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Abstract 
Bayesian predictive synthesis is a flexible method of combining density predictions. The 
flexibility comes from the ability to choose an arbitrary synthesis function to combine 
predictions. I study the choice of synthesis function when combining large numbers of 
predictions—a common occurrence in macroeconomics. Estimating combination weights with 
many predictions is difficult, so I consider shrinkage priors and factor modelling techniques to 
address this problem. The dense weights of factor modelling provide an interesting contrast 
with the sparse weights implied by shrinkage priors. I find that the sparse weights of 
shrinkage priors perform well across exercises. 

Topics: Econometric and statistical methods  
JEL codes: C11, C52, C53, E37 

Résumé 
La synthèse de prévisions bayésienne est une méthode servant à combiner des prédictions de 
densités. Comme elle permet de sélectionner une fonction de synthèse arbitraire pour ce 
faire, elle offre une certaine souplesse. Je me penche sur la sélection de cette fonction dans 
un contexte où il faut combiner de nombreuses prévisions, ce qui est courant en 
macroéconomie. Il est difficile d’estimer la pondération des combinaisons pour un grand 
nombre de prévisions. J’évalue donc des mesures de rétrécissement a priori et des techniques 
de modélisation factorielle pour surmonter cette difficulté. Les fortes pondérations issues de 
la modélisation factorielle offrent un contraste intéressant avec les faibles pondérations que 
laissent sous-entendre les mesures de rétrécissement a priori. Je constate que ces faibles 
pondérations donnent de bons résultats pour l’ensemble des exercices d’établissement de 
prévisions. 

Sujets : Méthodes économétriques et statistiques 
Codes JEL : C11, C52, C53, E37 

 

 

 



1 Introduction

This paper develops and studies several techniques to combine large numbers of predictive

densities. This is a common problem since decision-makers often consult a wide variety of models

and experts to form the basis of their decision-making (Coletti and Murchison, 2002). They con-

sult multiple models because of the recognition that individual models (or experts) often provide

a partial understanding of the economy due to different underlying datasets or modeling assump-

tions, creating significant uncertainty around their predictions. It is useful for decision-makers to

understand the uncertainty around a prediction. Therefore, practitioners create predictive densi-

ties and combine them to characterize uncertainty from individual predictions and model choice

(Chernis and Webley, 2022). These density combinations show not just the uncertainty around

a prediction, but the balance of risks, or the severity of tail risks. However, combining density

predictions often involves large numbers of densities, such as in nowcasting platforms or expert

surveys, which can be a difficult task and requires specialized techniques.

I address the issue of combining large numbers of density forecasts using two approaches that

are commonly used to deal with large datasets in economics. Specifically, I compare global-local

shrinkage priors and factor models when combining predictive densities within the framework of

Bayesian Predictive Synthesis (BPS). Global-local shrinkage priors and factor models naturally

lend themselves to large dimensional problems. BPS is an approach for combining densities that

allows the user to choose the functional form by which the predictions will be combined. In

particular, I use the triple gamma prior (Cadonna et al., 2020) as a baseline global-local shrinkage

prior since it nests many commonly used priors, such as the horseshoe (Carvalho et al., 2010) and

the Bayesian Lasso (Belmonte et al., 2014). Because of this feature, I also compare the performance

of various hierarchical priors. Additionally, I develop a Bayesian Factor Model (Lopes, 2014) to

combine forecasts. To the best of my knowledge, this is a novel method of combining density

predictions. The closest approach I am aware of is Casarin et al. (2019), who model the weights

as correlated using a factor structure. In contrast, in this paper the forecasts are modeled as

correlated and have a factor structure.

I find that global-local shrinkage priors generally outperform factor models as measured by

the Continuous Rank Probability Score (CRPS) of Gneiting and Raftery (2007). Since shrinkage
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priors induce sparsity, this finding suggests that focusing on a smaller set of accurate experts is

preferable to following the herd. Another important finding relates to the specification of the

synthesis functions: I find that constant parameter models are a more reliable choice. The extra

flexibility from allowing time-varying weights can cause the accuracy of the forecasts to deteriorate

significantly. In addition, in some cases, time-varying parameter specifications can reduce to a

time-varying mean model that overfits the model, resulting in poor out-of-sample performance.

This kind of analysis is only possible in a BPS framework. BPS frames the issue of combining

predictions as a decision theory problem—a decision-maker rationally synthesizes some set of

information to inform their choice of action. The theoretical underpinnings are provided by West

and Crosse (1992) and West (1992), who show how a decision-maker would combine a set of

forecast distributions (or partial summaries) in a fully Bayesian manner. Recently, this has been

codified by McAlinn and West (2019), who introduce Bayesian Predictive Synthesis for time series.

Apart from the strong theoretical motivation for using BPS, it is very flexible. A researcher can

specify the functional form, called the synthesis function, of the density combination with very few

restrictions. This makes it very easy to compare and experiment with different ways of combining

forecasts.

So far, comparisons of synthesis functions have not been addressed in a BPS framework. Most

applications of BPS use a dynamic linear model as a synthesis function (Prado and West, 2010,

Sect. 4.5). Instead, BPS is extended to a multivariate forecast setting in McAlinn et al. (2020).

Takanashi and McAlinn (2021) establish additional theoretical properties such as the BPS com-

bined predictions being minimax. McAlinn (2021) uses BPS in a mixed-frequency nowcasting

exercise, and Aastveit et al. (2023) use it to forecast oil prices.

Comparing global-local shrinkage priors and factor-model-based synthesis functions is inter-

esting for several reasons. These approaches naturally allow for combining forecasts with a large

number of experts. This is significant since many applications feature large numbers of experts,

such as nowcasting with ensembles and survey forecasts. This can be challenging due to the re-

quirement of estimating a large number of parameters with small datasets. From a frequentist

perspective, the approach is to employ regularization while estimating an optimal combination

(Conflitti et al., 2015; Diebold et al., 2021). Bayesian approaches can also face difficulties in large

dimensions. For example, Bayesian Model Averaging requires calculation of the marginal likeli-
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hood for each model, which is computationally expensive. Researchers have addressed this issue

using approximations (Jore et al., 2010) or reducing the number of marginal likelihoods to be cal-

culated (Onorante and Raftery, 2016). Another solution is to estimate clusters of weights instead

of weights for each individual model, such as in Billio et al. (2013) and Casarin et al. (2019).

Additionally, global-local shrinkage priors and factor models have very different properties.

Shrinkage priors tend to place weight on a smaller subset of experts (sparsity), while factor models

look for co-movement and the weights are more egalitarian (or dense). To the best of my knowl-

edge, this contrast has not been examined in the density forecast combination literature. This

is in contrast to studies that examine whether a dense representation of the data is appropriate

(Giannone et al., 2021; Cross et al., 2020) or an artifact of prior choice (Fava and Lopes, 2021).

In the context of density combinations, this is equivalent to asking, “should a decision-maker pick

winners or follow the herd?” when provided with views on the economy.

This paper is part of a long history of research on forecast combinations in macroeconomics,

econometrics, and statistics. Over the past twenty years, a lot of progress has been made in the

study of density combinations in economics.1 Several authors show that combining densities can

make predictions more robust and improve their accuracy (Jore et al., 2010; Del Negro et al., 2016),

while others specify optimal combination strategies from both frequentist (Conflitti et al., 2015)

and Bayesian perspectives (Geweke and Amisano, 2011). More recent academic work focuses on

modeling the dependence and correlation across forecasts, and time variation in weights.2 Further-

more, Knotek and Zaman (2022) and Chernis and Webley (2022) show how density combinations

can have non-Gaussian and time-varying features, which improves the predictions and are useful

for characterizing uncertainty. Similar to point forecast combinations, density combinations have

also proven useful in central banks (Bjørnland et al., 2012; Aastveit et al., 2011). For a thorough

review of the evolution of density predictions in economics and its advantages, see Aastveit et al.

