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It is the uncertainty that charms one.
A mist makes things wonderful.

— Oscar Wilde (1890, The Picture of Dorian Gray)
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Preface

Our original aim was to write an introduction to the
evaluation and expression of measurement uncertainty
as accessible and succinct as Stephanie Bell’s little jewel
of A Beginner’s Guide to Uncertainty of Measurement [Bell,
1999], only showing a greater variety of examples to illus-
trate how measurement science has grown and widened
in scope in the course of the intervening twenty years.

The recent, very welcome Introduction to Measurement
Uncertainty that Blair Hall and Rod White have made
available to the community [Hall and White, 2018], occu-
pies a middle ground in terms of complexity. It presents
two realistic examples in considerable detail (using a
ruler, and calibrating a thermometer), and it excels in
typographical design, from which we have obviously
drawn inspiration.

Our account turned out far more ambitious and chal-
lenging then either of these two that motivated us and
that we had intended to emulate and expand upon,
“only a little.” In fact we assume that the reader already
is familiar with either, or preferably with both of them.
For this reason, we have characterized our contribution
as a reintroduction to measurement uncertainty.

We take an eclectic and inclusive view of measurement,
recognizing its vital and pervasive role in science and
technology, also in the arts. Since the interests of indi-
vidual readers may be more narrowly focused, we have
organized our narrative so that a reader who is primar-
ily interested in weighing may skip the discussion of
counting, and similarly for all the other sections.

Even subsections within the same section can, in most
cases, be read independently of one another: for exam-
ple, to learn how to compare two measurement methods,
while remaining unconcerned with how to compare a
measured value with a corresponding certified value.
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The price to be paid for such flexibility is the amount
of internal cross-referencing, either via page numbers
(in the print edition), or via hyperlinks (in the online
version).

While some of our examples are very simple and likely
to appeal to a broad audience (measuring the volume of
a storage tank, or surveying a plot of land), others may
interest only a more narrowly specialized sector of the
readership (measuring abortion rates, or calibrating a
resistor using a Wheatstone bridge).

Some applications may appear, at first blush, to be
narrowly focused (measuring the Hubble-Lemaître con-
stant), but in fact illustrate techniques that are widely
applicable. Still others are fairly complex, yet are likely
to draw the attention of many readers (calibrating a
gc-ms system, or averaging models for a flu epidemic).

The predominant approach to measurement uncertainty
involves probabilistic concepts and requires the appli-
cation of statistical methods. We have chosen not to
hide the attending difficulties, and strive to explain the
models we use, and the calculations necessary to apply
them, in fair detail, providing computer codes to carry
them out.

These technicalities, no matter how clearly one may
be able to explain them, inevitably will be challenging
obstacles for many readers. Two appendices, one on
probability, the other on statistics, may help motivated
readers familiarize themselves with concepts and meth-
ods sufficiently to overcome such obstacles, yet they
demand considerable commitment from the reader.

We offer supplementary material online in a companion
web site, including datasets, computer codes, and prob-
lems and exercises likely to be helpful for instruction
based on the book.

We apply a wide range of statistical models and methods,
some from the classical school, others of a Bayesian
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flavor, especially when it is advantageous to incorporate
preexisting knowledge about a measurand, or to nudge
a procedure in a particular direction. We eschew the
rigidity entailed by ideological purity, and willingly
employ any tool or approach that seems best suited for
the task at hand.

The key resolution we made was to approach each prob-
lem with flexibility, being deferential to the data and
attentive to the purpose of the inquiry: to select models
and employ data reduction techniques that are verifiably
adequate for the data in hand; to give each problem a
custom solution tailored for the purpose that the results
are intended to serve; all along heeding Lincoln Moses’s
advice that “You have to have a good data-side manner.”
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Measurement

In ancient Egypt, mea-
surement was considered
important even in the after-
life: Anubis (god of death)
leads the scribe Hunefer
to judgement, where his
heart is weighed against the
Feather of Truth. Thoth (god
of writing) records the result,
while Ammit, Devourer of
the Dead, awaits the verdict.

— Book of the Dead (1275

bce) British Museum (EA
9901,3)

Recognizing and quantifying
the uncertainty that invari-
ably clouds our knowledge
of the world is a hallmark of
science. It informs actions
and decisions in all fields
of the human endeavor:
protecting against incoming
storms, planning crops,
responding to epidemics,
or managing industrial
inventories. Measurement
uncertainty is an integral part
of every measurement result,
characterizing its quality.

Our ancestors were shepherds that counted sheep, sur-
veyors that sized agricultural land, traders that weighed
gold pieces, time-keepers that relied on sundials, mer-
chants that graded silk according to its fineness, and
healers that assigned medicinal plants to categories re-
flecting their powers (cf. Todd [1990]).

Counting, surveying, weighing, timing, ranking, and
classifying all serve to assign a value to a property (mea-
surand) of an object of interest, and all are instances of
measurement provided they satisfy these requirements:
(i) the assignment of value is based on comparison with
a standard that is recognized as a common reference by
the community of producers and users of the measure-
ment result; (ii) the measured value is qualified with an
evaluation of measurement uncertainty whose practical
meaning is well understood and agreed upon; (iii) the
measurement result (measured value together with its
associated measurement uncertainty) is used to inform
an action or decision [White, 2011] [Possolo, 2018].

A measured value is an estimate of the true value of
a property, which may be quantitative or qualitative.
Counting, surveying, weighing, and timing all produce
estimates of quantitative measurands. Ranking applies
to qualities whose values can meaningfully be ordered
from lowest to highest, or weakest to strongest (for ex-
ample, the Mohs hardness of a mineral, or the spiciness
of a curry). Classification (or identification) assigns ob-
jects to categories that are either identical or different,
but that cannot otherwise be ordered or quantified (for
example, the identity of the nucleobase at a particular
location of a dna strand, or the gender of an athlete).
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Measurement Uncertainty

Measurement uncertainty is the doubt about the true
value of the measurand that remains after making a mea-
surement [Possolo, 2015]. The corresponding margin of
doubt is characterized by its width (size of the uncer-
tainty) and by its depth (severity of the uncertainty): the
wider this margin, the larger the range of values of the
measurand that are consistent with the measured value;
the deeper this margin, the smaller the confidence that
the true value of the measurand lies within that margin
[Bell, 1999].

Truth lies hidden in a cas-
tle’s keep, surrounded by
uncertainty, which is rep-

resented by the moat. The
width of the moat portrays

the margin of doubt, and its
depth illustrates the sever-

ity of the doubt [Bell, 1999]
(Almourol Castle, Portugal

— Wikimedia Commons,
Daniel Feliciano, 2003).

There is no science without measurements, no qual-
ity without testing, and no global commerce without
standards. Since no measurement is perfect, evaluating
measurement uncertainty and taking it into account are
prerequisites for using measurement results.

Uncertainty often originates not only from imperfections
in measurement, but also from the natural variability of
the true values of the properties we seek to measure. For
example, the exact amount of aspirin may vary slightly
among nominally identical pills, and the actual volume
of dishwashing liquid in bottles supposed to contain
the same nominal volume often varies enough to be
perceptible to the naked eye.

The speed of light in vac-
uum has exactly one true
value that is invariant in

time and space, according
to the prevailing view of

the universe. But the true
value of the atomic weight of

oxygen varies significantly
across usa river waters,

reflecting the spatial vari-
ability of the amount frac-

tions of its different isotopes
[Kendall and Coplen, 2001].

In addition to imperfect measurements or natural vari-
ability of the true values of measurands, it is common
for there to be ambiguity, or incomplete specification,
of the very definition of what we are trying to measure.
The following three examples describe cases where such
ambiguity was an important source of uncertainty.

In January, 2015, the U.S. Supreme Court decided a case
concerning the meaning of the term “molecular weight”
as it had been used in a patent filed by Teva. The Court
considered that “the term might refer to the weight of
the most numerous molecule, it might refer to weight
as calculated by the average weight of all molecules, or
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it might refer to weight as calculated by an average in
which heavier molecules count for more.”1 1 Teva Pharmaceuticals USA,

Inc. v. Sandoz, Inc. 574 U. S.
318 (2015), 2015Driving under the influence (dui) court cases rely on

measurements made to determine whether alcohol con-
centration exceeded 0.08 g per 100 mL of blood, or 0.08 g
per 210 L of breath. Typically, the prosecution has to
demonstrate that the alcohol concentration indeed ex-
ceeded the 0.08 level beyond reasonable doubt, which is
often taken to mean 99 % confidence.

Measurement uncertainty
is crucial to determining
whether laws are broken
(excerpt from a 2010 King
County District Court ruling,
Washington, usa).

Besides the sizable measurement uncertainty, which is in
large part attributable to calibration uncertainty,2 3 the 2 S. Cowley and J. Silver-

Greenberg. These Machines
Can Put You in Jail. Don’t
Trust Them. The New York
Times, November 3, 2019.
Business Section
3 J. Silver-Greenberg and
S. Cowley. 5 Reasons to
Question Breath Tests. The
New York Times, November 3,
2019. Business Section

factors affecting the outcome of breath tests include body
temperature, blood makeup (hematocrit, the volume
fraction of red blood cells in the blood), and the manner
of breathing.

Moreover, uncertainty can surround many other aspects
of the measurement: some parts of the body will have
higher blood-alcohol concentration than others, with
the alcohol levels in arterial and venous blood possibly
differing by as much as a factor of two [Simpson, 1987].

Even the very definition of
alcohol, surprisingly, can
include not only ethanol but
also other low molecular
weight alcohols such as
methanol or isopropanol.Defining gender, in particular of athletes participating

in sports where men and women compete separately,
has become a prime example of definitional uncertainty,
as the understanding has widened, among biologists,
that the binary notion of gender (male or female) is an
inaccurate oversimplification.

In fact, gender is a spectrum,4 for there are several ways 4 C. Ainsworth. Sex redefined.
Nature, 518:288–291, February
2015. doi:10.1038/518288a.
News Feature

in which its value may be expressed or assigned — based
on anatomical features, hormonal profile, chromosomal
structure, or self-identification —, which may contradict
each other, giving rise to uncertainty.

These examples highlight how consideration of measure-
ment uncertainty pervades not only areas of science and
technology, but also many aspects of everyday life. Next
we illustrate how measurement uncertainty can be prop-
agated to the results of simple arithmetic calculations.

https://doi.org/10.1038/518288a
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Sums, Products, and Ratios

In many cases, quantities of interest are expressed as
sums, products, or ratios of quantities that have been
measured previously. Such fairly simple measurement
models serve to illustrate the basic procedures involved
in uncertainty evaluations, including the propagation of
uncertainties from input quantities to an output quan-
tity, as in the following examples: (i) the plasma anion
gap (expressed as a sum of four measured amount con-
centrations); (ii) the volume of a cylindrical storage tank
(expressed as a product of two measured lengths); (iii)
the resistance of an electric resistor (which is given by a
ratio involving several measured resistances); and (iv)
the atomic weight of lead (a sum of products).

Plasma Anion Gap

The plasma anion gap, ∆cAG, is used in clinical bio-
chemistry to determine whether there is an imbalance
of electrolytes in the blood, which may be a result of
diabetes or of kidney disease, among other possibili-
ties. It is defined as a linear combination of the amount
concentration of two cations and two anions:There are several different

definitions of the anion gap.
For example, it is common to
omit potassium or to include

corrections due to albumin.
∆cAG = c(Na+) + c(K+)− c(Cl−)− c(HCO−

3 ).

Consider the values that were measured for a particular

ion c u(c)

Na+ 137 1.48
K+ 4 0.04

Cl− 106 0.72
HCO−

3 10 0.84

Amount concentrations of
ions (mmol/L) that were

measured for a particu-
lar patient [White, 2008].

patient, shown in the table alongside. For this patient,

∆cAG = (137 + 4 − 106 − 10)mmol/L = 25 mmol/L,

which generally would be regarded as being of clinical
concern. However, the interpretation of any result of lab-
oratory medicine requires consideration of the complete
clinical profile of the patient [White et al., 2014] and re-
quires also that measurement uncertainty be taken into
account.
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The uncertainty associated with the value of ∆cAG is
determined by the reported uncertainties for the indi-
vidual ion amount concentrations. These are the sizes
of the margins of uncertainty discussed above, under
Measurement Uncertainty (Page 14). White [2008] does
not describe how they were evaluated, or which sources
of uncertainty may have contributed to these values, but
refers to them as standard deviations.

This suggests that the underlying model for the mea-
sured amount concentrations involves random variables
(Page 161) and probability distributions (Page 159), which
provides a way forward to evaluate the standard uncer-
tainty of the anion gap.

Following the Guide to the
expression of uncertainty
in measurement (gum)
[JCGM 100:2008], we refer to
standard uncertainty to denote
the standard deviation of
the probability distribution
that models the uncertainty
surrounding the true value of
the measurand.

We say that the standard
uncertainty is associated with
the measured value because
different ways of measuring
the same measurand may
yield different uncertainties.

For this reason, u(y) is the
notation often used, where
y is an estimate of the true
value of the measurand, η.

However, the uncertainty
is about η, not about y
(whose value is known). The
alternative, u(η), would be
logically appropriate but
omits the dependence on
the specific estimate. Maybe
the notation uy(η) will gain
traction some day.

Indeed, if those four amount concentrations can be
regarded as outcomes of independent random vari-
ables, then ∆cAG also is a random variable because it
is a function of these random variables. Its variance
(Page 165), denoted u2(∆cAG) below, can be computed
exactly because the AG is a linear combination of the
four amount concentrations, and the corresponding stan-
dard deviation, which will become its standard uncer-
tainty, u(∆cAG), is the square root of this variance: If an output quantity

Y = α1X1 + · · · + αn Xn
is a linear combination of
uncorrelated input quantities
for which estimates x1, . . . , xn
and associated standard
uncertainties u(x1), . . . , u(xn)
are available, α1, . . . , αn
are known constants, and
y = α1x1 + · · ·+ αn xn , then
u2(y) = α2

1u2(x1) + · · · +
α2

nu2(xn).

u2(∆cAG) = u2(c(Na+)) + u2(c(K+))+

u2(c(Cl−)) + u2(c(HCO−
3 ))

= (1.48 mmol/L)2 + (0.04 mmol/L)2+

(0.72 mmol/L)2 + (0.84 mmol/L)2

= (1.85 mmol/L)2.

Even though ∆cAG involves sums and differences, the
variances of the quantities being added or subtracted
are all added (Page 167).

The precise meaning of u(∆cAG) = 1.85 mmol/L de-
pends on the probability distribution of the random
variable that is being used as a model for ∆cAG. If

It is a surprising fact that, for
many probability distribu-
tions that a measurand y may
have, the interval y ± 2u(y)
will include the true value of
y with approximately 95 %
probability [Freedman et al.,
2007].

the four ion concentrations were modeled as Gaussian
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(Page 167) random variables, then so would be the ∆cAG,
because a linear combination of independent (Page 163)
Gaussian random variables is also Gaussian, and we
would conclude that the true value of the ∆cAG lies
between (25 − 1.85)mmol/L and (25 + 1.85)mmol/L
with approximately 68 % probability.

Storage Tank

Consider the problem of evaluating and expressing the
uncertainty that surrounds the internal volume V of
a cylindrical storage tank, derived from measurement
results for its radius R and for its height H. Since the
volume is a nonlinear function of the radius and the
height, V = πR2H, the form of calculation used for the
anion gap does not apply to this case.

The volume of a cylindri-
cal, oil storage tank is a

nonlinear function of its
height and diameter — Pix-
elSquid (use licensed 2020).

The radius was measured by climbing a set of stairs to
the tank’s roof, whose shape and size are essentially
identical to the shape and size of its base, measuring its
diameter with a tape, and reporting the estimate of the
radius as 8.40 m, give or take 0.03 m. This “give or take”
is the margin of uncertainty.

One way to interpret this “give or take” involves mod-
eling the measured value of the radius as R + r, where
r denotes a measurement error, whose typical absolute
value should be around 0.03 m, but that can be posi-
tive or negative. Still, without additional information
or modeling assumption, this interpretation is not par-
ticularly meaningful and is insufficient to answer the
question of how likely the true value of the radius is
to lie between 8.37 m and 8.43 m, say. To answer this
question one needs to give a probabilistic meaning to
the concept of measurement uncertainty.

A modeling assumption that is commonly made is that r
is like an outcome of a random variable whose expected
value is 0 m and whose standard deviation is 0.03 m.
This interpretation motivates calling 0.03 m standard un-
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certainty. Alternatively, and equivalently, one could say
that the measured value of the radius itself is like an out-
come of a random variable with mean R and standard
deviation 0.03 m.

What does the 0.03 m actually subsume? The standard
uncertainty reflects contributions from all recognized
sources of uncertainty that will have been evaluated
individually and then combined to yield the reported
value.

• Some of these contributions originate in the tape itself
(how and when it was calibrated, or the effect that
temperature has on its length);

• Other contributions derive from how the tape was
laid out along a diameter of the roof (how stretched
it may have been, how closely it passed to the ac-
tual center of the roof, and whether it touched and
went over any rivets or ridges that may have made it
deviate from a straight line parallel to the roof);

• Still other effects are attributable to how the tape
was used by the person making the measurement
(whether multiple measurements were made of the
length of the diameter, and, if so, whether they were
averaged or combined in some other way);

• And there will also be contributions from sources that
are specific to the tank itself (how close to a perfect
circle its roof may be, or how the temperature may
affect the tank’s volume and shape).

How likely is it that the true value of the radius indeed lies
within 0.03 m of the measured value, 8.40 m? To answer
this question one needs a particular model for the uncer-
tainty that the question alludes to. The kind of model
that is used most often to address this question is a
probabilistic model that characterizes in sufficient detail
the random variable mentioned above. Such model is a
probability distribution.
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But which probability distribution? The answer depends
on what is known about the sources of uncertainty listed
above, and on how their contributions will have been
combined into the reported margin of uncertainty.

A common choice (but by no means the best in all cases)
is to use a Gaussian distribution (Page 167) as the model
that lends meaning to the margin of uncertainty. In such
case one can claim that the probability is about 68 %
that the true value of the radius is within 0.03 m of its
measured value.

The same questions need to be answered, and compa-
rable modeling assumptions need to be made for the
tank’s height, H, which was measured using a plumb
line dropped from the edge of the roof to the concrete
platform that the tank is anchored to. The result turned
out to be 32.50 m give or take 0.07 m.

Similarly to how we interpreted the result for the radius,
here we regard the measured value of the height as H +

h, where h denotes measurement error whose typical
absolute value should be around 0.07 m.

The estimate of the volume,

V = πR2H = 7204 m3,

is obtained by substituting R and H by their measured
values on the right-hand side of the measurement model
for V.

Since the measured values of R and H are affected by
errors, so will the resulting estimate of the volume. That
is, 7204 m3 = V + v, where v denotes the error that
affects the measured value of the volume.
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The error in the measured volume can be expressed as a
function of the errors r and h that affect the measured
values of the radius and of the height:

v = π(R + r)2(H + h)− V

= π(R2h + 2RHr + 2rhR + r2H + r2h)

≈ π(R2h + 2RHr).

If both r and h are regarded as outcomes of independent

The approximation in the
third line of this expression
results from disregarding
terms involving squares or
products of the errors r and
h, which is reasonable on the
assumption that these errors
are small.

Gaussian random variables (Pages 163, 167 and 161), the
third line of the expression above for v suggests that v
also is approximately Gaussian.

Since products and squares of
Gaussian random variables
have distributions that are
not Gaussian, the conclusion
that v is approximately
Gaussian is based only on the
third line of the expression
for v, after neglecting the
terms in the second line of
that expression that involve
rh, r2, and r2h.

The approximation v ≈ πR2h + 2πRHr, and the as-
sumption that r and h are outcomes of independent
random variables implies that the variance of v (that is,
the square of its standard deviation, Page 165) is

σ2
V ≈ (πR2)2σ2

H + (2πRH)2σ2
R,

where σ2
R and σ2

H denote the variances of r and h.

If we identify standard deviations with corresponding
standard uncertainties, hence put σR = u(R) = 0.03 m
and σH = u(H) = 0.07 m, and otherwise substitute the
symbols of the quantities above by their values, then we
obtain

u2(V) = σ2
V ≈

(
π × (8.40 m)2)2 × (0.07 m)2+(

2π × (8.40 m)× (32.5 m)
)2 × (0.03 m)2

≈ 2889 m6,

hence u(V) ≈ 54 m3. Next we will see that our in-
tuitive error propagation exercise actually yielded the
same approximate answer as a formula that Johann Carl
Friedrich Gauss (1777–1855) was already using routinely,
for the same purpose, in the first quarter of the 19th
century, in his geodetic and astronomical work.
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Gauss introduced the formula presented below as solu-
tion to the general problem in error propagation:55 C. F. Gauss and G. W. Stew-

art. Theory of the Combination
of Observations Least Subject

to Errors. Classics in Applied
Mathematics. SIAM (Society

for Industrial and Applied
Mathematics), Philadelphia,

1995. ISBN 978-0-89871-347-3.
doi:10.1137/1.9781611971248

Given a function U of the unknown quantities V, V′, V′′,
etc., find the mean error M to be feared in estimating U
when, instead of the true values of V, V′, V′′, etc. one
uses independently observed values having mean errors
m, m′, m′′, etc. — Gauss [1823, I.18]

Gauss’s formula [Gauss, 1823] [Possolo and Iyer, 2017,
VII.A.2], which is used in the Guide to the expression of
uncertainty in measurement (gum) [JCGM 100:2008], pro-
vides a practicable alternative that will produce a partic-
ularly simple approximation to the standard deviation
of the output quantity because it is a product of powers
of the input quantities: V = πR2H1.

If an output quantity y =
f (x1, . . . , xn) is a function

of n input quantities x1, . . . ,
xn that have been measured
with standard uncertainties

u(x1), . . . , u(xn), and the
function f is differentiable,
then u2(y) ≈ (c1u(x1))2 +
· · · + (cnu(xn))2, where cj
denotes the value that the
first partial derivative of f
with respect to xj takes at

(x1, . . . , xn), for j = 1, . . . , n.
In this particular case, Gauss’s formula says that the
squared relative uncertainty of the volume has this par-
ticularly simple form:(

u(V)

V

)2

≈
(

2
u(R)

R

)2

+

(
1

u(H)

H

)2

.

Note that π does not figure in this formula because it
has no uncertainty, and that the “2” and the “1” that
appear as multipliers on the right-hand side are the
exponents of R and H in the formula for the volume.

The approximation is likely to be quite accurate when
the relative uncertainties, u(R)/R and u(H)/H, are
small (less than 10 %). Therefore,

u(V) ≈ (7204 m3)

√
4
(

0.03 m
8.40 m

)2
+

(
0.07 m

32.50 m

)2
= 54 m3,

which is precisely the same that we obtained in our
intuitive error propagation exercise described above.

If the measurement model
expresses the output quantity

as y = κxα1
1 . . . xαn

n , where
α1, . . . , αn are (positive or
negative) constants, and

the standard uncertainties
associated with the inputs

are u(x1), . . . , u(xn) such
that u(x1)/x1, . . . , u(xn)/xn

are small (< 10 %), then
(u(y)/y)2 ≈ (α1u(x1)/x1)2+

. . .+(αnu(xn)/xn)2.

https://doi.org/10.1137/1.9781611971248
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A Monte Carlo method [Possolo and Iyer, 2017,
VII.A.3] for uncertainty propagation introduced by Mor-
gan and Henrion [1992] and described in JCGM 101:2008,
provides yet another eminently practicable alternative,
whose validity does not depend on the relative standard
uncertainties being small. The idea and execution both
are very simple:

(1) Make a large number (K ≈ 106) of drawings from the
probability distributions of R and H, using their mea-
sured values as the means of these distributions, and
their reported standard uncertainties as the standard
deviations.

(2) For each pair of these draws, Rk and Hk, calculate the
volume of the cylinder Vk = πR2

k Hk, for k = 1, . . . , K.

(3) Calculate the average of these volume values, V1, . . . ,
VK , and use it as an estimate of the mean value of V,
and their standard deviation as an estimate of u(V).

Using samples of size K = 106, we reached the conclu-
sion that V = 7204 m3, give or take 54 m3, and the his-
togram of these one million replicates shows that V has
a probability density that is virtually indistinguishable
from the density of a Gaussian distribution with mean
7204 m3 and standard deviation 54 m3. Note, however,
that in general the probability distribution of the output
quantity need not be close to Gaussian, even when the
distributions of the input quantities are Gaussian.
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Histogram of 106 replicates
of the value of V simulated
using the Monte Carlo
method, and probability
density (smooth curve) of the
Gaussian distribution with
the same mean and standard
deviation as those replicates.
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Wheatstone Bridge

Wheatstone bridge compris-
ing the resistor U whose

resistance, RU, one intends
to measure, a resistor F

with fixed resistance, and
three resistors (G, E, and H)
with adjustable resistances.

The Wheatstone bridge is an electrical circuit used to
obtain accurate measurements of resistance by balancing
both sides of a bridge circuit, one of which includes the
component with unknown resistance (resistor U). In its
simplest version, the Wheatstone bridge comprises a dc

power supply, a voltmeter, and four resistors, one of
which has adjustable resistance. The bridge illustrated
here comprises three adjustable resistors, two of which
are arranged in parallel so as to achieve finer control
over their joint resistance, which is half the harmonic
mean of their individual resistances, RE and RH:

REH =
1

R−1
E + R−1

H

.

Resistor G is a General Radio decade resistor that can
take values of resistance up to 1 MΩ in increments of
0.1 Ω, with relative standard uncertainty 0.05 %. Resistor
E is an eico decade resistor that can take values up
to 100 kΩ in increments of 1 Ω, with relative standard
uncertainty 0.5 %, and resistor H is a Heathkit RS-1
Resistance Substitution Box that allows the user to select
one of several values of resistance.

The choice of instrumenta-
tion described above pays

homage to a bygone era of
analog electrical devices. The

General Radio Company
designed and manufactured

test equipment for resistance,
inductance, and capacitance,

from 1915 until 2001, in
West Concord, ma. The Elec-
tronic Instrument Company

(eico) was established in
Brooklyn ny, in 1945, and

remained in business for 54

years. Besides test equip-
ment, eico also produced
Geiger counters, as well as

amateur radio and high-
fidelity audio equipment.

We assume that the measurement experiment was car-
ried out quickly enough, and at sufficiently low voltage
(4 V), so that changes in resistance caused by heating of
the resistors are negligible. We also assume that the error
is negligible in achieving 0 V when balancing the bridge
by adjusting the resistances of G, E, and H, thus reach-
ing the point where RU/RG equals RF/REH. Hence, we
have the following measurement equation for RU:

RU =
RGRF

REH
= RGRF

(
R−1

E + R−1
H

)
The observed resistance values with the associated stan-
dard uncertainties are listed in the table alongside.

R u(R)

E 951 Ω 5 Ω
F 997 Ω 5 Ω
G 909 Ω 0.5 Ω
H 225.2 kΩ 2.3 kΩ

Observed resistance val-
ues that result in zero volt
potential difference across

the Wheatstone bridge.
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Since RU is not a simple product of powers of RE, RF,
RG, and RH, the approximation used above, for the
uncertainty of the volume of the storage tank, cannot
be used here. For this we use Gauss’s formula in its
general form, which relates the uncertainties associated
with uncorrelated input quantities RE, RF, RG, and RH,
with the output quantity RU:

u2(RU) ≈
(

∂RU

∂RE

)2
u2(RE) +

(
∂RU

∂RF

)2
u2(RF)+(

∂RU

∂RG

)2
u2(RG) +

(
∂RU

∂RH

)2
u2(RH).

The partial derivatives of the measurement model are
given in the table alongside. By substituting them into

deriv. value

∂RU/∂RE −RGRF/R2
E

∂RU/∂RF RG(R−1
E + R−1

H )
∂RU/∂RG RF(R−1

E + R−1
H )

∂RU/∂RH −RGRF/R2
H

Partial derivatives of the
output quantity, RU, with
respect to all four input
quantities. Note that the
expression in the second line
is RU/RF, and the one the
third line is RU/RG. These
and other derivatives can
be readily obtained using a
variety of online tools such as
www.wolframalpha.com.

the expression above, we obtain

u2(RU) =
R2

GR2
F

R4
E

u2(RE) +
R2

U
R2

F
u2(RF)+

R2
U

R2
G

u2(RG) +
R2

GR2
F

R4
H

u2(RH).

Finally, the estimate of the measurand is

RU = 909 Ω × 997 Ω ×
(

1
951 Ω

+
1

225.2 kΩ

)
= 957 Ω,

with associated standard uncertainty u(RU) ≈ 7 Ω.

The NIST Uncertainty Machine [Lafarge and Possolo,
2015] can produce these results in a single stroke. Mod-
eling all the resistances as Gaussian random variables
with means equal to the observed values and standard
deviations equal to the standard uncertainties, we obtain
not only RU = 957 Ω and u(RU) = 7 Ω, but also a prob-
ability distribution for RU and, in turn, a 95 % coverage
interval for the true value of RU. We also learn that the

Resistance is a positive
quantity while the Gaussian
uncertainty model entertains
the possibility of negative
values. For this reason, the
lognormal (Page 172) model
is sometimes chosen. The
Gaussian and lognormal
models are just about
identical when the relative
uncertainties are small
(< 5 %).squared uncertainties of the resistors, u2(R), contribute

to the u2(RU) in these proportions: F: 48 %; G: 0.6 %; E:
52 %; and H: 0.004 %.

www.wolframalpha.com
http://uncertainty.nist.gov
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The measurement model considered above does not rec-
ognize the uncertainty associated with balancing the
Wheatstone bridge. A more elaborate model that ac-
counts for this is as follows:6

6 H. Zangl, M. Zine-Zine,
and K. Hoermaier. Utiliza-

tion of software tools for
uncertainty calculation in

measurement science edu-
cation. Journal of Physics:

Conference Series, 588:012054,
2015. doi:10.1088/1742-

6596/588/1/012054

RU =
U0RG(RF + REH)

U0REH + U(RF + REH)
− RG.

Here, U0 is the potential difference across the terminals
of the dc power supply, U0 = 4 V, and U is the poten-
tial across the balanced bridge (U ≈ 0 V). Uncertainty
analysis of this more complete measurement model us-
ing the NIST Uncertainty Machine reveals that balancing
the Wheatstone bridge becomes the dominant source of
uncertainty of RU if the uncertainty associated with U
is larger than 5 mV.

Atomic Weight of Lead

Stefanie Horowitz (1887–1942)
demonstrated experimentally

that the same element can
have different atomic weights

depending on its source
[Hönigschmid et al., 1915].

Her meticulous gravi-
metric analysis showed

that lead from the pitch-
blende in which the Curies

had discovered polonium
and radium had a much

lower atomic weight (206.6)
than common lead (207.2).

The atomic weight of lead in a sample of a material is
the average of the relative atomic masses of all the atoms
of lead in the sample. This average can be different for
different materials because there are four different atoms
of lead, with different relative atomic masses, and their
proportions vary between materials. These atoms are
the isotopes 204Pb, 206Pb, 207Pb, and 208Pb.

Two materials with extreme atomic weights of lead are
specimens of the mineral monazite from metamorphic
rocks in Scotland that are more than 2.5 billion years old:
the atomic weight of lead in one of them is 206.1462 ±
0.0028, and in the other it is 207.9351 ± 0.0005, where
the quoted uncertainties are expanded uncertainties for
95 % coverage [Zhu et al., 2021].

The gum defines expanded uncertainty as a multiple of the
standard uncertainty, and denotes it with the uppercase
letter U, as in U(y) = ku(y), and calls the multiplier, k,
the coverage factor. This coverage factor is selected so that
y ± U(y) includes the true value of y with a specified

https://doi.org/10.1088/1742-6596/588/1/012054
https://doi.org/10.1088/1742-6596/588/1/012054
http://uncertainty.nist.gov
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probability, for example, 95 %. It is customary to write
this probability as a subscript for the uppercase U, as in
y ± U95 %(y).

When Monte Carlo methods
are used for uncertainty
evaluation, expanded
uncertainties are typically
obtained directly rather
than via “expansion” of the
standard uncertainty.

Tong et al. [2019] obtained the following measurement
results for three isotopic ratios in the reference material
hipb-1, a lead wire whose isotopic composition was cer-
tified by the National Research Council Canada [Meija
et al., 2020]:

204Pb/207Pb 206Pb/207Pb 208Pb/207Pb

R 0.063 00 1.3314 2.5193
U95 %(R) 0.000 06 0.0004 0.0008

The row labeled R has the
values of the ratios, and the
line labeled U95 %(R) has
the associated expanded
uncertainties corresponding
to the coverage factor k = 2.

These isotope ratios, R, were determined using multi-
collector inductively coupled plasma mass spectrometry,
and were then used to estimate the atomic weight of
lead in this material and to evaluate the associated un-
certainty, which involves the following steps:

(1) Compute the amount fractions x(204Pb), x(206Pb),
x(207Pb), and x(208Pb) that are consistent with these
ratios and satisfy the constraints of being non-negative
and adding to 1. For example,

x(204Pb) =
R204/207

R204/207 + R206/207 + 1 + R208/207
.

(2) Evaluate the standard uncertainties and correlations
associated with these amount fractions.

(3) Compute the atomic weight of lead in this material,
Ar(Pb), as a weighted average of the relative atomic
masses of these four isotopes, with those amount
fractions as weights:

Ar(Pb) =Ar(
204Pb)x(204Pb) + Ar(

206Pb)x(206Pb)+

Ar(
207Pb)x(207Pb) + Ar(

208Pb)x(208Pb).

(4) Propagate the uncertainties and correlations for the
amount fractions, and the uncertainties associated
with the relative atomic masses of the isotopes, to
obtain u(Ar(Pb)) that is associated with Ar(Pb) in
hipb-1.
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Before taking these steps, we point out that the data re-
ductions we will describe produce some results that dif-
fer slightly from those listed in the certificate of hipb-1,
even if the atomic weight of lead reproduces the value
and uncertainty in the certificate.7 The main reason for

7 J. Meija, B. Methven,
S. Tong, O. Mihai, K. Swider,

P. Grinberg, Z. Mester, and
L. Yang. HIPB-1: High Purity

Lead Certified Reference
Material for Lead Mass

Fraction, Atomic Weight,
Isotopic Composition and
Elemental Impurities. Na-

tional Research Council
Canada, Ottawa, 2020

the differences is that we use slightly different data re-
duction methods. Users of hipb-1 should rely on the
values listed in the certificate.

Step (1) involves nonlinear constrained optimization
carried out using R function solnp defined in package
Rsolnp, which implements an augmented Lagrange mul-
tiplier method,8 using the following R code:

8 Y. Ye. Interior Point Algo-
rithms: Theory and Analysis.

John Wiley & Sons, New
York, NY, 1997. ISBN 978-

0471174202; and A. Ghalanos
and S. Theussl. Rsolnp:
General Non-linear Opti-

mization Using Augmented
Lagrange Multiplier Method,

2015. R package version 1.16

require(Rsolnp)
require(mvtnorm)

negLogLik = function (x, r, sigma) {
Pb204 = x[1]
Pb206 = x[2]
Pb207 = x[3]
Pb208 = x[4]
rho = c(Pb204/Pb207, Pb206/Pb207, Pb208/Pb207)
return(-1*dmvnorm(r, mean=rho, sigma=sigma, log=TRUE))
}

r = c(0.06300, 1.3314, 2.5193)
ur = c(0.00006, 0.0004, 0.0008)/2
sigma.r = diag(ur^2)

mle = solnp(pars=c(0.012822, 0.27096, 0.203511, 0.51271),
fun=negLogLik,
eqfun=function(x,r,sigma){ sum(x) },
eqB=1, LB=rep(0,4), UB=rep(1,4),
r=r, sigma=sigma.r)

xHAT = mle$pars

We employ a Monte Carlo method in step (2), under the
simplifying assumption that the isotope ratios are like
outcomes of independent Gaussian random variables.
Subsequently, we recognize the correlations between the
amount fractions that are attributable to the so-called
closure effect,9 that is, to the fact that the amount fractions

9 F. Chayes. Ratio Correla-
tion: A Manual for Students

of Petrology and Geochem-
istry. University of Chicago
Press, Chicago, Illinois, 1971

have a constant sum. The following block of R code
implements this second step.
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K = 50000
rB = rmvnorm(K, mean=r, sigma=sigma.r)
xB = array(rep(NA,4*K), dim=c(K,4))
for (k in 1:K) {

mleB = solnp(pars=xHAT, fun=negLogLik,
eqfun=function(x,r,sigma){ sum(x) },
eqB=1, LB=rep(0,4), UB=rep(1,4),
control=list(trace=0),
r=rB[k,], sigma=sigma.r)

xB[k,] = mleB$pars
}

The standard uncertainties for the isotopic abundances
of lead in hipb-1 are

204Pb 206Pb 207Pb 208Pb

u(x)/(mol/mol) 0.000 006 0.000 037 0.000 019 0.000 045

and the corresponding correlation matrix is alongside.

204Pb 206Pb 207Pb

206Pb −0.02
207Pb +0.13 +0.18
208Pb −0.17 −0.90 −0.58

Finally, in step (3), we resort to the Monte Carlo method
for a second time to propagate not only the standard
uncertainties and correlations of the amount fractions,
but also the uncertainties associated with the relative
atomic masses of the isotopes, which are as follows:10 10 M. Wang, W. J. Huang,

F. G. Kondev, G. Audi,
and S. Naimi. The AME
2020 atomic mass evalu-
ation (II). Tables, graphs,
and references. Chinese
Physics C, 45(3):030003,
2021. doi:10.1088/1674-
1137/abddaf

Isotope Ar u(Ar)

204Pb 203.973 0435 0.000 0012
206Pb 205.974 4652 0.000 0012
207Pb 206.975 8968 0.000 0012
208Pb 207.976 6520 0.000 0012

Since the 1960s, atomic
masses of nuclides are
expressed relative to 1/12th
of the mass of the carbon-12
atom. This atomic mass unit
is called “dalton” (symbol
Da) in honor of the English
chemist John Dalton (1766–
1844), who introduced the
atomic theory in chemistry.

Ar = c(Pb204=203.9730435, Pb206=205.9744652,
Pb207=206.9758968, Pb208=207.9766520)

Ar.u = c(Pb204=0.0000012, Pb206=0.0000012,
Pb207=0.0000012, Pb208=0.0000012)

K = nrow(xB)
ArB = matrix(rnorm(4*K, mean=Ar, sd=Ar.u), nrow=K, byrow=TRUE)
ArPb = apply(ArB*xB, 1, sum)
c(mean(ArPb), diff(quantile(ArPb, probs=c(0.025,0.975)))/2)

The resulting estimate of Ar(Pb) in the certified refer-
ence material hipb-1 is 207.1791, and the expanded un-
certainty for 95 % coverage associated with this estimate
is U95 %(Ar(Pb)) = 0.0002.

https://doi.org/10.1088/1674-1137/abddaf
https://doi.org/10.1088/1674-1137/abddaf
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Monitoring

The evaluation of measurement uncertainty is key to de-
termining whether a process evolving over time remains
stable, or undergoes changes. In 1924, Walter Shewhart,
then working for the Western Electric Company, de-
veloped a graphical display to monitor the quality of
telephone components being manufactured at the com-
pany’s Hawthorne Works (Cicero, Illinois).1111 W. A. Shewhart. Eco-

nomic Control of Quality
of Manufactured Product.
D. Van Nostrand Com-

pany, Princeton, NJ, 1931

Such graphical displays, which became known as control
charts, serve to monitor production processes in real-
time, and to suggest when process adjustments may be
required to ensure that values of selected properties of
product quality remain within specified control limits.
Shewhart attributed variations in product quality either
to chance causes or to assignable causes.12 The former12 R. E. Barlow and T. Z. Irony.

Foundations of statistical
quality control. In M. Ghosh

and P. K. Pathak, editors,
Current issues in statistical

inference: Essays in honor of
D. Basu, volume 17 of IMS
Lecture Notes – Monograph

Series, pages 99–112. Institute
of Mathematical Statistics,
1992. ISBN 0-940600-24-2.

doi:10.1214/lnms/1215458841

reflect the natural variability of a production process,
while the latter are the consequence of identifiable dis-
turbances of the process.

The first example in this section, concerning the determi-
nation of silver impurities in a copper rod, demonstrates
how control charts can be used to monitor the stability
of repeated measurements, made over time, of an in-
variant measurand, and to detect changes in measured
values that indicate the need for recalibration or some
other adjustment of the measuring instrument. In this
case, miscalibration is an assignable cause that induces
excessive variability of the measured values.

Once assignable causes are identified and removed, the
process is in statistical control. “A process is said to have
reached a state of statistical control when changes in
measures of variability and location from one sampling
period to the next are no greater than statistical theory
would predict.”13

13 L. S. Nelson. Control charts.
In S. Kotz, N. Balakrishnan,

C. B. Read, B. Vidakovic,
and N. L. Johnson, editors,

Encyclopedia of Statistical
Sciences. John Wiley & Sons,

Hoboken, NJ, second edition,
2005. ISBN 978-0-471-15044-2

The second example involves a series of measurements
of temperature made to characterize the thermal stability
of a water bath used for the calibration of thermometers.

https://doi.org/10.1214/lnms/1215458841
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Such stability is ascertained qualitatively by establishing
that a stationary time series model is adequate for the
series of temperature values, and then it is quantified by
the standard uncertainty associated with the estimate of
the mean of a first-order auto-regression with Gaussian
innovations.

The third example concerns the temporal evolution of
the amount fraction of carbon dioxide in the Earth’s
atmosphere during the most recent two thousand years:
not only has this value changed dramatically, especially
since the beginning of the Industrial Revolution (1760s),
but the very model that describes such changes, a Gaus-
sian process regression, has had to change, too, to accom-
modate structural changes to patterns of anthropogenic
emissions that took place toward the end of the 16th cen-
tury and, far more dramatically and enduringly, since
the Industrial Revolution.

Silver Impurities

The National Research Council Canada has been measur-
ing the mass fraction of silver in a copper rod (certified
reference material bcr-075b) since January 2005, using
glow discharge mass spectrometry (gdms),14 to monitor

14 V. Hoffmann, M. Kasik,
P. K. Robinson, and C. Ven-
zago. Glow discharge
mass spectrometry. An-
alytical and Bioanalytical
Chemistry, 381:173–188, 2005.
doi:10.1007/s00216-004-2933-
2

the stability of the measuring instrument. The measure-
ments made until the end of 2021 have been irregularly
spaced in time, with waiting time between consecutive
measurements around 21 days, give or take 9 days.

The Shapiro-Wilk15 test of Gaussian shape suggests that

15 S. S. Shapiro and M. B.
Wilk. An analysis of
variance test for normal-
ity (complete samples).
Biometrika, 52(3,4):591–611,
1965. doi:10.2307/2333709the n = 256 determinations made in the course of the

intervening two decades do not appear to be a sample
from a Gaussian distribution, because the probability
is only 0.001 of observing a sample at least as deviant
from the Gaussian “standard” as this one.

The dubious logic behind this conclusion is that rare
events should not occur, and if they do occur, then
one should question the validity of the assumption that

https://doi.org/10.1007/s00216-004-2933-2
https://doi.org/10.1007/s00216-004-2933-2
https://doi.org/10.2307/2333709
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renders the event rare. In other words, and in this case,
if the sample we have observed is most unusual, then it
is most unlikely that the distribution the sample comes
from is Gaussian.

The above probability of 0.001 is called the p-value of
the test. Since it is quite small on the assumption that
the sample comes from a Gaussian distribution, this pos-
sibility is dismissed while allowing that such a decision
may be erroneous with that same probability. Harold
Jeffreys characterized this behavior as follows [Jeffreys,
1961, Page 385]:

What the use of P implies, therefore, is that a hypothesis
that may be true may be rejected because it has not
predicted observable results that have not occurred.

A robust estimate of the center of the probability dis-
tribution of the mass fraction of silver in this material
is w̃ = 12.40 µg/g, with the associated standard un-
certainty u(w̃) = 0.05 µg/g. This estimate, which was
obtained by applying R function huberM defined in pack-
age robustbase16 to the 256 determinations of the mass

16 M. Maechler, P. Rousseeuw,
C. Croux, V. Todorov,

A. Ruckstuhl, M. Salibian-
Barrera, T. Verbeke, M. Koller,
E. L. T. Conceição, and M. A.

di Palma. robustbase: Basic
Robust Statistics, 2021. URL

http://CRAN.R-project.
org/package=robustbase.
R package version 0.93-9

fraction of silver in the copper rod, determines the posi-
tion of the horizontal thin line in the following charts.

The first chart is a simplified, robust version of the She-
whart control chart for individual measurements17.17 NIST/SEMATECH.

NIST/SEMATECH e-Handbook
of Statistical Methods. Na-

tional Institute of Standards
and Technology, U.S. De-

partment of Commerce,
Gaithersburg, Maryland,

2012. doi:10.18434/M32189.
URL https://www.itl.nist.

gov/div898/handbook/ w
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The circles (outline or solid) represent the measured
values, the height of the light gray band represents w̃ ±
3σ̃, and the height of the dark gray band represents
w̃ ± 2σ̃, where σ̃ = 0.88 µg/g is a robust estimate of the

http://CRAN.R-project.org/package=robustbase
http://CRAN.R-project.org/package=robustbase
https://doi.org/10.18434/M32189
https://www.itl.nist.gov/div898/handbook/
https://www.itl.nist.gov/div898/handbook/
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standard deviation of the observations, computed using
R function Qn18 defined in package robustbase.

18 P. J. Rousseeuw and
C. Croux. Alternatives
to the median absolute
deviation. Journal of the
American Statistical Association,
88:1273–1283, December 1993

The solid circles indicate measured values that trigger at
least one of the Western Electric decision rules indicating
anomalous patterns in control charts:19 in this case,

19 Western Electric. Statistical
Quality Control Handbook.
Western Electric Corporation,
Indianapolis, IN, 2nd edition,
1958

instances of at least eight consecutive points that are all
above, or all below the center line.

The Exponentially Weighted Moving Average (ewma)
chart depicts (solid dark gray circles joined by lines) the
value of a weighted average, of the value at each partic-
ular epoch and of the previous values, with weights that
decay exponentially fast toward zero according to how
far back in time the previous values are.
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More precisely, the ewma values are

w∗(ti) = λw(ti) + (1 − λ)w∗(ti−1),

with ti−1 < ti, for i = 1, . . . , n, and w∗(t0) set equal
to the aforementioned w̃ = 12.40 µg/g. The “memory”
parameter λ has been set equal to 0.2 as recommended
by Hunter [1986], and this value is also the default
choice in the implementation in R function ewma, which
is defined in package qcc.20 20 L. Scrucca. qcc: an R

package for quality control
charting and statistical
process control. R News, 4:11–
17, 2004. URL https://cran.
r-project.org/doc/Rnews/

The ewma chart highlights periods with significant
changes in the mean of the process: one around the
beginning of 2012, when the gdms instrument was re-
calibrated, and another in 2015.

https://cran.r-project.org/doc/Rnews/
https://cran.r-project.org/doc/Rnews/
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Thermal Bath

The readings of the temperature of a thermal bath that
are depicted alongside and listed below, were taken ev-
ery minute in the course of 100 min with a thermocouple
immersed in the bath to ascertain that the temperature
of the bath remained stable for the duration, and to
measure its mean temperature.Time / min
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These readings (which are listed in the R code below)
were made under conditions of repeatability, and may
reasonably be regarded as a sample from a Gaussian
probability distribution (Page 167): the Anderson-Darling
[Anderson and Darling, 1952] test of Gaussian shape
yields a p-value of 0.13.

In these circumstances, the mean temperature during
the period of observation may be estimated by the av-
erage, t = 50.0781 ◦C, with associated standard uncer-
tainty evaluated by the Type A method proposed in the
gum 4.2.3 [JCGM 100:2008], as

u(t) = 0.0024 ◦C/
√

100 = 0.000 24 ◦C

because the sample standard deviation of these 100 read-
ings is 0.0024 ◦C.

ti    °C

t i+
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The coordinates of each
point are consecutive
readings of tempera-

ture of the thermal bath.

However, this evaluation of u(t) assumes that the read-
ings are uncorrelated, an assumption that the plot along-
side reveals to be unrealistic: there is a strong tendency
for consecutive values of temperature to be positively
correlated.

The autocorrelation function (depicted alongside) shows
that such autocorrelations are pervasive in this series of
readings of temperature.Lag
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Autocorrelation function
(acf) for series of tempera-
ture readings: the value of

the acf at lag ℓ, represented
by a vertical line segment, is
the correlation coefficient of

the pairs {ti , ti+ℓ}. Those line
segments that extend beyond

the horizontal, dashed lines,
differ significantly from 0.

Equation (16) in the gum provides a way to take corre-
lations into account, which involves estimating each one
of them. Doing so in this case would give us a rather
mixed bag of estimates, in terms of their reliability, be-
cause some autocorrelations would be estimated based



35

on many pairs of readings (those that correspond to
small lags), while others would be based on only a few
(those others that correspond to large lags).

Instead, we take a different approach, which involves
modeling the time series of readings, and then deriving
from this model an evaluation of u(t) without invok-
ing the approximation in the gum Equation (16). The
model we shall entertain will be selected from the class
of autoregressive-moving-average (arma) models [Box
et al., 2008].

Here we use R function auto.arima, defined in package
forecast,21 and the Bayesian Information Criterion (bic,

21 R.J. Hyndman and Y. Khan-
dakar. Automatic time series
forecasting: the forecast pack-
age for R. Journal of Statistical
Software, 27:1–22, July 2008

Page 100), to select the best model in the subset of that
class that includes arma models with no more than 10
autoregressive or moving average parameters in total.

t = 50 + c(799, 794, 779, 769, 774, 792, 771, 792, 792, 784, 802,
784, 784, 766, 784, 776, 786, 789, 799, 794, 766, 771, 746, 748,
756, 769, 743, 743, 748, 728, 700, 738, 718, 733, 769, 776, 807,
802, 814, 804, 799, 807, 830, 814, 776, 817, 804, 789, 779, 764,
769, 776, 769, 769, 761, 756, 774, 784, 781, 781, 797, 800, 797,
802, 789, 797, 779, 776, 776, 746, 769, 748, 771, 771, 774, 771,
758, 781, 771, 771, 786, 784, 766, 784, 781, 786, 812, 830, 822,
807, 842, 814, 812, 807, 797, 799, 786, 766, 794, 794)/10000

library(forecast)
z = auto.arima(t, stepwise=FALSE, max.order=10, ic="bic",

stationary=FALSE, seasonal=FALSE, approximation=FALSE)
summary(z)

The selected model is a first order, stationary autoregres-
sion

ti+1 = τ + φ(ti − τ) + εi+1

where τ denotes the true mean temperature of the bath,
φ is the autoregressive parameter, and the {εi} are non-
observable outcomes of mutually independent Gaussian
random variables with mean 0 and standard deviation
σ. The maximum likelihood estimates (Page 191) of the
model parameters are τ̂ = 50.0782 ◦C, φ̂ = 0.7631, and
σ̂ = 0.001 551 ◦C.

