1997 Canadian Acid Rain Assessment

Volume five

The Effects on Human Health

QH 545 .A17 C362 1997 Vol. 5

Published by the Authority of the Minister of Environment Copyright Minister of Supply and Services Canada, 1997.

1214813D 5 36148966 M

9H 545 ,A17 (362 1997 Vd. 5

1997 Canadian Acid Rain Assessment

Volume Five

The Effects on Human Health

Edited by:

Dr. Ling Liu, M.D. Ph.D. Health Canada Ottawa, Ontario

Acknowledgement Page

The 1997 Canadian Acid Rain Assessment is a federal and provincial project that had its beginning at a joint meeting of the Canadian Council of Ministers of Environment and Energy in November 1994. At that meeting, the ministers agreed to develop a national strategy for a long-term acid rain program that would begin after the year 2000.

According to the statement of intent to which the ministers agreed, this strategy was to be based on consultations with Canadians and the principles of co-operation on which the ministers agreed the year before in the Comprehensive Air Quality Management Framework for Canada. The strategy also was to be founded on a scientific assessment of the progress made in existing programs as well as the adequacy of Canadian and American programs to protect Canadians' health and the country's ecosystems. This is part of that assessment.

Contributors

Dr. Richard Burnett, Ph.D. Health Canada Ottawa, Ontario

Dr. David Stieb, M.D. M.P.H. Health Canada Ottawa,Ontario

Dr. Renaud Vincent, Ph.D. Health Canada Ottawa,Ontario

Mark Raizenne Health Canada Ottawa, Ontario

Catalogue number EN56-123/5-1997E ISBN number 0-662-25984-X

TABLE OF CONTENTS

EXECUT		1
1. INTRO	DUCTION	9
2. THE C	DISTRIBUTION OF SULPHUR OXIDES ACROSS CANA	DA 11
3. REVIE	EW OF DIRECT HEALTH EFFECTS	13
3.1. Pa	rticulate matter, sulphate, and aerosol acidity	14
3.1.1.	Epidemiological data	15
3.1.2.	Clinical data	32
3.1.3.	Toxicological data	38
3.1.4	Summary for particulate matter induced direct adverse	53
	health effects and future research directions	53
3.2. Su	lphur dioxide	55
3.2.1.	Epidemiological data	56
3.2.2.	Clinical data	59
. 3.2.3.	Toxicological data	60
3.2.4.	Summary for sulphur dioxide - induced direct adverse health effects	60
4. REVIE	EW OF INDIRECT HEALTH EFFECTS	115
4.1 Change	es in visibility and climate	116
4.2 Acidic	deposition	116
DEEEDE		110

List of Tables

- **Table 3.1.1.** Summaries of recently published epidemiological studies relating humanmortality to ambient levels of particulate matter.
- **Table 3.1.2.** Summaries of recently published epidemiological studies relating human dailyhospital admissions to ambient levels of particulate matter.
- **Table 3.1.3.** Summaries of recently published epidemiological studies relating humanrespiratory symptoms to ambient levels of particulate matter.
- **Table 3.1.4.** Summaries of recently published epidemiological studies relating changes inhuman pulmonary function to ambient levels of particulate matter.
- **Table 3.1.5.** Summaries of recently published controlled human clinical studies relatingadverse health effects to particulate matter exposure
- **Table 3.2.1.**Summaries of recently published epidemiological studies relating humanmortality and morbidity to ambient SO2 levels.

Executive Summary

The goal of this report is to provide a broad framework from the latest available data, most since 1990, in an attempt to estimate the specific agent(s) within the air pollution mixture of acid rain that is/are related to the adverse effects of human health. The direct and indirect health effects of sulphur dioxide (SO₂) and its derivatives, sulphate (SO₄⁼), particulate matter (PM) and acid aerosols (H⁺) are reviewed separately.

Review of Direct Health Effects: Summary for particulate matter, sulphate, and aerosol acidity-induced adverse health effects

Epidemiological studies

Mortality studies - Recent time-series and prospective cohort studies provide strong evidence for a link between ambient particle pollution and cardio-respiratory mortality. Such effects occur at ambient particulate levels below the present Canadian Ambient Air Quality Objectives for particulate matter (24 hour average Total Suspended Particulate Matter concentration 120 μ g/m³, annual geometric mean concentration 70 μ g/m³). The mortality increases monotonically with PM pollution levels, often with a near linear dose-response relationship, without obvious threshold.

The relative risk estimates of PM₁₀ (particles with an aerodynamic diameter less than 10

 μ m) suggest a higher relative risk indicated for the elderly and for those with pre-existing compromised respiratory and cardiovascular conditions. These people may constitute subpopulations sensitive to the mortality implications of the exposures to PM pollution. As for children, it is difficult to ascribe any such association to PM pollution, given the limited and somewhat conflicting results available.

Although there is evidence from historical data that aerosol acidity may contribute to the associations between PM and human mortality, the key reactive component(s) of PM responsible for ambient particle-induced increases in mortality as yet remains undetermined.

Morbidity studies. - Recent studies conducted in various countries with different health care systems are suggestive of acute and chronic effects from PM pollution on respiratory and cardiac hospital admissions, respiratory symptoms and pulmonary function. The adverse effects were observed at ambient PM concentrations within the range of the Canadian Air Quality Objectives. The effects appear to be more significant in infants, elderly people, and in symptomatic groups such as asthmatics.

A series of recent studies conducted in 18 non-urbanized cities in the United States and 6 rural cities in Canada (the so-called "24-city study") has demonstrated that aerosol strong acidity and fine sulphate of PM may contribute to the respiratory symptoms and decrements in lung function observed in children (Spengler *et al.*, 1996, *Environ. Health Perspect.* 104:492-499; Dockery *et al.*, 1996, *Environ. Health Perspect.* 104:500-505; Raizenne *et al.*, 1996, *Environ. Health Perspect.* 104:506-514). Between 1988-1990, the respiratory symptoms of 13,369 caucasian children aged 8-12 years were reported using a parent-completed questionnaire. The pulmonary function of 10,251 caucasian children aged 8-12 years from the same 24-city was recorded. After adjusting for age, weight, height and the interaction of sex and height, associations were seen between the decrements of lung function and particle strong acidity, PM_{2.1}, SO₄⁼, and PM₁₀.

As has been observed from the mortality studies, the risk of morbidity increased with PM levels, often in a near linear dose-response fashion, without obvious threshold. In some studies aerosol strong acidity appears to contribute significantly to the effects observed, while in others H^+ seems to have a threshold in initiating respiratory illness. It is difficult to separate the effect of PM from that of aerosol acidity, due to the strong collinearity between these pollutant measurements.

Clinical studies - The main purpose for performing human clinical studies is to evaluate the biological plausibility of adverse health effects of PM observed in epidemiological investigations. Available clinical study data indicate that, although the ranges of acid aerosol concentrations usually exceed those experienced by the general population, only mild decrements in pulmonary function have been induced in asthmatics, a susceptible subgroup. Elderly subjects and the subjects with COPD do not appear to be at higher risk to acid aerosol-induced impairment in pulmonary function than are younger subjects, even when doing mild exercise. No specific link between exposure to less acidic particles and the adverse health effects has been identified. No biochemical and physiological alterations in the cardiovascular system during controlled exposure have been reported.

These clinical observations cannot explain the changes of daily mortality and morbidity following the fluctuation of ambient particle levels that have been observed in epidemiological studies. Possible explanations for the discrepancy between clinical and epidemiological data may lie in as follows: (i) the experimental subjects can only be exposed to the tested air pollutants for short periods for practical and ethical reasons, while an urban pollution episode usually lasts a few days for general population exposure; a clinical study has shown that doubling the length of exposure to H_2SO_4 exerted greater effect on bronchial mucociliary clearance than did an order of magnitude increase in the concentration of H_2SO_4 ; (ii) the pulmonary function indices that are most often used in clinical studies may not be sensitive enough to indicate particle-induced adverse health effects; (iii) artificial aerosols and not atmospheric particles are given subjects in exposure chambers, which may not represent the possible synergestic effects of

PM and aerosol mixtures; (iv) in most human studies, the sizes of aerosols used were above 0.5 μ m. Since nanometre-sized ultrafine particles have been found in animal studies to induce acute pulmonary inflammation and death at very low concentrations, and they are present in ambient air, ultrafine particles may, as suggested by Seaton *et al.* (1995, *Lancet* 345, 176-178), be "able to provoke alveolar inflammation, with release of mediators capable, in susceptible individuals, of causing exacerbations of lung disease and of increasing blood coagulability, thus also explaining the observed increases in cardiovascular deaths associated with urban pollution episodes". Currently, such mechanisms remain highly hypothetical.

Toxicological studies - Toxicological experiments exposing animals to "real world" polluted air have provided evidence indicating that chronic exposure to ambient air pollutants can result in pulmonary inflammatory effects. However the role of particles in producing these responses cannot be determined.

Non-acidic PM. - Studies utilizing non-acidic particles show that these particles generally have very low toxicity in inducing animal mortality and morbidity. High concentrations of PM are needed, often in the mg/m³ range, to induce toxicity. However, comparative studies of particle exposure dosimetry in rats and humans have provided a fresh viewpoint. These studies suggest that PM-induced animal toxicity data may be relevant to observed associations between ambient PM exposure and human health outcomes, when taking into consideration the differences of airway geometry, minute ventilation rate, deposition efficiency, exposure term, and breathing fashion, between animals and humans.

The main mechanism for non-acidic particle-induced toxicity reported lies in the alteration of inflammatory mediator production, alteration of alveolar macrophage functions (often suppression of phagocytosis), and interaction with cellular macromolecules. It appears that the toxicity of PM depends largely on the acidity and size of particles. The evidence that surface-complexed iron and copper on particles can exert substantial inflammatory responses has provided more information in the mechanism by which non-acidic particles could provoke lung

· 4

injury. However, more information is needed concerning the toxicity of iron-containing particles at ambient levels. The findings on the susceptibility of diseased animals to particulate pollution are significant, but inconclusive evidence exists. More research is required.

Acidic aerosols. - Evidence shows that short term exposure to H_2SO_4 aerosol at the concentrations as low as 75 µg/m³ can attenuate the release of reactive mediators that are involved in maintaining the reactivity of pulmonary alveolar macrophages. The biological mechanisms of H_2SO_4 are characterized as immunosuppression, bronchial hyperreactivity, and changes in mucociliary movement. There appears to be inter-species differences in terms of sensitivity to H_2SO_4 -induced alteration of alveolar macrophage function.

Ultrafine particles. - Recent toxicological investigations using ultrafine particles (MMAD <0.06 μ m), "real-world" particles with surface-complexed iron, and H₂SO₄-coated ultrafine metallic particles, have provided new insights for the nature of reactive components of PM. Because of the larger surface area of ultrafine particles, they may translocate into pulmonary interstitium to a greater extent, retain in the lung for longer period of time, and induce more severe pulmonary inflammation, when compared with fine particles. Moreover, studies using H₂SO₄-coated ultrafine zinc particles have demonstrated that ultrafine particles can potentiate the toxicity of H₂SO₄ synergistically. Since the toxicities of ultrafine particles all involve the stimulation of inflammatory mediators, it has been postulated that these particles may play an important role in exacerbations of lung disease and cardiovascular deaths associated with urban pollution episodes.

Ultrafine particles are constantly generated from combustion processes and from gas-toparticle conversion, and the ambient levels can exceed the concentrations used in the above animal studies. Therefore, the ultrafine particle model has provided an reasonable interpretation for the increased acute and chronic mortality and morbidity observed in sensitive subpopulation during episodes of elevated air pollution. However, very little information is available with regard to the exposure of general population to ambient levels of ultrafine particulate matter.

Summary for sulphur dioxide induced adverse health effects

Epidemiological studies regarding the associations between ambient SO_2 levels and human health effects have yielded apparently discrepant results that may be due to the differences in population compositions and in personal daily activities of those epidemiological investigations. Overall data have shown that the associations of daily SO_2 variations with daily mortality and morbidity rates are weak, and are readily confounded by other pollutants.

A few clinical studies have suggested that significant changes in pulmonary airway resistance may occur, at a concentration of 0.68 mg/m³ or lower, in sensitive subjects such as asthmatics. Moreover, there is evidence that pre-exposure to 0.12 ppm of ozone can potentiate the sensitivity of asthmatic patients to SO_2 .

Toxicological studies have shown very low toxicity of SO_2 in inducing animal pulmonary injury. Most toxic effects of SO_2 are observed at concentrations far beyond those normally encountered in ambient air. The main mechanisms observed for SO_2 toxicity lie in initiating the release of reactive oxygen-intermediates from pulmonary alveolar macrophages and peripheral blood mononuclear cells, and impairing mucociliary activity of airway ciliated cells.

Future research directions

(1). Further epidemiological studies need to be carried out to estimate public health impacts of ambient air pollution, including the impact on emergency department visits, hospitalization, pre-mature mortality, and the loss of life span (harvesting). The studies may be conducted on air pollution data obtained from representative areas with unique air pollution patterns, such as regions with high aerosol acidity but low PM levels, as well as other regions with just the opposite situation, in order to elucidate the potential key reactive component(s) of PM responsible for the increases in mortality and morbidity.

(2) Benefits and costs of controlling air pollution need to be estimated. Those types of studies will provide critical information for policy makers on the extent to which a variety of proposed programs to control air pollution represent good investments in the health of Canadians.

· · · ·

(3) Although epidemiological studies have raised a serious concern about public health effects of PM, questions that remain to be addressed relate to biological plausibility of the effects observed, host susceptibility, characteristics of particles, and contribution of other pollutants. Studies of controlled human exposure to PM may be conducted to define the mechanisms of PM-induced adverse effects.

(4) In order to identify subpopulations sensitive to the fluctuation of ambient PM pollution, an effort may be made to investigate the susceptibility of cardio-respiratory system-compromised patients in controlled exposure studies. This type of study may also help to elucidate potential interventions to protect people who are at greater risk.

(5) Personal monitoring should be carried out, in order to determine exactly what and when the elderly and susceptible populations are exposed, indoor and outdoor.

(6) Attention should be given to the human health effects induced by ambient ultrafine particles, iron-containing particles, and acid-coated ultrafine metallic particles, through epidemiological investigation and human clinical study. Since ultrafine particles represent a minor component of the total mass of ambient particles, but a major component of the total number of particles, the associations between particle numbers and sizes and the health effects require to be investigated.

(7) It is necessary to characterize physical-chemical properties of ambient ultrafine particles and their episodic fluctuation associated with specific meteorological conditions. Reliable instrumentation needs to be developed to quantify ultrafine aerosol in ambient air.

(8) More sensitive biomarkers for biologically effective dose and tissue injury should be introduced to link low PM exposure levels with the adverse health effects, in order to enhance the sensitivity of human clinical studies.

Review of Indirect Health Effects

The acid deposition, and acidification of water supplies and soil result in subsequent mobilization of heavy metals, which may increase exposure to these metals through drinking water and food. Of significant interest are cadmium, mercury, lead, arsenic, aluminum and chromium. In recent years, selenium has drawn an increasing interest as an important metalloid with industrial, environmental, biological and toxicological significance. Elevated concentrations of selenium in water samples in the United States have been noted at levels higher than U.S. EPA standard (10 ppb), which is associated with corrosion of household plumbing by soft, acidic water. Acute and chronic selenium toxicity has been observed in livestock and laboratory animals, involving various degrees of damage to internal organs, vascular edema, and heamorrage

In Ontario, elevated levels of dissolved copper, lead, and cadmium have been observed in water that was left undisturbed in distribution systems drawing water from privately supplied lake water. Northern Ontario, southwestern Ontario, the north shore of the St. Lawrence River in Quebec and areas of New Brunswick and Nova Scotia are areas in Canada that are very sensitive to acidification. An estimated 300,000 people in these areas obtain their drinking water from unregulated sources that may be affected by acid deposition.

The pollution of ambient particulate matter may cause visibility reduction. Particleinduced visibility reduction may affect climate by reducing solar radiation at ground level, making less energy available for photosynthesis. Reduced solar radiation may alter local or regional temperatures. Furthermore, increased cloud formation may alter precipitation patterns. These changes may result in damage to vegetation, which also indirectly affect the well-being of the entire human species.

1. Introduction

In 1990, the association between long-range transport of air pollutants and human health was reviewed by Federal/Provincial Research and Monitoring Coordinating Committee of Canada (RMCC)(Toxic Air Pollution-Health Effects Section, 1990). A considerable portion of the 1990 assessment focused on acid aerosols and ozone, since available toxicological and epidemiological evidence had demonstrated that many of the adverse health effects observed in epidemiological studies might be attributed to the mixtures of acid droplets. The report summarized the direct and indirect adverse health effects of acid aerosols and ozone from previous studies, and suggested that aerosol acidity was probably the most responsible for increased hospital admissions for respiratory conditions and decreased children's lung function. Limited monitoring data showed that the levels of acidic aerosols in southern Ontario could reach up to 250 μ g H⁺/m³/day, which was equivalent to levels that could produce chronic bronchitislike changes in rabbits. It may, however, be noted that due to the lack of specific aerosol acidity monitoring data at that time, it was difficult to clearly discriminate among those associated chemical species in acid rain concering the responsibility for the observed health effects. A number of epidemiological and toxicological studies have come to light during the first half of the 1990s. The results of these studies provide further evidence on the impacts of acid rain on human health.

The goal of this report is to provide a broad framework from the latest available data for attempting to estimate the specific agent(s) within the air pollution mixture of acid rain that is/are related to the adverse effects of human health. The public health impacts of particulate sulphates in Canada are also determined.

This report focuses on recently published studies, most since 1990. The direct and

indirect health effects of sulphur dioxide (SO_2) and its derivatives, sulphate $(SO_4^{=})$, particulate matter (PM) and acid aerosols (H⁺) are reviewed separately. For convenience, these studies are subdivided into categories according to the evidence from epidemiological, clinical and toxicological studies. An effort is made in particular to underline the sensitive subpopulations who may be at greatest risk from exposure to air pollutants, and the possible reactive agent(s) responsible for adverse health effects, since they constitute a key issue in developing regulations for control of ambient air pollutant levels.

2. The Distribution of Sulphur Oxides across Canada

The air pollutants that are most related to acid rain are sulphur oxides and nitrogen oxides (NO_x) . These substances interact in the atmosphere with sunlight and water to form acidic compounds [sulphuric acid (H₂SO₄) and nitric acid (HNO₃)] which can fall as acidic precipitation. Although nitrates, such as nitric acid, represent an important constituent of acid rain in the Northeast United States and Canada, their concentrations are significantly lower than sulphates. Therefore, this study will focus on sulphur-related pollutants, *i.e.*, sulphur dioxide (SO₂) and sulphates (SO₄⁼) that are present as salts or H₂SO₄ in particles.

Sulphur dioxide is a primary pollutant that is released to the atmosphere from both natural and anthropogenic sources. Although there are many sulphur oxides in the atmosphere, SO_2 is the only one that occurs at significant concentrations. Although significant SO_2 emissions may occur from volcanic eruptions, anthropogenic sources are primarily responsible for most tropospheric emissions. The sources of SO_2 may be classified as mobile sources (including motor vehicles, aircraft, trains, ships *etc.*), stationary fuel combustion sources (including the generation of electricity from fossil fuels and residential, commercial, institutional and industrial space heating), and industrial processes (including mineral ore smelting, petroleum refining, etc.). Sulphur dioxide in the atomosphere converts to sulphuric acid (H₂SO₄). This is then gradually neutralized by ammonia (NH₃), first to a strong acid ammonium bisulphate (NH₄HSO₄), and then to ammonium sulphate [(NH₄)₂SO₄], a nearly neutral salt (Mellon *et al.*, 1986). H₂SO₄ and its neutralization products with ammonia, NH₄HSO₄ and (NH₄)₂SO₄, are all refered to as particulate sulphate.