(2018).

The remainder of the paper proceeds as follows. Section 2 describes Bayesian Predictive Syn-

thesis along with an outline of the Markov Chain Monte Carlo (MCMC) approach. This is followed

by a description of the forecast combination techniques—the synthesis functions. In addition, I

1For example, Wallis (2005); Hall and Mitchell (2007); Mitchell and Hall (2005); Bache et al. (2009).
2Del Negro et al. (2016); Billio et al. (2013); Aastveit et al. (2016); McAlinn and West (2019).
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provide a brief overview of global-local shrinkage priors and Bayesian factor models. Section 3

details the prediction exercises, while Section 4 discusses the results. Section 5 concludes.

2 Econometric Framework

In this section, I begin by describing BPS, followed by a discussion of the synthesis func-

tions. Appendix A provides details on the global-local shrinkage priors, implementation of the

factor model combination, and the implementation of BPS, along with an overview of the MCMC

algorithm to estimate the density combinations.

2.1 Bayesian Predictive Synthesis

Bayesian Predictive Synthesis is a method for combining predictive densities.3 The theory of

BPS provides the posterior distribution of the combined density forecast. In other words, given a

set of forecasts, for say GDP, BPS provides an expression for the distribution of GDP conditional

on those forecasts. This posterior distribution is then estimated with an MCMC routine with

two steps. The procedure amounts to estimating a synthesis function, which is used to combine

the forecasts, on a set of regressors drawn from the predictive distributions I wish to combine.

As pointed out by Aastveit et al. (2023), this means BPS can be thought of as a multivariate

regression model with generated regressors as predictors.

More formally, the decision-maker D is presented with hj(x) ∈ H, where hj(x) are the set of

density functions that are elements of the information set H, and x is a (conditional) draw from

the forecast distributions. The goal of BPS is to find a distribution of the target variable (y)

conditional on these densities: p(y|H). The agent opinion analysis theory (West and Crosse (1992)

and West (1992)), extended to a time series context by McAlinn and West (2019), shows that the

posterior has the form:

p(yt|Φt,Ht) =

∫
α(yt|xt,Φt)

∏
j=1:J

htj(xtj)dxtj (1)

where xt = xt,1:J = (1, xt,1, . . . , xt,J)
′, J is the number of experts, and the dimension of xt is

d = J + 1 to include an intercept that can account for biases. α(yt|xt) is an arbitrary synthesis

3A general description can be found in McAlinn and West (2019) and specific details related to this application
can be found in the technical appendix.
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function used to combine the expert densities, while Φt are the synthesis function parameters. This

equation shows how to relate a set of agent forecast distributions to the decision-maker’s combined

forecast or, in more simple terms, how to combine forecast distributions in a Bayesian fashion.

With equation 1 in hand, I can write out a Gibbs Sampler with two blocks:

1. Estimate the synthesis function α(yt|xt) by sampling from p(Φ1:t|y1:t, x1:t).

2. Then, draw x1:t from p(x1:t|Φ1:t, y1:t,H1:t).

As an illustrative example of the MCMC routine, consider the following synthesis function used

in McAlinn and West (2019):

yt = xtβt + ϵt βt = βt−1 + ut ϵt ∼ N (0, σ2
t ) ut ∼ N (0, θ) (2)

where yt is the target variable, xt are draws from the forecast distributions (including a vector

of ones for the intercept), and dimension d = J + 1, where J is the number of experts, βt are

combination weights that vary over time following a random walk with variance θ, and ϵt is an

error term with time varying volatility σ2
t .

The first step in BPS is to estimate equation 2, which is a textbook state-space model and can

be estimated with standard techniques (Prado and West (2010), Sect 4.5). This is a very flexible

specification that can account for biases in the expert’s predictions, recalibrate the predictions,

and allow for model incompleteness. Applying BPS to different synthesis functions, such as global-

local shrinkage priors and factor model combinations, is straightforward. The researcher simply

specifies the function and estimates it during the appropriate Gibbs step.

The second step of the MCMC is to draw new forecasts from p(x1:t|Φ1:t, y1:t,H1:t) conditional

on the values of the synthesis function parameters (Φt). These xt are conditionally independent

over time with the following conditionals:

p(xt|Φt, yt,Ht) ∝ N(yt|X ′
tβt, ϵt)

∏
j=1:J

htj(xtj) with xt = (1, xt1, . . . , xtJ)
′ (3)

If the individual expert densities are normal (hj(xj)), this yields a multivariate normal for xt

and can be sampled with a Gibbs step using the analytical results from McAlinn and West (2019).

However, the applications in this paper do not have analytical representations. For example, the
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European SPF elicits histograms from survey respondents. This requires a small adjustment to the

algorithm, which is to sample xt using a block Metropolis-Hastings step using the aforementioned

multivariate normal as a proposal distribution. Details are provided in the appendix. Finally,

when creating forecasts (e.g., yt+1), I create “synthetic futures” as in McAlinn and West (2019).

That is, for every pass of the MCMC, the synthesis function parameters are iterated forward using

the model dynamics and xt+1 are drawn unconditionally from hjt+1(xjt+1).

2.2 Global-local Shrinkage Priors

This section discusses the implementation of global-local shrinkage priors in BPS. Global-local

shrinkage priors are a common way of introducing shrinkage to Bayesian statistical models. This

class of prior includes many commonly used shrinkage priors and gets its name from the two

parameters in the prior: one governs shrinkage over all parameters and another governs component-

specific shrinkage. More precisely, the prior has the following form:

βj ∼ N (0, κψj)

,

where κ is a global shrinkage parameter and ψj is a component-specific parameter. The prior

distribution on these individual components determines the shrinkage properties. There are a

wide variety of possible choices. In general, a desirable shrinkage profile is horseshoe-shaped,

which means there are two modes in the shrinkage density such that coefficients are shrunk to

zero or are scarcely changed. For this paper, I use the triple gamma prior (Cadonna et al. (2020))

since it is has the desirable horseshoe-shaped shrinkage profile and is very flexible, encompassing

many other commonly-used priors. Since the triple gamma prior encompasses many priors as

special cases, I also consider the horseshoe prior (Carvalho et al. (2010)), double gamma (Bitto

and Frühwirth-Schnatter (2019)), and Bayesian Lasso (Belmonte et al. (2014)). All these priors

have fully hierarchical representations, so no tuning of hyperparameters is required. Details are

provided in the technical appendix.

I consider time-varying parameter models where shrinkage is imposed on them by rewriting
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them in the non-centered parameterization (Frühwirth-Schnatter and Wagner, 2010):

yt = xtβ + xtDiag(
√
θ1, ...,

√
θd)β̃t + ϵt, ϵt ∼ N (0, σ2

t )

β̃t = β̃t−1 + ũt, ũt ∼ NJ(0, IJ)
(4)

The non-centered parameterization allows shrinkage on θ, which is the variance of βt, and β,

which is the constant component. This means the coefficients can be constant, time-varying, or

time-varying with an intercept. In addition, alternating between the centered and non-centered

parameterization in the MCMC routine can improve the estimation efficiency (Yu and Meng (2011),

Kastner and Frühwirth-Schnatter (2017), Kastner et al. (2017)). The model in equation 4 is

estimated by the MCMC described in Cadonna et al. (2020) and Bitto and Frühwirth-Schnatter

(2019), and a sketch of the algorithm is presented in the appendix.