The model says that each reading ti+1 comprises the
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additive superposition of a fraction of the deviation of
the previous reading from the common mean τ, φ(ti −
τ), and a contribution from white noise, in the form of
the Gaussian “innovation” εi+1.

Since φ̂ > 0, the model describes the tendency for con-
secutive readings to be positively correlated. Because
−1 < φ̂ < +1, the sequence of temperature readings
is stationary, which implies that the bath is in thermal
equilibrium. In particular, this means that all the {ti}
have the same expected value τ and the same standard
deviation σ/

√
1 − φ2, and that the correlation between

ti and ti+ℓ depends only on the value of ℓ (which may
be positive or negative).

The R code above produces an evaluation of u(τ̂) =

0.000 64 ◦C, almost 3 times larger than the naive evalu-
ation of u(t) given above, which neglected the correla-
tions between the readings.

Atmospheric Carbon Dioxide

The World Data Service for Paleoclimatology (Boulder,
Colorado), and the noaa Paleoclimatology Program
at the National Centers for Environmental Information
make available dataset with values of the amount frac-
tion of CO2 in air bubbles preserved in an ice core drilled
at the Law Dome, Antarctica, and corresponding esti-
mates of the age of the CO2.22

22 M. Rubino, D. M.
Etheridge, D. P. Thornton,

R. Howden, C. E. Allison, R. J.
Francey, R. L. Langenfelds,

L. P. Steele, C. M. Trudinger,
D. A. Spencer, M. A. J. Cur-
ran, T. D. van Ommen, and

A. M. Smith. Revised records
of atmospheric trace gases
CO2, CH4, N2O and δ13C-

CO2 over the last 2000 years
from Law Dome, Antarc-
tica. Earth System Science
Data, 11(2):473–492, 2019.

doi:10.5194/essd-11-473-2019

The antarctic ice core
data are available at

ncei.noaa.gov/access/
paleo-search/study/25830

A treed Gaussian process regression was fitted to the data
from the Law Dome, using the following R code.

require(tgp)
URL = paste0("https://www.ncei.noaa.gov/pub/data/",

"paleo/icecore/antarctica/law/law2018co2.txt")
co2 = read.table(url(URL), header=TRUE, sep = "\t")

gp = btgp(X=co2$age_CO2, Z=co2$CO2ppm,
XX=seq(from=min(co2$age_CO2), to=max(co2$age_CO2), by=10),
bprior="b0", tree=c(0.5, 2), BTE=c(5000, 20000, 10) )

plot(gp); gp$trees[[3]]$val[1:2]; tgp.trees(gp)

https://doi.org/10.5194/essd-11-473-2019
ncei.noaa.gov/access/paleo-search/study/25830
ncei.noaa.gov/access/paleo-search/study/25830


37

The function btgp defined in R package tgp [Gramacy,
2007] implements a Bayesian procedure that was used
to fit the model to the data from the Law Dome.23 24

23 R. B. Gramacy and H. K. H.
Lee. Bayesian treed Gaussian
process models with an
application to computer
modeling. Journal of the
American Statistical Association,
103:1119–1130, 2008

24 H. Chipman, E. I. George,
R. B. Gramacy, and R. Mc-
Culloch. Bayesian treed
response surface models.
Wiley Interdisciplinary Reviews:
Data Mining and Knowledge
Discovery, 3(4):298–305, 2013.
doi:10.1002/widm.1094
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The measured values and the fitted model are depicted
in the figure above. The figure also shows a 95 % cover-
age band for the fitted curve, which depicts the means
of three Gaussian processes (Page 93) joined end-to-end.

The model identified two dates, 1588 and 1794, when the
structure of the data changed, which required switch-
ing from one Gaussian process to another. These dates,
which are marked in the figure by thick, short tick marks
pointing up from the horizontal axis, partition the data
into three periods. During the first period, which lasted
for more than one thousand years, the amount fraction
of CO2 remained stable, hovering around 280 µmol/mol.

The staggering increase of the amount fraction of CO2

during the third period, from 1790s onward, is the con-
sequence of the ever increasing anthropogenic emissions
of CO2 that started with the Industrial Revolution.

Theaters remained closed
1592–1593, but when they
reopened the following
year, William Shakespeare
had both a new tragedy,
Titus Andronicus, and a new
comedy, The Taming of the
Shrew, ready for performance.

The dip in the amount fraction of CO2 starting in the
1590s may well be a consequence of the plague epidemic
in England during the late 1580s and early 1590s which
claimed about 13 % of the population of London, and
that was also followed by forest regrowth.25

25 T. van Hoof, F. P. M.
Bunnik, J. G. M. Waucomont,
W. M. Kürschner, and
H. Visscher. Forest re-growth
on medieval farmland after
the black death pandemic —
implications for atmospheric
CO2 levels. Palaeogeography,
Palaeoclimatology, and Palaeoe-
cology, 237:396–409, 2006.
doi:10.1016/j.palaeo.2005.12.013

https://doi.org/10.1002/widm.1094
https://doi.org/10.1016/j.palaeo.2005.12.013
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Counting

Counting may be the simplest form of measuring. The
value we assign to a count is based on comparisons
with two kinds of standards. One standard defines the
entities that are being counted (and distinguishes them
from those other entities that are not to be counted).
The other standard serves to determine the number of
entities that are counted: this standard is the smallest
subset of the positive integers that includes 1 and all
of its successors (2, 3, . . . ) that can be put in one-to-
one correspondence with the entities being counted: the
largest integer in this set is the value of the count.

The following examples illustrate evaluations of the un-
certainty associated with counts, and also very different
ways of counting: leukocytes in a patient’s blood smear
(Page 38); woodlarks in Finland (Page 41); atoms of
radon in air (Page 46); Tyrannosaurus rex before they
became extinct (Page 49); and tramcars circulating in a
city (Page 52).

These examples will also show that, as with other kinds
of measurement, a count qualified with uncertainty can
be used to inform an action or decision: whether some
remediation is warranted to reduce the concentration of
radon in a home, or whether some therapy is required
to address a shortage of white blood cells in a patient’s
blood.

Counting Leukocytes

Leukocytes (white blood cells) are an important part
of the immune system as they help fight infections by
attacking bacteria, viruses, and other germs that invade
the body. Thus, leukocyte count is commonly performed
to detect hidden infections within the body. Fuentes-
Arderiu and Dot-Bach [2009] report results of classifying
and counting leukocytes of different types in a blood



39

smear, known as a differential leukocyte count. The
typical procedure when such counting is done manually
while examining the sample under the microscope, is to
count 100 leukocytes in total, while keeping a tally of
the different types of leukocytes.

leukocytes n uS(n) uB(n)

Neutrophils 63 5 4
Lymphocytes 18 4 6

Monocytes 8 3 4
Eosinophils 4 2 3

Basophils 1 1 3
Myelocytes 1 1 1

Metamyelocytes 5 2 4

Leukocyte count (n), un-
certainty attributable to
sampling variability (uS(n)),
and uncertainty attributable
to differences between
examiners (uB(n)).

In this case, 4 eosinophils were counted among the 100
leukocytes. It is to be expected that, if another blood
smear from the same patient were to be similarly exam-
ined, the number of eosinophils would turn out different
from 4, owing to the vagaries of sampling.
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Probabilities from the Poisson
distribution with mean 4 for
the number of eosinophils
in the differential leukocyte
count listed above.

This source of uncertainty is often modeled using either
the binomial (Page 173) or the Poisson (Page 173) proba-
bility distributions. Since the probability of finding an
eosinophil is small, these two models lead essentially
to the same evaluation of this uncertainty component:
that the proportion of eosinophils should vary by about√

4/100 = 2 % around the measured value of 4, which
is taken as the estimate of the Poisson mean, whence the
count will have standard deviation

√
4.

Counting the eosinophils involves: (i) identifying them,
that is, defining the subset of the 100 leukocytes under
examination that are eosinophils; (ii) actually counting
the eosinophils that were identified; and (iii) qualify-
ing the count with an evaluation of uncertainty, which
should include contributions from sampling variability
and from differences between examiners (which express
identification uncertainty).

The standard for the identification task (i) should be the
holotype (paradigm, reference exemplar) for an eosinophil.

Holotype of a female Agrias
amydon phalcidon butterfly
from Brazil — Wikimedia
Commons (Notafly, 2011).
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For species of plants and animals, the holotype is the
individual specimen used to define a species, but there
are no formal holotypes for different types of leukocytes.
Because eosinophils are not identical copies of one an-
other, accurate identification requires familiarity with
their natural variability and reliance on distinctive traits
that allow distinguishing them from the other types of
leukocytes. For this reason, when different examiners
count the same set of 100 leukocytes, it is likely that they
will arrive at different counts for the different types of
leukocytes.

Fuentes-Arderiu et al. [2007] have evaluated this source
of uncertainty that is attributable to the effect of examin-
ers, concluding that the coefficient of variation for the
proportion of eosinophils was 69 %. Therefore, the un-
certainty component for the count of eosinophils that
arises from differences between examiners amounts to
4 × 69 % = 3 eosinophils.

The standard for the counting task (ii) is the unique
finite set I comprising consecutive, positive integers,
starting with 1, that can be put in one-to-one correspon-
dence with the leukocytes that have been identified as
being eosinophils: the measured value of the number of
eosinophils is the largest integer in I. Task (ii) is count-
ing sensu stricto, after identification, and is susceptible
to counting errors. However, and in this case, since the
numbers of leukocytes of the different types all are fairly
small, and typically they are tallied using mechanical
counters, we will assume that there are no counting
errors above and beyond any identification errors.

Eosinophils (top) are leuko-
cytes that fight parasitic infec-
tions and mediate allergic re-
actions. Basophils (bottom)
control the response to aller-

gens — Wikimedia Commons
(BruceBlaus, 2017). Unless

the blood smear being mea-
sured is stained to empha-

size basophils, they may be
confused with eosinophils.

Regarding task (iii), uncertainty evaluation, we need to
take into account the fact that the total number of leuko-
cytes that are identified and counted is fixed. Therefore,
and for example, if an eosinophil is misclassified as a
basophil, then the undercount for eosinophils results in
an overcount for basophils.

This means that the uncertainty evaluation for the counts
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cannot be performed separately for the different types
of leukocytes, but must be done for all jointly, taking the
effect of the fixed total into account: the so-called closure
constraint.26

26 F. Chayes. On correlation
between variables of constant
sum. Journal of Geophysical Re-
search, 65(12):4185–4193, 1960.
doi:10.1029/JZ065i012p04185

Performing a differential leukocyte count is equivalent to
placing 100 balls (representing the 100 leukocytes) into
7 bins (representing the different types of leukocytes
considered in this case), where the probability of a ball
landing in a particular box is equal to the true proportion
of the corresponding type of leukocyte in the subject’s
blood.

The probability model often used to describe the uncer-
tainty associated with the numbers of balls that actually
end-up in the different bins is the multinomial probabil-
ity distribution (Page 176). This model also takes into
account the fact that no count can be negative. For the
eosinophils, considering both sampling and examiner
sources of uncertainty, their true count is believed to lie
between 0 and 10 with 95 % probability, using methods
reviewed under Counts (Page 177).

Counting Woodlarks

The woodlark: lithograph
by Magnus von Wright
(1805-1868) — Wikimedia
Commons

Each fall, the northern European woodlark (Lullula ar-
borea) migrate south. During the 2009 fall migration
season, woodlarks were counted at the Hanko bird ob-
servatory in southwestern Finland, by the Baltic Sea.
These counts were made from the 245th through the
315th day of that year (September-November) [Lindén
and Mäntyniemi, 2011], where nk denotes the number
of days with k sightings:

k 0 1 2 3 4 5 6 8 9 17 19 21 25 39
nk 39 8 4 4 3 2 2 2 2 1 1 1 1 1

For example, there were 39 days with no sightings of
woodlarks and there was one day where eight woodlarks
were sighted. On average, there were 3.1 sightings each

https://doi.org/10.1029/JZ065i012p04185
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day, and the variance of the number of daily sightings
was 44.

Both the Poisson distribution (Page 173) and the negative
binomial distribution (Page 175) are common candidates
for statistical modeling of counts.

The Poisson model may be appropriate for counts whose
mean and variance are approximately equal, which is
clearly not the case here.

The negative binomial distribution with mean µ and
dispersion parameter ϕ can model counts that are more
dispersed than Poisson counts, and lends itself to the fol-
lowing interpretation: the number of woodlarks sighted
each day is like an outcome of a Poisson random vari-
able, but the means of the daily counts vary and are like
a sample from a gamma distribution with shape ϕ and
scale µ/ϕ.27

27 N. L. Johnson, A. W.
Kemp, and S. Kotz. Uni-

variate Discrete Distribu-
tions. John Wiley & Sons,

Hoboken, NJ, Third edition,
2005. ISBN 0-471-27246-9
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Probabilities from the neg-
ative binomial distribution

with mean µ = 3.1 and dis-
persion ϕ = 0.22, and from

the Poisson distribution with
mean λ = µ, along with

observed relative frequen-
cies of woodlark sightings.

The negative binomial model, calibrated with maxi-
mum likelihood estimates (Page 191) of the parameters,
µ̂ = 3.1(8) and ϕ̂ = 0.22(5), fits these data quite well,
and significantly better than the corresponding Poisson
model.
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The following R code implements maximum likelihood
estimation (of the parameters of the negative binomial
model) using R function mle2 defined in package bbmle.28

28 B. Bolker and R Develop-
ment Core Team. bbmle: Tools
for General Maximum Likeli-
hood Estimation, 2020. URL
https://CRAN.R-project.
org/package=bbmle. R
package version 1.0.23.1

k = c(0, 1, 2, 3, 4, 5, 6, 8, 9, 17, 19, 21, 25, 39)
nk = c(39, 8, 4, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1)
x = rep(k, times=nk)
a = mean(x)
v = var(x)

require(bbmle)
negloglik.negbin = function (mu, phi, x) {

if ((mu < 0) | (phi < 0)) { return(Inf) }
else { return(-1*sum(dnbinom(x, size=phi, mu=mu, log=TRUE))) }
}

NB.mle = mle2(negloglik.negbin, start=list(mu=a, phi=a^2/(v-a)),
skip.hessian=FALSE, method="Nelder-Mead",
data=list(x=x))

summary(NB.mle)

The standard uncertainties associated with these param-
eters are the conventional large-sample approximations
for mles. A more thorough uncertainty evaluation can
be obtained by incorporating the sampling uncertainty.
This can be done using a Monte Carlo method, as illus-
trated for maximum likelihood estimation of the Weibull
distribution parameters (Page 193).

The large excess variance
relative to the Poisson
model, of µ̂/ϕ̂ = 137 %,
quantifies the extent of the
overdispersion, which may
be a consequence of the
woodlarks’ tendency to
flock in small groups during
autumn.

An alternative, Bayesian approach delivers estimates of
the parameters, the evaluation of the associated uncer-
tainties, and can also make predictions for future counts.
The approach can be implemented in several different
ways, and can incorporate varying amounts of prior
knowledge about the flocks of visiting woodlarks.

The Bayesian model we shall consider expresses the
parameters of the negative binomial distribution as func-
tions of two hidden parameters α and β,

µ = α/β and ϕ = α,

and assigns half-Cauchy (Page 170) prior distributions to
these hidden parameters. Below is the implementation
of the Bayesian model in the Stan language.

https://CRAN.R-project.org/package=bbmle
https://CRAN.R-project.org/package=bbmle
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// Negative binomial Stan model for woodlark sightings
nb_stan = "
data {

int<lower=1> n;
int<lower=0> x[n];
real<lower=0> alphaM;
real<lower=0> betaM;

}
parameters {

real<lower=0> alpha;
real<lower=0> beta;

}
transformed parameters {

real mu = alpha/beta;
real phi = alpha;

}
model {

// Half-Cauchy priors for alpha and beta
// with medians alphaM and betaM
alpha ~ cauchy(0, alphaM);
beta ~ cauchy(0, betaM);
// Likelihood
x ~ neg_binomial(alpha, beta);

}
"

The following R code fits the Bayesian model defined
above using facilities available in R package rstan.29

29 B. Carpenter, A. Gel-
man, M. Hoffman, D. Lee,

B. Goodrich, M. Betancourt,
M. Brubaker, J. Guo, P. Li,

and A. Riddell. Stan: A
probabilistic programming

language. Journal of Statistical
Software, 76(1):1–32, 2017.

doi:10.18637/jss.v076.i01; and
Stan Development Team. Stan

User’s Guide. mc-stan.org,
2019. Stan Version 2.28

## Woodlark sighting data
k = c(0, 1, 2, 3, 4, 5, 6, 8, 9, 17, 19, 21, 25, 39)
nk = c(39, 8, 4, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1)
x = rep(k, times=nk)

## Fit Stan model
require(rstan)
nb.stan.fit = stan(model_code=nb_stan,

data=list(n=length(x), x=x,
alphaM=1, betaM=1))

print(nb.stan.fit)
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Prior (wide) and posterior
(narrow) probability den-
sities of the logarithms of

the parameters, µ and ϕ, of
the negative binomial dis-

tribution, for the counts of
daily sightings of northern
European woodlarks at the
Hanko bird observatory in

Finland. Both prior and pos-
terior distributions for µ and

ϕ are markedly skewed to the
right, but the corresponding

distributions of their loga-
rithms, depicted here, are

approximately symmetrical.

The prior probability distributions for α and β both have
median 1, hence express the belief that both µ and ϕ

are equally likely to be smaller than 1 or larger than 1 a
priori.

The posterior distribution of µ has mean 3.1 and stan-
dard deviation 0.8, and the posterior distribution of ϕ

has mean 0.24 and standard deviation 0.06. These esti-
mates are nearly identical to those provided either by
the maximum likelihood or Monte Carlo methods.

https://doi.org/10.18637/jss.v076.i01
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method µ̂ ϕ̂

Maximum Likelihood 3.1(8) 0.22(5)
Monte Carlo 3.1(8) 0.23(6)

Bayes 3.1(8) 0.24(6)

The predictive distribution is the conditional probability
distribution of a future daily count, y, given the daily
counts, x1, . . . , xn, that were observed on n = 71 differ-
ent days. This distribution is meaningful provided the
migration process remains stable during the migration
period.

Even though the formal calculation of the corresponding
predictive distribution is rather forbidding, it is easy to
draw a sample from the predictive distribution, which
suffices for all practical purposes. These are the steps to
generate each value in the sample:

• Draw a pair of values of the parameters, µ∗ and ϕ∗,
from the mcmc sample drawn previously from their
joint posterior distribution;

• Draw a value from a negative binominal distribution
with mean µ∗ and dispersion parameter ϕ∗.

The following R code yields y = [0, 22] as a 95 % pre-
dictive interval, meaning that, with 95 % probability, a
future daily count of woodlarks should not exceed 22.

mu.post = extract(nb.stan.fit)$mu
phi.post = extract(nb.stan.fit)$phi
K = length(mu.post)
y = rnbinom(n=K, size=phi.post, mu=mu.post)
round(quantile(y, probs=c((1-0.95)/2, (1+0.95)/2)), 2)

This prediction, of course, pertains to the conditional
distribution of a future observation, y, given the obser-
vations already made.
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Counting Radon Atoms

Radon is a colorless, odorless, tasteless, radioactive gas
produced naturally by radioactive decay of uranium,
which occurs in many rocks and soils, particularly in
regions where granite is common.

European map of
indoor radon.

J. Elío, G. Cinelli, P. Bossew,
J. L. Gutiérrez-Villanueva,

T. Tollefsen, M. De Cort,
A. Nogarotto, and R. Braga.
The first version of the Pan-

European Indoor Radon Map.
Natural Hazards and Earth Sys-
tem Sciences, 19(11):2451–2464,

2019. doi:10.5194/nhess-
19-2451-2019

The World Health Organization (who) recommends that
homeowners should take remedial action if the activity
of radon exceeds 0.100 Bq/L of the air inside their homes
[Zeeb and Shannoun, 2009].

The half-life of 222Rn is t½ = 3.8215 days [Kondev et al.,
2021], and each of its atoms decays by emission of an α-
particle into an atom of 218Po, which is also radioactive.
If radon is inhaled, the α-particles it emits will damage
the lungs. The who estimates that radon causes up to
250 000 deaths from lung cancer each year, worldwide.

Those 0.100 Bq/L correspond to N = 47 635 atoms of
222Rn per liter of air. We assume that this number con-
centration remains approximately constant over time as
decaying atoms of radon are replaced by fresh radon
that continuously seeps into the home through cracks
and openings in its foundation, from the surrounding
soil and rocks. Of those many atoms, about 1 will decay
every 10 seconds.

Even though all atoms of 222Rn are identical, they decay
at unpredictable and different times, each independently
of the others. The lifetime of a radionuclide that has a
single mode of decay (which is emission of an α-particle
in the case of radon), is like an outcome of a random vari-
able with an exponential distribution (Page 171) whose
median is the half-life. This distribution captures the
fact that a radionuclide does not age. In other words, it
does not “remember” when it was born.

There are N0 = NA/M(222Rn)
≈ 2.71 × 1021 atoms in 1
gram of 222Rn, of which

N1 = N0(1 − exp(−1/τ)) ≈
5.69 × 1015 are expected to

decay within one second.
Here, NA = 6.022 140 76 ×

1023 mol is the Avogadro
constant, M(222Rn) =

222.017 576 g/mol is the
molar mass of 222Rn, and τ =

t½/ ln(2) = 132.3 h is the ex-
pected lifetime of each atom.

Since 1 Bq means one ra-
dioactive decay per second,

it follows that 0.100 Bq/L
corresponds to there being

N = (N0/N1)× (0.100 Bq/L)
= 47 635 atoms per liter.

The lifetimes of the different atoms of radon in the as-
sembly of N atoms mentioned above are mutually inde-
pendent, exponential random variables, hence all enjoy
the lack of memory just mentioned.

https://doi.org/10.5194/nhess-19-2451-2019
https://doi.org/10.5194/nhess-19-2451-2019
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Fix a particular instant in time after which we await
the emission of the first α-particle from this assembly:
it will originate from the atom whose actual lifetime
is the shortest of the lifetimes of the N atoms under
observation.

Now, the shortest of N mutually independent, exponen-
tially distributed lifetimes, all of which have the same
expected lifetime τ, also has an exponential distribution,
but its expected value is τ/N.

If L1, . . . LN denote N
mutually independent,
exponentially distributed
(Page 171) lifetimes and
M denotes the shortest
among them, then Pr(M ⩽
m) = 1 − Pr(M > m)
= Pr(L1 > m, . . . , LN > m)
= Pr(L1 > m) . . . Pr(LN > m)
= 1− exp(−m/(τ/N)) owing
to independence and because
Pr(Lj > m) = exp(−m/τ) for
j = 1, . . . , N.

Since we have assumed that the assembly of N atoms
is constantly replenished, the waiting time between the
first and second emissions will have the same distribu-
tion as the waiting time until the first emission, and the
same for the waiting time between the second and third,
and so on.

Now, exponential waiting times between consecutive
emissions imply that the “arrivals” of consecutive α-
particles issuing from the steady-state assembly of N
radon atoms are a realization of a so-called Poisson pro-
cess with rate N/τ [Grimmett and Welsh, 2014, Theo-
rem 11.3], where τ = t½/ ln(2) is the expected lifetime
of each atom. This, in turn, implies that the number of
α-particles emitted during a specified time interval is
like an outcome of a Poisson (Page 173) random vari-
able whose mean depends on the original number, N,
of atoms, on their lifetimes, τ, and on the duration of
the interval.

In 1910, Ernest Rutherford
and Hans Geiger [Rutherford
et al., 1910], confirmed these
facts empirically by timing
and counting a large number
of scintillations produced by
α-particles emanating from a
sample of polonium as they
hit a zinc sulfide screen.

A note prepared by Harry
Bateman, which was added
to Rutherford and Geiger’s
article, explains why the
counts should be like a
sample from a Poisson
distribution provided the
rate of scintillations remains
constant in the course of
the experiment. This was
achieved by moving the
polonium source “daily closer
to the screen,” thus correcting
for the steadily decreasing
number of radioisotopes in
the source.

In the case of radon in
a home’s basement, the
decays are a homogeneous
Poisson process (Page 173)
because, as pointed out
already, decaying atoms are
constantly being replaced by
new atoms seeping into the
house through cracks and
openings in its foundation.

The radioactive decay of radon atoms (or any other ra-
dionuclide that emits α-particles) is nothing short of a
miracle because it entails an α-particle overcoming a
barrier of much greater energy than the particle pos-
sesses. The fact that an α-particle has the wherewithal
to leave the nucleus of an atom of radon is as surpris-
ing as it would be for a ping-pong ball to pass through
the playing table intact instead of bouncing off it. Such
miraculous (quantum) “tunneling” does not happen
with ping-pong balls, but it can and does happen with
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α-particles. And the manner in which it happens does
not involve brute force, rather “the α-particle slips away
almost unnoticed.”30

30 R. W. Gurney and E. U.
Condon. Wave mechanics and

radioactive disintegration.
Nature, 122:439, September

1928. doi:10.1038/122439a0

The pattern of decay of radon has these noteworthy
characteristics, where λ = 1/τ is the decay rate:

• The expected number N exp(−λt) of atoms of radon
remaining, out of the original N = 47 635 atoms per
liter of air, decays exponentially fast with time t;

• The actual number of atoms that will decay in the
time period from t1 to t2 (t1 > 0 and t2 > t1) is like
an outcome of a Poisson random variable with mean
N(exp(−λt1)− exp(−λt2)).
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measuring volumic activity: A sample of 1 L of air
was collected from the basement of a home, and placed
in a hermetically sealed container opaque to α-particles.
The sample yielded D = 693 α-particles during the
first hour after collection. The corresponding volumic
activity of radon in the basement, defined as the steady-
state number of α-particles emitted per second and per
liter of air, is

AV =
D

1 L

1 − exp
{
− ln(2)

t½ × 86400 s/d

}
1 − exp

{
− ln(2)

t½ × 24 h/d

} ,

where D, the number of atoms of radon that decayed
during the first hour after collecting the sample, is mod-
eled as a Poisson random variable with mean 693, and
the half-life of 222Rn, t½, is modeled as a Gaussian ran-
dom variable with mean 3.8215 days and standard devi-
ation 0.0002 days [Kondev et al., 2021].

Both Gauss’s formula (Equation (10) in the gum) and the
Monte Carlo method implemented in the NIST Uncer-
tainty Machine, produce AV = 0.193 Bq/L with standard
uncertainty u(AV) = 0.007 Bq/L, thus suggesting the
need for remediation.

https://doi.org/10.1038/122439a0
http://uncertainty.nist.gov
http://uncertainty.nist.gov
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Counting Dinosaurs

Replica of SUE, one of the
most complete specimens
of Tyrannosaurus rex ever
found, displayed in the Field
Museum of Natural History
in Chicago. (Chase Elliott
Clark, Wikimedia Commons)

This T. rex, whose gender
is unknown, was named
after Sue Hendrickson, who
discovered it in 1990.

Tyrannosaurus rex, one of the largest predators ever to
live on land, roamed western North America some 70

million years ago, during a period that lasted several
million years and ended abruptly when an asteroid hit
the Yucatán Peninsula, in the Gulf of Mexico [Renne
et al., 2013].

It is estimated that at any particular time during that
period there would have been some 20 000 T. rex roaming
throughout their habitat [Marshall et al., 2021].

How is it possible to estimate the size of the population
of T. rex? The approach described next relies on estimat-
ing two quantities whose product provides the answer:
their population density and the area of their habitat.

The plot alongside depicts the relationship between pop-
ulation density and adult body mass for a large col-
lection of predominantly terrestrial mammals, ranging
from the minute Etruscan shrew to the colossal African
bush elephant. The straight line has equation
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Relationship between
population density and adult
body mass for 5327 mammals
from the PanTHERIA
database [Jones et al., 2009],
excluding marine mammals.

log10(D/km−2) = 3.9 − 0.75 × log10(M/kg),

where M denotes body mass and D denotes population
density. The slope, −0.75 with standard uncertainty
0.02, is consistent with Damuth’s Law [Damuth, 1987,
2007], which applies to populations of many different
land animals, and is one of the key elements in the
production of the virtual count of T. rex.

While the slope applies quite widely, the intercept varies
for different taxonomic units, depending both on where
in the food chain the animals are situated (trophic level)
and on their physiology.

Marshall et al. [2021] argue that the uncertainty sur-
rounding the intercept is very unlikely to exceed the
variability of the intercept when Damuth’s Law is fitted
only to data pertaining to mammals that are herbivores
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or to mammals that are carnivores, and therefore as-
sume that the intercept should be between 1.80 and
4.18 with 95 % confidence. Accordingly, we will model
this state of knowledge about the value of this inter-
cept for T. rex using a Gaussian distribution with mean
(1.80 + 4.18)/2 = 2.99 (which differs from the inter-
cept derived for the mammals listed in the PanTHERIA
database) and standard deviation 0.61.

Additionally, we will use the estimate of the slope de-
rived from the PanTHERIA database, and model its
associated uncertainty using a Gaussian distribution
with mean −0.75 and standard deviation 0.02.

To derive an estimate the population density of T. rex
from Damuth’s law, we need to know their body mass.
But how does one weigh a dinosaur? Similarly to
Damuth’s law, we can take advantage of a universal
scaling relationship between the body mass and the min-
imum circumference of the femur bone for animals that
are alive today.31

31 N. Campione and D. C.
Evans. A universal scal-
ing relationship between
body mass and proximal
limb bone dimensions in

quadrupedal terrestrial
tetrapods. BMC Biology,

10:60, 2012. doi:10.1186/1741-
7007-10-60; and N. E. Cam-

pione and D. C. Evans. The
accuracy and precision of
body mass estimation in

non-avian dinosaurs. Biolog-
ical Reviews, 95(6):1759–1797,
2020. doi:10.1111/brv.12638

For the adult body mass of T. rex, Marshall et al. [2021]
believe that its 2.5th and 97.5th percentiles should have
been 3700 kg and 6900 kg, with typical value 5200 kg,
thus comparable to the mass of the African forest ele-
phant, of about 4500 kg. Since this interval is asymmetric
about the typical value, we will model this uncertainty
using a skew-normal distribution32 fitted to these data

32 A. Azzalini and
A. Capitanio. The Skew-Normal

and Related Families.
Cambridge University

Press, Cambridge, UK, 2014.
ISBN 978-1-107-02927-9.

doi:10.1017/cbo9781139248891

as described by Possolo et al. [2019]. The following R
code yields location ξ = 4608 kg, scale ω = 1023 kg, and
shape α = 1.16 for this distribution.

require(sn)
q = c(0.025, 0.500, 0.975)
x = c(3700, 5200, 6900)
msn = function(p) {

q = qsn(q, xi=p[1], omega=p[2], alpha=p[3])
sum((q - x)^2)
}

optim(c(5000, 1000, 2), msn, lower=c(0,0,-10),
upper=c(Inf, Inf, 10), method='L-BFGS-B')

https://doi.org/10.1186/1741-7007-10-60
https://doi.org/10.1186/1741-7007-10-60
https://doi.org/10.1111/brv.12638
https://doi.org/10.1017/cbo9781139248891
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Finally, Marshall et al. [2021] estimate the area of the ge-
ographic range for T. rex as A = (2.3 ± 0.88)× 106 km2,
with 95 % confidence. We will model this uncertainty
using a lognormal distribution (Page 172) with mean
2.3 × 106 km2 and standard deviation 0.44 × 106 km2.

The following R code employs a Monte Carlo method
for uncertainty propagation, and also produces an es-
timate of the population density of T. rex (median of
0.009 individuals per square kilometer), and a virtual
count of the number of T. rex roaming their range at any
particular time: this count has median 20 000, and a 95 %
coverage interval for it ranges from 1200 to 360 000.

K = 1e7

## Intercept for Damuth's Law
a = rnorm(K, mean=2.99, sd=0.61)

## Slope for Damuth's Law
b = rnorm(K, mean=-0.75, sd=0.021)

## Skew-normal model for adult body mass
library(sn)
M = 1000*rsn(K, xi=4608, omega=1023, alpha=1.16)

## Population density (number of T. rex per km^2)
D = 10^(a + b*log10(M))

## Lognormal model for area of geographical range
mu = 2.3; sigma = 0.88/2
mulog = log(mu/sqrt((sigma/mu)^2 + 1))
sigmalog = sqrt(log((sigma/mu)^2 + 1))
A = rlnorm(K, mean=mulog, sd=sigmalog)*1e6

## Median and coverage interval for number of individuals
signif(c(median(A*D), quantile(A*D, probs=c(0.025, 0.975))), 2)
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Counting Tramcars

For most of the 20th cen-
tury, tramcars were a reli-

able means of public trans-
portation in many cities,
like this tramcar serving

route 28 in Lisbon, Portu-
gal (Photo by Oriol Pas-

cual, 2019, on Unsplash).

“A man travelling in a foreign country has to change
trains at a junction, and goes into the town, of the ex-
istence of which he has only just heard. He has no
idea of its size. The first thing that he sees is a tramcar
numbered 100. What can he infer about the number
of tramcars in the town? It may be assumed for the
purpose that they are numbered consecutively from 1

upwards.” — Harold Jeffreys (1939, §4.8)

Harold Jeffreys credits Max Newman with having sug-
gested this problem to him in the 1930s, when both were
fellows of St. John’s College, Cambridge. Roy Geary,
writing in 1944, reported that “at a recent meeting of the
Dublin University Mathematical Society,” E. Schrödinger
asked a more general question: given the serial numbers
of n cars known to be numbered sequentially from 1 to
an unknown number M, estimate this number.33

33 R. Geary. Comparison
of the concepts of efficiency

and closeness for consis-
tent estimates of a parame-
ter. Biometrika, 33:123–128,
1944. doi:10.2307/2334111

The same question was asked about Germany’s rate of
production of Panther tanks during February 1944, as
part of the intelligence gathering intended to support
the D-day invasion of Normandy.34

34 R. Ruggles and H. Brodie.
An empirical approach

to economic intelligence
in World War II. Journal
of the American Statistical

Association, 42(237):72–91,
1947. doi:10.2307/2280189

The question was answered based on the analysis of
bogie wheel markings from two such tanks — one cap-
tured in Russia in March of 1943, the other captured
in Sicily in February of 1944 — which allowed estimat-
ing the number of molds being used to produce such
wheels. Coupled with expert knowledge about the num-
ber of times such molds could be reused, that analysis
led to an estimate of 270 tanks having been produced
in February of 1944. The actual number, determined
much later based on German production records, had
been 276. Similar successes were achieved for other tank
models produced during other periods of World War II.

In the case of tramcars, the measurand is the number
M of tramcars in the town, which are assumed to be
equally likely to be sighted. The classical estimate of
M, given observations m1, . . . , mn of the serial numbers

https://doi.org/10.2307/2334111
https://doi.org/10.2307/2280189
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of n tramcars, is M̂ = (1 + 1/n)m∗ − 1, where m∗ =

max{m1, . . . , mn}.35 In the version of the problem that 35 G. Clark, A. Gonye,
and S. J. Miller. Lessons
from the German Tank
Problem. arXiv e-prints,
page arXiv:2101.08162

[stat.OT], 2021. URL https:
//arxiv.org/abs/1905.12362

Jeffreys considered, for which n = 1 and m = 100, this
estimate is M̂ = 199.

Next we review Jeffreys’s approach, which offers a
Bayesian explanation for the intuitive “feeling that there
is something special about the value 2m.” The proba-
bility of first sighting tramcar number m is p(m|M) =

{m ⩽ M}/M, where the expression in the numerator,
{m ⩽ M}, stands for an indicator function, being 1
when the condition between the curly brackets is satis-
fied, and 0 otherwise. With m = 100 fixed at the number
of the first tramcar that was sighted, the value of M that
maximizes p(m|M) is M̂ = m because p(m|M) will be
0 unless M ⩾ m, and 1/M decreases with increasing
M. That is, m = 100 is the maximum likelihood esti-
mate (Page 191) of M, which is about half the size of the
classical estimate and just does not seem reasonable.

If x1, . . . , xn are a sample
from a probability distribu-
tion whose density (Page 159)
is pθ , where θ denotes a
(possibly vectorial) parameter,
then the maximum likelihood
estimate of θ based on this
sample is the value θ̂ that
maximizes the product
pθ(x1) . . . pθ(xn) with respect
to θ, while the {xj} remain
fixed at their observed values.

Jeffreys’s Bayesian approach requires that M also be
assigned a probability distribution, whose role is to
capture the visitor’s complete ignorance about the true
value of M. A uniform (or, rectangular, Page 167) distri-
bution is often used for such purpose: for example, the
prior probability is 1/6 that a casino die, when rolled,
will come to rest with M pips facing up, for M = 1, . . . , 6.
This probability distribution expresses the prior belief
that the die is a perfectly balanced cube and that the
roll will be sufficiently chaotic to make the outcome
unpredictable. But Jeffreys assigned a different prior dis-
tribution to M arguing that it is inappropriate to use the
uniform distribution as “a way of saying that the magni-
tude of a parameter is unknown” when the parameter
is positive and can be arbitrarily large.

Jeffreys’s choice was driven by an invariance argument
[Jeffreys, 1961, §3.10] suggesting that the “right” prior
distribution for a non-negative, otherwise unrestricted,
positive parameter M should have a probability den-

https://arxiv.org/abs/1905.12362
https://arxiv.org/abs/1905.12362
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sity proportional to 1/M. Jeffreys took one additional
step and suggested that it should be so also when the
parameter of interest is a positive integer.

The problem is that it is not possible to assign probabili-
ties proportional to 1/M when the range of M comprises
all the positive integers because the required constant of
proportionality would be 1/1 + 1/2 + 1/3 + . . . , which
is infinity.

One can avoid this problem by imposing a large yet
finite upper limit for the value of M, say a value that is
million times larger than the observed m. Combining
this prior distribution with the likelihood function via
Bayes’s rule, one obtains a posterior distribution with
probability density

q(M|m) =
{M ⩾ m}/M2

106m

∑
k=m

1/k2

, for M = 1, 2, . . .

In his original treatment,
consistently with his theory

of invariant prior distribu-
tions, Jeffreys did not intro-

duce a finite, even if very
large, upper bound for M.
Instead, he used an unre-

alistic but practicable math-
ematical device called an
improper prior distribution,

which, in this case, involves
defining a prior probability

mass function (Page 160)
p such that p(M) = c/M

for M = 1, 2, . . . , and
leaving the “normalizing”

constant c unspecified.
The device works because,

once this prior mass function
is used in Bayes’s rule, the
constant c appears in both

numerator and denominator,
hence cancels, and the poste-

rior mass function becomes

q(M|m) =
{M ⩾ m}/M2

∞

∑
k=0

1/(m + k)2
.

The denominator is the value
ζ(2, m) of the Hurwitz zeta

function [Apostol, 2010],
which can be evaluated nu-
merically using R function

zeta defined in package VGAM
[Yee, 2010], thus allowing the
exact calculation of the quan-

tiles of the posterior distri-
bution, which are practically

identical to those obtained
using the approximation

and R code listed alongside.

The following R code, where D denotes the value of the
denominator in the above formula for q(M|m), com-
putes the median of this posterior distribution, and the
endpoints of a 95 % credible interval:

m = 100
D = sum(1/seq(from=m, to=1e6*m)^2)
x = seq(from=m, to=1e6*m)
qM = (1/x^2)/D

x[which.min(abs(cumsum(qM)-0.5))]
x[which.min(abs(cumsum(qM)-0.025))]
x[which.min(abs(cumsum(qM)-0.975))]

The posterior median of M is 199, thus justifying the
intuitive inclination toward the answer to Jeffreys’s prob-
lem being M = 2m. More strikingly, the 95 % credible
interval extends from 102 to 3979 and does not even
include the observed value of the measurand!

The more general problem, where the serial numbers
m1, . . . , mn of n tramcars have been observed, can be
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solved noting that the likelihood function is

p(m1, . . . , mn|M) = {m1 ⩽ M} × · · · × {mn ⩽ M}/Mn

= {m∗ ⩽ M}/Mn,

where m∗ = max{m1, . . . , mn}. The posterior density
now becomes

q(M|m1, . . . , mn) =
{M ⩾ m∗}/Mn+1

106m

∑
k=m∗

1/kn+1

, for M = 1, 2, . . .

Since only the largest of the n serial numbers plays a
role in q(M|m1, . . . , mn), one might think that the pos-
terior median of M given the observations should be
largely unaffected if the largest serial number remains
the same. The following illustration proves this conjec-
ture wrong, involving the observation of n = 4 serial
numbers, {100, 71, 23, 89}, whose maximum is the same
as before: m∗ = 100.

m = c(100, 71, 23, 89)
mSTAR = max(m)
D = sum(1/seq(from=mSTAR, to=1e6*mSTAR)^(4+1))
x = seq(from=mSTAR, to=1e6*mSTAR)
qM = (1/x^(4+1))/D

x[which.min(abs(cumsum(qM)-0.5))]
x[which.min(abs(cumsum(qM)-0.025))]
x[which.min(abs(cumsum(qM)-0.975))]

The posterior median of M is only 118, and a 95 % cred-
ible interval for M ranges from 100 to 250. The reason
why the posterior median is now so much smaller than
when a single serial number had been sighted, even
though the largest serial number is the same in both
cases, is that the maximum of a large sample drawn
from a uniform distribution is more likely to lie within
a specified distance of the upper end-point of the in-
terval where the distribution is concentrated, than the
maximum of a small sample.
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Surveying

In 2019, non-irrigated pastureland in Kansas was valued
at around $4620 per hectare (1 ha = 10 000 m2). A plot,
shaped like an irregular heptagon on an essentially flat
plain, is for sale with asking price $206 000. The seller
offered to provide coordinates of the vertices in tripli-
cate, determined using a portable, consumer-grade gps

receiver.

easting / m northing / m

a 826 821 848 615 625 619
b 673 698 699 752 782 763
c 440 419 434 781 795 802
d 82 98 107 415 411 380
e 131 121 115 149 105 117
f 471 495 480 −9 42 14
g 796 807 777 217 258 225

Triplicate determinations of
the coordinates of the ver-
tices of a heptagonal plot
of pastureland in Kansas,

usa. One of these determina-
tions yielded 826 m easting
and 615 m northing for ver-

tex A, following the same
pattern for the other vertices.
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Plot of pastureland in Kansas,
usa. The black dots mark the

triplicates of the vertices as
determined by a gps receiver.

The potential buyer insisted that the triplicates should
be obtained in three separate surveys. In each survey,
the vertices were visited in random order, and the gps

receiver was turned off after taking a reading at a vertex,
and then turned on again upon arrival at the next vertex,
so that it would reacquire satellites and determine the
location afresh.

These are the questions the potential buyer wishes a
surveyor will answer: (i) How to estimate the plot’s
area? (ii) How to evaluate the uncertainty surrounding
this estimate? (iii) How may have the seller come up
with that asking price? The reason for this last question
is that some understanding of the origin of the asking
price may be a valuable element when the potential
buyer will make a decision about how much to offer.

To estimate the plot’s area one may use the Surveyor’s
Formula.36 However, before using it, one needs to decide36 B. Braden. The surveyor’s

area formula. The College
Mathematics Journal, 17(4):326–
337, 1986. doi:10.2307/2686282

how to combine the triplicate determinations of the
location of each vertex. One way consists of averaging

https://doi.org/10.2307/2686282
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them. For example, the average easting for vertex A is

e(A)/m = (826 + 821 + 848)/3 = 831.7.

Let (e(A), n(A)), (e(B), n(B)), . . . , (e(G), n(G)) denote
the averages of the Cartesian coordinates (easting and
northing) of the triplicates at each vertex of the polygon
in counterclockwise order (A, B, . . . , G). These are the
coordinates of the large (gray) dots in the plot alongside.
The area of the shaded polygon is S = 41.3 ha, and it
was computed as follows:

S =
1
2

( ∣∣∣ e(A) e(B)
n(A) n(B)

∣∣∣+ ∣∣∣ e(B) e(C)
n(B) n(C)

∣∣∣+ · · ·+

+
∣∣∣ e(F) e(G)

n(F) n(G)

∣∣∣+ ∣∣∣ e(G) e(A)
n(G) n(A)

∣∣∣ ),

where
∣∣ a b

c d

∣∣ = ad − bc.
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Four of the 37 = 2187
heptagons that can be
constructed using the
replicate determinations of
the vertices.

The question may well be asked of why we used the av-
erages of the triplicates, instead of some other summary.
The average will be optimal when the measurement er-
rors affecting the easting and northing coordinates are
independent and Gaussian, and the goal is to minimize
the mean squared error (Page 167) of the estimates of
the vertices.
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Probability density (Page 159)
estimates for the area
of the heptagon: based
on the areas of all 2187
alternative heptagons, and
on the parametric bootstrap
(explained on Page 59). The
former (gray, taller) ignores
the correlations between
the areas of the alternative
polygons: the corresponding
standard deviation is
1.17 ha. The latter (black,
shorter) reflects the impact
of measurement errors
affecting the easting and
northing coordinates of each
vertex, and recognizes the
small numbers of replicates
per vertex: it has heavier
tails, and the corresponding
standard deviation is 1.32 ha.

Given the replicated determinations that were made of
the locations of the vertices, it is possible to construct
many different versions of the heptagon by choosing
one of the three replicates made for vertex A, one of the
three made for vertex B, etc. Each of these heptagons
is consistent with the measurements that were made.
Running through all 37 = 2187 possible combinations
of vertex determinations (each of which comprises a
pair of values of easting and northing), and computing
the areas of these alternative heptagons, yields a set of
2187 conceivable values for the area, whose average and
median both equal 41.3 ha.

The area of the largest of these 2187 heptagons is 44.6 ha,
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with corresponding value 44.6 ha×$4620/ha ≈ $206 000,
which explains the likely rationale behind the asking
price. Since the area of the smallest heptagon is 37.6 ha,
the same rationale would support an offer of 37.6 ha ×
$4620/ha ≈ $174 000.

However, an offer based on a value for the area close
to the average area is more likely to be accepted by
the seller than one that is as deviant from the average
on the low side, considering that the seller’s asking
price is based on the maximum area consistent with
the measurements. But the buyer should also take into
account the uncertainty associated with the area.

Considering that each replicate of each vertex appears
in 36 = 729 heptagons built as just described, hence
that there are correlations between the 2187 areas of the
alternative heptagons, the standard deviation of these
areas, 1.17 ha, may not be a reliable evaluation of the
uncertainty associated with the area of the plot of land.

east = array(c(826, 673, 440, 82, 131, 471, 796,
821, 698, 419, 98, 121, 495, 807,
848, 699, 434, 107, 115, 480, 777),
dim=c(7,3))

north = array(c(615, 752, 781, 415, 149, -9, 217,
625, 782, 795, 411, 105, 42, 258,
619, 763, 802, 380, 117, 14, 225),
dim=c(7,3))

z = data.frame(east=c(east), north=c(north),
east.vertex=I(paste0("E", rep(1:7, 3))),
north.vertex=I(paste0("N", rep(1:7, 3))))

To evaluate this uncertainty, the buyer hires a statistician,
whose first task is to quantify the uncertainty associated
with the measurement of each vertex. The statistician
applies the Fligner-Killeen test37 to the replicated deter-

37 M. A. Fligner and T. J.
Killeen. Distribution-

free two-sample tests for
scale. Journal of the Amer-
ican Statistical Association,

71(353):210–213, March
1976. doi:10.2307/2285771

minations of the coordinates of the vertices of plot, and
concludes that there is no reason to doubt that all 14
sets of replicates have the same variance.

The statistician proceeds by pooling the variances of
the 14 groups of replicates, which yields a standard

https://doi.org/10.2307/2285771
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uncertainty of 16 m (on 28 degrees of freedom) for an
individual determination of the easting or northing of a
vertex.

The pooled variance for
easting and northing is
the sum of the sums of
squared deviations from
their averages for the
values of easting and
northing, over all the vertices,
divided by the sum of the
corresponding numbers of
degrees of freedom (3 − 1) per
vertex. The pooled standard
deviation, s, is the square
root of the pooled variance.

fligner.test(x=c(z$east, z$north),
g=c(z$east.vertex, z$north.vertex))

east.s = apply(east, 1, sd)
north.s = apply(north, 1, sd)
s = sqrt(sum((3-1)*east.s^2 + (3-1)*north.s^2) /

((3-1)*length(east.s) + (3-1)*length(north.s)))
s.nu = (3-1)*length(east.s) + (3-1)*length(north.s)
c(s=s, s.nu=s.nu)

The statistician’s next task is to propagate this uncer-
tainty to the uncertainty of the area, which she does
employing the parametric statistical bootstrap [Efron
and Tibshirani, 1993] (Page 179). This involves repeating
the following two steps a large number of times:

• For each vertex i = 1, . . . , 7 in turn, simulate an
easting of the form ei + εi and a northing of the
form ni + νi, where (ei, ni) are the averages of the
three determinations of easting and northing of ver-
tex i = 1, . . . , 7, and εi and νi represent measurement
errors with zero mean and standard deviation 16 m
— these measurement errors are drawings from Stu-
dent’s t distributions with 28 degrees of freedom,
rescaled to have this standard deviation.

• Use the Surveyor’s Formula to compute the area of
the heptagon whose vertices’ locations were simu-
lated in the previous step.

The statistician repeated these steps one million times
and found that the average of the areas of the simu-
lated heptagons was the same as the area determined
originally, and that the standard deviation of the sim-
ulated areas was 1.3 ha. In light of this fact, the statis-
tician suggested to the buyer than an offer between
(41.3 ± 1.3)ha × $4620/ha would be reasonable, that is
between $184 800 and $198 612.
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e = apply(east, 1, mean)
n = apply(north, 1, mean)
m = length(e)

K = 1e6
areaB = numeric(K)
for (k in 1:K)
{

eB = e + s * rt(m, df=s.nu)/sqrt(s.nu/(s.nu-2))
nB = n + s * rt(m, df=s.nu)/sqrt(s.nu/(s.nu-2))
surv = (eB[m]*nB[1] - nB[m]*eB[1])
for (i in 1:(m-1)) {

surv = surv + (eB[i]*nB[i+1] - nB[i]*eB[i+1])}
areaB[k] = (abs(surv)/2) / 10000

}
c(mean(areaB), sd(areaB))

The case just discussed involves a rather simple geo-
metric figure: a heptagon whose boundary is clearly
well defined. In practice, one often has to deal with
more complex situations. Benoit Mandelbrot38 famously

38 B. Mandelbrot. How
long is the coast of Britain?

Statistical self-similarity and
fractional dimension. Science,

156:636–638, May 1967.
doi:10.1126/science.156.3775.636

asked the question “How long is the coast of Britain?”
It so turns out that the answer to this question depends
on the spatial scale at which the question is considered:
or, in other words, on the size of the ruler used to mea-
sure it. Mandelbrot notes that “geographical curves are
so involved in their detail that their lengths are often
infinite or, rather, undefinable.” In fact, the apparent
length of the coastline decreases as the length of the
ruler increases.