Particulate matter can be classified as primary and secondary products. Primary products, usually coarse particles (larger than 2 μ m in aerodynamic diameter), are mostly produced by mechanical processes and emitted directly into the atmosphere. Secondary products are formed in the atmosphere as a result of condensation of cold supersaturated low-vapour-pressure reaction products often generated photochemically, and are usually fine particles (less than 2 μ m). Since fine particles (less than 2.5 μ m in aerodynamic diameter, PM_{2.5}) can enter pulmonary tissue, they are considered to pose a greater health risk than coarser ones. The major component of PM_{2.5} mass in many urban areas is sulphate, accounting for 40-50% of this fraction (Godish, 1991). Up to 80% of the PM₁₀ (less than 10 μ m in aerodynamic diameter) and 60% of the total suspended particles (TSP) are made up of PM_{2.5}. Although nitrates also are important component of ambient aerosol samples, their concentration is significantly lower than sulphates.

When solid or liquid particles are dispersed in the atmosphere, the resulting suspension is characterized as being an aerosol. The occurrence of acidic aerosols are linked to precursor emissions (such as SO_2 and NO_x). When $SO_4^=$ is initially produced it is in the form of H_2SO_4 which is gradually neutralized by ambient NH_3 . The degree of neutralization depends upon the amount of NH_3 and acid particles encountered between the point of formation and the location of measurement and exposure. Various health studies have shown that physiologic responses to sulphate aerosols are dependent upon their acidity (Schlesinger, 1984; Schlesinger, 1989; Amdur, 1989; Schlesinger and Chen, 1994).

The levels of SO₂, SO₄, PM and acid aerosols in Canadian urban areas have been monitored by provincial and federal environment departments. In particfular, the National Air Pollution Surveillance (NAPS) data base and the Canadian Acid Aerosol Measurement Program (CAAMP) have collected and analyzed data relevant for human exposures and health effects research. These data are discussed in Sections 2.4.3 and 2.5.1 of the Atmospheric Science Assessment report, Volume 2 of this series.

3. Review of Direct Health Effects

Potential health effects of acid aerosols were reviewed in the 1990 Canadian Long-Range Transports and acid deposition assessment report (Toxic Air Pollution-Health Effects Section, 1990). The review reached the following conclusions:

(1) Animal toxicological studies showed that exposure of animals to H_2SO_4 at concentrations as low as 250 μ g/m³ caused bronchitis, by slowing of the clearance of particles out of the lung.

(2) Controlled human clinical studies demonstrated that acute effects of H_2SO_4 were more pronounced in asthmatics and occured rarely below 400 µg/m³. One study conducted by Koenig *et al.* (1983) showed an acute effect of H_2SO_4 on lung function in adolescent asthmatics at concentrations as low as 68 µg/m³. Effects in normal adults were not observed below about 900 µg/m³.

(3) Human and animal laboratory studies of interactions between acid aerosols and ozone did not provide overwhelming evidence of possible synergism.

(4) From an epidemiological point of view, studies conducted in Canada showed that increased levels of acid aerosol, ozone and SO₂ were associated with decrements in children's lung function and a higher incidence of upper respiratory infections.

(5) Epidemiological studies also showed that daily pollution levels were associated with hospital admissions in summer for respiratory disease; this was proposed to be attributed to H_2SO_4 pollution, and combination effect of ozone and acids.

(6) Very little monitoring was carried out for acid levels in Canada.

This section focuses on the recent findings since 1990. The direct health effects of the

major components of acid rain, sulphur dioxide (SO_2) and its directives, are reviewed separately. These studies are subdivided into epidemiological, clinical and toxicological categories, in order to elucidate the evidence from human studies, and the biological plausibility. The possible sensitive subpopulation is discussed in detail, as they may be at greatest risk from exposure to air pollutants. An effort is made to underline the possible reactive agent(s) responsible for adverse health effects. The recognition of sensitive subpopulation and reactive agents are key components in leading to development of regulations for control of ambient pollutant levels.

3.1. Particulate matter, sulphate, and aerosol acidity

Particulate matter can be classified as primary and secondary products. Primary products, usually coarse particles (larger than 2.5 µm in mass median aerodynamic diameter, MMAD), are mostly produced by mechanical processes and emitted directly into the atmosphere. In North America, the major sources of particulate matter are vehicles, particularly those which are diesel powered, and residential heating (Godish, 1991). Secondary products are formed in the atmosphere as a result of condensation of cold supersaturated low-vapour-pressure reaction products generated photochemically, and are usually fine particles (less than 2.5 µm in MMAD). Particle size is believed to be the most important characteristic influencing deposition in the respiratory system (Lippmann, 1977; Hinds, 1982; Dockery and Pope, 1994). Since fine particles (less than 2.5 μ m in MMAD, PM_{2.5}) can enter pulmonary tissue, they are considered to pose a greater health risk than coarser ones. Up to 80% of the PM_{10} (less than 10 μ m in MMAD) and 60% of the total suspended particles (TSP) are made up of PM_{2.5}. The major component of PM_{2.5} mass in many urban areas is sulphate, accounting for 40-50% of this fraction (Godish, 1991). Although nitrates are also an important component of ambient aerosol samples, their concentration is significantly lower than sulphates in most areas. Most $SO_4^{=}$ particles are of submicrometer size (MMAD 0.1 to 1 μ m)(Lundgren and Burton, 1995). Particle clearance is achieved by the bronchial mucociliary movement when deposited in the trachea and bronchioles

to be expelled by coughing or swallowing, or by phagocytosis of alveolar macrophages when deposited beyond the terminal bronchioles. Once deposited on the airways, the biologic effects of particles are determined by the physical and chemical nature of the particles themselves and the substances adsorbed onto them.

Since $SO_4^{=}$ is the major component of respirable particulate matter, and is often acidic (Lundgren and Burton, 1995), the health effects of particulate matter, $SO_4^{=}$ and aerosol acidity are discussed together in this section. The evidence for potential critical reactive agent(s) in particulate matter, and potential sensitive subpopulation, will be discussed in this section.

3.1.1. Epidemiological data

The 1990 Canadian Long-Range Transports and Acid Deposition Assessment Report summarized that increased ambient acid aerosol levels were associated with decrements in children's lung function and an increase in incidence of upper respiratory infections. Daily pollution levels were associated with the hospital admissions in summer for respiratory disease, which was proposed to be attributed to H_2SO_4 pollution, and a combination effect of ozone and acids.

Since 1990, a wealth of data from time-series, cross-sectional and prospective cohort studies, and from acute and chronic exposure studies, form a cohesive hypothesis, showing associations between exposure to elevated levels of ambient air particulate matter pollution and various human health endpoints. It is noteworthy that the current most concerned results are for PM, while the acid rain-related pollutants ($SO_4^=$ and H^+) are only one component of PM. Shortterm and chronic exposure to elevated levels of particulate matter has been reported to be associated with (i) increased mortality, especially cardiopulmonary mortality, (ii) increased hospital admission for respiratory and cardiovascular diseases, (iii) increased incidence and duration of respiratory symptoms, (iv) declines in lung function, and (v) restricted activity. Health effects have been observed at levels of particulate matter below current Canadian ambient

Air Quality Objectives (24 hour average $120 \ \mu g/m^3$, annual geometric mean $70 \ \mu g/m^3$).

In all epidemiological studies the major concern is that the observed association is due to confounding factors which are correlated with both pollution and health effect endpoints, when not adequately controlled for in the study design and analysis. For time-series studies, the basic potential confounders with the relationship between air pollution and daily mortality and morbidity are weather and infectious disease epidemics. Moreover, co-pollutants may also confound the outcomes due to their colinearity. Personal factors, such as diet, smoking, genetic predisposition, and occupational exposure, cannot induce a relationship between today's mortality and morbidity counts and yesterday's air pollution, since such factors are unlikely to vary on a daily basis in correlation with air pollution levels. For cross-sectional mortality studies, the opposite is true; differences in socioeconomic variables and occupational exposures are potentially serious confounders, while short-term weather patterns are of little concern.

3.1.1.1. Association with mortality

Table 3.1.1 (see end of chapter) summarizes the results from recently published epidemiological studies as to the associations between short term exposure to ambient levels of particulate matter and human mortality. Overall, consistently positive associations are seen between fluctuations in daily particulate levels and daily mortality throughout these analyses, despite the use of a variety of modelling approaches, and after controlling for major confounders such as season, weather and co-pollutants, with the 24-hour average 50 μ g/m³ PM₁₀ total mortality effect estimate apparently being in approximately the RR = 1.025 to 1.05 range.

Table 3.1.1 also includes a population-based (ecologic) cross-sectional study that evaluated spatial distributions of mortality and air pollution (Ozkaynak and Thurston, 1987). The study found some association between long-term particulate air pollution and mortality on an annual average basis. However, this study did not address the effects of potential confounders, such as sex, smoking, ozone, SO₂, NO₂. Moreover, cross-sectional studies cannot determine whether the mortality associations are stronger for pollution measured the same year or in previous years. Cross-sectional studies cannot separate related chronic effects from the sum of

acute effects.

Two recent prospective cohort studies also have demonstrated increased mortality risks associated with air pollution. Since prospective cohort mortality studies can directly control for individual differences in confounding factors that are correlated with both exposure and mortality, such as age, cigarette smoking and occupational exposure, these studies provide some of the most compelling evidence about health effects. One of the most complete studies of the health effects of particulate matter pollution is the Harvard Six-Cities Study (Dockery *et al.*, 1993a). This was an extensive cohort study, involving 8111 adults over a 14 to 16 year follow-up period (between 1974 and 1989). After individual differences were controlled in age, sex, cigarette smoking, body mass index, education, and occupational exposure, the strongest associations were found between human mortality and $PM_{2.5}$ and $SO_4^{=}$. The association between mortality risk and $PM_{2.5}$ pollution was consistent, nearly linear, with no apparent "no effects" threshold level. Little or no association was found with the levels of total suspended particles, aerosol acidity, SO_2 , or NO_2 .

The above observation was supported by a second, larger prospective cohort study (Pope *et al.*, 1995). This study linked ambient particulate air pollution data from 151 U.S. metropolitan areas in 1980 with individual risk factor data on 552,138 adults who resided in these areas when enrolled in a prospective study in 1982. When multivariate analysis was used to control for smoking, education and other risk factors, increased mortality was found to be associated with ambient $SO_4^=$ and fine particle air pollution at levels commonly detected in U.S. cities. This study supports the hypothesis of an association between fine particulate air pollution and human mortality, and corroborates the results from earlier cross-sectional studies.

Limited data obtained from Canada have provided similar evidence indicating positive PM-mortality associations. Ozkaynak *et al.* (1995) related total daily mortality in Toronto, over a 19 year period, 1972-1990, to daily PM₁₀, total suspended particles (TSP), $SO_4^=$, CO, ozone, temperature, and relative humidity. A 19-day moving average equivalent high-pass filter was used to prefilter out long-wave cycles in the data and to reduce autocorrelation. Ordinary least-square regression was employed, as the distribution of mortality data tend toward the normal in

larger cities such as Toronto (mean deaths = 40/day) once seasonal cycles are removed. In this dataset, 6,303 PM₁₀ daily values were estimated based on TSP, SO₄⁼, coefficient of haze (COH, a measure of fine black carbon particles), visibility, and temperature data, using a model developed from 200 actual PM₁₀ sampling days during the study period. The simultaneous regression analyses of total mortality on both ozone and TSP or PM₁₀ yielded significant coefficients for each pollutant. The estimated contribution of each pollutant to daily mortality at the mean pollution levels were 2.3% for either PM₁₀ or TSP, and 1.5% for ozone. However, the authors found that it was not possible to separate the PM₁₀-mortality association from that for the other particulate matter metrics considered.

Sensitive subpopulation - A key issue in the evaluation of the health effects of air pollution is to identify the individuals who are at greatest risk from exposure to air pollutants. Schwartz compared the data of acute exposure to particulate air pollution, and cause and age of daily mortality in London during December 1952, and in Philadelphia, Pennsylvania, during 1973-1980 (Schwartz, 1994a). He found that the pattern of increased risk due to particulate air pollution versus age seen in the Philadelphia data was qualitatively similar to that seen in London. With the elevation of TSP concentration, the increased risk of deaths was greater in those aged 65 and older, greater for chronic obstructive pulmonary diseases (COPD), and greater for heart disease and stroke. These observations are supported by the earlier analyses by Schwartz and Dockery (1992a), who studied the daily cause-specific deaths between 1973-1980 in Philadelphia, Pennsylvania, and daily TSP levels. They found that the effect of 100 μ g/m³ TSP was stronger in subjects older than 65 years of age, and stronger in subjects with COPD, pneumonia, and cardiovascular disease. A recent study directly examining PM₁₀-mortality associations in the elderly was that by Ostro et al. (1995) in Santiago, Chile. For the general population, the RR estimate for $100 \,\mu g/m^3$ of PM₁₀ was 1.08, but in the case of the population aged 65 and greater, it rose to an estimate of RR = 1.11 in the same model specification. Thus, these directly comparable estimates suggest that the elderly experience roughly a 40% higher excess risk from exposure to PM air pollution than the general population. However, in a study

by Li and Roth (1995) who analyzed the daily mortality during 1973-1990 in Philadelphia County, no significant association was found between TSP and daily deaths in the elderly.

In the case of young children, Schwartz's analysis (Schwartz, 1994a) shows that no pattern of increased risk emerged until age 35 and above following the elevation of PM pollution in Philadelphia, although an increased mortality risk was seen in London in children under 1 year old. A recent analysis of PM_{10} pollution and mortality in Sâo Paulo, Brazil provides further insight into the potential mortality effects of PM_{10} on children (Saldiva *et al.*, 1994). While there appears to be an association of NO_x pollution with respiratory mortality in children under 5 years of age in this case, no association was found between PM pollution and children's mortality.

Limited long-term exposure studies did not provide enough evidence as to sensitive subpopulation for mortality.

Overall, published data indicate that elderly people, and people "predisposed" with pulmonary and cardiovascular diseases may constitute a subpopulation who are more susceptible to elevated ambient particulate air pollution. This is consistent with airborne particles acting as a respiratory irritant to exacerbate pre-existing conditions, particularly respiratory conditions, although no exact pathophysiologic mechanism is known. As for children, it is difficult to ascribe any such association to PM pollution, given the limited and somewhat conflicting results available.

Reactive agent(s) responsible for PM-mortality association - The aerosol strong acidity has long been suspected as a specific chemical component of particulate matter responsible for the noted associations between particulate matter pollution and human health, due to their irritant and corrosive properties. Reanalysis by Thurston *et al.* (1989) of the London mortality data from 1963 to 1972 has shown that H_2SO_4 concentrations measured at the central site was much more strongly correlated with total daily mortality than any measure of British smoke or SO_2 , especially when it was correlated with the next day mortality. The results from this study are supported by the investigation of Lipmann and Ito (1995). In this more extensive reanalysis of the London total mortality data where daily acid measurements were available year-round and the

air pollution levels were non-episodic, the authors separated each year into three seasons with restricted temperature ranges. It was found that there were relatively strong associations between daily mortality and the daily concentrations of H^+ and SO_2 , whilst the associations with the daily British smoke were weaker. In a study conducted by Dockery *et al.* (1992), the authors attempted to relate present day ambient particle pollution with human mortality in St. Louis, MO and Kingston/Harriman, TN. The authors found only weak associations between total mortality and aerosol acidity, but strong associations with PM_{10} . However, because of the short monitoring period for daily H^+ concentrations, the authors concluded that the power of the study to detect associations was limited.

The relation between long-term exposure to ambient acid aerosol pollutants and human mortality also was investigated in prospective cohort studies. In the Harvard Six-City study (Dockery *et al.*, 1993a), very weak mortality associations were found with H⁺, while the mortality associations with $PM_{2.5}$ and $SO_4^{=}$ were strong, after adjusting for smoking and other risk factors,. However, only less than one year of H⁺ data were collected in each city, which is inappropriate when used to characterize lifetime exposures of adult study participants.

Therefore, because of the relative scarcity of direct acid aerosol measurements, at present findings on the associations between aerosol acidity and mortality are limited and highly variable.

In spite of the epidemiological evidence of the apparent association between aerosol acidity and human mortality, studies of industrial cohorts exposed to high concentrations of H_2SO_4 and other acid mists in steel-pickling operations show higher risk ratios only in lung cancer mortality when compared with general population; mortality from causes other than lung cancer is unremarkable (Beaumont *et al.*, 1987). One possible explanation may lie in the fact that the general population comprises a much higher proportion of people who, by reason of arteriosclerosis or chronic airway diseases, are at increased risk of death when subjected to environmental change than do industrial populations.

However, individuals at risk of mortality from particles would be expected to be indoors most of the time. It has been shown that indoor concentrations of H^+ and SO₂ are much lower

than those measured outdoors due to the neutralization by high concentrations of ammonia (NH₃) in indoor enviroment, whereas indoor SO₄⁼ and NH₄⁺ concentrations are almost as high as those found outdoors in the same general area (Brauer *et al.*, 1989; Suh *et al.*, 1993). As will be discussed in clinical and toxicological studies, much higher concentrations of H₂SO₄ than those typically detected in ambient air are required to induce mortality and morbidity. Therefore, aerosol acidity is not the sole critical component to which increased mortality is attributable. Very small particles within nanometre range readily penetrate indoors and persist for long periods in air. Toxicological studies have demonstrated that ultrafine particles (<50 nm in mass median diameter) at concentrations as low as 9 μ g/m³ can induce a series of pulmonary inflammatory responses and mortality in experimental animals. Moreover, since free radicals are involved during the generation of sulphate particles (Kao and Friedlander, 1995), ultrafine particles might serve as a possible marker or a surrogate for free radical exposure.

It is noteworthy that several investigations have reported that where appreciable particle strong acidity exists, virtually all exposures occur in the summertime (reviewed by Walkman *et al.*, 1995). This suggests more concern from particle strong acidity-induced health effects in the summer as opposed to other seasons, especially when taken into consideration that people spend much more time outdoor.

Summary for mortality studies - Recent time-series and prospective cohort studies provide strong evidence that ambient particle pollution can cause increased human respiratory and cardiovascular mortality. Such effects occur at ambient particulate levels below the present Canadian Ambient Air Quality Objectives for particulate matter. The mortality increases monotonically with PM pollution levels, often with a near linear dose-response relationship, without obvious threshold. The PM₁₀ relative risk estimates derived from recent studies suggest a higher relative risk indicated for the elderly and for those with pre-existing compromised respiratory and cardiovascular conditions, who may constitute subpopulations sensitive to the mortality implications of the exposures to PM pollution. Although there is evidence from historical data that aerosol acidity may contribute to the associations between PM and human

mortality, the key reactive component(s) of PM responsible for ambient particle-induced increases in mortality as yet remains undetermined.

3.1.1.2. Association with morbidity

Exposure to elevated ambient particulate matter concentrations has been related to increased hospital admissions for respiratory and cardiac diseases (Table 3.1.2), increased incidence and duration of respiratory symptoms (Table 3.1.3), and declines in lung function (Table 3.1.4). (see end of chapter for all three tables.)

In Canada with a different medical care system from those in the United States and other countries, studies have indicated similar conclusions, namely, that daily fluctuations in ambient particle pollution are associated with cardiorespiratory morbidity.

Association with hospital admissions - Studies conducted by Bates and Sizto in southern Ontario before 1990 concluded that there was a consistent relationship between summer hospital admission due to respiratory diseases, and SO_4^- and ozone, and that there was no relationship between respiratory admissions and SO_2 or summer haze levels (Bates and Sizto, 1983; Bates and Sizto, 1986; Bates and Sizto, 1987). They hypothesized that the adverse health effects were attributed to the aerosol strong acidity of the ambient particulate matter.

Since then, more studies have been carried out in Canada, which consistently support Bates and Sizto's observations. Lipfert and Hammerstrom (1992) used the same database as that of Bates and Sizto (1983, 1986, 1987) to analyze the association between air pollution (SO₂, NO₂, ozone, SO₄⁼, TSP, and coefficient of haze) and respiratory illness including acute bronchitis, pneumonia, chronic bronchitis, emphysema, and asthma. Average pollutant concentrations were generally within the Canadian Ambient Air Quality Objectives and U.S. ambient standards. Bivariate correlations were calculated between pollutants and respiratory illness, and showed strong relationships between haze and its gaseous precursors. Pollutantweather relationships were much weaker than the inter-pollutant correlations. According to stepwise multiple regression (a Box-Jenkins ARIMA multiple regression model), SO₂, ozone and

 $SO_4^{=}$ aerosol were found to be significant predictors of respiratory admission during July - August.