2.3 Factor-model-based Combination

The next section discusses how a factor model can be used as a synthesis function in BPS. There

are many options for specifying a factor model (Lopes, 2014), but in this paper I follow the classic

example from Lopes and West (2004). The Bayesian factor model is a natural choice for synthesis

function since macroeconomic forecasts can be highly correlated and it has been successful in many

applications with large numbers of predictors.

To see how a factor model can be used as a synthesis function, consider equation 2. Simply

replace xt with ft in the observation equation, which is a factor estimated on the draws xt. This

results in equation 5:

yt = F
′

tγt + ϵt γt = γt−1 + ut xt = Λft + νt (5)

ϵt ∼ N (0, σ2
t ) ut ∼ N (0, θ) νt ∼ N (0, R) (6)

where Ft = (1, ft) and ft is a k× 1 vector of factors, Λ is a J × k vector of loadings, and R is a

diagonal covariance matrix with elements σ2
νJ . Additionally, γt is a k+1 vector. In order to derive

combination weights, I need to identify the factors. This is done by using the restriction f ′
tft = IJ

and restricting the first k rows of the loadings matrix to be the lower diagonal and positive elements
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on the main diagonal. This is a common identification scheme used to fix indeterminacy in the

estimation of the factors.

MCMC estimation is straightforward since the loadings can be estimated by linear regression

and the factors can be drawn from a conditional normal distribution. The xt are standardized

using the mean and standard deviation estimated from the marginal distribution of each agent.

There is a small complication introduced by the factor model when drawing xt. This is because

I need to evaluate p(yt|xtγt, ϵt) during the MH step, but equation 5 is specified in terms of ft.

However, the model can be reparameterized in terms of xt and xt|yt,Φt and sampled using the

standard technique.

3 Forecasting Environment

I empirically compare the sparse and dense combination approaches in two settings. The first

exercise is nowcasting Canadian real GDP in pseudo real-time using a large set of models. This

is a good application for two reasons. First, it is a common scenario considered by policy-makers

and researchers at Central Banks.4 And, second, a nowcasting cycle allows for a comprehensive

assessment of performance since it involves multiple forecast horizons, a diverse set of models,

and large datasets with a mix of hard and soft indicators. Overall, a nowcasting application

provides a realistic and challenging environment for the various synthesis functions. The second

exercise is forecasting Euro Area real GDP using the Survey of Professional Forecasters, which

is a more standard setting than nowcasting in Canada.5 Using the SPF is a good check on the

Canadian results, which may be affected by idiosyncratic factors. These two environments are

very different: not only are they in different regions, but the types of forecasts provided are also

different. The nowcasting exercise uses model-based predictions from four different model classes.

In contrast, the forecasting exercise features mostly judgemental forecasts (ECB, 2019) that are

provided as histograms. Since these two applications cover two regions, have different forecast

horizons, include model-based and survey-based predictions, and have an evaluation sample that

covers the Great Financial Crisis, Euro Area Crisis, and COVID-19 pandemic, they should allow

for a comprehensive and reliable assessment of the various synthesis functions.

4Examples are Aastveit et al. (2011), Chernis and Webley (2022), and Knotek and Zaman (2022).
5For example, Diebold et al. (2021) and Conflitti et al. (2015) consider the European SPF.
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3.1 Details on the Model-based Nowcasting Exercise

The first application uses density predictions produced in Chernis and Webley (2022), which builds

on Chernis and Sekkel (2018), as inputs into BPS. The models are standard implementations

of nowcasting models used at Central Banks. They include leading indicator models (or ARX),

mixed data sampling models (MIDAS), Bayesian vector autoregression, and dynamic factor models,

totalling 98 models (see figure 1). Predictions are made using a medium-sized dataset of 35

indicators that is constructed by choosing variables that are followed by the market and, in many

cases, reported on Statistics Canada’s official release bulletin “The Daily.” It includes 24 domestic

indicators, seven US or international indicators, and four financial variables. The reader can

consult these papers and references within for detailed results and descriptions of the models and

dataset. Pseudo real-time forecasts are produced from 2000 to 2021 and real-time predictions

from 2013 to 2019. In this paper, I use the pseudo real-time forecasts with a five-year expanding

estimation window; the training sample covers 2000–2005, with an evaluation window from 2005Q1

to 2021Q1.

In a nowcasting exercise, the timing of the forecast cycle can be quite important. Figure 2

illustrates the timing of releases throughout the six-month forecast cycle starting in December

after the release of the Q3 National Accounts data targeting the Q1 figures for the upcoming year.

Forecasts are produced 12 times over the six months, representing a prediction roughly every two

weeks, and is designed to replicate the forecast cycle faced by a practitioner. The cycle starts in

December, when the analyst is forecasting the Q1 figures. Throughout Q1, the analyst is in the

nowcast phase. From the April to May National Accounts data release, the analyst is backcasting

the Q1 figures while awaiting publication of the official figures.

A peculiarity of Canadian nowcasting is that there is a monthly GDP figure available two

months after the reference period. This data is different from the National Accounts figures since

monthly GDP is at a by-industry basis compared to the expenditure approach of the National

Accounts. There can be differences between the figures of as much as a percentage point. This

means monthly GDP is an important predictor for quarterly GDP, but not a perfect predictor.

The consequences of including this predictor in the dataset is that once it is available, there is a

large improvement in the accuracy of the prediction and other variables become less important

(Chernis and Sekkel, 2017).
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3.2 Details on the Survey of Professional Forecasters

The survey forecast application uses density forecasts from the European Central Bank’s Survey

of Professional Forecasters. A full description is available in Garćıa (2003). The quarterly survey

began in 1999 and is the longest running Euro-area survey of macroeconomic expectations. The

survey elicits probability and point forecasts on inflation and GDP growth at various horizons (I

use the one-year-ahead expectation for year-over-year GDP growth). On average, there are 50

responses a quarter from a panel of over 100 participants. Because of the time series length and

panel characteristics, the survey is often used to study density forecast combinations as seen in

Diebold et al. (2021) and Conflitti et al. (2015).

Several attributes of the survey merit discussion. Survey respondents are provided with fixed

ranges for which they provide probabilities. For example, in 1999Q1, they were provided with

10 bins, the first starting with less than 0 percent and increasing by 50 basis point intervals to

4 percent growth or above. A few issues arise here. First, the bins change over time to address

unexpected developments (such as the COVID-19 shock) and the open intervals. The bins changing

over time are not an issue for the model since I convert the forecasts to pdfs over a fine grid of

750 points. This results in a pdf resembling a histogram, and adding more bins just adds more

rectangles to the pdf. For the open bins, I distribute the assigned probability, if any, from the

start of the bin plus or minus two standard deviations of GDP growth, estimated using the vintage

available at the time of the forecast.

Another issue is that forecasters can join and leave the panel at any time. This means there are

often missing forecasts and the panel size can change over time. This paper takes two approaches to

deal with survey entry and exit in an effort to avoid the results being influenced by these choices.

First, I construct a “wide” dataset with the goal of including as many forecasters as possible,

corresponding to the approach taken in Conflitti et al. (2015). Since there are a large number of

missing forecasts, I drop forecasters with fewer than five forecasts in a five-year period. This five-

year period is also the rolling estimation window I use for the model. After dropping forecasters

for each five-year period, the remaining unbalanced panel has about 35 respondents each quarter.