The estimated length of the
uk coastline depends on the
size of the ruler used (mod-

ified from Gurung [2017]).

https://doi.org/10.1126/science.156.3775.636
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Weighing

Radwag AK-4/2000 Auto-
matic Mass Comparator
(Radom, Poland).

A laboratory weight C, of nominal mass 200 g, is to
be calibrated using two previously calibrated reference
weights A and B, whose masses are 200.000 22 g and
200.000 61 g, respectively, both within 0.000 14 g of their
true masses with 95 % probability. This suggests that
these may be class E2 weights.39

39 International Organization
of Legal Metrology (OIML).
Weights of classes E1, E1, E2,
F1, F2, M1−2, M2, M2−3, and
M3 — Part 1: Metrological and
technical requirements. Bureau
International de Métrolo-
gie Légale (OIML), Paris,
France, 2004. URL https:
//www.oiml.org/en/files/
pdf_r/r111-1-e04.pdf. In-
ternational Recommendation
OIML R 111-1 Edition 2004

(E)

The calibration involves determining three mass differ-
ences using a mass comparator: the observed difference
between the masses of A and B is DAB = −0.38 mg, and
similarly DAC = −1.59 mg and DBC = −1.22 mg.

Since the weight A has a nominal mass 200 g, we write
mA = 200 g + δA, where δA is the true deviation from
the nominal mass. Using the same notation for the other
weights, we have the following simultaneous observation
equations:40

40 P. E. Pontius and J. M.
Cameron. Realistic Uncertain-
ties and the Mass Measurement
Process — An Illustrated
Review. Number 103 in
NBS Monograph Series.
National Bureau of Standards,
Washington, DC, 1967. URL
http://nvlpubs.nist.gov/
nistpubs/Legacy/MONO/
nbsmonograph103.pdf

DAB = δA − δB + εAB,

DAC = δA − δC + εAC,

DBC = δB − δC + εBC,

where εAB, εAC, and εBC denote the (non-observable)
measurement errors incurred in the mass comparator.
The conventional approach41 involves finding values for

41 R. N. Varner and R. C.
Raybold. National Bureau of
Standards Mass Calibration
Computer Software. NIST
Technical Note 1127. Na-
tional Bureau of Standards,
Washington, DC, July 1980.
URL https://nvlpubs.nist.
gov/nistpubs/Legacy/TN/
nbstechnicalnote1127.pdf

δA, δB, and δC, that minimize the sum of the squared
errors,

(δA−δB−DAB)
2+(δA−δC−DAC)

2+(δB−δC−DBC)
2,

subject to the constraint δA + δB = 0.83 mg, which is one
of several alternative constraints that could be applied.

The solution of this constrained linear least squares
(Page 196) problem produces the estimate δ̂C = 1.82 mg,
with associated uncertainty u(δ̂C) = 0.05 mg. Even
though the maximum permissible error for a 200 mg
class E1 weight is 0.10 mg, it would be inappropriate to
place the weight C into this class, considering that the

https://www.oiml.org/en/files/pdf_r/r111-1-e04.pdf
https://www.oiml.org/en/files/pdf_r/r111-1-e04.pdf
https://www.oiml.org/en/files/pdf_r/r111-1-e04.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/MONO/nbsmonograph103.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/MONO/nbsmonograph103.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/MONO/nbsmonograph103.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1127.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1127.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1127.pdf
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calibrants are class E2 weights.

Alternatively, an estimate of δC can be obtained using
Bayesian statistical methods. For this, we model the
measured mass differences probabilistically, as outcomes
of Gaussian random variables (Page 167):

DAB ∼ GAU(δA − δB, σ),

DAC ∼ GAU(δA − δC, σ),

DBC ∼ GAU(δB − δC, σ).

For example, the observed value of DAB is viewed as a
drawing from a Gaussian distribution with mean δA − δB

and standard deviation σ. We also use probability distri-
butions to express the uncertainty about these deviations
from the nominal masses of weights A and B, thus:

δA ∼ GAU(0.22 mg, 0.07 mg),

δB ∼ GAU(0.61 mg, 0.07 mg).

All we know about weight C is that it has a nominal mass
of 200 g, but we also have good reasons to believe that
its true mass lies within a reasonably narrow interval
centered at 200 g. Providing a generous allowance for
the length of this interval, we adopt the model

δC ∼ GAU(0 mg, 100 mg).

The fact that this prior standard deviation, 100 mg, is
comparable to the maximum permissible error for a
class M3 weight, does not signify that the weight C may
be of this class. Rather, this choice serves only to give
the data ample opportunity to make themselves heard,
unencumbered by overly restrictive prior assumptions.

Since the Bayesian approach (Page 204) requires that
all unknown parameters be modeled probabilistically,
we need to assign a probability distribution also to the
standard deviation, σ, of the measurement errors. Here
we assume that the true value of σ is a priori equally
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likely to be larger or smaller than 1 mg, and assign a
half-Cauchy distribution (Page 170) to σ, with median
1 mg. This choice provides considerable latitude for the
value that σ may truly have.

The Monte Carlo Markov
Chain method (Page 209),
implemented using the
Stan modeling language in
tandem with the R package
rstan as detailed alongside,
was used to draw a large
sample from the posterior
probability distribution of
δC. A robust estimate of the
mean of this sample equals
1.82 mg (which happens
to be identical to the least
squares estimate above),
and a robust estimate of its
standard deviation equals
0.07 mg, which is appreciably
larger than the uncertainty
associated with the least
squares estimate.

The following implementation of the Bayesian model in
the Stan language will be assumed to have been assigned
to model as a character string (including line breaks),
before executing the subsequent R code.

model = "
data {

real DAB;
real DAC;
real DBC;

}
parameters {

real dA;
real dB;
real dC;
real<lower=0> sigma;

}
model {

// Prior distributions
dA ~ normal(0.22, 0.07);
dB ~ normal(0.61, 0.07);
dC ~ normal(0.00, 10);
sigma ~ cauchy(0.0, 1);
// Likelihood
DAB ~ normal(dA - dB, sigma);
DAC ~ normal(dA - dC, sigma);
DBC ~ normal(dB - dC, sigma);

}
"

require(rstan)
require(robustbase)
fit = stan(model_code = model,

data = list(DAB = -0.38, DAC = -1.59, DBC = -1.22),
warmup=75000, iter=250000,
chains=4, cores=4, thin=25,
control= list(adapt_delta=0.999))

dC.posterior = rstan::extract(fit)$dC
c(MEAN=huberM(dC.posterior)$mu, SD=Qn(dC.posterior))
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Probability density (Page 159)
for mC produced by the
Bayesian calibration. Its
mean value (indicated by a
diamond), is the calibrated
value of mC. The horizontal,
dark, thick line segment
indicates an interval of half-
length 0.23 mg that, with 95 %
probability, is believed to
include the true value of mC.

The results of this calibration are mC = 200 001.82 mg,
give or take 0.23 mg, with 95 % probability.
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Optimal design of experiments can use the results
of uncertainty propagation as a guide. Consider a situa-
tion where we wish to determine the individual weights
of three gold coins with the smallest uncertainty pos-
sible. We have access to a good balance but only for a
limited time, enough to perform three weighings.

We assume that the uncertainty associated with each
weighing in this balance is constant and does not depend
on the mass being weighed, u(m) = u, for values of
mass within the range under consideration.

We could devise two experimental designs: (i) weigh
each coin individually or (ii) weigh them in pairs (coin 1
and coin 2 together, then coin 1 and coin 3 together, and
finally coins 2 and 3 together). This is the measurement
model corresponding to the latter design:

m1 = 1
2
(
+ m1+3 + m1+2 − m2+3

)
,

m2 = 1
2
(
− m1+3 + m1+2 + m2+3

)
,

m3 = 1
2
(
+ m1+3 − m1+2 + m2+3

)
.

Applying Gauss’s formula to these expressions yields,
for example,

Since the expressions above
are linear combinations

of the weighings, Gauss’s
formula is exact in this case.

u2(m1) =

(
∂m1

∂m1+3

)2
u2(m1+3) +

(
∂m1

∂m1+2

)2
u2(m1+2)

+

(
∂m1

∂m2+3

)2
u2(m2+3)

= 1
4 u2 + 1

4 u2 + 1
4 u2,

and similarly for u(m2) and u(m3). Thus,

u(m1) = u(m2) = u(m3) = u
√

3/4.

Hence, by weighing the three coins in pairs we can
achieve 13 % lower uncertainty than by weighing them
separately.
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Similarly to how the previous example showed that
clever experimental designs can lead to better measure-
ments, the next example illustrates how, by taking un-
certainty into account, one can build a better resistor.

Consider four resistors, each with nominal resistance of
100 kΩ give or take 1 kΩ, arranged in a circuit as shown
alongside. If the connections have negligible resistance,

A circuit comprising two
pairs of resistors in parallel,
with each pair connected
in series, all with resistance
100 ± 1 kΩ, will also have
100 kΩ resistance but with
uncertainty that is two times
smaller than the uncertainty
of each individual resistor.

then the resistance of such circuit is

R =
1

1
R1+R2

+ 1
R3+R4

= 100 kΩ.

Suppose we model the resistances as independent ran-
dom variables that are distributed uniformly (Page 167)
between 99 kΩ and 101 kΩ, implying that the standard
uncertainty of each resistor in the circuit is (101 kΩ −
99 kΩ)/

√
12 = 0.6 kΩ.

While the resistance, R = 100 kΩ, of the circuit remains
the same as the resistance of the individual resistors,
propagating their uncertainties, for example using the
NIST Uncertainty Machine, shows that the standard un-
certainty associated with R, u(R) = 0.3 kΩ, is half the
standard uncertainty of the individual resistors, and
has a probability distribution that is close to a Gaussian
distribution.

Although many factors can contribute to the uncertainty
of a resistor, including changes in their temperature,
ambient humidity, or even their age, it is possible to
build a circuit of nominally identical resistors that has
the same resistance as the individual resistors, but is
better than any of them, in the sense that it dissipates
power more efficiently than a single resistor of the same
resistance would.

http://uncertainty.nist.gov
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Ranking

Ranking is assigning a place for an object being mea-
sured in an ordered sequence of standards, based on the
value of a property whose values can be ordered from
smallest to largest but not necessarily quantified. For
example, to distinguish harder and softer pencil leads,
pencil manufacturers rank pencils on a grading scale:
from 9B (super black, very soft) to 9H (a gray scratch,
very hard).

The Mohs hardness scale is determined by compar-
ing a mineral specimen against a set of reference stan-
dards by means of a scratch test, whose results place it
in the rank order of increasing hardness. The Mohs ref-

hardness mineral

1 talc
2 gypsum
3 calcite
4 fluorite
5 apatite
6 orthoclase
7 quartz
8 topaz
9 corundum

10 diamond

The minerals defining
the Mohs hardness scale.

erence standards [Klein and Dutrow, 2007] are samples
of various minerals with ordinal values 1 to 10 assigned
to them without implying that the increase in hardness
from gypsum to calcite is the same as the increase in
hardness from apatite to orthoclase. For example, tour-
maline typically scratches quartz and is scratched by
topaz, hence its Mohs hardness is between 7 and 8. The
numbers used to denote ranking order on an ordinal
scale are nothing but labels for which arithmetic oper-
ations are not meaningful. Thus, numbers 1–10 could
very well be replaced by letters A–J to convey the same
message. In practice, when one says that the hardness
of tourmaline is 7.5, all one means is that its hardness
lies between the hardness of quartz and topaz.

Numbers are often used as
labels with only an ordinal

or nominal connotation.
Examples of this use are the

numbers used in the Saffir-
Simpson ordinal scale of

hurricane strength, and the
numbers printed on the shirts

of football players, where
they have a nominal role.

Our ancestors have pondered for ages the ques-
tion of which planet is the closest to Earth. Most

Which planet is closest
to Earth? — Wikimedia
Commons (Clon, 2016)

textbooks state that it is Venus because it makes the
closest approach to Earth compared to any other planet
[Stockman et al., 2019]. The answer, however, depends
on what is meant by “closest” — whether it means clos-
est ever, closest on average, or closest most of the time —,
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because planets do not stand still and therefore distances
between them are in constant flux. On January 1st, 2019, for

example, Venus indeed was
the planet closest to Earth,
but that was no longer the
case two months later when
Mercury moved closer.

In the long term (over the period 2020–2420) Mercury
will be Earth’s closest neighbor 47 % of the time, Venus
37 % of the time, and Mars 16 % of the time, according to
the nasa Jet Propulsion Laboratory horizons system
[Giorgini, 2015]. It may even be surprising that Pluto
will be closer to Earth than Neptune 4 % of the time,
even though its median distance to Earth is almost 1.5
times larger than Neptune’s.

To characterize the positions of the planets relative to
Earth properly, one needs to consider the distributions
of the daily distances, as depicted in the histograms
below.
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Histograms of the daily dis-
tances from Earth (expressed
in astronomical unit, AU,
which is the mean distance
between Sun and Earth,
approximately 150 × 106 km),
for the planets in the Solar
System during the period
2020–2420. Each dot indicates
the average distance from
Earth.

Except for Uranus, the average distance does not rep-
resent a typical distance from Earth. Neither does the
standard deviation of the daily distances capture the
variability of the distances accurately.

Even though the uncertainty of the distance from Earth
to any other planet, computed for a particular day by
the horizons system, is rather small, the variability
of the distances over time is quite large, and it is best
communicated by means of the probability distributions
depicted in these histograms, which may be interpreted
as representing the uncertainty about the distance on a
randomly selected day.
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In the 2022 Winter Olympics, the gold and silver
medals in pairs figure skating were awarded to Wenjing
Sui & Cong Han and Evgenia Tarasova & Vladimir Mo-
rozov, respectively, who earned total scores of 239.88,
and 239.25 points, from a panel of nine judges.

CBC Sports tweet
on Feb 18, 2022.

The medals are awarded considering only the final rank-
ing of the athletes, regardless of whether the differences
in the underlying scores are large or small. In 2022, a
mere 0.63 point gap (that is, 0.26 %) separated Olympic
gold from silver. How significant may this difference be
considering the uncertainty that inevitably is associated
with the assignment of scores?

In the 2018 Winter Olympics,
the difference between the
gold and silver medals in

the ladies single skating was
1.31 points with the 15-year-

old Alina Zagitova from
Russia claiming the gold.

executed element

judge 5RLi4 3Li4 3S

1 4 4 1
2 3 4 0
3 3 5 1
4 3 4 1
5 1 2 1
6 2 3 1
7 3 4 2
8 3 4 1
9 3 4 2

Base value, b 7.00 5.10 4.30
Weight, w 0.70 0.51 0.43

Total, s 9.00 7.07 4.79

Excerpt of the score sheet
for the final free skating
component by Tarasova

and Morozov at the 2022

Olympics. 3S stands for
triple Salchow whereas
3Li4 and 5RLi4 for vari-

ous lifts of certain difficulty.
Figure skating scores are produced by a complex scoring
system that involves intrinsic levels of difficulty for tech-
nical elements, a priori weights, subjective evaluations
made by nine judges independently of one another, and
consideration of whether the elements are performed
early or late during each routine.

The Monte Carlo method — that is, a method based on
simulations of contributions from recognized sources
of uncertainty — can be used to carry out uncertainty
evaluations, and, in this case, it will also shed light on
the significance of the difference in scores that separated
the silver and gold medals.

The previous table shows an excerpt from the score
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sheet for the free skating component in the Olympic
finals: each executed technical element, i, has a partic-
ular, agreed-upon base value, bi, and the quality of its
execution is evaluated by nine judges. After removing
the lowest and highest scores, the average score of the
other seven is computed (trimmed mean) and added to
the base value after multiplication by a predetermined
weight, wi. The combined score for element i is com-
puted as follows, where Ji,j denotes the score that judge
j gave the athlete for the execution of this element:

si = bi +
wi

9 − 2

( 9

∑
j=1

Ji,j− min
j=1,...,9

{Ji,j}− max
j=1,...,9

{Ji,j}
)

.

The final scores are the sums of such element-specific
scores, and certainly include expressions of the subjec-
tive, professional opinions of the nine judges. Given
that judges do not always agree on their scores, it is
reasonable to explore the extent of their disagreement.

One way to assess the reliability of the judging scores is
to simulate samples by randomly drawing scores, with
replacement, from the set of actually observed scores,
and then calculating the total score for each such random
sample. This method is known as the nonparametric
bootstrap [Efron and Tibshirani, 1993]: it is widely used
for uncertainty evaluations in science, medicine, and
engineering. In this case, we generated 100 000 boot-
strap samples, which enabled us to conclude that the
probability of Tarasova & Morozov winning the gold
medal was 23 %, thus quantifying the effect that judging
uncertainty had upon the final result.
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2022 Winter Olympics.
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Comparing

One of the most important applications of uncertainty
evaluation is to compare two quantities whose measured
values are surrounded by uncertainty.

There is no margin for doubt when comparing numbers
about which there is no uncertainty: everyone agrees
that 9 > 7. But it is impossible to decide conclusively
whether the meitnerium-277 and meitnerium-278 iso-
topes have the same or different longevity, considering
that their half-lives are estimated as t½(

277Mt) = 9 s and
t½(

278Mt) = 7 s with standard uncertainties 6 s and 3 s,
respectively [Audi et al., 2017].

We shall illustrate six kinds of comparisons:

(1) a single value of a property of a reference material
measured by a user of the material, against the corre-
sponding certified value;

(2) several replicated determinations of the value of a
property of a reference material against the certified
value of the same property;

(3) a set of replicated observations of the value of a quan-
tity against a specified target value that the quantity
is supposed to have;

(4) uncertainty components expressing variability be-
tween and within the individual units of a reference
material.

(5) a time series of observations against a threshold;

(6) two methods for measuring the same property.
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Comparing Measured Value with Reference Value

When comparing a measured value and a certified value,
while taking their uncertainties into account, the over-
lap of corresponding coverage intervals is not sufficient
reason to conclude that the corresponding true values
are identical [Possolo, 2020, Example 7.2.A]. Note that equality to within

specified uncertainties is not
a transitive relation. Thus, if
objects A and B are found
to have identical masses to
within their uncertainties,
and if the same is true for
objects B and C, it does not
necessarily follow that the
masses of A and C also are
identical to within their
respective uncertainties.

The certified mass fraction of nickel in nist Standard
Reference Material (srm) 59a (ferrosilicon) is 328 mg/kg
with expanded uncertainty 73 mg/kg for 95 % coverage.
The Bayesian interpretation (Page 205) of this fact is that
the corresponding true value is believed to lie between
255 mg/kg and 401 mg/kg with 95 % probability.

Suppose that a user of this material has measured the
mass fraction of nickel and obtained 172 mg/kg with
expanded uncertainty 132 mg/kg, also for 95 % cover-
age. Since the corresponding coverage interval, rang-
ing from 40 mg/kg to 304 mg/kg, overlaps the interval
above, the inference could be drawn that there is no sig-
nificant difference between the true mean of the user’s
measurement and the true value of the measurand.

The difference between the two measured values is
328 mg/kg − 172 mg/kg = 156 mg/kg, and the stan-
dard uncertainty of the difference between these values
is the square root of the sum of the individual, squared
standard uncertainties,√( 1

2×73 mg/kg
)2

+
( 1

2×132 mg/kg
)2

= 75 mg/kg.

This statistical test assumes
that the two values being
compared are outcomes
of independent Gaussian
random variables, and that
their associated standard
uncertainties are based
on vary large numbers of
degrees of freedom.

The p-value (Page 32) is the
probability of observing a
difference as large or larger
(in absolute value) than the
difference that was observed,
by chance alone, owing to
the vagaries of sampling
and measuring the material,
if the corresponding true
values were identical. A small
p-value suggests a significant
difference.

The test statistic for whether this difference is signifi-
cantly different from zero is the standardized difference,
(156 mg/kg)/(75 mg/kg) = 2.08. The p-value of this test
is the probability of a Gaussian random variable with
mean 0 and standard deviation 1 being either smaller
than −2.08 or larger than +2.08. This probability is
3.75 %, which is usually interpreted as suggesting a sig-
nificant difference.
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Comparing Replicated Determinations with Reference
Value

To validate a measurement method, a laboratory often
makes measurements of a reference material, and then
compares the measurement results with the certified
value. The nist srm 1944 is a mixture of marine sedi-
ments collected near urban areas in New York and New
Jersey, intended for use in evaluations of analytical meth-
ods for the determination of polychlorinated biphenyls
(pcbs) and other hydrocarbons in similar matrices.

A quality control test yielded the following replicates
for the mass fraction of pcb 95:

63.9 µg/kg, 48.4 µg/kg, and 46.1 µg/kg.

Their average and standard deviation are 52.8 µg/kg
and 9.7 µg/kg. The Type A evaluation of the standard
uncertainty associated with the average is (9.7 µg/kg)/

√
3

= 5.6 µg/kg, on 2 degrees of freedom.

The certified mass fraction of pcb 95 in srm 1944 is
65.0 µg/kg, with standard uncertainty 4.45 µg/kg. The
comparison criterion is

t =
52.8 − 65.0√
5.62 + 4.452

= −1.7.

The hypothesis of no dif-
ference between measured
and certified values entails
that the criterion t should
be like an outcome from a

Student’s t distribution with
5.3 degrees of freedom. The

larger the absolute value
of t is, the more surpris-

ing it is that it should have
occurred by chance alone,

without there actually being
a difference between mea-
sured and certified values.

The questionable “logic”
behind conventional tests
of hypotheses is that rare

events should not happen.
Here, however, the probabil-

ity is 15 % that an absolute
value of 1.7 or larger might

happen by chance alone
owing to the vagaries of sam-

pling, a far cry from a rare
event, hence the conclusion
that there is insufficient rea-
son to reject the hypothesis

of equality between mea-
sured and certified values. On the hypothesis of no difference between the mean

of the laboratory results and the certified value, this
should be approximately like an outcome of a Student’s
t random variable with effective number of degrees of
freedom (ν) given by the Welch-Satterthwaite formula
[JCGM 100:2008, G.4]:

ν =
(5.62 + 4.452)2

5.64

2
+

4.454

7

= 4.8.

The “7” appearing in the denominator is the “effective”
number of degrees of freedom associated with the un-
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certainty evaluation for the certified value because the
corresponding certificate suggests that 8 measurement
results was used to determine this value.

Since the probability is 15 % that such random variable
will deviate from 0 by more than 1.7 standard deviations,
we conclude that the laboratory measurements do not
differ significantly from the certified value.

This conclusion is contingent on the three replicated
determinations the laboratory made being like a sample
from a Gaussian distribution — an assumption that is
next to impossible to verify reliably with so few obser-
vations. Still, the Shapiro-Wilk test of Gaussian shape,
whose R implementation accommodates samples this
small, yields a comforting p-value (Page 32) of 23 %.

Comparing Replicated Determinations with Target Value

A particular kind of artillery shell is supposed to be
loaded with 333 g of propellant. The values of the mass
of propellant in 20 such shells, expressed in gram, were:

295, 332, 336, 298, 300, 337, 307, 312, 301, 333,

344, 340, 339, 341, 297, 335, 345, 342, 322, 331.

The conventional treatment of this problem42 involves

42 M. G. Natrella. Experimental
Statistics. National Bureau
of Standards, Washington,
D.C., 1963. National Bureau
of Standards Handbook 91

computing the difference between the average of these
20 determinations, 324 g, and the specified target value,
and expressing it relative to the standard uncertainty of
the average:

t =
324 g − 333 g
18.3 g/

√
20

= −2.2.

The denominator has the standard deviation of the de-
terminations, 18.3 g, divided by the square root of the
number of determinations, which is the Type A evalua-
tion of standard uncertainty for the average, according to
the gum (4.2.3). Therefore, the average of these determi-



74

nations is 2.2 standard uncertainties below the specified
target value.

Still according to the conventional treatment, this stan-
dardized difference is to be interpreted as if it were an
outcome of a Student’s t distribution with 19 degrees
of freedom. The probability that such random variable
will take a value that is more than 2.2 units away from
zero, in either direction, is 4 %.

The p-value (Page 32) of a
two-sided Student’s t test can
be calculated using a variety

of software. Since any soft-
ware may suffer from errors,

it is recommended that im-
portant calculations be repli-
cated using implementations

developed independently
of one another in different

software environments.

The reason why we consider deviations from zero in ei-
ther direction is that we are testing a difference between
the mean of the measured values and the specified value,
regardless of whether that mean is larger or smaller than
this specified value.

That probability, 4 %, is called the p-value of the test
(Page 32). It is the probability of observing a difference
at least as large, in absolute value, as the difference that
was observed, owing to the vagaries of sampling alone,
on the assumption that in fact there is no difference. For
this reason, a small p-value is usually interpreted as
suggesting that the observed difference is significant.

The test just described is a procedure for statistical in-
ference: the derivation of a conclusion from a sample,
where the confidence in the conclusion is characterized
probabilistically. The validity of the results of all such
procedures hinges on the adequacy of the model and
on particular assumptions, which are much too often
neglected or taken for granted.

In this case, the assumptions are that the values in the
sample are like outcomes of independent, Gaussian ran-
dom variables, all with the same mean and standard
deviation.

Whereas independence (Page 163) is a powerful property,
it is also next to impossible to verify empirically in most
cases. As for the Gaussian shape, the Anderson-Darling
test yields a p-value of 0.002 (Page 32), indicating that
the data are rather unlikely to be a sample from a Gaus-
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sian distribution.43 43 T. W. Anderson and D. A.
Darling. Asymptotic theory
of certain “goodness-of-fit”
criteria based on stochastic
processes. Annals of Mathemati-
cal Statistics, 23:193–212, 1952.
doi:10.1214/aoms/1177729437

m = c(295, 297, 298, 300, 301, 307, 312, 322, 331, 332,
333, 335, 336, 337, 339, 340, 341, 342, 344, 345)

library(nortest)
ad.test(m)$p.value

This suggests that the Student’s t test may not be appro-
priate for these data, and that conformity with the target
value ought best be evaluated in some other way.

Unlike the Student’s t test, the Wilcoxon’s one-sample
signed rank test44 does not require that the replicate 44 M. Hollander, D. A. Wolfe,

and E. Chicken. Nonparametric
Statistical Methods. John
Wiley & Sons, Hoboken,
NJ, 3rd edition, 2014. ISBN
978-0-470-38737-5

determinations be like a sample from a Gaussian dis-
tribution, only that the distribution be symmetric. The
corresponding p-value is 0.22 (Page 32):

wilcox.test(m, mu=333)$p.value

Therefore, the result of this test contradicts the result of
Student’s t test above and suggests that the observations
are consistent with the target value of 333 g.

In 2014, 29 teams of re-
searchers were asked to
analyze the same data about
red cards in soccer, using
statistical procedures of
their choice. Twenty teams
concluded that there is a
significant correlation be-
tween a player’s skin color
and his being given a red
card, whereas nine teams
concluded that there is none
[Silberzahn and Uhlmann,
2015].

This example shows that conclusions drawn from data
depend on assumptions and models used to describe
particular patterns of variability of the data, and that the
conclusions may change drastically when assumptions
or models change.

Comparing Uncertainty Components for a Reference
Material

Assessing the homogeneity of a candidate reference ma-
terial involves comparing the variability of the values
of a property between units of the material, with their
variability within units.

The nist srm 2684c is a bituminous coal intended pri-
marily for evaluations of analytical methods used for
coals. Each unit of the material is a bottle containing
50 g of the finely powdered material.

https://doi.org/10.1214/aoms/1177729437
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Between two and four aliquots from each of 23 selected
bottles of the material were analyzed by X-ray fluores-
cence spectroscopy for aluminium content.

The conventional assessment of homogeneity is based on
a statistical technique called analysis of variance (anova).45

45 R. A. Fisher. Statisti-
cal Methods for Research

Workers. Hafner Publish-
ing Company, New York,

NY, 14th edition, 1973

Since the measurement results appear to be consistent
with the modeling assumptions that validate anova, it
may be worth pointing out that the results from this
technique suggest that the material is significantly het-
erogeneous: the F-test yields p-value 0.045 (Page 32).

z = data.frame(
bottle=c("B01", "B01", "B02", "B02", "B03", "B03", "B04", "B04",

"B05", "B05", "B06", "B06", "B07", "B07", "B08", "B08",
"B09", "B09", "B10", "B10", "B11", "B11", "B12", "B12",
"B12", "B12", "B13", "B13", "B14", "B14", "B15", "B15",
"B16", "B16", "B17", "B17", "B18", "B18", "B19", "B19",
"B19", "B20", "B20", "B21", "B21", "B22", "B22", "B23",
"B23"),

kcps=c(62.37, 61.18, 60.73, 60.03, 60.91, 60.59, 60.71, 61.15,
60.39, 60.59, 61.30, 61.32, 61.09, 61.14, 60.50, 61.91,
60.47, 60.15, 61.39, 61.07, 61.08, 60.34, 60.51, 60.66,
61.81, 61.09, 61.79, 60.97, 60.96, 61.23, 60.33, 59.90,
59.91, 60.30, 61.30, 60.81, 60.83, 61.00, 60.30, 60.49,
60.55, 62.24, 60.90, 60.61, 60.80, 60.69, 60.91, 60.78,
60.94))

z.aov = aov(kcps~bottle, data=z)
summary(z.aov)
qqnorm(residuals(z.aov))

Next we will employ a model-based approach to eval-
uate potential heterogeneity, which is quantified by
a parameter in the measurement model. The model,
which will reappear in the discussion of Consensus Build-
ing (Page 146), expresses the fluorescence intensity at-
tributable to aluminium as

Iij = µ + β j + εij,

where j = 1, . . . , n (n = 23) denotes the bottle number,
i = 1, . . . , mj denotes the aliquot (subsample) drawn
from bottle j, µ is the overall mean intensity, β j denotes
the effect of bottle j, and εij denotes the effect of aliquot
i from bottle j. Only the {Iij} are observable.
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The bottle effects, {β j}, are modeled as outcomes of
random variables all with mean zero and standard de-
viation τ, and the aliquot effects {εij} are modeled as
outcomes of random variables all with mean zero and
standard deviation σ. These random variables do not
need to be independent: it suffices that the bottle ef-
fects among themselves, and the aliquot effects among
themselves, be exchangeable (Page 164).

Material whose aluminium content is homogeneous
should exhibit no significant differences between bottles
above and beyond the differences between aliquots from
the same bottle, and τ will not differ significantly from
zero: this means that readings of fluorescence intensity
in aliquots from different bottles are not more variable
than readings in aliquots from the same bottle.

Suppose that t = T(I) is an estimate of τ, where I de-
notes the set of 49 observations of fluorescence intensity,
together with a description of which aliquots go with
which bottles. The function T computes an estimate of
τ taking into account the structure of the data. Small
values of t suggest that the material is homogeneous,
and large values suggest that it is not.

Permute the elements of I randomly, similarly to how
one would shuffle a deck of playing cards, so that the
value of a particular aliquot from a particular bottle may
take the place of the value of any other aliquot, from any
other bottle, the result being I∗. If the material really is
homogeneous, then t∗ = T(I∗) should be close to t.

Now, imagine repeating this process a large number
K of times, thus obtaining t∗1 , . . . , t∗K. The dispersion
of these values reflects the variability of estimates of τ

that is to be expected owing to the vagaries of sampling
alone, on the assumption that the material indeed is
homogeneous.

Finally, compare the value of t that corresponds to the
actual data, with the set {t∗k}, and determine how “un-
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usual” t may be among the {t∗k}. If t should be unusu-
ally large, then this may warrant concluding that the
material is heterogeneous.

There are many different ways of estimating τ, and it
does not matter very much which one we will choose.
For this example, we will rely on one of the most widely
used estimators of τ — the restricted maximum likeli-
hood estimator (reml).4646 S. R. Searle, G. Casella,

and C. E. McCulloch. Vari-
ance Components. John Wi-
ley & Sons, Hoboken, NJ,
2006. ISBN 0-470-00959-4

We will compute the value of τ that corresponds to
the actual measurement data (what above we called t),
and we will also compute the values of τ for each of
K = 10 000 permutations of the data (what above we
called {t∗k}). The R code listed below implements this
permutation test.4747 K. J. Berry, J. E. Johnston,

and Jr. P. W. Mielke. A
Primer of Permutation Sta-

tistical Methods. Springer,
Cham, Switzerland, 2019.

ISBN 978-3-030-20932-2.
doi:10.1007/978-3-030-20933-9

Out of 9990 permutations of the data (for 10 permuta-
tions the estimation procedure did not converge), only
458 yielded an estimate of τ that is larger than the esti-
mate obtained for the actual data (τ = 0.31 kcps).

Therefore, the p-value (Page 32) of the permutation test
of homogeneity is 458/9990 = 4.6 %, which is com-
monly regarded as suggesting that the material is not
homogeneous, in a conventional statistical test of the
hypothesis of homogeneity whose probability of erro-
neously rejecting this hypothesis is set at 5 %.
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Probability density (Page 159)
of the estimates of τ obtained

by permutations of the alu-
minium data (tauB in the R

code alongside): the diamond
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shaded area amounts to 4.6 %
of the area under the curve.

library(nlme)
z.lme = lme(kcps~1, random=~1|bottle, data=z, method="REML")
summary(z.lme)
intervals(z.lme)

tau = as.numeric(VarCorr(z.lme)["(Intercept)", "StdDev"])
K = 10000; zB = z; tauB = rep(NA, K);
for (k in 1:K)
{ zB$kcps = sample(z$kcps, size = nrow(z), replace = FALSE)

zB.lme = try(lme(kcps ~ 1, random = ~1|bottle,
data = zB, method = "REML"))

if (class(zB.lme) == "try-error") { next }
else { tauB[k] = as.numeric(

VarCorr(zB.lme)["(Intercept)", "StdDev"]) }
}
tauB = tauB[complete.cases(tauB)]
## p-value
sum(tauB > tau) / length(tauB)

https://doi.org/10.1007/978-3-030-20933-9
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If one is willing to make additional assumptions about
the bottle effects and about the aliquot effects, for exam-
ple that they are like outcomes of independent, Gaus-
sian random variables with standard deviation τ for
the {β j} and σ for the {εij}, then summary(z.lme) and
intervals(z.lme) will produce not only the aforemen-
tioned estimate of τ, but also an approximate 95 % cov-
erage interval for its true value ranging from 0.16 kcps
to 0.60 kcps, which suggests heterogeneity.

The question of homogeneity can also be answered using
other statistical procedures that do not make particular
distributional assumptions, the same as the permutation
test considered above. For example, the Kruskal-Wallis
test,48 carried out as 48 M. Hollander, D. A. Wolfe,

and E. Chicken. Nonparametric
Statistical Methods. John
Wiley & Sons, Hoboken,
NJ, 3rd edition, 2014. ISBN
978-0-470-38737-5

kruskal.test(kcps~bottle, data=z)

yields p-value 0.0522 (Page 32).

The same statistical model, Iij = µ + β j + εij, can also
be fit to the data using a Bayesian (Page 204) procedure,
which involves distributional assumptions about the
{β j} and about the {εij}, and requires the specification
of prior distributions.

The R package brms49 provides a user friendly way to 49 P.-C. Bürkner. Advanced
Bayesian multilevel modeling
with the R package brms. The
R Journal, 10(1):395–411, 2018.
doi:10.32614/RJ-2018-017

implement a wide variety of Bayesian models, including
the model we are concerned with here.

The prior distributions
that function brm uses by
default for this model are
all Student’s t3, with those
pertaining to τ and to σ
truncated at 0.

z.brm = brm(kcps ~ 1 + 1|bottle, data=z,
iter=5e5, warmup=1e5, thin=25, cores=4))

z.brm.mcmc = as.mcmc(z.brm, combine_chains=TRUE)
tau = z.brm.mcmc[, "sd_bottle__Intercept"]
quantile(tau, probs=c(0.025, 0.5, 0.975))

The median of the posterior distribution of τ produced
by this approach is τ = 0.29 kcps, and a 95 % credi-
ble interval for its true value ranges from 0.03 kcps to
0.53 kcps, again suggesting heterogeneity.

https://doi.org/10.32614/RJ-2018-017
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Comparing a Time Series against a Threshold

On May 9, 2013, CO2 levels in the air reached the level
of 400 parts per million (ppm). This is the first time in
human history that this milestone has been passed [. . . ]
To some, crossing the threshold of 400 ppm is a signal
that we are now firmly seated in the ‘Anthropocene,’ a
human epoch where people are having major and lasting
impacts on the planet. — nasa Global Climate Change
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Since the 1950s, the Mauna Loa Observatory in the Big
Island of Hawaii has made measurements of different
gases in the atmosphere, most notably of carbon dioxide.
The graph alongside, known as the “Keeling Curve” in
honor of the late Charles David Keeling (1928–2005),
shows the relentless rise of CO2 levels whose pattern
extends all the way back to the onset of the observa-
tions. The weekly averages generally increase approxi-
mately linearly throughout 2010–2016, while exhibiting
a marked seasonal oscillation.

CO2 levels decrease through-
out the summer when plants

take it during photosynthe-
sis, and increase starting

in the fall when decompos-
ing plant matter releases it

back into the atmosphere.
An autoregressive, integrated moving-average (arima)
model [Box et al., 2008] with linear drift, and with one
auto-regressive term and one moving average term, to-
gether with a first order auto-regression for the first
differences of the seasonal component with frequency of
52 weeks per year, provides an accurate fit to this time
series. The model was chosen based on the Bayesian
Information Criterion (bic, Page 100), and was fitted to
the series of 365 weekly averages using R function Arima

defined in package forecast. 50 5150 R.J. Hyndman and Y. Khan-
dakar. Automatic time series
forecasting: the forecast pack-
age for R. Journal of Statistical

Software, 27:1–22, July 2008

51 R. J. Hyndman and
G. Athanasopoulos. Fore-

casting: Principles and Practice.
OTexts, Melbourne, Australia,

second edition, 2018. ISBN
978-0-9875071-1-2. URL

http://OTexts.com/fpp2/

The corresponding residuals, however, are not consis-
tent with the assumption that the innovations in the
arima are Gaussian. For this reason, when we em-
ploy the parametric bootstrap below, we resample from
these residuals directly, instead of from a Gaussian dis-
tribution with the same standard deviation that these
residuals have.

Owing to the uncertainty surrounding the weekly av-
erages, the fact that they exceeded the threshold of

https://climate.nasa.gov/climate_resources/7/graphic-carbon-dioxide-hits-new-high/
https://gml.noaa.gov/ccgg/trends/weekly.html
https://gml.noaa.gov/ccgg/trends/weekly.html
http://OTexts.com/fpp2/
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400 µmol/mol for the first time during the week of May
9th, 2013, does not imply that the true amount fraction
did, too. The parametric statistical bootstrap [Efron and
Tibshirani, 1993] can be employed to estimate and char-
acterize the uncertainty of the epoch at which the true
amount fraction will have exceeded that threshold.

Comparisons between values of the amount fraction
measured for flask samples in the laboratory, and values
measured in situ at the Mauna Loa Observatory, reveal
that the latter are slightly biased downward, being too
small by about 0.15 µmol/mol on average.52

52 K. W. Thoning, P. P. Tans,
and W. D. Komhyr. Atmo-
spheric carbon dioxide at
Mauna Loa Observatory:
2. Analysis of the NOAA
GMCC data, 1974–1985.
Journal of Geophysical
Research: Atmospheres,
94(D6):8549–8565, 1989.
doi:10.1029/JD094iD06p08549

These data are made available
at gml.noaa.gov/ccgg/about/
co2_measurements.html

by Pieter Tans and Kirk
Thoning (noaa Global
Monitoring Laboratory,
Boulder, Colorado).

The standard deviation of the differences between the
daily observations and the corresponding weekly av-
erages, is around 0.4 µmol/mol. Even though weekly
averages likely will be less variable than daily observa-
tions (by how much depends on the autocorrelation of
the time series of daily observations), in the following
R code we adopt this value as standard uncertainty for
the measurement error, exclusive of the bias.

First, we read the series of measurements directly from
the corresponding noaa repository, select the segment
we wish to model, 2010–2016, and fit the arima model
to them.

require(forecast); require(lubridate)

URL = paste0("https://gml.noaa.gov/webdata/ccgg/trends/",
"co2/co2_weekly_mlo.txt")

co2 = read.table(url(URL), header=FALSE)
# select data from 2009-2017
co2 = co2[(co2[,1]>2009) & (co2[,1]<2017),c(1,2,3,5)]
names(co2) = c("year", "month", "day", "x")

co2$date = make_date(year=co2$year, month=co2$month, day=co2$day)
co2$week = week(co2$date)
co2.ts = ts(co2$x, start=c(2010, 1), frequency=52)

co2.arima = Arima(co2.ts, order=c(1,0,1), seasonal=c(1,1,0),
include.drift=TRUE)

Second, we employ a Monte Carlo procedure to account
for the bias as a fixed effect, take into account the mea-

https://doi.org/10.1029/JD094iD06p08549
gml.noaa.gov/ccgg/about/co2_measurements.html
gml.noaa.gov/ccgg/about/co2_measurements.html
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surement error aforementioned (which we model as
being Gaussian), and we also resample the residuals
from the original seasonal arima model, which we use
as additional perturbations for the original fitted values.

r = residuals(co2.arima)
n = length(r)
K = 1000
cross = rep(NA, K)
for (k in 1:K)
{

y = fitted(co2.arima) + sample(r, size=n, replace=TRUE) +
rnorm(n, mean=+0.15, sd=0.4)

y.arima = try(Arima(y, order=c(1,0,1), seasonal=c(1,1,0),
include.drift=TRUE))

if (class(y.arima) == "try-error") { next }
else { yHAT = fitted(y.arima)

cross[k] = min((1:n)[yHAT > 400]) }
}
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The first excursion of the true value of the amount
fraction of atmospheric CO2 above the 400 µmol/mol
threshold may have occurred in May 2013 with 86 %
probability, or much later, in March 2014, with 14 %
probability. (These probabilities are the areas of the re-
gions shaded light or dark gray under the probability
density (Page 159) estimate depicted alongside.)

Comparing Two Measurement Methods

Laboratory practice often involves comparing a new
or less-established method with an established stan-
dard method. The mass concentration of fat in human
milk may be determined based on the measurement
of glycerol released by enzymatic hydrolysis of triglyc-
erides [Lucas et al., 1987], or by the Gerber method
[Badertscher et al., 2007], which measures the fat di-
rectly with a butyrometer, after separating the fat from
the proteins.

The following 45 pairs of values of the mass concentra-
tion of fat in human milk (expressed in cg/mL) were
determined based on enzymatic hydrolysis of triglyc-
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erides (Trig), and by the Gerber method (G), as reported
by Bland and Altman [1999, Table 3].

γTrig γG γTrig γG γTrig γG γTrig γG

0.96 0.85 1.93 1.88 2.67 2.70 4.20 4.27
1.16 1.00 1.99 2.00 2.61 2.70 4.05 4.30
0.97 1.00 2.01 2.05 3.01 3.00 4.30 4.35
1.01 1.00 2.28 2.17 2.93 3.02 4.74 4.75
1.25 1.20 2.15 2.20 3.18 3.03 4.71 4.79
1.22 1.20 2.29 2.28 3.18 3.11 4.71 4.80

1.46 1.38 2.45 2.43 3.19 3.15 4.74 4.80
1.66 1.65 2.40 2.55 3.12 3.15 5.23 5.42
1.75 1.68 2.79 2.60 3.33 3.40 6.21 6.20
1.72 1.70 2.77 2.65 3.51 3.42
1.67 1.70 2.64 2.67 3.66 3.62
1.67 1.70 2.73 2.70 3.95 3.95

The correlation coefficient for these two sets of measured
values is quite high, 0.998, but it is a misleading indi-
cation of agreement between two measurement meth-
ods because a perfect correlation only indicates that the
value measured by one method is a linear function of the
value measured by the other, not that the corresponding
measured values are in close agreement.

The results of the paired t-test indicate that the mean
difference does not differ significantly from zero.53 How-

53 B. Carstensen. Comparing
Clinical Measurement Meth-
ods. John Wiley & Sons,
Chichester, UK, 2010

ever, this, too, falls short of establishing equivalence (or,
interchangeability) between the two measurement meth-
ods. If the paired samples are of small size, then there
is a fair chance that a statistical test will fail to detect a
difference that is important in practice. And if they are
of a large size, then a statistical test very likely will deem
significant a difference that is irrelevant in practice.

Bland and Altman [1986] is
the most often cited article
in the Lancet, which reveals
the exceptional interest that
measurement issues enjoy
in medicine. In 2014, Nature
recognized this article as the
29th most-cited research of all
time, over all fields.

For these reasons, Bland and Altman [1986] suggest
that the question of agreement between methods be
answered using suitable graphical methods.
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The Bland-Altman plot shows how the difference be-
tween the paired measured values varies with their aver-
ages [Altman and Bland, 1983; Bland and Altman, 1986].
Except for the inclusion of limits of agreement (the aver-
age of the differences between paired measured values
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plus or minus twice the standard deviation of the same
differences), the Bland-Altman plot is similar to Tukey’s
mean-difference plot.5454 J. Chambers, W. Cleve-

land, B. Kleiner, and P. Tukey.
Graphical Methods for Data

Analysis. Wadsworth,
Belmont, CA, 1983

In this case, the difference between the methods tends
to be positive for small values of the measurand, and
negative for large values. This feature can be illustrated
using a variant of the Bland-Altman plot that recognizes
such trend. Function BA.plot from R package MethComp

[Carstensen et al., 2020] was used to draw the Bland-
Altman plots.
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erages of the same values.

Two methods are commonly employed to obtain the
linear equation that “converts” a value produced by
the Gerber method into the value that Trig would be
expected to produce: the so-called Deming regression
[Deming, 1943] and Passing-Bablok regression [Passing
and Bablok, 1983].

These two regression lines can be computed using R
functions defined in package MethComp as follows:

require(MethComp)
Deming(x=Gerber, y=Trig, vr = 1, boot=TRUE)
PBreg(x=Gerber, y=Trig)

Deming regression fits a straight line to points of a scat-
terplot when both coordinates are measured with error
(ordinary linear regression assumes that only the re-
sponse variable is measured with error). It assumes that
both variables are affected by measurement uncertainty
and the ratio of these variances, λ, is assumed to be
known (in this case, λ = 1 is assumed). Thus, we have
the following statistical model:

γG,i ∼ GAU(ξi, σ2),

γTrig,i ∼ GAU(a + bξi, λσ2).
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The likelihood function for this problem is therefore a
function of a, b, {ξi}, and σ2 and the maximum like-
lihood estimates of these parameters can be obtained
analytically.

Passing-Bablok regression estimates the coefficients a
and b in

γTrig = a + bγG

as follows: the slope b is the median of the slopes of the
straight lines between every pair of points (excluding
any resulting slopes that are either 0 or infinity), and
the intercept a is the median of the intercepts {yi − bxi}
determined by each of the points.

In this case, these methods yield the following lines: The slope is consistent with
the fact that only about 98 %
of the fat in human milk
is present as triglycerides
[Lucas et al., 1987], which are
the target of Trig.

Deming: γTrig = 0.078 + 0.972 × γGerber,

Passing-Bablok: γTrig = 0.055 + 0.976 × γGerber.

With 95 % confidence, the true slopes are believed to lie
in these intervals:

Deming Slope: [0.953, 0.988],

Passing-Bablok Slope: [0.956, 0.995].

Since these intervals exclude the equivalence value of
1.000, we can conclude that the two methods do not
provide equivalent results.

To declare that two measurement methods are equiva-
lent, not only should they produce results that are in
agreement with due allowance for their respective un-
certainties, over the relevant range of concentrations,
but the measurement uncertainties that they typically
achieve also should be in fair agreement.
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Interpolating

Interpolation is a method of estimating values that might
have been observed “in-between” values that actually
were observed, where the “in-between” typically refers
either to epochs in time or to locations in space. This is
usually accomplished by determining a trend across the
observations.

First, we consider linear interpolation of the pH of beer
between values of pH for two standards, based on volt-
ages generated in a pH meter observed for the standards
and for the beer sample of interest.

Next we turn to the interpolation of temperature be-
tween fixed points of the International Temperature
Scale of 1990 (its-90), to determine the temperature that
corresponds to a reading produced by a platinum resis-
tance thermometer at the freezing point of cadmium.

Finally, we employ Gaussian process regression to char-
acterize the relationship between the chirping frequency
of crickets and ambient temperature, which involves
interpolation to estimate chirping frequency at tempera-
tures that were not observed during the study.

pH of Beer

Determining the acidity of beer is important to control
the brewing process and ensure consistent results. It
was for this reason that Danish chemist Søren Sørensen,
the Director of the Carlsberg Research Laboratory, intro-
duced the concept of pH in 1909 and established the use
of pH standards (buffers) in biochemistry.

To determine the pH of a beer sample B, readings of
instrumental indications were obtained in quadruplicate,
for the two standards (S1 and S2) and for the sample (B).
The instrument used was a modern handheld pH meter.
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Sample pH u(pH) E/mV u(E) ν

S1 4.01 0.02 203.0 0.6 3
S2 7.00 0.02 48.1 0.5 3
B 139.2 0.7 3

Each value of E in the foregoing table is an average of
m = 4 such readings obtained under conditions of re-
peatability, u(E) is the associated standard uncertainty
evaluated by taking the standard deviation of the obser-
vations and diving them by

√
4, in accordance with the

method described in the gum 4.2.4. Therefore, each of
these standard uncertainties is based on ν = 3 degrees
of freedom.

4 5 6 7

50
10

0
15

0
20

0

pH
In

st
ru

m
en

ta
l i

nd
ic

at
io

n,
  E

/m
V

S1

S2

B

The pH of beer sample B that
corresponds to the instrumen-
tal reading EB is obtained by
linear interpolation under
the assumption that the
instrumental indications vary
linearly with the pH over the
range of the two standards.

Finding the equation of a straight line that goes through
points S1 and S2 amounts to solving these two equations
for a and b:

E1 = a + (b × pH1),

E2 = a + (b × pH2).

Substituting the solutions into EB = a+(b×pHB) yields
the following measurement model equation:

pHB = pH2 +
pH2 − pH1

E2 − E1
(EB − E2),

where pH1 and pH2 denote the pH of the two standards
(S1 and S2), E1 and E2 are the corresponding average
instrumental indications, and EB is the average for the
beer sample.

To evaluate u(pHB), one may use either Gauss’s for-
mula or a Monte Carlo method, similarly to how we
evaluated the uncertainty associated with the volume
of a storage tank. In both cases, the random variables
used to model the reported uncertainties have standard
deviations equal to the standard uncertainties.