Burnett et al. (1994) studied hospital admissions in southern Ontario, using a broader area than that used by Bates and Sitzo (1983, 1986, 1987). The respiratory admissions were for 1983-1988 and were restricted to acute bronchitis/bronchiolitis, pneumonia, chronic and unspecified bronchitis, emphysema, asthma, bronchiectasis, and chronic airway obstruction. The nonrespiratory control admissions included non-respiratory cancer, and diseases of the blood and blooding forming organs, nervous system, circulatory system, digestive system, and genitourinary system. Daily ozone and SO_4^{-} concentrations were obtained from three networks operating in the province: the Ontario Ministry of the Environment, the Air Pollution in Ontario Study, and the Canadian Air and Participation Monitoring Network. Slow-moving temporal trends in the admissions series, including seasonal and yearly effects, were removed by using a linear filter model. The estimates were obtained using the generalized estimating equations. Statistically significant positive associations were found between hospital admissions and both ozone and SO_4^{-} recorded on the day of admission and up to 3 days prior to the date of admission. Ozone tended to be more significant than did $SO_4^{=}$ fraction. The model predicted about a 3% increase in respiratory hospital admissions for about a 14 μ g/m³ of SO₄⁼ ambient concentration. Ozone and $SO_4^{=}$ were not related to non-respiratory control admissions, nor were they related to admissions in the winter months.

Thurston *et al.* (1994) reported the hospital admission data in the metropolitan Toronto area in July and August of 1986-1988. Pollution measurements included H^+ , $SO_4^=$, ozone, NO_2 , SO_2 , $PM_{2.5}$, and PM_{10} . Long wave cycles, and their associated autocorrelations, were removed by first applying an annual periodicity sine-cosine fit to the data as well as day of week dummy variables and analyzing the resulting residuals. Ordinary least squares analyses were calculated after the environmental variables were detrended to eliminate the seasonal components. Regression analyses indicate that only the ozone, H^+ and $SO_4^=$ were associated significantly with respiratory and asthma admissions after controlling for temperature. When the compositions of particle matrix were compared for the strength of association with admissions, it appears

 $H^+>SO_4^=>PM_{2.5}>PM_{10}>TSP$, suggesting that particle size and composition are important in inducing adverse health effects.

Delfino *et al.* (1994) studied the urgent hospital admissions for respiratory diseases in Montreal during 1984-1988. Air pollution measurements included ozone, PM_{10} and $SO_4^=$ fraction of PM_{10} . A high-pass filter was used to eliminate yearly seasonal trends in the data. Potentially confounding day-of-week trends were controlled by prefiltering the outcome variables prior to analysis. Regression analyses with and without autoregressive terms show some indications of association between $SO_4^=$ levels and the non-asthma respiratory urgent hospital admissions in the July and August periods, and the association between PM_{10} and asthma admissions in the May-October periods.

Besides respiratory admissions, hospital admissions due to cardiovascular diseases have been studied as well. In a most recent study, Burnett *et al.* (1995) examined cardiac as well as respiratory admissions to 168 acute care hospitals in Ontario over the 6-year period 1983-1988. The specific cardiac diseases considered were acute myocardial infarction, angina pectoris, cardiac dysrhythmias, and heart failure. The respiratory diseases considered were asthma, bronchitis, emphysema, bronchiectases, chronic airway obstruction, acute bronchitis/bronchiolitis, and pneumonia. Daily exposure measurements included ambient SO₄⁼ and ozone concentrations, and climate. Low-frequency temporal trends in the admission series, including seasonal variation in admission rates, were prefiltered by the 19-day linear filter. A 13 μ g/m³ increase in SO₄⁼ recorded on the day prior to admission was associated with a 3.7% increase in respiratory admissions and a 2.8% increases in cardiac admissions. After adjusting for ambient temperature and ozone, similar results were observed. Excess respiratory admissions of 3.2% and a 2.8% were seen during April - September and during October - March, respectively. In the case of cardiac admissions, a 3.2% increase and a 3.4% increase were seen during April - September, and during October - March, respectively.

Almost identical outcomes were observed from a study of daily cardiovascular hospital admissions in Detroit, Michigan, 1986-1989 (Schwartz and Morris, 1995). The authors counted daily hospital admissions for ischemic heart disease, dysrhythmias and congestive heart failure of

elderly patients (aged 65 years and older). Daily PM_{10} , O_3 , SO_2 , CO and weather data were monitored. Poisson regression was employed to test the association on the same day and up to 2 previous days. Two-pollutant regression was tested to determine the independent contributions. After controlling for seasonal and other long-term temporal trends, temperature, and dew point temperature, an increase of PM_{10} of $32 \ \mu g/m^3$ was demonstrated to be associated with daily admissions for ischemic heart disease (RR = 1.018, 95% CI 1.005-1.032), and for heart failure (RR = 1.024, 95% CI 1.004-1.044). CO also showed an independent association with heart failure admissions (RR = 1.022, 95% CI 1.010-1.034 for a 1.28 ppm increase in CO), but not with ischemic heart disease admissions. SO₂ and O₃ made no independent contribution to ischemic heart disease or congestive heart failure admissions.

Overall, hospital admission data from Canada and other countries with different medical care systems have demonstrated that admissions for both chronic obstructive pulmonary diseases and respiratory infections have a moderate but consistent association with particulate matter or its components. There is also evidence for a relationship between particulate pollution and cardiovascular diseases.

Association with respiratory symptoms and pulmonary function - In addition to hospital admissions, other indices including report of respiratory symptoms (Table 3.1.3) and pulmonary function (Table 3.1.4) (see end of chapter for charts) have been found to be related to changes of the levels of ambient PM pollution.

Several studies have been carried out in Canada in these areas. In an early study, Raizenne *et al.* (1989) examined acute lung function responses to ambient acid aerosol exposures in girls in a summer camp located in southwestern Ontario. Air quality measurements (ozone, H^+ , $SO_4^=$, and $PM_{2.5}$) were performed on site and four distinct acid aerosol episodes were observed during the 41-day study. High degrees of correlation were indicated between $PM_{2.5}$, $SO_4^=$ and H^+ , whereas temperature and relative humidity were weakly correlated with the air pollutants and each other, indicating that temperature and humidity were not likely to be major confounders in this analysis. Maximum decrements of 3.5% and 7% for FEV₁ and PEF,

respectively, were observed to be associated with the air pollution episodes. There was some indication that children with a positive response to a methacholine challenge had larger decrements in lung function compared to their negative methacholin-response counterparts, suggesting that children with hyperreactive airways are more susceptible to PM pollution. However, it was difficult to separate one pollutant from the other in terms of associations with lung function decrements, due to the strong intercorrelation.

In two cross-sectional studies conducted in Canadian communities (Stern *et al.*, 1989; Stern *et al.*, 1994), long-term exposure to ambient particle pollution have been related to children's respiratory symptoms and illnesses, and the alterations of lung function. Stern *et al.* (1989) compared the levels of PM_{10} , $SO_4^{=}$, particulate nitrates, SO_2 , and NO_2 in Tillsonburg, Ontario, and in Portage la Prairie, Manitoba, in 1983-1984. Respiratory symptoms and diseases of the local children aged 7-12 were recorded using a parent-completed questionnaire. Lung function (FVC and FEV_{1.0}) of each child was measured. The levels of SO_2 , $SO_4^{=}$ and particulate nitrates were significantly higher in Tillsonburg than in Portage la Prairie, but NO_2 and PM_{10} differed little between two communities. Concomitantly, Tillsonburg children had significantly lower levels of FVC and FEV_{1.0} as compared with children in Portage la Prairie. With the exception of inhalant allergies which occurred significantly more frequently in Tillsonburg children, the prevalence of chronic respiratory symptoms and illnesses was similar in the two communities. The differences in the health outcomes observed between 2 communities could not be explained by parental smoking or education, the use of gas cooking or wood heating fuels, pollution levels on the day of testing, or differences in age, sex, height, or weight.

A more extensive study carried out by Stern *et al.* (1994) supported the above observations. Stern and the co-workers examined respiratory illness and lung function of school children aged 7-11 years in 10 rural Canadian communities. Five of the towns were located in southwestern Ontario (Blenheim, Ridgetown, Tillsonburg, Strathroy, and Wallaceburg), a region with moderately elevated exposure to regional $SO_4^=$ and ozone; another five communities were located in central Saskatchewan (Esterhazy, Melville, Melfort, Weyburn, and Yorkton), a lowexposure region. Pollution monitoring indicates that the concentrations of 1-h daily maximal

ozone and annual mean $SO_4^=$ in Ontario were substantially higher than in Saskatchewan, while PM_{10} levels or particulate nitrates were not significantly different. Levels of SO_2 and NO_2 were low in both regions. After controlling for the effects of age, sex, parental smoking, parental education, and gas cooking, no significant differences were observed in respiratory symptoms and illness between two regions. Nevertheless, children from southwestern Ontario had significant mean decrements of 1.7% in FVC and 1.3% in FEV_{1.0} compared with Saskatchewan children. These two cross-sectional studies suggest that long-term exposure to elevated levels of $SO_4^=$ may be associated with moderate impairment of lung function in elementary school children.

A series of recent studies conducted in 18 non-urbanized cities in the United States and 6 rural cities in Canada (the so-called "24-city study") has demonstrated that aerosol strong acidity and fine sulphate of PM may contribute to the respiratory symptoms and decrements in lung function observed in children. Dockery *et al.* studied the respiratory symptoms of 13,369 white children aged 8-12 years between 1988-1990 using a parent-completed questionnaire (Dockery *et al.*, 1993b). Pollution of PM_{2.1}, PM₁₀, fine particulate SO₄⁼ and acidity, and gaseous acids (nitrous and nitric acids) were monitored in these communities. Annual particle strong acidity was highly correlated with SO₄⁼ and PM_{2.1}, but not with PM₁₀. A two-stage logistic regression model was used to adjust for the potential confounding effects of sex, history of allergies, parental asthma, parental education, and current smoking in the home, and to analyze the relationship between pollution measurements and the respiratory symptoms. Data show that there was a significant association between increased reporting of bronchitis in the past year and particle strong acidity (odds ratio = 1.66, 95% CI 1.11-2.48), and SO₄⁼ (odds ratio = 1.65, 95% CI 1.12-2.42). No other respiratory symptoms were significantly increased in association with any of the air pollutants of interest.

Raizenne *et al.* (1993) studied the relationship between particle pollution and pulmonary function of 10,251 caucasian children aged 8-12 years from the same 24-city study. After adjusting for age, weight, height and the interaction of sex and height, associations were seen between the decrements of lung function and particle strong acidity, $PM_{2.1}$, $SO_4^=$, and PM_{10} . A

52 nmol/m³ difference in particle strong acidity was associated with a 3.41% (95% CI -4.85 to -2.01) deficit in FVC and a 2.95% (95% CI -4.36 to -1.52) deficit in FEV₁, while a 15 μ g/m³ increase in PM_{2.1} was associated with 3.21% (95% CI -4.98 to -1.41) deficit in FVC and 2.82% (95% CI -4.66 to -0.94) deficit in FEV₁. A 68 μ g/m³ increase in SO₄⁼ resulted in 3.06% (95% CI -4.50 to -1.6) decrease in FVC and 2.63% (95% CI -4.18 to -1.05) decrease in FEV₁. The increase in PM₁₀ levels also caused decrements in lung function, although to a less extent. A 17 μ g/m³ increase in PM₁₀ was associated with 2.42% (95% CI -4.30 to -0.51) decrease in FVC and 2.09% (95% CI -4.00 to -0.14) decrease in FEV₁. The level of daytime ozone was also associated with the decrements of lung function. Nevertheless, controlling for daytime ozone did not significantly alter the association between FVC and particle strong acidity.

Sensitive subpopulation - Exposure to ambient particle pollution appears to have a differential effect on infants and elderly individuals. In a respiratory hospital admission study, Burnett *et al.* (1994) have shown that the largest impact of ozone- $SO_4^=$ pollution mix was on infants, and the least effects on the elderly. In another study regarding the relationship between $SO_4^=$ pollution and cardiac and respiratory admissions, Burnett *et al.* (1995) have demonstrated that admissions for cardiac diseases increased 2.5% for those under 65 years and 3.5% for those 65 years and older, following a 13-µg/m³ increase in $SO_4^=$ concentration. These studies suggest that infants and elderly people may be more sensitive to elevated particle-related respiratory and cardiac admissions.

Pre-existing disease status may also potentiate particle pollution-induced adverse health effects. A cross-sectional study regarding the effect of particle pollution on respiratory health of school children in 6 cities of the United States demonstrates that children with a history of wheeze or asthma had much higher prevalence of respiratory symptoms in response to increased levels of PM_{15} (Dockery *et al.*, 1989) as compared with other children. The results are supported by a time-series study conducted for the daily changes in pulmonary function and the incidence of respiratory symptoms of grades 5 and 6 students in relation to the daily PM_{10} pollution in Utah Valley (Pope and Dockery, 1992). The data demonstrate that the association between the

decrements of lung function (PEF) and PM_{10} level was stronger for the symptomatic children than for the asymptomatic children. Likewise, the association between the incidence of respiratory symptoms and the PM_{10} level was larger in symptomatic children than in asymptomatic children. These associations were also observed at PM_{10} levels below the 24-h standard of 150 µg/m³. Koenig *et al.* (1993b) reported similar results with respect to the respiratory function of 326 elementary school children in Seattle metropolitan area before, during and after the winter heating seasons. Their data indicate that asthmatic children had a greater response to elevated fine PM concentrations than did healthy children (Koenig *et al.*, 1993b). Therefore, children with hyperreactive airways may be particularly susceptible to other respiratory symptoms and pulmonary function changes when exposed to ambient particle pollution.

However, in the 24-city study, Dockery *et al.* did not find sensitive subgroups, after stratifying for sex, history of a severe chest illness before age 2, use of a humidifier in the home, lung function in the lowest quartile of FVC, current exposure to environmental tobacco smoke at home, exposure to maternal smoking during pregnancy, year of study, country and eastern versus western cities, to assess the evidence for the presence of sensitive subgroups (Dockery *et al.*, 1993b). The study of pulmonary function among the children in 24 cities did not identify the sensitive subpopulation either (Raizenne *et al.*, 1993).

Reactive agent(s) responsible for PM-morbidity association - Studies have demonstrated that strongly acidic PM can play a role in causing both acute and chronic respiratory illness. Thurston *et al.* (1992) and Thurston *et al.* (1994) have noted associations between ambient acidic aerosols and summertime respiratory hospital admissions in both New York State and Toronto, Canada. The study conducted in Toronto demonstrates that significant independent H⁺ effects remained even after simultaneously considering the other major co-pollutant, ozone, in the regression model, and the increase in respiratory hospital admissions associated with H⁺ was indicated to be roughly six times that for non-acidic PM₁₀ (per unit mass)(Thurston *et al.*, 1994). In these studies, H⁺ effects were estimated to be the largest during acid aerosol episodes (H⁺ \ge 10 µg/m³

as H_2SO_4 , or $\approx 200 \text{ nmol/m}^3$ of H^+), which occur approximately 2 to 3 times per year in eastern North America.

Preliminary data from studies regarding the effects of long-term acid aerosol exposure on children's respiratory health and lung function indicate that bronchitis prevalence rates as reported across the 6 cities in the United States were more closely associated with average H^+ concentration than with PM in general (Speizer, 1989). A follow-up analysis of these cities and a seventh community which controlled the analysis for maternal smoking and education, and for race, suggestes associations between summertime average H^+ and chronic bronchitis and related symptoms (Damokosh *et al.*, 1993). The relative odds of bronchitic symptoms with the highest acid concentration (58 nmol/m³ of H^+) versus the lowest concentration (16 nmol/m³ of H^+) was 2.4 (95% CI: 1.9-3.2). In the 24 U.S. and Canadian city study, particle strong acidity appeared to have the strongest association with the highest levels of particle strong acidity were more likely to report having had at least one episode of bronchitis in the past year compared to children living in the least polluted community (odds ratio = 1.66, 95% CI 1.11-2.48)(Dockery *et al.*, 1993b). Thus, chronic exposures to strongly acidic PM may have effects on measures of respiratory health in children.

However, in the 6-city study of diaries kept by parents of children's respiratory and other illness, ambient H^+ concentrations were not found to be associated with respiratory symptoms until above 110 nmol/m³, while a significant association was seen between respiratory symptoms and PM₁₀ concentration (Schwartz *et al.*, 1994). Unlike PM₁₀ which shows non-threshold linear correlation with upper and lower respiratory symptoms, there appears to be a threshold for H^+ (110 nmol/m³) based on statistical analysis of these data to exert its adverse health effects (Schwartz *et al.*, 1994).

In a case-control study conducted in southern Ontario, Canada, occupational exposure to H_2SO_4 in association with laryngeal cancer was assessed (Soskoline *et al.*, 1992). The cases were individually matched to neighborhood referents for gender and age. H_2SO_4 exposure for each job was retrospectively assessed, blind of disease status. When tobacco and alcohol were
controlled H_2SO_4 exposure-response gradients were significantly positive, with odds ratios in the range of 1.97 (95% CI 0.63-6.13) for short duration-low level exposure, and 6.91 (95% CI 2.20-21.74) for long duration-higher level exposure. Asbestos and nickel was not found to be a significant confounder.

Since most studies have indicated a strong intercorrelation between aerosol strong acidity and fine particles or $SO_4^=$, it is very difficult to separate the effect of one from the other. As will be discussed in toxicological study section, H₂SO₄ coated on ultrafine metal particles (mass median average diameter >50 nm) can cause much greater airway injury in animals than does the same concentration of H₂SO₄ alone. It is possible that ultrafine respirable PM plays a critical role as a carrier for the acids. It is likely that the ultimate toxicity of ambient PM is attributed to the joint effects of particle sizes, particle acidity, and free radicals on the surface of these particles generated during the transformation of sulphate particles (Kao and Friedlander, 1995).

Summary for morbidity studies.

Recent studies conducted in various countries with different health care systems are suggestive of acute and chronic effects from PM pollution on respiratory and cardiac hospital admissions, respiratory symptoms and pulmonary function. The adverse effects were observed at ambient PM concentrations within the range of the Canadian Air Quality Objectives. The effects appear to be larger in infants, elderly people, and in symptomatic groups such as asthmatics. As has been observed from the mortality studies, the risk of morbidity increased with PM levels, often in a near linear dose-response fashion, without obvious threshold. In some studies aerosol strong acidity appears to contribute significantly to the effects observed, while in others H⁺ seems to have a threshold in initiating respiratory illness. It is difficult to separate the effect of PM from that of aerosol acidity, due to the strong collinearity between these pollutant measurements.

3.1.2. Clinical data

Human clinical studies utilize controlled laboratory atmospheric conditions, and document the health effects that result from breathing the controlled atmospheres. There are some advantages in performing clinical studies. Since the atmosphere is highly controlled for individual pollutants, in a dose-response manner, it can be used to characterize an exposureresponse relationship. Such a controlled environment provides the opportunity to examine interactions among pollutants or with other environmental variables such as humidity, temperature or exercise. Subjects from special subpopulations, such as young children or elderly people, asthmatics or patients with chronic obstructive pulmonary diseases, may also be studied to identify potentially susceptible subpopulations. The limitations of clinical studies lie in the practical and ethical aspects. Clinical studies have to be limited to short durations and only concentrations of pollutants that are expected to produce mild and transient responses. An endpoint assessment has to be relatively non-invasive, and invariably includes pulmonary function, which sometimes may not be sensitive enough to reflect the adverse effects. Furthermore, transient responses in clinical studies have never been validated as predictors of more chronic and persistent effects. Nevertheless, controlled, quantitative clinical studies provide a complementary approach to examine the biological plausibility of the associations that has been observed in epidemiological investigations.

