(h+1)
j xt+j


= Et

Et+h
exp

h+1∑
j=1

ujxt+j


= Et

exp
ψt+h (u(h+1)

h+1

)
+

h∑
j=1

u
(h+1)
j xt+j


= Et

exp
 βhψt

(
θhu

(h+1)
h+1

)
+
∑h−1
i=0 β

i
(
ω
(
θiu

(h+1)
h+1

)
+ α

(
θiu

(h+1)
h+1

)
xt+h−i

)
+

h∑
j=1

u
(h+1)
j xt+j




= exp

(
βhψt

(
θhu

(h+1)
h+1

)
+
h−1∑
i=0

βiω
(
θiu

(h+1)
h+1

))
Et

exp
 h∑
j=1

(
u
(h+1)
j + βh−jα

(
θh−ju

(h+1)
h+1

))
xt+j


= exp

(
Ψt

(
u(h);h

)
+ βhψt

(
θhu

(h+1)
h+1

)
+

h−1∑
i=0

βiω
(
θiu

(h+1)
h+1

))

Ψt

(
u(h+1);h+ 1

)
= Ψt

(
u(h);h

)
+ βhψt

(
θhu

(h+1)
h+1

)
+

h−1∑
i=0

βiω
(
θiu

(h+1)
h+1

)
u
(h)
j = u

(h+1)
j + βh−jα

(
θh−ju

(h+1)
h+1

)
, j = 1, ..., h,

with

Ψt

(
u(h+1);h+ 1

)
= ψt

(
u(1)

)
+

h+1∑
j=2

[
βj−1ψt

(
θj−1u

(j)
j

)
+

j−2∑
i=0

βiω
(
θiu

(j)
j

)]

=

h+1∑
j=1

βj−1ψt

(
θj−1u

(j)
j

)
+

h+1∑
j=2

j−2∑
i=0

βiω
(
θiu

(j)
j

)

8



and

ψt (u;h) =

h∑
j=1

βj−1ψt

(
θj−1u

(j)
j

)
+

h∑
j=2

j−2∑
i=0

βiω
(
θiu

(j)
j

)
for h ≥ 2

u
(h)
j = 0 for j ≤ h, u

(h)
h = u

u
(τ)
j = u

(τ+1)
j + βτ−jα

(
θτ−ju

(τ+1)
τ+1

)
, for j = 1, ..., τ and 1 ≤ τ ≤ h− 1

u
(h−1)
j = βh−1−jα

(
θh−1−ju

)
for j = 1, ..., h− 1,

in particular,

u
(h−1)
h−1 = α (u)

u
(h−2)
j = βh−1−jα

(
θh−1−ju

)
+ βh−2−jα

(
θh−2−ju

(h−1)
h−1

)
, for j = 1, ..., h− 2,

and
u
(h−2)
h−2 = βα (θu) + α

(
u
(h−1)
h−1

)

u
(h−3)
j = u

(h−2)
j + βh−3−jα

(
θh−3−ju

(h−2)
h−2

)
, for j = 1, ..., h− 3

= βh−1−jα
(
θh−1−ju

)
+ βh−2−jα

(
θh−2−jα (u)

)
+ βh−3−jα

(
θh−3−ju

(h−2)
h−2

)
and

u
(h−3)
h−3 = β2α

(
θ2u
)
+ βα (θα (u)) + α

(
u
(h−2)
h−2

)

u
(τ)
j = u

(τ+1)
j + βτ−jα

(
θτ−ju

(τ+1)
τ+1

)
u
(τ−1)
j = u

(τ)
j + βτ−1−jα

(
θτ−1−ju(τ)τ

)
...

u
(τ−k)
j = u

(τ−k+1)
j + βτ−k−jα

(
θτ−k−ju

(τ−k+1)
τ−k+1

)
.

Hence,

u
(τ−k)
j =

k∑
i=0

βτ−i−jα
(
θτ−i−ju

(τ−i+1)
τ−i+1

)
,

in particular

u
(h−k)
j =

k∑
i=0

βh−i−jα
(
θh−i−ju

(h−i+1)
h−i+1

)
, j = 1, ..., h− k

=

k+1∑
s=1

βh−k+s−(j+1)α
(
θh−k+s−(j+1)u

(h−k+s)
h−k+s

)
, j = 1, ..., h− k, 0 < k < h

or

u
(τ)
j =

h−τ+1∑
s=1

βτ+s−(j+1)α
(
θτ+s−(j+1)u

(τ+s)
τ+s

)
, j = 1, ..., τ, 0 < τ < h

u
(τ)
j =

h∑
i=τ+1

βi−(j+1)α
(
θi−(j+1)u

(i)
i

)
, j = 1, ..., τ, 0 < τ < h,

and

u(τ)τ =

h∑
i=τ+1

βi−(τ+1)α
(
θi−(τ+1)u

(i)
i

)
. 0 < τ < h

9



3.2 Multi-step ahead conditional cumulant

ψt (u;h) =

h∑
j=1

βj−1ψt
(
θj−1uj

)
+

h∑
j=2

j−2∑
i=0

βiω
(
θiuj

)
for h ≥ 2

uh = u

uτ =

h∑
i=τ+1

βi−(τ+1)α
(
θi−(τ+1)ui

)
for 1 ≤ τ ≤ h− 1.

Let us denote
fτ (u) = cuτ

and
gτ (u) = ψ ◦ fτ (u) = ψ (fτ (u)) .

Then we have

d

dun
gτ (0) =

n∑
k=1

ψ(k) (0)Bn,k

(
f ′τ (0) , f

′′
τ (0) , · · · , f (n−k+1)

τ (0)
)

=

n∑
k=1

ψ(k) (0) ckBn,k

(
u′τ (0) , u

′′
τ (0) , · · · , u(n−k+1)

τ (0)
)
.

Hence,

ψ
(n)
t (0;h) =

h∑
j=1

βj−1
n∑
k=1

ψ
(k)
t (0)

(
θj−1

)k
Bn,k

(
u′j (0) , u

′′
j (0) , · · · , u

(n−k+1)
j (0)

)

+

h∑
j=2

j−2∑
i=0

βi
n∑
k=1

ω(k) (0)
(
θi
)k
Bn,k

(
u′j (0) , u

′′
j (0) , · · · , u

(n−k+1)
j (0)

)

ψ
(n)
t (0;h) =

n∑
k=1

 h∑
j=1

(
βθk

)j−1
Bn,k

(
u′j (0) , u

′′
j (0) , · · · , u

(n−k+1)
j (0)

)ψ(k)
t (0)

+

n∑
k=1

 h∑
j=1

1−
(
βθk

)j−1

1− βθk
Bn,k

(
u′j (0) , u

′′
j (0) , · · · , u

(n−k+1)
j (0)

)ω(k) (0)

ψ
(n)
t (0;h) =

n∑
k=1

 h∑
j=1

(
βθk

)j−1
Bn,k

(
u′j (0) , u

′′
j (0) , · · · , u

(n−k+1)
j (0)

)[ψ(k)
t (0)− ω(k) (0)

1− βθk

]

+

n∑
k=1

 h∑
j=1

Bn,k

(
u′j (0) , u

′′
j (0) , · · · , u

(n−k+1)
j (0)

) ω(k) (0)

1− βθk

u
(n)
h (0) = 1[n=1] + u1[n=0]

u(n)τ (0) =

n∑
k=1

[
h∑

i=τ+1

(
βθk

)i−(τ+1)

Bn,k

(
u′i (0) , u

′′
i (0) , · · · , u

(n−k+1)
i (0)

)]
α(k) (0) for 1 ≤ τ ≤ h− 1
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for 0 ≤ τ ≤ h− 1. Let us denote

an,k (τ) ≡
h∑
j=τ

(
βθk

)j−1
Bn,k

(
u′j (0) , u

′′
j (0) , · · · , u

(n−k+1)
j (0)

)

bn,k (τ) ≡
h∑
j=τ

Bn,k

(
u′j (0) , u

′′
j (0) , · · · , u

(n−k+1)
j (0)

)

cn,k (τ) ≡
(
βθk

)1−τ
an,k (τ) =

h∑
j=τ

(
βθk

)j−τ
Bn,k

(
u′j (0) , u

′′
j (0) , · · · , u

(n−k+1)
j (0)

)
.

We have

u(n)τ (0) =

n∑
k=1

[
h∑

i=τ+1

(
βθk

)i−(τ+1)

Bn,k

(
u′i (0) , u

′′
i (0) , · · · , u

(n−k+1)
i (0)

)]
α(k) (0) for 1 ≤ τ ≤ h− 1

=

n∑
k=1

cn,k (τ + 1)α(k) (0) for 1 ≤ τ ≤ h− 1.

For the sake of conciseness, we will denote

U (n)
τ (0) ≡


u
(1)
τ (0)
...

u
(n)
τ (0)


Bn,k

(
U

(n−k+1)
j (0)

)
≡ Bn,k

(
u′j (0) , u

′′
j (0) , · · · , u

(n−k+1)
j (0)

)
.

We have

bn,k (τ) =

h∑
j=τ

Bn,k

(
U

(n−k+1)
j (0)

)
= Bn,k

(
U (n−k+1)
τ (0)

)
+ bn,k (τ + 1)

cn,k (τ) =

h∑
j=τ

(
βθk

)j−τ
Bn,k

(
U

(n−k+1)
j (0)

)
= Bn,k

(
U (n−k+1)
τ (0)

)
+

h∑
j=τ+1

(
βθk

)j−τ
Bn,k

(
U

(n−k+1)
j (0)

)

= Bn,k

(
U (n−k+1)
τ (0)

)
+ βθk

h∑
j=τ+1

(
βθk

)j−τ−1
(
U

(n−k+1)
j (0)

)
= Bn,k

(
U (n−k+1)
τ (0)

)
+ βθkcn,k (τ + 1) .

This implies that

Bn,k

(
U (n−k+1)
τ (0)

)
= bn,k (τ)− bn,k (τ + 1) = cn,k (τ)− βθkcn,k (τ + 1) ,

and for 1 ≤ τ ≤ h− 1, we have

u(n)τ (0) =

n∑
k=1

cn,k (τ + 1)α(k) (0) ,

which implies that

u(1)τ (0) = c1,1 (τ + 1)α(1) (0)

u(2)τ (0) = c2,1 (τ + 1)α(1) (0) + c2,2 (τ + 1)α(2) (0)

...

u(n)τ (0) = cn,1 (τ + 1)α(1) (0) + cn,2 (τ + 1)α(2) (0) + · · ·+ cn,n (τ + 1)α(n) (0) .
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Hence, 
u
(1)
τ (0)
...

u
(n)
τ (0)

 =

 c1,1 (τ + 1) 0 0
...

. . . 0
cn,1 (τ + 1) · · · cn,n (τ + 1)


 α(1) (0)

...
α(n) (0)


and

U (n)
τ (0) = Cn (τ + 1)An,

with

Cn (τ) ≡

 c1,1 (τ) 0 0
...

. . . 0
cn,1 (τ) · · · cn,n (τ)

 , , An ≡

 α(1) (0)
...

α(n) (0)


cn,k (τ) = Bn,k

(
U (n−k+1)
τ (0)

)
+ βθkcn,k (τ + 1) .

This implies that

Cn (τ) =


B1,1

(
U

(1)
τ (0)

)
0 0

...
. . . 0

Bn,1

(
U

(n)
τ (0)

)
· · · Bn,n

(
U

(1)
τ (0)

)
+ β

 θ1c1,1 (τ + 1) 0 0
...

. . . 0
θ1cn,1 (τ + 1) · · · θncn,n (τ + 1)



=


B1,1

(
U

(1)
τ (0)

)
0 0

...
. . . 0

Bn,1

(
U

(n)
τ (0)

)
· · · Bn,n

(
U

(1)
τ (0)

)
+ β

 c1,1 (τ + 1) 0 0
...

. . . 0
cn,1 (τ + 1) · · · cn,n (τ + 1)


 θ1 0 0

0
. . . 0

0 0 θn


and

Cn (τ) = Bn

(
U (n)
τ (0)

)
+ βCn (τ + 1)Θn,

where

Bn
(
U (n)
τ (0)

)
≡


B1,1

(
U

(1)
τ (0)

)
0 0

...
. . . 0

Bn,1

(
U

(n)
τ (0)

)
· · · Bn,n

(
U

(1)
τ (0)

)
 , ,Θn ≡

 θ1 0 0

0
. . . 0

0 0 θn

 .
Hence,

Cn (τ) = Bn
(
U (n)
τ (0)

)
+ βCn (τ + 1)Θn

= Bn (Cn (τ + 1)An) + βCn (τ + 1)Θn

≡ Dn (Cn (τ + 1))

with the following terminal condition

cn,k (h) = 1[n=k=1].