One consequence of the changing panel composition is that examining the online weights is not

meaningful because there are different forecasters at each point in time. Next, missing observations

in the panel are imputed. Deviating from Conflitti et al. (2015), these missing distributions are
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filled in with a normal distribution corresponding to the marginal distribution of GDP estimated

in real time.6 Overall, this is a very challenging prediction exercise since there are large amounts

of missing data, a wide panel, and a short time series to train the algorithm.

Second, I construct a “tall” dataset that aims to build the longest consistent panel possible.

Following Diebold et al. (2021), I drop forecasters who have not responded for five consecutive

quarters. This results in a panel of 14 forecasters with minimal missing data. Any missing data

is imputed with a normal distribution corresponding to the unconditional distribution of GDP

estimated in real-time. Despite having half as many experts as the “wide” dataset relative to the

length of the panel, this is still a wide dataset. However, the prediction exercise is easier than the

“wide” dataset since there is much less missing data being imputed and a longer time series to

train the algorithm.

Once the data set is assembled, the first estimation window is 1999Q3 to 2004Q2, and the

evaluation window is 2005Q2 to 2020Q4. The forecast combination is estimated with a five-year

rolling window for the “wide” dataset and an expanding window for the “tall” dataset. This is a

full real-time exercise with the models estimated on the vintage available to the forecasters and

evaluated against the most recently available vintage of GDP.

4 Results

This section discusses the main findings of this paper: 1) sparse combination techniques often

perform better, and 2) the simpler constant parameter combinations usually perform better. First,

there are a few details to dispense with. I use the CRPS as an accuracy metric since it is less

sensitive to outliers relative to the log score and thus prevents extreme events from dominating

performance during “normal” times. Detailed results for the nowcasting exercise are reported in

table 1, and table 3 shows results for the survey forecast application. The tables also include

as a benchmark the dynamic linear model (DLM) in equation 2, which is used in McAlinn and

West (2019). Overall, the synthesis functions introduced in this paper are competitive with the

benchmark, suggesting that the performance of the new synthesis functions are reasonable. Finally,

in the appendix I present results suggesting that forecasts from both synthesis functions are well

6Replacing missing forecast distributions with a uniform distribution, as in Conflitti et al. (2015), does not
qualitatively change the results.
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calibrated using the test from Knüppel (2015).

4.1 Predictive Accuracy: Global-local Shrinkage Priors and Factor

Model Combinations

In general, the shrinkage priors have lower average CRPS across both nowcasting and forecasting

exercises. Figure 3 shows the results from the nowcasting exercise (panel a) and for the survey

forecast application (panel b). For clarity of exposition, the results from factor models are shaded

red and the shrinkage priors are shaded blue. Most of the time the shrinkage priors perform better,

and this pattern is apparent in both the nowcasting and the SPF application across both the tall

and wide datasets. Depending on the application and forecast horizon, improvements can be as

high as 30 percent in the nowcasting excercise and 20 percent in the SPF application. There are

some exceptions, which I examine throughout the remainder of this section.

To better understand the forecasting performance over time, I examine the cumulative CRPS

difference. This is particularly useful for highlighting episodes that may have undue influence on

average forecast accuracy and help explain the above findings. For brevity, I focus my analysis

on comparing the best-performing models from each class of synthesis function: the constant

parameter triple gamma prior and the factor model combination with two factors. Figure 5 shows

results for the nowcasting application and figure 6 for the survey forecast exercise. Despite being

for different countries and different forecast horizons, there are similarities in the results. In

both applications, the triple gamma prior performs slightly worse at the beginning of the sample.

However, as the GFC arrives, the triple gamma prior begins to perform better, signified by positive

values in the figures. For most of the post-GFC period, the triple gamma prior continues to improve

upon the factor model combination. During the COVID period, the factor model starts to perform

better in both the SPF tall data application and the longer prediction horizons in the nowcasting

application. Inspecting the forecast densities over time can help explain these results.

Figure 7 shows predictive densities for the nowcasting application7 and figure 9 shows the

difference between their forecast probability distributions. Red shading indicates higher probability

assigned to a region by the triple gamma prior, and blue indicates more probability assigned to a

7COVID-19 is excluded because the volatility in GDP growth makes the chart illegible.
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region by the two factor model. Similar charts for the SPF application are shown in figures 8 and

10.

Remarkably, examining the forecast densities shows that there are similar patterns across the

forecasting and nowcasting applications. In both applications, GDP out-turns often occur in the

red areas where the triple gamma combination put higher probability.8 Additionally, the triple

gamma prior has lower variance predictions than the factor models, which contributes to their

better performance. This is most obvious post-GFC in the SPF application where the shrinkage

priors produce substantially lower variance forecasts using both the wide and tall datasets and

the forecast periods of the nowcasting application. The more precise predictions of triple gamma

prior results in systematically better forecasts during normal times. This can be seen in figure 10

by noticing the large number of out-turns in the red shaded regions, which signify the shrinkage

prior places relatively higher probability on the out-turn. However, there is an important caveat

to this result. Figure 6 shows that during the Euro Area crisis, the factor model improves over

the triple gamma approach. This can be seen in figure 10 where the GDP out-turns are in the

blue area, signifying higher mass put on that region by the factor model. It turns out that this

is because one of the forecasters, which has a weight of around 75 percent, drops out from the

sample for a few quarters and is replaced with the unconditional distribution of GDP. This results

in poor forecast performance and, when combined with overconfidence, is quite punishing. The

factor model approach has more egalitarian weights, so this is less of a problem. This serves as a

practical lesson that placing significant weight on an individual expert has risks.

An event deserving special scrutiny is the COVID-19 pandemic. Not surprisingly, it has a

significant impact on the results and is the reason why the factor model combination is occasionally

competitive. For the nowcasting application, this is most apparent at the forecast horizon and to

a lesser extent when backcasting. The triple gamma captures the declines in 2020Q1 and 2020Q2

more accurately, but it misses the sharp and immediate rebound in 2020Q3. This can be observed

in figure 5, where the blue line approaches the y-axis at the end of sample, signifying that on

average the two methods perform similarly. There is a similar result for the SPF application using

the tall dataset. During the pandemic, the factor models perform so well that they catch up to and

8This result is corroborated by a quantile score decomposition of the CRPS, which shows better performance
across the entire distribution. Results are available upon request.
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slightly exceed the average performance of the shrinkage priors. Figure 8 shows that in 2020Q1

and 2020Q2, this is not so much due to the factor model providing a significantly better forecast.

The higher variance of the factor model combination means they are punished less for inaccurate

predictions. The story is different in 2020Q4 and 2021Q1, where the factor model is more accurate.

This can be seen quite clearly in figure 8, where the factor model not only puts a large amount of

mass around the out-turns, but also relatively more than the triple gamma (figure 10). The reason

for this is that triple gamma prior puts close to 70 percent of the weight on a single model, which

happens to provide a very poor forecast. Again, this highlights the risks of using sparse weights.

While the triple gamma synthesis function systematically outperforms the factor models most of

the time, it can be risky to put a large amount of weight on a single expert.

4.2 Predictive Accuracy: Time-varying and Constant Parameter Com-

binations

Another finding is that constant parameter combinations generally have a lower CRPS than their

time-varying counterparts. Figure 4 shows the CRPS for the nowcasting (panel a) and the SPF ap-

plication (panel b), which shades the time-varying parameter combinations red and their constant

parameter counterparts blue. There can be significant gains for choosing the more parsimonious

constant parameter specification. In the nowcasting application, there are gains of up to 20 percent

between constant and time-varying factor model combination specifications. In the survey fore-

casting exercise, performance gains can be up to 25 percent for both shrinkage and factor model

combinations, and improvements are seen in both datasets for both classes of synthesis functions.