The 1990 Canadian Long-Range Transports and Acid Deposition Assessment Report summarized that the acute effects of H_2SO_4 on humans were more pronounced in asthmatics and occurred rarely below 400 μ g/m³, whereas effects in normal adults were not observed below about 900 μ g/m³ (Toxic Air Pollution-Health Effects Section, 1990). Table 3.1.5 (see end of chapter) summarizes the recent data from human clinical studies as to PM-induced health effects.

3.1.2.1. Sensitive subpopulation

Overall results from recent studies are consistent with those reported in the 1990 assessment, and indicate that healthy subjects are not sensitive to short-term exposure to acidic or non-acidic aerosols, or polluted air mixture. For example, when healthy subjects inhaled for 2 h H_2SO_4 aerosols at 1000 μ g/m³, which is much higher than the concentrations in ambient air, with intermittent exercise, they generally did not show inflammatory responses in bronchoalveolar lavage fluid (Frampton et al., 1992). Exposure of healthy volunteers to bagged polluted air containing TSP, SO₂ and NO₂ (202 μ g/m³, 112 ppb and 488 ppb, respectively) for 30 minutes did not show any alteration of pulmonary function and bronchial reactivity to methacholine challenge (Yang and Yang, 1994). On the other hand, asthmatic subjects did show significant decreases in lung function and an increase in airway reactivity in response to inhalation of bagged polluted air (Yang and Yang, 1994). Utell and co-workers studied the effects of sequential H₂SO₄ and ozone exposures on the pulmonary function of healthy and asthmatic subjects (18 - 45 years of age) (Utell et al., 1994). The subjects were preexposed to H₂SO₄ (100 μ g/m³) or NaCl control, and 24 hours later, exposed to ozone (0.08, 0.12 or 0.18 ppm), with intermittent exercise. For the healthy group, no significant symptomatic or physiologic effects of exposure to either aerosol or ozone on lung function were found, and no interaction between aerosol and ozone exposures was found. For the asthmatic group, preexposure of H₂SO₄ had no direct effect on lung function, but appeared to enhance the small mean decrements in FVC in response to 0.18 ppm ozone.

It was also observed that brief exposure to as low as $35 \ \mu g/m^3$ of H₂SO₄ aerosol induced a mild decrement of lung function and an increase in total respiratory resistance in allergic adolescent subjects (Koenig *et al.*, 1989) and asthmatic adolescent subjects (Koenig *et al.*, 1992; Hanley *et al.*, 1992). The lower range of H₂SO₄ concentration is around the peak values measured during the summer months in the eastern United States and southern Canada. Since adult asthmatics have not been reported to respond significantly to similar doses of H₂SO₄ via the same exposure procedure (Utell *et al.*, 1994; Aris *et al.*, 1990; Aris *et al.*, 1991b), it seems that adolescent asthmatic subjects are more susceptible to H₂SO₄ insults.

[•] 33

It has been noted that in severe stages of pulmonary diseases, a small portion of the lung volume receives most of the tidal breathing volume (Bates, 1989). Miller *et al.* (1995) thus suggest that localized overload of particulate clearance mechanisms may occur in patients with severe lung diseases, which may further compromise the ability of the lungs to satisfy the ventilatory needs, thereby leading to enhanced morbidity or death.

Similar results have also been observed in elderly subjects aged 60-75 years (Koenig *et al.*, 1993a). When elderly normal and asthmatic volunteers inhaled H_2SO_4 or $(NH_4)_2SO_4$ (70 $\mu g/m^3$, MMAD 0.6 μm) for 40 minutes with mild exercise, a significant increase in total respiratory resistance was seen in the asthmatic subjects but not in normal subjects (Koenig *et al.*, 1993a). However, compared with younger subjects under the similar H_2SO_4 dose regime (Koenig *et al.*, 1992), elderly subjects do not appear to be more at risk for adverse respiratory effects from inhalation of acid aerosol.

Based on the epidemiological observations, subjects with COPD are considered to be potentially at high risk for mortality and morbidity from particle pollution. Morrow *et al.* (1994) studied the pulmonary function of the subjects with COPD in response to low levels of H₂SO₄ aerosol (90 μ g/m³) for 2 hours. Subjects (mean age = 62 years) were defined by dyspnea on exertion, obstructive airway disease and a lack of response to bronchodilators. In contrast to findings in asthmatic patients, the COPD subjects did not demonstrate significant decrements in pulmonary function in response to H₂SO₄, even with mild exercise during exposure periods.

Collectively, the findings of these studies provide evidence that subjects with asthma or allergy differ from healthy volunteers in pulmonary functional responses to exposure to H_2SO_4 , or sequential exposures to H_2SO_4 aerosol and ozone, albeit the responses were small. Hence, asthmatic and allergic subjects may represent a susceptible subpopulation. Adolescent asthmatic subjects appear to be more sensitive to ambient levels of acid aerosol than adult asthmatics. by evaluating pulmonary function changes, there is no sufficient evidence that elderly subjects or COPD patients are more sensitive to the inhalation of acid aerosol. There is no report on the sensitivity of subjects with compromised cardiovascular function to controlled PM inhalation.

34.

3.1.2.2. Reactive agent(s) responsible for association between ambient particulate matter and health effects.

Human clinical studies of particle exposure remain almost completely limited to the study of acid aerosols, primarily of H₂SO₄. Human studies of particles other than acid aerosols provide insufficient data to draw conclusions regarding health effects. The limited data have suggested that the $SO_4^{=}$ is not the biologically active portion of particulate sulphate species. For example, a study by Utell et al. (1983) demonstrates that controlled exposure of asthmatic patients via a mouthpiece to non-acidic $(NH_4)_2SO_4$ aerosol concentrations up to 1000 μ g/m³ (MMAD 0.8 μ m) for 16 minutes did not cause pulmonary function change (Utell et al., 1983). On the contrary, short time inhalation of H_2SO_4 at concentrations as low as 35 to 51 μ g/m³ caused mild pulmonary function impairment in asthmatic adolescents (Koenig et al., 1992; Hanley et al., 1992). The exposure concentrations are near the peak values detected during the summer months in eastern North America, which supports the epidemiological observations that fluctuation of ambient particle concentration can result in exacerbation of asthma. Studies conducted by Utell et al. (1989) and Hanley et al. (1992) have shown that depletion of oral ammonia with acidic drinks exaggerated the subsequent pulmonary response to inhaled H₂SO₄, providing further evidence that aerosol acidity plays an important role in sulphate particle-induced decrements in lung function.

In addition to inducing acute decrease in pulmonary function, inhalation of H_2SO_3 has been found to cause delayed bronchial mucociliary clearance in healthy subjects (Spektor *et al.*, 1989). When healthy, nonsmoking subjects were exposed to 100 µg/m³ of H_2SO_4 aerosol for 1 or 2 hours, they showed significantly prolonged half time of tracheobronchial clearance for γ tagged ferric oxide particles compared with exposure to control (water aerosols), although the pulmonary function was not significantly affected. These data indicate that the indices of lung function may not be sensitive enough to reflect low concentrations of H_2SO_4 -induced airway injury in healthy subjects as observed in a series of clinical investigations, even when low concentrations of H_2SO_4 have impaired tracheobronchial mucociliary clearance function which is

a critical pulmonary defense mechanism. The damage of tracheobronchial mucociliary clearance function renders the subjects vulnerable to the attack by infectious microorganisms or air pollutants. Moreover, the data show that the effect of doubling the length of exposure was as great or greater than a 10-fold increase in the concentration of H_2SO_4 .

Respirable particles are suspected to increase the pulmonary toxicity of acidic pollutants by concentrating acid on their surfaces and so delivering it efficiently to the deeper respiratory tract. Anderson *et al.* (1992) used the respirable carbon and H_2SO_4 to test the hypothesis that inert particles in ambient air may potentiate the pulmonary toxicity of co-existing acidic aerosols. Carbon aerosols were generated from highly pure carbon black with specific surface area comparable to ambient pollution particles. Healthy and asthmatic subjects were exposed for 1 hour to carbon particles (250 µg/m³, MMAD 1 µm) or H_2SO_4 (100 µg/m³) alone, or H_2SO_4 coated carbon black particles (100 µg/m³ of H_2SO_4), with intermittent exercise. Electron microscopy findings suggest successful coating of the particles. Group data did not show any symptomatic or respiratory functional changes of any exposure on healthy and asthmatic subjects. However, one asthmatic subject showed severe clinical manifestations and substantial decrements in FEV_{1.0} and FVC following carbon and acid treatments. Acid-coated carbon particles induced much greater adverse health responses than did acid or carbon black alone in this asthmatic subject, who might represent a vulnerable subgroup.

A few recent animal toxicological studies provide new insights for the nature of reactive components of particulate matter. As will be discussed in the next section, studies with "real-world" particles with surface complexed iron (Tepper and Lehmann, 1994), ultrafine Teflon particles (MMAD <0.06 μ m) (Oberdorster *et al.*, 1995), or H₂SO₄-coated ultrafine metallic particles (Amdur and Chen, 1989; Chen *et al.*, 1992b) provide interesting models linking a specific component of real-world particulate matter with frank inflammatory effects and acute mortality and morbidity in animals. Metal fume fever (Gordon and Fine, 1993) and polymer fume fever (Shusterman, 1993) have long been recognized as occupationally acquired illnesses that occur as the result of work place exposure to ultrafine metal oxide particles and Teflon particles. Therefore, such models may eventually uncover mechanisms by which particles alone

or complexed with metals could provoke pulmonary inflammation, non-cardiogenic pulmonary airflow obstruction, edema, or exacerbation of arrhythmia.

3.1.2.3. Summary of clinical studies

The main purpose for performing human clinical studies is to evaluate the biological plausibility of adverse health effects of PM observed in epidemiological investigations. Available clinical study data indicate that, although the ranges of acid aerosol concentrations usually exceed those experienced by the general population, only mild decrements in pulmonary function have been induced in asthmatics, a susceptible subgroup. Elderly subjects and the subjects with COPD do not appear to be at higher risk to acid aerosol-induced impairment in pulmonary function than are younger subjects, even when doing mild exercise. No specific link between exposure to less acidic particles and the adverse health effects has been identified. No biochemical and physiological alterations in the cardiovascular system during controlled exposure have been reported.

These clinical observations cannot explain the changes of daily mortality and morbidity following the fluctuation of ambient particle levels that have been observed in epidemiological studies. Possible explanations for the discrepancy between clinical and epidemiological data may lie in as follows: (i) the experimental subjects can only be exposed to the tested air pollutants for short periods for practical and ethical reasons, while an urban pollution episode usually lasts a few days for general population exposure; a clinical study has shown that doubling the length of exposure to H_2SO_4 exerted greater effect on bronchial mucociliary clearance than did an order of magnitude increase in the concentration of H_2SO_4 (Spektor *et al.*, 1989); (ii) the pulmonary function indices that are most often used in clinical studies may not be sensitive enough to indicate particle-induced adverse health effects; (iii) pure aerosols and not atmospheric particles are given subjects in exposure chambers, which may not reflect the possible synergestic effects of PM and aerosol mixtures; (iv) in most human studies, the sizes of aerosols used were above 0.5 μ m. Since nanometre-sized ultrafine particles have been found in animal studies to induce acute pulmonary inflammation and death at very low concentrations, and they are present

in ambient air (Brand *et al.*, 1992), ultrafine particles may, as suggested by Seaton *et al.* (1995), be "able to provoke alveolar inflammation, with release of mediators capable, in susceptible individuals, of causing exacerbations of lung disease and of increasing blood coagulability, thus also explaining the observed increases in cardiovascular deaths associated with urban pollution episodes". Currently, such mechanisms remain highly hypothetical.

3.1.3. Toxicological data

The ambient particulate-associated adverse health effects discerned from epidemiology would be greatly strengthened by the existence of plausible, underlying biological mechanisms. Obtaining these mechanisms becomes the purview of toxicology, which can serve to provide mechanistic links between exposure to ambient particle pollution and increased human morbidity and mortality.

Three animal experiments have provided toxicological evidence for adverse health effects from "real world" polluted air. When rats were exposed for 6 months to the ambient atmosphere of Sâo Paulo, Brazil, they demonstrated bronchial secretory-cell hyperplasia, increased mucus secretion, and decreased mucociliary function, which were not observed in rats exposed to cleaner rural air (Saldiva *et al.*, 1992; Lemos *et al.*, 1994). Mice exposed to Los Angeles ambient outdoor air for 43 days showed hyperplasia and hypertrophy of Type II pulmonary cells and the increase of alveolar wall thickness, compared to animals exposed to the cleaner air of Santa Barbara, which may be an indication of early lung injury (Sherwin and Richters, 1991). While these studies may indicate that chronic exposure to "real" ambient air can result in pulmonary effects, the role of particles in producing these responses cannot be determined.

3.1.3.1. Non-acidic particles

Although epidemiological studies have provided evidence indicating the association of increased human morbidity and mortality with ambient particle and $SO_4^=$ levels, animal studies using near neutral $SO_4^=$ generally show very low toxicity. With respect to mortality, exposure to

(NH₄)₂SO₄ at 1000-2000 mg/m³ for 3 days did not cause death in rats (Pepelko et al., 1980).

In the case of morbidity, high concentrations of $SO_4^=$ particles are needed, often in the mg/m³ range, far beyond current ambient environmental levels. Warren *et al.* (1986) exposed rats to 5.0 mg/m³ of ammonium sulphate for 2 days, and did not identify any alteration in pulmonary lavage protein content. Wolff *et al.* (1990) exposed rats to diesel exhaust or carbon black without organic compounds adsorbed, at 10 mg/m³ for 12 weeks, and found mild inflammation in the lungs, as evidenced by increases in numbers of neutrophils and the protein content in bronchoalveolar lavage fluids.

A recent study conducted by a team of Canadian scientists (Bouthillier et al., 1996) has demonstrated that exposure of rats to 50 mg/m³ of urban particles (MMD 1.4 μ m) via nose-only inhalation for 4 hours did not increase levels of protein, fibronectin and alkaline phosphatase in broncho-alveolar lavage fluid, nor did it increase neutrophil counts in broncho-alveolar lavage fluid. However, acute exposure to 50 mg/m³ of urban particles decreased the secretion of tumour necrosis factor- α and the lipopolysaccharide-stimulated nitric oxide production by alveolar macrophages, and thus to some extent impaired the bactericidal function. Exposure to urban particles for 3 consecutive days resulted in a reduction of alveolar macrophage count (Bouthillier et al., 1996). The exposure concentration of particles in this study was very high in comparison with the ambient PM levels. Nevertheless, when taking into account the lower minute ventilation rate (200 ml/min in rats vs 15 litre/min in humans), lower deposition efficiency (6% for rats vs 35% for humans), shorter term of exposure (4 hours for rats vs 24 hours for humans), and different breathing fashions (nose-only for rats vs nose and mouth for humans) for rats, the authors believed that the lower end of the estimated range of internal deposition level for rats (40 $\mu g/m^2$ alveolar surface) was close to the upper end of the estimated range for human pulmonary deposition levels (50 μ g/m² alveolar surface) when exposed to 50 μ g/m³ of PM.

Another comparative dosimetric study for PM was conducted by Miller *et al.* (1995). Their findings indicate that, while deposition of particles on a mass per unit alveolar surface area is not different between humans and rats, dose metrics based upon particle number per various anatomical parametres (ventilatory unit, alveolus, or alveolar macrophage) exhibit some striking

differences between rats and humans, particularly for particles 0.1-0.3 μ m in size. Based on the calculations per ventilatory unit or per alveolus, humans receive much more numbers of particles than do rats when exposed to the same concentration of PM. The trend of differences between humans and rats is even more pronounced for the individuals with compromised lungs compared with normal subjets (Miller *et al.*, 1995). Therefore, rats exposed to 1000 to 1500 μ g/m³ of particles may actually have received the levles of particles equalent to 120-150 μ g/m³, the PM level for the Canadian Air Quality Objectives.

In an early investigation, Amdur *et al.* (1978) reported that the irritant potency of $(NH_4)_2SO_4$ for guinea pigs was 10-fold lower than that of H_2SO_4 at the same concentration and aerosol size (500 - 1000 µg/m³, MMAD 0.13 - 0.3 µm). Interestingly, while NH_4HSO_4 is more acidic than $(NH_4)_2SO_4$, it was 3-fold less potent than $(NH_4)_2SO_4$ in irritating airways (Amdur *et al.*, 1978).

Sodium sulphite (Na₂SO₃, pH 9) is a stable compound which accounts for approximately 10-30% of the total suspended sulphur oxide aerosols (Chen *et al.*, 1987). When guinea pigs were exposed to aerosols of Na₂SO₃ at 474 - 972 μ g/m³ (MMAD 0.36 μ m) for 1 hour, a dose-related decrease in lung function and increase in wet lung weight were noted (Chen *et al.*, 1987). The authors concluded that the irritant potency of Na₂SO₃ was approximately 10 fold less than H₂SO₄, similar to (NH₄)₂SO₄, and 3 to 4 fold higher than NH₄HSO₄ at the same concentration and aerosol size. Another study using beagle dogs demonstrates that chronic inhalation of Na₂SO₃ at a concentration equivalent to 600 μ g/m³ of SO₂ for 290 days resulted in epithelial proliferation, loss of secretory material and moderate mononuclear cell infiltration in nasal cavity of beagle dog (Takenaka *et al.*, 1994).

Mechanisms of toxicity - The mechanisms of non-acidic particle toxicity can be classified as alteration of alveolar macrophage functions, alteration of inflammatory mediator production, and interaction with cellular macromolecules.

Kleinman *et al.* (1995) exposed rats for 8 weeks to $(NH_4)_2SO_4$ (70 µg/m³, 0.2 µm) or ammonium nitrate (350 µg/m³, 0.6 µm), two major constituents of the fine particulate matter.

The exposure resulted in a decrease in alveolar macrophage function and moderate morphological alterations of alveolar space. The data indicate that prolonged exposure may enhance $(NH_4)_2SO_4$ toxicity.

Nadeau *et al.* conducted a series of *in vitro* studies (Nadeau *et al.*, 1995a; Nadeau *et al.* 1995b) using human and rat alveolar macrophages obtained by lung lavage. Although low dose of urban particles (up to 100 μ g) induced an oxidative burst (Nadeau *et al.*, 1995a), the major effect was the suppression of phagocytosis of rat alveolar macrophages. More significantly, pre-exposure of human or rat macrophages to urban particles suppressed respiratory burst upon secondary challenge with zymosan, a stimulus (Nadeau *et al.*, 1995b). This reveals an impairment of bactericidal function.

When comparing the relative potency of sulphate aerosols in altering alveolar macrophage functions, Schlesinger *et al.* (1990a) investigated the effects of exposure to H₂SO₄ and NH₄HSO₄, using the phagocytic activity of alveolar macrophages as the endpoint. The exposure of rabbits for 1 hour/day for 5 days to H₂SO₄ at \geq 1000 µg/m³ and to NH₄HSO₄ at \geq 4000 µg/m³ significantly reduced the phagocytosis of alveolar macrophages. While *in vivo* exposure to a given level of SO₄⁼ species resulted in greater response to H₂SO₄ than to NH₄HSO₄, macrophages incubated *in vitro* in acidic environment responded similarly regardless of the sulphate species used to adjust the pH, suggesting that the toxic response to sulphate aerosols is more likely due to H⁺, rather than to SO₄⁼. Schlesinger and Chen (1994) have further reported that higher potency of H₂SO₄ than NH₄HSO₄ is likely attributable to higher availability of H⁺ from H₂SO₄ than from NH₄HSO₄, because the latter is more readily neutralized by airway ammonia.

Non-acidic particles have been found to alter the release of inflammatory mediators. Devlin *et al.* (1995) incubated human alveolar macrophages with non-lethal concentrations of silica (0-100 μ g/ml) or titanium dioxide, a relative innocuous dust (5-50 μ g/ml), for 3 or 24 hours *in vitro*. Both silica and titanium dioxide caused substantial release of leukotrienes, and inhibited the production of prostaglandin E₂ and thromboxane.

Interaction of urban particulate matter with cellular macromolecules may occur, leading

to enzyme induction or damage to DNA. The formation of DNA adducts have been observed following incubation of urban particles from Ottawa, Ontario, 10 μ g/ml medium, with normal human bronchial epithelial cells for 72 hours (Shah *et al.*, 1995).