Thus,

Cn (h) =

[
1 01×n−1

0n−1×1 0n−1×n−1

]
≡ C̄n

and
Cn (τ) = D◦h−τ

n

(
C̄n
)

and
Cn (1) = D◦h−1

n

(
C̄n
)

12



ψ
(n)
t (0;h) =

n∑
k=1

cn,k (1)

[
ψ
(k)
t (0)− ω(k) (0)

1− βθk

]

+

n∑
k=1

bn,k (1)
ω(k) (0)

1− βθk
,

with

bn,k (1) = cn,k (h) +

h−1∑
τ=1

(
cn,k (τ)− βθkcn,k (τ + 1)

)
= cn,k (h) +

h−1∑
τ=1

cn,k (τ)− βθk
h−1∑
τ=1

cn,k (τ + 1)

= cn,k (h) +

h−1∑
τ=1

cn,k (τ)− βθk
h∑
τ=2

cn,k (τ)

= cn,k (h) + cn,k (1)− βθkcn,k (h) +
(
1− βθk

) h−1∑
τ=2

cn,k (τ)

= βθkcn,k (1) +
(
1− βθk

) h∑
τ=1

cn,k (τ)

cn,k (1) = D◦h−1

n

(
C̄n
)
[n, k]

h∑
τ=1

cn,k (τ) =

h∑
τ=1

Cn (τ) [n, k] =

(
h∑
τ=1

D◦h−τ
n

(
C̄n
))

[n, k]

=

(
h−1∑
τ=0

D◦τ
n

(
C̄n
))

[n, k] .

4 Weak ergodicity

4.1 Proof of Proposition 2

X (n)
τ can be rewritten as follows:

X (n)
τ =

[
X (n−1)
τ 0n−1×1

X (n)
τ [n, 1 : n− 1] X (n)

τ [n, n]

]
, (19)

with

X (n)
τ [n, n] =

(
α(1) (0)

)n (βθn)
τ − (ρn)

τ

βθn − ρn
(20)

and

X (n)
τ [n, 1 : n− 1]

′
= Bn,1:n−1

(
X (n)
τ−1An

)′
+ βΘn−1X (n)

τ−1 [n, 1 : n− 1]
′
. (21)

Equation (21) can be rewritten as

X (n)
τ [n, 1 : n− 1]′ =

(
α(n) (0)X (n)

τ−1 [n, n]

Bn,2:n−1

(
X (n−1)

τ−1 An−1

)′ )+
(
e
(n−1)
1 A′

n−1 + βΘn−1

)
X (n)

τ−1 [n, 1 : n− 1]′ , (22)

where e
(n−1)
1 is the (n−1)×1 vector taking 1 at the first entry and 0 everywhere else. To establish

the proposition, we proceed by induction. Equation (20) implies that limh→∞
∑h
τ=0 X

(n)
τ [n, n] <

∞ if and only if βθn < 1 and ρ < 1. Furthermore, assume that limh→∞
∑h
τ=0 X

(n−1)
τ < ∞ and

limh→∞
∑h
τ=0 X

(n)
τ <∞ if the following conditions are met:

13



1. Condition (1): All the eigenvalues of e
(n−1)
1 A′

n−1 + βΘn−1 have modulus strictly less
than 1.

2. Condition (2): limh→∞
∑h
τ=0Bn,2:n−1

(
X (n−1)
τ An−1

)
<∞.

Condition (1) is equivalent to ρ < 1 and βθj < 1 for j = 2, ..., n− 1. Let us tackle condition (2)
by considering any integer 2 ≤ k ≤ n− 1 and using the following inequality:

Bn,k

(
X (n−1)
τ An−1

)
≤ S(n, k)

{
∥X (n−1)

τ An−1∥∞
}k

≤ S(n, k)
[
∥X (n−1)

τ ∥∞
]k

(∥An−1∥∞)
k
, (23)

where S(n, k) denotes the sequence of Stirling numbers of the second kind2 and ∥·∥∞ is a matrix

norm that is simply the maximum absolute row sum of the matrix. Taking the sum (
∑h
τ=0) on

both sides of equation (23), we have

h∑
τ=0

Bn,k

(
X (n−1)
τ An−1

)
≤ S(n, k) (∥An−1∥∞)

k
h∑
τ=0

{
∥X (n−1)

τ ∥∞
}k

.

Furthermore, using d’Alembert’s convergence ratio,3 limh→∞
∑h

τ=0 X
(n−1)
τ < ∞ is equivalent to

limτ→∞
∥X (n−1)
τ+1 ∥∞

|X (n−1)
τ ∥∞

< 1 and thus limτ→∞

{
∥X (n−1)
τ+1 ∥∞

}k{
|X (n−1)
τ ∥∞

}k < 1, and limh→∞
∑h

τ=0

{
∥X (n−1)

τ ∥∞
}k

<

∞, implying that condition (2) is met. Since we have already established the convergence of

ψ
(n)
t (0;h) for n = 1, 2, 3, proposition 2 has been proven.

4.2 Other details

We can express Bn (z) recursively as follows:

Bn (z) =
[

Bn−1 (z) 0n−1×1

Bn,1:n−1 (z) z (1)
n

]
.

We also have

C̄nAn =


α(1) (0)

0
...
0

 ,

C̄nΘn =

[
C̄n−1 0n−1×1

01×n−1 0

] [
Θn−1 0n−1×1

01×n−1 θn

]
=

[
C̄n−1Θn−1 0n−1×1

01×n−1 0

]
.

Hence,

Dn
(
C̄n
)
=

[
Dn−1

(
C̄n−1

)
0n−1×1

Bn,1:n−1

(
C̄nAn

) (
α(1) (0)

)n ]

Dn
(
C̄n
)
An =

[
Dn−1

(
C̄n−1

)
0n−1×1

Bn,1:n−1

(
C̄nAn

) (
α(1) (0)

)n ]( An−1

α(n) (0)

)
=

(
Dn−1

(
C̄n−1

)
An−1

Bn,1:n−1

(
C̄nAn

)
An−1 +

(
α(1) (0)

)n
α(n) (0)

)
,

Dn
(
C̄n
)
Θn =

[
Dn−1

(
C̄n−1

)
0n−1×1

Bn,1:n−1

(
C̄nAn

) (
α(1) (0)

)n ] [ Θn−1 0n−1×1

01×n−1 θn

]
] =

[
Dn−1

(
C̄n−1

)
Θn−1 0n−1×1

Bn,1:n−1

(
C̄nAn

)
Θn−1

(
θα(1) (0)

)n ]
2We provide the definition and explicit expression of S(n, k) in Section 4.3.
3See “Convergence Tests,” §1.3.3 in Zwillinger (2018).
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Dn
(
Dn
(
C̄n
))

= Bn
(
Dn
(
C̄n
)
An
)
+ βDn

(
C̄n
)
Θn

=

[
Bn−1

(
Dn−1

(
C̄n−1

)
An−1

)
0n−1×1

Bn,1:n−1

(
Dn
(
C̄n
)
An
)

ρn
(
α(1) (0)

)n ]+ [ βDn−1

(
C̄n−1

)
Θn−1 0n−1×1

βBn,1:n−1

(
C̄nAn

)
Θn−1 β

(
θα(1) (0)

)n ]
=

[
Bn−1

(
Dn−1

(
C̄n−1

)
An−1

)
+ βDn−1

(
C̄n−1

)
Θn−1 0n−1×1

Bn,1:n−1

(
Dn
(
C̄n
)
An
)
+ βBn,1:n−1

(
C̄nAn

)
Θn−1 ρn

(
α(1) (0)

)n
+ β

(
θα(1) (0)

)n ]
=

[
Dn−1

(
Dn−1

(
C̄n−1

))
0n−1×1

Bn,1:n−1

(
Dn
(
C̄n
)
An
)
+ βBn,1:n−1

(
C̄nAn

)
Θn−1

(
α(1) (0)

)n
(ρn + βθn)

]
=

[
Dn−1

(
Dn−1

(
C̄n−1

))
0n−1×1

Bn,1:n−1

(
Dn
(
C̄n
)
An
)
+ βDn

(
C̄n
)
[n, 1 : n− 1]Θn−1

(
α(1) (0)

)n
(ρn + βθn)

]
.

The first element of Dn
(
C̄n
)
An is

(
α(1) (0)

)2
+ βθα(1) (0) = α(1) (0) ρ.

We also have

Dn
(
Dn
(
Dn
(
C̄n
)))

= Bn
(
Dn
(
Dn
(
C̄n
))
An
)
+ βDn

(
Dn
(
C̄n
))

Θn

Dn
(
Dn
(
C̄n
))
An

=

[
Dn−1

(
Dn−1

(
C̄n−1

))
0n−1×1

Bn,1:n−1

(
Dn
(
C̄n
)
An
)
+ βBn,1:n−1

(
C̄nAn

)
Θn−1

(
α(1) (0)

)n
(ρn + βθn)

](
An−1

α(n) (0)

)
=

(
Dn−1

(
Dn−1

(
C̄n−1

))
An−1

Bn,1:n−1

(
Dn
(
C̄n
)
An
)
An−1 + βBn,1:n−1

(
C̄nAn

)
Θn−1An−1 +

(
α(1) (0)

)n
(ρn + βθn)α(n) (0)

)

Dn
(
Dn
(
C̄n
))

Θn

=

[
Dn−1

(
Dn−1

(
C̄n−1

))
0n−1×1

Bn,1:n−1

(
Dn
(
C̄n
)
An
)
+ βBn,1:n−1

(
C̄nAn

)
Θn−1

(
α(1) (0)

)n
(ρn + βθn)

] [
Θn−1 0n−1×1

01×n−1 θn

]
=

[
Dn−1

(
Dn−1

(
C̄n−1

))
0n−1×1

Bn,1:n−1

(
Dn
(
C̄n
)
An
)
Θn−1 + βBn,1:n−1

(
C̄nAn

)
(Θn−1)

2 (
θα(1) (0)

)n
(ρn + βθn)

]

Bn (z) =
[

Bn−1 (z) 0n−1×1

Bn,1:n−1 (z) z (1)
n

]

Dn
(
Dn
(
Dn
(
C̄n
)))

=

[
Bn−1

(
Dn−1

(
Dn−1

(
C̄n−1

))
An−1

)
0n−1×1

Bn,1:n−1

(
Dn
(
Dn
(
C̄n
))
An
) (

α(1) (0) ρ2
)n ]

+

[
βDn−1

(
Dn−1

(
C̄n−1

))
0n−1×1

βBn,1:n−1

(
Dn
(
C̄n
)
An
)
Θn−1 + β2Bn,1:n−1

(
C̄nAn

)
(Θn−1)

2
β
(
θα(1) (0)

)n
(ρn + βθn)

]
=

[
Dn−1

(
Dn−1

(
Dn−1

(
C̄n−1

)))
0n−1×1

Bn,1:n−1

(
Dn
(
Dn
(
C̄n
))
An
)
+ βDn

(
Dn
(
C̄n
))

[n, 1 : n− 1]Θn−1 α(1) (0)
n
(
(ρn)

2
+ βθnρn + (βθn)

2
) ]

.

The first element of Dn
(
Dn
(
C̄n
))
An is α(1) (0) ρ2:

Dn
(
Dn
(
C̄n
))

[n, 1 : n− 1] = Bn,1:n−1

(
Dn
(
C̄n
)
An
)
+ βBn,1:n−1

(
C̄nAn

)
Θn−1.

Hence,

D◦τ
n

(
C̄n
)
[n, 1 : n− 1] = Bn,1:n−1

(
D◦τ−1

n

(
C̄n
)
An

)
+ βD◦τ−1

n

(
C̄n
)
[n, 1 : n− 1]Θn−1
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D◦4

n

(
C̄n
)
= Bn

(
D◦3

n

(
C̄n
)
An

)
+ βD◦3

n

(
C̄n
)
Θn

D◦3

n

(
C̄n
)
An =

(
D◦3

n−1

(
C̄n−1

)
An−1

D◦3

n

(
C̄n
)
[n, 1 : n− 1]An−1 + α(1) (0)

n
(
(ρn)

2
+ βθnρn + (βθn)

2
)
α(n) (0)

)

D◦3

n

(
C̄n
)
Θn =

[
D◦3

n−1

(
C̄n−1

)
Θn−1 0n−1×1

D◦3

n

(
C̄n
)
[n, 1 : n− 1]Θn−1 α(1) (0)

n
(
(ρn)

2
+ βθnρn + (βθn)

2
)
θn

]

βD◦3

n

(
C̄n
)
Θn =

[
βD◦3

n−1

(
C̄n−1

)
Θn−1 0n−1×1

βD◦3

n

(
C̄n
)
[n, 1 : n− 1]Θn−1 α(1) (0)

n
(
(ρn)

2
βθn + (βθn)

2
ρn + (βθn)

3
) ]

Bn (z) =
[

Bn−1 (z) 0n−1×1

Bn,1:n−1 (z) z (1)
n

]

D◦4

n

(
C̄n
)

=

 Bn−1

(
D◦3

n−1

(
C̄n−1

)
An−1

)
0n−1×1

Bn,1:n−1

(
D◦3

n

(
C̄n
)
An

) (
α(1) (0) ρ3

)n


+

[
βD◦3

n−1

(
C̄n−1

)
Θn−1 0n−1×1

βD◦3

n

(
C̄n
)
[n, 1 : n− 1]Θn−1 α(1) (0)

n
(
(ρn)

2
βθn + (βθn)

2
ρn + (βθn)

3
) ]

=

[
D◦4

n−1

(
C̄n−1

)
0n−1×1

D◦4

n

(
C̄n
)
[n, 1 : n− 1] α(1) (0)

n
(
(ρn)

3
+ (ρn)

2
βθn + (βθn)

2
ρn + (βθn)

3
) ] .