The most dramatic performance increases, seen in the survey forecast application, are explained

by the time-varying parameter combinations reducing to a time-varying mean model with little

weight on the individual experts. Figure 11 shows the in-sample time-varying intercept for the

triple-gamma prior and the one-factor combination approach overlaid with the four-quarter lagged

Euro Area GDP figures. It is apparent that the intercept matches the GDP figures very closely,

suggesting that it may be overfitting. Additionally, inspection of the weights for each of the time-

varying combination methods reveals that the weight put on individual experts is quite small

(lower panel in figure 12). In contrast, the upper panel of figure 12 shows that the sum of weights
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from constant parameter specifications is much closer to 1. Taken together, it is evident that poor

performance of the time-varying parameter models is because the forecast is driven by the time-

varying intercept while ignoring useful information contained in the expert densities. On the other

hand, the constant parameter specifications, which lack the flexibility of a time-varying intercept,

place more weight on the experts. This finding is in contrast to other studies (Aastveit et al.

(2023)), which find that a time-varying intercept in BPS can be extremely useful. This is likely

due to differences in the applications—the aforementioned paper forecasts oil prices, which have

large and persistent movements in price that make a time-varying intercept useful. In contrast,

Euro Area and Canadian real GDP have much smaller movements in their growth rates over the

twenty-year period in question.

4.3 Examining the Combination Weights

It is instructive to examine the weights in figure 12 to gain some understanding of the implications

of synthesis function choice. Let us start with the weights from the triple gamma prior in the top

left panel.

First, the combination method puts significant weight on a single expert, a handful of other

forecasts, and close to zero weight on the rest.9 This prior implies the decision-maker should

mostly listen to a few trusted experts, but not completely ignore the herd. Additionally, a few

of the experts have negative weights. This reflects the very flexible specification that allows the

weights to adjust for biases. This is similar to portfolio optimization where the optimal portfolio

involves short selling an asset as a hedge. Put in terms of BPS, the decision-maker hedges against

the high weight on a given expert by “short-selling” a similar correlated forecast.

Second, examination of the right panel indicates that the one factor model has weights that are

spread more evenly over experts (but not equally), meaning the combination is closer to consensus

weights.10 I use the term “consensus weights” since a factor model extracts the common variance

across experts or, in some sense, what the experts can agree upon. There is an important difference

9The triple gamma appears to be good at picking up weak signals in the data and not shrinking experts to zero
weight. Sparsifying the weights using signal adaptive variable selector (Ray and Bhattacharya (2018)) results in
worse forecasting performance, suggesting the non-zeros weights are not numerical artifacts.

10Adding more factors allows experts to have more weight but does not change the pattern of dense weights or
the interpretation of consensus-based weights.
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between this weighting scheme and equal weights since the former removes idiosyncratic differences

across experts and the latter includes all the experts equally. This synthesis function implies the

decision-maker should follow a consensus-based approach to processing forecasts, and the approach

is quite different from shrinkage priors where the decision-maker focuses on a small subset of

experts. The results above suggest that sparse weights are preferable to consensus weights—a

decision-maker should not follow the herd, but instead focus on a smaller set of experts.

5 Conclusion

In this paper, I investigate different approaches for combining large numbers of density predictions

within the framework of Bayesian Predictive Synthesis. This is an important issue since many

practical applications can involve large numbers of forecasts, such as nowcasting systems or com-

bining survey forecasts. I use two common approaches in economics to deal with large datasets:

global-local shrinkage priors and factor modeling. In particular, I use the newly developed triple

gamma prior, and the priors it encompasses, along with a novel factor modeling approach to density

combinations.

I test the approaches using two very different applications: a model-based nowcasting exercise

on Canadian real GDP, and forecasting Euro Area real GDP growth using distributions from the

Survey of Professional Forecasters. These two applications cover two regions, have different forecast

horizons, include model-based and survey-based predictions, and the evaluation sample covers the

Great Financial Crisis, Euro Area Crisis, and COVID-19 pandemic, allowing for a comprehensive

assessment of the various synthesis functions. First, I find that constant parameter specifications

tend to perform better than their time-varying counterparts. This shows that in applications

with little structural change, relatively short samples, and a large cross-section of models, a more

parsimonious model is preferable. This is an important finding as recently developed combination

schemes tend to utilize time-varying parameter specifications. Second, and more importantly, I

find that shrinkage approaches generally outperform factor-model-based combinations. With the

exception of the Bayesian lasso, the shrinkage priors all perform well in terms of a low average

CRPS.

It is interesting to note that the two synthesis functions imply very different weighting struc-

16



tures. The sparse weighting scheme of shrinkage priors implies that decision-makers should give

considerable weight to a smaller set of experts. This, however, carries the risk of “putting all your

eggs in one basket,” which at times adversely affects the performance of the sparse combinations.

In contrast, the factor-model-based combination implies a dense weighting scheme, which produces

a “consensus” forecast. Overall, my results suggest that focusing on a parsimonious combination

that considers a smaller set of accurate experts is preferable to following the herd.

17



References

Aastveit KA, Cross JL, and Dijk HKV (2023), “Quantifying time-varying forecast uncer-

tainty and risk for the real price of oil,” Journal of Business & Economic Statistics 41(2),

523–537.

Aastveit KA, Gerdrup K, and Jore AS (2011), “Short-term forecasting of GDP and inflation

in real-time: Norges Bank’s system for averaging models,” Norges Bank Staff Memo (9).

Aastveit KA, Mitchell J, Ravazzolo F, and Van Dijk HK (2018), “The evolution of

forecast density combinations in economics,” Technical Report 18-069/III, Tinbergen Institute.

Aastveit KA, Ravazzolo F, and Van Dijk HK (2016), “Combined density nowcasting in

an uncertain economic environment,” Journal of Business & Economic Statistics 0(0), 1–15.

Bache IW, Mitchell J, Ravazzolo F, and Vahey SP (2009), “Macro modelling with many

models,” Technical Report 2009/15, Norges Bank.

Belmonte MAG, Koop G, and Korobilis D (2014), “Hierarchical shrinkage in time-varying

parameter models,” Journal of Forecasting 33(1), 80–94, publisher: John Wiley & Sons, Ltd.

Billio M, Casarin R, Ravazzolo F, and van Dijk HK (2013), “Time-varying combinations

of predictive densities using nonlinear filtering,” Journal of Econometrics 177(2), 213–232.
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6 Figures

Figure 1: Model List

Figure 2: Overview of Forecast Cycle

 National Accounts released for Q3 

                     Dec               Jan            Feb             Mar             Apr             May                   

National Accounts released for Q4 

Nowcast Backcast 

National Accounts released for Q1 

Forecast 
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Figure 3: Comparison of Shrinkage Priors and Factor Models

(a) CRPS in Nowcasting Application (b) CRPS in SPF Application

Figure 4: Comparison of Time-varying and Constant Parameter Specification

(a) CRPS in Nowcasting Exercise (b) CRPS for SPF forecasts
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Table 1: Nowcasting Application: Overview of Forecasting Performance

Global-Local Shrinkage Priors Factor Model Combinations
Time-Varying Constant Time-Varying Constant