Vincent *et al.* (1995) incubated urban particles from Ottawa, Washington, D.C., or St-Louis, or aqueous extracts of $PM_{2.5}$ (100 µg/ml medium) *in vitro* with a panel of HepG2 cell lines transfected with target gene constructs, for 18-24 hours. Urban particles caused gene expression of several enzymes including cytochrome P4501A1, glutathione S-transferaseYa, and a xenobiotic response element, which are biologically critical in chemical biotransformation. The potency of gene induction was correlated with the content of polycyclic aromatic hydrocarbons in particles. The induction of gene expression of cytochrome P4501A1 and the xenobiotic response element was significantly potentiated by co-incubation with rat alveolar macrophages (Goegan *et al.*, 1995), indicating that alveolar macrophages may increase the bioavailability of polycyclic aromatic hydrocarbons from particles.

There are indications that surface-complexed iron on particles is involved in pulmonary injury. To determine potencies of specific metals, Berg *et al.* (1993) examined different fractions of fly ash (12.5-1000 μ g/ml, MMAD <4 μ m) for their ability to stimulate bovine alveolar macrophages to secrete reactive oxygen species, namely superoxide anion and hydrogen peroxide. They noted that the release of hydrogen peroxide was correlated, in descending order, with the metal contents in the fly ash praticles: iron>manganese>chromium>vanadium>arsenic. The positioning of iron as first in this scheme is consistent with results of some other studies examining the biological effects of iron present as a particle surface coating.

Guilianelli *et al.* (1993) examined the role of iron in PM-related lung injury using chrysotile, nemalite, and hematite particles incubated with rabbit tracheal epithelium *in vitro* (50-100 μ g/cm²). Surface available iron was correlated both with the oxidizing potency of mineral particles, and with cytotoxicity, and expression of cytokeratin-13 and the formation of cross-linked envelopes of tracheal epithelial cells (two markers of squamous metaplasia), which could be blocked by deferoxiamine, an iron chelator.

A role of particle surface-complexed iron in lung injury is further supported by a study

demonstrating that both the degree of inflammation (indicated by polymorphonuclear leucocytes, eosinophils, lactate dehydrogenase and protein in lung lavage) and bronchoreactivity to acetylcholine were correlated with the Fe³⁺ loading of the particles instilled intratracheally (Costa *et al.*, 1995). Thus, it is possible that reactive oxygen species produced through chemical reactions involving iron could initiate lipid peroxidation of the cell membrane, subsequently resulting in lung injury. pH has been found to play an important role in iron-induced toxicity. Instillation of pure H₂SO₄ at comparable pH induced little inflammatory response, whereas neutralization of fly ash instillate enhanced the toxicity, and resulted in the precipitation of additional particulate material (Costa *et al.*, 1995).

Hence, the results to date suggest that surface-complexed iron on particles has a significant role in the generation of oxidants and the elicitation of lung toxicity.

In addition to iron, other metals may also involve in particle toxicity. Incubation of urban particles from Ottawa, Washington, D.C., or St-Louis, or aqueous extracts of $PM_{2.5}$ (100 µg/ml medium) *in vitro* with a panel of HepG2 cell lines transfected with target gene constructs caused expression of genes for metallothionein and heat shock protein-70 (Vincent *et al.*, 1995). The potency for induction of metal and stress responses was correlated with the content of copper in particles.

Sensitive subpopulations - Epidemiological studies suggest that there may be sensitive subpopulations that are specially susceptible to the adverse effects from inhaled particles. One particular group may be those having lungs compromised by respiratory disease. To investigate the effects of PM exposure on those susceptible subgroups, a number of experiments with animal models have been carried out. Rabbe et al. (1994) exposed rats with elastase-induced emphysema to two particle atmospheres, a California-type aerosol [consisting of particles of graphitic carbon, natural clay, NH₄HSO₄, (NH₄)₂SO₄, NH₄NO₃, PbSO₄, VOSO₄, MnSO₄, and NiSO₄, MMAD 1.1-1.5 μ m], and an London-type aerosol [consisting of NH₄HSO₄, (NH₄)₂SO₄, coal fly ash, and lamp black carbon, MMAD 0.8-0.9 μ m]. While a 3-day exposure (23 hours/day) to the London aerosol produced a significant greater increase in pulmonary DNA and

RNA contents in emphysema rats than in normal rats, there were no changes in tracheobronchial clearance or lung permeability compared to normals. A 30-day exposure to the California aerosol enhanced small airway lesions in emphysema rats, but did not alter lung hydroxyproline, tracheobronchial clearance, or small airway fibrosis.

In another study using young rats with elastase-induced emphysema, a 24-month exposure (7 hours/day, 5 days/week) to whole diesel exhaust $(3,500 \ \mu g/m^3)$ was conducted (Mauderly *et al.*, 1990). At the end of the exposure, pulmonary function, the contents of enzymes, protein and collagen in lung lavage fluid, and histopathological and morphometric endpoints were examined. There was no evidence that the diseased lungs were more susceptible to the diesel exhaust than the normal lungs. However, less soot accumulated in lungs of emphysematous rats than in those of non-emphysematous rats, suggesting that the reduced burden of diesel exhaust in emphysema lungs was due to the differences in deposition and/or clearance compared to normal lungs.

In a recent observation, rats with induced pulmonary hypertension were found to be extremely sensitive to particle inhalation (Costa *et al.*, 1994), which is suggestive of a clue to the increased cardiovascular mortality and morbidity demonstrated in epidemiological studies.

In general, non-acidic particles show very low toxicity in inducing animal mortality and morbidity. High concentrations of PM are needed, often in the mg/m³ range, to induce toxicity. However, a study of particle exposure dosimetry in rats has provided a fresh viewpoint, implying that animal toxicity data may be relevant to observed associations between ambient PM exposure and human health outcomes. The main mechanism for non-acidic particle-induced toxicity reported lies in the alteration of inflammatory mediator production, alteration of alveolar macrophage functions (often suppression of phagocytosis), and interaction with cellular macromolecules. It appears that the toxicity of PM depends largely on the acidity and size of particles. The evidence that surface-complexed iron and copper on particles can exert substantial inflammatory responses has provided more information in the mechanism by which non-acidic particles could provoke lung injury. However, more information is needed concerning the toxicity of iron-containing particles at ambient levels. The findings on the susceptibility of

diseased animals to particulate pollution are significant, but inconclusive evidence exists. More research is required.

3.1.3.2. Acid aerosols

Similar to ammonium sulphate, fairly high concentrations of H_2SO_4 are required to induce animal acute mortality. Above 4 mg/m³ of H_2SO_4 is required for acute lethality of guinea pigs, a species that is believed to be the most sensitive. The animal mortality induced by H_2SO_4 is primarily due to laryngeal or bronchoconstriction (Office of Air Quality Planning and Standards *et al.*, 1982).

In the case of H_2SO_4 -induced animal morbidity, chronic exposure for up to 1 year at relatively low concentrations (125-250 µg/m³) has produced a response characterized by hyperplasia of epithelial secretory cells and hypertrophy in small airways (Gearhart and Schlesinger, 1989; Schlesinger *et al.*, 1992c). However the authors did not observe inflammatory response to low concentrations of H_2SO_4 (Gearhart and Schlesinger, 1989; Schlesinger *et al.*, 1992c). The characteristic acute morphologic responses, such as alveolitis, bronchitis and edema, can be produced by H_2SO_4 only at very high concentrations (27 mg/m³) in highly sensitive guinea pigs (Wolff *et al.*, 1986).

Mechanisms of acid aerosol toxicity - The possible mechanisms of H_2SO_4 toxicity can be classified as immunosuppression, bronchial hyperreactivity, and alteration of mucociliary movement.

Pulmonary alveolar macrophages play a key role as main cellular defense against pathogenic organisms in specific immunological defense mechanisms. Exposure of rabbits to H_2SO_4 aerosol (75 µg/m³, 2 hours) has been found to cause a decrease in the amount of reactive oxygen intermediates and the reduction in tumour necrosis factor- α activity that are critical for maintaining pulmonary immunocompetence in pulmonary alveolar macrophages (Zelikoff and Schlesinger, 1992). Repeated inhalation of high concentrations of H_2SO_4 (750 or 1000 µg/m³, 2 hour/day for 4 days) reduced the ability of rabbit pulmonary alveolar macrophages to uptake and

kill pathogenic bacteria, as well as to suppress the activity/production of tumour necrosis factor- α and interleukin-1 α (Zelikoff *et al.*, 1994). These findings indicate that the pulmonary alveolar macrophages can be a potential target for toxic air particles, which may contribute a better understanding concerning the possible mechanisms underlying the association between aerosol acidity and increased incidence of acute bronchitis observed in epidemiological studies.

In order to determine if particle size influences toxic effects of H_2SO_4 , Chen *et al.* (1992a) examined the effects of fine (0.3 µm) and ultrafine (0.04 µm) H_2SO_4 aerosols (300 µg/m³) on biochemical and cellular parameters of bronchoalveolar lavage fluid from exposed guinea pigs. Four days of exposure (3 hours/day) to fine aerosols enhanced the phagocytic activity of recovered alveolar macrophages, while an identical exposure to ultrafine aerosols depressed phagocytic function. A depression in intracellular pH was noted 24 hours following 4 days of exposure to the ultrafine aerosols, but not the fine aerosols. Thus, acid exposure produced a change in intracellular pH and phagocytic function of the alveolar macrophages, and the effect was particle size-dependent. Since the same mass concentration of H_2SO_4 was used for aerosols of both sizes, ultrafine H_2SO_4 aerosols. Enhancement of phagocytosis at a low dose and depression of phagocytosis at a higher dose have been reported in macrophages exposed to acidic media *in vitro* (Schlesinger *et al.*, 1990a). Hence, the differences in response between fine and ultrafine aerosols may be attributable, to some extent, to the doses of acid aerosols delivered to macrophages *in vivo*.

Fine H_2SO_4 aerosols have been demonstrated to induce nonspecific airway hyperresponsiveness, a hallmark of human asthma, in otherwise healthy animals. A single 3hour inhalation of 75 µg/m³ of H_2SO_4 aerosols resulted in evidence of rabbit bronchial hyperresponsiveness to acetylcholine and histamine (El-Fawal and Schlesinger, 1994). When rabbits were exposed to 250 µg/m³ of H_2SO_4 for 1 hour per day, 5 days per week for 4 months, H_2SO_4 caused bronchial hyperresponsiveness and alterations in airway diameter and secretory cell number, while pulmonary mechanics parameters did not show significant change (Gearhart and Schlesinger, 1989). The underlying mechanism for hyperresponsiveness appears to be

interference with normal contractile/dilatory homeostatic processes in the airways via modulation of airway receptors involved in maintenance of airway tone. This assumption is supported by an observation of decreases in the production of pulmonary prostaglandins E_2 and $F_{2\alpha}$, and thromboxane B_2 , by H_2SO_4 inhalation (250-1000 µg/m³, 1 hour/day for 5 days) in rabbits (Schlesinger *et al.*, 1990b). These eicosanoids serve as potent mediators of smooth muscle tone and inflammatory response.

Long-term exposure to H_2SO_4 (250 µg/m³) for 4 month also resulted in a reduction of mucociliary clearance (Gearhart and Schlesinger, 1989). The slowing of tracheobronchial mucociliary clearance reflects changes in mucus secretory capacity, alteration in the type of mucus produced, and disruption of normal morphology of cilia and ciliated cells, which, again, can lead to the impairment of pulmonary defense capacity (Samet and Cheng, 1994).

Species differences in susceptibility - With respect to species differences, it appears that guinea pigs are more sensitive in response to H_2SO_4 insult. Exposure of guinea pigs to 14 mg/m³ of H_2SO_4 for 4 hours induced a significant shift in breathing pattern, whereas 4 hours exposure of rats to 100 mg/m³ did not cause any changes (Bjarnason *et al.*, 1994). Inter-species differences in the effects of H_2SO_4 on alveolar macrophage function were also examined by Schlesinger *et al.* (1992a). Based upon *in vitro* response of alveolar macrophages to acidic challeng, and subsequent effect on phagocytic activity, a ranking of sensitivity in descending order was found to be: guinea pig > rat > rabbit > healthy, nonsmoking human.

Rahman *et al.* (Rahman *et al.*, 1995) compared differences between rat and human alveolar macrophages in producing reactive oxygen species in response to pollution particles. Particles (carbon black, amorphous and crystalline silica, ultrafine titanium dioxide, asbestos) were incubated with alveolar macrophages, and production of superoxide anion and hydroxygen dioxide were measured. Preliminary results suggest that human alveolar macrophages have a more active oxidative burst than rat macrophages, which may render humans more susceptible than rats to inhaled particles.

In summary, very high concentrations of acid aerosols, usually in the range of mg/m³, are

required to induce animal mortality and acute morphological alterations. Short term exposure to H_2SO_4 aerosol at the concentrations as low as 75 µg/m³ can attenuate the release of reactive mediators that are involved in maintaining the reactivity of pulmonary alveolar macrophages. The biological mechanisms of H_2SO_4 are characterized as immunosuppression, bronchial hyperreactivity, and changes in mucociliary movement. There appears to be inter-species differences in terms of sensitivity to H_2SO_4 -induced alteration of alveolar macrophage function.

3.1.3.3. Ultrafine Particles

As discussed above, although there have been numerous epidemiological studies relating acute or chronic ambient particulate exposure to increased human morbidity and mortality, toxic responses observed in human clinical and animal toxicological studies occur most often at PM concentrations well above ambient levels. Adverse health effects observed in toxicological studies at ambient particulate levels are minimal.

One explanation for the lack of biological plausibility for the associations identified at ambient particulate level is because of the particle sizes used for animal studies. Some investigations have demonstrated that when the particle size is small enough (MMAD <0.05 μ m), even the particles with little intrinsic toxicity can become very toxic. For example, Oberdorster *et al.* (1992) reported that, after intratracheal instillation of fine (>0.2 μ m) or ultrafine (~0.02 μ m) titanium dioxide (both 500 μ g) which is highly insoluble particles of low intrinsic toxicity, ultrafine particles induced substantially more severe acute inflammatory reaction than fine particles, as determined by the increases of protein leakage and numbers of inflammatory cell counts in lung lavage fluid. The inflammatory response by ultrafine particles was dose-dependent at the range of 65 to 500 μ g. Concomitantly, the authors found that inhaled ultrafine titanium dioxide translocated into pulmonary interstitium to a greater extent than fine titanium dioxide particles (Oberdorster *et al.*, 1992; Ferin and Oberdorster, 1992), via endocytosis by pulmonary Type I and Type II cells (Ferin *et al.*, 1993; Oberdorster *et al.*, 1994), and induced more severe pulmonary inflammation (Oberdorster *et al.*, 1994).

A study conducted by Amide *et al.* (1994) using a human tracheobronchial cast and sodium chloride particles also showed a particle size-dependent deposition efficiency. Inspiratory and expiratory deposition efficiency increased substantially with a decrease of particle sizes (0.1 to 0.005 μ m). In addition, a correlation between particle surface area and prolonged tissue retention time was noted (Oberdorster *et al.*, 1994), suggesting that larger surface area of ultrafine particles may play a key role in biopersistence and inflammatory responses of these specifically small particles.

While studies using titanium dioxide were carried out mostly for weeks and at high doses (at mg/m³ range), the effects were not of an acute nature. In another study conducted by the same group of researchers (Oberdorster et al., 1995), rats were exposed to freshly generated thermodegradation products of polytetrafluoroethylene (PTFE) containing singlet ultrafine particles (MMAD 26 nm), at inhaled concentrations of less than 60 μ g/m³, below the level of the Canadian Ambient Air Quality Objectives for particulate matter (24 hour average 120 µg/m³). The short time exposure to PTFE (10-30 minutes) resulted in acute haemorrhagic pulmonary inflammation and death. The acute toxicity and lethality of PTFE apparently were not attributed to vapour phase fluoro compounds, such as hydrogen fluoride, carbonylfluoride, or perfluoroisobutylene, since the amount of these compounds generated at the temperature (415-420°C) used in this study was minimal (Shusterman, 1993), and lung injury by those fluoro compounds was not observed at low concentrations (Oberdorster et al., 1995). The toxicity of PTFE to rats was reduced significantly when the aerosols were allowed to age, presumably due to the process of particle aggregation with time (Oberdorster et al., 1995). Similarly, Warheit et al. reported 100% mortality in rats exposed for 30 minutes to 200 μ g/m³ of fresh ultrafine PTFE. aerosols (0.05 µm); mortality decreased to 20% if the aerosols were aged for 5 minutes (Warheit et al., 1990). Analysis of bronchoalveolar lavage fluid and histopathology indicate that the rats died of severe lung injury (Warheit et al., 1990).

The newest data presented by Oberdorster and co-workers have shown concentrations as low as about 9 μ g/m³ inhaled for 30 minutes causing pulmonary inflammation in rats, along with the up-regulation of several inflammatory mediators including interleukin-6 (Oberdorster, 1995).

The evidence that the surface area of the retained particles in pulmonary interstitium, rather than their mass, correlates best with the inflammatory response (Oberdorster *et al.*, 1994), implies that the induction of mediators (e.g., chemotactic factors, growth factors, enzymes) from macrophages is a function of the particle surface area that interacts with the receptors of alvéolar macrophages.

Ultrafine particles are constantly generated from combustion processes and from gas-toparticle conversion, and the ambient levels can exceed the concentrations used in the above animal studies (Brand *et al.*, 1992). Therefore, the ultrafine particle model has provided an explanation for the increased acute and chronic mortality and morbidity observed in sensitive subpopulation during episodes of elevated air pollution. However, very little information is available with regard to the exposure of general population to ambient levels of ultrafine particulate matter.

While most toxic effects of acid aerosols observed in animal studies are at concentrations well above peak ambient levels of 50 to 75 μ g/m³ (Spengler *et al.*, 1989), a series of studies have demonstrated that coating of ultrafine metal oxide particles with H₂SO₄ can significantly enhance the potency of H_2SO_4 at much lower concentrations. Amdur and Chen exposed guinea pigs to 20 μ g/m³ of H₂SO₄ coated on ultrafine zinc oxide particles (MMAD 0.05 μ m, 2.5 mg/m³), either 1 hour single time, or 3 hours daily for 5 days (Amdur and Chen, 1989). Single exposure produced bronchial hypersensitivity to acetylcholine, whereas repeated exposure resulted in inflammatory responses of the guinea pig airways and decrements in lung volumes and pulmonary diffusion capacity (Amdur and Chen, 1989). A single 1-hour exposure to $30 \,\mu\text{g/m}^3$ of H₂SO₄-coated ultrafine zinc oxide particles also caused significant increase in pulmonary resistance of guinea pigs (Chen et al., 1992b). A ten-fold higher concentration of pure ultrafine H₂SO₄ aerosol (MMAD 0.06 µm) alone was required to produce similar effects (Chen et al., 1992b). The same concentration of zinc oxide particles without the acid coating did not produce such effects (Amdur and Chen, 1989; Chen et al., 1992b). These studies suggest that ultrafine particles can potentiate the toxicity of H_2SO_4 synergistically. Another observation by Chen *et al.* (1991) indicates that single or multiple exposure to 24 μ g/m³ of H₂SO₄ layered on the ultrafine zinc

particles sensitized guinea pigs to subsequent H_2SO_4 or ozone (0.15 ppm) exposure, resulting in further reduction of lung volumes and diffusing capacity.

There is evidence that ultrafine H_2SO_4 aerosols (0.04 µm) result in greater depressions in both intracellular pH and phagocytic function of alveolar macrophages than do fine H_2SO_4 aerosols (0.27 µm) (Chen *et al.*, 1992a). H_2SO_4 -coated ultrafine zinc oxide'particles can initiate changes in production of prostaglandin $F_{2\alpha}$ and leukotriene B_4 (Chen *et al.*, 1989), which are involved in mediating the tension of bronchial smooth muscle and inflammatory responses, and may thus constitute a mechanism of ambient acidic PM-induced adverse health effects.