We can then write

D◦τ
n

(
C̄n
)
=

[
D◦τ
n−1

(
C̄n−1

)
0n−1×1

D◦τ
n

(
C̄n
)
[n, 1 : n− 1] D◦τ

n

(
C̄n
)
[n, n]

]
, with

D◦τ
n

(
C̄n
)
[n, 1 : n− 1] = Bn,1:n−1

(
D◦τ−1

n

(
C̄n
)
An

)
+ βD◦τ−1

n

(
C̄n
)
[n, 1 : n− 1]Θn−1

D◦τ
n

(
C̄n
)
[n, n] = (βθn)D◦τ

n

(
C̄n
)
[n, n] +

(
α(1) (0) ρτ−1

)n
.

D◦τ
n

(
C̄n
)
[n, n] converges if βθn < 1 and ρ < 1. In fact, we can compute D◦τ

n

(
C̄n
)
[n, n] in

closed-form. Indeed, we have

D◦τ
n

(
C̄n
)
[n, n] =

(
α(1) (0)

)n (βθn)
τ − (ρn)

τ

βθn − ρn

D◦τ
n

(
C̄n
)
[n, 1 : n− 1]

′
= Bn,1:n−1

(
D◦τ−1

n

(
C̄n
)
An

)′
+ βΘn−1D◦τ−1

n

(
C̄n
)
[n, 1 : n− 1]

′

D◦τ
n

(
C̄n
)
[n, 1] = D◦τ−1

n

(
C̄n
)
[n, 1 : n− 1]An−1 +D◦τ−1

n

(
C̄n
)
[n, n]α(n) (0)

+β
[
θ 0 · · · 0

]
D◦τ−1

n

(
C̄n
)
[n, 1 : n− 1]

′
.
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Hence,

D◦τ
n

(
C̄n
)
[n, 1 : n− 1]

′
=

(
D◦τ−1

n

(
C̄n
)
[n, 1 : n− 1]An−1 +D◦τ−1

n

(
C̄n
)
[n, n]α(n) (0)

Bn,2:n−1

(
D◦τ−1

n−1

(
C̄n−1

)
An−1

)′ )
+βΘn−1D◦τ−1

n

(
C̄n
)
[n, 1 : n− 1]

′

=

(
α(n) (0)

(
α(1) (0)

)n (βθn)
τ−1 − (ρn)

τ−1

βθn − ρn

)
e
(n−1)
1

+

(
0

Bn,2:n−1

(
D◦τ−1

n−1

(
C̄n−1

)
An−1

)′ )
+
(
e
(n−1)
1 A′

n−1 + βΘn−1

)
D◦τ−1

n

(
C̄n
)
[n, 1 : n− 1]

′

X (n)
τ [n, 1 : n− 1]

′
=

 α(n) (0)X (n)
τ−1 [n, n]

Bn,2:n−1

(
X (n−1)
τ−1 An−1

)′
+

(
e
(n−1)
1 A′

n−1 + βΘn−1

)
X (n)
τ−1 [n, 1 : n− 1]

′
.

4.3 Exponential Bell polynomials and Stirling numbers of the second
kind

The partial or incomplete exponential Bell polynomials are a triangular array of polynomials
given by

Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!

j1!j2! · · · jn−k+1!

(x1
1!

)j1 (x2
2!

)j2
· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

,

where the sum is taken over all sequences, j1, j2, j3, ..., jn−k+1, of non-negative integers such
that these two conditions are satisfied:

j1 + j2 + · · ·+ jn−k+1 = k

j1 + 2j2 + 3j3 + · · ·+ (n− k + 1)jn−k+1 = n.

The Stirling numbers of the second kind, written S(n, k), count the number of ways to partition
a set of n labelled objects into k nonempty unlabelled subsets. They can be calculated using the
following explicit formula:

S(n, k) =
1

k!

k∑
i=0

(−1)i
(
k

i

)
(k − i)n.

5 Unconditional moments

5.1 Unconditional skewness

The multi-step ahead third cumulant is given by

µ3,t (xt+h) = Et

[
ψ
(3)
t+h−1 (0)

]
+ µ3,t

(
ψ′
t+h−1 (0)

)
+ 3covt

(
ψ′
t+h−1 (0) , ψ

′′
t+h−1 (0)

)
,

with

Et

[
ψ
(3)
t+h (0)

]
= E

[
ψ
(3)
t (0)

]
+ α(3)(0)

(
βθ3
)h − ρh

βθ3 − ρ
(ψ′
t (0)− E [ψ′

t (0)])

+
(
βθ3
)h (

ψ
(3)
t (0)− E

[
ψ
(3)
t (0)

])
,
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covt
(
ψ′
t+h (0) , ψ

′′
t+h (0)

)
=

α′(0)α′′(0)E [ψ′′
t (0)]

(1− ρ2) (ρ− βθ2)

[
βθ (1− θ)

(
1− ρ2

)
1− ρβθ2

(
1−

(
ρβθ2

)h)
+ α′(0)

(
1− ρ2h

)]

+
α′(0)α′′(0)2 (ψ′

t (0)− E [ψ′
t (0)])

(βθ2 − ρ) (1− ρ)

 (θ−ρ)
(
1−(βθ2)

h
)

(ρ2−βθ2)θ +
(1−θ)

(
1−(ρβθ2)

h
)

ρθ(1−βθ2)

+
(1−βθ)(1−ρh)
ρ(1−βθ2) +

α′(0)(1−ρ2h)
ρ(βθ2−ρ2)


+
α′(0)α′′(0) (ψ′′

t (0)− E [ψ′′
t (0)])

βθ2 − ρ2

[
θ − ρ

θ (1− ρ)

((
βθ2
)h − (βθ2ρ)h)− α′(0)

ρ− βθ2

((
ρ2
)h − (βθ2ρ)h)] ,

and

µ3,t

(
ψ′
t+h (0)

)
= E

[
ψ
(3)
t (0)

]
α′(0)3

1−
(
ρ3
)h

1− ρ3
+ (ψ′

t (0)− E [ψ′
t (0)])

α(3)(0)α′(0)3

βθ3 − ρ

((
βθ3
)h − (ρ3)h
βθ3 − ρ3

−
ρh −

(
ρ3
)h

(1− ρ2) ρ

)

+
(
ψ
(3)
t (0)− E

[
ψ
(3)
t (0)

])
α′(0)3

(
βθ3
)h − (ρ3)h
βθ3 − ρ3

+3ρα′(0)2E [ψ′′
t (0)]α

′(0)α′′(0)

 1−ρβθ
(1−ρ2)(1−ρβθ2)

1−(ρ3)
h

1−ρ3 − α′(0)
(1−ρ2)(ρ−βθ2)

(ρ2)
h−(ρ3)

h

(1−ρ)ρ2

+βθ(θ−1)
ρ−βθ2

(βθ2ρ)
h−(ρ3)

h

(βθ2−ρ2)ρ


+3ρα′(0)2α′(0)α′′(0)2

(ψ′
t (0)− E [ψ′

t (0)])

(βθ2 − ρ) (1− ρ)

 (θ−ρ)
θ(βθ2−ρ2)

(βθ2)
h−(ρ3)

h

βθ2−ρ3 + (θ−1)
θρ2(1−βθ2)

(βθ2ρ)
h−(ρ3)

h

(βθ2−ρ2)

− α′(0)
ρ3(βθ2−ρ2)

(ρ2)
h−(ρ3)

h

1−ρ − 1−βθ
(1−βθ2)ρ2

ρh−(ρ3)
h

1−ρ2


+3ρα′(0)2 (ψ′′

t (0)− E [ψ′′
t (0)])

α′(0)α′′(0)

βθ2 − ρ2

 θ−ρ
(1−ρ)θ

(βθ2)
h−(ρ3)

h

βθ2−ρ3 + θ−1
ρ(1−ρ)θ

(βθ2ρ)
h−(ρ3)

h

ρ−βθ2

− α′(0)
ρ2(ρ−βθ2)

(ρ2)
h−(ρ3)

h

1−ρ

 .
ψ
(3)
t (0;h) converge if and only if |ρ| < 1,

∣∣βθ2∣∣ < 1 and
∣∣βθ3∣∣ < 1. In that case, ψ

(3)
t (0;h)

converge to

µ3 (xt) ≡
(
1 +

α′(0)3

1− ρ3

)
E
[
ψ
(3)
t (0)

]
+3

(
1 +

ρα′(0)2

1− ρ3

)
1− ρβθ

(1− ρ2) (1− ρβθ2)
α′(0)α′′(0)E [ψ′′

t (0)] .

Hence, the unconditional skewness is

Skew [xt] =
µ3 (xt)

V ar [xt]
3/2

=

(
1 + α′(0)3

1−ρ3

)
(
1 + α′(0)2

1−ρ2

)3/2 E
[
ψ
(3)
t (0)

]
E [ψ′′

t (0)]
3/2

+3
(1− ρβθ)

(
1 + ρα′(0)2

1−ρ3

)
α′(0)α′′(0)

(1− ρ2) (1− ρβθ2)
(
1 + α′(0)2

1−ρ2

)3/2E [ψ′′
t (0)]

−1/2
.

5.2 Analytical expression for cov(zt+1, zt)

The goal here is to compute

cov(zt+1, zt) =

 cov(xt+1, xt) cov(xt+1, ε
2
t ) cov(xt+1, x

2
t )

cov(ε2t+1, xt) cov(ε2t+1, ε
2
t ) cov(ε2t+1, x

2
t )

cov(x2t+1, xt) cov(x2t+1, ε
2
t ) cov(x2t+1, x

2
t )

 .
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5.2.1 Expression of cov (xt+1, xt)

cov (xt+1, xt) = α′(0)

[
1− (βθ)

2 − α′(0)βθ

1− (βθ)
2 − 2α′(0)βθ

]
V ar [xt] ,

with

V ar [xt] =

(
α′(0)2

1− (α′(0) + βθ)
2 + 1

)
E [ψ′′

t (0)]

E [ψ′′
t (0)] =

ω′′(0) + α′′(0)E [xt]

1− βθ2

E [xt] =
ω′(0)

1− (α′(0) + βθ)
.

5.2.2 Expression of cov(xt+1, ε
2
t )

cov(xt+1, ε
2
t ) = cov

(
ψ′
t (0) , ε

2
t

)
= cov

(
ω′(0) + ρψ′

t−1 (0) + α′(0)εt, ε
2
t

)
= ρcov

(
ψ′
t−1 (0) , ε

2
t

)
+ α′(0)cov

(
εt, ε

2
t

)
= ρcov

(
ψ′
t−1 (0) , ψ

′′
t−1 (0)

)
+ α′(0)E

[
ε3t
]
.

We have

E
[
ε3t
]
= E

[
ψ
(3)
t (0)

]
=
ω(3)(0) + α(3)(0)E [xt]

1− βθ3

cov (ψ′
t (0) , ψ

′′
t (0))

= cov
(
ω′(0) + ρψ′

t−1 (0) + α′(0)εt, ω
′′(0) + βθ2ψ′′

t−1 (0) + α′′(0)ψ′
t−1 (0) + α′′(0)εt

)
= cov

(
ρψ′

t−1 (0) + α′(0)εt, βθ
2ψ′′

t−1 (0) + α′′(0)ψ′
t−1 (0) + α′′(0)εt

)
= ρβθ2cov

(
ψ′
t−1 (0) , ψ

′′
t−1 (0)

)
+ ρα′′(0)cov

(
ψ′
t−1 (0) , ψ

′
t−1 (0)

)
+ ρα′′(0)cov

(
ψ′
t−1 (0) , εt

)
+α′(0)βθ2cov

(
εt, ψ

′′
t−1 (0)

)
+ α′(0)α′′(0)cov

(
εt, ψ

′
t−1 (0)

)
+ α′(0)α′′(0)cov (εt, εt)

= ρβθ2cov (ψ′
t (0) , ψ

′′
t (0)) + ρα′′(0)var [ψ′

t (0)] + α′(0)α′′(0)E [ψ′′
t (0)] .

Hence,

cov (ψ′
t (0) , ψ

′′
t (0)) =

ρα′′(0)var [ψ′
t (0)] + α′(0)α′′(0)E [ψ′′

t (0)]

1− ρβθ2

with

V ar [ψ′
t (0)] =

α′(0)2E [ψ′′
t (0)]

1− ρ2
.