When using Gauss’s formula, the associated numbers of
degrees of freedom are taken into account when assign-
ing a Student’s t distribution to the output quantity, pHB,
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as described in Annex G of the gum [JCGM 100:2008].

For the Monte Carlo method, E1, E2, and EB are modeled
as Student’s t3 random variables, rescaled to have stan-
dard deviations u(E1), u(E2), and u(EB), respectively,
and shifted to have means equal to the measured values
of E1, E2, and EB.

model mean sd

pH1 gau 4.01 0.02
pH2 gau 7.00 0.02

E1 t3 203.0 0.6
E2 t3 48.1 0.5
EB t3 139.2 0.7

Since the relative uncertainties associated with the input
quantities in the measurement model for pHB all are
quite small (none larger than 1 %), both approaches
yield the same estimate pHB = 5.24 and the associated
uncertainty u(pHB) = 0.02.

The R code below implements Gauss’s method for this
problem, which involves the computation of the first-
order partial derivatives of pHB with respect to each of
the five input quantities.

## Measurement function
f = function(pH1, pH2, E1, E2, EB) {

pH2 + (pH2 - pH1)*(EB - E2)/(E2 - E1) }

## Estimate of the measurand (GUM 4.1.4)
pHB = f(pH1=4.01, pH2=7.00, E1=203.0, E2=48.1, EB=139.2)

## Symbolic first-order partial derivatives of f
require(Deriv)
df = Deriv(f)

## Sensitivity Coefficients (GUM 5.1.3)
c = df(pH1=4.01, pH2=7.00, E1=203.0, E2=48.1, EB=139.2)

## Standard uncertainties associated with the input quantities
## and numbers of degrees of freedom they are based on
pH.u = c(pH1=0.02, pH2=0.02, E1=0.6, E2=0.5, EB=0.7)
pH.nu = c(pH1=Inf, pH2=Inf, E1=3, E2=3, EB=3)

## Standard uncertainty associated with pHB (GUM 5.1.2)
pHB.u = sqrt(sum((c*pH.u)^2))

## Effective number of degrees of freedom (GUM G.4.1)
require(metRology)
pHB.nu = welch.satterthwaite(ui=pH.u, df=pH.nu, ci=c)

## Coverage interval with (GUM G.6.4)
pHB + qt(c(0.025, 0.975), df=pHB.nu) * pHB.u

One can also easily obtain the uncertainty budget that
quantifies the influence that the uncertainties of the five
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input quantities have on u(pHB), similarly to Table H.1
in the gum. This budget shows that the measurement
of EB makes the single largest contribution to u2(pHB).

## Relative uncertainty contributions (%)
round(100*(c*pH.u)^2/sum((c*pH.u)^2), 1)
## pH1 pH2 E1 E2 EB
## 30.7 15.0 10.3 3.5 40.5

The R code below implements the Monte Carlo method
for the same linear interpolation problem.

x = c(pH1=4.01, pH2=7.00, E1=203.0, E2=48.1, EB=139.2)
x.u = c(pH1=0.02, pH2=0.02, E1=0.6, E2=0.5, EB=0.7)
x.nu = c(pH1=Inf, pH2=Inf, E1=3, E2=3, EB=3)

K = 1e6
pH1 = rnorm(K, mean=x["pH1"], sd=x.u["pH1"])
pH2 = rnorm(K, mean=x["pH2"], sd=x.u["pH2"])
E1 = x["E1"] + x.u["E1"] * rt(K, df=x.nu["E1"]) /

sqrt(x.nu["E1"]/(x.nu["E1"]-2))
E2 = x["E2"] + x.u["E2"] * rt(K, df=x.nu["E2"]) /

sqrt(x.nu["E2"]/(x.nu["E2"]-2))
EB = x["EB"] + x.u["EB"] * rt(K, df=x.nu["EB"]) /

sqrt(x.nu["EB"]/(x.nu["EB"]-2))
pHB = pH2 + (pH2 - pH1)*(EB - E2)/(E2 - E1)

plot(density(pHB))
c(pHB=mean(pHB), "u(pHB)"=sd(pHB),

quantile(pHB, probs=c(0.025, 0.975)))

The probability distribution of pHB has tails that are
much heavier than Gaussian tails. According to the
gum, the distribution of pHB should be approximately
Student’s t17, rescaled to have standard deviation 0.02
and shifted to have mean 5.24, where the effective num-
ber of degrees of freedom, 17, was computed using the
Welch-Satterthwaite formula (gum Equation (G.2b)).

But the tails of pHB are still much heavier than Student’s
t17. Assuming that pHB actually follows Student’s t
distribution as a working approximation, the maximum
likelihood (Page 191) estimate derived from the Monte
Carlo sample of pHB suggests Student’s t5.
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The measuring electrodes of the pH meters are sensitive
to the pH but also to changes in temperature. Thus,
when more precise pH measurements are needed, one
has to take the temperature effect into account. This
can be done by augmenting the equations that relate the
instrumental readings and the pH:

E1(T1) = a + (b × T1 × pH1(T1)),

E2(T2) = a + (b × T2 × pH2(T2)).

As the above equations imply, in addition to the temper-
ature dependence of E, the pH values of the standard
solutions too depend on temperature and typically de-
crease by 0.01 − 0.02 pH units as the temperature of
these standard solutions increases by 5 ◦C.

Freezing Point of Cadmium

The freezing point of a metal is the temperature at which
the liquid metal becomes solid. Because the freezing
points of many metals can be determined reliably, they
are used as natural reference points for temperature.
Indeed, the International Temperature Scale of 1990 as-
signs fixed temperature values to the freezing points of
seven metals. When fixed points are realized, the tem-
perature sensor should be close to, and surrounded by
the interface between the liquid and the solid metal.55

55 B. W. Mangum and G. T.
Furukawa. Guidelines for
Realizing the International

Temperature Scale of 1990 (ITS-
90). National Institute of

Standards and Technology,
Gaithersburg, MD, 1990.

NIST Technical Note 1265

The table below lists measurement results for averages of
four replicate ratios of resistance values from Mangum
et al. [2002, Table 1]. These are ratios between values
of resistance measured using a Hart Model 5681 stan-
dard platinum resistance thermometer (sprt), for three
fixed points of the its-90 and for the freezing point of
cadmium, and the resistance when the same sprt is
immersed in the triple point of water (tpw) cell:

In its most basic form, a
platinum resistance ther-

mometer consists of a long,
thin platinum wire wrapped

around a ceramic or glass
core. The resistance of the

wire, which changes nearly
linearly with temperature,

is used to provide an in-
dication of temperature.

Resistance is measured using
a Wheatstone bridge circuit.

W(Tfp) =
R(Tfp)

R(Ttpw)
.
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The temperatures listed in the following table for the
freezing points of Al, Zn, and Sn are assumed known
with full certainty under the convention of its-90.

fp T/K W(Tfp)/(Ω/Ω) u(W(Tfp))

Al 933.473 3.375 732 56 0.000 000 30
Zn 692.677 2.568 747 52 0.000 000 31
Sn 505.078 1.892 712 29 0.000 000 23
Cd 2.219 019 54 0.000 000 39

The Guide to the Realization of the its-90,56 on platinum 56 Consultative Committee
for Thermometry. Guide to
the Realization of the ITS-90.
Bureau International des
Poids et Mesures (BIPM),
Sèvres, France, 2018. URL
https://www.bipm.org/
en/committees/cc/cct/
guide-its90.html

resistance thermometry, specifies the steps that need to
be taken to interpolate the temperature for the freezing
point of cadmium.

First, we transform the measured resistance ratios of
the three fixed points into their reference values using
the its-90 reference function Wref = fC(T). Then, we
calculate the difference ∆W = W(Tfp)− Wref(Tfp) and
form a cubic interpolant:

∆W = a(W − 1) + b(W − 1)2 + c(W − 1)3.

Since there are three fixed points and the interpolant
involves three coefficients (a, b, and c), the cubic fits
them exactly.

It should be noted that this particular interpolant has
been conceived for use in a very specific application,
and is not a general purpose interpolant, as the figure
alongside shows. In fact, Table 2 in the aforementioned
guide specifies that this cubic interpolant should be
used only for ratios of sprt resistances within the range
corresponding to the fixed points of Sn, Zn, and Al.
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Both Lagrange polynomials
and cubic natural splines are
general purpose interpolants,
not the particular cubic
polynomial used for ∆W. In
this illustration, the three
points being interpolated
have x = −0.25, 0, 1, and
y = 1/(1 + 25x2).

The interpolating cubic can now be used to calculate the
deviation ∆W, hence Wref, for any input value of W be-
tween the freezing points of Sn and Al. The temperature
corresponding to the value of Wref is obtained using the
reference function T = fD(Wref), which is the inverse of
the function fC used earlier.

https://www.bipm.org/en/committees/cc/cct/guide-its90.html
https://www.bipm.org/en/committees/cc/cct/guide-its90.html
https://www.bipm.org/en/committees/cc/cct/guide-its90.html
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The following R code computes the interpolant based
on the average resistance ratios W at the three its-90

fixed points, and then evaluates its mathematical inverse
numerically at the average of the four replicates of W
obtained at the freezing point of cadmium. We shall em-
ploy the parametric bootstrap to evaluate the uncertainty
associated with the interpolated value of TCd.
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Interpolating the temper-
atures to determine the
freezing point tempera-

ture of cadmium, amounts
to following the arrow
to obtain Wref(Cd) =

W(Cd) − ∆Wref(Cd) from
W(Cd) − 1, which is then

converted into tempera-
ture using the its-90 ref-

erence function, fD(Wref).

Temp = c(Al=933.473, Zn=692.677, Sn=505.078)
W = c(Al=3.37573256, Zn=2.56874752, Sn=1.89271229)
uW = c(Al=0.00000030, Zn=0.00000031, Sn=0.00000023)
W.Cd = 2.21901954; uW.Cd = 0.00000039

# ITS-90 Reference functions
fC = function(Temp) {

C = c(+1.64650916, -0.13714390, -0.00649767,
-0.00234444, +0.00511868, +0.00187982,
-0.00204472, -0.00046122, +0.00045724)

2.78157254 + sum(C*((Temp - 754.15)/481)^(1:9)) }

fD = function(Wref) {
D = c(+472.418020, +37.684494, +7.472018,

+2.920828, +0.005184, -0.963864,
-0.188732, +0.191203, +0.049025)

273.15 + 439.932854 + sum(D*((Wref - 2.64)/1.64)^(1:9)) }

## Monte Carlo evaluation of Cd FP uncertainty
sBi = replicate(1e4, {

WB = rnorm(3, mean=W, sd=uW * sqrt((4-1)/rchisq(3, 4-1)))
## Calculate (W - Wref) for Cd (y-axis)
y = WB - c(fC(Temp[1]), fC(Temp[2]), fC(Temp[3]))
## Values for x-axis
x = WB - 1
## Coefficients of the interpolating cubic spline
sB = lm(y ~ 0 + x + I(x^2) + I(x^3))
WCdB = rnorm(1, mean=W.Cd, sd=uW.Cd*sqrt((4-1)/rchisq(1,4-1)))
## Calculate delta W for Cd
dWCd = predict(sB, newdata=data.frame(x=WCdB - 1))
## Use reference function to calculate T90 from Wref
fD(yCd - dWCd)
})

The resulting estimate of the freezing point temperature
of cadmium is 594.2191 K, and a 95 % coverage interval
for its true value ranges from 594.2187 K to 594.2195 K.

The International Temper-
ature Scales its-1927 and
its-1948 assigned a much
lower value of 594.05 K to
the freezing point of cad-

mium whereas Mangum et al.
[2002] provide the modern

estimate of it to be 594.22 K. ## Freezing point of Cd
c(mean(sBi), sd(sBi), quantile(sBi, probs=c(0.025, 0.975)))
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Chirping Crickets

Gaussian process (gp) regression affords a more flexi-
ble way to model relationships between quantities than
polynomial regression, which was used in the previ-
ous subsection to model the relationship between the
resistance of a platinum wire and its temperature.

Neoconocephalus ensiger,
a bush cricket. Photo by
Marlo Perdicas (iNaturalist,
Wikipedia).

Both gp regression and polynomial regression involve
parameters whose values have to be estimated from the
data. But while the values of the coefficients of a poly-
nomial determine a particular polynomial, the values
of the parameters of the gp determine the probability
distribution of a random function.
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Three realizations of a
Gaussian random function
evaluated at 100 equispaced
values of temperature. In
each realization, the 100
values of φ are joined by
straight line segments,
creating the appearance of
the graph of a continuous
function.

A random function of temperature, say, is a collection of
random variables indexed by values of temperature, Xt1 ,
. . . , Xtm , where the {ti} do not have to be equispaced.
A collection of random variables indexed by a quantity
(temperature in this case) for which some metric of
“distance” is meaningful, is called a stochastic process
[Hoel et al., 1972], or simply a process, for short.

As the figure alongside shows, random functions need
not be wiggly and jagged, but can be very smooth. The
smoothness is achieved by introducing correlations be-
tween these random variables. If |ti − tj| is small, then
Xti and Xtj will be strongly correlated, but as |ti − tj|
increases, the correlation between them approaches zero.

The strong, short-range correlations induce nearby val-
ues to be similar, hence induce smoothness, while the
long-distance correlations being close to zero give the
function the freedom to oscillate considerably through-
out the interval of values of temperature where it is
defined. Gramacy [2020, Chapter 5] provides a very
clear, accessible overview of gp regression.

In 1897, American physicist Amos Dolbear, better known
for his inventions of telegraphs and telephones, wrote
to The American Naturalist on the regularity of cricket
chirps:57

57 A. E. Dolbear. The cricket as
a thermometer. The American
Naturalist, 31(371):970–971,
1897. doi:10.2307/2453256

https://doi.org/10.2307/2453256
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At night when great numbers are chirping the regularity
is astonishing, for one may hear all the crickets in a field
chirping synchronously, keeping time as if led by the
wand of a conductor.

The chirping rate seems to be determined entirely by
ambient temperature but the relationship it not quite
as simple as Dolbear put it. We shall use the results of
measurements that Frings and Frings [1957] made in
a laboratory experiment involving eleven male sword-
bearing bush crickets, Neoconocephalus ensiger, whose
chirps they recorded.

t/◦C ν/min−1

8 264
9 285

14 346
17 417
18 438
19 495
20.5 524
21.5 540
23 643
24 693
25 744
26 780

Average number of chirps
per minute from eleven male
sword-bearing bush crickets
for a series of temperatures.

Temperature°C

C
hi

rp
in

g 
fr

eq
ue

nc
y 

(c
hi

rp
s/

m
in

)

10 15 20 25

30
0

40
0

50
0

60
0

70
0

80
0

Gaussian Process regression
fit to bush cricket chirping
frequency data at various

temperatures. The thick black
line represents the mean of

the gp, and the shaded band
represents the associated

uncertainty in the form of
a 95 % coverage interval.

The gp regression model expresses the frequency of
chirps as νt = xt + εt where {xt} is a gp and {εt} are
independent, identically distributed Gaussian random
variables with mean 0 and standard deviation τ. The
gp tracks the smooth trend (thick black curve in the
figure alongside) of chirping frequency as a function of
temperature, while the {εt} “explain” deviations from
such trend, for example at 19 ◦C and at 21.5 ◦C.

The model was fitted to these data using a Bayesian pro-
cedure implemented in R function bgp from package tgp

[Gramacy, 2007], yielding the curve and surrounding
uncertainty depicted alongside:

temp = c(8, 9, 14, 17, 18, 19, 20.5, 21.5, 23, 24, 25, 26)
freq = c(264, 285, 346, 417, 438, 495, 524, 540, 643,693,744,780)
require(tgp)
gp = bgp(X=temp, Z=freq, bprior="b0", corr="exp",

BTE=c(10000, 100000, 25),
XX=seq(from=min(temp), to=max(temp), length=500))

Function bgp carries out these four tasks:

(1) Estimates the parameters of the Gaussian Process
regression model based on the twelve pairs of obser-
vations {(t1, ν1), . . . , (t12, ν12)};

(2) Evaluates the uncertainty associated with these esti-
mates;
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(3) Uses the fitted model to predict values of the fre-
quency ν at all the other values of temperature where
the chirping frequency was not observed (these pre-
dictions are needed to be able to draw points along
the trend sufficiently close to one another to create
the semblance of a continuous curve); and

(4) Evaluates the uncertainty that surrounds the resulting
Gaussian Process regression curve.

The centerpiece of the model is the correlation function,
whose default option in bgp is the powered exponen-
tial such that ρ(s) = exp{−(s/ϕ)α} is the correlation
between Xt and Xs+t for s > 0, whose parameters are
the scale ϕ > 0, and shape 0 < α ⩽ 2.

This means that the correlation between chirping fre-
quencies at different temperatures depends only on the
difference between the temperatures and decays expo-
nentially fast to zero as the difference between values of
temperature increases.

The model includes also a scale parameter σ that, upon
multiplication by ρ(s), yields all the elements of the 12×
12 covariance matrix for the observations of chirping
frequency, and an overall mean µ that sets the typical
level of this frequency.

The Bayesian approach is particularly helpful in this con-
text because it recognizes and propagates the uncertain-
ties associated with the estimates of all these parameters
(Task (2) above) as part and parcel of the model fitting
procedure, not as an add-on or afterthought.
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Calibrating

When a truck stops at a highway scale to be weighed,
it applies a force to one or more load cells (Page 103)
under the scale, which generates a potential difference
between the electrical terminals that the load cells are
connected to. Calibration is the procedure that estab-
lishes a relation between values of the force applied to
a load cell and corresponding values of potential differ-
ence, thereby making possible to “translate” indications
of electric potential (voltage) into values of force. These
values of force, in turn, are translated into values of mass
using the local value of Earth’s gravitational acceleration
and Newton’s second law of motion.

Calibrating a measuring instrument consists of determin-
ing a relationship between values of the measurand,
and the typical, corresponding instrumental responses
(or, indications), and characterizing the uncertainty sur-
rounding such relationship. This is usually done by
exposing the instrument to several different, known (up
to measurement uncertainty) values of the measurand
in measurement standards, making suitably replicated
observations of the instrumental responses that these
exposures generate, and finally deriving the typical re-
sponses from these observations.

The aforementioned relationship is often described by
means of a calibration function that maps values of the
measurand to typical (or, expected) values of the indica-
tions produced by the instrument being calibrated. For
example, the result of calibrating a thermocouple for use
as a thermometer is either a mathematical function that
maps values of temperature into values of voltage, or a
table that lists the values of voltage that correspond to
specified values of temperature.

To be able to use the instrument to make measurements,
the inverse relationship is needed, which produces an
estimate of the value of the measurand given an ob-
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served instrumental response. This is variously called
the analysis function, measurement function, or the evalua-
tion function, depending on the field of application.

We begin by illustrating the development of calibration
and analysis functions for the measurement of the mass
concentration of chloromethane (Page 98) using gas chro-
matography and mass spectrometry, and in the process
introduce criteria for model selection, and demonstrate
Monte Carlo methods for uncertainty evaluation.

In this case, a very simple function, a cubic polynomial
without the quadratic term, strikes just the right bal-
ance between goodness-of-fit to the calibration data and
model simplicity. Many measurement systems, however,
require calibration functions of much greater complexity.

For example, the calibration of capsule-type standard
platinum resistance thermometers over the range 13.80 K
(triple point of hydrogen) to 273.16 K (triple point of
water) in nist srm 1750 involved determining a polyno-
mial of the 7th degree to describe the deviations between
the its-90 reference curve for this range, and the actual
values of resistance for these resistance thermometers 58.

58 W. L. Tew and G. F. Strouse.
Standard Reference Material
1750: Standard Platinum
Resistance Thermometers,
13.8033K to 429.7485K.
NIST Special Publication
260-139. National Institute of
Standards and Technology,
Gaithersburg, MD, November
2001. doi:10.6028/NIST.SP.260-
139

An even more complex model is often used to charac-
terize the dose-response of many bioassays, involving a
five-parameter logistic function.59 59 P. G. Gottschalk and J. R.

Dunn. The five-parameter
logistic: A characteri-
zation and comparison
with the four-parameter
logistic. Analytical Biochem-
istry, pages 54–65, 2005.
doi:10.1016/j.ab.2005.04.035

One of the most complex calibration models used cur-
rently in science involves a Bayesian spline model with
consideration of errors-in-variables that serves to convert
measurements of carbon-14 concentration into measure-
ments of the age of a biological material, in a technique
known as radiocarbon dating (Page 118).

https://doi.org/10.6028/NIST.SP.260-139
https://doi.org/10.6028/NIST.SP.260-139
https://doi.org/10.1016/j.ab.2005.04.035
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Chloromethane

Chloromethane is a volatile organic compound with boil-
ing point −24 ◦C at normal atmospheric pressure, and
chemical formula CH3Cl. It is currently used industri-
ally as a reagent and solvent, and in the past was widely
used as a refrigerant. Chloromethane is water-soluble
and its concentration in water is usually measured using
gas chromatography and mass spectrometry (gc-ms).60

60 J. W. Munch. Method 524.2.
Measurement of Purgeable

Organic Compounds in Wa-
ter by Capillary Column Gas
Chromatography/Mass Spec-

trometry. National Exposure
Research Laboratory, Office

of Research and Develop-
ment, U.S. Environmental
Protection Agency, Cincin-

nati, OH, 1995. Revision 4.1

The table below lists replicated instrumental indications
obtained with a gc-ms system to measure mass con-
centration of chloromethane, using fluorobenzene as
internal standard [Lavagnini and Magno, 2007]: the in-
dications are ratios between areas of peaks in the traces
produced by the measuring system, one corresponding
to chloromethane, the other corresponding to a known
amount of the internal standard that is injected into
the system simultaneously with each sample of each
chloromethane standard, thereby correcting for losses of
the measurand (or, analyte) in the standard as it travels
through the gc column.

Concentration of chloromethane, c (µg/L)
0.00 0.03 0.10 0.20 0.40 0.80 1.60 3.20 4.00

9219 12 867 24 122 36 817 51 036 111 975 174 220 344 967 355 100
9101 12 675 20 211 38 457 53 503 84 405 172 282 297 678 341 706
6914 14 311 20 900 31 085 64 271 95 427 168 291 308 669 365 223
8310 12 292 20 327 36 355 55 831 118 919 152 625 277 519 363 193
7603 9007 23 622 44 505 71 737 125 506 229 081 351 525 417 577
9011 11 415 19 576 37 588 57 600 89 315 216 992 302 684 389 765
6061 14 701 26 155 30 706 75 693 116 848 186 974 389 644 411 681
8032 13 757 18 471 34 256 66 599 138 121 176 933 323 136 390 485
5932 12 900 30 002 37 076 59 649 126 417 242 466 358 242 465 813
6034 12 800 29 385 42 269 64 498 105 840 239 470 366 867 444 202

The entries in the body of the table are values of r × 106

For each of nine CHCl3
calibration standards, ten

replicate measurements of
the ratio r of areas of peaks

produced by the gc-ms

measuring system, that cor-
respond to CHCl3 and to the
internal standard [Lavagnini

and Magno, 2007, Table 2].

A plot of the values of r against corresponding values of
c shows that the dispersion of the replicated values of r
increases substantially with increasing values of c. This
undesirable feature is much reduced once the data are
re-expressed [Mosteller and Tukey, 1977, Chapters 4-6]
using logarithmic scales, which also implies that the
focus is on the relative uncertainties.
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Calibration data before
and after re-expression
using logarithms. The
addition of 0.015 serves to
avoid taking logarithms
of zero, but otherwise it is
inconsequential.

We will neglect the uncertainty surrounding the values
of c because, in this particular case, in fact it is negligible
by comparison with the dispersion of the replicated
values of r. (Possolo [2015, E17] describes an instance of
calibration where uncertainties surrounding the values
of the measurand in the calibration standards, and the
instrumental indications, both have to be recognized.)

Model selection is the task of choosing a model to repre-
sent how R = log10(r) varies as a function of

C = log10(c/(µg/L) + 0.015).

Several polynomial models may be used to summarize
the relationship between them. For example,

R = α + β1C,

R = α + β1C + β2C2 + β3C3, or

R = α + β1C + β3C3,

because one may either add or remove terms while
searching for the best model. As more and more terms
involving different powers of C are added to the model,
the polynomial fits the data ever more closely. When to
stop, and which model to choose?



100

Suppose we would summarize the replicated values of
r that correspond to each value of c with their median,
and fitted a polynomial of the 8th degree to these nine
points. This polynomial fits the summary data exactly,
but look how it behaves around the two leftmost points!log10((c  (µg L)) + 0.015)
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A polynomial may fit the
data exactly and still be an
awful calibration function.

While inappropriate here,
polynomials of high degree

are used occasionally as
models. The International
Temperature Scale its-90,
for example, uses polyno-
mials of the 9th and 15th

order as reference functions.

The goal of model building is to achieve a representation
of the data that is accurate enough for the purpose the
model is intended to serve, while keeping the model as
parsimonious as possible. Parsimony, in this case, means
small number of adjustable parameters, or low degree
of the polynomial. The reason why parsimony matters
is that simple models generally have better real-world
performance than extravagant models.

For a polynomial model, fitting the model to the data
amounts to finding values of the coefficients that make
the graph of the polynomial pass as closely as possible
to the data points. Several aspects of this issue are
discussed under Least Squares (Page 196).

model, φ bic(φ)

α + β1C −190
α + β1C + β2C2 −226
α + β1C + β2C2 + β3C3 −231
α + β1C + β3C3 −235
α + β1C + β2C2 + β3C3 + β4C4 −227
α + β1C + β2C2 + β3C3 + β4C4 + β5C5 −222

The smaller the value of the
Bayesian Information Crite-

rion, bic, the more adequate
is the model for the data.

In general, a difference in
bic values greater than 10 is
strong evidence against the
model with the higher bic

value, whereas a difference
of less than 2 is considered

insignificant. Thus, and
in this case, the models in
the third and fourth rows
of this table are compara-
bly adequate for the data.

A reliable guide for model building aims to strike a
compromise between goodness of fit and simplicity. One
such guide is the Bayesian Information Criterion (bic)
[Burnham and Anderson, 2004], which we explain in
Model Selection (Page 201). For now, it suffices to say that
the smaller the bic, the more adequate is the model.

For the gc-ms calibration data listed above, the best
model happens to be a polynomial of the third degree
without the quadratic term,

φ(C) = α + β1C + β3C3,
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with coefficients α̂=−0.8931, β̂1=0.8327, β̂3=−0.0473.
This defines the calibration function, which characterizes
how the gc-ms instrument responds when exposed to
standard solutions of chloromethane.
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Calibration function, whose
graph is the smooth curve,
is a polynomial of the third
degree without the quadratic
term.

The analysis function is the mathematical inverse of the
calibration function: ψ such that ψ(φ(C)) = C, for each
value of C at which φ is defined. The analysis func-
tion is used to assign values of the measurand to sam-
ples whose mass concentration c of chloromethane is
unknown, and which, upon injection into the gc-ms

measuring instrument, produce a value of the ratio r.

Depending on the mathematical form of the calibration
function φ, it may or may not be possible to derive an
analytical expression (that is, a formula) for the analysis
function ψ. However, it is always possible to determine it
numerically given an observed value of R, by finding the
values of C such that φ(C) = R. In case this equation
is satisfied by more than one value of C, then some
additional criterion needs to be employed to determine
the appropriate solution: for example, the appropriate
solution should lie between the minimum and maximum
of the values of c in the standards used for calibration.
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Determination of the value
of c that corresponds to
an instrumental indication
r = 0.1718 m2/m2. Inversion
of the calibration function
produces log10((c/µg/L) +
0.015) = 0.155, hence
c = 1.41 µg/L.

The inversion that leads from φ to ψ can be performed
without any mathematical derivations or numerical com-
putation at all. First, draw the graph of the calibration
function φ on a sheet of transparent acetate, with the
horizontal axis indicating values of c increasing from
left to right, and with the vertical axis indicating values
of r increasing from bottom to top. Then, flip the sheet
and look at it from the back side, and rotate it so that
the vertical axis is now with values of c increasing from
bottom to top, and horizontal axis with values of r in-
creasing from left to right. The resulting graph depicts
the analysis function ψ.

In the particular case under consideration, the calibra-
tion function is a polynomial of the third degree, and
indeed it is possible to solve φ(C) = R analytically for
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C using a celebrated formula published in 1545 by Gero-
lamo Cardano, which implements the solution derived
by Scipione del Ferro.

In practice, however, even in cases like this, solving
the equation numerically may be the more expeditious
route, allowing that most of the effort be dedicated to
the selection of the most appropriate solution among the
several that typically are available when the calibration
function is a polynomial. This is how the graph of ψ

was constructed that is displayed alongside: by solving
φ(C) = R for C for many equispaced values of R.

The evaluation of the uncertainty surrounding the cali-
bration and analysis functions may be performed using
a Monte Carlo method, which in this case will be the
non-parametric statistical bootstrap invented by Bradley
Efron and explained to perfection by Diaconis and Efron
[1983]. The uncertainty evaluation is based on the results
from many repetitions of these two steps:

(1) Draw a sample of size 90 from the set of 90 pairs
{(cij, rij)} listed in the foregoing table, uniformly at
random, with replacement: this means that all pairs
have the same probability of being selected, and that
each pair may be selected more than once;

(2) Use this sample as if it were the original data, and
select and build a calibration function as described
above — this is called a bootstrap replicate of the cali-
bration function.
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Calibration function φ and
95 % coverage band de-

rived from 50 000 bootstrap
replicates of this function.

Each time these two steps are repeated yields a version
of the calibration function φ. A band that contains 95 %
of the graphs of the resulting versions of the calibra-
tion function, is a coverage band for the true calibration
curve, as depicted alongside. The corresponding cov-
erage band for the analysis function ψ is obtained by
mathematical inversion of the upper and lower bound-
aries of the band that surrounds the calibration function.
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Analysis function ψ and
95 % coverage band cor-

responding to the cali-
bration function above.
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Force Transducers

Honeywell model 3156 load
cell to measure forces of
up to 750 kN either under
tension or compression.

A load cell is a force transducer – an electro-mechanical
sensor that generates an electrical signal in response to
the applied force. The electrical signal reflects a change
in the resistance of a resistor strained by the applied
force. This change in resistance is evaluated using a
Wheatstone bridge (Page 24), and the electrical signal
is expressed as a ratio between the load cell’s output
voltage and the voltage applied to it.

Stack of stainless steel
weights in the 4.45
meganewton (approximately
454 000 kilogram-force)
deadweight machine that the
nist uses to calibrate load
cells.

nist uses deadweight machines to calibrate load cells.
The following measurement results were obtained us-
ing the 4.45 MN machine whose stack of weights are
depicted alongside. Figure 9 of Jabbour and Yaniv (2001)
shows how the weight of one or more disks in the stack
can be applied to the load cell, either in tension or in
compression regimens.61

61 Z. L. Jabbour and S. L.
Yaniv. The kilogram and
measurements of mass and
force. Journal of Research of the
National Institute of Standards
and Technology, 106(1):25–46,
January–February 2001

The relative uncertainties associated with the responses
are approximately twice as large as their counterparts
for the forces because they reflect the appreciable sen-
sitivity of this particular load cell to its placement in
the machine that applies the forces. This uncertainty
component has to be taken into account because nist

has no foreknowledge of how the owner of the load cell
being calibrated will deploy it for use.

Characterizing a load cell means describing how it re-
sponds to applied forces, which is done by building a
calibration function, φ, that maps values of the force,
F, to values of the load cell’s response, R = φ(F). To
use a calibrated load cell to measure force in practice
one needs the mathematical inverse of the calibration
function, ψ = φ−1 such that ψ(φ(F)) = F. Bartel et al.
[2016] call ψ the measurement function because it pro-
duces the value F = ψ(R) of the force that corresponds
to a response R produced by the load cell.

Differently from the calibration of the gc-ms instrument
used to measure the concentration of chloromethane
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(Page 98), here both quantities involved, the forces and
the load cell’s responses, are surrounded by uncertainty.
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Measurement results, which
are listed below in the block

of R code used for model
fitting, for the calibration of

a load cell. The horizontal
line segments represent
{Fj ± kFu(Fj)} and the
vertical line segments

represent {Rj ± kRu(Rj)},
where the magnification
factors, kF = 20 000 and

kR = 10 000, serve only to
facilitate the visualization

of the uncertainties, and are
not used in the calculations
that produce the calibration

function. Notice that both
axes have logarithmic scales.

The calibration function, φ, relates the true values of the
responses, {ρj}, to the true values of the applied forces,
{ϕj}, as ρj = φ(ϕj), for j = 1, . . . , where, in this case,
the number of calibration points is n = 11. Typically,
φ is a low-degree polynomial, most commonly of the
second or third degree, and never of degree greater than
5 for conformity with astm e74-13a, which is the docu-
mentary standard requested for most force transducers
submitted to nist for calibration.62

62 ASTM. ASTM E74-13a,
Practice of Calibration of Force-

Measuring Instruments for
Verifying the Force Indica-

tion of Testing Machines.
ASTM International, West

Conshohocken, PA, 2013.
doi:10.1520/E0074-13A

Traditionally, the coefficients of the polynomial have
been determined via ordinary least squares regression,
which assumes that all substantively significant compo-
nents of uncertainty are associated with the responses,
{Rj}, and that the applied forces, {Fj}, are known with
negligible uncertainty.

In fact, a conservative evaluation places the relative stan-
dard uncertainty in the measurement of the forces at
0.0005 %,63 while the relative uncertainties in the mea-

63 T. Bartel. Uncertainty
in NIST force measure-

ments. Journal of Research
of the National Institute

of Standards and Technol-
ogy, 110(6):589–603, 2005

surement of the responses are much larger. However,
recent advances in transducer technology challenge this
assumption, so much so that the uncertainty surround-
ing the forces can contribute about 50 % to the uncer-
tainty associated with the calibration function.

The uncertainty associated with the forces comprises
uncertainty contributions from the determination of the
mass of the deadweights, from the Earth’s gravitational
acceleration at the site where the machine is located,
including its vertical gradient (which matters owing to
the height of the stack of deadweights), and from the
density of the air in the room where the machine is
located (which impacts the buoyancy correction for the
applied forces) [Bartel, 2005].

The uncertainty associated with the responses comprises
uncertainty contributions from the lack of repeatability

https://doi.org/10.1520/E0074-13A
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of the transducer response indicating device, from the
calibration of the instrumentation used to acquire the
responses, and from the orientation of the transducer
relative to the loading platens of the machine that ap-
plies the forces. For some load cells, including the one
used for this illustration, the sensitivity to loading ge-
ometry can make the largest contribution to the {u(Rj)}
by far.64

64 T. Bartel, S. Stoudt, and
A. Possolo. Force calibration
using errors-in-variables
regression and Monte Carlo
uncertainty evaluation.
Metrologia, 53(3):965–980,
2016. doi:10.1088/0026-
1394/53/3/965

To build the calibration function we will employ errors-
in-variables (eiv) regression,65 to fit the following model

65 R. J. Carroll, D. Ruppert,
L. A. Stefanski, and C. M.
Crainiceanu. Measurement
Error in Nonlinear Models — A
Modern Perspective. Chapman
& Hall/CRC, Boca Raton,
Florida, second edition, 2006

to the measurement results:

Fj = ϕj + ε j, Rj = ρj + δj, ρj = β1 + β2ϕj + β3ϕ2
j ,

for j = 1, . . . , n, assuming that the measurement errors,
{ε j}, affecting the forces, are outcomes of independent
Gaussian random variables all with the same mean 0 kN,
and with standard deviations {u(Fj)}, and similarly for
the measurement errors, {δj}, affecting the responses.

A polynomial of the second degree was selected based
on the Bayesian Information Criterion (bic, Page 100),
after comparing first, second, and third degree polyno-
mials fitted by ordinary least squares.

The eiv model can be fitted to the calibration data ei-
ther via maximum likelihood estimation (Page 193) or
using a Bayesian procedure (Page 208). The two meth-
ods produce very similar estimates in this case, but the
associated uncertainties are appreciably larger using
maximum likelihood than using the Bayesian procedure
defined using the Stan code listed below.66

66 B. Carpenter, A. Gel-
man, M. Hoffman, D. Lee,
B. Goodrich, M. Betancourt,
M. Brubaker, J. Guo, P. Li,
and A. Riddell. Stan: A
probabilistic programming
language. Journal of Statistical
Software, 76(1):1–32, 2017.
doi:10.18637/jss.v076.i01

mle bayes

estimate std. unc. estimate std. unc.

β1 −7.815 35 0.000 82 −7.815 36 0.000 39
β2 0.997 233 7 0.000 220 5 0.997 234 0 0.000 106 7
β3 0.000 194 97 0.000 014 83 0.000 194 95 0.000 007 20

The regression coefficients and associated uncertainties
listed in the previous table are for the model fitted to

https://doi.org/10.1088/0026-1394/53/3/965
https://doi.org/10.1088/0026-1394/53/3/965
https://doi.org/10.18637/jss.v076.i01
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the logarithms of the forces and of the responses, for the
reasons that are explained below, which is of the form
ln Rj = β1 + β2 ln Fj + β3(ln Fj)

2 for j = 1, . . . , n.

data {
int n; // Number of observations
vector<lower=0>[n] f; // Force (N)
vector<lower=0>[n] uf; // Std. unc. for force (N)
vector[n] r; // Response (mV/V)
vector[n] ur; // Std. unc. for response (mV/V)
vector[3] betaMean; // Prior mean for beta
vector[3] betaSD; // Prior SD for beta
vector<lower=0>[n] phiMean; // Prior mean for phi (N)
vector<lower=0>[n] phiSD; // Prior SD for phi (N)

}
parameters {

vector[3] beta; // Regression coefficients
vector<lower=0>[n] phi; // True values of force

}
transformed parameters {

vector[n] rho; // True values of response
for (j in 1:n) { rho[j] = beta[1] + beta[2]*phi[j]

+ beta[3]*phi[j]^2;};
}
model {

beta ~ normal(betaMean, betaSD); // Prior for beta
phi ~ normal(phiMean, phiSD); // Prior for phi
f ~ normal(phi, uf); // Likelihood for f
r ~ normal(rho, ur); // Likelihood for r

}

The model was fitted to the logarithms of the forces
and of the responses, which is equivalent to focusing
on the relative standard uncertainties instead of on the
standard uncertainties. The resulting stabilization of
the uncertainties (of the logarithms of the forces and
responses) across the vast range of forces used during
calibration facilitates mcmc sampling.

Note that Gauss’s formula (Page 22) yields

u(ln Fj) ≈ u(Fj)/Fj, and

u(ln Rj) ≈ u(Rj)/Rj, for j = 1, . . . , n.

Since the relative uncertainties for the responses are
about twice as large as their counterparts for the forces,
the weighted least squares estimates of the regression
coefficients should provide a good approximation to
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their eiv counterparts, hence they are used to calibrate
the prior distribution for these coefficients.

The following R code executes the previous Stan code
after it will have been assigned to variable eivModel.
R function envelope from the package boot67 68 was 67 A. Canty and B. D. Ripley.

boot: Bootstrap R (S-Plus)
Functions, 2021. URL
cran.r-project.org/web/
packages/boot/. R package
version 1.3-28

68 A. C. Davison and D. Hink-
ley. Bootstrap Methods and
their Applications. Cambridge
University Press, Cambridge,
UK, 1997. ISBN 0-521-57471-4.
URL statwww.epfl.ch/
davison/BMA/

used to compute the 95 % coverage band for the true
calibration function depicted in the adjoining figure.
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band for its true value. The
uncertainties for the forces
are magnified 20 000 times,
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responses are magnified
10 000 times. The scales of
both axes are logarithmic.

z = read.table(header=TRUE, text="
f uf r ur

## / kN / (mV/V)
222.4111 0.0011 0.0889000 5.50e-06
444.8222 0.0022 0.1777733 3.30e-06
889.6444 0.0044 0.3554480 5.80e-06

1334.4666 0.0067 0.5331937 5.50e-06
1779.2888 0.0089 0.7109277 6.40e-06
2224.1110 0.0111 0.8887247 7.00e-06
2668.9332 0.0133 1.0665180 1.28e-05
3113.7554 0.0156 1.2443300 1.15e-05
3558.5776 0.0178 1.4221563 1.21e-05
4003.3998 0.0200 1.6000087 1.60e-05
4448.2220 0.0222 1.7778847 2.00e-05")

## Model fitted to the logarithms of the forces and
## to the logarithms of the load cell responses
rl = log(z$r); url = z$ur/z$r
fl = log(z$f); ufl = z$uf/z$f
n = length(rl)

require(rstan)
options(mc.cores = parallel::detectCores())
rstan_options(auto_write = TRUE)

s = summary(lm(rl~poly(fl, degree=2, raw=TRUE), weights=1/url^2))

eivModel.data = list(n=n, f=fl, uf=ufl, r=rl, ur=url,
betaMean=s$coefficients[,"Estimate"],
betaSD=2*s$coefficients[,"Std. Error"],
phiMean=fl, phiSD=2*ufl)

eivModel.inits = function () {
list(beta=rnorm(3, mean=s$coefficients[,"Estimate"],

sd=s$coefficients[,"Std. Error"]),
phi=rnorm(n, mean=fl, sd=ufl)) }

eivModel.fit = stan(model_code = eivModel, data = eivModel.data,
control=list(adapt_delta=0.99,

max_treedepth=20),
init=eivModel.inits,
warmup=100000, iter=250000,
chains=4, cores=4, thin=10)

print(eivModel.fit, digits=5)
eivModel.post = rstan::extract(eivModel.fit)

cran.r-project.org/web/packages/boot/
cran.r-project.org/web/packages/boot/
statwww.epfl.ch/davison/BMA/
statwww.epfl.ch/davison/BMA/
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Isochron for the Sea of Tranquility

The Apollo 11 Lunar Module Eagle reached the Moon
on July 20th, 1969, landing on the Sea of Tranquility. In
the course of the 2.25 hours astronauts Neil Armstrong
and Buzz Aldrin spent outside of the spacecraft, they
collected 21.55 kg of soil and rock samples.

Largest fragment of moon
rock 10057 collected dur-

ing the Apollo 11 mission
(nasa/jsc). Neil Arm-

strong, Buzz Aldrin and
Michael Collins brought it
to the White House on the

occasion of the 30th anniver-
sary of the Moon landing.
At President Clinton’s re-
quest, fragment 10057 re-
mained on display in the

Oval Office until he left
office in January 2001. A
thin slice of 10057 is also

embedded in the center of
the Space Window stained

glass mosaic at the National
Cathedral in Washington, dc.

One of the largest rocks Apollo 11 astronauts brought
back to Earth, labeled as basalt rock 10057, weighed
nearly 1 kg and it was later cut into many pieces. The
following table summarizes results of strontium and ru-
bidium isotope measurements made by Papanastassiou
et al. [1970, Table 1] on the basalt sample 10057 from the
Sea of Tranquility. The texture of this rock indicates that
its parent magma was extruded onto the lunar surface
and cooled rapidly.69

69 O. B. James and E. D.
Jackson. Petrology of the

Apollo 11 ilmenite basalts.
Journal of Geophysical Re-

search, 75(29):5793–5824, 1970.
doi:10.1029/JB075i029p05793

rock part
87Rb/86Sr 87Sr/86Sr

plagioclase 0.015 67 ± 0.000 24 0.700 20 ± 0.000 06
whole rock 0.102 50 ± 0.001 54 0.704 69 ± 0.000 03

ilmenite 0.209 60 ± 0.003 14 0.710 23 ± 0.000 04

Papanastassiou et al. [1970] report that the measured
values of N(87Rb)/N(86Sr) for the samples have “maxi-
mum errors of ±1.5 %.” Since the same authors report
expanded uncertainties (2σ) for the corresponding mea-
sured values of N(87Sr)/N(86Sr), here we interpret the
1.5 % as relative expanded uncertainty for 95 % coverage,
hence take the relative standard uncertainty to be 0.75 %.

The symbol N(87Rb) denotes the number of atoms of
87Rb in the aliquot of the material that was analyzed,
and similarly for the other isotopes. For brevity, we
will sometimes omit the quantity symbol that denotes
“number of atoms”, as we do in the table above.
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Isotope ratios and associ-
ated standard uncertain-
ties (magnified 10-fold),

and isochron computed via
Bayesian errors-in-variables

regression for the lunar
basalt 10057 (fragment 39).

87Rb is a naturally occurring, radioactive isotope of ru-
bidium which decays to stable 87Sr by emission of an
electron and antineutrino (β− decay).

As the magma cooled, the crystals that form will have

https://doi.org/10.1029/JB075i029p05793
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different levels of rubidium whereas the isotopic compo-
sition of strontium remains uniform.70 Inspection of the 70 P. H. Warren and G. J.

Taylor. The Moon. In
H. D. Holland and K. K.
Turekian, editors, Treatise on
Geochemistry, volume 2, pages
213–250. Elsevier, Oxford, UK,
second edition, 2014

entries under 87Rb/86Sr in the preceding table reveals
that this ratio is quite variable for different aliquots of
the same sample, varying by an order of magnitude
from 0.016 to 0.210.

The rocks appear unaltered since their formation, except
for superficial patina, micro-cratering, and exposure to
cosmic radiation that have induced nuclear reactions in
the samples.71 Therefore, it seems safe to assume that,

71 C. Meyer. The Lunar
Sample Compendium.
https://curator.jsc.nasa.
gov/lunar/lsc/, 2011. NASA
Astromaterials Research &
Exploration Scienceafter consolidation of the magma into these basalts, they

will have neither lost nor gained any of the isotopes of
strontium or rubidium used for dating, other than for
the changes attributable to the decay of 87Rb.

If there were N0(
87Sr) atoms in the magma originally,

at any subsequent epoch t the following relationship
should hold:

Nt(
87Sr) = N0(

87Sr) + (eλt − 1)Nt(
87Rb),

where λ = ln(2)/t½(
87Rb) is the decay constant of 87Rb.

Since isotope ratios are usually easier to determine than
the concentrations themselves, the more practically rele-
vant relationship is this:

Nt(87Sr)
Nt(86Sr)

=
N0(

87Sr)
N0(86Sr)

+ (eλt − 1)
Nt(87Rb)
Nt(86Sr)

.
In this equation, we consider
Nt(86Sr) a constant, since
86Sr is not radiogenic. Thus,
Nt(86Sr) = N0(86Sr).

Since components of the sample all are of approxi-
mately the same age, it follows that, once their values
of 87Sr/86Sr are plotted (along the vertical axis) against
corresponding values of 87Rb/86Sr (along the horizon-
tal axis), they should be approximately aligned along
a straight line, called an isochron (which means of “the
same age”).

The slope of this straight line is β = eλt − 1, which

https://curator.jsc.nasa.gov/lunar/lsc/
https://curator.jsc.nasa.gov/lunar/lsc/
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means that the crystallization age of the sample is

t = ln(1 + β)/λ.

Ordinary least squares is not the appropriate procedure
to estimate the slope (and intercept) of this isochron
because both isotope ratios are observed with error. We
have already faced a similar challenge when comparing
two measurement methods, which we addressed using
Deming regression and Passing-Bablok regression.

Suppose that we wish to fit an isochron to n pairs of
ratios (x1, y1), . . . , (xn, yn), where xj denotes a value
of 87Rb/86Sr and yj denotes a value of 87Sr/86Sr. We
model these measured values of the isotope ratios as
being equal to their corresponding true values plus mea-
surement errors:

yj = νj + ε j,

xj = ξ j + δj, and

νj = a + bξ j, for j = 1, . . . , n,

where we assume that the measurement errors {ε j} and
{δj} are non-observable outcomes of independent, Gaus-
sian random variables with mean 0 and with standard
deviations {u(yj)} and {u(xj)}, respectively. We also
assume that the true isochron, with intercept a and slope
b, is a relationship between the true values of the ratios.

Unlike with ordinary least squares, note that this model
has 2 + n parameters: the intercept and slope of the re-
gression line, and the true values, {ξ j}, of the abscissas
of the n data points. These parameters have to be esti-
mated based on the n quadruplets {(xj, u(xj), yj, u(yj))}.

This model can be fitted to the data in any one of several
different ways. For example, by the method of gen-
eralized distance regression, which involves nonlinear,
numerical optimization of parameters a, b, and ξ by
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minimizing the following objective function:

S(a, b, ξ1, ξ2, ξ3) =
(x1 − ξ1)

2

u2(x1)
+

(y1 − (a + bξ1))
2

u2(y1)
+

(x2 − ξ2)
2

u2(x2)
+

(y2 − (a + bξ2))
2

u2(y2)
+

(x3 − ξ3)
2

u2(x3)
+

(y3 − (a + bξ3))
2

u2(y3)
.

A Bayesian (Page 204) formulation is generally prefer-
able, if for no other reason because it regularizes the
problem,72 and effectively replaces optimization with a

72 T. Hastie, R. Tibshirani,
and J. Friedman. The
Elements of Statistical Learning:
Data Mining, Inference, and
Prediction. Springer-Verlag,
New York, second edition,
2009. URL statweb.stanford.
edu/~tibs/ElemStatLearn/

gentle, guided exploration of the set of possible values
for the parameters. Below is the Bayesian formulation
of the model in the Stan language.73

73 Stan Development Team.
Stan Modeling Language —
User’s Guide and Reference
Manual. Available at
http://mc-stan.org/, 2016.
Stan Version 2.14.0

data {
int<lower=0> n; // Number of pairs of isotope ratios
vector[n] x; // Values of 87Rb/86Sr
vector[n] ux; // Standard uncertainties
vector[n] y; // Values of 87Sr/86Sr
vector[n] uy; // Standard uncertainties
real aPriorMean; // Prior mean of intercept
real aPriorSD; // Prior std. dev. of intercept
real bPriorMean; // Prior mean of slope
real bPriorSD; // Prior std. dev. of slope
// Prior means and standard deviations for true values of {x}
vector[n] xiPriorMean;
vector[n] xiPriorSD;

}
parameters {

real a; // Intercept of isochron
real b; // Slope of isochron
vector[n] xi; // True values of {x}

}
model {

// Prior distributions for isochron's intercept and slope
a ~ normal(aPriorMean, aPriorSD);
b ~ normal(bPriorMean, bPriorSD);
// Prior for true isotope ratios 87Rb/86Sr
xi ~ normal(xiPriorMean, xiPriorSD);
// Likelihood for isotope ratios 87Rb/86Sr
x ~ normal(xi, ux);
// Likelihood for isotope ratios 87Sr/86Sr
y ~ normal(a + b * xi, uy);

}

The following R codes assume that this Stan model has
been assigned to variable eivModel as a character string,

statweb.stanford.edu/~tibs/ElemStatLearn/
statweb.stanford.edu/~tibs/ElemStatLearn/
http://mc-stan.org/
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including the line breaks. We shall use the regression
coefficients produced by the generalized distance re-
gression, and their uncertainties, as soft guides for the
Bayesian method. Thus, in our Bayesian model, the
prior distributions reflect the belief that the slope and
intercept should not to be too far from the generalized
distance regression estimates, and that the true values
of the ratios, {ξ j}, also should not be too far from the
observed values.