DLM Lasso DG TG HS Lasso DG TG HS 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor
24 weeks until NA 2.77 2.73 2.67 2.62 2.63 3.30 2.68 2.67 2.69 2.58 2.57 2.58 2.58 2.57 2.87 2.77 2.76 2.76 2.76
22 weeks until NA 2.74 2.67 2.60 2.59 2.58 3.22 2.64 2.77 2.67 2.57 2.58 2.57 2.58 2.57 2.84 2.77 2.75 2.74 2.74
20 weeks until NA 2.20 2.14 2.02 2.06 2.02 2.53 1.92 1.91 1.92 2.58 2.55 2.55 2.55 2.54 2.91 2.02 2.03 2.03 2.03
18 weeks until NA 2.28 2.08 1.94 1.86 1.99 2.43 1.97 1.87 1.91 2.53 2.51 2.49 2.50 2.49 2.66 1.93 1.91 1.90 1.91
16 weeks until NA 1.72 1.83 1.71 1.55 1.60 2.12 1.64 1.53 1.54 2.19 2.23 2.24 2.21 2.20 1.93 1.86 1.83 1.82 1.80
14 weeks until NA 1.59 1.74 1.66 1.53 1.53 2.01 1.57 1.61 1.57 2.01 2.11 2.11 2.09 2.05 1.83 1.76 1.73 1.72 1.70
12 weeks until NA 1.31 1.46 1.29 1.14 1.14 1.69 1.21 1.14 1.15 1.34 1.36 1.36 1.36 1.35 1.27 1.26 1.24 1.24 1.23
10 weeks until NA 1.30 1.47 1.29 1.09 1.12 1.67 1.20 1.11 1.20 1.33 1.35 1.34 1.34 1.33 1.26 1.24 1.22 1.21 1.21
8 weeks until NA 0.89 0.96 0.92 0.83 0.82 1.19 0.82 0.79 0.81 1.30 1.28 1.26 1.25 1.24 1.35 1.06 1.07 1.06 1.05
6 weeks until NA 0.85 0.94 0.88 0.78 0.80 1.16 0.80 0.77 0.79 1.29 1.24 1.23 1.22 1.21 1.33 1.02 1.02 1.01 0.99
4 weeks until NA 0.58 0.68 0.62 0.57 0.56 0.80 0.54 0.54 0.54 0.58 0.58 0.58 0.58 0.58 0.56 0.53 0.55 0.55 0.55
2 weeks until NA 0.58 0.68 0.61 0.56 0.56 0.80 0.54 0.54 0.54 0.58 0.58 0.57 0.58 0.58 0.55 0.53 0.56 0.56 0.56

Notes: The rows show prediction horizons in weeks until the release of the National Accounts
(NA). Periods 24 and 22 weeks until the National Accounts are the forecast periods, while 20 to 10
weeks is the nowcast period, and 8 until 2 weeks is the backcast period. The columns correspond
to the Dynamic Linear Model benchmark (DLM), constant and time-varying specification of the
Lasso, double gamma prior (DG), triple gamma prior (TG), Horseshoe prior (HS) and factor model
synthesis functions with 1 to 5 factors.

Table 2: SPF Application: Overview of Forecasting Performance

Global-Local Shrinkage Priors Factor Model Combinations
Time-Varying Constant Time-Varying Constant

DLM Lasso DG TG HS Lasso DG TG HS 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor
Wide dataset 1.33 1.73 1.47 1.56 1.50 1.34 1.32 1.37 1.36 1.67 1.65 1.64 1.64 1.62 1.58 1.57 1.54 1.54 1.51
Tall dataset 1.32 1.47 1.51 1.54 1.45 1.24 1.23 1.22 1.22 1.63 1.61 1.62 1.60 1.61 1.19 1.17 1.21 1.23 1.18

Table 3: The rows show results for wide and tall datasets. The columns correspond to the Dynamic
Linear Model benchmark (DLM), constant and time-varying specification of the Lasso, double
gamma prior (DG), triple gamma prior (TG), Horseshoe prior (HS), and factor model synthesis
functions with 1 to 5 factors.
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Figure 5: Nowcasting Cumulative CRPS Difference: Factor Model 2 (constant) - Triple Gamma
(constant)

Figure 6: SPF Cumulative CRPS Difference: Factor Model 2 (constant) - Triple Gamma (constant)
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Figure 7: Nowcasting Application Predictive Densities

Figure 8: SPF Application Predictive Densities
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Figure 9: Nowcasting Application Difference Between Triplegamma and Factor Model-2 in Pre-
dictive Densities with GDP Realizations

Notes Red values in the heat map indicate the triple gamma prior adds more probability to the
bin relative to the factor model. Blue shading signifies the factor model adds more probability to
a region than the triple gamma prior.
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Figure 10: SPF Application: Difference Between Triple Gamma and Factor Model-2 in Predic-
tive Densities with GDP Realizations

Notes Red values in the heat map indicate the triple gamma prior adds more probability to the
bin relative to the factor model. Blue shading signifies the factor model adds more probability to
a region than the triple gamma prior.

Figure 11: Time-varying Predictive of Mean of BPS Intercepts for SPF Tall Dataset
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Figure 12: Sequentially Estimated Mean Combination Weights

Figure 13: Knüpple Test for Probabilistic Calibration: Nowcasting Application

Notes: Results from the Knüpple test for probabilistic calibration. Null hypothesis is for calibration
and values in the table correspond to p-values. Red shading corresponds to rejection of calibration
at 5 percent level and yellow at 10 percent level.
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Figure 14: Knüpple Test for Probabilistic Calibration: Survey Forecast Application

Notes: Results from the Knüpple test for probabilistic calibration. Null hypothesis is for calibration
and values in the table correspond to p-values. Red shading corresponds to rejection of calibration
at 5 percent level and yellow at 10 percent level.

32



Figure 15: Box Plots of Potential Scale Reduction Factors
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A Technical Appendix

A.1 MCMC Algorithm

This section describes the Markov Chain Monte Carlo (MCMC) algorithm used to estimate the

forecast combinations. It largely follows McAlinn and West (2019) for the BPS steps, Cadonna

et al. (2020) for the global-local shrinkage priors combinations, and Lopes and West (2004) for

the factor model combinations. The MCMC follows a two-component block Gibbs sampler: one

component samples the synthesis function parameters, and the second samples from the expert

forecast distributions or the agent states. As such, I discuss the estimation of each synthesis

function separately, followed by details on sampling the agent states.

A.2 Global-local Shrinkage Combinations

This section describes the estimation of the global-local shrinkage synthesis functions. Knaus et al.

(2021) provide an R package and the vignette is an excellent overview of the estimation and priors

of these models. More details are available in Cadonna et al. (2020) and Bitto and Frühwirth-

Schnatter (2019). I first describe the model, followed by the priors, and then describe the MCMC

algorithm.

Starting with the centered parameterization of the synthesis function, for t = 1, . . . , T , we have

that

yt = xtβt + ϵt βt = βt−1 + ut ϵt ∼ N (0, σ2
t ) ut ∼ N (0, Q) (7)

where yt is a univariate response variable and xt = (xt0, xt1, . . . , xtd) is a d-dimensional row

vector containing the regressors at time t, with xt1 corresponding to the intercept.

For simplicity, I assume here that Q = Diag(θ1, . . . , θd) is a diagonal matrix, implying that

the state innovations are conditionally independent. Moreover, I assume the initial value follows

a normal distribution (i.e., β0 ∼ Nd(β,Q)), with initial mean β = (β1, . . . , βd). Model (7) can be

rewritten equivalently in the non-centered parametrization as

yt = xtβ + xtDiag(
√
θ1, ...,

√
θd)β̃t + ϵt, ϵt ∼ N (0, σ2

t )

β̃t = β̃t−1 + ũt, ũt ∼ Nd(0, Id)
(8)
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with β̃0 ∼ Nd(0, Id), where Id is the d-dimensional identity matrix. Furthermore, the model

can accommodate stochastic volatility or constant volatility. In the former case, the log-volatility

ht = log σ2
t follows a random-walk. More specifically,

ht|ht−1, σ
2
η ∼ N

(
ht−1, σ

2
η

)
, (9)

with initial state h0 ∼ N (a0, b0)).