5.2.3 Expression of cov(xt+1, x
2
t )

cov(xt+1, x
2
t )

= cov(ψ′
t (0) , x

2
t ) = cov(ω′(0) + ρψ′

t−1 (0) + α′(0)εt, x
2
t )

= ρcov(ψ′
t−1 (0) , x

2
t ) + α′(0)cov(εt, x

2
t )

= ρcov(ψ′
t−1 (0) , ψ

′′
t−1 (0) + ψ′

t−1 (0)
2
) + α′(0)cov(εt, x

2
t )

= ρcov(ψ′
t−1 (0) , ψ

′′
t−1 (0)) + ρcov(ψ′

t−1 (0) , ψ
′
t−1 (0)

2
) + α′(0)cov(εt, x

2
t )

= ρcov(ψ′
t (0) , ψ

′′
t (0)) + ρcov(ψ′

t (0) , ψ
′
t (0)

2
) + α′(0)cov(εt, x

2
t )
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cov(ψ′
t (0) , ψ

′
t (0)

2
)

= cov(ρψ′
t−1 (0) , 2ω

′(0)ρψ′
t−1 (0) + α′(0)2ψ′′

t−1 (0) + ρ2ψ′
t−1 (0)

2
) + E

[
covt−1(ψ

′
t (0) , ψ

′
t (0)

2
)
]

= 2ω′(0)ρ2cov(ψ′
t−1 (0) , ψ

′
t−1 (0)) + ρα′(0)2cov(ψ′

t−1 (0) , ψ
′′
t−1 (0)) + ρ3cov(ψ′

t−1 (0) , ψ
′
t−1 (0)

2
)

+E
[
covt−1(α

′(0)εt, α
′(0)2ε2t + 2α′(0)

(
ω′(0) + ρψ′

t−1 (0)
)
εt)
]

= ρ3cov(ψ′
t (0) , ψ

′
t (0)

2
) + 2ω′(0)ρ2V ar [ψ′

t (0)] + ρα′(0)2cov (ψ′
t (0) , ψ

′′
t (0))

+α′(0)3E
[
ε3t
]
+ 2α′(0)2E

[(
ω′(0) + ρψ′

t−1 (0)
)
ψ′′
t−1 (0)

]
= ρ3cov(ψ′

t (0) , ψ
′
t (0)

2
) + 2ω′(0)ρ2V ar [ψ′

t (0)] + ρα′(0)2cov (ψ′
t (0) , ψ

′′
t (0))

+α′(0)3E
[
ε3t
]
+ 2α′(0)2ω′(0)E [ψ′′

t (0)] + 2α′(0)2ρE [ψ′
t (0)ψ

′′
t (0)]

= ρ3cov(ψ′
t (0) , ψ

′
t (0)

2
) + α′(0)3E

[
ε3t
]
+ 2α′(0)2 (ω′(0) + ρE [xt])E [ψ′′

t (0)]

+2ω′(0)ρ2V ar [ψ′
t (0)] + 3ρα′(0)2cov (ψ′

t (0) , ψ
′′
t (0))

= ρ3cov(ψ′
t (0) , ψ

′
t (0)

2
) + α′(0)3E

[
ε3t
]
+ 2α′(0)2E [xt]E [ψ′′

t (0)]

+2ω′(0)ρ2V ar [ψ′
t (0)] + 3ρα′(0)2cov (ψ′

t (0) , ψ
′′
t (0)) .

Hence,

cov(ψ′
t (0) , ψ

′
t (0)

2
) =

α′(0)3E
[
ε3t
]
+ 2α′(0)2E [xt]E [ψ′′

t (0)]
+2ω′(0)ρ2V ar [ψ′

t (0)] + 3ρα′(0)2cov (ψ′
t (0) , ψ

′′
t (0))

1− ρ3

cov(εt, x
2
t ) = E

[
covt−1(εt, x

2
t )
]
= E

[
covt−1(εt, ε

2
t − 2ψ′

t−1 (0) εt)
]

= E
[
covt−1(εt, ε

2
t )
]
− 2E

[
ψ′
t−1 (0) covt−1(εt, εt)

]
= E

[
ε3t
]
− 2E

[
ψ′
t−1 (0)ψ

′′
t−1 (0)

]
= E

[
ε3t
]
− 2cov(ψ′

t (0) , ψ
′′
t (0))− 2E [xt]E [ψ′′

t (0)] .

5.2.4 Expression of cov(ε2t+1, xt)

cov(ε2t+1, xt) = cov(ψ′′
t (0) , xt) = cov(ω′′(0) + α′′(0)xt + βθ2ψ′′

t−1 (0) , xt)

= α′′(0)cov(xt, xt) + βθ2cov(ψ′′
t−1 (0) , xt)

= α′′(0)var(xt) + βθ2cov(ψ′′
t−1 (0) , ψ

′
t−1 (0))

= α′′(0)var(xt) + βθ2cov(ψ′′
t (0) , ψ

′
t (0))

5.2.5 Expression of cov(x2t+1, xt)

cov(x2t+1, xt)

= cov(ψ′′
t (0) + ψ′

t (0)
2
, xt) = cov(ψ′′

t (0) , xt) + cov(ψ′
t (0)

2
, xt)

= cov(ε2t+1, xt) + cov(2ω′(0)ρψ′
t−1 (0) + α′(0)2ψ′′

t−1 (0) + ρ2ψ′
t−1 (0)

2
, ψ′

t−1 (0))

+E
[
covt−1(εt, α

′(0)2ε2t + 2α′(0)
(
ω′(0) + ρψ′

t−1 (0)
)
εt)
]

= cov(ε2t+1, xt) + 2ω′(0)ρvar(ψ′
t (0)) + α′(0)2cov(ψ′′

t (0) , ψ
′
t (0)) + ρ2cov(ψ′

t (0)
2
, ψ′

t (0))

+α′(0)2E
[
ε3t
]
+ E

[
2α′(0)

(
ω′(0) + ρψ′

t−1 (0)
)
ψ′′
t−1 (0)

]
= cov(ε2t+1, xt) + 2ω′(0)ρvar(ψ′

t (0)) + α′(0)2cov(ψ′′
t (0) , ψ

′
t (0)) + ρ2cov(ψ′

t (0)
2
, ψ′

t (0))

+α′(0)2E
[
ε3t
]
+ 2α′(0)ω′(0)E [ψ′′

t (0)] + 2α′(0)ρE [ψ′
t (0)ψ

′′
t (0)]

= cov(ε2t+1, xt) + 2ω′(0)ρvar(ψ′
t (0)) +

(
α′(0)2 + 2α′(0)ρ

)
cov(ψ′′

t (0) , ψ
′
t (0))

+ρ2cov(ψ′
t (0)

2
, ψ′

t (0)) + α′(0)2E
[
ε3t
]
+ 2α′(0)E [xt]E [ψ′′

t (0)]
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5.2.6 Expression of cov(ε2t+1, ε
2
t )

cov(ε2t+1, ε
2
t )

= cov(ψ′′
t (0) , ε

2
t ) = cov(ω′′(0) + βθ2ψ′′

t−1 (0) + α′′(0)ψ′
t−1 (0) + α′′(0)εt, ε

2
t )

= βθ2cov(ψ′′
t−1 (0) , ε

2
t ) + α′′(0)cov(ψ′

t−1 (0) , ε
2
t ) + α′′(0)cov(εt, ε

2
t )

= βθ2cov(ψ′′
t (0) , ψ

′′
t (0)) + α′′(0)cov(ψ′

t (0) , ψ
′′
t (0)) + α′′(0)E(ε3t )

= βθ2V ar[ψ′′
t (0)] + α′′(0)cov(ψ′

t (0) , ψ
′′
t (0)) + α′′(0)E(ε3t )

V ar[ψ′′
t (0)] = V ar[βθ2ψ′′

t−1 (0) + α′′(0)ψ′
t−1 (0)] + α′′(0)2E[ψ′′

t (0)]

=
(
βθ2
)2
V ar[ψ′′

t−1 (0)] + α′′(0)2V ar[ψ′
t−1 (0)]

+2βθ2α′′(0)cov(ψ′
t (0) , ψ

′′
t (0)) + α′′(0)2E[ψ′′

t (0)].

Hence,

V ar[ψ′′
t (0)] =

α′′(0)2V ar[ψ′
t (0)] + 2βθ2α′′(0)cov(ψ′

t (0) , ψ
′′
t (0)) + α′′(0)2E[ψ′′

t (0)]

1− (βθ2)
2 .

5.2.7 Expression of cov(ε2t+1, x
2
t )

cov(ε2t+1, x
2
t ) = cov(ψ′′

t (0) , x
2
t ) = cov(βθ2ψ′′

t−1 (0) + α′′(0)xt, x
2
t )

= βθ2cov(ψ′′
t−1 (0) , x

2
t ) + α′′(0)cov(xt, x

2
t )

= βθ2cov(ψ′′
t−1 (0) , ψ

′′
t−1 (0) + ψ′

t−1 (0)
2
) + α′′(0)cov(xt, x

2
t )

= βθ2V ar[ψ′′
t (0)] + βθ2cov(ψ′

t (0) , ψ
′
t (0)

2
) + α′′(0)cov(xt, x

2
t )

cov(xt, x
2
t )

= cov(ψ′
t−1 (0) , ψ

′′
t−1 (0) + ψ′

t−1 (0)
2
) + E

[
covt−1

(
xt, x

2
t

)]
= cov (ψ′

t (0) , ψ
′′
t (0)) + cov

(
ψ′
t (0) , ψ

′
t (0)

2
)
+ E

[
covt−1

(
εt, ε

2
t − 2εtψ

′
t−1 (0)

)]
= cov (ψ′

t (0) , ψ
′′
t (0)) + cov

(
ψ′
t (0) , ψ

′
t (0)

2
)
+ E(ε3t )− 2E [ψ′

t (0)ψ
′′
t (0)]

= cov
(
ψ′
t (0) , ψ

′
t (0)

2
)
+ E(ε3t )− 2E [ψ′

t (0)]E [ψ′′
t (0)]− cov (ψ′

t (0) , ψ
′′
t (0))

5.2.8 Expression of cov(x2t+1, ε
2
t )

cov(x2t+1, ε
2
t )

= cov(ψ′′
t (0) + ψ′

t (0)
2
, ε2t ) = cov(ψ′′

t (0) , ε
2
t ) + cov(ψ′

t (0)
2
, ε2t )

= cov(ε2t+1, ε
2
t ) + cov(2ω′(0)ρψ′

t−1 (0) + α′(0)2ψ′′
t−1 (0) + ρ2ψ′

t−1 (0)
2
, ψ′′

t−1 (0))

+E
[
covt−1(α

′(0)2ε2t + 2α′(0)
(
ω′(0) + ρψ′

t−1 (0)
)
εt, ε

2
t )
]

= cov(ε2t+1, ε
2
t ) + 2ω′(0)ρcov(ψ′

t (0) , ψ
′′
t (0)) + α′(0)2V ar[ψ′′

t (0)] + ρ2cov(ψ′
t (0)

2
, ψ′′

t (0))
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5.2.9 Expression of cov(x2t+1, x
2
t )

cov(x2t+1, x
2
t )

= cov(ψ′′
t (0) + ψ′

t (0)
2
, x2t ) = cov(ψ′′

t (0) , x
2
t ) + cov(ψ′

t (0)
2
, x2t ) = cov(ε2t+1, x

2
t ) + cov(ψ′

t (0)
2
, x2t )

= cov(ε2t+1, x
2
t ) + cov(2ω′(0)ρψ′

t−1 (0) + α′(0)2ψ′′
t−1 (0) + ρ2ψ′

t−1 (0)
2
, ψ′′

t−1 (0) + ψ′
t−1 (0)

2
)

+E[covt−1

(
α′(0)2ε2t + 2α′(0)

(
ω′(0) + ρψ′

t−1 (0)
)
εt, ε

2
t + 2ψ′

t−1 (0) εt
)
]

= cov(ε2t+1, x
2
t ) + cov(2ω′(0)ρψ′

t−1 (0) , ψ
′′
t−1 (0) + ψ′

t−1 (0)
2
) + cov(α′(0)2ψ′′

t−1 (0) , ψ
′′
t−1 (0) + ψ′

t−1 (0)
2
)

+cov(ρ2ψ′
t−1 (0)

2
, ψ′′

t−1 (0) + ψ′
t−1 (0)

2
) + α′(0)2E[covt−1

(
ε2t , ε

2
t + 2ψ′

t−1 (0) εt
)
]

+2α′(0)E[
(
ω′(0) + ρψ′

t−1 (0)
)
covt−1

(
εt, ε

2
t + 2ψ′

t−1 (0) εt
)
]

= cov(ε2t+1, x
2
t ) + 2ω′(0)ρcov(ψ′

t (0) , ψ
′′
t (0)) + 2ω′(0)ρcov(ψ′

t (0) , ψ
′
t (0)

2
)

+α′(0)2V ar[ψ′′
t (0)] + α′(0)2cov(ψ′′

t (0) , ψ
′
t (0)

2
)

+ρ2cov(ψ′
t (0)

2
, ψ′′

t (0)) + ρ2V ar
[
ψ′
t (0)

2
]
+ α′(0)2E[V art−1

(
ε2t
)
] + 2α′(0)2E[ψ′

t (0)ψ
(3)
t (0)]

+2α′(0)ω′(0)E[ψ
(3)
t (0)] + 2α′(0)ρE[ψ′

t (0)ψ
(3)
t (0)]

+4α′(0)ω′(0)E[ψ′
t (0)ψ

′′
t (0)] + 4α′(0)ρE[ψ′

t (0)
2
ψ′′
t (0)]

cov(ψ′′
t (0) , ψ

′
t (0)

2
) = ?