## Measurement results for lunar basalt 10057,39
z = data.frame(

sample=c('plagioclase','whole rock','ilmenite'),
x=c(0.01567, 0.10250, 0.20960), # 87Rb/86Sr
ux=c(0.00024, 0.00154, 0.00314),
y=c(0.70020, 0.70469, 0.71023), # 87Sr/86Sr
uy=c(0.00006, 0.00003, 0.00004)
)

## Generalized distance regression estimates
gdr = array(NA,dim=c(1e5, 2))
for (i in 1:1e5) {

if (i %% 1000 == 0){cat(i, "of", 1e5, "\n")}
x.mc = rnorm(3, z$x, z$ux)
y.mc = rnorm(3, z$y, z$uy)
gdr[i,] = optim(par = c(0.7, 0.05, z$x),

function(p) {
xTrue = p[-c(1,2)]
yTrue = p[1] + p[2]*xTrue
sum( ((y.mc - yTrue)/z$uy)^2 + ((x.mc - xTrue)/z$ux)^2 )
})$par[1:2]

}
gdr.coef = apply(gdr, 2, mean)
gdr.unc = apply(gdr, 2, sd)

Now we use the parameter estimates from the gener-
alized distance regression as the initial values for the
Bayesian method and to set the prior distributions.

require(rstan)
eiv.init = function () list(a=gdr.coef[1],

b=gdr.coef[2], xi=z$x)
eiv.data = data=list(n=3, x=z$x, ux=z$ux, y=z$y, uy=z$uy,

aPriorMean=gdr.coef[1], aPriorSD=3*gdr.unc[1],
bPriorMean=gdr.coef[2], bPriorSD=3*gdr.unc[2],
xiPriorMean=z$x, xiPriorSD=3*z$ux)

eiv.stan = stan(model_code = eivModel,
data = eiv.data,
init=eiv.init, iter=50000)

print(eiv.stan, digits = 5)
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The regression slope estimates from the two methods
are nearly identical in our case, giving b = 0.0517(8) for
the generalized distance regression and b = 0.0517(7)
for the Bayesian method.

The basalt age estimate from the Sea of Tranquility
and its associated uncertainty is obtained by using the
draws from the posterior distribution of the isochron
slope which are combined with the draws from a Gaus-
sian distribution representing the half-live of 87Rb with
mean 49.7 Ga and standard deviation 0.3 Ga, which are
the estimate and associated standard uncertainty from
nubase2000 [Kondev et al., 2021].

eiv.stan.mcmc = rstan::extract(eiv.stan)
N.mcmc = length(eiv.stan.mcmc$b)

tRb = rnorm(N.mcmc, 49.7, 0.3)
lambda = log(2)/tRb
age = log(1 + eiv.stan.mcmc$b)/lambda
c(age=mean(age), age.u=sd(age),

quantile(age, probs=c(0.025, 0.975)))

The resulting Rb-Sr isochron age of the lunar basalt
10057 is t = 3.62 Ga with the associated 95 % coverage
interval 3.51 Ga to 3.72 Ga.

Rb−Sr isochron age (Ga)
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Posterior probability density
(Page 159) of the Rb-Sr
isochron age determined
for the lunar basalt 10057

(fragment 39).

Prior to the lunar landings, there were doubts about
whether there had ever been volcanic activity on the
Moon but the discovery of these basalts, which are con-
solidated lava resulting from volcanic eruptions on the
Moon more than 3 billion years ago, dispelled such
doubts.
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Paintings of Vermeer

Han van Meegeren (1937)
The Supper at Emmaus.

Museum Boijmans van
Beuningen, Rotterdam

(Wikimedia Commons).

In 1937, Abraham Bredius, one of the premier art histo-
rians of his time, announced The Supper at Emmaus — a
new Vermeer painting that had recently been discovered
in France:

It is a wonderful moment in the life of a lover of art
when he finds himself suddenly confronted with a hith-
erto unknown painting by a great master [. . . ] Quite
different from all his other paintings and yet every inch
a Vermeer.74

74 A. Bredius. A new Vermeer.
The Burlington Magazine
for Connoisseurs, 71(416):

210–211, November 1937

Many leading art-historians soon accepted this “early”
Vermeer, and the painting was purchased by the Rem-
brandt Society as a gift to the Museum Boijmans in
Rotterdam, for an amount comparable to 5 million of
today’s Euro.

Shortly after the end of World War II, investigators trac-
ing the provenance of alleged Vermeer paintings held
by the Nazi Field-Marshall Hermann Goering were led
to Han van Meegeren. They uncovered multiple “mas-
terpieces” that were, in fact, elaborate forgeries, among
them The Supper at Emmaus.

Eventually van Meegeren was tried and convicted of
forgery and fraud in 1947, but doubts lingered as to
the possible authenticity of some of the questionable
paintings. The matter was settled only much later, using
radioisotopes that enabled estimating the date when
the lead was extracted from the ore for use as a white
pigment in the paint.75

75 B. Keisch. Dating works
of art through their natural

radioactivity: Improvements
and applications. Science,

160(3826):413–415, 1968.
doi:10.1126/science.160.3826.413 This method for distinguishing between modern and

old artworks is based on measuring the radioactivity of
radium-226 and polonium-210 (which acts as a proxy for
the hard-to-measure lead-210) in lead pigment samples.

Natural lead contains the radioactive lead-210 isotope
which is constantly supplied from the radioactive decay
of radium-226. For this reason, old samples of lead
pigments will show equal amounts of radioactivity from

https://doi.org/10.1126/science.160.3826.413
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lead-210 and radium-226. During the smelting of lead
ores, most of the radium is removed instantly and it
takes more than a century for the excess lead-210 to
decay. Hence, modern samples will have much larger
amounts of radioactivity from lead-210 compared to
radium.

The half-life of lead-210,
t½(210Pb), is 22.20 years with
standard uncertainty 0.22
years[Audi et al., 2017].

The half-life of radium-226,
t½(226Ra), is 1600 years
with standard uncertainty 7
years[Audi et al., 2017].The ratio of the specific activities of these two isotopes is

a function of the age (t) of the lead used in the paint and
derives from the underlying physical model of radioac-
tive decay that follows consecutive radioactive decay
reactions:

The radioactive decay rate
constants are related to the
nuclide half-life. For example,
t½(210Pb) = ln(2)/kPb.

226Ra
kRa−−−→ 210Po or 210Pb

kPb−−−→ 210Bi.

Solving the differential equations that correspond to this
physical model gives the following ratio of 210Po and
226Ra at any given time:

A(210Po)
A(226Ra)

≈ K + (F − K) exp{(kRa − kPb)t},

where K = kPb/(kPb − kRa) ≈ 1 and F is the estimate
of the value that the ratio A(210Po)/A(226Ra) would
have had when the lead was smelted. The value of
this separation factor needs to be determined in order to
calibrate the measurement model.

Keisch et al. [1967] list data used to determine the sepa-
ration factors (F) from materials including lead from an
old English pipe and white lead pigments of known
manufacture dates. Some of these observations are
shown in the table below.

Sample Year (D) A(210Po) A(226Ra)

Lead pipe (England) 16th c. 0.039 ± 0.041 0.08 ± 0.03
Portrait (Italy) 1600 0.21 ± 0.10 0.21 ± 0.29

Female saint (Italy?) 1750−1800 3.8 ± 0.7 3.0 ± 0.4
Portrait (France) 1830−1840 5.3 ± 2.3 3.9 ± 1.4

Portrait (usa) 1921 6.3 ± 1.3 0.0 ± 0.3
Lead chloride (usa) 1962 46 ± 4 0.5 ± 0.4

Results of the analyses
of white lead pigment
and related lead-bearing
materials with known
dates of manufacture
(smelting).[Keisch et al., 1967]

The values of A(210Po) and
A(226Ra) are numbers of
disintegrations per minute
and per gram of lead,
analyzed ca. 1966.
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The separation factor is then calculated for all specimens
of known age (which is 1966 − D years):

F =
A0(

210Po)
A0(226Ra)

,

where the estimated activities right after the smelting
are as follows:

A0(
210Po) = A(210Po) exp{(D0 − D)kPb},

A0(
226Ra) = A(226Ra) exp{(D0 − D)kRa}.

To estimate the separation factor, F, and to evaluate
its uncertainty, u(F), for the 1921 portrait listed in the
preceding table, we repeat the following steps 106 times:

Separation factor, ln(F )
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Histogram of 106 replicates of
the value of ln(F) estimated

from the lead pigment in
the 1921 portrait (sample

M-17-H) [Keisch et al., 1967].

(1) Draw a value for D0 from a uniform distribution
between 1966 and 1967.

(2) Draw a value for D from a uniform distribution be-
tween 1921 and 1922.

(3) Draw a value for t½(
226Ra) from a Gaussian distribu-

tion with mean 1600 and standard deviation 7 trun-
cated at zero, and calculate the corresponding rate
constant value.

(4) Draw a value for t½(
210Pb) from a Gaussian distri-

bution with mean 22.20 and standard deviation 0.22
truncated at zero, and calculate the corresponding
decay rate constant value.

(5) Draw a value for A(226Ra) from a Gaussian distribu-
tion with mean 0.0 and standard deviation 0.3 trun-
cated at zero.

(6) Draw a value for A(210Po) from a Gaussian distribu-
tion with mean 6.3 and standard deviation 1.3 trun-
cated at the value of A(226Ra) from step (5).

(7) Compute ln(F) using the results from steps (1)-(6).

Then we compute the median, m, of the 106 values of
ln(F), and the rescaled median of the absolute devia-
tions from the median (mad) of the ln(F) values, s.
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The procedure just described for one particular sample
of paint is then repeated for all the available 71 materials
that Keisch et al. [1967] list in Tables 2-4. The resulting 71
Gaussian distributions of ln(F) were combined using the
linear pool [Koepke et al., 2017], with the result shown
alongside, which can be approximated with a Gaussian
distribution whose mean and standard deviation are the
median m = 4.8 and rescaled median of the absolute
deviations from the median (mad) s = 1.7.

Separation factor, ln(F )
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The distribution of ex-
perimentally determined
separation factors, ln(F), with
a fitted Gaussian distribution.

The model age of paintings can therefore be estimated by
solving the above measurement model for t, by entering
measured values of the activities of the two isotopes:

t =
1

kPb − kRa

{
ln(F − K)− ln

(
A(210Po)
A(226Ra)

− K
)}

. To simplify the model, we
do not take into account the
radioactive decay of atoms of
radium, which is negligible
in the time scale considered
here, hence set kRa = 0 and
K = 1 without any noticeable
loss of accuracy.

The age estimates and their uncertainties are then ob-
tained using the Monte Carlo method in very much the
same way as it was used for the separation factor.

painter work A(210Po) A(226Ra) age / years

van Meegeren wf 12.6 ± 0.7 0.26 ± 0.07 51 ± 41
van Meegeren se 8.5 ± 1.4 0.8 ± 0.3 87 ± 52

Vermeer lm 1.5 ± 0.3 1.4 ± 0.2 212 ± 65
Vermeer lg 5.2 ± 0.8 6.0 ± 0.9 232 ± 67

wf The Washing of the Feet, Rijksmuseum, Amsterdam
se The Supper at Emmaus, Museum Boijmans, Rotterdam

lm The Lacemaker, Musée du Louvre, Paris
lg Officer and Laughing Girl, The Frick Collection, New York

Measurements of specific
activity of white lead
pigments [Keisch, 1968],
expressed in numbers of
disintegrations per minute
and per gram of lead, and
corresponding mean ages
and associated standard
uncertainties from the Monte
Carlo uncertainty evaluation.

The actual ages that the paintings had in 1968, when
the study by Keisch [1968] was published, are well-
documented – wf: 37 years, se: 32 years, lm: 298 years,
and lg: 311 years. These ages are generally consistent
with the mean radioisotopic ages when the associated
uncertainties are taken into account.

The following coverage intervals were derived from the
samples produced by the Monte Carlo method, and
include the true age of the lead pigment with 95 % con-
fidence. In the image below, the open circles indicate
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the median radioisotopic age estimates of the four paint-
ings. Both The Washing of the Feet and The Supper at Em-
maus clearly contain lead pigment from the 20th century.

0 100 200 300 400

Age of White Lead Pigment in 1966 (years)

The Supper at Emmaus

The Washing of the Feet

The Lacemaker

Officer and Laughing Girl

Vermeer

The line segment la-
beled Vermeer repre-

sents Vermeer’s lifetime.

The results can also be summarized by estimating the
largest model age for each of these paintings, such as
their 99th percentiles. Both authentic paintings produce
values consistent with Vermeer’s lifetime (1632-1675)
whereas both forgeries fall short by more than a century.

Shroud of Turin

Caravaggio (1603-1604) La
Deposizione di Cristo, Pina-

coteca Vaticana, Vatican
City — Wikimedia Commons

The discovery of radiocarbon dating earned Willard F.
Libby the 1960 Nobel Prize in Chemistry, and the ac-
colade from the Nobel Committee that “seldom has a
single discovery in chemistry had such an impact on the
thinking in so many fields of human endeavor.”
14C atoms are continuously generated in Earth’s atmo-
sphere as neutrons produced by cosmic rays strike ni-
trogen atoms, and eventually are absorbed by living
organisms. The concentration of 14C in the living tissues
stays in equilibrium with its atmospheric counterpart
until the organism dies. Thereafter, the ratio of con-
centrations of 14C and of 12C in the remains decreases
steadily over time.

By measuring this ratio in the remains, and assuming
that the ratio of concentrations of 14C and 12C in the
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atmosphere during the organism’s lifetime was the same
as it is today, it is possible to estimate how long ago the
plant or animal died.

While simple in principle, radiocarbon dating is chal-
lenging in practice. First, the amount fraction of 14C in
pure carbon is minuscule: about 1 atom of 14C per tril-
lion atoms of carbon (of which the vast majority are 12C
and 13C atoms). This implies that, in 4 grams of carbon,
only one atom of 14C will decay per second, on average.
Therefore, radiocarbon dating based on measurements
of activity requires fairly large samples of material. Mass
spectrometry, which actually counts atoms of different
mass numbers, has enabled radiocarbon dating of very
small samples of material.

Second, radiocarbon dating rests on two key assump-
tions: (i) that the ratio of concentrations of 14C and 12C
atoms in the atmosphere has remained constant over
time, and equal to its present value; and (ii) that its
value is the same for all biological tissues. Neither of
these assumptions is valid. The first because the burn-
ing of fossil fuels (which contain no 14C) has steadily
decreased the fraction of 14C in the atmosphere, while
detonations of nuclear weapons from the 1940s until the
early 1960s, increased it. The second because isotopic
fractionation changes the relative concentrations of the
three isotopes of carbon according to the provenance of
the biological material used for dating.

Positive and negative
versions of a portion of
the Shroud of Turin —
WikiMedia Commons

These contingencies imply that accurate dating cannot
be achieved without calibration, which establishes a
correspondence between radiocarbon ages based on the
ideal assumptions aforementioned, and known calendar
ages of particular samples.

The most recent calibration curve is intcal2020.76 For

76 T. J. Heaton, M. Blaauw,
P. G. Blackwell,
C. Bronk Ramsey, P. J.
Reimer, and E. M. Scott.
The INTCAL20 approach to
radiocarbon calibration curve
construction: a new method-
ology using Bayesian splines
and errors-in-variables. Ra-
diocarbon, pages 1–43, 2020.
doi:10.1017/RDC.2020.46

the most recent 14 000 years, this curve is based entirely
on tree-ring measurements, which can be dated by count-
ing rings from outermost to innermost. Also, each ring’s
isotopic composition is a snapshot of the atmospheric

https://doi.org/10.1017/RDC.2020.46
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composition at the time when the ring was growing.

The measurement of the age of the Shroud of Turin
using radiocarbon dating is one of the most talked-about
applications of the technique. The shroud is a linen cloth
kept in the Cathedral of Saint John the Baptist, in Turin,
Italy, which bears marks of the body of a tall, bearded
man who may have been flogged. Some people believe
that it is the burial cloth of Jesus of Nazareth.

Mass spectrometric measurements made in 1988 by Da-
mon et al. [1989] at laboratories in Tucson (Arizona,
usa), Oxford (uk), and Zurich (Switzerland), yielded
average radiocarbon age of 691 years Before Present (bp),
with standard uncertainty 31 years.

By convention, radiocarbon
ages are expressed as num-

bers of years before 1950,
denoted as “before present”
(bp) although there is some
uncertainty about whether

this means the the very begin-
ning of 1950 [Townsley, 2017]

or mid-1950 [Ramsey, 2009].
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surement of the radiocar-
bon age of the Shroud of

Turin using the intcal2020

[Reimer et al., 2020] cali-
bration curve, to obtain an

estimate of the calendar age.

The radiocarbon age was “translated” into calendar age
using R function calibrate defined in package clam.77

77 M. Blaauw. Methods
and code for ’classical’

age-modelling of radiocarbon
sequences. Quaternary

Geochronology, 5:512–518, 2010.
doi:10.1016/j.quageo.2010.01.002;
and M. Blaauw. clam: Classical

Age-Depth Modelling of Cores
from Deposits, 2021. URL
https://CRAN.R-project.

org/package=clam. R
package version 2.4.0

The resulting distribution of calendar age is a bizarre bi-
modal distribution whose mean (ad 1317) and standard
deviation (40 years) tell us very little about the likely
age of the shroud, providing a cogent illustration of the
fact that probability densities are well suited to capture
the uncertainty of complex outcomes whereas summary
estimates can be spectacularly deceiving.

The age provided by the R function calibrate lies be-
tween ad 1273 and ad 1317 with 65 % probability, and
between ad 1361 and ad 1388 with 30 % probability –
hence the shroud is Medieval and not from Antiquity.

https://doi.org/10.1016/j.quageo.2010.01.002
https://CRAN.R-project.org/package=clam
https://CRAN.R-project.org/package=clam
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Categorizing

Nominal and ordinal properties are kinds of categorical
properties, which are qualitative [Agresti, 2019].

The identity of a polychlorinated biphenyl (pcb), and the
species of a maple tree (genus Acer), are nominal proper-
ties. The former has more than 200 possible values, the
latter more than 160. The only meaningful comparison
between values of the same nominal property is whether
they are identical or different.

The values of a nominal property are names of sets of
entities that have the same values of the attributes that
characterize the nominal property.

For example, when presented with an animal of the
genus Panthera, one compares it with standard spec-
imens of the five species in this genus, to determine
whether the animal is a tiger, leopard, jaguar, lion, or
snow leopard.

This comparison may involve examining qualitative at-
tributes such as the body shape, the color of the fur, or
the footprint. It may also involve examining quantitative
attributes, like body length, height, or mass. If only
a sample of tissue from the animal is available, then
the comparison may involve sequencing particular areas
of the genome, and comparing these sequences with
paradigmatic sequences of known provenance that are
available in gene databases.78

78 Y. Cho, L. Hu, H. Hou,
et al. The tiger genome
and comparative analysis
with lion and snow leopard
genomes. Nature Communica-
tions, 4:2433, September 2013.
doi:10.1038/ncomms3433

Ordinal properties have values that can be ordered (that
is, ranked) from smallest to largest, or from lowest to
highest, but for which neither differences nor ratios
are meaningful, even when their values are represented
numerically.

Cancer stage, as defined by the American Joint Com-
mittee on Cancer, is a property of breast cancer, whose
possible values are the Roman numerals I, II, III, and IV.
However, one is not entitled to say either that stage IV

https://doi.org/10.1038/ncomms3433
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is two times “worse” than stage II, or that the difference
in severity between stages III and I is the same as the
difference in severity between stages IV and II.

The Mohs hardness of a mineral is expressed relative
to a scale ranging from 1 (for talc) to 10 (for diamond):
however, neither is fluorite (4) two times harder than
gypsum (2), nor is the difference in hardness between
topaz (8) and apatite (5) the same as the difference in
hardness between quartz (7) and fluorite (4).

Mohs hardness can also be expressed using a number
half-way between any two consecutive integers in that
range. For example, since tourmaline typically scratches
quartz (Mohs hardness 7) and it is scratched by topaz
(Mohs hardness 8), its Mohs hardness is conventionally
designated as 7.5. However, this is only a way of saying
that its hardness lies between the hardness of quartz
and the hardness of topaz.

Measuring Abortion Rates

Unsafe abortion caused 5 % to 13 % of maternal deaths
worldwide during 2010–2014, and a large proportion
of the abortions were performed unsafely.79 The preva-79 WHO. Preventing un-

safe abortion. Evidence
Brief WHO/RHR/19.21,

World Health Organization,
Geneva, Switzerland, 2019

lence of abortion therefore is an important public health
measurand. Having ever had an induced abortion is a
nominal property of every woman, whose values are
yes or no. Determining its value reliably is challenging
because women often are reluctant to report it.

In a randomized response, house-to-house survey con-
ducted in Mexico City in 2001, each participating woman
was asked one of two questions, selected at random, as
if by tossing a fair coin: whether she had ever attempted
to terminate a pregnancy, or whether she was born in
the month of April.80

80 D. Lara, J. Strickler,
C. D. Olavarrieta, and

C. Ellertson. Measuring
induced abortion in Mexico:

A comparison of four
methodologies. Sociological

Methods & Research, 32

(4):529–558, May 2004.
doi:10.1177/0049124103262685

Only the woman being interviewed could see which
of these two questions had been drawn for her, and
she truthfully answered yes or no to the question she

https://doi.org/10.1177/0049124103262685
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was presented with. Since this survey technique pre-
serves confidentiality, it tends to produce more reliable
results than, for example, interviews where a woman is
asked directly, face-to-face, the sensitive question about
abortion.

Of the 250 women that participated in the house-to-
house survey, 33 answered yes to the question they
were presented with. This number includes women
who had had an abortion and were asked the question
about abortion, as well as women who were born in
the month of April and were asked whether it was so,
regardless of whether they had ever had an abortion.
Since the survey design prevents determining individual
values of the nominal property, the goal is to measure
its prevalence, α, which is the proportion of women who
had ever attempted an abortion.

This type of survey safe-
guards the confidentiality
of responses and by doing
so improves the reliability
of its results. However, con-
fidentiality could possibly
be breached if the inter-
viewer knew the participant
personally, and also knew
that she was not born in
April. In such case, a yes

answer reveals the attempted
abortion.

The following diagram shows how yes and no answers
may arise, where p = 1/2 is the probability of being
asked the sensitive question, and q = 1/12 denotes
the probability of having been born in April. The last
column lists the probabilities of the different instances
of yes and no. Note that the six probabilities sum to 1.

YES αp

YES α(1 − p)q

NO α(1 − p)(1 − q)

NO (1 − α)p

YES (1 − α)(1 − p)q

NO (1 − α)(1 − p)(1 − q)

Born
in April

Not Born
in April

Born
in April

Not Born
in April

Ever had an abortion?

Born in April?

q

1 − q

Ever had an abortion?

Born in April?

q

1 − q

Abortion

p

1 − p

No Abortion

p

1 − p

Woman

α

1 − α

FACT QUESTION FACT ANSWER

PROBABILITY

Randomized response survey
to measure prevalence of
abortion.

The probability of yes is θ, which is the sum of the three
terms above that appear next to the rectangles shaded
dark gray in the last column of the diagram:

θ = αp + α(1 − p)q + (1 − α)(1 − p)q = αp + q(1 − p).
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Since the estimate of θ is θ̂ = 33/250, p=1/2 by design,
and q=1/12 on the assumption that births are equally
likely to fall on any month of the year, α can be estimated
by solving θ̂=αp + q(1−p) for α, which yields

α̂= θ̂/p − q(1 − p)/p=271/1500=0.18.

The uncertainty associated with α̂ is the same as the
uncertainty associated with θ̂/p because both p and q
are known with full certainty, hence so is q(1 − p)/p.
For the same reason, u(θ̂/p) = u(θ̂)/p.

Now, the random variable θ̂ has a binomial distribution
(Page 173) based on 250 trials, whose variance can be
estimated as θ̂(1 − θ̂)/250, with θ̂ = 33/250 = 0.132.
Therefore,

u(α̂) = u(θ̂)/p =

√
0.132

(
1 − 0.132

)
250

/(1/2) = 0.043.

A 95 % coverage interval for α can be derived from a
corresponding coverage interval for θ, which can be com-
puted as described under Counts (Page 177), finally to
obtain (0.10, 0.28), which is the output of the following
R command:

theta = prop.test(x=33, n=250)$conf.int
p = 1/2; q = 1/12; (theta - q*(1-p))/p

Considering that each value of q specifies one partic-
ular model for the randomized response survey, the
uncertainty in q may be incorporated via model-averaging
(Page 139), and using the statistical bootstrap (Page 179).

Assuming that q has a uniform distribution (Page 167)
between 1/12.9 and 1/12.6 (the extreme birth rates for
Mexico in the month of April during the period 2011-
2017), the estimate of the prevalence of abortion becomes
α̃ = 0.19, and a 95 % uncertainty interval for the true
value of α now ranges from 0.11 to 0.27.
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The above estimate appears to stand in sharp contrast
with the United Nations estimate of 0.1 per 1000 for the
overall abortion rate in Mexico in 2003 (data.un.org,
accessed April 7th, 2021), and with other estimates. A
study of the incidence of abortion in Mexico conducted
by El Colegio de Mexico, the Guttmacher Institute, and
the Population Council Mexico Office,81 reported that 81 F. Juarez, S. Singh, S. G.

Garcia, and C. D. Olavarrieta.
Estimates of induced abortion
in Mexico: what’s changed
between 1990 and 2006?
International Family Planning
Perspectives, 34:158–168, 2008.
doi:10.1363/ifpp.34.158.08

the overall abortion rate in Mexico, for 2006, was 33
per 1000 women aged 15-44, and a follow-up study82

82 F. Juarez and S. Singh.
Incidence of induced abortion
by age and state, Mexico,
2009: new estimates using
a modified methodology.
International Perspectives
on Sexual and Reproductive
Health, 38:58–67, June 2012.
doi:10.1363/3805812

reported that the abortion rate in the region of Mexico
City, for 2009, was 54 per 1000 women in the same age
group.

All of the latter estimates are for incidence, supposedly
per year, while the survey that Lara et al. [2004] con-
ducted asked whether women had ever attempted an
abortion, regardless of when, hence is more reflective
of prevalence. If one divides the estimate of α above by
the age range 44 − 15 = 29 years, then one obtains a
coarse proxy of 7 per 1000 for the incidence rate, which
is intermediate between the United Nations estimate for
2003 and the more recent estimates quoted above.

Measuring Lethal Dose

The use of toxic chemicals is a normal part of contem-
porary life. They are used by farmers and doctors alike
to eliminate pests in the field or eradicate diseases that
stand in the way of our prosperity.

Evaluating the toxicity of a chemical typically involves
exposing a model organism to various levels of the chem-
ical and observing whether it survives. The outcome of
such a study is a nominal property of the organism at
each level of the toxin, whose values are dead or alive,
indicating the ultimate fate of the organism.

Deltamethrin is a synthetic,
powerful insecticide with
chemical structure similar
to the natural pyrethrins
produced by flowers such
as the common daisy. While
harmful to aquatic life, it
is best known as the main
agent in insecticide-treated
mosquito nets used to fight
malaria.

An experiment involving 5 batches of 100 freshwater
mussels each was carried out to measure the toxicity of
the insecticide deltamethrin, and yielded the following

data.un.org
https://doi.org/10.1363/ifpp.34.158.08
https://doi.org/10.1363/3805812
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counts of dead and alive mussels after 24 h exposure to
deltamethrin, at each of five concentration levels.8383 K. Köprücü and E. Seker.

Acute toxicity of deltamethrin
for freshwater mussel,

Unio elongatulus eucirrus
Bourguignat. Bulletin of

Environmental Contamina-
tion and Toxicology, 80:1–4,
2008. doi:10.1007/s00128-

007-9254-z

level of mussels

deltamethrin dead alive

5 µg/L 12 88
6 µg/L 19 81
7 µg/L 25 75
8 µg/L 37 63

16 µg/L 92 8

Assuming that the outcomes for different mussels in
each batch of 100 are independent, and that the proba-
bility of death is the same for all the mussels in the same
batch, then the number, yi, of dead mussels in the batch
exposed to concentration ci has a binomial distribution
(Page 173) based on 100 trials, with probability of death
p(ci) for i = 1, . . . , 5.

The statistical measurement model is the following ob-
servation equation:

yi = Di,1 + · · ·+ Di,100, for i = 1, . . . , 5,

where Di,j is either 1 or 0, indicating whether mussel
j=1, . . . , 100 in batch i was dead or alive at the end of
the experiment.

In many cases of exposure to potentially lethal agents, be
they toxins or ionizing radiation, the probability of death
first increases slowly with increasing dose, followed by a
rapid increase, finally leveling off as the dose continues
to increase, slowly approaching an upper bound that
may be 100 %. Therefore, a plot of the probability of
death against dose tends to be an S-shaped curve that
may be fitted using several different functions.

The logistic regression model has a curve of this shape,
and its parameters are easily interpretable. It is a general-
ized linear model84 (Page 200) that expresses the log-odds

84 P. McCullagh and J. A.
Nelder. Generalized Lin-

ear Models. Chapman
& Hall / CRC, London,

UK, 2nd edition, 1989

(Page 161) of death as a linear function of the log dose:

ln
{

p(c)
1 − p(c)

}
= α + β ln(c),

https://doi.org/10.1007/s00128-007-9254-z
https://doi.org/10.1007/s00128-007-9254-z
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where, in the present case, c denotes the mass concentra-
tion of deltamethrin, and p(c) denotes the correspond-
ing probability of death for the mussels exposed to it.
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logistic regression curve
with parameters α = −8.45
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The value of α determines the mortality corresponding
to c = 1 µg/L. In this case, the odds of death are exp(α).
For α = −8.45, this is approximately 2 deaths per 10 000
mussels thus exposed. If the concentration of the insecti-
cide is increased k-fold, then the odds of death increase
kβ-fold. Given the estimate of β = 3.85, a 2-fold increase
in concentration leads to a 14-fold increase in the odds
of death.

Two popular alternatives to the logistic regression are
the probit and the complementary log-log (cloglog)
models: The function Φ−1 is the

mathematical inverse of
the cumulative distribution
function of the Gaussian
distribution with mean 0 and
standard deviation 1. In R,
values of Φ−1(p) are obtained
by executing qnorm(p).

Φ−1(p) = α + β ln(c),

ln
(
− ln(1 − p)

)
= α + β ln(c).

McCullagh and Nelder [1989] point out that “the logis-
tic and the probit function are almost linearly related
over the interval” 0.1 ⩽ p ⩽ 0.9, hence “it is usually
difficult to discriminate between these two functions on
the grounds of goodness-of-fit.” These three models can
be fit to the data as follows:

D = list(y=cbind(dead=c(12, 19, 25, 37, 92),
alive=c(88, 81, 75, 63, 8)),

c=c(5, 6, 7, 8, 16) )

summary(glm(y ~ log(c), data=D, family=binomial(link=logit)))
summary(glm(y ~ log(c), data=D, family=binomial(link=probit)))
summary(glm(y ~ log(c), data=D, family=binomial(link=cloglog)))

The values of the Bayesian Information Criterion (bic,
Page 100) — a model selection criterion whose smallest
value indicates the best model — are 27.4 for the logit,
27.8 for the probit, and 25.9 for the cloglog model. The
slope, β, of the cloglog model, is estimated as 0.1909.
This implies that mortality increases exp(0.1909) = 1.21
times per unit of increase of ln(c).
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128

The toxic potency of a chemical can be expressed by a
single numerical index, of which the most common is
the concentration that is fatal to half of those exposed,
known as the median lethal dose (ld50). Other toxic doses
can be defined similarly: for example, ld10 is the con-
centration that induces the death of 10 % of the exposed
mussels, and ld90 is the concentration that induces the
death of 90 % of the exposed mussels.

For the logistic model fitted above, the logarithm of ld10

can be computed as

ln(ld10) =
ln

(
0.1

1−0.1

)
− (−8.45)

3.85
≈ 1.62.

R function dose.p from package MASS85 computes the85 W. N. Venables and B. D.
Ripley. Modern Applied

Statistics with S. Springer, New
York, Fourth edition, 2002.

ISBN 0-387-95457-0. URL www.
stats.ox.ac.uk/pub/MASS4

logarithms of the lethal doses for specified proportions
of deaths, and evaluates the associated uncertainties:

logit probit cloglog

ln(ldp) u ln(ldp) u ln(ldp) u

p=0.1 1.62 0.05 1.63 0.04 1.53 0.06
p=0.5 2.19 0.03 2.20 0.03 2.26 0.03
p=0.9 2.76 0.08 2.76 0.07 2.73 0.05

Note that cloglog yields the largest uncertainty for
ln(ld10) and the smallest uncertainty for ln(ld90). The
reason is the asymmetry of the cloglog curve that re-
lates probability of death to concentration of deltamethrin:
it is the steepest of the three for high values of the con-
centration, and it is the flattest for low values of the
concentration.

The physiological response,
as summarized by ld50, is
also used as a measure of
potency. Thus, it offers a

way to measure the concen-
tration of biomolecules,
which is difficult to do

using chemical methods.
The standardization of the

diphtheria-tetanus-pertussis
vaccine is achieved this way.

Due to ethical concerns, toxicity assessments typically
are based on small numbers of data points. This con-
straint, together with the nonlinear nature of the dose-
response curves, make the interpretation of the results
from such experiments dependent on model selection, a
topic addressed under Model Uncertainty (Page 133).

www.stats.ox.ac.uk/pub/MASS4
www.stats.ox.ac.uk/pub/MASS4
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Tinaroo virus

The above example of measuring the lethal dose can
become more complex if the experiment captures more
than just a binary outcome. Here we explore the toxicity
of the tinaroo virus on chicken embryos for which three
outcomes were recorded: normal, deformed, and dead
after 18 days of exposure to the virus. The following
observations, made in the course of a study conducted
in Australia that looked at the family of arboviruses
using embryonated chicken eggs as a model system for
cattle and sheep.86

86 D. A. McPhee, I. M.
Parsonson, A. J. Della-
Porta, and R. G. Jarrett.
Teratogenicity of Australian
Simbu serogroup and some
other Bunyaviridae viruses:
the embryonated chicken
egg as a model. Infection
and Immunity, 43:413–420,
1984. doi:10.1128/iai.43.1.413-
420.1984

virus chicken embryos

level normal deformed dead

3 18 0 1
30 17 0 2

2400 2 9 4
88 000 0 10 9

The level of the disease is
an ordinal property whose
values (normal, deformed,
and dead) are determined by
examination of the chicken
embryos on day 18.Suppose that the three ordered categories have probabil-

ities — p1(E) for normal, p2(E) for deformed, and p3(E)
for dead — that depend on the level (E) of exposure
to the virus. Taken together, these probabilities define
a probability distribution for the ordinal property Y,
which is the severity of the infection.

Measuring this ordinal property means assigning a value
to Y based on the observation of the corresponding
exposure E. That is, Y is the the output quantity in
a traditional measurement model, and E is an input
quantity, except that here Y an ordinal quality and the
model is a statistical measurement model [JCGM GUM-
6:2020, §11].

The model specifies the probabilities of the different
severity levels of the infection as function of the exposure
levels, and, once calibrated, serves to assign the level
of severity that has the highest probability, given the
exposure level E. For the purposes of this example, we

https://doi.org/10.1128/iai.43.1.413-420.1984
https://doi.org/10.1128/iai.43.1.413-420.1984
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will assume that the virus levels are free from error, and
that measurement uncertainty derives solely from the
imperfect, stochastic relation between Y and E.

The probability that the severity of the infection on a
particular chicken embryo (Y) will be less than or equal
to j is

γj(E) = Pr(Y ⩽ j) = p1(E) + · · ·+ pj(E),

where j=1, 2, and 3 denote normal, deformed, and dead,
respectively. The statistical model we will fit to the data
specifies that

ln

{
γj(E)

1 − γj(E)

}
= θj−1,j − β ln(E) (j = 1, 2, 3),

where the ratio γj(E)/(1− γj(E)) is the odds (Page 161)
of Y ⩽ j, and where θ are ordered thresholds:

(θ0,1 = −∞) ⩽ θ1,2 ⩽ θ2,3.

This model is a cumulative link model87 because it as-

87 A. Agresti. Analysis of
Ordinal Categorical Data.

John Wiley & Sons, Hobo-
ken, NJ, 2nd edition, 2010.

ISBN 978-0-470-08289-8.
doi:10.1002/9780470594001 sumes that the values of the “link” function (in this case,

the logit) of the cumulative probabilities of the ordered
disease severity levels are determined by the values of
the covariate E and the parameters θ1,2, θ2,3, β. The val-
ues of the covariate are observed, and the values of the
parameters will have to be estimated from the data.

Suppose that E1 and E2 are two different values of the
virus levels. The logarithm of the ratio of the correspond-
ing odds of both suggesting the same level, j, of severity
of the infection, is β(E2 − E1), hence is independent of
the severity level, and depends only on the difference
between the exposure levels. For this reason, this model
is called the proportional odds model88.

88 P. McCullagh. Regres-
sion models for ordinal

data. Journal of the Royal
Statistical Society, Series B

(Methodological), 42(2):109–142,
1980. doi:10.1111/j.2517-

6161.1980.tb01109.x

We fit the model to the data above using R function
clm defined in package ordinal [Christensen, 2019], by
executing the following R code:

https://doi.org/10.1002/9780470594001
https://doi.org/10.1111/j.2517-6161.1980.tb01109.x
https://doi.org/10.1111/j.2517-6161.1980.tb01109.x
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virus = c(3, 20, 2400, 88000)
normal = c(18, 17, 2, 0)

deformed = c(0, 0, 9, 10)
dead = c(1, 2, 4, 9)

exposure = c(rep(virus, normal),
rep(virus, deformed), rep(virus, dead))

severity = c(rep(rep("normal",4), normal),
rep(rep("deformed",4), deformed),
rep(rep("dead",4), dead))

df = data.frame( logexposure=log(exposure),
severity=factor(severity, ordered=TRUE,
levels=c("normal", "deformed", "dead")) )

require(ordinal)
fit.clm = clm(severity ~ logexposure,

data=df, link="logit")
summary(fit.clm)
confint(fit.clm, type = "Wald", level=0.95)

## Confusion Matrix
table(df$severity, predict(fit.clm, type="class")$fit)

n
o

r
m

a
l

d
e

f
o

r
m

e
d

d
e

a
d

normal 35 2 0
deformed 0 9 10

dead 3 4 9

The resulting confusion matrix shows the number of ob-
served disease severity in each row and the predicted
severity in each column. For example, of the 37 em-
bryos diagnosed as normal, the fitted model classified 35
correctly, but it misclassified 2 as deformed.

The thresholds of this model are as follows:

θ̂1,2 = 3.1 ± 1.3 and θ̂2,3 = 5.4 ± 1.7,

where each estimate is qualified with its 95 % confidence
interval as calculated using the R code above.

The model’s value assignments are based on the proba-
bilities that the model computes for each severity level,
given the value of the exposure. These probabilities are
determined by the thresholds, θ1,2 and θ2,3, and by β,
estimated as 0.51 with standard uncertainty 0.09.

The uncertainty associated with an assignment of sever-
ity level depends on how dispersed the unit of proba-
bility is over the three possible levels. This uncertainty
can be quantified using the entropy of the corresponding
probability distribution.
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The entropy, H, of the probability distribution that puts
probabilities p1(E), p2(E), and p3(E) to the normal, de-
formed, and dead levels, for a chicken embryo with expo-
sure E to the tinaroo virus, is defined as

H = − ∑
j=1,2,3

pj(E) ln pj(E).

The larger the entropy, the greater the uncertainty in
the assignment of severity level. Thus, entropy may be
used to express the uncertainty associated with value
assignments for ordinal properties.

The largest entropy possible in this case (H = 1.1) is
achieved when p1(E) = p2(E) = p3(E) = 1/3, and
the lowest (H = 0) when one of these probabilities
approaches 1 and the other two approach 0.

Consider the prediction this model makes for chicken
embryos with exposure to E = 10 and 100 infective
particles.

p = predict(fit.clm,
newdata = data.frame(logexposure = log(c(10, 100))))

In both cases the predicted classification is normal but
the uncertainties surrounding this prediction are very
different:

p(E = 10) p(E = 100)

normal 0.877 0.687
deformed 0.109 0.269

dead 0.014 0.044

Entropy, H 0.42 0.75
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Entropy of the probability
distributions produced by
the cumulative link model

as it classified cases as
normal, deformed, or dead.

The boxplots alongside show that the uncertainty is
appreciably larger for the 19 misclassified cases than for
the 53 cases that the model classified correctly.
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Model Uncertainty

All measurements, even the simplest, involve models,
which can be deterministic or stochastic and are speci-
fied using mathematical or statistical constructs.

Deterministic models describe relations between quan-
tities that are based on a physical theory. For example,
the relation between pressure, density and velocity in
Bernoulli’s equation, which underlies the measurement
of incompressible fluid flow.

Stochastic models, on the other hand, use probability
distributions to describe relations between quantities
that are influenced by natural variability or measure-
ment uncertainty. For example, the relation between
age, weight, and height in human population, which is
determined via statistical data reductions.

Since building or selecting a measurement model is an
integral part of measurement, and typically it is sur-
rounded by uncertainty, this uncertainty contribution
should be evaluated and propagated to the estimate of
the measurand, the same as the contributions from all
the other sources of measurement uncertainty.

Mass of Pluto

Modeling the motion of the heavenly bodies that com-
prise the solar system has fascinated scientists for cen-
turies. As a feat of mathematical modeling and precision
measurements, Neptune was discovered in 1846 based
on the analysis of observational data about the motion
of Uranus. This discovery remains one of the best ex-
amples of the power of the scientific method, and it
prompted many at the time to look for the next planet
that might lurk beyond the newly-discovered Neptune.

Four images from New
Horizons Long Range
Reconnaissance Imager were
combined with color data
from the Ralph instrument
to create this global view
of Pluto in July 2015 —
Wikimedia Commons (nasa,
2015).

Already in 1848, well before Pluto’s discovery, Jacques
Babinet estimated the mass of a foretold new planet as 12
times that of Earth. Percival Lowell’s 1915 prediction for
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“planet X” was 6.6 times Earth’s mass. And when Clyde
Tombaugh finally discovered it in 1930, the newspapers
announced “a ninth planet, greater than earth, found.”
Only a few decades ago Pluto was thought to be several
orders of magnitude heavier than we now know it to
be. What happened that so drastically changed our
estimates of Pluto’s mass?
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Estimated mass of Pluto
(mPluto/mEarth) over the last

two centuries [Duncombe
and Seidelmann, 1980] serves

as a prime example of how
important measurement

models and all assumptions
that go into these models

are in creating knowledge.

Pluto is so distant that it is difficult to learn much about
it from direct observation. Our knowledge of its mass
therefore depends on the physical models we adopt.
For a long time, Pluto’s mass was estimated based on
perturbations to the motions of Uranus and Neptune.

It all changed in 1978, when a sharp-eyed us astronomer,
James W. Christy, discovered Pluto’s first moon. At
half the size of Pluto, Charon has a significant effect
on Pluto’s motion and enabled estimating its mass by
application of Kepler’s laws.

In the late 1980s, the orbits of Pluto and its largest moon
Charon were aligned with the line-of-sight from Earth
(an arrangement that occurs once in 120 years) which
allowed for accurate mass estimates for the first time.89

89 R. P. Binzel. Pluto-Charon
mutual events. Geophysi-

cal Research Letters, 16(11):
1205–1208, November 1989.

doi:10.1029/gl016i011p01205

In 2015, nasa’s New Horizons space probe flew near
Pluto and was able to answer one of the most basic
questions about Pluto conclusively, estimating its mass
to be mPluto = 0.0022mEarth.

Similarly to the mass of Pluto, the mass of Sun had also
been difficult to estimate in the past. The successive
editions of Newton’s Principia document such difficul-
ties for the solar mass relative to Earth’s mass whose
contemporary value is approximately 330 000:

28 700 Principia (1687) 1st ed
227 512 Principia (1713) 2nd ed
169 282 Principia (1726) 3rd ed

Also note the excessive number of digits which serves
as a reminder that even great men like Newton were not
fully appreciative of measurement uncertainty.

https://doi.org/10.1029/gl016i011p01205
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Scientists tend to overestimate the confidence in their re-
sults and the quest for the mass of Pluto is not the only
example where our collective scientific judgment has
fallen short. Determinations of the atomic weights of tel-
lurium and iodine made in the 19th century did not favor
Mendeleev’s suggestion [Mendeleev, 1871, Page 151]90

90 D. Mendeleev. Die
periodische Gesetzmässigkeit
der Elemente. Annalen der
Chemie und Pharmacie, VIII.
Suplementband:133–229, 1871

that the atomic weight of tellurium should be smaller
than that of iodine. It is therefore not surprising that
the estimates of these two atomic weights should have
changed gradually to conform with Mendeleev’s sug-
gestion.91

91 J. Meija. Atomic weights
of the elements: From
measurements to the periodic
table. In M. J.T. Milton, D. S.
Wiersma, C. J. Williams,
and M. Sega, editors, New
Frontiers for Metrology: From
Biology and Chemistry to
Quantum and Data Science,
volume 206 of Proceedings
of the International School
of Physics “Enrico Fermi”,
pages 77–93. IOS Press,
Amsterdam, The Netherlands,
2021. ISBN 978-1-64368-246-4.
doi:10.3254/ENFI210019

Scientists tend to overestimate the confidence in their
results and the quest for the mass of Pluto is not the
only example where our collective scientific judgment
has fallen short. Determinations of the atomic weights
of tellurium and iodine made in the 19th century did
not favor Mendeleev’s suggestion that the atomic weight
of tellurium should be smaller than that of iodine. It
is therefore not surprising that the estimates of these
two atomic weights should have changed gradually to
conform with Mendeleev’s suggestion.
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For example, von Hauer
[1857] made five determina-
tions of the ratio between the
molecular weights of AgBr
and K2TeBr6, from which he
could derive five estimates
of the atomic weight of
tellurium given values of
the atomic weights of silver,
bromine, and potassium
that had been determined
previously.

Note the temporal trends
of the measured values of
Ar(Te) and Ar(I), appar-
ently reflecting a desire to
gradually conform with
Mendeleev’s hypothesis.

Although now we are certain that the atomic weight of
tellurium, 127.60 ± 0.03, is greater than that of iodine,
126.904 47 ± 0.000 03, it is plausible that Mendeleev’s
pronouncement played an invisible guiding role in con-
temporary atomic weight measurements of these two
elements.

https://doi.org/10.3254/ENFI210019
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This phenomenon is known as the expectation bias and
it is a reminder that uncertainty estimates are often
influenced by unknown effects that have little to do with
the measurement they pertain to.

Height of Mount Everest

Mount Everest:
view from the south
— Wikimedia Com-

mons (shrimpo1967, 2012).

Only in 1849, in the course of the Great Trigonomet-
rical Survey of India (1802–1871), was Mount Everest
recognized as the highest mountain on Earth.92

92 S. G. Burrard. Mount
Everest: The story of a
long controversy. Na-

ture, 71:42–46, November
1904. doi:10.1038/071042a0

The quest to measure the height of Mount Everest re-
veals how aspects of measurement models that are much
too often hidden from view can influence the results.
The earliest observations were made from northern In-
dia, some 160 km away, and involved measurements of
angles made using theodolites.

station distance angle height

Jirol 190.966 km 1
◦

53’ 33.35” 8836 m
Mirzapur 175.219 km 2

◦
11’ 16.66” 8841 m

Janjipati 174.392 km 2
◦

12’ 9.31” 8840 m
Ladnia 175.195 km 2

◦
11’ 25.52” 8839 m

Harpur 179.479 km 2
◦

6’ 24.98” 8847 m
Minai 183.081 km 2

◦
2’ 16.61” 8836 m

Determinations of the height
of Mount Everest extracted

from the Records of the
Great Trigonometrical Sur-
vey of India, based on ob-
servations made between
November 1849 and Jan-

uary 1850 [Burrard, 1904].

The simplest approach to estimate the height involves
only the elevation angle (a), the distance from the ob-
serving station to the mountain (d), the altitude of the
station (hS), and a trigonometric relation:

h = hS + d tan a.

For the Jirol station, which stands 67 m above sea level,
this formula yields

h = 67 m + (190 966 m)× tan(1◦ 53′ 33.35′′) ≈ 6377 m,

which grossly underestimates the height of the moun-
tain. If left uncorrected, Earth’s curvature and the re-
fraction of light as it travels through the atmosphere are

https://doi.org/10.1038/071042a0
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the principal sources of error in trigonometric determi-
nations of height made from long distances.

Troughton & Simms theodo-
lite from around 1910, used
to measure angles in hori-
zontal and vertical planes —
Wikimedia Commons (Colgill,
2020).

Accounting for the curvature (with Earth modeled as
a sphere of radius R = 6371 km) leads to a much more
complex model:

sin(π
2 −a)=

(R+h) sin(d/R)√
R2

S−2RS(R+h) cos(d/R)+(R+h)2
,

where RS = R + hS. Solving this equation for h numeri-
cally, again using the elevation angle measured from the
Jirol station, gives h ≈ 9251 m, now overestimating the
height of Mount Everest.

The fact that atmospheric refraction tends to increase
the apparent elevation angle of a mountain peak relative
to the observer, is the main reason why the previous
height estimate is biased high.

While atmospheric refraction depends on several envi-
ronmental conditions, its magnitude is approximately
10 % of the effect of the Earth’s curvature. The Manual of
Surveying for India [Thuillier and Smyth, 1875, Page 505]
explains how refraction was modeled:

There are no fixed rules for Terrestrial refraction, but
[. . . ] in determining the heights of the peaks of the
Snowy Range (Himalayas), about one-thirteenth of the
contained arc was assumed.

The contained arc is the value
(in radian) of the angle with
vertex at the center of Earth
subtended by an arc of length
d on Earth’s surface. It is the
ratio of d to Earth’s radius.Thus, the effect of light refraction was modeled by re-

ducing the observed elevation angle by (d/R)/13, that
is from a to a − (d/R)/13 (expressed in radian). As a
result, the estimate of the height of Mount Everest, still
based on the observation made from Jirol, but now tak-
ing into account both Earth’s curvature and atmospheric
refraction, becomes h ≈ 8810 m.

Other influences on the height estimates were recog-
nized later, such as the effect of temperature on the re-
fraction of light and the gravitational influence of these
large mountains on plumb lines and leveling devices.
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Despite all these challenges, the original average esti-
mate from the 1850s, 8840 m, is remarkably close to the
current estimate of 8848 m, based on gps measurements
made at the mountaintop.