A.2.1 Shrinkage Priors on Variances and Model Parameters

This section describes the priors used in the previously discussed synthesis function. The triple

gamma prior can be represented as a conditionally normal distribution, where the component spe-

cific variance is itself a compound probability distribution resulting from two gamma distributions.

This results in independent normal-gamma-gamma (NGG) priors (Cadonna et al., 2020), both on

the standard deviations of the innovations, that is the
√
θj’s, and on the means of the initial value

βj, for j = 1, . . . , d. Note that, in the case of the standard deviations, this can equivalently be

seen as a triple gamma prior on the innovation variances θj, for j = 1, . . . , d. In the constant

parameterizations, I place an NGG prior on the βj using the centered parameterization:

√
θj|ξ2j ∼ N (0, ξ2j ), ξ2j |aξ, κ2j ∼ G(aξ,

aξκ2j
2

), κ2j |cξ, κ2B ∼ G(cξ, c
ξ

κ2B
) (10)

βj|τ 2j ∼ N (0, τ 2j ), τ 2j |aτ , λ2j ∼ N (aτ ,
aτλ2j
2

) λ2j |cτ , λ2B ∼ N (cτ ,
cτ

λ2B
). (11)

Letting cξ and cτ go to infinity results in a normal-gamma (NG) prior (Brown and Griffin,

2010) on the
√
θj’s and βj’s. It also has a representation as a conditionally normal distribution,

with the component specific variance following a gamma distribution; that is

√
θj|ξ2j ∼ N (0, ξ2j ), ξ2j |aξ, κ2B ∼ G(aξ, a

ξκ2B
2

), (12)

βj|τ 2j ∼ N (0, τ 2j ), τ 2j |aτ , λ2B ∼ G(aτ , a
τλ2B
2

). (13)
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The parameters aξ, aτ , cξ, cτ , κ2B, and λ
2
B can be learned from the data through appropriate

prior distributions. Results from Cadonna et al. (2020) motivate the use of different distributions

for these parameters under the NGG and NG prior. In the NGG case, the scaled global shrink-

age parameters conditionally follow F distributions, depending on their respective pole and tail

parameters:

κ2B
2
|aξ, cξ ∼ F (2aξ, 2cξ),

λ2B
2
|aτ , cτ ∼ F (2aτ , 2cτ ). (14)

The scaled tail and pole parameters, in turn, follow beta distributions:

2aξ ∼ B (αaξ , βaξ) , 2cξ ∼ B (αcξ , βcξ) , (15)

2aτ ∼ B (αaτ , βaτ ) , 2cτ ∼ B (αcτ , βcτ ) . (16)

These priors are chosen as they imply a uniform prior on a suitably defined model size; see

Cadonna et al. (2020) for details. In the NG case, the global shrinkage parameters follow indepen-

dent gamma distributions:

κ2B ∼ G(d1, d2), λ2B ∼ G(e1, e2). (17)

In order to learn the pole parameters in the NG case, I generalize the approach taken in Bitto

and Frühwirth-Schnatter (2019) and place the following gamma distributions as priors:

aξ ∼ G(αaξ , αaξβaξ), aτ ∼ G(αaτ , αaτβaτ ), (18)

which correspond to the exponential priors used in Bitto and Frühwirth-Schnatter (2019) when

αaξ = 1 and αaτ = 1. The parameters αaξ and αaτ act as degrees of freedom and allow the prior

to be bounded away from zero.

In the constant parameter case, I employ a hierarchical prior, where the scale of an inverse

gamma prior for σ2 follows a gamma distribution; that is,

σ2|C0 ∼ G−1(c0, C0), C0 ∼ G(c0 + g0, (G0 + σ−2)−1), (19)
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with hyperparameters c0, g0, and G0.

In the case of stochastic volatility, the priors on the parameters σ2
η in Equation 9 are,

σ2
η ∼ G−1(ν, Sh), h0 ∼ N (a0, b0) (20)

with hyperparameters ν, Sh, a0 and b0.

A.2.2 MCMC Sampling Algorithm

This next section describes the MCMC Gibbs sampling algorithm with Metropolis-Hastings steps

to obtain draws from the posterior distribution of the global-local shrinkage prior synthesis function

parameters. This is meant to be an overview of the algorithm; for more details, please refer to

Cadonna et al. (2020) and Bitto and Frühwirth-Schnatter (2019).
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Algorithm 1: Gibbs Sampling Algorithm

1. If in TVP specification, sample the latent states β̃ = (β̃0, . . . , β̃T ) in the non-centered

parametrization from a multivariate normal distribution using precision sampling (Chan

and Jeliazkov, 2009). Otherwise skip.

2. If in TVP specification, sample jointly β1, . . . , βd, and
√
θ1, . . . ,

√
θd in the non-centered

parametrization from a multivariate normal distribution. Otherwise, sample β1, . . . , βd, in

the centered parameterization from a multivariate normal distribution.

3. If in TVP specification, perform an ancillarity-sufficiency interweaving step and redraw each

β1, . . . , βd from a normal distribution and each θ1, . . . , θd from a generalized inverse Gaussian

distribution using the MATLAB implementation (Hartkopf, 2022) of Hörmann and Leydold

(2014). Otherwise skip.

4. Sample (where required) the prior variances ξ21 , . . . ξ
2
d and τ

2
1 , . . . τ

2
d and the component specific

hyper-parameters. Sample the pole, tail, and global shrinkage parameters. In the NGG case,

this is done by employing steps (b)–(f) from Algorithm 1 in Cadonna et al. (2020). In the

NG case, use steps (d) and (e) from Algorithm 1 in Bitto and Frühwirth-Schnatter (2019).

5. Sample the error variance σ2 from an inverse gamma distribution in the homoscedastic case

or, in the SV case, sample the volatility of the volatility σ2
η and the log-volatilities h =

(h0, . . . , hT ).

Step 4 presents a fork in the algorithm, as different parameterizations are used in the NGG and

NG case, to improve mixing. For details on the exact parameterization used in the NGG case, see

Cadonna et al. (2020). One key feature of the algorithm is the joint sampling of the time-varying

parameters β̃t, for t = 0, . . . , T in step 1 of Algorithm 1. I employ the procedure described in Chan

and Jeliazkov (2009) and McCausland et al. (2011) from Rue and Held (2005), which exploits the

sparse, block tri-diagonal structure of the precision matrix of the full conditional distribution of

β̃ = (β̃0, . . . , β̃T ), to speed up computations.

Step 3, as described in Bitto and Frühwirth-Schnatter (2019), makes use of the ancillarity-

sufficiency interweaving strategy (ASIS) introduced by Yu and Meng (2011). ASIS is well known

to improve mixing by sampling certain parameters both in the centered and non-centered param-

eterization.
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A.3 Factor Model Combinations

The second synthesis function considered in this paper is a Bayesian Factor Model similar to that

of Lopes and West (2004), and Lopes (2014) provides an overview of Modern Bayesian Factor

Analysis. Please refer to those references for detailed discussion on the methods. Here I provide a

brief overview of the model and estimation technique.11

yt = F
′

tγt + ϵt γt = γt−1 + ut xt = Λft + νt (21)

ϵt ∼ N (0, σ2
t ) ut ∼ N (0, θ) νt ∼ N (0, R) (22)

where ft is a k × 1 vector of factors, Ft = (1, ft), γt is k + 1 vector of coefficients, Λ is a

J × k vector of loadings, and R is a diagonal covariance matrix with elements σ2
νJ . In order to

derive combination weights, I need to identify the factors. This is done by the following restriction

f ′
tft = IJ and by restricting the first k elements of the loadings matrix to be positive block lower

diagonal. This is a common identification scheme used to fix indeterminacy in the estimation of

the factors.