V ar
[
ψ′
t (0)

2
]

= ?

E[V art−1

(
ε2t
)
] = ?

E[ψ′
t (0)ψ

(3)
t (0)] = ?

E[V art−1

(
ε2t
)
]

= E[Et−1

(
ε4t
)
− ψ′′

t−1 (0)
2
]

= E[ψ
(4)
t−1 (0) + 3ψ′′

t−1 (0)
2 − ψ′′

t−1 (0)
2
]

= E[ψ
(4)
t−1 (0) + 2ψ′′

t−1 (0)
2
]

= E
[
ψ
(4)
t (0)

]
+ 2E[ψ′′

t (0)
2
]

with

E[ψ
(4)
t (0)] =

ω(4)(0) + α(4)(0)E [xt]

1− βθ4

V ar
[
ψ′
t (0)

2
]
= V ar

[
Et−1

[
ψ′
t (0)

2
]]

+ E
[
V art−1

[
ψ′
t (0)

2
]]

V ar
[
Et−1

[
ψ′
t (0)

2
]]

= V ar
[
2ω′(0)ρψ′

t−1 (0) + α′(0)2ψ′′
t−1 (0) + ρ2ψ′

t−1 (0)
2
]

= 4ω′(0)2ρ2V ar[ψ′
t (0)] + α′(0)4V ar[ψ′′

t (0)] + ρ4V ar
[
ψ′
t (0)

2
]

+4ω′(0)ρα′(0)2cov (ψ′
t (0) , ψ

′′
t (0)) + 4ω′(0)ρ3cov

(
ψ′
t (0) , ψ

′
t (0)

2
)

+2α′(0)2ρ2cov(ψ′′
t (0) , ψ

′
t (0)

2
)
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E
[
V art−1

[
ψ′
t (0)

2
]]

= E
[
V art−1

[
α′(0)2ε2t + 2α′(0)

(
ω′(0) + ρψ′

t−1 (0)
)
εt
]]

= E

[
α′(0)4V art−1

[
ε2t
]
+ 4α′(0)2

(
ω′(0) + ρψ′

t−1 (0)
)2
ψ′′
t−1 (0)

+4α′(0)3
(
ω′(0) + ρψ′

t−1 (0)
)
ψ
(3)
t−1 (0)

]
= α′(0)4E

[
V art−1

[
ε2t
]]

+ 4α′(0)2ω′(0)2E
[
ψ′′
t−1 (0)

]
+4α′(0)2ρ2E

[
ψ′
t−1 (0)

2
ψ′′
t−1 (0)

]
+ 8α′(0)2ρω′(0)E

[
ψ′
t−1 (0)ψ

′′
t−1 (0)

]
+4α′(0)3ω′(0)E

[
ψ
(3)
t−1 (0)

]
+ 4α′(0)3ρE

[
ψ′
t−1 (0)ψ

(3)
t−1 (0)

]
= α′(0)4E

[
ψ
(4)
t (0)

]
+ 2α′(0)4E[ψ′′

t (0)
2
] + 4α′(0)2ω′(0)2E [ψ′′

t (0)]

+4α′(0)2ρ2E
[
ψ′
t (0)

2
ψ′′
t (0)

]
+ 8α′(0)2ρω′(0)E [ψ′

t (0)ψ
′′
t (0)]

+4α′(0)3ω′(0)E
[
ψ
(3)
t (0)

]
+ 4α′(0)3ρE

[
ψ′
t (0)ψ

(3)
t (0)

]
(
1− ρ4

)
V ar

[
ψ′
t (0)

2
]

= 4ω′(0)2ρ2V ar[ψ′
t (0)] + α′(0)4V ar[ψ′′

t (0)] + 12α′(0)2ρω′(0)cov (ψ′
t (0) , ψ

′′
t (0))

+α′(0)4E
[
ψ
(4)
t (0)

]
+ 2α′(0)4E[ψ′′

t (0)
2
] + 4ω′(0)ρ3cov

(
ψ′
t (0) , ψ

′
t (0)

2
)

+4α′(0)2
(
ω′(0) (1 + ρ)E [ψ′

t (0)] + ρ2E
[
ψ′
t (0)

2
])
E [ψ′′

t (0)] + 4α′(0)3ω′(0)E
[
ψ
(3)
t (0)

]
+4α′(0)3ρE

[
ψ′
t (0)ψ

(3)
t (0)

]
+ 6α′(0)2ρ2cov(ψ′′

t (0) , ψ
′
t (0)

2
)

cov(ψ′′
t (0) , ψ

′
t (0)

2
)

= cov(α′′(0)ψ′
t−1 (0) + βθ2ψ′′

t−1 (0) , 2ω
′(0)ρψ′

t−1 (0) + α′(0)2ψ′′
t−1 (0) + ρ2ψ′

t−1 (0)
2
)

+E
[
covt−1(α

′′(0)εt, α
′(0)2ε2t + 2α′(0)

(
ω′(0) + ρψ′

t−1 (0)
)
εt)
]

= 2ω′(0)ρα′′(0)V ar [ψ′
t (0)] +

(
α′(0)2α′′(0) + 2ω′(0)ρβθ2

)
cov(ψ′

t (0) , ψ
′′
t (0))

+α′′(0)ρ2cov(ψ′
t (0) , ψ

′
t (0)

2
) + α′(0)2βθ2V ar[ψ′′

t (0)] + ρ2βθ2cov(ψ′′
t (0) , ψ

′
t (0)

2
)

+α′(0)2α′′(0)E
[
ψ
(3)
t (0)

]
+ 2α′(0)α′′(0)E [ψ′

t (0)]E [ψ′′
t (0)] + 2ρα′(0)α′′(0)cov(ψ′

t (0) , ψ
′′
t (0)).

Hence,

cov(ψ′′
t (0) , ψ

′
t (0)

2
)

=

2ω′(0)ρα′′(0)V ar [ψ′
t (0)] +

(
α′(0)2α′′(0) + 2ω′(0)ρβθ2 + 2ρα′(0)α′′(0)

)
cov(ψ′

t (0) , ψ
′′
t (0))

+α′′(0)ρ2cov(ψ′
t (0) , ψ

′
t (0)

2
) + α′(0)2βθ2V ar[ψ′′

t (0)]

+α′(0)2α′′(0)E
[
ψ
(3)
t (0)

]
+ 2α′(0)α′′(0)E [ψ′

t (0)]E [ψ′′
t (0)]

1− ρ2βθ2

cov
(
ψ′
t (0) , ψ

(3)
t (0)

)
= cov

(
ρψ′

t−1 (0) , α
(3)(0)ψ′

t−1 (0) + βθ3ψ
(3)
t−1 (0)

)
+ E

[
covt−1(α

′(0)εt, α
(3)(0)εt)

]
= ρα(3)(0)V ar [ψ′

t (0)] + ρβθ3Cov
(
ψ′
t (0) , ψ

(3)
t (0)

)
+ α′(0)α(3)(0)E [ψ′′

t (0)] .

Hence,

cov
(
ψ′
t (0) , ψ

(3)
t (0)

)
=
ρα(3)(0)V ar [ψ′

t (0)] + α′(0)α(3)(0)E [ψ′′
t (0)]

1− ρβθ3
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5.2.10 Expressions of V ar
[
ε2t
]
and V ar

[
x2t
]

We have

V ar
[
ε2t
]

= E[V art−1

(
ε2t
)
] + V ar [ψ′′

t (0)] = E
[
ψ
(4)
t (0)

]
+ 2E[ψ′′

t (0)
2
] + V ar [ψ′′

t (0)]

= E
[
ψ
(4)
t (0)

]
+ 2E[ψ′′

t (0)]
2 + 3V ar [ψ′′

t (0)]

V ar
[
x2t
]

= E[V art−1

(
x2t
)
] + V ar

[
ψ′′
t (0) + ψ′

t (0)
2
]

= E[V art−1

(
ε2t + 2ψ′

t−1 (0) εt
)
] + V ar [ψ′′

t (0)] + V ar
[
ψ′
t (0)

2
]
+ 2cov

(
ψ′′
t (0) , ψ

′
t (0)

2
)

= E[V art−1

(
ε2t
)
] + 4E[ψ′

t−1 (0)
2
V art−1 (εt)] + 4E

[
ψ′
t−1 (0) covt−1

(
ε2t , εt

)]
+V ar [ψ′′

t (0)] + V ar
[
ψ′
t (0)

2
]
+ 2cov

(
ψ′′
t (0) , ψ

′
t (0)

2
)

= E[V art−1

(
ε2t
)
] + 4E[ψ′

t (0)
2
ψ′′
t (0)] + 4E

[
ψ′
t (0)ψ

(3)
t (0)

]
+V ar [ψ′′

t (0)] + V ar
[
ψ′
t (0)

2
]
+ 2cov

(
ψ′′
t (0) , ψ

′
t (0)

2
)
.

6 Parameters identification and estimation

6.1 Identification

Our approach for identification consists of expressing unknown parameters as functions of quan-
tities, which can be directly estimated. Using the expressions for the unconditional expectation
and variance, we have

µ ≡ E [xt] =
νφ

1− ρ

σ2 ≡ V ar [xt] = νφ2

(
1− ρ2 + ϕ2

1− ρ2

)
1− ρ+ 2ϕ

(1− θ(ρ− ϕ)) (1− ρ)
.

We deduce parameters φ and ν as follows:

φ =
σ2

µ

(1− θ(ρ− ϕ))

1− ρ+ 2ϕ

1− ρ2

1− ρ2 + ϕ2

ν =
(1− ρ)µ

φ
.

In addition, using analytical expressions of autocorrelation functions, we have

ρ1 ≡ Corr (xt, xt+1) = ϕ
1− (ρ− ϕ)

2 − (ρ− ϕ)ϕ

1− (ρ− ϕ)
2 − 2 (ρ− ϕ)ϕ

ρk ≡ Corr (xt, xt+k) = ρk−1ρ1.

It is apparent that:

ρ =
ρ2
ρ1
.

This enables us to establish that ϕ is the solution of the following second-order equation:

(ρ1 − ρ)ϕ2 −
(
1− ρ2

)
ϕ+ ρ1

(
1− ρ2

)
= 0,

which always has a solution ϕ < 1 − ρ. Given that we can solve for ϕ and ρ, it implies that we
also have solved for βθ. Indeed βθ = ρ − ϕ. To identify β and θ, we use the skewness. Let us
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denote the unconditional skewness by µ3, and

µ̄3 ≡
µ (1− ρ+ 2ϕ)

2 (
1− ρ2 + ϕ2

)2
2σ (1− ρ2)

2 µ3

η ≡ (1− ρ+ 3ϕ)

(
1 +

ϕ3

1− ρ3

)
χ ≡ 3

(
1 +

ρϕ2

1− ρ3

)
(1− ρ (ρ− ϕ)) (1− ρ+ 2ϕ)ϕ2

(1− ρ2)
.

Using the analytical derivations of the unconditional skewness, we show that θ is the solution
for the following third-order polynomial equation:

dθ3 + aθ2 + bθ + c = 0,

where

c ≡ η + χ− µ̄3,

b ≡ (µ̄3ρ− χ− η (ρ+ 2)) (ρ− ϕ)

a ≡ (µ̄3 − χ+ η (1 + 2ρ) (ρ− ϕ)) (ρ− ϕ)

d ≡ (χ− µ̄3ρ− ηρ(ρ− ϕ)) (ρ− ϕ)
2
,

which enables us to solve for θ and deduce β as β = (ρ−ϕ)
θ . In conclusion, all the 5 parameters

of the GARG dynamics are recovered from the unconditional mean, variance, skewness and the
first two autocorrelations. Thus, the structural parameters are identified.

6.2 Empirical characteristic function estimators

Because GARG processes have closed-form conditional characteristic functions, one alternative
to the ML-based method is the empirical characteristic function (ECF) estimation method (see
Knight and Yu, 2002 for details on the ECF’ theory). Let us denote λ0 = (ϕ, ν, φ, β, θ), the
unknown parameter to estimate. We can write the GARG dynamic as follows:

E [exp (uxt+1)− exp (ψt(u;λ0)) |Xt] , (24)

where Xt = (x1, ..., xt)
′ and

ψt (u) = βtψ0

(
θtu
)
+

t−1∑
j=0

[
βjω(θju) + βjα(θju)xt−j

]
. (25)

This implies that for any weighting function, W (Xt, v) (often termed instruments in the GMM
literature), ∀u, v, we have:

E [(exp (uxt+1)− exp (ψt(u;λ0)))W (Xt, v)] . (26)

This leads to continuum of moments restrictions. Hence, we can estimate the model by apply-
ing the GMM to the continuum of moments restrictions of Carrasco and Florens (2000). The
ML efficiency is achieved by choosing the Carrasco and Florens (2002) weighting function, i.e.,
W (Xt, v) = exp(X ′

tv). However, there are also difficulties with the implementation of the ECF
approach. The biggest challenge is the need to use a large set of moment conditions, leading to
the singularity of the covariance matrix. Carrasco et al. (2007) have proposed solutions to these
difficulties in the framework of GMM with a continuum of moment conditions.