3.1.3.4. Interaction of particulate matter with other air pollutants

Ambient air pollution is composed of a complex mixture of particles and gases, and therefore potential synergistic interactions among various pollutants should be considered. The 1990 acid aerosol assessment report reviewed the evidence for the interaction between acid aerosols and ozone, and concluded that the evidence for synergism was equivocal. Some laboratory studies showed no interaction between ozone and acid aerosols using morphology as an indicator, while others demonstrated a synergistic effect using biochemical and mucus secretion endpoints (Toxic Air Pollution-Health Effects Section, 1990).

Since then, more studies have been carried out, and have indicated that the type of interaction between ambient air pollutants depends on the endpoint and the duration of the exposure. Single exposure of rabbits to low levels of H₂SO₄ aerosol (50-125 μ g/m³) in conjunction with ozone (0.1-0.6 ppm) for 3 hours showed antagonistic interaction in phagocytic activity of macrophages and superoxide production by stimulated macrophages, while synergistic effect of the pollutants was observed in stimulating tumour necrosis factor activity from macrophages (Schlesinger *et al.*, 1992d) and bronchial hyperreactivity (El-Fawal *et al.*, 1992). Repeated exposure of rabbits to the mixture of H₂SO₄ (75-125 μ g/m³) and ozone (0.1-0.6 ppm), 3 hours per day for 5 days, induced synergistic/additive interactions in stimulating bronchial hyperresponsiveness and down-regulation of macrophage function (McGovern *et al.*, 1993). In addition, repeated inhalation of mixture of ozone (0.4 ppm), H₂SO₄ (500 μ g/m³) and carbon

particles (250 μ g/m³) for 5 days lead to greater lung parenchyma lesion and change in breathing pattern in rats compared with exposure to ozone alone, while there was no synergestic effect on depression of phagocytic activities of macrophages (Kleinman *et al.*, 1993). Long-term exposure of rabbits to the mixture of H₂SO₄ (125 μ g/m³) and ozone (0.1 ppm) showed an increase in secretory cell number by 4 months, but the response became attenuated with continued exposure (Schlesinger *et al.*, 1992c).

Although non-acidic particles generally reveal minor toxicity to experimental animals, several studies have demonstrated that the injurious responses to ozone can be altered by sulphate aerosols. Warren et al. (1986) investigated the interaction between inhalation of $(NH_4)_2SO_4$ and ozone by continuously exposing rats to ozone (0.2 ppm) with and without concurrent exposure to 5 mg/m³ (NH₄)₂SO₄ (0.5 μ m) for 2-7 days. A synergistic interaction between ozone and the (NH₄)₂SO₄ was identified by more than additive increases in the rate of hydroxyproline synthesis by lung tissue and lavage protein content. In another study, Last et al. (1984) reported that repeated exposure to the mixture of ozone (0.64 - 0.96 ppm) and aerosolized $(NH_4)_2SO_4$ (5 mg/m³, MMAD 1 µm) for 3 days caused significant increases in the numbers of lung macrophages, monocytes and fibroblasts, and the enhancement in collagen synthesis rates, when compared with values obtained from animals exposed to ozone alone. Only relatively minor changes were observed with ammonium sulphate alone. However, a study by Wong et al. (Wong et al., 1994) demonstrates that repeated exposure to ozone (0.2 ppm) in combination with inorganic sulphate (65 μ g/m³), nitrate (365 μ g/m³) and road dusts (65 μ g/m³, MMAD 5 μ m) for 4 days significantly reduced the abnormal expression of heat shock protein in rat lung induced by exposure to ozone alone.

Recently, a group of Canadian researchers exposed rats to a combination of ozone (0.8 ppm) and Ottawa particles (50 mg/m³, MMAD 1.4 μ m) via nose-only inhalation for 1 or 3 days (Bouthillier *et al.*, 1996). Exposure to PM alone did not increase levels of protein, fibronectin and alkaline phosphatase in broncho-alveolar lavage fluid, nor did it exacerbate these effects of ozone following co-exposure. While ozone or PM alone altered some aspects of alveolar macrophage physiology, these cellular effects appeared to be attenuated by co-exposure of two

pollutants. However, PM potentiated the ozone-induced neutrophilic infiltration in lung lavage.

Therefore, toxicological interaction between PM and ozone appears complex, and requires further investigation.

3.1.4 Summary for particulate matter induced direct adverse health effects and future research directions

Summary

Epidemiological investigations have demonstrated a coherent relationship between ambient particle concentrations and human mortality and morbidity. A similar phenomenon has been observed in several countries with different medical care systems. The epidemiological data appropriately identify the same susceptible populations at greatest risk as would be anticipated clinically. The PM relative risk estimates derived from the recent studies suggest a higher susceptibility indicated for the infants and the elderly, and for those with pre-existing compromised respiratory and cardiovascular conditions, who may constitute sensitive subpopulations to the health effect implications of the exposures to PM pollution. The risk of mortality and morbidity increases with PM pollution levels, often with a near linear doseresponse fashion, without obvious threshold. While there is an indication that aerosol strong acidity may contribute to the associations between PM and human health effects, some studies have shown that aerosol acidity has a threshold in initiating respiratory illness. The key reactive component(s) of PM responsible for the increases in mortality and morbidity remains an open question.

It is noteworthy that co-pollutants, such as SO_2 and ozone, may significantly confound the outcomes for PM due to their co-linearity. Several studies have demonstrated that the effect of PM on daily mortality can be substantially attenuated when SO_2 and ozone are simultaneously included in the regression, and vice versa, due to the statistical correlations among these pollutants. Therefore, new approaches need to be explored. It is possible that these co-pollutants may cause synergistic adverse health effects.

Compared with epidemiological studies, there is some inconsistency observed in human clinical and animal toxicological studies. Although there is no question to the plausibility of a causal relationship between high levels of particle exposures (as high as $4000 \ \mu g/m^3$) and excess morbidity, and maybe even mortality, in clinical and animal studies, there remain doubts about such a causal relationship extending to concentrations as low as $50 \ \mu g/m^3$. One explanation of such a discrepancy is that in clinical and animal studies, most often sulphate alone, or sulphate plus one or two other pollutants such as ozone, is used, which may not reflect the complexity of ambient particles. Highly reactive chemicals, such as metals and free radicals, which are adsorbed on the surface of "real world" PM, may substantially potentiate the toxicity of particulate matter.

Comparative studies of particle exposure dosimetry in rats and humans have provided a fresh viewpoint. These studies suggest that PM-induced animal toxicity data may be relevant to observed associations between ambient PM exposure and human health outcomes, when taking into consideration the differences of airway geometry, minute ventilation rate, deposition efficiency, exposure term, and breathing fashion, between animals and humans.

Other explanations may lie in the short exposure duration and insensitive indices (such as lung function) that are used in controlled human clinical studies.

Recent toxicological investigations using ultrafine particles (MMAD <0.06 μ m), "realworld" particles with surface-complexed iron, and H₂SO₄-coated ultrafine metallic particles, have provided new insights for the nature of reactive components of PM. These studies have offered interesting models linking a specific component of real-world PM at low concentrations with frank immunological responses and inflammatory effects, and acute mortality and morbidity, in animals.

Future research directions

(1). A research agenda should be developed and implemented as a basis to characterize physical-chemical properties of ambient ultrafine particles and their episodic fluctuation associated with specific meteorological conditions. Reliable instrumentation needs to be

developed to quantify ultrafine aerosol in ambient air.

(2) Attention should be given to the human health effects induced by ambient ultrafine particles, iron-containing particles, and acid-coated ultrafine metallic particles, through human clinical study and epidemiological investigation.

(3) More sensitive biological markers of tissue injury should be introduced to link low PM exposure levels with the adverse health effects, in order to enhance the sensitivity of human clinical studies.

(4) In order to identify subpopulations sensitive to the fluctuation of ambient PM pollution, an effort should be made to investigate the susceptibility of cardiovascular system-compromised patients (such as patients with chronic congestive heart failure) in controlled clinical studies, since there is epidemiological evidence of increased cardiac mortality and morbidity with the increase in PM levels. The relation between air pollution and blood coagulation tendency requires further investigation.

(5) Epidemiological analyses should be conducted on air pollution data obtained from representative areas with unique air pollution patterns, such as St. John, New Brunswick with high aerosol acidity but low PM levels, as well as other regions with just the opposite situation, high PM but low acid like Los Angeles, in order to elucidate the potential key reactive component(s) of PM responsible for the increases in mortality and morbidity.

(6) Personal monitoring should be carried out, in order to determine exactly what and when the elderly and susceptable populations are exposed, indoor and outdoor.

3.2. Sulphur dioxide

 SO_2 is water soluble, and is readily absorbed from the moist surfaces of the upper respiratory tract. Human clinical studies have demonstrated that in resting conditions, inhaled SO_2 gas is almost completely (80% - 90%) removed by nasal absorbtion (Speizer and Frank, 1966). However, persons breathing orally at rest would receive a higher lung exposure to SO_2

(Kirkpatric *et al.*, 1982; Speizer and Frank, 1966). Fine particles, especially hygroscopic salts such as sulphate which adsorbs SO_2 in inhaled air, may also increase the penetration of SO_2 to the lower respiratory tract.

3.2.1. Epidemiological data

The current Canadian Ambient Air Quality Objectives for SO_2 are 0.9 mg/m³ for 1-hour average concentration, 0.3 mg/m³ for 24-hour average concentration, and 0.06 mg/m³ for annual arithmetic mean (Mellon *et al.*, 1986).

In epidemiological studies, the outcomes examined for an association between ambient SO_2 levels and human health outcomes are very different (Table 3.2.1)(see end of chapter). Several recent investigations have shown that there exists a positive association of daily variations of SO_2 with daily mortality rates of respiratory and cardiovascular diseases (Spix *et al.*, 1993; Xu *et al.*, 1994; Li and Roth, 1995; Moolgavkar *et al.* 1995a), hospital admissions for asthma (Walters *et al.*, 1994) and other respiratory diseases (Sunyer *et al.*, 1991; Ponka and Virtanen, 1994), and the daily diary report of respiratory symptoms (Schwartz *et al.*, 1994), at the annual average concentrations of SO_2 between 0.039 and 0.102 mg/m³, even when the autocorrelation effect of seasonal and meterological factors and the interactions among air pollutants were controlled using various statistical models.

Spix *et al.* (1993) conducted a daily mortality study in Erfurt, a heavily polluted coalburning area in East Germany, with daily mean SO₂ levels up to 4,000 μ g/m³ during 1980-1989. They found that for an increase in SO₂ daily mean from 23 to 929 μ g/m³, daily mortality increased by 10%, without apparent threshold. On the other hand, in the Harvard Six-City study of diaries kept by parents of children's respiratory and other illness, there was an apparent threshold for relative odds of low respiratory symptoms at approximately 20 ppb (52.4 μ g/m³) of SO₂ (Schwartz *et al.*, 1994).

A study in Norway assessed the relationship between air quality and the health effects on children (aged 7-13 years) living in a valley containing a SO₂-emitting aluminium smelter (Soyseth *et al.*, 1995). The median exposures to SO₂ and fluoride were 37 μ g/m³ and 4.4 μ g/m³

at ages 0-12 months, and 38 μ g/m³ and 4.4 μ g/m³ at 13-36 months. The authors reported that exposure to SO₂ at concentrations below 40 μ g/m³ during infancy had an increased risk of bronchial hyperresponsiveness. The odds ratio for a 10 μ g/m³ increase in SO₂ exposure at 0-12 months was 1.62 [95% confidence interval (CI) 1.11-2.35]. The exposure to fluoride was also associated with an increased risk of hyperresponsiveness. The concentrations of other pollutants were not mentioned.

In a very recent study conducted in Canada (Burnett *et al.*, 1995), hospital admissions for respiratory diseases during April 1, 1981 to December 31, 1991, were investigated for 16 cities across Canada. Daily ozone, SO₂, NO₂, CO, and soiling index (COH, correlated with airborne particles) were recorded. After controlling for seasonal patterns, day of the week, and other copollutants, SO₂ pollution (mean 4.7 ppb, 95% percentile 17 ppb) was found to be associated with respiratory hospital admissions.

These results suggest that SO_2 concentrations lower than those given as guidelines in many countries may still produce significant health effects, especially for sensitive subpopulations such as asthmatics and young children.

Other studies investigating the genetic toxicity or carcinogenicity of SO_2 have suggested that exposure to SO_2 (0.334 to 1.20 mg/m³) in occupational settings may result in an increased frequency of chromosomal aberrations (Meng and Zhang, 1990), although the concentrations of other pollutants in the factory were not reported. An ecological study by Gorham et al. (1989) examined the levels of ambient air SO_2 and the coefficient of haze (an index of small particles producing visual haze in 400 nanometre wavelength light) in 20 Canadian cities, and their relation to age-adjusted breast and colon cancer mortality rates encompassing these cities. Positive associations were observed between the pollution of SO_2 and the coefficient of haze and the mortality rates for colon cancer in men and women, and for breast cancer in women. The authors proposed that the elevated mortality rates for colon and breast cancers may be attributed to the ability of SO_2 and aerosols to block transmission of vitamin D-producing ultraviolet sunlight.

Data from other studies argue that SO₂ may not be a significant predictor for health

effects. In a prospective cohort study, Abbey *et al.* (1995b) followed 6,340 nonsmoking California Seventh-Day Adventists since 1977 for incidence of cancer and myocardial infarction, and development or increasing severity of respiratory diseases. No statistically significant associations were found between any of the disease outcomes studied and ambient air SO₂ concentrations. Another study investigating the effects of air pollution on respiratory health of more than 1,000 children living in four nonindustrial communities of the Netherlands also did not find any association between SO₂ at the level of 0.0149 mg/m³ in winter and respiratory symptoms and the alteration of pulmonary function (Hoek and Brunekreef, 1994). Similarly, another prospective cohort study by Dockery *et al.* demonstrated that there was a very weak association between mortality rate and SO₂, while respirable particles showed strong association with mortality rates (Dockery *et al.*, 1993a). There appears to be a threshold for relative risk of mortality at approximately 10 ppb (26.2 μ g/m³) of SO₂ (Dockery *et al.*, 1993a).

In Canada, a cross-sectional investigation was conducted to compare air pollution in 10 rural communities and the effects on childhood respiratory health (Stern *et al.*, 1994). While SO₂ levels were far below the Canadian Ambient Air Quality Objectives in all the communities (annual mean 0.4 to 2.0 ppb, or 1.0 to 5.5 μ g/m³), there were still observable decrements of lung function of children in association with increased ambient levels of ozone and SO₄⁼ particles, further suggesting that SO₂ may not be the major damaging agent in these communities.

The discrepancy between these studies may possibly lie in the differences in the populations selected (sensitive versus non-sensitive), or the ecological nature of some of these studies (namely key confounding variables are not necessarily measured). However, it should be noted that people spend a majority of their time indoors, and hence personal exposure is usually dominated by indoor exposure. It has been reported that the mean concentration of SO₂ in the personal total and indoor samples can be 5-fold lower than the concentration outdoors (Brauer *et al.*, 1989), due to the quick deposition of the gas on indoor surfaces. In the case of sensitive individuals, such as patients with respiratory and cardiovascular diseases, since they would be expected to spend more time indoors than do healthy individuals, the contribution of SO₂ to personal exposures would therefore be further reduced. On the other hand, the indoor

concentrations of $SO_4^{=}$ and NH_4^{+} have been found similar to those measured outdoors (Brauer *et al.*, 1989; Suh *et al.*, 1993), which may confound the outcomes. Thus, the differences in the population composition and in personal daily activities, when not controlled, may lead to potential biases and variable conclusions.

In addition, different results may also be related to the selection of statistical models. It has been reported that the significance of a pollutant predictor of daily mortality changes from model to model (Li and Roth, 1995; Kinney *et al.*, 1995). For example, recent analyses assessing the association of particulate matter, SO₂ and/or ozone pollution with daily mortality in Steubenville (Moolgavkar *et al.*, 1995b) and Philadelphia (Moolgavkar *et al.*, 1995a; Li and Roth, 1995), U.S., have demonstrated that the effect of particulate matter on daily mortality was substantially attenuated when SO₂ and ozone were simultaneously included in the regression, and vice versa, due to the correlations among these pollutants. As reported by Li and Roth (1995), each of the models has its strengths and weaknesses, and therefore, new approaches that include multiple pollutants and other covariates need to be explored.

3.2.2. Clinical data

Although there is no evidence of SO_2 toxicity in animal studies at the low concentrations encountered in ambient air, a few clinical studies have suggested that significant changes in pulmonary airway resistance may occur, at a concentration of 0.68 mg/m³ or lower, in sensitive subjects such as asthmatics, during mild to moderate exercise (Sheppard *et al.*, 1982; Kirkpatric *et al.*, 1982; Linn *et al.*, 1987; Heath *et al.*, 1994). To asthmatics or other individuals with already compromised pulmonary function, relatively small increases in airway resistance are of greater clinical significance than they are to "healthier" individuals.

Interactions of SO₂ with other pollutants have been examined in clinical studies. Preexposure to 0.12 ppm of ozone increased the sensitivity of asthmatic patients to SO₂, so that concentrations as low as 0.262 mg/m³ caused bronchoconstriction during moderate exercise (Koenig *et al.*, 1990). Pre-exposure to NO₂ (0.3 ppm), on the other hand, had no effect on the airway response to SO₂ in asthmatic patients (Rubenstein *et al.*, 1990).

3.2.3. Toxicological data

The toxicological effects of acute, subacute and chronic SO_2 exposure in animals have been well documented and have provided some evidence for the mechanism(s) of SO_2 toxicity.

Most studies conducted in recent years are at concentrations far in excess of those normally encountered in ambient air. Exposure to 0.815 to 4.077 mg/m³ of SO₂ *in vitro* for 30 to 120 minutes initiated the release of reactive oxygen-intermediates, which are the inducers of inflammatory cell accumulation, from pulmonary alveolar macrophages and peripheral blood mononuclear cells (Kienast *et al.*, 1994a). Exposure to 2.60 to 100.0 mg/m³ of SO₂ *in vitro* caused an impairment of mucociliary activity and ultrastructural alterations of guinea pig airways (Knorst *et al.*, 1994; Riechelmann *et al.*, 1995) and human airway ciliated cells (Kienast *et al.*, 1994b). Acute exposure to SO₂ at concentrations between 1.0 to 9.0 mg/m³ for 5 min caused an increased resistance of rabbit lung (Islam and Schlipkoter, 1990). Co-administration of SO₂ with sodium chloride droplets resulted in greater effects on lung function (Koenig *et al.*, 1983), which suggests that acidity rather than SO₂ may be the critical factor. At concentrations of SO₂ lower than 0.16 mg/m³, no toxic effects in animals have been observed.

3.2.4. Summary for sulphur dioxide - induced direct adverse health effects

The outcomes from epidemiological studies regarding the associations between ambient SO_2 levels and human health effects are very different. Overall data have shown that the associations of daily SO_2 variations with daily mortality and morbidity rates are weak, and are readily confounded by other pollutants. The differences in the population composition and in personal daily activities among the epidemiological investigations also may lead to different conclusions.

A few clinical studies have suggested that significant changes in pulmonary airway resistance may occur, at a concentration of 0.68 mg/m^3 or lower, in sensitive subjects such as asthmatics. Moreover, there is evidence that pre-exposure to 0.12 ppm of ozone can potentiate

the sensitivity of asthmatic patients to SO₂.

Toxicological studies have shown very low toxicity of SO_2 in inducing animal pulmonary injury. Most toxic effects of SO_2 are observed at concentrations far beyond those normally encountered in ambient air. The main mechanisms observed for SO_2 toxicity lie in initiating the release of reactive oxygen-intermediates from pulmonary alveolar macrophages and peripheral blood mononuclear cells, and impairing mucociliary activity of airway ciliated cells.