In 1914, Nature noted that “when all is said and done,
it is the errors arising from the deflection of the plumb-
line [. . . ], and the possible variation in the actual height
of the point observed (common enough in the case of
snow-capped peaks), which chiefly affect the accuracy of
angular determinations of altitude, and it is probably to
these [. . . ] that we must ascribe [. . . ] the doubt whether
Kinchinjunga or K2 is to hold the honourable position
of second in altitude to Everest amongst the world’s
highest peaks.”

Significant efforts are devoted to this day in determin-
ing the precise height of Mount Everest. Over the last
few decades, surveyors from China and Nepal, as well
as researchers from other countries, have conducted
independent measurement campaigns to measure the
mountain. Not only were the estimates of the moun-
tain’s height different, not everyone even agreed on what
type of height to use. The mountaintop has a 3.5 meter
deep snow cap so it makes a big difference whether to
use the rock height of the snow height.

After more than a decade of dispute, in December 2020

China and Nepal agreed on how tall Mount Everest.
When the joint announcement of the new height was
made by the representatives of both countries, Mount
Everest grew taller by nearly a meter compared to the
previous value! The new “official” value is 8848.86 m,
and refers to the snow height of the mountain.
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Averaging Measurement Models

In many measurement situations, several alternative
models naturally present themselves, with no a priori
reason to favor one over the others. In some cases it may
be most convenient to select and use the “best” model
among a collection of alternatives, like we did when we
introduced a reliable guide for model building (Page 100)
in the context of building a calibration function. In other
cases, the best performance is achieved by a weighted
average of alternative models.

In general, model averaging does not mean averaging
the parameters of the alternative models. The alternative
models may have different numbers of parameters, or,
even if they have the same number of parameters, the
parameters of different models may not be the same
kinds of quantities that one could reasonably average.
Instead, the averaging will be of predictions that the
alternative models make of the same quantities, and
the question is how to evaluate the uncertainty of such
averages.

Influenza Epidemic

The following example illustrates model averaging to
produce an estimate of the basic reproduction number
(R0) for an influenza epidemic that ravaged a boarding
school for boys between the ages of 10 and 18 in the
north of England, during January and February of 1978.

The concept of R0 is often
regarded to be one of
the most useful tools in
mathematical biology. It
is the average number of
infections produced by an
infective person that interacts
freely with others who are
susceptible to becoming
infected.

Measurement models for epidemics in human or animal
populations typically comprise a deterministic compo-
nent that describes the temporal evolution of the ex-
pected number of cases (and the corresponding expected
numbers of individuals who are susceptible but not yet
sick, of individuals who have already recovered, etc.)
[Hethcote, 2000].
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These models also comprise a stochastic component that
describes how the actual counts of individuals in the
different categories vary around their expected values
[Bjørnstad, 2018].

date cases

1978-01-22 3
1978-01-23 8
1978-01-24 26
1978-01-25 76
1978-01-26 225
1978-01-27 298
1978-01-28 258
1978-01-29 233
1978-01-30 189
1978-01-31 128
1978-02-01 68
1978-02-02 29
1978-02-03 14
1978-02-04 4

English boarding school
epidemic of 1978 [BMJ
News and Notes, 1978;

Martcheva, 2010].

The particular epidemic we will be concerned with
started in late January and ended in early February
of 1978, eventually infecting 512 of the 763 boys in the
school. At the peak of the epidemic, 298 boys were
confined to bed in the school’s infirmary.

We will consider two mathematical models for the daily
counts of influenza cases in the boarding school. Each
involves a compartment model and Poisson (Page 173)
random variables.

Schematics of two epidemi-
ological, compartmental

models of influenza. The sir

model considers only the
susceptible, infected, and recov-
ered, whereas the siqr model
considers also the quarantined.

At each epoch (a day in this case) a compartment model
partitions the relevant population into several categories.
For the sir model these categories are the suscepti-
ble, the infective, and the recovered — whose initials,
sir, make the acronym of the model. The siqr model
comprises yet another category, the quarantined. The
same person will belong to different categories at dif-
ferent times as the epidemic spreads and the disease
progresses.

We will assume that, at the outset of the epidemic, ex-
actly one boy is infective, and all the others are sus-
ceptible. Therefore, the initial counts (on day 1) in the
different compartments are

S(1) = 762, I(1) = 1, Q(1) = 0, R(1) = 0.

The sir model was intro-
duced in the 1920s [Ker-
mack and McKendrick,

1927] and remains one of
the simplest models for in-

fectious diseases that are
transmitted from human to

human, and where recovery
confers lasting resistance.
This three-compartment

model has undergone many
improvements and additions
tailored for a variety of situa-
tions. Recently, for example,
the covid-19 epidemic and

the implementation of na-
tionwide interventions in
Italy were modeled using

an extension of this model
that comprises eight compart-

ments: susceptible, infected,
diagnosed, ailing, recognized,

threatened, healed, and ex-
tinct [Giordano et al., 2020].

According to the sir model, an infected boy will remain
infective for some time, and then will recover, in the
process acquiring immunity against reinfection with the
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same virus. But while he is infective, he continues to in-
teract with the other boys in the school, likely spreading
the disease.

This is not what actually happened: sick boys were iso-
lated (that is, quarantined) in the school infirmary as
soon as the obvious symptoms developed. Quarantining
removed them from the pool of those that were spread-
ing the disease. Regardless of whether a sick boy was
quarantined or not, eventually he will recover. The siqr

model takes into account the effect of quarantining.

The deterministic components of the sir and siqr mod-
els are solutions of systems of differential equations,
thus assuming that the numbers of boys in the differ-
ent categories vary continuously over time. The three
simultaneous differential equations for the deterministic
component of the sir model are

dS/dt = −βSI/N,

dI/dt = +βSI/N − γI,

dR/dt = +γI,

where N = 763 is the total number of boys in the school.
Note that S, I and R all are functions of time, t, even if
this is not shown explicitly.

Since the time derivatives
of the numbers of boys in
the different compartments
add to zero, the total N =
S + I + R remains constant
over time. More complex
models can take into account
births and deaths (regardless
of whether these are caused
by the disease).

The observations are the numbers of boys that are sick
in bed on each day of the epidemic, which are modeled
as outcomes of independent Poisson random variables
with means I(1), . . . , I(14). If the variability of these
counts were much in excess of

√
I(1), . . . ,

√
I(14), then a

negative binomial (Page 175) model might be preferable.

The siqr model has an additional parameter, α, which is
the quarantining rate. We assume that the same recovery
rate γ applies to all infectives, regardless of whether they
are quarantined or not. The siqr model is represented
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by the following system of four differential equations:

dS/dt = −βSI/(N − Q),

dI/dt = +βSI/(N − Q)− γI − αI,

dQ/dt = +αI − γQ,

dR/dt = +γI + γQ.

These two epidemiological models were fitted to the data
using the Stan modeling language, in tandem with the
R package rstan.93 The estimates of all non-observable

93 B. Carpenter, A. Gel-
man, M. Hoffman, D. Lee,

B. Goodrich, M. Betancourt,
M. Brubaker, J. Guo, P. Li,

and A. Riddell. Stan: A
probabilistic programming

language. Journal of Statistical
Software, 76(1):1–32, 2017.

doi:10.18637/jss.v076.i01; and
Stan Development Team. Stan

User’s Guide. mc-stan.org,
2019. Stan Version 2.28

quantities are the means of their Bayesian posterior dis-
tributions (Page 204).

The following Stan code was used to fit the sir model,
assuming that the counts of boys in the different com-
partments are like outcomes of Poisson random vari-
ables whose means satisfy the corresponding system of
differential equations presented above.

modelSIR = "
functions {

real[] sir(real t, real[] y, real[] ps, real[] xr, int[] xi)
{ real N = xi[1];

real dSdt = - ps[1] * y[1] * y[2] / N;
real dIdt = ps[1] * y[1] * y[2] / N - ps[2] * y[2];
real dRdt = ps[2] * y[2];
return {dSdt, dIdt, dRdt}; }

}
data { int N; real y0[3]; real ts[14]; int cases[14]; }
transformed data { real xr[0]; int xi[1] = N; }
parameters { real<lower=0> bg[2]; }
transformed parameters {

real y[14,3];
y = integrate_ode_rk45(sir, y0, 0, ts, bg, xr, xi);

}
model {

bg ~ normal(1, 10); // Priors for beta and gamma
cases ~ poisson(y[,2]); // Sampling distribution

}
generated quantities {

real R0 = bg[1] / bg[2];
}"

The R code below compiles and fits the Stan model to
the data. Similar codes were used to fit the siqr model.

https://doi.org/10.18637/jss.v076.i01
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library(rstan)
library(outbreaks)
cases = influenza_england_1978_school$in_bed
N = 763; n_days = length(cases)
dataSIR = list(n_days=n_days, y0 = c(S=N-1, I=1, R=0),

N = N, cases = cases, t0 = 0, ts = seq(1, n_days),
ts_pred = seq(1, 1+n_days, length.out = 100) )

## Compile the Stan model
modelSIR.poisson = stan_model(model_code=modelSIR)
## Fit the Stan model
fitSIR.poisson = sampling(modelSIR.poisson, data = dataSIR)
## Estimate of R0
print(fitSIR.poisson, pars = 'R0')
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The basic reproduction numbers for the sir and siqr

models are given as follows:

R0(SIR) =
β

γ
,

R0(SIQR) =
β

γ + α
.

The Bayesian estimates of R0 along with their standard
uncertainties are given in the alongside table. Although
numerically different, they are not significantly differ-
ent once their associated uncertainties are taken into
account: their standardized difference is

z =
3.55 − 3.38√
0.082 + 0.082

= 1.5.

Since these Bayesian estimates are approximately like

model R0 u(R0)

sir 3.55 0.08
siqr 3.38 0.08
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outcomes of Gaussian random variables, a z-test for their
difference yields p-value 0.13 (Page 32).

R0 captures various aspects
of the outbreak. For simple

models such as these, the
proportion of the population
that needs to be immunized
to prevent sustained spread

of the disease (that is, to
achieve herd immunity), has
to be larger than 1 − 1/R0

and the maximum number
of cases on any given day is
Imax = N − N(1 + ln R0)/R0.

The estimates of R0 produced by these two models can
be averaged using Bayesian stacking weights [Yao et al.,
2017] to produce an estimate corresponding to the best
mixture of these models. The weights were computed
using R package loo [Vehtari et al., 2019]. Since the
stacking weights were 0.24 for sir and 0.76 for siqr, the
combined estimate is

R0 = (0.24 × 3.55) + (0.76 × 3.38) = 3.42,

with standard uncertainty

u(R0) =
√
(0.24 × 0.08)2 + (0.76 × 0.08)2 = 0.06.

The basic reproduction number, R0, represents the aver-

We have here an instance of
the magic of averaging: the

uncertainty surrounding the
weighted average of the es-

timates of R0 corresponding
to the sir and siqr models,

is smaller than the uncer-
tainties of these estimates.

age number of new infections per existing case. In other
words, if R0 = 3, then one person with the disease is
expected to infect, on average, three others. Despite its
simplicity, R0 is a messy quantity because the definition
allows for a multitude of interpretations. For example,
do we estimate this quantity at the beginning of the
outbreak, at the end, or somehow estimate the average
during the entire infectious period?

For measles, R0 is widely
believed to be somewhere

between 12 and 18. Yet,
as an example of the real-
world messiness of the R0

estimates, a recent system-
atic review of 18 studies of

measles outbreaks reported
R0 values ranging from 4

to 200 [Guerra et al., 2017].

A common way to estimate R0, among the many avail-
able alternatives,94 is based on the total number of sus-

94 J. M. Heffernan, R. J. Smith,
and L. M. Wahl. Perspectives

on the basic reproductive
ratio. Journal of The Royal So-

ciety Interface, 2:281–293, 2005.
doi:10.1098/rsif.2005.0042

ceptible patients at the end of the outbreak, which for
the boys school was S(∞) = 763 − 512 = 251:

R0 =
ln(S(0)/S(∞))

1 − S(∞)/N
=

ln(762/251)
1 − 251/763

= 1.65.

Although ad hoc, rather than model-based as the esti-
mates computed above, the very fact that this estimate
of R0 differs from them to such enormous extent high-
lights the role of models, and reveals the impact that the
selection of a model has upon the uncertainty associated
with estimates of the quantities of interest.

https://doi.org/10.1098/rsif.2005.0042
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Age of Machu Picchu

Machu Picchu older than
expected, study reveals
Mike Cummings (August 4th,
2021) YaleNews

A recent study95 concluded that Machu Picchu is older

95 R. L. Burger, L. C. Salazar,
J. Nesbitt, E. Washburn, and
L. Fehren-Schmitz. New
AMS dates for Machu Picchu:
results and implications.
Antiquity, 95(383):1265–1279,
2021. doi:10.15184/aqy.2021.99

than previously thought. This study applied radiocar-
bon dating to human bone and tooth samples retrieved
from burial caves at Machu Picchu. For one of the oldest
molar specimens, radiocarbon dating yielded an age of
540 bp with standard uncertainty 20 years.

To convert carbon-14 levels into the corresponding cal-
endar ages, one uses either the Northern Hemisphere
Curve (intcal2020) or the Southern Hemisphere Curve
(shcal2020). While Machu Picchu is located in the
Southern hemisphere, due to its proximity to the equa-
tor and local weather patterns, it gets its carbon from
both hemispheres.96 Since the precise nature of atmo- 96 E. J. Marsh, M. C. Bruno,

S. C. Fritz, P. Baker, J. M.
Capriles, and C. A. Has-
torf. IntCal, SHCal, or a
Mixed Curve? Choosing
a 14C calibration curve for
archaeological and paleoen-
vironmental records from
tropical South America. Ra-
diocarbon, 60(3):925–940, 2018.
doi:10.1017/RDC.2018.16

spheric mixing is unknown, Burger et al. (2021) linearly
pooled these two curves to recognize the carbon sources
from both hemispheres.

Comparison of the calibrated
radiocarbon dates for
molar 4F listed in Figure 3

and Table S5 of Burger et
al. (2021) obtained using
the calibration curves
shcal2020, intcal2020,
and their mixture.
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The results showed that Machu Picchu was occupied
from as early as ad 1420, two decades earlier than sug-
gested by the textual sources that associate the site with
Emperor Pachacuti’s rise to power in ad 1438. The
ages of molar 4F corresponding to the shcal2020 and
intcal2020 calibration curves differ by 16 years: thus,
model uncertainty emerges as a source of uncertainty at
least as important as the model-specific standard mea-
surement uncertainty, which is around 12 years.

https://news.yale.edu/
https://doi.org/10.15184/aqy.2021.99
https://doi.org/10.1017/RDC.2018.16
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Consensus Building

Burgess and Spangler [2003] explain that “consensus
building (also known as collaborative problem solving
or collaboration) is a conflict-resolution process used
mainly to settle complex, multiparty disputes.” In the
sciences, consensus building serves to blend measure-
ment results for the same measurand that have been
obtained independently of one another.

In measurement science in particular, besides this role,
consensus building is also used to characterize and com-
pare the different measurement results, by estimating
the difference between the true value that each purports
to measure, and the true value of the consensus value,
and evaluating the corresponding uncertainty — the
so-called degrees of equivalence [Koepke et al., 2017].

In medicine, where consensus building is often referred
to as meta-analysis [Higgins et al., 2019], and where the
same techniques are also employed to merge results of
multicenter trials [Friedman et al., 2015], the goal is to as-
certain confidently that a medical procedure or therapy
is superior to another, by pooling results from different
studies that, if taken individually, may be inconclusive.

Hubble-Lemaître Constant

In the 1920s, Edwin Hubble and Georges Lemaître dis-
covered that galaxies appear to be moving away from
Earth at speeds (v) that are proportional to their distance
(D) from Earth [Hubble, 1929] [Lemaître, 1927, 2013]:

v = H0D.

The constant of proportionality, H0, is known as the
Hubble-Lemaître constant. This discovery motivated
Einstein to visit Hubble at the Mount Wilson observatory
on January 29, 1931, and acknowledge that the universe
indeed is expanding.
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Since the final release of the results from the Planck sur-
vey,97 which include an estimate of H0, several other 97 Planck Collab. et al.

Planck 2018 results — VI.
Cosmological parameters.
Astronomy & Astrophysics, 641:
A6, 2020. doi:10.1051/0004-
6361/201833910

measurement results have been produced for this con-
stant, by application of a wide variety of methods. The
measurement results are mutually inconsistent in the
sense that the measured values are more dispersed than
their uncertainties suggest that they should be.

H0 u(H0) study reference

67.36 0.54 planck [Planck Collab. et al., 2020]

72.50 2.20 h0li [Birrer et al., 2019]
67.80 1.30 des [Macaulay et al., 2019]
69.32 1.42 ryan [Ryan et al., 2019]
74.03 1.42 hst [Riess et al., 2019]
67.40 6.10 flat [Domínguez et al., 2019]
70.30 5.15 lv [Hotokezaka et al., 2019]
73.30 1.75 h0l6 [Wong et al., 2019]
69.80 1.90 hst [Freedman et al., 2019]
73.50 1.40 rpr [Reid et al., 2019]
70.30 1.35 dutta [Dutta et al., 2019]
76.80 2.60 sh3 [Chen et al., 2019]
74.20 2.85 stri [Shajib et al., 2019]
73.90 3.00 mega [Pesce et al., 2020]
75.80 5.05 jaeg [de Jaeger et al., 2020]
67.60 4.25 muk [Mukherjee et al., 2020]
71.80 3.59 denz [Denzel et al., 2020]
73.50 5.30 bax [Baxter and Sherwin, 2020]
67.40 1.00 sedg [Sedgwick et al., 2021]
73.20 1.30 hstga [Riess et al., 2021a]
72.10 2.00 hstgb [Soltis et al., 2021]
69.80 1.70 free [Freedman, 2021]
73.30 1.40 sh0es [Riess et al., 2021b]

Selected, recent estimates
of the Hubble-Lemaître
constant, H0 in (km/s)/Mpc.
The uncertainties listed in
the column headed u(H0)
are such that each of the
intervals {H0,j ± u(H0,j)}
is believed (by its authors)
to include the true value
of H0 with probability 68 %
approximately. Some of the
uncertainties were originally
expressed asymmetrically,
but since the asymmetries
were very mild, here they
have been replaced by the
geometric averages of the
corresponding, reported “left”
and “right” uncertainties.

In particular, there is a statistically significant discrep-
ancy between the estimates of H0 based on recent mea-
surements of the velocity and distance of galaxies, and
the estimate derived from measurements of fluctuations
and polarization of the cosmic microwave background
made by the Planck mission, which ended in 2013.

Astrophysicists call this discrepancy the Hubble tension,98

98 V. Poulin, T. L.
Smith, T. Karwal, and
M. Kamionkowski. Early
dark energy can resolve
the Hubble tension.
Physical Review Letters,
122:221301, June 2019.
doi:10.1103/PhysRevLett.122.221301

noting that “the significance of the current tension also
depends on the assumption that all sources of uncer-
tainty have been recognized and accounted for.”99

99 W. L. Freedman. Mea-
surements of the Hubble
Constant: Tensions in per-
spective. The Astrophysical
Journal, 919(1):16, 2021.
doi:10.3847/1538-4357/ac0e95

https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1103/PhysRevLett.122.221301
https://doi.org/10.3847/1538-4357/ac0e95


148

While remaining agnostic about the origin of the afore-
mentioned “excess” dispersion, it is possible to blend
mutually inconsistent measurement results and produce
a single consensus estimate, using this statistical mea-
surement model:

H0,j = H0 + λj + ε j (j = 1, . . . , n),

where the {λj} denote experiment effects, and the {ε j}
denote experiment-specific measurement errors.

Both the experiment effects and the measurement errors
are assumed to have mean zero, thus conveying the
(debatable) assumption that the measured values, taken
as a group, are centered at the correct, true value of H0.
The {ε j} have standard deviations equal to the reported
uncertainties listed under u(H0) in the table above.

The {λj} have standard deviation τ that quantifies the
aforementioned “excess” dispersion, which manifests
itself only when results from multiple, independent
experiments are compared. For this reason, τ is often
called dark uncertainty [Thompson and Ellison, 2011].

The standard deviation of the 22 estimates of the Hubble-
Lemaître constant listed above (excluding the value
from Planck) is 2.76 (km/s)/Mpc, while the median of
the corresponding, reported standard uncertainties is
1.95 (km/s)/Mpc. Thus, a preliminary estimate of τ is

τ =
√

2.762 − 1.952 = 1.95 (km/s)/Mpc.

Further to specify the model for the {H0,j}, we will
employ the NIST Decision Tree,100 which recommends

100 A. Possolo, A. Koepke,
D. Newton, and M. R. Winch-

ester. Decision tree for key
comparisons. Journal of

Research of the National In-
stitute of Standards and Tech-

nology, 126:126007, 2021.
doi:10.6028/jres.126.007

that the {λj} be modeled as a sample from a Laplace
distribution (Page 172), which can accommodate large
deviations from the mean more naturally than the Gaus-
sian distribution can. The statistical model assumes that
the standard uncertainties {u(H0,j)} are based on large
numbers of degrees of freedom, hence treats them as
known constants.

https://doi.org/10.6028/jres.126.007
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The measurement results, and the consensus value and
its associated uncertainty are depicted below.
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Each diamond represents
a measured value, each
vertical, thick line segment
represents an interval
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½.
The horizontal, white line
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consensus value derived
from all measurement
results except Planck’s, and
the horizontal, shaded
rectangle depicts the standard
uncertainty associated with
the consensus value.

A Bayesian version of the foregoing statistical measure-
ment model was fitted to the measurement results using
the Stan101 and R codes listed below. The R code as-

101 B. Carpenter, A. Gel-
man, M. Hoffman, D. Lee,
B. Goodrich, M. Betancourt,
M. Brubaker, J. Guo, P. Li,
and A. Riddell. Stan: A
probabilistic programming
language. Journal of Statistical
Software, 76(1):1–32, 2017.
doi:10.18637/jss.v076.i01sumes that the Stan code has been assigned to variable

HLG.model as a character string.

The median of the posterior distribution of τ is an es-
timate of the dark uncertainty: τ̂ = 2.03 (km/s)/Mpc,
and the mean and standard deviation of the posterior
distribution of the consensus value are

Ĥ0 = 71.69 (km/s)/Mpc, and

u(Ĥ0) = 0.66 (km/s)/Mpc.

library(rstan)
H0.x = c(72.5, 67.8, 69.32, 74.03, 67.4, 70.3, 73.3, 69.8,

73.5, 70.3, 76.8, 74.2, 73.9, 75.8, 67.6, 67.4,
71.8, 73.5, 73.2, 72.1, 69.8, 73.3)

H0.ux = c(2.2, 1.3, 1.42, 1.42, 6.1, 5.15, 1.75, 1.9, 1.4,
1.35, 2.6, 2.85, 3, 5.05, 4.25, 1, 3.59, 5.3,
1.3, 2, 1.7, 1.4)

H0.Data = list(n=length(H0), x=H0.x, u=H0.ux,
H0PriorMean=67.4, H0PriorSD=100, gamma=mad(H0.x))

H0.Fit = stan(model_code=HLG.model, data=H0.Data,
warmup=500000, iter=1000000, chains=4, thin=25)

H0.Fit.post = extract(H0.Fit)

round(c(mean(H0.Fit.post$H0), sd(H0.Fit.post$H0)), 2)
round(median(H0.Fit.post$tau), 2)

https://doi.org/10.18637/jss.v076.i01
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HLG.model = "
data {

int n; // Number of measurement results
real<lower=0> H0PriorMean; // Prior mean for mu
real<lower=0> H0PriorSD; // Prior SD for mu
real gamma; // Prior median for tau
vector<lower=0>[n] H0x; // Measured values
vector<lower=0>[n] H0ux; // Standard uncertainties

}
parameters {

real<lower=0> H0; // True consensus value
real<lower=0> tau; // Dark uncertainty
vector<lower=0>[n] theta; // True values of H0x

}
model {

// Prior for mu
H0 ~ normal(H0PriorMean, H0PriorSD);
// Half-Cauchy prior for tau with median gamma
tau ~ cauchy(0, gamma);
// Random effects {lambda[j] = theta[j] - H0}
// Division by sqrt(2) makes tau the prior SD for {theta[j]}
theta ~ double_exponential(H0, tau/sqrt(2));
// Likelihood
H0x ~ normal(theta, H0ux);

}"

The Hubble time, which is the reciprocal of the Hubble-
Lemaître constant, corresponding to the foregoing con-
sensus value Ĥ0, suggests 13.7 billion years for the age
of the universe:

tH =
1

H0
=

3.1 × 1019 km/Mpc
71.69 (km/s)/Mpc

31 557 600 s/a
≈ 13.70 × 109 a,

with standard uncertainty u(tH) = 0.13 × 109 a.

The value of 67.36(54) (km/s)/Mpc listed above is the
estimate of H0 that the Planck Collaboration (2018) de-
clares to be the “best estimate” assuming the base ΛCDM
cosmological model.102

102 Planck Collab. et al. Planck
2018 results — VI. Cosmo-

logical parameters. Astron-
omy & Astrophysics, 641:A6,

2020. doi:10.1051/0004-
6361/201833910 To compare the cosmological estimate derived from the

Planck survey with the foregoing consensus value, we
compute the normalized difference

z =
71.69 − 67.36√

0.662 + 0.542
= 5.1.

On the hypothesis of no difference between the corre-

https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
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sponding true values, this normalized difference would
be like an outcome of a Gaussian random variable with
mean 0 and standard deviation 1. The probability of
attaining or exceeding such a difference (regardless of
sign) is p = 4 × 10−7, thus suggesting a very significant
difference.

This discrepancy, which is an expression of the afore-
mentioned Hubble tension, suggests that the pattern of
expansion of the universe may have been somewhat
more complex than the Hubble-Lemaître “law” contem-
plates, and indeed may lead to new physics.103

103 J. Sokol. A recharged
debate over the speed
of the expansion of the
universe could lead to new
physics. Science, March 2017.
doi:10.1126/science.aal0877

Arsenic in Kudzu

Kudzu comprises several species of perennial twining

Kudzu, “the vine that
ate the South.” — Kerry
Britton, usda Forest Service,
Bugwood.org.

vines native to East Asia, which were introduced into the
United States in 1876, originally intended as ornamental
plants, and subsequently also used as food for cattle and
ground cover.

Their astonishingly rapid growth and ability to climb
and develop roots opportunistically have turned kudzu
into a damaging infestation, snuffing other plants large
and small, including trees, and covering man-made
structures.

The development of nist srm 3268 Pueraria montana var.
lobata (Kudzu) Extract, included an interlaboratory study
where 22 laboratories made triplicate determinations of
the mass fraction of arsenic in this material, listed and
depicted below, on the margin.

The Shapiro-Wilk test of Gaussian shape offers no com-
pelling reason to abandon the hypothesis that all triplets
are like samples from Gaussian distributions.

Therefore, the triplets will be replaced by their corre-
sponding averages {wj} and associated standard uncer-
tainties {u(wj)} evaluated using the Type A method

https://doi.org/10.1126/science.aal0877
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from the gum. For example, for laboratory V,

wV=
0.873 + 0.881 + 0.916

3
= 0.890 mg/kg,

u2(wV)=
(0.873−wV)

2

3 − 1
+

(0.881−wV)
2

3 − 1
+

+
(0.916−wV)

2

3 − 1
= (0.013 mg/kg)2.

A 0.922 0.978 0.988
B 0.531 0.545 0.535
C 0.908 0.928 0.911
D 1.376 1.399 1.388
E 0.899 0.852 0.830
F 1.008 1.004 1.002
G 0.912 0.912 0.922
H 0.892 0.886 0.857
I 0.793 0.794 0.801
J 1.027 1.030 1.044
K 0.913 0.957 0.956
L 0.747 0.795 0.823
M 0.978 1.015 0.936
N 0.779 0.956 1.026
O 0.952 0.949 0.948
P 0.851 0.866 0.871
Q 0.702 0.702 0.723
R 0.608 0.587 0.576
S 0.686 0.595 0.649
T 0.947 0.982 0.945
U 0.838 0.817 0.828
V 0.873 0.881 0.916

Triplicate determinations of
the mass fraction (mg/kg)
of arsenic in kudzu, made
by laboratories A, B, . . . , V.

Cochran’s Q-test [Cochran, 1954] suggests that the sets
of determinations are mutually inconsistent, or hetero-
geneous, in the sense that the averages of the triplets are
significantly more dispersed than the individual deter-
minations within the triplets. Such mutual inconsistency
would still be present even if the determinations made
by laboratories B, D, Q, R, and S were to be left out.
However, they will not be left out from our subsequent
analyses because there is no substantive reason to.

The symmetry test proposed by Miao et al. [2006] and
implemented in R package symmetry [Ivanović et al.,
2020], applied to the averages of the triplicates obtained
by the participating laboratories, yields p-value 0.37
(Page 32), hence no reason to dismiss a symmetrical
model for the random effects.
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Each open circle repre-
sents a measured value,

and each vertical line
segment links the repli-

cates from one laboratory.

And the Anderson-Darling test of Gaussian shape, ap-
plied to the coarsely standardized laboratory-specific
averages, yields p-value 0.004 (Page 32). The “coarsely
standardized” averages are {(wj − M)/u(wj)}, where
M denotes the median of the {wj}, and each wj is the
average of the three replicates obtained by laboratory j,
for j = A, . . . , V.

Thus, we are faced with a situation where the laboratory-
specific lack of repeatability may be modeled using
Gaussian distributions, but the laboratory effects require
a model that is symmetrical and has tails heavier than
Gaussian tails, in particular to accommodate the results
from laboratories B and D.

Considering the results of the foregoing statistical tests,
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which underlie the recommendations for model selec-
tion that the NIST Decision Tree makes,104, we will adopt

104 A. Possolo, A. Koepke,
D. Newton, and M. R.
Winchester. Decision tree
for key comparisons. Journal
of Research of the National
Institute of Standards and
Technology, 126:126007, 2021.
doi:10.6028/jres.126.007

a random effects model of the form wj = ω + λj + ε j,
where ω denotes the true value of the mass fraction of
arsenic in the material, the {λj} have a Laplace distribu-
tion (Page 172) with mean 0 and standard deviation τ,
and the {ε j} are Gaussian, all with mean 0 but possibly
different standard deviations {σj}.

We will fit a Bayesian version of this model using the
following code in the Stan language:105 105 B. Carpenter, A. Gel-

man, M. Hoffman, D. Lee,
B. Goodrich, M. Betancourt,
M. Brubaker, J. Guo, P. Li,
and A. Riddell. Stan: A
probabilistic programming
language. Journal of Statistical
Software, 76(1):1–32, 2017.
doi:10.18637/jss.v076.i01

data { int n; // Number of labs
real gamma; // Prior median of tau
real delta; // Prior median of {sigma2[j]}
vector<lower=0>[n] w; // Measured values
vector<lower=0>[n] uw; // Standard uncertainties
vector<lower=2>[n] nu; } // Numbers of degrees of freedom

transformed data{ vector<lower=0>[n] uw2 = square(uw); }

parameters { real omega; // True overall mean
real<lower=0> tau; // Dark uncertainty
vector<lower=0>[n] theta; // True lab means
vector<lower=0>[n] sigma; } // True lab SDs

model { // Non-informative prior for omega
omega ~ normal(0, 100);
// Half-Cauchy prior for tau with median gamma
tau ~ cauchy(0, gamma);
// Random effects {lambda[j] = theta[j]-omega}
// Division by sqrt(2) makes tau the prior SD
theta ~ double_exponential(omega, tau/sqrt(2));
// Half-Cauchy prior for sigmas with median delta
sigma ~ cauchy(0, delta);
// Likelihood for uw2
for (j in 1:n) {uw2[j] ~ gamma(nu[j]/2,

nu[j]/(2*(sigma[j]^2)));}
// Likelihood for w
w ~ normal(theta, sigma); }

The Stan code treats both the
measured values {wj} and
the associated uncertainties
{uj} as data. Therefore,
the likelihood (Page 192)
includes a term for the {u2

j }
that recognizes the fact
that, under the Gaussian
assumption for the measured
values, the {νju2

j /σ2
j } are like

outcomes of independent
random variables with
chi-square distributions
(Page 170) with {νj} degrees
of freedom, which happen to
be all equal to 2.

In the model introduced above, wj = ω + λj + ε j, the
{u(wj)} are estimates of the {σj} based on only 2 de-
grees of freedom each, and an estimate of τ will be based
on the dispersion of only 22 observations. The Bayesian
formulation is quite capable of recognizing such limita-
tions and take them into account while evaluating the
uncertainty associated with the consensus value.

https://doi.org/10.6028/jres.126.007
https://doi.org/10.18637/jss.v076.i01
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Our Bayesian model includes the following prior dis-
tributions: a largely non-informative, Gaussian prior
distribution for ω, a half-Cauchy (Page 170) prior dis-
tribution for τ, with median γ, and a half-Cauchy prior
distribution for the {σj}, with median δ.

Since γ and δ are parameters of prior distributions, they
are often called hyperparameters. We set γ equal to the
mad of the laboratory-specific averages, and δ equal to
the median of the {u(wj)}.

The following R code executes the Stan code listed above
after it will have been assigned to variable HLGS.model as
a character string, including the line breaks, where w and
uw are vectors of laboratory averages and associated stan-
dard uncertainties, and nu is the corresponding vector
of numbers of degrees of freedom (whose 22 elements
all should be equal to 2).

library(rstan)
w = c(0.963, 0.537, 0.916, 1.388, 0.86, 1.005, 0.915, 0.878,

0.796, 1.034, 0.942, 0.788, 0.976, 0.92, 0.95, 0.863,
0.709, 0.59, 0.643, 0.958, 0.828, 0.89)

uw = c(0.021, 0.004, 0.006, 0.007, 0.02, 0.002, 0.003, 0.011,
0.003, 0.005, 0.015, 0.022, 0.023, 0.073, 0.001, 0.006,
0.007, 0.009, 0.026, 0.012, 0.006, 0.013)

nu = rep(2, length(w))
As.Data = list(n=length(w), w=w, uw=uw, nu=nu,

gamma=mad(w), delta=median(uw))
As.Fit = stan(model_code=HLGS.model, data=As.Data,

warmup=500000, iter=1000000,
control=list(adapt_delta=0.975),
chains=4, cores=4, thin=25)

print(As.Fit, digits=3)
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top panel: Posterior prob-
ability density of the con-
sensus value, with mean

ω̃ = 0.895 mg/kg (diamond).
middle panel: Pos-

terior probability den-
sity of the dark uncer-

tainty, with median
τ̃ = 0.167 mg/kg (diamond).

bottom panel: Re-
ported standard uncer-

tainties, {u(wj)}, ver-
sus posterior medians of

the corresponding {σj}.

An estimate of the posterior probability density (Page 159)
of the consensus value ω is depicted in the top panel,
alongside. The posterior mean is ω̃ = 0.895 mg/kg,
whose associated uncertainty is u(ω̃) = 0.029 mg/kg.
A 95 % credible interval for ω ranges from 0.839 to
0.951 mg/kg.

The bottom panel of the figure alongside shows that
posterior median uncertainties tend to be larger than
the reported uncertainties for the smaller uncertainties,
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and smaller than them for the larger uncertainties: a
shrinkage effect that is typical of Bayesian estimates.

The posterior median for the dark uncertainty, τ̃ =

0.167 mg/kg is about 20 times larger than the median of
the uncertainties {u(wj)}, 0.008 19 mg/kg. Accordingly,
dark uncertainty makes a much larger contribution to
the uncertainty associated with the consensus value than
the Type A uncertainty evaluations for the laboratory
averages.
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Each diamond represents a
measured value, each vertical,
thick line segment represents
an interval wj ± u(wj),
and each vertical, thin line
segment represents an
interval wj ± (τ2 + u2(wj))

½.
The horizontal, white
line segment represents
the consensus value, and
the horizontal, shaded
rectangle depicts the standard
uncertainty associated with
the consensus value.

The following one-liner uses facilities implemented in
R package brms106 package for R, and produces nearly

106 P.-C. Bürkner. Advanced
Bayesian multilevel modeling
with the R package brms. The
R Journal, 10(1):395–411, 2018.
doi:10.32614/RJ-2018-017

identical results. Since the model implemented in brm

and the model specified above differ only in the choice of
prior distributions, the fair agreement of the respective
results is a welcome outcome of this sensitivity analysis.
As denotes an R data frame with 22 × 3 = 66 rows and
two columns: one (named lab) has the laboratory labels,
and the other (named w) has the replicated determina-
tions of the mass fraction of arsenic made by the 22
laboratories:

library(brms)
brm(formula = bf(w ~ 1 + 1|lab, sigma ~ 0 + lab, quantile=0.5),

family = asym_laplace, data = As)

https://doi.org/10.32614/RJ-2018-017
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Appendix: Uncertainty
Uncertainty is judged by

some to be the spice of life
— John W. Tukey (1980)

Measurement uncertainty is the doubt about the
true value of the measurand that remains after making
a measurement. Measurement uncertainty is described
fully and quantitatively by a probability distribution on
the set of values of the measurand.

This definition acknowledges that measurement uncer-
tainty is a kind of uncertainty, and decouples the mean-
ing of measurement uncertainty from how it may be
represented or described.

The approach is common in mathematics, for example in
the definition of function as a set of ordered pairs such
that no two different ordered pairs have the same first
element.107 This definition is conceptual and abstract,

107 R. Dedekind. The na-
ture and meaning of num-

bers. Open Court Publish-
ing Company, Chicago,

1901. Translated from the
German by W. W. Beman and quite separate from the consideration of how a

function may be evaluated or represented.Functions can be represented
verbally (by stating in plain

English what gets mapped to
what), using a table that lists
the value of the function that

corresponds to each value
of its argument, graphically,
algebraically (by a formula),
or algorithmically (describ-

ing operations that, once
applied to the function’s

argument, yield the func-
tion’s value), each enabling
a particular way of produc-

ing the value of the function
that corresponds to a partic-

ular value of its argument.

Uncertainty is the absence of certainty, and certainty is
either a mental state of belief that is incontrovertible for
the holder of the belief (like, “I am certain that my son
was born in the month of February”), or a logical neces-
sity (like, “I am certain that 7253 is a prime number”).

Uncertainty comes by degrees, and measurement uncer-
tainty, which is a kind of uncertainty, is the degree of
separation between a state of knowledge achieved by
measurement, and the generally unattainable state of
complete and perfect knowledge of the object of mea-
surement.

Measurement uncertainty can be represented most thor-
oughly by a probability distribution. This representation
applies equally well to the measurement of qualitative
as of quantitative properties.

When it proves impracticable to express measurement
uncertainty quantitatively (either for quantitative or for
categorical measurands), it may be expressed using an
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ordinal scale comprising suitably defined degrees of
uncertainty, or levels of confidence. For example, us-
ing terms like “virtually certain” or “very likely” in
climatology [Mastrandrea et al., 2011]. Similarly, nist

uses words “most confident” and “very confident” to
characterize the uncertainty associated with the identity
of dna nucleobases (srm 2374) or of biological species
(srm 3246 Ginkgo biloba).

Karl Pearson introduced the
term “standard deviation”
in a lecture that he gave
in 1893. George Udny
Yule introduced the term
“standard error” in 1897

[Yule, 1897], and applied it
in the contemporary sense
(standard deviation of a
function of observations) in
1911 [Yule, 1911].

For quantitative, scalar measurands, measurement un-
certainty may be summarily, albeit incompletely, repre-
sented by the standard deviation of the corresponding
probability distribution, or by similar indications of dis-
persion. When the chosen summary is the standard
deviation, it is usually called the standard uncertainty.

Bessel introduced the term
“probable error” in the first
quarter of the 19th century,
and by mid-century its
meaning was already well
established: “In Astronomy
and Physics, when the value
of any quantity or element,
as the declination of a star,
the latitude of a place, the
specific gravity of a body,
&c., has been determined
by means of a number of
independent observations,
each liable to a small amount
of error, the determination
(in whatever way it may
have been deduced from the
observations) will also be
liable to some uncertainty;
and the probable error is the
quantity, which is such that
there is the same probability
of the difference between the
determination and the true
absolute value of the thing to
be determined exceeding or
falling short of it” [Brande,
1842, Page 984].

The probable error, which is another indication of disper-
sion, was far more popular in the 19th and 20th centuries
than it is today: for a symmetrical distribution, it is half
the length of the interval centered at the center of the
distribution that contains 50 % of the distribution’s unit
of probability. For a Gaussian distribution, the proba-
ble error is 67.45 % of the standard deviation, and for a
Student’s t distribution with 3 degrees of freedom it is
44.16 % of the standard deviation.

The probable error has an important advantage relative
to the standard uncertainty: its meaning is the same
regardless of the nature of the underlying (symmetri-
cal) distribution, while the meaning of the standard
uncertainty depends markedly on the nature of the dis-
tribution, as the illustrations in the probability appendix
(Page 159) make abundantly clear.

Another advantage of the probable error is that it ex-
ists and is finite for all probability distributions, while
some distributions, for example, Student’s t distribu-
tions (Page 168) with 2 or fewer degrees of freedom, the
Cauchy distribution (Page 169) in particular, do not have
a finite standard deviation.
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In general, a set of selected quantiles (say, the 2.5th, 25th,
50th, 75th, and 97.5th percentiles) of the probability
distribution that represents the uncertainty associated
with a scalar measurand, provides a more detailed and
informative summarization of its dispersion than either
the standard uncertainty or the probable error.

The uncertainty surrounding quantitative, multivariate
or functional measurands, can be summarized by co-
variance matrices or by coverage regions, for example
coverage bands (Page 102) for calibration and analysis
functions (Page 101).

For categorical measurands, the dispersion of the prob-
ability distribution over the set of possible values for
the property of interest may be summarized by its en-
tropy.108 Alternatively, the uncertainty may be expressed

108 A. Possolo. Simple Guide
for Evaluating and Express-

ing the Uncertainty of NIST
Measurement Results. Na-

tional Institute of Stan-
dards and Technology,

Gaithersburg, MD, 2015.
doi:10.6028/NIST.TN.1900.
NIST Technical Note 1900

using rates of false positives and false negatives, sensitiv-
ity and specificity,[Altman and Bland, 1994] or receiver
operating characteristic curves.[Brown and Davis, 2006]

The gum distinguishes two manners of evaluating the
contributions that different sources of uncertainty make
to the uncertainty associated with an estimate of a mea-
surand, and calls them Type A and Type B. The former
involves application of a “method of evaluation of uncer-
tainty by the statistical analysis of series of observations”
(gum 2.3.2), and the latter refers to any other method.

The names Type A and Type B were chosen because those
involved in laying the foundations for what became the
gum, during the 1980s, were unable to agree on more
descriptive terms (Ronald Collé, 2012, personal comm.).

However, about fifteen years earlier, Mosteller and Tukey
[1986] had already proposed perfectly serviceable alter-
natives: “We assign contributions to uncertainty to two
sources: those that might be judged from the data at
hand — internal uncertainty; and those that come from
causes whose effects are not revealed by the data —
supplementary uncertainty.”

https://doi.org/10.6028/NIST.TN.1900
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Appendix: Probability

Probability map for the
location of Air France 447

site after three unsuccessful
searches from June 2009

to May 2010. Darker areas
indicate highest probability
for the wreckage’s location,
and the white cross shows
the location of where the
wreckage was found in 2011.
Modified version of Figure 33

in Stone et al. [2011].

Imagine an explorer looking for the wreckage of an
airplane resting at the bottom of the sea, with the aid of
a map where shades of gray represent probabilities for
the location of the wreckage. A probability distribution is
like this map, or like a distribution of mass over the set
of possible values for a measurand: where the shades of
gray are darkest, or where the mass density is largest, is
where the true value of the measurand most likely lies.

Probability distributions over sets of values of
quantities or qualities are mathematical objects very
similar to distributions of mass in space. Probability,
the same as mass, may be distributed continuously,
smoothly (as one spreads jelly on bread), or it may be
distributed discretely, in lumps (as one places blobs of
cookie dough on a baking sheet).

A distribution of probability, like a distribution of mass,
may have both features: being smooth in some regions,
and lumpy in others. For example, an estimate of
dark uncertainty (discussed under Consensus Building,
Page 146) typically can be zero with positive probability,
hence its probability distribution places a lump of prob-
ability at 0, but the rest of the probability is distributed
smoothly over all positive numbers.

The set to which a probability distribution assigns its
unit of probability is called the support of the distribu-
tion. But while masses of all sizes can be distributed
over regions of space, all probability distributions have
available a single unit of probability to spread around.
Where probability piles up and stands out it suggests
where it is more likely that the treasure lies.

The same as with mass, if a probability distribution
spreads its unit of probability continuously and smoothly
over the set of values where it is defined, then one can
speak of its probability density. If the probability distri-
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bution spreads its unit in discrete lumps over a denu-
merable set of values, then the function that produces
the probability in each lump is called its probability mass
function.

Consider the probability density of the distance from
Earth to Venus as both planets travel in their orbits
around the Sun. The function whose graph is the black
polygonal line that tops the histogram depicted along-
side, is a probability density function: it represents proba-
bilities by areas under its graph. The total area shaded
light or dark gray is 1.
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Histogram depicting the
probability of finding Venus

within particular distances
from Earth. The lightly

shaded rectangle from 0.5 AU
to 0.6 AU, has an area 0.04544
which is the probability that,

on a randomly chosen day,
Venus will be between 0.5 AU
and 0.6 AU from Earth. This

probability was computed by
determining the number of

days, between December 25th,
2020, and December 24th,

2420, when the distance to
Venus will be in that interval,

and dividing it by the total
number of days in this pe-

riod: 6638/146097 = 0.04544.

The assignment of the unit of probability to the horizon-
tal axis according to the areas under the polygonal line
defines what is called a probability distribution on this
axis. In this case, probability piles up toward the ends
of the range of distances, and it is scarcer in the middle.

If the area under the polygonal line is conceived as rep-
resenting matter of uniform density, and this matter col-
lapses to form a rigid, cylindrical rod on the horizontal
axis, then the probability distribution is the distribution
of mass of this rod, and the probability density function
depicts the variation of the mass density along the rod.

Suppose that the function P
defines the probability dis-

tribution of the distance, D,
from Venus to Earth so that

P(I) denotes the probabil-
ity of this distance having a
value in a specified interval

I = (a, b). If P is such that
P(I) =

∫ b
a p(s)(d)s for some

non-negative function p, then
we say that p is the proba-

bility density function of P.
In these circumstances, the

mean of the probability dis-
tribution is µ =

∫
S sp(s)(d)s,

and its variance is σ2 =∫
S (s − µ)2 p(s)(d)s, where

S denotes the set of values
of D such that P(S) = 1.

The mean of the distribution is the rod’s center of mass,
and the variance is the rod’s second moment of inertia
when the rod rotates about its center of mass, with axis
of rotation perpendicular to the rod.

Probability distributions naturally arrange themselves
into families: Gaussian distributions, Weibull distribu-
tions, etc. The members of the same family have proba-
bility densities of the same form, differing only in the
values of some parameters, which identify the individ-
ual members of the family. For example, individual
Gaussian distributions are identified by the mean and
standard deviation, and individual Weibull distributions
by the shape and scale parameters.
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Odds are often used to express probabilities. For exam-
ple, the morning line odds posted for Tiz The Law to win
the 2020 Kentucky Derby, were 3 to 5 (often written as
3:5, meaning 3/5 = 0.6). This ratio, times the amount
bet, is the prize earned in case of a win: had Tiz The
Law won the race, a $2 bet on it would have earned a
prize of (3/5)× $2 = $1.20, hence a payout of $3.20. But
the winner of the 2020 Kentucky Derby was Authentic,
whose odds had been 8 to 1.

In principle, those odds should have meant that the prob-
ability of Tiz The Law winning the race was 5/(3 + 5) =
62.5 %, because this would have made the gamble fair:
(5/8)× $1.20 − (3/8)× $2 = 0. However, real-life gam-
bles are never fair: the sum of the implied probabilities
corresponding to the morning line odds for the 18 horses
set to Run for the Roses was 1.35, thus forming a Dutch
Book.109

109 A. Hájek. Dutch Book
Arguments. In P. Anand,
P. K. Pattanaik, and C. Puppe,
editors, The Handbook of
Rational & Social Choice,
chapter 7, pages 173–195.
Oxford University Press,
Oxford, UK, 2009. ISBN
978-0-19-929042-0Betting odds generally are odds against. In general, the

relation between the odds o (in favor) of an event, and
the event’s probability p are

o = p/(1 − p), or p = o/(1 + o).

Random variables are quantities or qualities that
have a probability distribution as an attribute. This
attribute serves to indicate which subsets of their re-
spective ranges (the sets where they take their values)
are more likely to contain the value that the random
variable takes when it is realized.

Volnay Clos des Chênes
(Domaine Michel Lafarge), from
the Côte-d’Or, France.

For example, the volume of wine in a bottle of Volnay
Clos des Chênes (Domaine Michel Lafarge), from the Côte-
d’Or, France, is a (quantitative) random variable that
is realized every time a bottle is filled at the winery.
The probability distribution of this random variable is
continuous, and it is concentrated in a narrow range
around 750 mL.
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The identity of the nucleotide at a particular locus of a
strand of dna is a (qualitative) random variable whose
possible values are adenine, cytosine, guanine, and
thymine, and whose realized value is the identity of
the nucleotide that is actually there. The probability
distribution of this random variable is discrete, its unit
of probability being allocated in lumps to those four pos-
sible compounds: for example, the probability is 30 %
of finding adenine at any particular locus in the human
genome.

The adjective random in the expression “random variable
X” bears no metaphysical connotation: in particular, it
does not suggest that X is an outcome of a game of
chance that Nature is playing against us. It is merely a
mnemonic and allusive device to remind us that X has
a probability distribution as an attribute.

Suppose the random variable in question is the New-
tonian constant of gravitation, G, which is generally
believed to be constant, but whose true value is known
only imperfectly. A probability distribution with a rel-
ative standard deviation that currently stands at 2.2 ×
10−5 can be used to describe the corresponding uncer-
tainty [Tiesinga et al., 2021].

Similarly, the distance between Venus and Earth can also
be characterized as a random variable, even if its value
is predictable deterministically as a function of the date.
The probability distribution of this random variable can
describe the uncertainty associated with that distance
on a day chosen at random.

The probability distribution of a random variable de-
termines the probability that it will take a value in any
given subset of its range. The corresponding computa-
tion is particularly easy when the probability distribu-
tion has a probability density (Page 159) that is specified
analytically. How this is done depends on whether
the distribution of the random variable is continuous,
discrete, or of a mixed type (that is, has a continuous
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component over its range, as well as lumps of probability
at some of the values in its range).