6.3 Generalized method of moments

One of the advantages of the discrete-time affine models is that we can compute unconditional
moments of any component of the process of interest. This point have been studied in detail
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in Feunou and Tédongap (2012) and is an important result for estimation purposes because
even when there are unobserved components in the process of interest, we can still compute the
moments of observed components and use them to implement a GMM estimation routine. It
turns out that we keep this advantage in the GARG. In the case of an observable variable of
interest, there is no need to compute the unconditional moments. We can use the conditional
moments equations derived in the paper.

The following moment conditions have been used by Bollerslev and Zhou (2002) to esti-
mate one-factor and two-factors stochastic volatility models by means of conditional moments
of realized variance:

E [xt+1 − µ1,0] = 0 , E
[
x2t+1 − µ2,0

]
= 0,

E [(xt+1 − µ1,t)xt] = 0 , E
[(
x2t+1 − µ2,t

)
xt
]
= 0,

E
[
(xt+1 − µ1,t)x

2
t

]
= 0 , E

[(
x2t+1 − µ2,t

)
x2t
]
= 0,

E [(xt+1 − µ1,t)xt−1] = 0 , E
[(
x2t+1 − µ2,t

)
xt−1

]
= 0,

E
[
(xt+1 − µ1,t)x

2
t−1

]
= 0 , E

[(
x2t+1 − µ2,t

)
x2t−1

]
= 0,

where µ1,0 = E(xt+1), µ2,0 = E(x2t+1), µ1,t = Et [xt+1] = ψ⊤
t (0) and µ2,t = Et

[
x2t+1

]
=

ψ⊤⊤
t (0)+

(
ψ⊤
t (0)

)2
. We simulate the GARGmodel with φ = 2.784E−05, ν = 0.1394, ϕ = 0.1125,

β = 0.9227 and θ = 0.9066. For different sample sizes (T ) and number of replications (N), we
estimate the GARG model and report in Table 1 the statistics (mean, median and root mean
square errors (RMSE)) across different replication sizes. The GMM does well when we consider
the longest sample size (1000) and the biggest number of replications (4000).

6.4 Filtration-based maximum likelihood estimators

Some applications in the literature on stochastic volatility and term structures of interest rates
require latent factors. Let yt denote a vector of variables observed at discrete dates indexed
by t. Let xt represent a latent state variable affecting the dynamics of yt. We assume that xt
follows a GARG dynamic while the moment generating function of yt conditional on xt is an
exponentially affine function of the latent variables xt, that is,

E [exp (v′yt) |xt] = exp (cy(v) + dy(v)xt) (27)

xt ∼ GARG(ϕ, ν, φ, β, θ). (28)

To estimate this latent version of the model, we adapt the direct filtration-based maximum
likelihood methodology of Bates (2006). Let Yt ≡ {y1, ..., yt} denote the data observed by the
econometrician up to date t and Gt|t(u) ≡ E [euxt |Yt] the moment generating function of the
latent variable xt at time t conditional upon observing Yt. The filtered moment generating
function Gt|t(u) can be recursively updated as follows:

� Step 1: Given past filtered values x1|1, · · · , xt−1|t−1 and Gt|t(u), the joint characteristic
function of the next period’s (yt+1, xt+1) conditional on data observed through date t can
be evaluated by iterated expectations

F (v, u|Yt) ≡ E [exp (v′yt+1 + uxt+1) |Yt] = E [exp (cy (v) + (u+ dy (v))xt+1) |Yt]
= E [exp (cy (v) + ψt (u+ dy (v))) |Yt]
= E

[
exp

(
cy (v) + ω (u+ dy (v)) + βψt−1|t−1 (θ (u+ dy (v))) + α (u+ dy (v))xt

)
|Yt
]

= exp
(
cy (v) + ω (u+ dy (v)) + βψt−1|t−1 (θ (u+ dy (v)))

)
Gt|t (α (u+ dy (v))) ,

where ψt−1|t−1 (·) is computed recursively as in equation (2) using the filtered values of xt:
xt|t = E[xt|Yt] = G′

t|t(0).

� Step 2: The density function of the next period’s datum yt+1 conditional upon data
observed through date t can be evaluated by the Fourier inversion of its conditional char-
acteristic function:

p (yt+1|Yt) =
1

2π

∫ +∞

−∞
F (iv, 0|Yt) e−ivyt+1dv.
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� Step 3: The conditional characteristic function of the next period’s xt+1 is

Gt+1|t+1(u) =
1
2π

∫ +∞
−∞ F (iv, u|Yt) e−ivyt+1dv

p (yt+1|Yt)
.

� Step 4: Repeat steps 1–3 for subsequent values of t. Given the underlying param-
eters, the log likelihood function for the maximum likelihood estimation is lnL(Yt) =∑T
t=1 ln p (yt|Yt−1) .

7 Empirical Results

7.1 Results from the physical dynamic estimation

To further shed light on these results, we plot sample autocorrelations and cross-correlations
in Figure 2. As expected, for the ARG processes these correlations are almost identical to the
autocorrelation. This is clearly at odds with the observed facts (last row of Figure 2). The
GARG is able to disentangle those dynamics.

7.2 Option pricing under the GARG dynamic

The risk-neutral dynamic is given by

Rt+1 = ln (St+1/St) = r − 1

2
RVt+1 +

√
RVt+1εt+1 (29)

εt+1 ∼ i.i.dN(0, 1)

RVt+1 ∼ GARG (ϕ, φ, ν, β, θ) , (30)

where r is the risk-free rate. Let us denote the conditional cumulant generating function of the
aggregate returns between t+ 1 and t+ τ by ψRt,τ (u). This means that

ψRt,τ (u) ≡ ln

Et
exp

u τ∑
j=1

Rt+j

 .

The time t call option values with strike X and maturity τ , denoted by CMod
t (X, τ), is the

discounted risk-neutral expectation of the terminal payoff max(St+τ −X, 0),

CMod
t (X, τ) ≡ Et [exp(−rτ)max(St+τ −X, 0)] ,

and computed via standard Fourier inversion techniques:

CMod
t (X, τ) = StP1(t, τ)− exp(−rτ)XP2(t, τ), where (31)

P1(t, τ) =
1

2
+

∫ ∞

0

Re

exp
(
ψR

t,τ (1 + iu)− rτ − iu ln
(

X
St

))
iuπ

 du

P2(t, τ) =
1

2
+

∫ ∞

0

Re

exp
(
ψR

t,τ (iu)− iu ln
(

X
St

))
iuπ

 du,

and i stands for the imaginary unit. Let us denote the conditional cumulant generating function
of the aggregate variance between t+ 1 and t+ τ by ψRVt,τ (u). This means that

ψRVt,τ (u) ≡ ln

Et
exp

u τ∑
j=1

RVt+j

 ,

and straight iterative expectation manipulations imply that

ψRt,τ (u) = urτ + ψRVt,τ

(
1

2
(u2 − u)

)
. (32)
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Following the exact same steps used in deriving the multi-horizon dynamic, we establish that

ψRV
t,h (u) = bh (u) + ah (u)RVt +

(
h∑

j=1

βjψt−1

(
θjvj

))

vh = u, vτ = u+

h∑
j=τ+1

βj−(τ+1)α
(
θj−(τ+1)vj

)
, for τ < h,

bh (u) =

h−1∑
j=0

(
j∑

i=0

βiω
(
θivj+1

))
, ah (u) =

h−1∑
j=0

βjα
(
θjvj+1

)
.

We discuss in detail how to price options under the MARG dynamic in Section 8.2 of this
appendix.

7.3 IVRMSE and risk-neutral model estimation

The IVRMSE synthesizes the discrepancy between model-based and market-based implied volatil-
ities. To compute the IVRMSE, we invert the model-based option price CMod

j of each contract j
using the Black-Scholes formula (BS). Thus, the model-based implied volatility can be formally
extracted according to

IVMod
j = BS−1

(
CMod
j

)
.

Applying a similar procedure to the set of observed option contracts {CMkt
j } yields, market-based

implied volatilities are defined as

IVMkt
j = BS−1

(
CMkt
j

)
.

Accordingly, the implied volatility error is computed as

ej = IVMkt
j − IVMod

j .

It follows that the IVRMSE is given by

IV RMSE ≡

√√√√ 1

N

N∑
j=1

e2j ,

where N denotes the options sample size. Finally, risk-neutral parameters are estimated by
maximizing the Gaussian-implied volatility error likelihood:

lnLO = −1

2

N∑
j=1

{
ln
(
IV RMSE2

)
+ e2j/IV RMSE2

}
. (33)

7.4 Exploring options data

We use European-style options written on the S&P 500 index. The observations span the period
January 10, 1996, to August 28, 2013.4 In line with the literature, we only include out-of-the-
money (OTM) options with maturities ranging from 15 to 180 days. This selection procedure is
intended to guarantee that the contracts we use are sufficiently liquid. We also filter out options
that violate basic no-arbitrage criteria. For each maturity quoted on Wednesdays, we select only
the six most liquid strike prices, which amounts to a data set of 21,283 option contracts. To ease
calculation and interpretation, OTM put prices are converted into corresponding in-the-money
call values by exploiting the call-put parity relationship.

Table 3 provides a concise description of the options data. To highlight the main character-
istics of S&P 500 index options, we sort the data by moneyness, maturity, and market volatility
index (VIX) level. Panel A of Table 3 groups the data by six moneyness buckets and shows
the number of contracts, the average option price, the average Black and Scholes (1973) implied

4Data are available through OptionMetrics, which supplies data for the U.S. option markets.
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volatility, and the average bid-ask spread in dollars. Our measure of moneyness is based on the
Black-Scholes delta computed as

Φ

(
ln (St/X) + rfM + 1/2

(
IVMkt

)2
M/365

IVMkt
√
M/365

)
,

where Φ (∗) stands for the normal cumulative distribution function (CDF), X is the strike price,
rf is the non-annualized daily risk-free rate, M is the time-to-maturity expressed in days, and
IVMkt denotes the annualized implied Black-Scholes volatility computed at the market price of
the option. A few empirical regularities emerge at this point. We observe that deep OTM puts,
which include the largest number of contracts with deltas exceeding 0.7, are the most expensive.
This echoes the well-documented volatility smirk pattern in index options across moneyness.

Panel B of Table 3 sorts the data by maturity expressed in calendar days. Even though the
term structure of volatility is nearly flat on average during the sample period, we notice that
options with longer maturities are relatively more expensive. Panel C of Table 3 categorizes
the data by the VIX level. It is immediately obvious that a large portion of the selected option
contracts (75%) are quoted on days with VIX levels ranging between 15% and 35%. Overall,
a typical “median” contract features a delta above 0.6 and a time-to-expiry between 30 and 90
days, and is quoted on “normal” days when the VIX lies within the [15− 25]% interval.

8 Multi-factor affine model

xt follows a multi-factor affine model, or MARG, if

xt = x1t + x2t,

where x1t and x2t are two independent ARG dynamics.

Et [exp (ux1t+1)] = exp (ω1 (u) + α1 (u)x1t)

Et [exp (ux2t+1)] = exp (ω2 (u) + α2 (u)x2t)

ωj(u) = −νj log(1− uφj), and αj(u) =
ϕju

1− uφj
,

Et [exp (uxt+1)] = exp (ω1 (u) + ω2 (u) + α2 (u)x2t + α1 (u)x1t)

= exp (ω1 (u) + ω2 (u) + α2 (u) (xt − x1t) + α1 (u)x1t)

= exp (ω1 (u) + ω2 (u) + α2 (u)xt + (α1 (u)− α2 (u))x1t)

Et [exp (uxt+1 + vx1t+1)] = Et [exp ((u+ v)x1t+1 + ux2t+1)]

= exp (ω2 (u) + α2 (u)x2t + ω1 (u+ v) + α1 (u+ v)x1t)

= exp (ω2 (u) + ω1 (u+ v) + α2 (u)xt + (α1 (u+ v)− α2 (u))x1t)

exp (ψt (u)) ≡ E [exp (uxt+1) |xs, s ≤ t]

exp
(
gt|t (u)

)
≡ E [exp (ux1t) |xs, s ≤ t]

exp (ψt (u)) = E [exp (uxt+1) |xs, s ≤ t] = E [Et [exp (uxt+1)] |xs, s ≤ t]

= E [exp (ω1 (u) + ω2 (u) + α2 (u)xt + (α1 (u)− α2 (u))x1t) |xs, s ≤ t]

= exp (ω1 (u) + ω2 (u) + α2 (u)xt)E [exp ((α1 (u)− α2 (u))x1t) |xs, s ≤ t]

= exp
(
ω1 (u) + ω2 (u) + α2 (u)xt + gt|t (α1 (u)− α2 (u))

)
.
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Hence,
ψt (u) = ω1 (u) + ω2 (u) + α2 (u)xt + gt|t (α1 (u)− α2 (u)) ,

which is equivalent to

gt|t (α1 (u)− α2 (u)) = ψt (u)− ω1 (u)− ω2 (u)− α2 (u)xt.