To complete model specifications, I need priors for Λ, R, σ2
t , and θ. The factor loadings have

independent priors Λij ∼ N (0, C0) when i ̸= j and Λij ∼ N (0, C0)1(Λii > 0) for the upper-

diagonal elements of positive loadings i = 1, . . . , k. Each of the prior variances are independent

and modeled as σ2
νJ ∼ IG(ν/2, νs2/2), similarly θ ∼ IG(νθ/2, νθs2θ/2). Initial conditions for the γt

are γ0 ∼ N (0, P0), where P0 ∼ IG(νP , (νP − 1)× cP ).

With the model specified, the next section provides a sketch of the MCMC routine. Interested

readers can refer to Lopes and West (2004).

Algorithm 2: Gibbs Sampling Algorithm

1. Sample ft from independent normal distributions for every t, namely,

ft ∼ N ((Ik + Λ′R−1Λ)−1Λ′R−1xt, (Ik + Λ′R−1Λ)−1).

2. Sample Λ for i = 1, . . . , k Λi ∼ N (mi, Ci)1(Λii > 0) where mi = Ci(C
−1
0 µ01i + σ2

νiFixi) and

C−1
i = C−1

0 Ii + σ2
νiF

′
iFi.

11The implementation in the paper includes an intercept. For ease of exposition, it has been omitted in the
following section.
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3. Sample Λ for i = k + 1, . . . , J Λi ∼ N (mi, Ci)1(Λii > 0) where mi = Ci(C
−1
0 µ01k + σ2

νiF
′xi)

and C−1
i = C−1

0 Ik + σ2
νiF

′F .

4. Sample σ2
νi ∼ IG((ν + T )/2, (νs2 + di)/2) where di = (xi − FΛ′)′(xi − FΛ′).

5. If in TVP specification, sample the latent states γ1, . . . , γd, jointly from a multivariate normal

distribution using the precision sampler of Chan and Jeliazkov (2009). Otherwise, sample

γ = (γ0, . . . , γT ) from a multivariate normal distribution.

6. Sample the error variance σ2 from an inverse gamma distribution in the homoscedastic case

or, in the SV case, sample the volatility of the volatility σ2 and the log-volatilities h =

(h0, . . . , hT ).

A.4 Sampling the Agent States

After estimating the synthesis function parameters, the next step in BPS is to draw x1:t from

p(x1:t|Φ1:t, y1:t,H1:t) where Φ is the model parameters, yt is the target variable, and H1:t is the set

of agent densities. As shown in McAlinn and West (2019), the xt, draws from agent densities, are

conditionally independent over t with time t conditionals:

p(xt|Φt, yt,Ht) ∝ N(yt|X ′
tβt, ϵt)

∏
j=1:J

htj(xtj) with Xt = (1, xt1, . . . , xtJ)
′ (23)

If the agents provide normal forecast densities, then 23 yields a multivariate normal distribution

for xt. The posterior distribution for each xt is:

p(xt|Φt, yt,Ht) = N (ht + btct, Ht − btb
′
tgt) (24)

where ct = yt − βt0 − h′tβt,1:J , gt = σ2
t + β′

t,1:JHtβt,1:J , and bt = Htβt,1:J/gt. Unfortunately, the

applications in this paper do not have analytical forms; instead, histograms represent the agent

densities. With no analytical form, I use a Block Metropolis-Hastings step with 24 as a proposal

distribution. Since the number of agent densities can be large, I break the MH step into blocks of

five experts that are sampled at a time.

There are a few details for Bayesian Factor Model combinations that warrant explanation.

First, the model has to be re-parameterized in terms of the xt so that I can use the proposal
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distribution from 24 in the MH step. The model is straightforward to re-parameterize with the

following steps:

yt = x′tγt + ϵt xt = Λft + νt (25)

ft = (Λ′Λ)−1Λ′xt − (Λ′Λ)−1Λ′νt where, Ω = (Λ′Λ)−1Λ′ (26)

yt = x′tΩ
′γt − ν ′tΩ

′γt + ϵt → yt = x′tγ
∗
t + ϵ∗t (27)

where, ϵ∗t = −ν ′tΩ′γt + ϵt and γ∗t = Ω′γt (28)

Now that the model has been re-parameterized, I can use the equation 24 in the MH step by

substituting in βt = γ∗t , and error variance ϵ∗t ∼ N (0, γ′tΩRΩ
′γt + σ2

t ).

The second issue that the data (xt) used to estimate Bayesian Factor Models is standardized

to be mean 0 and variance 1. Since the agents provide forecast distributions, I calculate mean and

variance used to standardized draws from the agent densities using the marginal density of each

expert over all T (h(x)1:T ). Each xt draw is standardized during each MCMC iteration.
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B Calibration Appendix

This section assesses the calibration of the BPS predictions. Calibration (also referred to as

absolute accuracy) is achieved when a predictive density properly characterizes the probability of

the events that it is predicting. For example, events predicted to occur with a 20 percent probability

should be observed in the data roughly 20 percent of the time. More formally, calibration refers

to the statistical consistency between the predictive distributions and the observations of the data

they are predicting (Gneiting and Raftery, 2007). I assess calibration with a test based off of the

probability integral transforms (PITs) (Diebold et al., 1998) as proposed in Knüppel (2015). In

general, I find little evidence to suggest that the predictions from any of the synthesis functions

are not calibrated.

Figures 13 and 14 show results from the nowcasting application and the SPF forecasting ap-

plication. For the most part in the nowcasting applications, the factor model combinations show

little evidence of being uncalibrated. However, the shrinkage approaches have slightly different

results. The LASSO synthesis function does not appear to produce calibrated predictions, and

the test rejects calibration for the time-varying double gamma specification at most horizons. In

contrast, the constant parameter specifications produce calibrated predictions at most horizons,

the exception being the shortest horizons where calibration is rejected at the 10 percent level.

The SPF application has more straightforward results—there is little evidence to suggest the BPS

predictions are uncalibrated from any synthesis function. In only two cases is the null hypothesis

rejected at the 10 percent level.
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C MCMC Convergence Appendix

In this section, I assess the convergence of the MCMC algorithms. This is done using the Gelman-

Rubin diagnostic (Rubin et al., 2015) and implemented through the MATLAB MCMC Diagnostics

Toolbox (Vehtari and Särkkä, 2014). The Gelman-Rubin diagnostic compares within-chain vari-

ance to across-chain variance to estimate a potential scale reduction factor (R), which can be used

to assess convergence of the MCMC chain. As a rule of thumb, values below 1.1 suggest conver-

gence. The diagnostic is performed with five chains and on four specifications of BPS using the

SPF “tall” dataset. I focus on the constant and time-varying versions of the triple gamma and

one factor synthesis functions. This is because the other shrinkage priors are special cases of the

triple gamma prior and reduce to simpler versions of the sampler. Results for other shrinkage are

available upon request. Since the number of parameters, state variables, and hyper-parameters

sampled can number in the thousands, I report box plots of the potential scale reduction factor in

Figure 15. These results show reasonable convergence of the MCMC algorithms.
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