Suppose that X is a scalar random variable (for example,
the lifetime of a 25 W incandescent light bulb ge A19,
whose expected lifetime is 2000 h) and that its probabil-
ity distribution is continuous and has probability density
pX . Then, the probability that X takes a value in a set A
(which may be an interval or a more complicated set),
and which we write as Pr{X ∈ A}, is the area under the
graph of pX over the set A. If X has an exponential prob-
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Probability density (Page 159)
of the lifetime of a ge A19
25 W incandescent light
bulb. The small diamond
marks its expected lifetime,
and the shaded area is the
probability that the bulb
will last between 3000 h and
4000 h.

ability distribution, with density pX(x) = λ exp(−λx)
and mean λ−1 = 2000 h (as depicted alongside), then
Pr{3000 h < X < 4000 h} is the shaded area, which in
this case can be computed analytically:∫ 4000

3000

1
2000

exp(−x/2000)dx = 0.09.

Independence is an important property and a conse-
quential assumption. Two random variables, X and Y,
are said to be independent when the probability that X
takes a value in a set A, and that Y takes a value in a set
B, when both are realized jointly, or simultaneously, is
equal to the product of their individual probabilities of
taking values in such sets one separately from the other.

For example, the number of Aces in a poker hand, and
the number of cards from the suit of diamonds in the
same hand, are dependent random variables, because
knowing that there are five diamonds implies that there
cannot be more than one Ace.

The uncertainty of the
average of replicated, inde-
pendent determinations of
the same quantity generally
will be smaller than the
uncertainty of any individual
measurement — the prize of
claiming independence.

Consider three such de-
terminations with the same
standard uncertainty. If
modeled as outcomes of in-
dependent random variables,
then their average will have
a standard uncertainty that
is
√

3 times smaller than the
standard uncertainty of the
individual determinations.
If, however, they all are
affected by the same error
(for example, resulting from
miscalibration of the mea-
suring instrument used to
obtain them), then averaging
the replicates will not reduce
the uncertainty component
attributable to miscalibration.

Independence is next to impossible to verify empirically
in most cases, because doing so involves showing that
Pr(X∈A and Y∈B) = Pr(X∈A)×Pr(Y∈B) for all subsets
A and B of the respective ranges of X and Y. If these
ranges have infinitely many values, then this verification
requires an infinitely large experiment.

Two events are independent when the probability of
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their joint occurrence is equal to the product of their
individual probabilities. If the probability of one of them
occurring depends on the knowledge of the other one
having occurred or not, then the events are dependent.

Consider rolling two casino dice (perfectly shaped and
balanced cubes with 1, 2, . . . , 6 pips on their faces), one
red and the other blue, and the following two events: A
is getting 3 pips on the red die; B is getting 7 pips in total.
The probability of A is 1/6, the probability of B is 6/36,
and the probability of A and B both occurring simulta-
neously is Pr(A and B) = 1/36 = (1/6) × (6/36) =

Pr(A) × Pr(B): therefore, A and B are independent
events. However, getting 3 pips on the red die, and
8 pips in total, are dependent events.

When one says that {x1,. . . ,xn} is a sample from a proba-
bility distribution, one means that these are outcomes of
n independent, identically distributed random variables
whose common distribution is the distribution that the
sample allegedly comes from.

Exchangeable random variables are such that
the random vectors (X1, . . . , Xn) and (Xπ(1), . . . , Xπ(n))

have the same joint probability distribution, for any
permutation π of the indices {1, . . . , n}. Exchangeable
random variables have identical (marginal) distributions,
but generally they are dependent, with correlations
never smaller than −1/(n − 1).

If a standard deck of cards
used for playing poker is

well-shuffled, then the num-
bers of aces in the hands

dealt to the players are
exchangeable but depen-

dent random variables.

Zabell [2005, Chapter 4] attributes the origin of the
concept to the English philosopher W. E. Johnson,110110 W. E. Johnson. Logic, Part

III — The Logical Foundations
of Science. Cambridge Univer-
sity Press, London, UK, 1924

even if it was popularized and developed by Bruno de
Finetti.111

111 B. de Finetti. Funzione
caratteristica di un fenomeno

aleatorio. Atti della R.
Academia Nazionale dei Lin-

cei, Serie 6. Memorie, Classe di
Scienze Fisiche, Mathematice
e Naturale, 4:251–299, 1930

Exchangeability is often established via symmetry argu-
ments. For example, when considering a set of triplicate
determinations, {w1, w2, w3}, of the mass fraction of ar-
senic in a unit of nist srm 3268 Pueraria montana var.
lobata (Kudzu) extract (Page 151), we may conclude that
the order in which the determinations were made is
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irrelevant for any conclusions to be derived from them,
hence that they are exchangeable.

But this then implies that there is a prior probability dis-
tribution for their true mean, θ, whose density (Page 159)
p is such that the density g of the joint probability dis-
tribution of those replicates is of the form

g(w1, w2, w3) =
∫ +∞

0
f (w1|θ) f (w2|θ) f (w3|θ)p(θ)dθ,

where f denotes the probability density of the sampling
distribution of the observed mass fractions [Bernardo,
1996]. Thus, the assumption of exchangeability naturally
suggests a Bayesian treatment of the determinations of
the mass fraction of arsenic in kudzu.

Median, Mean, Variance, Bias, and Mean Squared

Error are properties of random variables (or of their
probability distributions). The median is meaningful for
random variables whose values are ordinal or quanti-
tative and scalar, while the mean, variance, bias, and
mean squared error are meaningful only for quantitative,
scalar properties.

Median, mean, and variance are intrinsic properties of
the random variables, while bias and mean squared
error become meaningful when a random variable plays
the role of estimator of a quantity whose true value is
unknown.

The median of a random variable is any value such
that the random variable is equally likely to take values
smaller or larger than it. The mean of a random variable
is the center of mass of its probability distribution, when
the distribution is regarded as the distribution of a unit
of mass over the range of the random variable. And
its variance is the second moment of inertia of such
distribution of mass, about its mean.

The mean is also called the expected value (mathematical
expectation), and for this reason the mean of the ran-
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dom variable X is often denoted E(X). The variance is
the expected value of the squared difference between a
random variable and its mean,

V(X) = E[X − E(X)]2,

and the standard deviation is the (positive) square root
of the variance: it describes how scattered around the
mean the unit of probability is.

A random variable can be so unpredictable that its mean
does not exist (this is the case for the reciprocal of a
Gaussian random variable), or its variance is infinite.
However, the median of any random variable X, M(X)

(this notation for the median is not standard), always
exists and is finite, and so is another indication of how
dispersed the corresponding probability distribution is,
the median absolute deviation from the median, M(X −
M(X)), often abbreviated as mad.

If X has a discrete distribution, and the different values
that it can take are x1, x2, . . . , then

E(X) = x1 p1 + x2 p2 + . . . ,

where pi = Pr(X = xi) for i = 1, 2, . . . , provided this
sum, which may involve infinitely many summands, is
finite. If X has a continuous distribution with probability
density (Page 159) p, then

E(X) =
∫
X

xp(x)dx,

where X denotes the range of X, provided this integral
converges.

Now suppose that a random variable X is to play the
role of estimator of a quantity θ whose value is unknown.
For example, X may be the mass fraction of inorganic
arsenic in a sample of shellfish tissue, and θ may be the
true mass fraction of arsenic in it. Owing to incomplete
extraction of the arsenic during sample preparation, the
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expected value of X may well be less than θ.

The bias of X as estimator of θ is the difference between
its expected and true values, E(X)− θ. The mean squared
error (MSE) of X as estimator of θ is the bias squared
plus the variance, (E(X)− θ)2 + V(X).

If X and Y are scalar random variables, and a and b are
real numbers, then E(aX + bY) = aE(X) + bE(Y), re-
gardless of whether X and Y are dependent or indepen-
dent. And if X and Y are independent, then E(XY) =
E(X)×E(Y), and V(aX + bY) = a2V(X) + b2V(Y). In
particular, note that V(X − Y) = V(X + Y) = V(X) +

V(Y), provided X and Y are independent.

The uniform (or rectangular) probability dis-
tribution over an interval [a, b], where a < b, is a
continuous distribution whose probability density func-
tion is constant and equal to 1/(b − a) over that interval,
and zero everywhere else. Since its graph is a rectangle,
the distribution is also called rectangular.
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Probability density (Page 159)
of the uniform distribution
on the interval [1, 3], with
mean 2 and standard
deviation 1/

√
3 = 0.58. The

shaded region comprises 68 %
of the area under the curve.

This distribution has mean µ = (a + b)/2 and standard
deviation σ = (b− a)/

√
12. Since probabilities are given

by areas under the graph of the probability density, the
probability that a uniform distribution assigns to an in-
terval [x − δ, x + δ], for some δ > 0 and any real number
x, either is zero or decreases to zero as δ decreases to
zero.

The uniform distribution, and indeed every continuous
distribution, thus has the apparently paradoxical prop-
erty that even though it assigns probability zero to every
individual real number, the probability it assigns to all
of them together still adds up to 1.

The Gaussian (or normal) probability distribu-
tion with mean µ and standard deviation σ > 0 is a
continuous distribution on the infinitely long interval
that comprises all real numbers. Its probability den-
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sity (Page 159) has the familiar bell-shaped curve as its
graph: it is symmetrical around µ and has inflection
points at µ ± σ. The area under the curve between the
inflection points is 68 %, and the corresponding area
between µ ± 2σ is 95 % approximately.
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Gaussian distribution with

mean 2 and standard de-
viation 1/

√
3 = 0.58. The

shaded region comprises 68 %
of the area under the curve.

The Gaussian distribution plays a central role in proba-
bility theory because the probability distribution of the
sum of several independent random variables can, under
very general conditions, be approximated by a Gaussian
distribution — a remarkable fact first established in fair
generality by Pierre Simon, Marquis de Laplace, in 1812.

A unique, surprising property of the Gaussian distribu-
tion is that “a necessary and sufficient condition for the
normality of the parent distribution is that the sampling
distributions of the mean and of the variance be inde-
pendent.”112 This is surprising because both the sample

112 E. Lukacs. A charac-
terization of the normal
distribution. Annals of
Mathematical Statistics,

13(1):91–93, March 1942.
doi:10.1214/aoms/1177731647

average and the sample variance are functions of the
same data.

The distribution takes its name from Carl Friedrich
Gauss (1777–1855) because he proved that the arith-
metic average is the best combination of observations
(in the sense of minimizing mean squared error) when
the errors of observation are Gaussian, thus providing
a rationale for the widespread practice of averaging
observations.

The distribution is also called “normal.” However, John
Tukey in particular, has made clear that it is far from

“The reference standard
for shapes of distribution

has long been the shape
associated with the name
of Gauss, who combined

mathematical genius with
great experience with the

highest-quality data of his
day — that of surveying and

astronomy. Later writers
have made the mistake of

thinking that the Gaussian
(sometimes misleadingly

called normal) distribution
was a physical law to which

data must adhere — rather
than a reference standard

against which its discrepan-
cies are to be made plain.”

— John W.
Tukey (1977, §19B)

being a universally adequate model for data. On the
contrary, he places the Gaussian distribution among
the defining elements of what he calls the utopian situa-
tion for data analysis — an “ideal” situation that is as
mathematically convenient as it often is disjointed from
reality.

The Student’s t probability distribution is deter-
mined by its median (which can be positive, negative, or
zero), scale (which must be positive), and a positive (but

https://doi.org/10.1214/aoms/1177731647
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not necessarily integer) number of degrees of freedom
ν>0. It is a continuous distribution on the set of all real
numbers.
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Probability densities of
Student’s t distributions with
center 0, scale 1, and number
of degrees of freedom 1 (solid
line), 3 (dashed line), and 9
(dotted line).

The graph of Student’s probability density (Page 159)
also is bell shaped, but its tails are heavier (and its center
lighter) than in the Gaussian distribution with the same
mean and standard deviation. The parameter ν controls
its tail heaviness: the smaller the ν, the heavier the
tails. For example, Student’s t distribution with mean
0 and standard deviation

√
3 (which has 3 degrees of

freedom), assigns almost seven times more probability
to the interval [6, 7] than a Gaussian distribution with
the same mean and standard deviation.

This distribution is remarkable, and pervasive, owing
to this fact: if x1, . . . , xm are a sample of size m drawn
from a Gaussian distribution with mean µ and standard
deviation σ, xm is the sample average, and

s2
m =

(x1 − xm)2 + · · ·+ (xm − xm)2

m − 1

is the sample variance, then

xm − µ

sm/
√

m

is like an outcome of a random variable with a Student’s
t distribution with center 0, scale 1, and m−1 degrees
of freedom. Remarkably, the probability distribution of
this ratio does not involve the unknown σ.

This distribution is called
“Student’s” because statisti-
cian William Sealy Gosset
(1876–1937) published an
article introducing the use
of this distribution under
the pseudonym “Student”
[Student, 1908].

Gosset was employed by
the Guinness brewery in
Dublin, and legend holds that
his use of a pseudonym was
due to the company’s concern
for secrecy in their use of
statistical methods for quality
control [Wendl, 2016].

Zabell [2008] reminds us
that in 1930 Harold Hotelling
noted that this anonymity
was designed to hide Gosset’s
identity not from the outside
world but from his own
colleagues at Guinness.

If ν ⩽ 2, then the Student’s t distribution has infinite
variance. A Student’s t distribution with ν=1 is called a
Cauchy or Lorentz distribution: it has neither variance
nor mean. Random variables with Cauchy distributions
are truly wild things. This is how wild: the average
of a sample from a Cauchy distribution has the same
distribution as the individual sample values.
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The Half-Cauchy probability distribution is a
continuous distribution that results from “folding” at
zero a Cauchy distribution centered at zero, so that
the 50 % probability it assigns to the negative numbers
is transferred to the positive numbers as by a mirror
placed at zero. Gelman [2006] suggests the half-Cauchy
as a general purpose, weakly informative prior distribu-
tion for standard deviations in Bayesian random effects
models. We use it in this role when computing a con-
sensus value for the mass fraction of arsenic in kudzu
(Page 151).
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of the Half-Cauchy dis-

tribution with median 1.
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√

3. The shaded
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The Gamma probability distribution is a continu-
ous distribution determined by two positive parameters,
shape α and rate λ, concentrated on the positive real
numbers. The distribution is skewed to the right, with
a right tail longer than the left tail. The mean of the
gamma distribution is α/λ, and the variance is α/λ2.
The chi-square probability distribution with ν

degrees of freedom is a gamma distribution with shape
α = ν/2, and rate λ = ½, hence its mean is ν and its
variance is 2ν.
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The steadily decreasing curve
is the probability density

(Page 159) of the chi-square
distribution with both mean

and standard deviation equal
to 2. The shaded region

comprises 68 % of the area
under the curve. When the
number of degrees of free-

dom ν is greater than 2, the
curve has a single hump,

reaching a maximum at ν − 2.

A gamma distribution with shape α = 1.7 and rate
λ = 762 kg/mg is used in the measurement of nitrite
in seawater (Page 214) to encapsulate prior knowledge
about measurement uncertainty associated with Griess’s
method.

The Gaussian, chi-square, and Student’s t distributions
are related in a remarkable manner. If x and s are the
average and standard deviation of a sample of size m
drawn from a Gaussian distribution whose mean µ and
standard deviation σ both are unknown, then: (i) x
and s are like outcomes of two independent random
variables (even though they are functions of the same
data); (ii) (m− 1)s2/σ2 is like an outcome of a chi-square
random variable with m − 1 degrees of freedom; and
(iii) (x − µ)/(s/

√
m) is like an outcome of a Student’s t
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random variable with n − 1 degrees of freedom, hence
its distribution does not depend on the unknown σ. This
last fact is the basis for the coverage intervals specified
in Annex G of the gum [JCGM 100:2008].

The Stan code that implements a random effects model
for the determinations of the mass fraction of arsenic in
kudzu employs the chi-square distribution in the like-
lihood function to express the uncertainty associated
with sample standard deviations based on small num-
bers of degrees of freedom as follows: if ν denotes the
number of degrees of freedom that s is based on, then
νs2/σ2 is like an outcome of a chi-square random vari-
able with ν degrees of freedom, and s2 is like an outcome
of a gamma random variable with shape ν/2 and rate
ν/(2σ2).

The Weibull probability distribution may be the
most important continuous, univariate distribution, after
the Gaussian, chi-square, and Student’s t distributions.
The Weibull distribution is concentrated on the posi-
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Probability density (Page 159)
of the Weibull distribution
with mean 2 and standard
deviation 1/

√
3 = 0.58. The

shaded region comprises 68 %
of the area under the curve.

tive real numbers, and it is indexed by two parameters:
shape α > 0 and scale η > 0, with mean ηΓ(1 + 1/α)

and standard deviation η(Γ(1 + 2/α)− Γ2(1 + 1/α))½,
where “Γ” denotes the gamma function of mathemati-
cal analysis (whose values can be computed in R using
function gamma).

The Weibull distribution is renowned for being an ac-
curate model for the strength of many materials, and
for the longevity of mechanical parts and machinery. Its
parameters can easily be estimated from failure data by
application of either the method of maximum likelihood
(Page 193) or Bayes methods (Page 208).
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The exponential distribution with rate λ > 0 is a Weibull
distribution with shape 1 and scale 1/λ, hence with
mean and standard deviation both equal to 1/λ, and
median ln(2)/λ. The exponential distribution is a suit-
able model for the lifetime of an item that does not
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age with passing time (for example, individual atoms
of 222Rn, Page 46): the probability that an exponential
lifetime will last longer than t + ∆, given that it has
lasted t already, is the same as the probability that it will
have lasted longer than ∆ to begin with. The shortest of
several independent, exponentially distributed lifetimes
is exponentially distributed with rate equal to the sum
of all their rates.

The lognormal probability distribution is a
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Probability density (Page 159)
of the lognormal distribution

with mean 2 and standard
deviation 1/
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shaded region comprises 68 %
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continuous distribution concentrated on the positive
real numbers. If a random variable X has a lognormal
distribution with mean µ and standard deviation σ >

0, then ln(X) has a Gaussian distribution with mean
ln(µ/

√
(σ/µ)2+1), and variance ln((σ/µ)2 + 1).

Ratios, U/V, arise often in metrology, and the Gaussian
distribution just as often is the natural candidate to
model the uncertainties that surround them. However,
assigning a Gaussian distribution to the denominator, V,
implies that the probability is positive that V shall take
a value arbitrarily close to zero, hence that the ratio may
become arbitrarily large in absolute value, or, in other
words, that the uncertainty of the ratio will be infinite.
Of course, if zero lies many standard deviations away
from V’s expected value, then this difficulty may not
matter in practice.
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Probability densities of the
lognormal (black thick curve)

and Gaussian (gray thin
curve) distributions, both

with mean 7 and standard
deviation 0.525. The coef-

ficient of variation is 7.5 %,
and the two densities al-

ready provide a close ap-
proximation to one another.

When the coefficient of variation of V (standard devia-
tion divided by the mean) is small (less than 5 %), then
Gaussian and lognormal distributions with identical
means and with identical standard deviations will be
essentially identical, and the lognormal model may be
used to avoid the possibility of inducing an unrealisti-
cally large variance for the ratio.
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The Laplace probability distribution, also called
the double exponential distribution, is a continuous dis-
tribution specified by its mean and scale parameters. Its
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standard deviation is
√

2 larger than the scale parameter.

We use the Laplace distribution in a model for the re-
sults of an interlaboratory study of the mass fraction of
arsenic in kudzu (Page 151) because its tails are heav-
ier than the tails of the Gaussian distribution with the
same mean and standard deviation, thus reducing the
influence that measured values far from the bulk of the
others have upon the consensus value.

The binomial probability distribution is a dis-
crete distribution that assigns lumps of probability to the
non-negative integers 0, 1, . . . , n for some integer n > 0.
It describes the variability of the number of “successes”
in n independent trials whose outcomes are either a
“success” or a “failure,” when each trial has the same
probability 0 ⩽ θ ⩽ 1 of yielding a “success.” It has
mean nθ and standard deviation

√
nθ(1 − θ).
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Probability mass function
of the Binomial distribution
with mean 2, based on 10
trials, with 0.2 probability of
“success” in each trial.

The binomial distribution is often used to characterize
the uncertainty surrounding the number of entities of a
particular type that are being identified and counted in a
collection of similar entities. For example, of the number
of eosinophils in a collection of 100 white blood cells
that are being identified and counted in a differential
leukocyte count (Page 38). This count may be regarded
as outcome of a binomial random variable based on 100
trials (examinations of individual cells), each of which
yields a eosinophil (success) or a white blood cell of some
other type (failure).

The Poisson probability distribution is a discrete
distribution concentrated on the non-negative integers,
whose mean and variance are identical. The probability
that a Poisson random variable with mean λ>0 will take
the value x is e−λλx/x!, where x! = x(x−1)(x−2) . . . 1.
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mean 2.The number of alpha particles emitted per second and

per nanogram of 226Ra, as a result of radioactive dis-
integration, is a Poisson random variable with mean
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λ = 36.6 s−1 ng−1. Starting with a particular amount of
a radioisotope with a single mode of decay, for example
226Ra, the expected number of decays per second de-
creases (exponentially fast) over time because one atom
of the radioisotope is lost with each decay.

Considering that no two different atoms decay simul-
taneously, and that the numbers of decays occurring
during non-overlapping time intervals are independent
(but not identically distributed) random variables, the
sequence of epochs at which a decay occurs is a non-
stationary (more commonly called inhomogeneous) Pois-
son process.113

113 A. F. Karr. Poisson process.
In S. Kotz, C. B. Read, N. Bal-
akrishnan, B. Vidakovic, and
N. L. Johnson, editors, Ency-
clopedia of Statistical Sciences,
volume 3, pages 1910–1918.

John Wiley & Sons, Hobo-
ken, NJ, second edition, 2006.

ISBN 978-0-471-15044-2.
doi:10.1002/0471667196

This implies that the number of decays occurring during
the time interval (t1, t2) is a Poisson random variable
with mean

∫ t2
t1

λ(t)dt regardless of the duration of that
interval relative to the half-life of the radioisotope, where
λ(t) denotes the intensity (instantaneous mean number
of decays per second) of the Poisson process at time t.

Alleged limitations of Poisson statistics in describing
radioactive decay are a misunderstanding caused by the
failure to recognize that the underlying Poisson process
is inhomogeneous.114114 A. Sitek and A. M. Celler.

Limitations of Poisson
statistics in describing

radioactive decay. Physica
Medica, 31:1105–1107, 2015.

doi:10.1016/j.ejmp.2015.08.015

This can be taken into account by focusing on the num-
ber of decays per unit of time and per mole of the ra-
dioisotope at each instant in time, which is equivalent
to rescaling the axis of time so that the Poisson pro-
cess becomes homogeneous [Snyder and Miller, 1991,
Problem 2.3.5].

Alternatively, the decreasing intensity of the process can
also be dealt with by partitioning the time interval of
interest into a set of sufficiently short sub-intervals, and
considering a sum of independent, binomial random
variables whose different probabilities of “success” are
the Poisson probabilities of decay in these sub-intervals.

Of course, if the interval of interest is short by compar-
ison with the radionuclide’s half-life, then treating the

https://doi.org/10.1002/0471667196
https://doi.org/10.1016/j.ejmp.2015.08.015
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inhomogeneous Poisson process as if it were homoge-
neous provides yet another approximate solution.

The numbers of boys (Page 141) that were sick in bed on
each day of an influenza epidemic in an English board-
ing school were modeled as outcomes of independent,
Poisson random variables whose means varied from day
to day.

However, this was only a convenient approximation
because each daily count of sick boys is a sum of de-
pendent Bernoulli random variables, owing to influenza
being a contagious disease. (A Bernoulli random vari-
able has a binomial distribution (Page 173) with n = 1
trial, hence it can take only the values 0 or 1.)

The Poisson distribution is often used as a model for
the number of occurrences of a rare event because Pois-
son probabilities can approximate binomial probabilities
(Page 173) quite closely, when the probability of “suc-
cess” is small.

A river’s 100-year flood (Page 182) is a rare event whose
probability of occurrence on any particular year is, by
definition, 0.01. The binomial probability (Page 173)
of it occurring exactly once (meaning once and once
only) in a century is 100(0.01)1(1−0.01)99=0.3697. The
corresponding Poisson approximation is computed by
putting x=1 and λ=100×0.01=1 in the formula above,
to get e−1(1)1/1! = 0.3679.

The negative binomial probability distribution

with mean µ > 0 and dispersion ϕ > 0 is a discrete
distribution concentrated on the non-negative integers
0, 1, 2, . . . . Its variance is µ + µ2/ϕ, hence it is larger
than the variance of a Poisson distribution with the
same mean. For this reason it is often used as a model
for counts that are more dispersed than Poisson counts.
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The multinomial probability distribution as-
signs its unit of probability to K different sets or cate-
gories, so that set k = 1, . . . , K receives probability θk⩾0
and θ1 + · · · + θK = 1. Identifying and counting 100
leukocytes is equivalent to placing 100 balls into 7 bins,
the balls representing leukocytes and the bins represent-
ing the types of leukocytes. The probabilities {θk} may
be estimated by the relative frequencies of the different
types of leukocytes. In general, if n denotes the number
of items to be categorized and counted, then the mean
number of items expected for category k is nθk, and the
standard deviation of this number is nθk(1 − θk). The
correlation between the numbers of items in categories
1 ⩽ j < k ⩽ K is −

√
θjθk/((1 − θj)(1 − θk)). Note that

all the correlations are negative because an overcount in
one category will induce an undercount in another.
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Appendix: Statistics

The great American statistician Jimmy Savage defined
“statistics proper” as “the art of dealing with vague-
ness and with interpersonal difference in decision situa-
tions.” [Savage, 1972, Chapter 8] The focus on decision-
making suggests an action oriented discipline, “vague-
ness” refers to uncertainty, whereas the interpersonal
difference comprises all differences of taste and differ-
ences of judgment, both typically varying from person
to person.

“The evaluation of uncer-
tainty is neither a routine task
nor a purely mathematical
one; it depends on detailed
knowledge of the nature of
the measurand and of the
measurement.” — gum 3.4.8
[JCGM 100:2008].

Similarly to how “It is only slightly overstating the case
to say that physics is the study of symmetry,”115 one 115 P. W. Anderson. More

is different: Broken
symmetry and the
nature of the hierarchical
structure of science.
Science, 177:393–396, 1972.
doi:10.1126/science.177.4047.393

can even perhaps say that statistics is the alchemy of dis-
tilling uncertainty into some certainty, in the sense that
“the history of data analysis can be read as a succession
of searches for certainty about uncertainty”.116

116 F. Mosteller and J. W.
Tukey. Data Analysis, in-
cluding Statistics. In The
Collected Works of John W.
Tukey, volume IV: Philosophy
and Principles of Data Anal-
ysis: 1965-1986, chapter 15,
pages 601–720. Wadsworth &
Brooks Cole, Monterey, CA,
1986. ISBN 0-534-05101-4

And statistics is an art, similarly to carpentry or cob-
blery: a practice involving specialized skills and know-
how that are developed in apprenticeship with master
artisans. Generally not ends in themselves, the statistical
arts serve to extract information from data in situations
of uncertainty, to enable actions and decisions in all
fields of the human endeavor.

Counts

Under Counting (Page 38), we discussed evaluations of
uncertainty for counted quantities: numbers of atoms of
a particular isotope of radon, numbers of white blood
cells (leukocytes) of different types, numbers of Tyran-
nosaurus rex, and numbers of tramcars.

For white blood cells, we considered a sample of 100
leukocytes comprising 4 eosinophils. If this count should
be modeled as an outcome of a binomial random vari-
able that counts the number of “successes” in 100 inde-
pendent trials with probability of “success” 4/100, then

https://doi.org/10.1126/science.177.4047.393
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the corresponding standard uncertainty will be
√

100 × (4/100)× (96/100) = 1.96.

The Poisson model that approximates this binomial dis-
tribution has mean 100×(4/100) = 4, hence standard
deviation

√
4 = 2.

A method proposed by Wilson [1927]117 to build confi-117 E. B. Wilson. Probable
inference, the law of succes-

sion, and statistical inference.
Journal of the American Statis-
tical Association, 22:209–212,
1927. doi:10.2307/2276774

dence intervals for binomial proportions performs quite
well in general.118 For the true proportion of eosinophils,

118 R. G. Newcombe. Two-
sided confidence inter-
vals for the single pro-

portion: comparison of
seven methods. Statistics
in Medicine, 17(8):857–872,

1998. doi:10.1002/(sici)1097-
0258(19980430)17:8<857::aid-

sim777>3.0.co;2-e

based on the aforementioned observed count of 4 in a
sample of 100, it produces a 95 % confidence interval
ranging from 0.013 to 0.11 (thus asymmetrical relative
to the observed proportion, 0.04), obtained by executing
the R command

prop.test(x=4, n=100)$conf.int

The uncertainty analysis reported earlier for eosinophils
(Page 39) takes two sources of uncertainty into account:
sampling variability and between-examiner variability.

Sampling variability is modeled using a multinomial
model (Page 176), to take into account the fact that
the counts of the different types of leukocytes are like
outcomes of dependent, binomial random variables.

Between-examiner variability is modeled using Gaussian
distributions (one for each kind of leukocyte), all with
mean zero and with standard deviations that depend on
the type of leukocyte, and are set equal to the standard
uncertainties that Fuentes-Arderiu et al. [2007] evalu-
ated. These Gaussian “errors” are added to the counts
simulated using the multinomial distribution, using a
Monte Carlo method.

https://doi.org/10.2307/2276774
https://doi.org/10.1002/(sici)1097-0258(19980430)17:8<857::aid-sim777>3.0.co;2-e
https://doi.org/10.1002/(sici)1097-0258(19980430)17:8<857::aid-sim777>3.0.co;2-e
https://doi.org/10.1002/(sici)1097-0258(19980430)17:8<857::aid-sim777>3.0.co;2-e
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Bootstrap

The statistical bootstrap is a computationally-intensive
method for statistical inference, and in particular for un-
certainty evaluation.119 Diaconis and Efron [1983] pro-

119 B. Efron and R. J. Tibshi-
rani. An Introduction to the
Bootstrap. Chapman & Hall,
London, UK, 1993; and A. C.
Davison and D. Hinkley.
Bootstrap Methods and their
Applications. Cambridge
University Press, Cambridge,
UK, 1997. ISBN 0-521-57471-4.
URL statwww.epfl.ch/
davison/BMA/

vide a compelling, accessible introduction to the boot-
strap, and Hesterberg [2015] describes bootstrapping
techniques, copiously illustrated with examples.

There are two main versions of the bootstrap: parametric
and non-parametric. Both can be applied to univariate
and multivariate data (for example, for the scores in
the Pairs Figure Skating competition of the 2022 Winter
Olympics (Page 68), and for the calibration of a gc-ms

instrument (Page 98) used to measure concentration of
chloromethane). Here we begin with a set of replicated
determinations x1, . . . , xm of a scalar quantity, obtained
under conditions of repeatability.

the parametric bootstrap regards these determina-
tions as if they were a sample from a probability distribu-
tion Pθ that is indexed by a possibly multidimensional
parameter θ. The underlying assumption is that this
distribution is an adequate model for the variability of
the replicates. We also assume that the true value of the
measurand, η = ψ(θ), is a known function ψ of θ. The
parametric bootstrap involves three steps:

(pb1) Estimate θ from {xi}, obtaining θ̂. Here we are pre-
tending that θ̂ is θ since θ itself is unknown. Most
commonly, θ̂ is the maximum likelihood estimate.

(pb2) Draw a large number, K, of samples of size m from
P

θ̂
, and compute the estimate of θ for each of these

samples, obtaining θ∗1 , . . . , θ∗K . K should be no smaller
than 103 when the method is used to compute stan-
dard deviations of functions of the data, and ideally
of the order of 106 for most purposes.

(pb3) Compute the corresponding estimates of the measur-
and, y1 = ψ(θ∗1 ), . . . , yK = ψ(θ∗K), and use them as if
they were a sample drawn from the distribution of
the measurand, to evaluate the associated uncertainty.

statwww.epfl.ch/davison/BMA/
statwww.epfl.ch/davison/BMA/
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The standard deviation of the {yk} is an evaluation
of standard uncertainty of η, and the 2.5th and 97.5th
percentiles of the {yk} are the endpoints of a coverage
interval for the true value of the measurand (η), with
95 % probability.

The parametric bootstrap is used below (Page 195) to
evaluate the uncertainty associated with the maximum
likelihood estimate of the tensile strength of alumina
coupons in a 3-point flexure test.

The non-parametric bootstrap requires that some
recipe (R) be available to combine the replicated obser-
vations and to produce an estimate of the measurand:
y = R(x1, . . . , xm). This recipe may be as simple as com-
puting their median, or it may be an arbitrarily compli-
cated, nonlinear function of the data. The observations
again are regarded as a sample from some probability
distribution, but here this distribution remains unspeci-
fied (hence the qualifier non-parametric).

The non-parametric bootstrap is even bolder than the
parametric one. For the parametric bootstrap we esti-
mated a parameter of a probability distribution, and
proceeded to sample from this distribution pretending
that the estimate of the parameter is equal to the true
value of the parameter. For the non-parametric bootstrap
we will treat the set of replicates in hand as if it were an
infinitely large sample from the unspecified, underlying
probability distribution, by taking these steps:

(npb1) Select a large, positive integer K, and for each k =

1, . . . , K draw s1k, . . . , smk uniformly at random, and
with replacement, from the set {x1, . . . , xm}. Each sik
is equal to one of the {xi}. For each k, the {sik} are
called a bootstrap sample.

Step (npb1) means that we
get s1k by drawing one of
the observations we have
as if drawing a ball from
a lottery bowl, and then

return it back to the bowl,
mix the contents, and then
draw the observation that
will become s2k and so on.

Note that the same observa-
tion may appear multiple

times in a bootstrap sample.

(npb2) For each bootstrap sample, compute the correspond-
ing estimate of the measurand, yk = R(s1k, . . . , smk),
and then use the {yk} to evaluate the associated un-
certainty, similarly to how it was done in step (pb3).
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The number K should be as large as practicable, the
guidelines being the same as offered above, for the para-
metric bootstrap. When applying the bootstrap, the first
thing to do is to examine the probability distribution
of the bootstrap estimates of the measurand, {yk}, for
example by building a histogram of these values (if the
measurand indeed is a scalar quantity).

If this distribution is very “lumpy”, with only a few
different values, then the bootstrap may not produce a
reliable uncertainty evaluation. This may happen when
the number m of observations is small, or when the
way of combining them tends intrinsically to produce a
small number of different values (this can happen, for
example, if R(x1, . . . , xm) is the median of the {xi}).

In general, m should be large enough for there to be
a very large number of possible, different bootstrap
samples, even if not all will produce different estimates
of the quantity of interest. This can be the case even
when m is surprisingly small, because given a set of
m observations whose values are all different from one
another, it is possible to form (2m−1

m−1 ) ≈ 22m−1/
√

mπ

different bootstrap samples using the non-parametric
bootstrap.

For m=14 (the number of replicated determination of
the mass fraction of magnesium discussed below), the
number of different bootstrap samples is already over
20 million (of course, not all of these bootstrap samples
produce different estimates of the measurand). It is
very unlikely that, when m < 12, the non-parametric
bootstrap will produce reliable results even when the
estimate of the measurand is highly sensitive to each
single observation.

Chernick [2008] suggests that the number of observa-
tions should be at least 50. However, if the number of
bootstrap samples, K, is a very small fraction of (2m−1

m−1 ),
then this may suffice for the nonparametric bootstrap to
produce reliable results.
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Under Combining Replicated Observations, we apply the
non-parametric bootstrap to evaluate the uncertainty as-
sociated with the median of the Walsh averages (Hodges-
Lehmann estimator), using facilities available in R pack-
age boot [Canty and Ripley, 2020]. Next, we illustrate
the non-parametric bootstrap without resorting to these
facilities, to make transparently clear what is involved.

River flood stage (S) is the height of the water sur-
face above a reference level, and discharge (Q) is the vol-
umetric flow rate. The record of yearly peak discharges
in the Red River of the North, for the period 1989–2018,
and the corresponding flood stages measured at Fargo,
North Dakota, can be used to calibrate a relationship
between flood stage and discharge, so that flood stage,
which is easier to measure accurately than discharge,
can be used to estimate discharge.

These data are available from
the usgs at waterdata.usgs.
gov/monitoring-location/

05054000

# Yearly peak discharge of the Red River at Fargo
# measured at the USGS station 05054000

# Flood stage (m)
S = c(10.8, 4.7, 5.2, 5.2, 8.6, 8.1, 8.6, 8.8, 12.1, 7.6,

6.3, 6.8, 11.2, 6.9, 6.2, 8.6, 11.3, 9.4, 5.9, 12.4,
11.3, 11.8, 5.4, 10.1, 8.5, 5.9, 5.2, 6.8, 5.7)

# Discharge (m^3/s)
Q = c(535.2, 34.5, 74.5, 73.3, 286, 317.1, 311.5, 281.5,

792.9, 243.8, 138.8, 159.4, 574.8, 190, 153.8, 277.8,
563.5, 382.3, 137.1, 835.3, 600.3, 770.2, 116.7, 458.7,
294.5, 139.3, 95.4, 160.3, 130)

z = data.frame(S=S, Q=Q)S    m

Q
  

  (
m

3
s)

6 8 10 12

20
0

40
0

60
0

80
0

11

Relation between discharge
(Q) and flood stage (S) for

the Red River of the North,
at the yearly peak discharge,

for the period 1989-2018. The following R code fits a non-parametric and locally
quadratic regression model, loess,120 which expresses120 W. S. Cleveland, E. Grosse,

and W. M. Shyu. Local re-
gression models. In J. M.

Chambers and T. J. Hastie,
editors, Statistical Models in

S, chapter 8. Wadsworth
& Brooks/Cole, Pacific
Grove, California, 1992

discharge as a function of flood stage, and then uses the
fitted model to estimate the discharge that corresponds
to flood stage S = 11 m: Q̂(11 m) = 567.4 m3/s. The
R function predict evaluates the associated standard
uncertainty as u(Q̂(11 m)) = 9.3 m3/s.

waterdata.usgs.gov/monitoring-location/05054000
waterdata.usgs.gov/monitoring-location/05054000
waterdata.usgs.gov/monitoring-location/05054000


183

z.loess = loess(Q~S, data=z)
Q11.loess = predict(z.loess, newdata=data.frame(S=11), se=TRUE)

The non-parametric bootstrap, implemented below, in-
volved drawing 10 000 samples, each of size 29, from
the set of 29 pairs of observations {(Si, Qi)}, with re-
placement, fitting the loess model to each such sample,
and then using the fitted model to predict the discharge
corresponding to S = 11 m. The standard deviation of
the resulting 10 000 predicted values of the discharge,
13.1 m3/s, is 41 % larger and a more realistic evalua-
tion of u(Q̂(11 m)) than the evaluation derived from the
original loess fit.

Q11.boot = numeric(10000)
for (k in 1:10000) {

iB = sample(1:29, size=29, replace=TRUE)
zB.loess = loess(Q~S, data=z, subset=iB)
Q11.boot[k] = predict(zB.loess, newdata=data.frame(S=11))

}
c(mean(Q11.boot, na.rm=TRUE),

sd(Q11.boot, na.rm=TRUE) )

Combining Replicated Observations
“The problem of summa-
rizing the location of a
single batch of numbers is
surely the simplest and most
classical of the problems rec-
ognized as analysis of data. It
was first attacked about 1580,
by the use of the arithmetic
mean. The next few centuries
included the statement and
proof of the Gauss-Markoff
theorem which asserted the
minimum-variance property
— among all unbiased estimates
linear in the data — in any
problem where the param-
eters entered linearly into
the average value of each
observation, for the results
of linear least squares. Since
the use of an arithmetic mean
to summarize a batch was a
special instance of this gen-
eral theorem, the naive might
conclude that the problem
of summarizing a batch had
been settled. Far from it.”

— John W. Tukey (1986)

Consider the problem of estimating the mass fraction of
magnesium in a breakfast cereal, based on 14 determi-
nations made using inductively coupled plasma optical
emission spectroscopy (icp-oes), under conditions of
repeatability, which are expressed in mg/kg —

1130.0 1083.3 1091.7 1072.0 1083.2
1014.6 1068.0 1125.6 1124.6 1115.3
1088.1 1075.0 1126.8 1121.1

These, together with other measurement results, were
used to produce the certified value of the mass fraction
of magnesium in nist srm 3233.

Choosing to minimize the mean squared difference be-
tween the estimate and the true value, or to minimize
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the absolute value of this difference, are different op-
tions that can be interpreted as means to achieve opti-
mal estimation under different assumptions: that these
determinations are either a sample from a Gaussian
distribution, or a sample from a Laplace distribution.
The former suggests the arithmetic mean, the latter the
median. However, many other modeling choices are
conceivable, each leading to a different estimate.

The simple average, or arithmetic mean, is the op-
timal estimate if one chooses to gauge performance in
terms of mean squared error (Page 167), and if one
judges the following model to be adequate for the obser-
vations: wi = ω + εi for i = 1, . . . , m, where m = 14 is
number of observations, ω is the true value of that mass
fraction, and the {εi} are measurement errors regarded
as a sample from a Gaussian distribution with mean 0
and standard deviation σ.

Thomas Simpson, Profes-
sor of Mathematics at the

Royal Academy at Woolwich,
outlined the advantages of

averaging observations. For
example, the probability that

the average of six observa-
tions will have a larger ab-

solute error than a single ob-
servation is only 25 % when

the errors follow Gaussian
distribution. [Simpson, 1755]

(credit: archive.org).

The statistical model, as just formulated, involves the
assumption that the observations are not persistently
offset from the true value they aim to estimate. This
is formalized in their mathematical expectation being
equal to the true value:

E(Wi) = E(ω) + E(εi) = ω,

because ω is a constant, and the assumption was made
above that E(εi) = 0 mg/kg. Note that here we have
used Wi, the uppercase version of wi, to denote the
random variable that the observation wi is regarded as a
realized value of. Since the expected value of each Wi is
ω, we say that there is no bias (persistent, or systematic
error, Page 167) in the measurement.

The assumption that the measurement errors {εi} are
Gaussian implies that so are the {wi}, which can be
tested. The Shapiro-Wilk [Shapiro and Wilk, 1965] and
the Anderson-Darling [Anderson and Darling, 1952]
tests, for conformity of a sample with a Gaussian dis-
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tribution, are commonly used: in this case, the former
yields a p-value of 0.06, and the latter of 0.1.

It is a common convention in science that only p-values
smaller than 0.05 indicate a statistically significant dis-
crepancy, but this is a matter of (subjective) judgment
(Page 32). Indeed, one cannot identify a single universal
threshold of statistical significance, and some argue that
the level of significance should be set at 0.005.121

121 V. E. Johnson. Revised
standards for statistical
evidence. Proceedings of the
National Academy of Sciences,
110:19313–19317, 2013.
doi:10.1073/pnas.1313476110

Suppose that, to test a hy-
pothesis H (in a significance
test) one rejects H when the
value of some test criterion
(a suitable function of the
data) is too large. The p-value
of the test is the probability,
computed on the assumption
that H is true, of observing
a value of the test criterion
at least as large as the value
that was obtained using
the data available for the
test (Page 32). Since a small
p-value suggests that the
data are unlikely if H is true,
the common practice is to
reject H in such case. Of
course, one needs to decide
in advance how small the p-
value needs to be to warrant
rejecting H.

The median of the observations is responsive to choices
different from those that suggest the average. That
instead of seeking to minimize mean squared error
(Page 167), one wishes to minimize mean absolute error,
which may be particularly appropriate when the mea-
surement errors {εi} have a probability distribution with
heavier tails than the Gaussian: for example, Laplace
(also known as double exponential, Page 172). The me-
dian of a set of observations is found by ordering the
observations from smallest to largest, and selecting the
middlemost (when the number of observations is odd),
or the average of the two middlemost ones (when the
number of observations is even).

The average of the determinations listed above, of the
mass fraction of magnesium in a breakfast cereal, is
1094.2 mg/kg, and the median is 1089.9 mg/kg. The
average has one serious shortcoming: it offers no protec-
tion against the influence of a single value that, for one
reason or another, lies far from the bulk of the others.
Suppose that, owing to a clerical error, the last value is
reported as 11 211 mg/kg instead of 1121.1 mg/kg. In
consequence, the average will shoot up to 1814.9 mg/kg,
while the median stays put at 1089.9 mg/kg.

But the median is also open to criticism. First, it seems
to gloss over most of the information in the data: it
uses the data only to the extent needed to determine
which is the middlemost value. Second, it is sensi-
tive to small perturbations of the middlemost obser-

https://doi.org/10.1073/pnas.1313476110


186

vations. Suppose that the last two digits of the third
determination, 1091.7 mg/kg, are transposed acciden-
tally, and 1097.1 mg/kg is reported instead. The average
hardly budges, becoming 1094.6 mg/kg, while the me-
dian slides to 1092.6 mg/kg.

The median of the Walsh averages (better known
as the Hodges-Lehmann estimate122) affords a fairly

122 J. L. Hodges and E. L.
Lehmann. Estimates

of location based on
rank tests. The Annals of
Mathematical Statistics, 34

(2):598–611, June 1963.
doi:10.1214/aoms/1177704172

general, flexible solution to the problem of combining
replicated observations. It is computed by taking these
three steps for a sample of size m:

The Walsh averages are these:
{(wi + wj)/2 : 1 ⩽ i ⩽ j ⩽ m},

thus including averages like
(1130.0 + 1130.0)/2 and

(1130.0 + 1083.3)/2, but not
both (1083.3 + 1130.0)/2
and (1130.0 + 1083.3)/2,
because {1130.0, 1083.3}

and {1083.3, 1130.0}
are the same subset.

(1) Compute the averages of all different subsets with
two observations each (since two subsets are identical
if they have the same elements regardless to order,
there are 1

2 m(m − 1) such subsets);

(2) Form a set with these averages together with the m
observations;

(3) Find the median of the 1
2 m(m + 1) values in this set.

The Hodges-Lehmann estimate is particularly attractive,
and an excellent, general purpose replacement for the
average and the median, particularly when the repli-
cated observations may be assumed to be a sample from
a symmetrical distribution, because:

• It uses the information in the data almost efficiently
as the average, when the average is at its best;

• It can use the information in the data far more effi-
ciently than the average when the average is not at its
best;

• It is resistant to outliers; and

• Its standard uncertainty, as well as expanded uncer-
tainties and coverage intervals for different coverage
probabilities, can be computed very easily, for exam-
ple using R.

https://doi.org/10.1214/aoms/1177704172
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w = c(1130.0, 1083.3, 1091.7, 1072.0, 1083.2, 1014.6,
1068.0, 1125.6, 1124.6, 1115.3, 1088.1, 1075.0,
1126.8, 1121.1)

w68 = wilcox.test(w, conf.int=TRUE, conf.level=0.68)
HL = w68$estimate; names(HL) = NULL
uHL = diff(w68$conf.int)/2

w95 = wilcox.test(w, conf.int=TRUE, conf.level=0.95)
U95HL = diff(w95$conf.int)/2
Lwr95 = w95$conf.int[1]; Upr95 = w95$conf.int[2]

c("HL"=HL, "u(HL)"=uHL, "U95(HL)"=U95HL,
"Lwr95"=Lwr95, "Upr95"=Upr95)

For the 14 replicates of the mass fraction of magnesium,
the median of the Walsh averages is 1098.8 mg/kg, with
standard uncertainty 9.4 mg/kg, and expanded uncer-
tainty for 95 % coverage of 18 mg/kg. Their counter-
parts for the average are 1094.2 mg/kg, 8.6 mg/kg, and
19 mg/kg, respectively.

And for the median, using the non-parametric statistical
bootstrap (Page 180) as implemented in the following
R code, we get standard uncertainty 14 mg/kg and ex-
panded uncertainty 24 mg/kg:

miB = replicate(1e5, median(sample(w, 14, replace = TRUE)))
U95 = diff(quantile(miB, c(0.025,0.975)))/2
c("u(median)"=sd(miB), "U95(median)"=U95)

Weighted averages may be appropriate under the
same general conditions that make the average optimal,
but when the different observations being combined
have different uncertainties, for example in the case of
the determinations of equivalent activity reported for
59Fe in a key comparison organized by the bipm.123 The

123 C. Michotte, G. Ra-
tel, S. Courte, K. Kossert,
O. Nähle, R. Dersch,
T. Branger, C. Bobin,
A. Yunoki, and Y. Sato. BIPM
comparison BIPM.RI(II)-
K1.Fe-59 of activity measure-
ments of the radionuclide
59Fe for the PTB (Germany),
LNE-LNHB (France) and
the NMIJ (Japan), and the
linked APMP.RI(II)-K2.Fe-59

comparison. Metrologia,
57(1A):06003, January
2020. doi:10.1088/0026-
1394/57/1a/06003

synthetic radionuclide 59Fe has half-life of 44.5 days,
and decays to stable 59Co via beta decay.

https://doi.org/10.1088/0026-1394/57/1a/06003
https://doi.org/10.1088/0026-1394/57/1a/06003
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lab year activity /kBq

iaea/rcc 1978 14 663(24)
npl 1979 14 668(55)

ansto 1980 14 548(54)
cmi-iir 1984 14 709(36)

barc 1998 14 511(28)
kriss 1999 14 728(50)
bkfh 2001 14 685(32)
nist 2001 14 641(60)
ptb 2012 14 609(25)

lne-lnhb 2013 14 603(36)
nmij 2014 14 576(23)

Selected measurement results
for equivalent activity, Ae,
of 59Fe from a continuous
long-term interlaboratory

study [Michotte et al., 2020].

The weighted average of values x1, . . . , xm, with non-
negative weights w1, . . . , wm (which do not have to sum
to 1) is

xw =
x1w1 + · · ·+ xmwm

w1 + · · ·+ wm
.

If the {xi} are modeled as outcomes of uncorrelated
random variables with a common mean µ and standard
uncertainties {u(xi)}, then the weighted average cor-
responding to the weights wi = 1/u2(xi) has smallest
standard uncertainty given by

uC(xw) =
1√

1
u2(x1)

+ · · ·+ 1
u2(xm)

,

where the subscript “C” emphasizes that uC(xw) in-
volves the assumption of a common mean and does not
take into account how dispersed the {xi} actually are
around their weighted average xw.

Raymond Birge was keenly aware of the fact that, in
many practical situations, independent estimates of the
same quantity can be markedly more dispersed than
their associated standard uncertainties suggest that they
should be.