Table 3.1.1.	Summaries	of	recently	published	epidemiological	studies	relating	human	mortality	to	ambient	levels	of	
particulate m	atter												,	

PM Measure	Study Description	Results and Comments	References
(Concentrations)			
BS ^a	Daily total mortality was analyzed for associations	PM, SO ₂ and H ₂ SO ₄ were all indicated as	Thurston et al.,
$(mean = 90.1 \ \mu g/m^3, 24-h$	with BS, SO ₂ , and H ₂ SO ₄ in London, England, during	having significant associations with mortality	1989
average daily max. = 709	1963-1972 winters. Mean daily temperature and	(0, 1 day lag). The log of H_2SO_4	
μg/m ³)	relative humidity also were considered.	concentrations was more strongly associated	
		with raw total mortality in bivariate analyses	
		than is BS or SO ₂ . Temperature also was	
		correlated (negatively) with mortality, but with	
		a 2-day lag. Seasonality was addressed by	
		studying only winters and by applying a high-	
		pass filter to the series and analyzing residuals.	
BS	Daily total mortality in Athens, Greece, and	The daily number of deaths was positively and	Katsouyanni et
	surrounding boroughs during 1975-1987 was related	statistically significantly associated with all	<i>al.</i> , 1990a
	to BS, SO ₂ , NO ₂ , O ₃ and CO ₂ using multiple	pollutants, but the association was strongest	
	regression.	with BS.	
BS (annual mean range =	Mortality was studied for the period 1975-1982 in	Mortality was generally higher on high SO ₂	Katsouyanni et
· · · ·		• •	
			0.

· · ·			
51.6 to 73.3 μg/m ³ , max. daily = 790 μg/m ³)	athens, Greece. One hundred and ninety nine days with high SO ₂ (>150 μ g/m ³) were each matched on temperature, year, season, day of week, and holidays with two low SO ₂ days.	days, with the difference being most pronounced for respiratory conditions. Mortality by-cause comparisons was made between groups by analysis of variance by randomized blocks. BS levels for each group was not provided. BS was correlated with SO_2 at r = 0.73, but was not directly employed in the analysis. BS-SO ₂ confounding was not addressed, limiting interpretability of results.	<i>al.</i> , 1990b
KM ^b (mean = 25; SD = 11)	Shumway <i>et al.</i> 's 1970-1979 Los Angeles mortality dataset was analyzed using a high-pass filter to allow investigation of short-wave (acute) associations with environmental variables (by removing seasonality effects). Environmental variables were considered in regression analyses included temperature, relative humidity, extinction coefficient, KM, SO ₂ , NO ₂ , CO and O ₃ .	Analyses demonstrated significant associations between short-term variations in total mortality and pollution, after controlling for temperature. Day-of-week effects were found not to affect the relationships. The results demonstrated significant mortality associations with O ₃ lagged 1 day, and with temperature, NO ₂ , CO and KM. The latter three pollutants were highly correlated with each other, making it impossible to separately estimate particulate matter associations with mortality from motor vehicle related pollutant effects on	Kinney and Ozkaynak, 1991
			64

		daily mortality.		
TSP (mean = 87 μ g/m ³ ; 24-h average range: 5% to 95% tiles = 46 to 137 μ g/m ³ ,)	Total deaths in Detroit, MI, 1973-1982 were analyzed using Poisson methods. Environmental variables considered included TSP, SO ₂ , O ₃ , temperature, and dew point. Seasonality was controlled via multiple dummy weather and time variables.	Significant associations were reported between TSP and mortality in autoregressive Poisson models (RR ^c of 100 μ g/m ³ TSP = 1.06). However, most TSP data were estimated from visibility, which is best correlated with the fine aerosol (and especially sulphate) portion of the TSP. Thus, results suggest a fine particle	Schwartz, 1991	
TSP (mean = 77 μ g/m ³ ; max. = 380 μ g/m ³ ; 5% to 95% tiles = 37 to 132 μ g/m ³)	Total- and cause-specific daily mortality in Philadelphia, PA during 1973-1980 was related to daily TSP and SO ₂ (n = 2,700 days). No other pollutants were considered in the analysis. Poisson regression models, using GEE methods, included controls for year, season, temperature, and humidity. Autocorrelation was addressed via autoregressive terms in model.	association. Strongest associations were found with pollution on the same and prior days. Total mortality (mean = 48/day) was estimated to increase 7% (95% C.I. = 4 to 10%) for a 100 μ g/m ³ increase in TSP. Cause-specific effects of TSP were larger for COPD (+19%), pneumonia (+11%), and cardiovascular disease (+10%). People \geq 65 years had higher relative risk than younger people. SO ₂ associations were non-significant in simultaneous models with TSP, but correlations of their coefficients were not	Schwartz and Dockery, 1992a	
•			65	•

			• •
·	· · ·	reported.	
TSP	Daily total mortality in Steubenville, OH, between	In regressions controlling for season and	Schwartz and
$(mean = 111 \ \mu g/m^3; 24-h$	1974-1984 was related to TSP, SO ₂ , temperature, and	weather, previous day's TSP was a significant	Dockery, 1992b
average range: 10% to 90%	dew point. Poisson regression was employed,	predictor of daily mortality. SO ₂ was less	
tiles = 36 to 209 μ g/m ³)	because of very low death counts/day (mean = 3.1).	significant in regressions, becoming	
	Regressions were controlled for season by including	nonsignificant when entered simultaneously	
	dummy variables for winter and spring, and	with TSP. Autoregressive models gave similar	
•	autoregressive methods also were used to address any	results.	
	remaining autocorrelation.		
PM ₁₀	Total, respiratory, and cardiovascular mortality in	A significant positive association between	Pope et al., 1992
(mean = 47 μ g/m ³ ; 24-h	Utah County, UT, during 1985-1989 was related to 5-	total non-accidental mortality and PM ₁₀ was	
max. = $365 \mu g/m^3$; 5 day	day moving average PM ₁₀ , temperature, and	observed, the strongest association being with	
max. = 297 μ g/m ³)	humidity. Time trend and a random year terms also	the 5-day moving average of PM_{10} . The	
	were included in autoregressive Poisson models	association was largest for respiratory disease,	
	employed. Seasonality was not directly addressed in	the next largest for cardiovascular, and the	
	this basic model, but the addition of four seasonal	lowest for all others. Association was noted	
	dummy variables changed results little.	below 150 μ g/m ³ of PM ₁₀ . The possible	·
		influence of other pollutants was discussed,	
		but not directly addressed.	
PM ₁₀	Total mortality in St. Louis, MO, and	Statistically significant daily mortality	Dockery et al.,
• •			•
			66
			. 00
(St. Louis, MO:	Kingston/Harriman, TN (and surrounding counties),	associations were found with PM_{10} and $PM_{2.5}$	1992
--	---	---	---------------------------
mean = $28 \ \mu g/m^3$; 24-h max.	during September 1985 to August 1986 was related to	in St. Louis, but not with other pollutants. In	
$= 97 \ \mu g/m^3;$	PM_{10} , $PM_{2.5}$, SO_2 , NO_2 , O_3 , H^+ , temperature, dew	Kingston/Harriman, PM ₁₀ and PM _{2.5}	
Kingston/Harriman, TN:	point, and season using autoregressive Poisson	approached significance, while other	•
mean = $30 \mu g/m^3$; 24-h max.	models.	pollutants did not. Seasonality was reduced by	
$= 67 \ \mu g/m^3$)		season indicator, variables, but within season	
		long wave cycles was not directly addressed.	
		H ⁺ was not as important in associations with	×
		daily mortality as the mass concentrations of	
,. ·		particles.	-
BS	Daily total mortality in Athens, Greece, during July,	Mean daily temperature above 30°C was	Katsouyanni et
$(range = 50 \text{ to } 250 \mu\text{g/m}^3)$	1987 (when a major "heat wave" occurred) was	found to be significantly associated with	al., 1993
	compared to the deaths in July during the previous 6	mortality. The main effects of all air	
	years. Environmental variables considered included:	pollutants were not significant, but the	
	temperature, discomfort index, BS, and SO ₂ .	interaction between high air pollution and	
	Confounding effects of day-of-week, month, and	temperature were significant for SO ₂ and	
·	long-term trends were addressed via duminy variables	suggestive (p< 0.20) for ozone and BS.	
	in OLS regression models.		
SP ^d	Daily total mortality in Erfurt, East Germany, during	Both SO ₂ and SP were found to be	Spix <i>et al.</i> , 1993
$(range = 10 \text{ to } 650 \mu\text{g/m}^3)$	1980-1989 (median = $6/day$) was related to SO ₂ , SP,	significantly associated with increased	
	temperature, relative humidity, and precipitation. SP	mortality. In a simultaneous regression, SP	
			l [,] ' .
:			6
			0

· .			·
· .		· · · · · · · · · · · · · · · · · · ·	
	measurements were made only 1988-1989. Autoregressive Poisson models employed (due to low deaths/day) also included indicator variables for extreme temperatures and adjustments for trend, season, and influenza epidemics.	remained significant while SO_2 did not. Correlations of these coefficients were not provided, however. Pollution effect size was similar to that for meteorology.	
PM_{10} (mean = 48 µg/m ³ ; 24-h max. = 163 µg/m ³)	Total daily mortality in Birmingham, AL, from August 1985 to December 1988 was related to PM_{10} , temperature, and dew point. Poisson models employed addressed seasonal long wave influences by the inclusion of 24 sine and cosine terms having periods ranging from 1 month to 2 years. Autoregressive linear models also were applied.	Significant associations were found between total mortality and prior day's PM_{10} . Various models gave similar results, as did eliminating all days with $PM_{10} > 150 \ \mu g/m^3$. However, the possible role of other pollutants was not evaluated.	Schwartz, 1993
BS (mean = 90.1 μg/m ³ ; range = 0 to 350 μg/m ³)	Further analysis of London, England data (1965- 1972) was examined by Thurston et al. (1989). Spectral and advanced time series methods was applied, including pre-whitening and autoregressive moving average methods. Environmental variables considered included BS, SO ₂ , H ₂ SO ₄ , temperature, and relative humidity.	Estimated pollution mean effect was 2 to 7% of all London winter deaths (mean = 281/day). However, the various pollutants' effects could not be separated. Independent model test on the 1962 episode confirmed the appropriateness of such methods. Long-wave was addressed by considering winters only and by pre-whitening the data.	Ito <i>et al.</i> , 1993
			68

BS	Daily total mortality in Athens, Greece, during 1984-	BS, SO ₂ , and CO were all found to be	Touloumi et al.,
$(mean = 83 \ \mu g/m^3; range =$	1988 (mean =38/day) was related to BS, SO ₂ , CO,	individually significantly associated with	1994
18 to 358 μ g/m ³)	temperature, and relative humidity. Autoregressive	increased mortality. In simultaneous	
	OLS models employed also included indicator	regressions, the size of all coefficients	
	variables for season, day of week, and year.	declined, with SO ₂ still significant and BS	
		approaching significance. CO was no longer	
		significant, but was highly correlated with BS	
• ,	-	(r = 0.74) in the data.	
ГЅР	Daily total and cause-specific mortality in Cincinnati,	TSP was significantly associated with	Schwartz, 1994d
$(\text{mean} = 52 \ \mu\text{g/m}^3; \text{SD} =$	OH, (mean total = 21/day) during 197.7-1982 was	increased risk of total mortality. RR was	
19.6 µg/m ³)	related to TSP, temperature, and dew point. Poisson	higher for the elderly and for those dying of	
-	model was employed with dummy variables for each	pneumonia and cardiovascular diseases.	
	month and for eight (unspecified) categories of	However, the analysis failed to consider other	
	temperature and dew point. Linear and quadratic	pollutants, and there remains the potential for	
	time trend terms also were included. Spline and	within-month, long-wave confoundings.	
•	nonparametric models also were applied.		
· · ·	Autocorrelation was not directly addressed.		· .
ГSP	Daily deaths during 1989 in two residential areas in	Significant mortality associations were found	Xu et al., 1994
$(mean = 375 \ \mu g/m^3, max. =$	Beijing, China, (mean total = 21.6/day) was related to	for ln (SO ₂) and ln (TSP). Associations were	
1003 µg/m ³)	TSP and SO ₂ using Poisson methods. Controlling	strongest for chronic respiratory diseases. In	
	indicator variables for quintiles of temperature and	simultaneous regressions, SO ₂ was significant,	

.

.

-

ł

69[°]

	humidity, as well as for Sunday also were included. Long-wave confounding and autocorrelation were not directly addressed. However, season-specific results presented.	but not TSP. However, the two pollutants were highly correlated with each other (r = 0.6), as well as with temperature. In season- specific analyses, both pollutants were significant in summer, but only SO ₂ in winter.	
PM_{10} (mean = 82.4 µg/m ³ ; 24-h average SE = 38.9 µg/m ³)	Total mortality among the elderly (≥ 65 years old) (mean = 63/day) in Sâo Paulo, Brazil during May 1990 through April 1991 was related to two day average of PM ₁₀ , SO ₂ , NO _x , O ₃ , CO, temperature, humidity, and day of week. Season was addressed by including seasonal and monthly dummy variables. Temperature was addressed using three discrete dummy variables.	Significant associations were found between total elderly deaths and all pollutants considered. In a simultaneous regression, PM_{10} was the only pollutant which remained significant. The PM_{10} coefficient actually increased in this regression, suggesting interpollutant interactions. Correlations of the pollutant coefficients were not provided.	Saldiva <i>et al.,</i> 1994
PM_{10} (mean = 40 µg/m ³ ; 24-h max. = 96 µg/m ³)	Total, cardiovascular, cancer, and respiratory mortality in Toronto, Canada, during 1972-1990 was related to PM_{10} , TSP, $SO_4^=$, CO, O ₃ temperature and relative humidity. Nineteen-day moving average filtered data were used in OLS regressions. Sixty- three hundred and three PM_{10} values were estimated based on TSP, $SO_4^=$, COH, visibility and temperature data, using model developed from 200 PM ₁₀ sampling	After controlling for weather and long wave influences, significant associations were found between all pollutants considered and mortality. However, it was not possible to separate the PM_{10} association from other particulate measures considered ($PM_{2.5}$, TSP and COH). Simultaneous PM and O ₃ regressions gave significant coefficients for	Ozkaynak <i>et al.,</i> 1995

	days during the period.	each.	
TSP	Age and cause-specific daily mortality in	TSP effect was found only in winter season.	Li and Roth,
$(mean = 69 \mu g/m^3; 5\% \text{ to})$	Philadelphia, PA during 1973 and 1990 was related to	TSP was not significant in by-cause analyses	1995
95% tiles = 32 to 120	daily TSP, SO ₂ , and O ₃ . Other environmental	of those <15 or \ge 65 years of age. TSP effects	
$\mu g/m^3$)	variables included were: temperature, barometric	were weakened by the addition of other	
	pressure, humidity, and precipitation. Various	pollutants (TSP-SO ₂ $r = 0.57$). However, the	
	models were employed, including Poisson and	inclusion of barometric pressure and	•
	autoregressive. Prefiltering methods also were	precipitation in these models may have acted	
· ·	applied to remove long-waves in data.	as surrogates for PM, potentially confounding	· ·
		results. Correlations between TSP and these	
· .		variables were not presented.	
TSP	Daily total mortality in Philadelphia during 1973-	When all three pollution covariates and	Moolgavkar <i>et</i>
(spring mean = 67 μ g/m ³ ,	1988 was investigated, and related to TSP, SO ₂ ,	weather were considered simultaneously in the	<i>al.</i> , 1995a
min. to max. = 16.5 - 338	ozone. Poisson regression and nonparametric	regression model, TSP was not significantly	
μ g/m ³ ; summer mean = 74	bootstrap and bias-corrected accelerated bootstrap	associated with mortality in any season.	
μ g/m ³ , min. to max. = 21.0 -	confidence intervals were used. Both methods	Ozone was associated with mortality in	
$210 \ \mu g/m^3$; fall mean = 64.9	yielded similar results. The effects of weather were	summer (RR = 1.15, 95% CI = 1.07-1.24),	
$\mu g/m^3$, min. to max. = 14.5 -	controlled by analyzing mortality separately for each	while SO ₂ was associated with mortality in	· · ·
215 μ g/m ³ ; winter mean =	season and including both pollution variables and	spring (RR1.19, 95% CI = 1.06-1.33), fall (RR	
66.3 μ g/m ³ , min. to max. =	quintiles of temperature in the regression models	= 1.14, 95% CI = 1.00-1.29) and winter (RR =	
19.3 - 205 μg/m ³)	simultaneously.	1.21, 95% CI = $1.09-1.35$). The pollutant	
1	1		
•			· .
			71

.

		covariates were highly correlated	
	· · · · · · · · · · · · · · · · · · ·		
TSP	Daily mortality in Steubenville, OH during 1974-	In single pollutant models, the TSP coefficient	Moolgavkar et
(mean = $113 \mu g/m^3$; 10% to	1984 was related to TSP, SO ₂ , temperature, and dew-	was the same as Schwartz and Dockery	al., 1995b
90% tiles = 38 to 212	point (to allow comparisons of results with Schwartz	(1992b), but TSP effects were found to be	
μg/m ³)	and Dockery, 1992b). Poisson method was	attenuated by SO_2 inclusion in the model. SO_2	
	employed. Analyses were done overall and by-	was also attenuated by the addition of TSP. It	
	season.	is concluded that TSP and SO ₂ effects cannot	
		be separated in this dataset. Intercorrelations	
		among these variables were not presented.	
PM ₁₀	Total mortality in Los Angeles, CA, during 1985-	Association between PM ₁₀ and mortality was	Kinney et al.,
$(mean = 58 \ \mu g/m^3; 24-h$	1990 were related to PM_{10} , O_3 , CO, temperature, and	found to be only mildly sensitive to modelling	1995
max. = 177 μ g/m ³)	relative humidity. Poisson models employed	method. CO also was individually significant.	
	addressed seasonal long-wave influences by including	The addition of either CO or O ₃ lowered the	
	multiple sine and cosine terms ranging from 1 month	significance of PM_{10} in model somewhat, but	
	to 2 years in periodicity. OLS and long linear models	the PM_{10} coefficient was not as affected,	
	also were tested. Winter and summer were analyzed	indicating minimal effects on the PM ₁₀	•
•	separately also.	association by other pollutants in this case.	
PM ₁₀	Total mortality in Los Agneles, CA and Chicago, IL	Average of multiple sites' PM_{10} was found to	Ito et al., 1995
$(mean = 38 \mu g/m^3, 24 - h)$	during 1985-1990 was related to PM ₁₀ , O ₃ , and	be significantly associated with mortality in	
max. =128 $\mu g/m^3$)	temperature. Analysis focused on importance of	each city after controlling for season,	

·	monitor choice to modelling results. Poisson models	temperature and O ₃ . Other pollutants and	
	used addressed seasonal long wave influences by	relative humidity were not considered.	
	including multiple sine/cosine terms ranging from 1	Individual sites' PM ₁₀ varied from non-	
	month to 2 years in periodicity.	significant to strongly significant. Also,	
		dividing the data by season diminished the	
		significance of the multi-site average PM_{10} in	
		mortality regressions. Both site selection and	
	· ·	sample size were concluded to influence	
		results.	
PM ₁₀	Total, respiratory, and cardiovascular daily	Significant association was found between	Ostro et al., 1995
$(mean = 115 \ \mu g/m^3; 24-h$	deaths/day (means = 55, 8, and 18, respectively) in	PM_{10} and daily mortality, even after	
max. = $367 \ \mu g/m^3$)	Santiago, Chili during 1989-1991 were related to	addressing potential confounders (e.g.,	· ·
	PM_{10} , O_3 , SO_2 , NO_2 , temperature and humidity.	weather), other pollutants, lag structure, and	
	Seasonal influences were addressed by various	outliers. Strongest associations were found for	
	methods, including seasonal stratification, the	respiratory deaths. SO_2 and NO_2 also were	
	inclusion of sine/cosine terms for 2.4, 3, 4, 6, and 12	significantly associated individually, but only	•••
*	month periods, prefiltering, and the use of a	PM ₁₀ remained significant when all were	
	nonparametric fit of temperature. Log of PM_{10} was	added simultaneously to the regression.	
	modeled using OLS with first order autoregressive	Correlations of the coefficients were not	
	terms.	reported.	
PM ₁₀	Total, respiratory, circulatory, and cancer mortality	Average and single site PM ₁₀ were significant	Styer et al., 1995
	1 .	1	1

(Cook County median = 37	were studied in Cook County, 1985-1990. Elderly,	predictions of PM ₁₀ in Cook County for total,	· · · · ·
$\mu g/m^3$; max. = 365 $\mu g/m^3$;	total by race and sex also were evaluated. Poisson	elderly, cancer, and elderly white mortality,	
Salt Lake County median =	regression with seasonal adjustments, meteorological	but marginal for respiratory, circulatory, and	
$35 \ \mu g/m^3$; max. = 487	variables, and pollen was tested. In Salt Lake	elderly black. PM ₁₀ was significantly	
$\mu g/m^3$)	County, total and elderly mortality. One daily station	associated with fall and spring mortality, but	
	in Cook County and two daily monitoring stations in	not with summer or winter mortality. No	
	Salt Lake County, plus multiple stations, were used.	significant effects were found in Salt Lake	
		County. No copollutants were reported.	
PM ₁₀	Reanalysis of Utah County mortality, 1985-1990, was	Variations in RR did not appear to be	Lyon et al., 1995
(variable by month and year)	conducted. Data were broken down by year, season	associated with high or low PM ₁₀ days. High	
	cause and place of death. PM_{10} was entered as	RR was found for cancer deaths, age < 10	
	dichotomous variable, less or greater than 50 μ g/m ³ .	years, at home. Highest RR was in spring.	
	No adjustment was made for copollutants or for	There was an increased RR for sudden infant	
	weather in Poisson regression, except for daily	death syndrome. Patterns appear noncausal.	
w	minimum temperature. Poisson regression was		
	employed without GEE.		
BS	Reanalysis of daily mortality in Greater London	Regression analyses showed strong	Lippmann and
	(1965-1972) was conducted by season, temperature	associations between daily mortality and the	Ito, 1995
· .	range, and ambient BS, H^{+} and SO ₂ concentrations. In	daily logs of the concentrations of H^+ and SO ₂ .	
	each season, the majority of days fell within one or	The association with BS was weaker.	
	two temperature ranges, within which the daily death	However, the intercorrelations between	
		I	
			74

	rates also fell within narrow ranges.	copollutants were not addressed.	
TSP (mean = 77.6-82.7	A cross-sectional study was conducted to analyze	$SO_4^{=}$ was consistently found to be a significant	Ozkaynak and
μg/m ³)	1980 U.S. vital statistics and the ambient	predictor of total mortality. Fine particle mass	Thurston, 1987
$SO_4^{=}$ (mean = 11.1 µg/m ³)	concentrations of TSP, $SO_4^{=}$, fine particles, and	coefficients were often found to be significant	· ·
Fine particles	inhalable particles. Multiple regression analyses were	in the mortality regressions. TSP and	
$(mean = 23 \ \mu g/m^3)$	used.	inhalable particles were not significant. Other	
Inhalable particles		potential confounders (occupation, sex,	
$(\text{mean} = 37.8 - 50.9 \ \mu\text{g/m}^3)$		smoking, O_3 , SO_2 , etc.) were not addressed.	~

^aBS, British smoke.