Let us denote
α0 (u) ≡ α1 (u)− α2 (u) .

Hence,
v = α0 (u) ⇐⇒ u = α−1

0 (v)

and
gt|t (v) = ψt

(
α−1
0 (v)

)
− ω1

(
α−1
0 (v)

)
− ω2

(
α−1
0 (v)

)
− α2

(
α−1
0 (v)

)
xt

E [exp (uxt+1 + vx1t+1) |xs, s ≤ t]

= E [Et [exp (uxt+1 + vx1t+1)] |xs, s ≤ t]

= E [exp (ω2 (u) + ω1 (u+ v) + α2 (u)xt + (α1 (u+ v)− α2 (u))x1t) |xs, s ≤ t]

= exp (ω2 (u) + ω1 (u+ v) + α2 (u)xt)E [exp ((α1 (u+ v)− α2 (u))x1t) |xs, s ≤ t]

= exp
(
ω2 (u) + ω1 (u+ v) + α2 (u)xt + gt|t (α1 (u+ v)− α2 (u))

)
exp

(
gt+1|t+1 (v)

)
≡ E [exp (vx1t+1) |xs, s ≤ t+ 1]

=
1
2π

∫
E [exp (iuxt+1 + vx1t+1) |xs, s ≤ t] exp (−iuxt+1) du

pt (xt+1)

=
1
2π

∫
exp

(
ω2 (iu) + ω1 (iu+ v) + α2 (iu)xt + gt|t (α1 (iu+ v)− α2 (iu))− iuxt+1

)
du

pt (xt+1)

where

pt (xt+1) =
1

2π

∫
exp (ψt (iu)− iuxt+1) du.

Hence,

gt+1|t+1 (v) = ln

[∫
exp

(
ω2 (iu) + ω1 (iu+ v) + α2 (iu)xt + gt|t (α1 (iu+ v)− α2 (iu))− iuxt+1

)
du

]
− ln

[∫
exp (ψt (iu)− iuxt+1) du

]

ψt+1 (u) = ω1 (u) + ω2 (u) + α2 (u)xt+1 + gt+1|t+1 (α1 (u)− α2 (u))

= ω1 (u) + ω2 (u) + α2 (u)xt+1 + gt+1|t+1 (α0 (u))

= ω1 (u) + ω2 (u) + α2 (u)xt+1

+ ln

[∫
exp

(
ω2 (iy) + ω1 (iy + α0 (u)) + α2 (iy)xt + gt|t (α1 (iy + α0 (u))− α2 (iy))− iyxt+1

)
dy

]
− ln

[∫
exp (ψt (iy)− iyxt+1) dy

]

ψt+1 (u) = ω1 (u) + ω2 (u) + α2 (u)xt+1 − ln

[∫
exp (ψt (iy)− iyxt+1) dy

]

+ ln

∫ exp


ω2 (iy)− ω2

(
α−1
0 (α1 (iy + α0 (u))− α2 (iy))

)
+ ω1 (iy + α0 (u))

−ω1

(
α−1
0 (α1 (iy + α0 (u))− α2 (iy))

)
+α2 (iy)xt − α2

(
α−1
0 (α1 (iy + α0 (u))− α2 (iy))

)
xt

+ψt
(
α−1
0 (α1 (iy + α0 (u))− α2 (iy))

)
− iyxt+1

 dy


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ψt+1 (u) = ω1 (u) + ω2 (u) + α2 (u)xt+1 − ln

[∫
exp (ψt (iy)− iyxt+1) dy

]
+ ln

[∫
exp

(
ω̃ (iy, u) + α̃ (iy, u)xt + ψt

(
θ̃ (iy, u)

)
− iyxt+1

)
dy

]
,

where
θ̃ (y, u) ≡ α−1

0 (α1 (y + α0 (u))− α2 (y))

ω̃ (y, u) ≡ ω2 (y)− ω2

(
θ̃ (y, u)

)
+ ω1 (y + α0 (u))− ω1

(
θ̃ (y, u)

)
α̃ (y, u) ≡ α2 (y)− α2

(
θ̃ (y, u)

)
.

In the sequel, we denote

qt (y, u;xt+1) ≡ exp
(
ω̃ (iy, u) + α̃ (iy, u)xt + ψt

(
θ̃ (iy, u)

)
− iyxt+1

)
.

8.1 Derivatives

8.1.1 First order

∂θ̃ (y, u)

∂u
=

α′
1 (y + α0 (u))α

′
0 (u)

α′
0

(
α−1
0 (α1 (y + α0 (u))− α2 (y))

) ⇐⇒ ∂θ̃ (y, 0)

∂u
=
α′
1 (y)α

′
0 (0)

α′
0 (y)

∂ω̃ (y, u)

∂u
= −ω′

2

(
θ̃ (y, u)

) ∂θ̃ (y, u)
∂u

+ ω′
1 (y + α0 (u))α

′
0 (u)− ω′

1

(
θ̃ (y, u)

) ∂θ̃ (y, u)
∂u

∂ω̃ (y, 0)

∂u
= − (ω′

2 (y) + ω′
1 (y))

∂θ̃ (y, 0)

∂u
+ ω′

1 (y)α
′
0 (0)

∂α̃ (y, u)

∂u
≡ −α′

2

(
θ̃ (y, u)

) ∂θ̃ (y, u)
∂u

⇐⇒ ∂α̃ (y, 0)

∂u
≡ −α′

2 (y)
∂θ̃ (y, 0)

∂u

θ̃ (y, 0) ≡ α−1
0 (α1 (y)− α2 (y)) = y

ω̃ (y, 0) ≡ ω2 (y)− ω2 (y) + ω1 (y)− ω1 (y) = 0

α̃ (y, 0) ≡ α2 (y)− α2 (y) = 0

∂θ̃ (y, 0)

∂u
=
α′
1 (y)α

′
0 (0)

α′
0 (y)

;
∂ω̃ (y, 0)

∂u
= − (ω′

2 (y) + ω′
1 (y))

∂θ̃ (y, 0)

∂u
+ω′

1 (y)α
′
0 (0) ;

∂α̃ (y, 0)

∂u
≡ −α′

2 (y)
∂θ̃ (y, 0)

∂u

ψ′
t+1 (u)

= ω′
1 (u) + ω′

2 (u) + α′
2 (u)xt+1

+

∫ (∂ω̃(iy,u)
∂u + ∂α̃(iy,u)

∂u xt + ψ′
t

(
θ̃ (iy, u)

)
∂θ̃(iy,u)
∂u

)
qt (y, u;xt+1) dy∫

qt (y, u;xt+1) dy

ψ′
t+1 (0) = ω′

1 (0)+ω
′
2 (0)+α

′
2 (0)xt+1+

∫ (∂ω̃(iy,0)
∂u + ∂α̃(iy,0)

∂u xt + ψ′
t (iy)

∂θ̃(iy,0)
∂u

)
eψt(iy)−iyxt+1dy∫

eψt(iy)−iyxt+1dy

Let us denote

ν ≡ 2 (ν2ϕ1 + ν1ϕ2)

ϕ1 + ϕ2
;ϕ ≡ 2ϕ1ϕ2

ϕ1 + ϕ2
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ψ′
t+1 (0) = (ν1 + ν2)φ+ (ϕ1 + ϕ2)xt+1 −

1
π

∫∞
0
Re
[(

(ν2ϕ1 + ν1ϕ2)φ+ ϕ1ϕ2xt
1−iyφ

)
eψt(iy)−iyxt+1

1−iyφ

]
dy

1
π

∫∞
0
Re
[
eψt(iy)−iyxt+1

]
dy

= (ν1 + ν2)φ+ (ϕ1 + ϕ2)xt+1 −
1
π

∫∞
0
Re
[(

(ϕ1+ϕ2)
2 νφ+ (ϕ1+ϕ2)

2
ϕxt

1−iyφ

)
eψt(iy)−iyxt+1

1−iyφ

]
dy

1
π

∫∞
0
Re
[
eψt(iy)−iyxt+1

]
dy

= (ν1 + ν2)φ+ (ϕ1 + ϕ2)xt+1 −
(ϕ1 + ϕ2)

2

1
π

∫∞
0
Re
[(
νφ+ ϕxt

1−iyφ

)
eψt(iy)−iyxt+1

1−iyφ

]
dy

1
π

∫∞
0
Re
[
eψt(iy)−iyxt+1

]
dy

= (ν1 + ν2)φ+
(ϕ1 + ϕ2)

2
xt+1 +

(ϕ1 + ϕ2)

2

1
π

∫∞
0
Re
[(
xt+1 − 1

1−iyφ

(
νφ+ ϕxt

1−iyφ

))
eψt(iy)−iyxt+1

]
dy

1
π

∫∞
0
Re
[
eψt(iy)−iyxt+1

]
dy

ψ̃′
t (u) =

1

1− uφ

(
νφ+

ϕxt
1− uφ

)
⇐⇒ ψ̃′

t (u) =
νφ

1− uφ
+

ϕxt

(1− uφ)
2 ⇐⇒ ψ̃t (u) = −ν ln (1− uφ)+

ϕuxt
1− uφ

ψ̃′
t (u) =

νφ

1− uφ
+

ϕxt

(1− uφ)
2 ; ψ̃

′′
t (u) =

νφ2

(1− uφ)
2 + 2

φϕxt

(1− uφ)
3

ψ̃′′
t (0) = νφ2 + 2φϕxt(

xt+1 − ψ̃′
t (u)

)
eψt(u)−uxt+1 = −

(
ψ̃′
t (u)− xt+1

)
eψ̃t(u)−uxt+1eψt(u)−ψ̃t(u)

∫ (
xt+1 − ψ̃′

t (u)
)
eψt(u)−uxt+1du = −eψt(u)−uxt+1 +

∫ (
ψ′
t (u)− ψ̃′

t (u)
)
eψt(u)−uxt+1du

∫ (
xt+1 − ψ̃′

t (iy)
)
eψt(iy)−iyxt+1dy = ieψt(iy)−iyxt+1 +

∫ (
ψ′
t (iy)− ψ̃′

t (iy)
)
eψt(iy)−iyxt+1dy

ψ′
t+1 (0) = (ν1 + ν2)φ+

(ϕ1 + ϕ2)

2
xt+1 +

(ϕ1 + ϕ2)

2

1
π

∫∞
0
Re
[(
xt+1 − 1

1−iyφ

(
νφ+ ϕxt

1−iyφ

))
eψt(iy)−iyxt+1

]
dy

1
π

∫∞
0
Re
[
eψt(iy)−iyxt+1

]
dy

= (ν1 + ν2)φ+
(ϕ1 + ϕ2)

2
xt+1 +

(ϕ1 + ϕ2)

2

1
π

∫∞
0
Re
[(
xt+1 − ψ̃′

t (iy)
)
eψt(iy)−iyxt+1

]
dy

1
π

∫∞
0
Re
[
eψt(iy)−iyxt+1

]
dy

ψ′
t+1 (0) = (ν1 + ν2)φ+

(ϕ1 + ϕ2)

2
xt+1 +

(ϕ1 + ϕ2)

2

1
π

∫∞
0
Re
[(
ψ′
t (iy)− ψ̃′

t (iy)
)
eψt(iy)−iyxt+1

]
dy

1
π

∫∞
0
Re
[
eψt(iy)−iyxt+1

]
dy

8.1.2 Second order

ψ′
t+1 (u)

= ω′
1 (u) + ω′

2 (u) + α′
2 (u)xt+1

+

∫ (∂ω̃(iy,u)
∂u + ∂α̃(iy,u)

∂u xt + ψ′
t

(
θ̃ (iy, u)

)
∂θ̃(iy,u)
∂u

)
qt (y, u;xt+1) dy∫

qt (y, u;xt+1) dy
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ψ′′
t+1 (u)

= ω′′
1 (u) + ω′′

2 (u) + α′′
2 (u)xt+1 +∫ (∂2ω̃(iy,u)

∂u2 + ∂2α̃(iy,u)
∂u2 xt + ψ′′

t

(
θ̃ (iy, u)

)(
∂θ̃(iy,u)
∂u

)2
+ ψ′

t

(
θ̃ (iy, u)

)
∂2θ̃(iy,u)
∂u2

)
qt (y, u;xt+1) dy∫

qt (y, u;xt+1) dy

+

∫ (∂ω̃(iy,u)
∂u + ∂α̃(iy,u)

∂u xt + ψ′
t

(
θ̃ (iy, u)

)
∂θ̃(iy,u)
∂u

)2
qt (y, u;xt+1) dy∫

qt (y, u;xt+1) dy

−

[∫ (∂ω̃(iy,u)
∂u + ∂α̃(iy,u)

∂u xt + ψ′
t

(
θ̃ (iy, u)