For example, the standard deviation of the selected mea-
sured values listed above, of the equivalent activity of
59Fe, is 68 kBq, while the median of their associated stan-
dard uncertainties is 36 kBq: if those 11 values indeed
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measure the same true equivalent activity unbiasedly,
then that standard deviation and this median should
agree except for statistical fluctuations.124 124 R. T. Birge. The calculation

of errors by the method of
least squares. Physical Review,
40:207–227, April 1932.
doi:10.1103/PhysRev.40.207

The evaluation of u(xw) shown below is based on the
weighted differences between the {xi} and their weighted
average xw:

uI(xw) =

√
w1(x1 − xw)2 + · · ·+ wm(xm − xw)2

m(w1 + · · ·+ wm)
,

where m denotes the number of observations that xw

is based on. The subscript “I” refers to the fact that
uI(xw) entertains the possibility that the measurement
results (measured values and associated uncertainties)
may be mutually inconsistent: that is, that the {xi} may
be overdispersed by comparison with what the {u(xi)}
suggest that they should be.

The weighted average of the measured values of the
equivalent activity of 59Fe is 14 619 kBq. The evaluation
of its standard uncertainty on the assumption that the
measured values have a common mean is 10 kBq, while
the evaluation based on the weighted standard deviation
is 19 kBq.

The marked difference between uC(xw) and uI(xw) is
attributable to the measurement results being mutually
inconsistent, exhibiting substantial dark uncertainty (ex-
plained under Consensus Building, Page 146).

In such case, provided the {xi} can reasonably be re-
garded as outcomes of Gaussian random variables (pos-
sibly with different means and different standard devia-
tions), then a classical (non-Bayesian) manner of combin-
ing them involves the application of restricted maximum
likelihood estimation (reml) to fit a model that accom-
modates the possibility of the measured values being
variously biased: xi = µ + λi + εi, as discussed under
Consensus Building (Page 146).

https://doi.org/10.1103/PhysRev.40.207
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The reml estimate for the activity of 59Fe is 14 628 kBq,
with associated standard uncertainty 21 kBq. It was
obtained as follows:

Fe59.A = c(14663, 14668, 14548, 14709, 14511, 14728,
14685, 14641, 14609, 14603, 14576)

Fe59.uA = c(24, 55, 54, 36, 28, 50, 32, 60, 25, 36, 23)
require(metafor)
Fe59.reml = rma(yi=Fe59.A, sei=Fe59.uA, method="REML")
c("A"=Fe59.reml$b, "u(A)"=Fe59.reml$se)

Weighted medians are preferable to the simple me-
dian when the observations being combined have dif-
ferent uncertainties, and the median is appropriate to
begin with. The function weighted.median defined in
package spatstat125 offers a reliable implementation of

125 A. Baddeley and R. Turner.
spatstat: An R package for

analyzing spatial point pat-
terns. Journal of Statistical

Software, 12:1–42, 2005. URL
www.jstatsoft.org/v12/i06/ the weighted median. It yields 14 606 kBq as estimate of

the equivalent activity of 59Fe. The associated standard
uncertainty, computed using the parametric statistical
bootstrap, is 17 kBq.

The following table summarizes the several estimates
of equivalent activity of 59Fe presented above, and their
associated standard uncertainties. It should be noted
that the number of measured values, n = 11, is too
small confidently to apply the nonparametric bootstrap:
therefore, only the results from the parametric bootstrap
are listed, which will involve sampling from Laplace
distributions: this yields the estimate 14 606 kBq, with
associated standard uncertainty 17 kBq (based on 10 000
bootstrap samples).

method Ae(59Fe) u(Ae(59Fe))
/kBq

Average 14 631 21
Weighted Average (uC) 14 619 10
Weighted Average (uI) 14 619 19

Weighted Median (Par. Boot.) 14 606 17
Consensus (Gaussian reml) 14 628 21

www.jstatsoft.org/v12/i06/
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Maximum Likelihood Estimation

Maximum Likelihood Estimation (mle) is a technique
used to estimate the values of parameters that appear
in statistical measurement models. mle may be used to
estimate an input quantity that appears in a conventional
measurement model as specified in the gum, based on
replicated observations, or it may be used to estimate
the output quantity if the measurement model lends
itself to such treatment.

We will use the initialism
mle to denote “maximum
likelihood estimation,” “max-
imum likelihood estimator,”
or “maximum likelihood
estimate,” depending on the
context.

mle produces not only an estimate of the quantity of
interest, but can, in most cases, also produce an approx-
imate evaluation of the associated uncertainty. And if
supplemented with the statistical bootstrap, when this
is practicable, then it can characterize uncertainty much
more accurately than the approximation to standard
uncertainty described in the gum. The idea of supple-
menting mle with the bootstrap is illustrated below, in
relation with the measurement of the tensile strength of
alumina.

mle can be used whenever
there is an explicit relation-
ship between the true value
of the quantity one wishes to
estimate, and the parameters
of the probability distribution
of the data that is used for
the purpose.

For example, when the
replicated observations are
from a Gaussian distribution,
and the true value of the
quantity of interest is the
mean of this distribution.
Likewise, in the example
presented below, the quantity
of interest (the mean tensile
strength of alumina) is an
explicit function of the two
parameters of the Weibull
distribution used to model
replicated observations of the
stress at which coupons of
alumina break in a flexure
test.

In its most succinct and general form, a statistical mea-
surement model comprises these two statements:

(1) X ∼ Pθ ,

(2) η = φ(θ),

where X = (X1, . . . , Xn) is a vector of random variables
whose probability distributions characterize their un-
certainties. Statement (1) says that the joint probability
distribution of these random variables is Pθ , where the
true value of the parameter θ (typically also a vector, but
with a number of components that does not vary with
n) is an unknown element of a set H. Statement (2) says
that η, denoting the true value of the measurand (which
may be a vector), is a known function φ of θ.

Now, suppose that Pθ has probability density (Page 159)
pθ , and that x is the observed value of the vector X. The
mle of θ is θ̂ that maximizes pθ(x) as θ ranges over H:
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the idea is to choose a value for the parameter θ that
makes the data “most likely.” The mle of the measurand
is η̂ = φ(θ̂).

In this process, x is kept fixed at its observed value,
while θ is allowed to vary over H until a maximum of
pθ(x) is found. To emphasize this fact, one often defines
a function Lx, called the likelihood function, as follows:
Lx(θ) = pθ(x). None of the pieces changes, only the
viewpoint: the subscript x in Lx is a way of saying that
Lx depends on x but that x remains fixed while we seek
to maximize Lx(θ) by varying its argument, θ, over the
set H of its possible values. In applications, the subscript
x is often suppressed because the dependence on x is
understood, and one writes simply L(θ).

Therefore, maximum likelihood estimation amounts to
maximizing the likelihood function. In some cases this
can be done analytically, based on the first and second
derivatives of ln Lx with respect to θ. In other cases it
has to be done via numerical optimization.

Under very general circumstances, maximum likelihood
estimation enjoys several remarkable properties that,
coupled with the ease with which the mle can be com-
puted, make this method of estimation a very attractive,
general purpose technique. These properties include:

• mle produces the estimate, θ̂, of the measurand with
smallest uncertainty;

• The probability distribution of θ̂ (which is the value of
a random variable because it is a function of the data)
is approximately Gaussian, and the quality of the
approximation improves as the number, n, of inputs
increases;

• The inverse of the matrix of second-order partial
derivatives of − ln Lx with respect to θ, evaluated
at θ = θ̂, is an approximation to the covariance matrix
of θ̂. The larger the sample that θ̂ is based on, the
better the approximation.
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Maximum likelihood estimation of the Weibull

distribution is applied here to characterize the tensile
strength of alumina coupons based on 30 observations,
made under conditions of repeatability, of the rupture
stress of the coupons in a 3-point flexure test.

Rupture stress, σ/MPa

307 407 435 455 486 371
409 437 462 499 380 411
441 465 499 393 428 445
466 500 393 430 445 480
543 402 434 449 485 562

Rupture stress for 30 alu-
mina coupons in a 3-point
flexure test. Courtesy of
George D. Quinn (Material
Measurement Laboratory,
nist).

The model selected for the variability of these determina-
tions is the Weibull probability distribution (Page 171),
which has two parameters that, in the present context,
are called the characteristic strength σC, and the Weibull
modulus, m.126 Note that, throughout this example, the

126 J. B. Quinn and G. D.
Quinn. A practical and
systematic review of
Weibull statistics for
reporting strengths of
dental materials. Dental
Materials, 26:135–147, 2010.
doi:10.1016/j.dental.2009.09.006

Greek letter σ is used to denote stress (with the same
units as pressure), not standard deviation.

Three-point flexural strength
test of an alumina coupon,
light colored, between the
rollers held by rubber bands.

Consistently with the notation used for the general
description of the mle above, we should then write
θ = (m, σC). The measurand is the tensile strength
η = σCΓ(1 + 1/m), which is the mean of that Weibull
distribution (and Γ is the gamma function).

The Weibull probability distribution has the following
probability density: (Page 159):

p(σi |m, σC) =
m
σC

(
σi
σC

)m−1
e(−σi/σC)

m
,

where the scale parameter σC and the shape parameter
m are positive quantities.

Assuming that the n = 30 replicates of σ are like out-
comes of independent Weibull random variables, the
likelihood function is L such that

Lσ(m, σC)=
n

∏
i=1

p(σi |m, σC).

https://doi.org/10.1016/j.dental.2009.09.006
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The maximum likelihood estimates of the parameters
are the values of m and σC that maximize Lσ(m, σC) as
a function of m and σC, with σ = (σ1, . . . , σn) kept fixed
at the observed rupture stresses.

Since Lσ(m, σC) is a product of terms involving m and
σC, it is generally preferable to maximize ln Lσ(m, σC)

instead. The reason is that the gradient of a sum is gener-
ally better behaved during numerical optimization than
the gradient of a product because the second deriva-
tives of a sum generally do not change too much or too
rapidly.

The R code below minimizes the negative log-likelihood
function, − ln Lσ(m, σC), which is equivalent to maxi-
mizing the likelihood function.

The R function optim min-
imizes the value of the

function negLogLik with
respect to its argument, the
vector par, whose elements

are the Weibull parame-
ters, using the Nelder-Mead
method [Nelder and Mead,

1965]. It requires that initial
guesses be provided for the

values of the parameters.
The code requests that the

matrix of second-order partial
derivatives (Hessian matrix,

named after Ludwig Otto
Hesse, 1811–1874) be com-

puted and returned because
its inverse is an approxima-

tion to the covariance matrix
of the parameter estimates.
The larger the sample size,

which is 30 in this case, the
better the approximation.

sigma = c(307, 371, 380, 393, 393, 402, 407, 409, 411, 428,
430, 434, 435, 437, 441, 445, 445, 449, 455, 462,
465, 466, 480, 485, 486, 499, 499, 500, 543, 562)

negLogLik = function(par, s = sigma) {
-1 * sum(dweibull(s, shape=par[1], scale=par[2], log=TRUE)) }

## Find maximum likelihood estimates
opt = optim(par = c(m=10.6, sigmaC=465), fn = negLogLik,

s = sigma, hessian = TRUE)
## Estimates of the shape and scale parameters
opt$par
## Approximate covariance matrix of the parameter estimates
V = solve(opt$hessian)
## Approximate standard uncertainties of the parameter estimates
sqrt(diag(V))

The results are m̂ = 9.24, σ̂C = 467 MPa, hence η̂ =

443 MPa. The last line of the previous R code will
produce approximate evaluations of u(m̂) = 1.23 and
u(σ̂C) = 9.8 MPa.

To compute u(η̂) one can use the fact that the equation
η = σCΓ(1 + 1/m) is the measurement model, while
recognizing that m̂ and σ̂C are correlated. The correla-
tion between them is 0.33, which can be obtained using
cov2cor(V) following the R code above. The NIST Un-
certainty Machine then yields u(η̂) = 10.4 MPa.

http://uncertainty.nist.gov
http://uncertainty.nist.gov
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These uncertainty evaluations are made possible by the
aforementioned mle magic. However, this magic re-
quires a large number of observations, while we have
only 30. May this be enough?

To answer this question without invoking the mle magic,
we can redo the uncertainty analysis employing the
parametric statistical bootstrap [Efron and Tibshirani,
1993] (Page 179), and compare the evaluations we will
get this way with those we got above.

The idea is to take the above mles of m and σC and
use them to generate many samples of size 30 from the
Weibull distribution with these values of the parame-
ters. For each such sample, we find the best parame-
ter values by minimizing the negative log-likelihood,
− ln Lσ(m, σC).

m.HAT = opt$par['m']
sigmaC.HAT = opt$par['sigmaC']
boot = array(dim=c(1e5, 3))
colnames(boot) = c('m', 'sigmaC', 'eta')
for (j in 1:1e5) {

sigmaB = rweibull(30, shape=m.HAT, scale=sigmaC.HAT)
thetaB.MLE = optim(par=c(m=10, sigmaC=440),

fn=negLogLik, s=sigmaB)$par
## Calculate eta
etaB = thetaB.MLE['sigmaC']*gamma(1 + 1/thetaB.MLE['m'])
boot[j,] = c(thetaB.MLE, etaB)

}
apply(boot, 2, sd)
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The contour lines in the left
panel outline the shape of
the joint probability density
(Page 159) of m̂ and σ̂C. The
shaded region in the right
panel amounts to 95 % of
the area under the curve,
hence its footprint on the
horizontal axis is a 95 %
coverage interval for the true
value of η.

This R code produces u(m̂) = 1.47, u(σ̂C) = 9.8 MPa,
and u(η̂) = 10.5 MPa. Not only does this exercise val-
idate the mle magic in this case, it also gives us the
ingredients to characterize the joint probability distribu-
tion of m̂ and σ̂C, hence also the distribution of η̂.
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Least Squares

Least squares is a criterion of estimation that is often
also described as a method for the adjustment of obser-
vations.

Consider the simplest instance of such adjustment, where
one has made m replicated determinations of the same
quantity, x1, . . . , xm, which one wishes to combine by
choosing the value θ that minimizes the sum of squared
deviations of the observations from it:

S(θ) = (x1 − θ)2 + . . . + (xm − θ)2.

Such θ is the solution of S′(θ) = 0, where S′ denotes
the first derivative of S with respect to θ, hence reduces
to (−2)(x1 − θ) + . . . + (−2)(xm − θ) = 0. Solving this
equation for θ yields

θ = (x1 + · · ·+ xm)/m = x,

the average of the observations. This is indeed the value
where S(θ) achieves its minimum because.

S′′(θ) = 2m > 0.

If the measurement errors follow the Gaussian distri-
bution, then least squares is equivalent to maximum
likelihood estimation.

If measurement errors are
best modeled using a prob-

ability distribution other
than Gaussian, then an ad-

justment of observations
based on a different criterion

may be preferable. For ex-
ample, minimizing the sum
of the absolute values of the

errors will lead to the me-
dian, which is the maximum

likelihood solution when
the errors follow a Laplace

distribution (Page 172).

The method of least squares was developed by Adrien-
Marie Legendre (1752–1833) and Carl Friedrich Gauss
(1777–1855) at the beginning of the 19th century. In an
early, and most remarkable application of this method,
Gauss predicted where the asteroid Ceres should be
found again after it had last been observed by its discov-
erer, Giuseppe Piazzi (1746–1826).127 And it was indeed

127 C. F. Gauss. Summarische
Uberficht der zur bestim-

mung der bahnen der bey-
den neuen hauptplaneten

augewanden methoden.
Monatliche Correspondenz

zur Beförderung der Erd- und
Himmels- Kunde, XX(Part B,

July-December, Section XVII):
197–224, September 1809

at the location predicted by Gauss that Franz Xaver von
Zach (1754–1832) and Heinrich Olbers (1758–1840) spot-
ted Ceres in the skies on the last day of 1801.

The method of least squares can be illustrated with an
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example we encountered earlier (Page 61), to determine
the mass of three weights by measuring their mass dif-
ferences. This example involves three observations of
mass differences (DAB = −0.38 mg, DAC = −1.59 mg,
and DBC = −1.22 mg), three parameters whose val-
ues we are seeking (true masses of all weights, that
is, 200 g + δA, 200 g + δB, and 200 g + δC), and a con-
straint K = δA + δB = 0.83 mg that must be satisfied
while also taking into account its associated uncertainty,
u(K) = (0.07 mg)×

√
2.

The three observations are mutually inconsistent be-
cause, for example, DAB −DAC = −1.21 mg while DBC =

−1.22 mg. To make them consistent we introduce non-
observable “errors” ε1, ε2, and ε3, such that the following
three equations hold true simultaneously

DAB = δA − δB + ε1,

DAC = δA − δC + ε2,

DBC = δB − δC + ε3.

Applying the method of least squares in this case amounts
to choosing values for δA, δB, and δC that minimize the
sum of the squared errors, ε2

1 + ε2
2 + ε2

3, while also satis-
fying the constraint

K = δA + δB = 0.83 mg.

This constraint is “soft” because it is surrounded by
uncertainty, u(K) = (0.07 mg)×

√
2. However, let us

first pretend that it is “hard” so that we can replace
δB with K−δA and write the optimization criterion as
follows:

S(δA, δC) = ε2
1 + ε2

2 + ε2
3

= (DAB−δA+(K−δA))
2 + (DAC−δA+δC)

2

+ (DBC−(K−δA) + δC)
2.

The values of δA and δC that minimize S(δA, δC) corre-
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spond to a situation when both partial derivatives equal
zero,

∂S(δA, δC)/∂δA = 0 and ∂S(δA, δC)/∂δC = 0,

that is

These estimates, δ̂A and
δ̂C, indeed correspond to a

minimum of the criterion
because the matrix of second

order partial derivatives of
S(δA, δC) is diagonal and

both elements in its main
diagonal are positive in-

tegers: ∂2S/(∂δA)2 = 12
and ∂2S/(∂δC)2 = 4.

δ̂A = + 1
3 DAB + 1

6 DAC − 1
6 DBC + 1

2 K = 0.227 mg,

δ̂C = − 1
2 DAC − 1

2 DBC + 1
2 K = 1.82 mg.

Applying the constraint yields the estimate of the re-
maining parameter, δ̂B = K − δ̂A = 0.603 mg.

Now we need to bring into play the “softness” of the
constraint, which is the uncertainty of K. This can be
accomplished in any one of several different ways. The
most intuitive one may be a Monte Carlo procedure.

The idea is to solve the same optimization problem
we just solved, when we pretended that the constraint
was “hard”, but to do it many times over, each time
using a value for the constraint drawn from a probability
distribution with mean K and standard deviation u(K).
We will use a Gaussian distribution for this purpose, in
keeping with the spirit of least squares.

D.AB = -0.38; D.AC = -1.59; D.BC = -1.22
abc = array(dim=c(1e6, 3))
for (i in 1:1e6) {

k = rnorm(1, mean=0.83, sd=0.07*sqrt(2))
A = D.AB/3 + D.AC/6 - D.BC/6 + k/2
B = k - a
C = -D.AC/2 - D.BC/2 + k/2
abc[i,] = c(A, B, C) }

apply(abc, 2, mean)
apply(abc, 2, sd)

The final, constrained least squares estimates are

δ̂A = 0.227 mg, δ̂B = 0.603 mg, and δ̂C = 1.82 mg,

with associated uncertainties

u(δ̂A) ≈ u(δ̂B) ≈ u(δ̂C) = 0.049 mg.
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More general constrained least squares problems can
be solved using the method of Lagrange multipliers, as
described by Zelen [1962] and Seber [2008, §24.3]. R
function solnp, in package Rsolnp implements a versa-
tile algorithm for constrained, nonlinear optimization
using an augmented Lagrange method.128

128 Y. Ye. Interior Point
Algorithms: Theory and
Analysis. John Wiley &
Sons, New York, NY, 1997.
ISBN 978-0471174202; and
A. Ghalanos and S. Theussl.
Rsolnp: General Non-linear
Optimization Using Augmented
Lagrange Multiplier Method,
2015. R package version 1.16

The method of least squares is very often used to fit
models to data, and it is also very often misused be-
cause users fail to realize how attentive this method is
toward every little detail in the data, while such solici-
tude may, in many cases, prove excessive. For example,
a single data point that markedly deviates from the pat-
tern defined by the others can lead the least squares fit
astray.

It may also happen that a least squares fit reproduces
the data exactly yet is ridiculous. A figure presented ear-
lier and reproduced here illustrates this point in spades.

log10((c  (µg L)) + 0.015)
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Even though a polynomial of
the 8th degree fits the median
values of r at each value of
c (dots) exactly, it would be
an unrealistic calibration
function.

The fit, which may be computed using the R code be-
low, goes through each data point exactly, but at the
price of an odd, obviously unrealistic contortion of the
curve. The residuals, which are the differences between
observed and fitted values of log10(r/(m2/m2)), are all
zero because the method of least squares forces a poly-
nomial (regardless of degree), with as many coefficients
as there are data points, to pass through all of them, at
any cost.

x = c(-1.824, -1.347, -0.939, -0.668, -0.382,
-0.089, 0.208, 0.507, 0.604)

y = c(-2.107, -1.892, -1.653, -1.432, -1.208,
-0.942, -0.74, -0.476, -0.409)

summary(lm(y~poly(x, degree=8, raw=TRUE)))

When the method of least squares is used either to adjust
observations or to fit a function to empirical data, it is
often applied subject to constraints. For example, when
the purpose is to adjust mass fractions of a compound
whose constituents are determined separately from one
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another, one will wish to constrain the adjusted mass
fractions to be non-negative, or to be less than 1 g/g, or
to sum to 1 g/g, or possibly to satisfy more than one
such constraint simultaneously. Similarly, when fitting a
piecewise polynomial function to data, one may wish to
constrain the result to be continuous and smooth, that
is, to be a spline [Ferguson, 1986].

Between approximately
−260 ◦C and 960 ◦C, the In-

ternational Temperature
Scale (its-90) is defined by

means of platinum resistance
thermometers calibrated
at specified fixed points

(such as melting points of
various metals). In this tem-
perature interval, the its-90

reference function is given
by two high-order polyno-

mials constrained to join
at the triple point of wa-

ter without discontinuity
of either the polynomials

or of their first derivatives.

Generalized Linear Models

The method of least squares (Page 196) is often used
to fit linear models that express the mean value, η, of
an observable output, y, as a linear combination of val-
ues of inputs, x1, . . . , xn, whose values are known with
negligible uncertainty:

η = β0 + β1x1 + · · ·+ βnxn,

y = η + ε,

where ε denotes the measurement error affecting y.

Least squares is optimal when the measurement errors
affecting the outputs that are observed at different com-
binations of values of the inputs, are like a sample from a
Gaussian distribution with mean 0 and a finite standard
deviation whose value generally is unknown. In such
circumstances, the outputs have Gaussian distributions,
too, but with different means.

When the outputs do not have Gaussian distributions,
as was the case when we considered the probability of
death for mussels (Page 125) exposed to deltamethrin,
the options commonly available are either to re-express
[Mosteller and Tukey, 1977, Chapters 4-6] the outputs so
that a linear Gaussian model becomes tenable for them,
or to employ a generalized linear model.129

129 P. McCullagh and J. A.
Nelder. Generalized Lin-

ear Models. Chapman
& Hall / CRC, London,

UK, 2nd edition, 1989

The number of dead mussels had a binomial (Page 173)
probability distribution whose parameter, the probabil-
ity of death, depended on the level of exposure: more
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precisely, the model expressed the true value of the log-
odds of death as a linear function of the logarithm of the
mass concentration of deltamethrin in the water where
the mussels lived.

A generalized linear model (glm) for a response y —
which may be continuous or discrete — expresses η,
the expected value of y, as a given function of a linear
combination of the predictors,

η = φ−1(β0 + β1x1 + · · ·+ βnxn),

and specifies the probability distribution of y. Here, φ−1

denotes the mathematical inverse of the link function φ.

Generalized linear model.

In the case of deltamethrin example, the probability of
death was p(c) when the mass concentration of the toxin
was c, the sole input, and

p(c) =
exp(α + β ln c)

1 + exp(α + β ln c)
.

Hence, the link function was the logit, which maps p
to ln(p/(1 − p)) (0 < p < 1), and y had a binomial dis-
tribution with probability of “success” p(c). R function
glm can be used to fit a wide range of generalized linear
models to data by the method of maximum likelihood.

Model Selection

When we built a model for the calibration function used
to measure the mass concentration of chloromethane
(Page 98) we employed the Bayesian Information Cri-
terion (bic) as a guide to select one among several al-
ternative models, and pointed out that the smaller the
bic, the more adequate the model. Here we describe
how bic is computed, and explain why the best model
(among several under consideration) has the smallest
value of bic.

Consider fitting a straight line (1st degree polynomial)
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to the chloromethane data, using the following R code:

x = c(-1.824, -1.347, -0.939, -0.668, -0.382,
-0.089, 0.208, 0.507, 0.604)

y = c(-2.107, -1.892, -1.653, -1.432, -1.208,
-0.942, -0.74, -0.476, -0.409)

summary(lm(y~poly(x, degree=1, raw=TRUE)))

The model treats the m=9 values of x as known without
uncertainty, and regards the values of y as outcomes
of m independent Gaussian random variables whose
means depend on the values of x. More precisely, yi is
an outcome of a Gaussian random variable with mean
β0 + β1xi and standard deviation σ, for i = 1, . . . , m.

The likelihood function corresponding to these data is a
function L of the three parameters β0, β1, and σ, where
the data {xi, yi} are kept fixed, such that

Lx,y(β0, β1, σ)=

(
1

σ
√

2π

)m
exp

{
−

m

∑
i=1

(yi−β0−β1xi)
2

2σ2

}
.

In these circumstances, the maximum likelihood esti-
mates of β0, and β1 are the least squares (Page 196) esti-
mates, β̂0 and β̂1, and the maximum likelihood estimate
of σ2 is the average of the squared residuals {yi − ŷi},
where ŷi = β̂0 + β̂1xi, for i = 1, . . . , m: that is,

σ̂2 =
m

∑
i=1

(yi − ŷi)
2/m.

Note that k is not the degree
of the polynomial; it is the

number of adjustable pa-
rameters. For polynomial

regression models, like the
ones we are comparing here,

k is the number of coeffi-
cients of the polynomial plus

the additional parameter, σ.

The bic for this model and data is

bic = −2 ln Lx,y(β̂0, β̂1, σ̂) + k ln m,

where k=3 denotes the number of model parameters.
The closer the model fits the data, the larger the value
Lx,y(β̂0, β̂1, σ̂) that the likelihood function takes at the
maximum likelihood estimates. Or, equivalently, the
more accurate the model, the smaller (the more negative)
the first term in the foregoing definition of the bic,
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−2 ln Lx,y(β̂0, β̂1, σ̂), (because it has a minus sign in front
of it and the logarithm is an increasing function).

In general, the larger the number of parameters in a
model, the closer it will fit the data. Therefore, the
greater the degree of the polynomial, the closer the
fit (above we saw that a polynomial of the 8th degree
will fit these data exactly), and the smaller (the more
negative) − ln(L) will be. On the other hand, since k
denotes the number of parameters in the model, the
larger this number the larger the second term, k ln(m),
in the definition of the bic, which is added to the first.

That is, the two terms in the bic move in opposite di-
rections as the number of parameters in the model in-
creases: the first term becomes smaller, while the second
increases. The first term rewards goodness of fit (the
smaller the better), while the second term, k ln(m), pe-
nalizes model complexity (the larger the worse), where
“complexity” here means number of adjustable param-
eters. In summary, when we select the model that
minimizes bic we are striking a compromise between
goodness-of-fit and model complexity.

degree k bic

1 3 −19.9
2 4 −32.3
3 5 −43.4
4 6 −41.3
5 7 −43.1
6 8 −41.7
7 9 −41.3

The smaller the value of bic,
the more adequate the model
for the data. In this case bic

decreases appreciably as the
degree of the polynomial
increases from 1 to 3, but
then stabilizes, fluctuating
around the same value. This
suggests that a polynomial of
the third degree may be the
best choice for these data.
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The best model according to
bic, among those under con-
sideration, is a polynomial of
the 3rd degree.

The following R code computes bic for the first degree
polynomial model described above. It does it both from
scratch and also using the built-in function BIC.

x = c(-1.824, -1.347, -0.939, -0.668, -0.382,
-0.089, 0.208, 0.507, 0.604)

y = c(-2.107, -1.892, -1.653, -1.432, -1.208,
-0.942, -0.74, -0.476, -0.409)

y1.lm = lm(y~poly(x, degree=1, raw=TRUE))
## Size of the sample the model was fitted to
n = nrow(y1.lm$model)
## sigma is the extra parameter
k = length(y1.lm$coefficients) + 1
## MLE of sigma
sigmaHAT = sqrt(mean(residuals(y1.lm)^2))
yHAT = fitted.values(y1.lm)
loglik = sum(dnorm(y, mean=yHAT, sd=sigmaHAT, log=TRUE))
c("BIC"=-2*loglik + k*log(n), "BIC"=BIC(y1.lm))
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Bayesian Estimation

Bayesian estimation consists of estimating the measur-
and and evaluating the uncertainty associated with the
estimate by application of Bayes’s rule. The defining
trait of Bayesian methods is to treat all unknown values
of properties of interest as non-observable random vari-
ables, and the measurement results as observed values
of random variables. O’Hagan [2008] provides a con-
cise overview of Bayesian principles and methods, and
Gelman et al. [2003] describe and illustrate the contem-
porary practice of Bayesian statistics.

The Bayesian approach provides integrated, simultane-
ous solutions to the problems of estimation and uncer-
tainty evaluation, while classical solutions tend to solve
these problems separately and in succession. Among
classical methods, mle comes the closest to Bayesian
methods in this respect.

Bayesian methods can also be very useful in situations
where there are about as many parameters as there are
observations, for example in image reconstruction,130

130 S. Geman and D. Ge-
man. Stochastic relaxation,

Gibbs distributions, and the
Bayesian restoration of im-
ages. IEEE Transactions on

Pattern Analysis and Machine
Intelligence, 6:721–741, 1984

because they act as a regularization prescription, in the
sense that the information conveyed by the prior distri-
bution helps solve what could otherwise become an ill-
posed optimization problem [Rasmussen and Williams,
2006] [Hastie et al., 2009].

The prior information may originate in similar studies
carried out in the past, or it may reflect expert knowl-
edge: in either case, it must be cast in the form of a
probability distribution on the set of possible values of
the measurand. When an expert is the source of prior
information, one should employ a disciplined approach
to elicit the relevant information and to encapsulate it
in a probability distribution.131 132

131 A. O’Hagan, C. E. Buck,
A. Daneshkhah, J. R. Eiser,

P. H. Garthwaite, D. J. Jenk-
inson, J. E. Oakley, and

T. Rakow. Uncertain Judge-
ments: Eliciting Experts’

Probabilities. Statistics in
Practice. John Wiley & Sons,

Chichester, England, 2006.
ISBN 978-0-470-02999-2

132 D. E. Morris, J. E.
Oakley, and J. A. Crowe. A
web-based tool for eliciting

probability distributions
from experts. Environmental

Modelling & Software,
52:1–4, February 2014.

doi:10.1016/j.envsoft.2013.10.010

The Bayesian approach to draw inferences from data
aligns the interpretation of such inferences with how
most people are naturally inclined to interpret them.

https://doi.org/10.1016/j.envsoft.2013.10.010


205

This advantage is clearest in relation with the interpreta-
tion of coverage intervals.

The conventional interpretation, which has pervaded the
teaching of statistics for at least 70 years, is as follows:
a 95 % interval for the true value of a quantity is a
realization of a random interval, and the 95 % probability
does not apply specifically to the interval one actually
gets, but is a property of the procedure that generates
such interval, characterizing its performance in the long
run.

This interpretation typically goes hand in hand with a
frequentist interpretation of probability, which justifies
statements like this: the 95 % means that, of all such
intervals that a statistician produces in her lifetime, 95 %
cover their intended targets, and 5 % miss them. Bayesian statistics gets

its name from the 18th
century English statistician,
philosopher, and minister,
Thomas Bayes, whose most
famous accomplishment was
published only posthumously
[Bayes and Price, 1763].

The Bayesian interpretation (Page 204) of coverage in-
tervals is more intuitive, and certainly applies to the
specific interval that one actually gets: the 95 % is the
probability that the value of interest is in that particular
interval that one has computed.

This interpretation is enabled by a change in viewpoint:
the interval one gets is as concrete and definite as can be
— there being nothing random about it. The “random-
ness” is transferred to the quantity whose true value is
unknown, while the very meaning of “random” is re-
freshed. From a Bayesian viewpoint, a random quantity
does not have a value that fluctuates unpredictably like
a leaf fluttering in the wind — its value is what it is, but
our knowledge of it is imperfect or incomplete.

Bayesians use probability distributions to quantify de-
grees of belief (in the truth of propositions about the true
values of properties under study), or to describe states
of partial or incomplete knowledge about properties.
A random variable is simply a property (quantitative
or qualitative) that has a probability distribution as an
attribute. This attribute is not an intrinsic attribute of
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the property. Instead, it describes an epistemic relation
between the person aiming to learn the true value of the
property, and this true value.

The Bayesian approach is eminently practical because its
specific results have the meaning common sense expects
them to have, and they are immediately relevant because
they are not contingent on what may happen in the rest
of anyone’s lifetime (refer to the discussion above of the
meaning of confidence intervals).

In a nutshell, the Bayesian approach to estimation and
uncertainty evaluation for statistical measurement mod-
els involves modeling all parameters whose true values
are unknown as (non-observable) values of random vari-
ables, and the measurement data as observed outcomes
of random variables whose distributions depend on the
unknown parameter values. The estimate of the mea-
surand, and an evaluation of the associated uncertainty,
are derived from the conditional distribution of the un-
knowns given the data.

Combining prior knowledge with experimental results
might seem strange at first. After all, why do we need to
incorporate any prior knowledge? Why not rely entirely
on the experimental data? There are several simple but
compelling answers as to why, including these:

(a) More often than not there is prior knowledge about
the measurand, otherwise one would not even be able
to select a measuring instrument, and the Bayesian
approach provides the disciplined means to take such
prior knowledge into account;

(b) There may be hard or soft constraints that the pa-
rameters in the statistical model for the observations
should satisfy, and probability distributions can be
used to enforce the effectively, for example in the
context of constrained least squares (Page 196);

(c) The ratio between the number of parameters in the
model, and the number of data points, may be large
enough that maximum likelihood estimation, for ex-
ample, can become an ill-conditioned problem: in
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such cases the prior distribution acts as a regulariza-
tion prescription that actually enables reliable estima-
tion.

Consider the interpretation of test results for a disease,
such as covid-19. Suppose that a rapid test has been
developed that correctly yields a positive test result in
99 % of people infected with covid, and that yields a
false positive for 1 % of the people without covid.

If you take the test and it turns out positive, most likely
you will conclude that you are infected. However, the
probability of a patient having covid given a positive
test result depends not only on the the sensitivity (proba-
bility of correctly detecting true positives) and specificity
(probability of identifying the target disease correctly) of
the test, but also on the prevalence (proportion of people
who are infected) of the disease!

Consider two covid tests both done in Florida using
that same method: one test is taken in late October 2020,
and the other three months later. Noh and Danuser
(2021) estimate that some 50 000 people were infected
with covid in late October 2020 in Florida, whereas
three months later that number rose to one million.133 133 J. Noh and G. Danuser.

Estimation of the fraction
of COVID-19 infected
people in U.S. states and
countries worldwide. PLoS
ONE, 16:e0246772, 2021.
doi:10.1371/journal.pone.0246772

If we incorporate this prior information about the frac-
tion of the population infected with covid, then the
probability that the patient with the positive test result
really has covid is very different in those two periods:
about 20 % in October 2020, and about 85 % in February
2021, clearly demonstrating that measurements alone
might not provide all the information that should be
taken into account to make the best decisions.

To show how these conclusions were reached, consider
the expected counts corresponding to the foregoing prob-
abilities. The expected number of people in Florida who
were infected in October 2020 was 50 000. If all of them
had been tested, then 0.99× 50 000 = 49 500 would have
tested positive.

https://doi.org/10.1371/journal.pone.0246772
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The expected number who were not infected is approx-
imately 20 million, based on the population of Florida.
And if all of these had been tested, then 0.01 × 20 ×
106 = 200 000 would have tested positive.

Therefore, the proportion of those that were infected
among those that tested positive would have been 49 500/
(49 500 + 200 000) = 0.20. Similar calculations yield the
corresponding, much larger proportion, 0.85, for early
February of 2021.

Bayesian estimation of the tensile strength η of alumina
coupons starts from the same data and uses the same
likelihood function that we used above to illustrate the
method of maximum likelihood estimation.

The prior distribution tells us
the likely whereabouts of the
parameters before we gather
any new data. The likelihood
tells us how likely the data

are given any particular
values of the parameters.

Bayes’s rule [DeGroot and
Schervish, 2012, 2.3,7] puts

these two pieces together
to tell us how likely it is

that the true values of the
parameters will be in any
specified subsets of their

ranges, in light of the fresh
data, and with due allowance

for the prior information.
The prior knowledge in hand consists of facts about the
Weibull modulus m and the characteristic strength σC

that have been established in previous studies of rupture
of the same material, also in 3-point flexure testing: that
m is around 8.8, give or take 1.25, and that σC is around
467 MPa give or take 11 MPa. We capture these facts
by modeling m and σC a priori as independent random
variables with Gaussian distributions, m with mean 8.8
and standard deviation 1.25, σC with mean 467 MPa
and standard deviation 11 MPa. This defines the prior
distribution, whose probability density (Page 159), π, is
the product of two Gaussian probability densities, one
for m, the other for σC.

Given any hypothetical values of m and σC, the ob-
served values of rupture stress, σ=(σ1, . . . , σ30), for the
30 coupons that were tested, are modeled as outcomes
of 30 independent random variables, all with the same
Weibull distribution with shape m and scale σC. The
product of the corresponding 30 Weibull densities, each
evaluated at an observed value of rupture stress, then
becomes a function of m and σC alone (the observations
of rupture stress, {σi}, are all frozen at their observed
values). This is the same likelihood function, Lσ(m, σC),
that we encountered while discussing maximum likeli-
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hood estimation (Page 191). Referring to Bayes’s Rule,
Jeffreys [1973, 2.3] pointed
out that “This theorem (due
to Bayes) is to the theory of
probability what Pythagoras’s
theorem is to geometry.”

The conditional distribution of the parameters given the
data (which actually is the version of the prior distri-
bution suitably updated by incorporation of the fresh
data), the so-called posterior distribution, has probability
density (Page 159) given by Bayes’s Rule:

qσ(m, σC) =
Lσ(m, σC)π(m, σC)∫ +∞

0

∫ +∞
0 Lσ(s, t)π(s, t)ds dt

.

Typically, Bayes’s Rule is not used directly in practice
because the formula that it produces for the probabil-
ity density of m and σC given the data and the prior
information involves integrals (in the denominator) that
cannot be evaluated analytically, and that may be im-
practicable to compute numerically. Other tools have to
be employed to coax the wheels of the Bayesian machin-
ery to turn.

An invention dating back to the 1950s, Markov Chain
Monte Carlo (mcmc) sampling,134 coupled with the

134 C. Robert and G. Casella.
A short history of Markov
Chain Monte Carlo: Sub-
jective recollections from
incomplete data. Statistical
Science, 26(1):102–115, 2011.
doi:10.1214/10-STS3510

availability of fast personal computers, has revolution-
ized the practice of Bayesian statistics. mcmc frees users
from constraints of mathematical tractability, and allows
them to employ realistically appropriate Bayesian mod-
els and still be able to draw samples from the posterior
distribution without computing its density explicitly (for
example, qσ above).

The Russian mathematician
Andrey Markov (1856-1922)
found that the sequence of
consonants and vowels in
Alexander Pushkin’s Eugene
Onegin could be described
as a random sequence with
a particular structure: the
probability of the appearance
of a vowel or consonant
largely depends only on the
type of letter immediately
preceding it. This model
is still in use today to help
identify the authors of texts
of unknown authorship
[Khmelev and Tweedie, 2001].

Markov Chain Monte Carlo is an iterative proce-
dure. At each step, first it generates proposed values for
the parameters by making random draws from a suit-
able (generally multivariate) distribution (fittingly called
the proposal distribution). Then it compares the proposed
values with the values that had been accepted in the
previous step by computing the ratio of the value that
the posterior probability density (Page 159) takes at the
proposed parameter values, to the value it takes at the
previously accepted parameter values. To compute this

https://doi.org/10.1214/10-STS3510
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ratio, α, only the numerator of Bayes’s formula needs to
be evaluated, not the denominator, which usually is the
challenging or impracticable piece to compute.

When the proposal distri-
bution is asymmetrical (as
it will be in this case) this
ratio is adjusted by a mul-

tiplier ρ defined in the R
code below (where it is

called rho). The adjusted
ratio is denoted α in the text,

and alpha in the R code.

When α>1, the proposed values of the parameters are
accepted in the current step without further ado. When
α ⩽ 1, a number z is drawn that is distributed uniformly
between 0 and 1: if z < α, then the proposed values are
still accepted; otherwise, the proposal is rejected and the
values of the parameters in the previous step are taken
also for the current step.

Since the result of each step depends only on the result
of the previous step, the resulting sequence of parameter
values is a Markov chain on the space of parameter
values. The manner, specified above, of transitioning
from one step to the next, ensures that the stationary
(or, equilibrium) distribution of this Markov chain is the
posterior probability distribution sought.

The chain eventually “forgets” its initial state — which is
an arbitrary assignment of values to the parameters —,
and the sequence of accepted values of the parameters is
like a sample from the posterior distribution, albeit with
some dependence that can be alleviated subsequently
by thinning: for example, by keeping only the value that
the Markov chain takes at every 10th or 25th step, say.

Nowadays there are many different ways of implement-
ing mcmc. The procedure sketched above is one of the
oldest, called the Metropolis-Hastings Algorithm [Metropo-
lis and Ulam, 1949] [Hastings, 1970].135135 C. P. Robert and G. Casella.

Introducing Monte Carlo
Methods with R. Springer,

New York, NY, 2010.
ISBN 978-1-4419-1575-7.

doi:10.1007/978-1-4419-1576-4

The following R code shows an example of how the
Metropolis-Hastings version of Markov Chain Monte
Carlo can be used to sample the joint posterior distri-
bution of the Weibull modulus, m, and characteristic
strength, σC, to produce Bayesian counterparts of the
maximum likelihood (Page 193) estimates that were com-
puted above for 30 observations of the rupture stress of
alumina coupons modeled as a sample from a Weibull

https://doi.org/10.1007/978-1-4419-1576-4
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distribution (Page 171).

We begin by defining an R function that computes the
logarithm of the numerator of Bayes’s Rule.

The R function lup evalu-
ates the logarithm of the
numerator of Bayes’s rule,
ln(pm,σC ) + ln(π), which is all
that is needed to be able to
do mcmc. (The name “lup”
refers to the logarithm of the
unnormalized posterior den-
sity, which is the numerator
of Bayes’s Rule.)

lup = function (theta, x) {
m = theta[1]; sigmaC = theta[2]
## Logarithm of prior density for m
logprior.m = dnorm(m, mean=8.8, sd=1.25, log=TRUE)
## Logarithm of prior density for sigmaC
logprior.s = dnorm(sigmaC, mean=467, sd=11, log=TRUE)
## Log-likelihood function
loglik = sum(dweibull(x, shape=m, scale=sigmaC, log=TRUE))
## The logarithm of the numerator in Bayes's Rule
## is the sum of the logarithms of the prior densities
## and of the log-likelihood
return(logprior.m + logprior.s + loglik)

}

Next we place the determinations of rupture stress that
we used above, when discussing maximum likelihood
estimation (Page 191), into the vector sigma, and set the
stage for mcmc.

## Determinations of rupture stress of alumina coupons (MPa)
sigma = c(307, 371, 380, 393, 393, 402, 407, 409,

411, 428, 430, 434, 435, 437, 441, 445,
445, 449, 455, 462, 465, 466, 480, 485,
486, 499, 499, 500, 543, 562)

require(truncnorm)
cv = 0.0485 ## coefficient of variation
K = 1e6 ## Number of steps for the Markov chain

## Coordinates that the Markov chain visits as it moves
## over the possible values for mu and sigmaC
mcmc = array(dim=c(K,2))

## Starting location for the Markov chain
mcmc[1,] = c(m=9, sigmaC=470)

## Counter of the number of times a proposal is accepted
nAccept = 0

Finally, we take K steps of the Markov chain defined
above, drawing candidate values for the parameters
from Gaussian distributions truncated at zero.

Such truncated distribution
produces only positive values,
which are the only acceptable
values for the shape and scale
of a Weibull distribution.

The proposal distributions
are Gaussian distributions
truncated at zero, thus
ensuring that the candidate
values for m and sigmaC both
are positive as they must
be because they are the
shape and scale of a Weibull
distribution. The coefficients
of variation (cv) of both
proposal distributions are
tuned to achieve acceptance
rates of about 30 %.
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for (k in 2:K) {
## Generate new proposal values for the parameters in the
## vicinity of the previous values
proposal = rtruncnorm(2, a=0, mean=mcmc[k-1,1],

sd=cv*mcmc[k-1,2])

## Calculate acceptance ratio alpha, corrected using rho
## because the proposal distribution is asymmetric
a1 = dtruncnorm(mcmc[k-1,], a=0, mean=proposal[1],

sd=cv*proposal[2])
a2 = dtruncnorm(proposal, a=0, mean=mcmc[k-1,],

sd=cv*mcmc[k-1,])
rho = a1/a2
alpha = rho * exp(lup(proposal, x=sigma))/

exp(lup(mcmc[k-1,], x=sigma))

if ((alpha > 1) || (runif(1) < alpha)) {
## Accept proposed values if a number drawn uniformly
## at random from [0,1] is smaller than alpha
nAccept = nAccept + 1
mcmc[k,] = proposal } else { mcmc[k,] = mcmc[k-1,] }

}
nAccept/K ## Acceptance rate

Once these K steps are completed, we discard the initial
25 % of the chain to remove any memory of the start-
ing values, and keep only every20th pair of parameter
values thereafter to reduce the impact that correlations
between accepted values may have upon the estimates
of standard uncertainty for the Bayes estimates that we
will derive from the mcmc sample.

## Discard the initial 25 percent of the chain,
## and keep only every 25th of the remaining values
mcmc = mcmc[seq(0.25*nrow(mcmc), nrow(mcmc), by=25),]
m.TILDE = mcmc[,1]
sigmaC.TILDE = mcmc[,2]
eta.TILDE = sigmaC.TILDE*gamma(1 + 1/m.TILDE)

What do we do with such sample? The sky is the limit,
really, because by making this sample very large (which
can be done at the expense of very quick computation),
we characterize it sufficiently well to be able to compute
any function of it that will be required, and to do so
with high accuracy.

In the case we are considering, this sample comprises
pairs of values of m and σC (which, a posteriori, are
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no longer independent, because they draw information
from the same data). The first thing we do with this
sample of pairs of values of the parameters is to compute
a value of η from each of these pairs, thus producing a
sample from the distribution of the measurand.

eta.TILDE = sigmaC.TILDE * gamma(1 + 1/m.TILDE)

Then we can summarize this sample in any way we
wish: by computing its mean or its median, its standard
deviation, coverage intervals of any probability, etc.

mean(eta.TILDE); sd(eta.TILDE)
quantile(eta.TILDE, probs = c(0.025, 0.975))

The mle and Bayes estimates of η, 443 MPa and 442 MPa,
are almost identical, but the associated uncertainties
are markedly different: mle’s is 10.4 MPa, while its
Bayesian counterpart is 7.5 MPa.
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The estimates are almost identical because the informa-
tion in the data is in very close agreement with the prior
information, and because there is enough data to weigh
fairly heavily upon the specified prior information.

The uncertainty for the Bayes estimate is appreciably
smaller than for the mle because the prior information
is very specific, which the mle is not privy to. In fact,
the mle may be interpreted as a particular Bayesian
estimate (the so-called maximum a posteriori estimate)
when the parameters are uniformly distributed a priori
over their ranges, even though using such uniform dis-
tribution (Page 167) as a prior distribution in this case is
a questionable proposition because both the shape and
scale parameters can take any positive values, which
form an interval of infinite length.

The power of Bayesian methods lies in the fact that they
allow us to incorporate relevant information that the
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likelihood function may be unable to accommodate. For
example, preexisting knowledge about the values of
the parameters, or constraints that the parameters must
satisfy.

The mass fraction of nitrite ions in a sample of
seawater was measured using Griess’s method,136 based136 P. Griess. Bemerkungen

zu der abhandlung der hh.
weselsky und benedikt

“ueber einige azoverbindun-
gen”. Berichte der Deutschen

Chemischen Gesellschaft,
12(1):426–428, 1879.

doi:10.1002/cber.187901201117

on four determinations obtained under conditions of
repeatability:

w(NO−
2 ) = 0.1514, 0.1523, 0.1545, 0.1531 mg/kg

While we might not have any strong prior information
about the nitrite levels in this seawater sample, based on
the performance of the measurement method we do ex-
pect that the relative measurement uncertainty is 1 % to
within a factor of 3. We can model this prior knowledge
about the standard deviation, σ, of the measurement
errors affecting the individual determinations, using a
gamma distribution (Page 170) whose 10th and 90th per-
centiles are 0.33 % and 3 % of 0.150 mg/kg, respectively.
Using R we can obtain the parameters of the gamma
distribution that has these percentiles as follows:

require(rriskDistributions)
get.gamma.par(p = c(0.10, 0.90), q = 0.150*c(1/3, 3)/100)

This yields shape α = 1.696 and rate λ = 762.3 kg/mg.
The following Stan and R codes fit the simple statistical
model

wi(NO−
2 ) = ω + εi

to the replicate determinations i = 1, 2, 3, 4, where ω

denotes the true value of the mass fraction of nitrite in
the sample of seawater, and the measurement errors {εi}
are assumed to be a sample from a Gaussian distribution
with mean 0 and standard deviation σ.

https://doi.org/10.1002/cber.187901201117
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The prior information about σ is encapsulated in the
gamma distribution specified above. For ω we adopt a
weakly informative Gaussian prior distribution.

require(rstan)
w = c(0.1514, 0.1523, 0.1545, 0.1531)
m = "data {

real w[4];
}
parameters {

real<lower=0> omega;
real<lower=0> sigma;

}
model {

// Prior for true mean mass fraction of nitrite
omega ~ normal(0, 1);
// Prior for std. deviation of measurement errors
sigma ~ gamma(1.696, 762.3);
// Likelihood
w ~ normal(omega, sigma);

}"
fit = stan(model_code = m, data = list(w=w),

warmup=75000, iter=750000,
chains=4, cores=4, thin=25)

print(fit, digits=5)
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Prior and posterior proba-
bility densities for σ. The
relative prior uncertainty
about σ, which is 77 %, is
reduced to 47 % after incorpo-
ration of the observations.

The posterior mean of ω is 0.1528 mg/kg, with standard
uncertainty 0.0010 mg/kg, which is 50 % larger than the
conventional Type A evaluation of the standard uncer-
tainty for the average of the replicates.
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