)
∂θ̃(iy,u)
∂u

)
qt (y, u;xt+1) dy

]2
[∫
qt (y, u;xt+1) dy

]2
ψ′′
t+1 (u)

= ω′′
1 (u) + ω′′

2 (u) + α′′
2 (u)xt+1 −

(
ψ′
t+1 (u)− ω′

1 (u)− ω′
2 (u)− α′

2 (u)xt+1

)2
+

∫ (∂ω̃(iy,u)
∂u + ∂α̃(iy,u)

∂u xt + ψ′
t

(
θ̃ (iy, u)

)
∂θ̃(iy,u)
∂u

)2
qt (y, u;xt+1) dy∫

qt (y, u;xt+1) dy

+

∫ (∂2ω̃(iy,u)
∂u2 + ∂2α̃(iy,u)

∂u2 xt + ψ′′
t

(
θ̃ (iy, u)

)(
∂θ̃(iy,u)
∂u

)2
+ ψ′

t

(
θ̃ (iy, u)

)
∂2θ̃(iy,u)
∂u2

)
qt (y, u;xt+1) dy∫

qt (y, u;xt+1) dy

ψ′′
t+1 (0)

= ω′′
1 (0) + ω′′

2 (0) + α′′
2 (0)xt+1 −

(
ψ′
t+1 (0)− ω′

1 (0)− ω′
2 (0)− α′

2 (0)xt+1

)2
+

∫ (∂ω̃(iy,0)
∂u + ∂α̃(iy,0)

∂u xt + ψ′
t (iy)

∂θ̃(iy,0)
∂u

)2
eψt(iy)−iyxt+1dy∫

eψt(iy)−iyxt+1dy

+

∫ (∂2ω̃(iy,0)
∂u2 + ∂2α̃(iy,0)

∂u2 xt + ψ′′
t (iy)

(
∂θ̃(iy,0)
∂u

)2
+ ψ′

t (iy)
∂2θ̃(iy,0)
∂u2

)
eψt(iy)−iyxt+1dy∫

eψt(iy)−iyxt+1dy

ψ′′
t+1 (0)

= ν1φ
2 + ν2φ

2 + 2ϕ2φxt+1 −
(
ψ′
t+1 (0)− ν1φ− ν2φ− ϕ2xt+1

)2
+2φ

∫ (
ϕ1ψ

′
t (iy)−

(ϕ1+ϕ2)
2 ψ̃′

t (iy)
)
eψt(iy)−iyxt+1dy∫

eψt(iy)−iyxt+1dy

+

∫ (
ϕ1ψ

′
t (iy)−

ϕ1+ϕ2

2 ψ̃′
t (iy)

)2
eψt(iy)−iyxt+1dy∫

eψt(iy)−iyxt+1dy
+ ϕ1

∫ (
ϕ1ψ

′′
t (iy)−

ϕ1+ϕ2

2 ψ̃′′
t (iy)

)
eψt(iy)−iyxt+1dy∫

eψt(iy)−iyxt+1dy

+ϕ2φ
2 (ϕ1 − ϕ2) ν1

∫
eψt(iy)−iyxt+1

(1−iyφ)2 dy∫
eψt(iy)−iyxt+1dy

− 2φϕ2

∫ (
ϕ1ψ

′
t (iy)−

ϕ1+ϕ2

2 ψ̃′
t (iy)

)
eψt(iy)−iyxt+1

1−iyφ dy∫
eψt(iy)−iyxt+1dy

.

Hence, we denote

ψ̄t (u) ≡ ϕ1ψt (u)−
(ϕ1 + ϕ2)

2
ψ̃t (u) .

We have

ψ′′
t+1 (0) = ν1φ

2 + ν2φ
2 + 2ϕ2φxt+1 −

(
ψ′
t+1 (0)− ν1φ− ν2φ− ϕ2xt+1

)2
+

∫ [
ϕ1ψ̄

′′
t (iy) +

(
ψ̄′
t (iy)

)2
+ 2φψ̄′

t (iy)− 2φϕ2
ψ̄′
t(iy)

1−iyφ + ϕ2φ
2(ϕ1−ϕ2)ν1
(1−iyφ)2

]
eψt(iy)−iyxt+1dy∫

eψt(iy)−iyxt+1dy
.
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8.2 Option pricing

Regarding option pricing under a MARG dynamic:

RVt = xt,1 + xt,2

where xt,1 and xt,2 follow independent ARG dynamics. To price European options under a
MARG dynamic, we first compute the option price conditional on both the observed realized
variance and the latent factor. In this case, ψRVt,h (u) is an affine function of RVt and the latent
state x1,t:

CMod
t (X, τ) = StP1(t, τ)− exp(−rτ)XP2(t, τ),

where

P1(t, τ) =
1

2
+

∫ ∞

0

Re

exp
(
iurτ + ψRVt,τ

(
f̄ (iu)

)
− iu ln

(
X
St

))
iuπ

 du

P2(t, τ) =
1

2
+

∫ ∞

0

Re

exp
(
iurτ + ψRVt,τ

(
f̄ (−iu)

)
− iu ln

(
X
St

))
iuπ

 du

f̄ (u) ≡ 1

2
(u2 + u)

and

ψRVt,τ (u) ≡ ln

E
exp

u τ∑
j=1

RVt+j

 |x1s, x2s, s ≤ t

 .

We have
ψRVt,τ (u) = ψ

(1)
t,τ (u) + ψ

(2)
t,τ (u),

where
ψ
(j)
t,τ (u) = aj (u; τ)xt,j + bj (u; τ) ,

aj (u; τ) =
ϕj (u+ aj (u; τ − 1))

1− (u+ aj (u; τ − 1))φj
; bj (u; τ) = bj (u; τ − 1)− νj log(1− (u+ aj (u; τ − 1))φj),

with the initial values aj (u; 0) = 0, bj (u; 0) = 0. Hence,

P1(t, τ) =
1

2
+

∫ ∞

0

Re

(
1

iuπ
exp

(
iurτ − iu ln

(
X
St

)
+ b1

(
f̄ (iu) ; τ

)
+ a1j

(
f̄ (iu) ; τ

)
xt,1

+b2
(
f̄ (iu) ; τ

)
+ a2j

(
f̄ (iu) ; τ

)
xt,2

))
du

P2(t, τ) =
1

2
+

∫ ∞

0

Re

(
1

iuπ
exp

(
iurτ − iu ln

(
X
St

)
+ b1

(
f̄ (−iu) ; τ

)
+ a1j

(
f̄ (−iu) ; τ

)
xt,1

+b2
(
f̄ (−iu) ; τ

)
+ a2j

(
f̄ (−iu) ; τ

)
xt,2

))
du.

Substituting x2,t = RVt − x1,t, we have

P1(t, τ) =
1

2
+

∫ ∞

0

Re

(
1

iuπ
exp

(
iurτ − iu ln

(
X
St

)
+ b2

(
f̄ (iu) ; τ

)
+ a2j

(
f̄ (iu) ; τ

)
RVt

+b1
(
f̄ (iu) ; τ

)
+
(
a1j
(
f̄ (iu) ; τ

)
− a2j

(
f̄ (iu) ; τ

))
xt,1

))
du

P2(t, τ) =
1

2
+

∫ ∞

0

Re

(
1

iuπ
exp

(
iurτ − iu ln

(
X
St

)
+ b2

(
f̄ (−iu) ; τ

)
+ a2j

(
f̄ (−iu) ; τ

)
RVt

+b1
(
f̄ (−iu) ; τ

)
+
(
a1j
(
f̄ (−iu) ; τ

)
− a2j

(
f̄ (−iu) ; τ

))
xt,1

))
du.

Following Bates (2006), the model price (denoted by ĈMod
t (X, τ)) with only the present and

past realized variances in the information set is the expectation of the model price, which includes
x1,t in the information set, that is,

ĈMod
t (X, τ) ≡ E

[
CMod
t (X, τ)|RVs, s ≤ t

]
= StE [P1(t, τ) |RVt ]− exp(−rτ)XE [P2(t, τ) |RVt ] .

(34)
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We have

E [P1(t, τ) |RVs, s ≤ t ] =
1

2
+

∫ ∞

0
Re

(
1

iuπ
exp

(
iurτ − iu ln

(
X
St

)
+ b2

(
f̄ (iu) ; τ

)
+ a2j

(
f̄ (iu) ; τ

)
RVt

+b1
(
f̄ (iu) ; τ

)
+ gt|t

(
a1j

(
f̄ (iu) ; τ

)
− a2j

(
f̄ (iu) ; τ

)) )) du

E [P2(t, τ) |RVs, s ≤ t ] =
1

2
+

∫ ∞

0
Re

(
1

iuπ
exp

(
iurτ − iu ln

(
X
St

)
+ b2

(
f̄ (−iu) ; τ

)
+ a2j

(
f̄ (−iu) ; τ

)
RVt

+b1
(
f̄ (−iu) ; τ

)
+ gt|t

(
a1j

(
f̄ (−iu) ; τ

)
− a2j

(
f̄ (−iu) ; τ

)) )) du,
where gt|t (u) ≡ ln [E [exp (ux1t) |RVs, s ≤ t]] . Following Bates (2006), we approximate gt|t (u)
using the cumulant generating function of the gamma distribution, that is,

gt|t (u) ≈ −

(
x21t|t

σ2
1t|t

)
ln

(
1−

σ2
1t|t

x1t|t
u

)
,

where

x1t|t =
ψ′
t (0)− (ν1 + ν2)φ− ϕ2RVt

ϕ1 − ϕ2
, σ2

1t|t =
ψ′′
t (0) + (ν1 + ν2)φ

2 − 2φψ′
t (0)

(ϕ1 − ϕ2)
2 (35)

with
x1t|t ≡ E [x1t|RVs, s ≤ t] , σ2

1t|t ≡ V ar [x1t|RVs, s ≤ t] , (36)

and ψ′
t (0) and ψ

′′
t (0) evolve recursively as given in corollary 2 of the main paper.
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Table 3: S&P 500 Index Option Data
This table presents the characteristics of S&P 500 index option data by moneyness, maturity, and VIX level. We use
Wednesday’s closing out-of-the-money (OTM) call and put contracts from OptionMetrics for the period starting from
January 10, 1996, to August 28, 2013. The moneyness is measured by the Black-Scholes delta. DTM denotes the number
of calendar days to maturity. The average price is reported in dollars, and the average implied volatility is expressed in
percentages.

OTM Call OTM Put

D
e
lt
a
<

0
.3

0
.3

≤
D
e
lt
a
<

0
.4

0
.4

≤
D
e
lt
a
<

0
.5

0
.5

≤
D
e
lt
a
<

0
.6

0
.6

≤
D
e
lt
a
<

0
.7

D
e
lt
a
≥

0
.7

A
ll

Panel A: By Moneyness
Number of contracts 3,788 1,391 1,781 2,846 2,746 8,731 21,283
Average price 7.85 20.94 32.28 45.30 65.93 132.41 74.35
Average implied volatility 16.72 18.40 19.31 20.40 21.71 25.09 21.62
Average bid-ask spread 1.046 1.674 1.955 2.018 1.834 1.228 1.470

D
T
M
<

3
0

3
0
≤

D
T
M
<

6
0

6
0
≤

D
T
M
<

9
0

9
0
≤

D
T
M
<

1
2
0

1
2
0
≤

D
T
M
<

1
5
0

D
T
M

≥
1
5
0

A
ll

Panel B: By Maturity
Number of contracts 2,725 6,480 5,053 2,869 1,974 2,182 21,283
Average price 41.26 61.01 76.44 92.30 97.88 105.59 74.35
Average implied volatility 20.21 21.28 21.73 22.94 22.08 21.95 21.62
Average bid-ask spread 0.820 1.231 1.578 1.872 1.800 1.910 1.470

V
IX

<
1
5

1
5
≤

V
IX

<
2
0

2
0
≤

V
IX

<
2
5

2
5
≤

V
IX

<
3
0

3
0
≤

V
IX

<
3
5

V
IX

≥
3
5

A
ll

Panel C: By VIX Level
Number of contracts 3,962 6,133 5,996 2,456 1,240 1,496 21,283
Average price 57.95 66.90 80.75 85.77 85.33 94.86 74.35
Average implied volatility 13.61 18.04 22.45 26.24 30.22 39.42 21.62
Average bid-ask spread 1.055 1.301 1.446 1.704 1.811 2.683 1.470
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Figure 1: Autocorrelation functions across models
This figure presents the autocorrelation of the level corr(xt, xt+h) (top left), the cross-correlation between the level and

the squared corr(xt, x
2
t+h) (top right), the cross-correlation between the squared and the level corr(x2

t , xt+h) (bottom

left), and the autocorrelation of the squared corr(x2
t , x

2
t+h) (bottom right), of the daily realized variance. The sample

begins January 01, 2000, and ends December 31, 2017.
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Figure 2: Autocorrelation functions
For a given model, we plot together corr(xt, xt+h), corr(xt, x

2
t+h), corr(x

2
t , xt+h), and corr(x2

t , x
2
t+h). The last row

displays the sample autocorrelogram. The sample begins January 01, 2000, and ends December 31, 2017.
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