^bKM, carbonaceous particulate matter, a measure of particulate optical reflectance.

^cRR, relative risk.^dSP, suspended particles, a generic term for total suspended particles.

Table 3.1.2.Summaries of recently published epidemiological studies relating human daily hospital admissions to ambient levels of particulatematter

PM Measure (Concentrations)	Study Description	Results and Comments	References
SO ₄ =	Attendances at the emergency departments of 9 acute	There was little variation in pollution variables	Bates et al., 1990
(mean of the hourly max.:	care hospitals in Vancouver region from July 1, 1984	for each day of the week. There was a	
May - October $= 3.34 - 3.80$	to October 31, 1986, were recorded. Daily	significant variation in emergency room visits	
μg/m ³ ;	temperature, SO ₂ , NO ₂ , SO ₄ ⁼ , COH and ozone were	by day of the week. In summer, in 1-14 age	
November - April = 2.88 -	mornitored. Pearson correlation coefficients were	group, asthma visits were correlated with $SO_4^{=}$	
3.78 μg/m ³)	calculated between asthma visits and pollution	levels on lagged 24 hr. In 15-60 age group,	
	variables on the same day and lagged 24 and 48 hr,	total respiratory visits and asthma visits were	
Coefficient of haze (COH)	separately for the periods May-October, and	significantly correlated to $SO_4^{=}$ levels on the	
(mean of the hourly max.:	November-April.	same day and lagged 24 hr. In ≥ 61 age group,	
May - October = 0.319 -		$SO_4^{=}$ levels on lagged 24 and 48 hr were	
0.368; November - April =		correlated with asthma visits and respiratory	· ·
0.410 - 0.475)		visits. Ozone levels were correlated with total	
		visits, but not with respriatory and asthma	
		visits. In winter, $SO_4^{=}$ levels on lagged 24	
		and 48 hr were correlated with asthma and	
*		respiratory visits only in ≥ 61 age group. SO ₂	
		levels in summer and winter were also	

.: *

		correlated with respirtory visits.	
Black smoke	Emergency room admissions for chronic obstructive	SO ₂ , black smoke, CO, and NO ₂ were	Sunyer et al.,
(yearly mean 24-hr average	pulmonary disease (COPD) in Barcelona, Spain,	intercorrelated. After adjusting for	1991
= 72.9 μg/m ³ ; range 39-310	during 1985-1986, were assessed. Black smoke, SO ₂ ,	meteorologic and temporal variables, daily	
μg/m ³)	CO, NO ₂ , and O ₃ were measured. Autocorrelation	emergency room admissions for chronic	
	was controlled by transfer function modelling for 2-	obstructive pulmonary disease increased by	
	day lag minimum temperature, season, day of week	0.02 and 0.01 for $1 \ \mu g/m^3$ of SO ₂ and black	
· · · ·	and 1-day lag wind velocity. Autoregressive linear	smoke, respectively, and 0.11 for 1 mg/m ³ of	
	regression analysis was used.	CO.	
TSP, $SO_4^=$, and COH	Daily respiratory admissions in Southern Ontario	Weak but statistically significant associations	Lipfert and
(coefficient of haze, a	(1979-1985) was related to TSP, SO ₄ ⁻ , COH, SO ₂ ,	were found between respiratory hospital	Hammerstrom,
measure of fine black carbon	and O ₃ . Stepwise multiple regression was used to	admissions and $SO_4^{=}$, SO_2 and O_3 .	1992
particles)	examine the joint effects of copollutants and weather		
	variables.		
SO4 ⁼	Daily respiratory hospital admissions in Buffalo,	$SO_4^{=}$, H ⁺ , and O ₃ were significantly associated	Thurston <i>et al.</i> ,
$(mean = 6.9-9.3 \mu g/m^3,$	Albany and New York City, New York, during 1988-	with total respiratory and asthma admissions	1992
maximum = $26-42 \ \mu g/m^3$)	1989, were related to SO_4^{\ddagger} , H ⁺ , O ₃ and temperature	on the same day and/or on subsequent days in	
4 -	during June - August, 1988-1989. Hospital	Buffalo and New york City, especially in	
	admissions and environmental data were first	1988. Same-day bi-variate analysis showed	Å
	detrended to eliminated long-wave autocorrelations.	high intercorrelations among copollutants. No	

· · · ·			
· ·	Day-of-week effects were removed via regression.	simultaneous regression was done with multi-	
	Least squares regressions were conducted of daily	pollutants. O ₃ showed the highest mean	
	admissions on temperature and pollution.	effects estimates, while H^+ had the highest RR	
		estimates.	·.
PM10	Daily records of asthma emergency room visits were	The daily counts of emergency room visits for	Schwartz et al.,
$(mean = 29.6 \mu g/m^3; SD =$	compiled from 8 hospitals in the Seattle area during	persons under age 65 were significantly	1993
18 μ g/m ³ ; min. and max.	September 1, 1989 through September 30, 1990.	associated with PM ₁₀ exposure on the previous	
range = $6 - 103 \mu g/m^3$)	Daily PM ₁₀ , SO ₂ , and ozone were monitored. Poisson	day. The mean of the previous 4 days' PM_{10}	
	regressions were used and weather, season, time	was a better predictor. The relative risk for a	
	trends, age, hospital, and day of the week were	$30 \ \mu\text{g/m}^3$ increase in PM ₁₀ was 1.12 (95% CI	· · ·
	controlled.	1.04-1.20).	
Black smoke	Daily emergency room admissions for COPD in	The collinearity correlation coefficient	Sunyer et al.,
	Barcelona, Spain, during 1985-1989, were assessed.	between SO ₂ and black smoke was 0.7. For	1993
. · ·	Black smoke and SO ₂ were measured. Separate	SO ₂ , an increase of 25 μ g/m ³ produced	×
·	analyses were performed for winter and summer	adjusted changes of 6% and 9% in emergency	
	Autoregressive linear regression analysis was used,	admission for COPD in winter and summer,	
	and minimum temperature, a dummy variable for	respective. For black smoke, a similar change	
	Monday, and a dummy variable for the year 1987	was found in winter, but the change was	
	were included in the model. Ridge regressions were	smaller in summer.	· · /
	used to isolate the association between each air		
	pollutant and COPD emergencies, and to remove the		
.			· · ·
	· · ·	-	78

	influence of multicollinearity.		
$SO_4^=$ (mean = 3.1-8.2 µg/m ³)	Daily respiratory hospital admissions in Ontario, Canada, were analyzed for association with $SO_4^{=}$. Ozone was measured. Linear regression was used on filtered data to control temperature changes. 1-day lag generated best correlation.	Positive associations were found between respiratory admission and both O_3 and $SO_4^{=}$. O_3 accounted for 5.2% of additional respiratory admissions, and $SO_4^{=}$ accounted for 1% of excess respiratory admissions during May - August. Largest impact was seen on infants. Other pollutants were not in the model.	Burnett <i>et al.,</i> 1994
TSP (mean = $62-87 \ \mu g/m^3$) PM ₁₀ (mean = $30-39 \ \mu g/m^3$) PM _{2.5} (mean = $16-22 \ \mu g/m^3$) SO ₄ ⁼ (mean = $38-124 \ nmol/m^3$)	Daily respiratory admissions in Toronto, Canada, were analyzed. Co-pollutants (O ₃ , SO ₂ , NO ₂ , H ⁺) were measured. Simultaneous linear regression (included O ₃ and H ⁺ or SO ₄ ^{$=$} , or PM _{2.5} , or PM ₁₀ , or TSP) was used on filtered data. The effect of temperature was addressed.	Simultaneous regression showed that strongest associations were with O_3 and H^+ ; somewhat weaker with $SO_4^=$. No associations were found with SO_2 and NO_2 . Intercorrelations between copollutants except O_3 were not addressed.	Thurston <i>et al.,</i> 1994
PM_{10} (mean = 36 µg/m ³ , 10% to 90% tiles = 18-58 µg/m ³)	Respiratory hospital admissions of patients aged 65 y and older in Minneapolis-St. Paul, Minnesota, during 1986-1989 were analyzed. Daily air pollution data	An increase of 100 μ g/m ³ in daily PM ₁₀ had a RR = 1.17 (95% CI = 1.33-1.02) for pneumonia admissions, and a RR = 1.57 (95%)	Schwartz, 1994b
			. 79

	included O_3 and PM_{10} . Poisson regression analysis was used to control for time trend, seasonal fluctuations, and weather.	CI =2.06-1.20) for COPD admissions. An increase of 50 ppb in daily O ₃ had RR = 1.15 (95% CI = 1.36-0.97) for pneumonia admission.	
PM ₁₀ (mean = 45 μ g/m ³ , 10% to 90% tiles = 19-77 μ g/m ³)	Respiratory hospital admissions of patients aged 65 y and older in Birmingham, Alabama, during 1986- 1989 were analyzed. Daily air pollution data included O_3 and PM_{10} . Poisson regression analysis was used to control for time trend, seasonal fluctuations, and weather.	An increase of 100 μ g/m ³ in daily PM ₁₀ had a RR = 1.19 (95% CI = 1.07-1.32) for pneumonia admissions, and a RR = 1.277 (95% CI =1.08-1.50) for COPD admissions. An increase of 50 ppb in daily O ₃ with 2-day lag had RR = 1.14 (95% CI = 0.94-1.38) for pneumonia admission, and a RR= 1.17 (95% CI = 0.86-1.60) for 1-day lag COPD admissions.	Schwartz, 1994c
PM ₁₀ (May to October, 24-hr mean = 29.5 μ g/m ³ ; July and August, 24-hr mean = 31.5 μ g/m ³) SO ₄ ⁼ (May to October, 24-hr	Daily urgent respiratory admissions were related with PM_{10} , $SO_4^=$, and O_3 in Montreal, Canada, between 1984-1988. A high-pass filter was used to eliminate yearly seasonal trends in the data. Two time periods (May to October, and July through August) were examined separately. Pearson's R correlations were calculated between admission data and exposure levels on the same day and 1-4 day s prior to the day	Asthma admissions in May-October periods increased by 2.7% over mean levels for each $12 \ \mu g/m^3$ increase in PM ₁₀ 3-d prior to the admission. In July -August periods, respiratory non-asthma admissions increased by 9.6% over mean admission level when SO ₄ ⁼ was at or above 8.2 $\mu g/m^3$ (its 90th percentile) 4-d prior to the admission day.	Delfino <i>et al.,</i> 1994

.

mean = $4.2 \ \mu g/m^3$; July and	of admission. Co-regressions of O ₃ and PM were		
August 24-hr mean = 4.9	done. Autocorrelation was examined through lag 15		
μg/m ³)	days.		
SO₄ [−]	Daily cardiac and respiratory admissions to 168 acute	A 13 μ g/m ³ increase in SO ₄ ⁼ recorded on the	Burnett et al.,
April to September, 24-hr	care hospitals in Ontario, Canada, were related with	day prior to admission was associated with a	1995
mean = $3.0-7.7 \ \mu g/m^3$;	$SO_4^{=}$ and O_3 during 1983-1988. A 19-day linear filter	3.7% increase in respiratory admissions and a	
October to March 24-hr	was used to eliminate yearly seasonal trends in the	2.8% increase in cardiac admissions.	
mean = $2.0-4.7 \ \mu g/m^3$)	data. Two time periods (April to September, and	Admissions for cardiac diseases increased	
· · · ·	October to March) were examined separately. Rates	2.5% for those under 65 years and 3.5% for	•
	were adjusted for day-of-the-week effects and	those 65 years and older. After adjusting for	
	variation in admissions between hospitals. Pearson's	ambient temperature and O ₃ , increases in	
- · ·	R correlations were calculated between admission	respiratory admissions were 3.2% for April to	
•	data and exposure levels on the same day and 1-3 day	September, and 2.8% for October to March;	
	s prior to the day of admission. Co-regressions of O_3	increases in cardiac admissions were 3.4% for	
· · · · ·	and PM were done.	April to September, and 3.4% for October to	
		March.	•
Soiling index (COH)	Hospital admissions for respiratory diseases during	All the environmental variables were	Burnett et al.,
	April 1, 1981 to December 31, 1991, were	positively associated with respiratory	1995
	investigated for 16 cities across Canada. Daily	hospitalizations.	
	ozone, SO2, NO2, CO, and soiling index (COH) were		:
	recorded. COH is correlated with airborne particles.		

	•	· · ·	•
:	The multivariate random effects relative risk		
	regression model was used to relate the environmental		
	variables to the daily respiratory admissions. A 19-		
	day weighted moving regression filter was employed		•
	to remove seasonal patterns from the data.		-
PM ₁₀	Daily counts of hospital admissions for respiratory	PM ₁₀ levels were associated with respiratory	Schwartz, 1995
(mean in New Haven = 41	diseases were constructed for persons aged ≥65 years	hospital admissions of the elderly ($RR = 1.06$	
µg/m ³ ; 10% to 90% tiles =	in New Haven, Connecticut, and Tacoma,	with 95% CI 1.00-1.13 in New Haven, and	
19 to 67 μg/m ³ ;	Washington, during January 1, 1988 to December 31,	1.10 with 95% CI 1.03-1.17 in Tacoma, for a	
mean in Tacoma = 37	1990. Daily SO ₂ , PM_{10} and ozone were monitored.	50 μ g/m ³ increase in PM ₁₀). The PM ₁₀	
μ g/m ³ ; 10% to 90% tiles = \cdot	Daily respiratory admission counts were regressed on	associations were little changed by controlling	
14 to 67 μg/m ³)	temperature, humidity, day of the week, and air	for ozone or SO_2 . Levels of SO_2 and ozone	
	pollutants. A 19 day weighted moving regression	were also associated with respiratory	
	filter was used to remove all seasonal and subseasonal	admission independently.	
	patterns from the data. Each pollutant was first		
	examined individually and then multiple pollutant		
	models were fitted.		
PM ₁₀	The associations between air pollution and daily	After controlling for seasonal and other long-	Schwartz and
$(mean = 48 \ \mu g/m^3; 10\% to$	cardiovascular hospital admissions for elderly	term temporal trends, temperature, and dew	morris, 1995
90% tiles = 22 to 82 μ g/m ³)	patients (aged 65 years and older) were examined in	point temperature, PM_{10} was associated with	
	Detroit, Michigan, 1986-1989. PM ₁₀ , O ₃ , SO ₂ , CO	daily admissions for ischemic heart disease	

· ·	and weather data were monitored. Dummy variables	(RR=1.018, 95% CI 1.005-1.032 for an	
	for each of the 48 months and each day of the week,	increase of PM_{10} 32 $\mu g/m^3$) and with heart	
	in the study period, were used to control seasonal and	failure admissions (RR=1.024, 95% CI 1.004-	
	weather variations in illness rates. A linear and	1.044). SO ₂ , CO and O ₃ made no independent	
	quadratic time term was included to capture the long-	contribution to ischemic hcart disease	
	term temporal trends in hospitalization rates.	admissions. CO also showed an independent	、
	Autoregression was tested by examining the previous	association with heart failure admission	
	days' admissions, up to a lag of 3 days. Poisson	(RR=1.022, 95% CI 1.010-1.034 for a 1.28	
	regression was employed to test the association.	ppm increase in CO).	
	Two-pollutant regression was tested to determine the		
	independent contributions.		

PM Measure (Concentrations)	Study Description	Results and Comments	References
PM_{10} (yearly mean 24-hr average = 46 µg/m ³ ; range = 11-195 µg/m ³)	Upper and lower respiratory symptoms and medication use of healthy grades 5 and 6 students and asthmatics of 8-72 yr of age were examined, in Utah Valley. PM_{10} , H^+ , SO_2 , NO_2 , and O_3 were measured. Fixed effects logistic regression was used for the relation between same day PM_{10} levels and symptoms and medication use, and for controlling low temperature.	H^+ , SO ₂ , NO ₂ , and O ₃ were well below the standards. Elevated levels of PM ₁₀ were associated with increases in reported symptoms of respiratory disease and use of asthma medication. Little or no strong particle acidity was present.	Pope <i>et al.</i> , 1991
TSP (yearly median = 17-56 $\mu g/m^3$; 10% tiles = 5-34 $\mu g/m^3$, and 90% tiles = 41- 118 $\mu g/m^3$)	Children's croup symptoms and obstructive bronchitis in 5 German cities were examined. Daily TSP, SO ₂ , and NO ₂ were monitored. Autoregressive Poisson regression using GEE was applied to examine the joint effects of copollutants and weather variables. One and two days lag between exposure and response was studied.	An increase in TSP levels from $10 \ \mu g/m^3$ to 70 $\ \mu g/m^3$ was associated with a 27% increase in cases of croup; the same increase in NO ₂ levels resulted in a 28% increase in cases of croup. No pollutant was associated with daily cases of obstructive bronchitis. Symptoms were predominantly found in 1-2 years of age.	Schwartz <i>et al.,</i> 1991
$PM_{2.5}$ (mean = 21.97 µg/m ³ , range	A panel of 207 asthmatics were studied for the recorded respiratory symptoms and frequency of	Airborne H^+ was significantly associated with cough and shortness of breath of asthmatic	Ostro et al., 1991

Table 3.1.3. Summaries of recently published epidemiological studies relating human respiratory symptoms to ambient levels of particulate matter

$= 0.51-73.08 \ \mu g/m^3)$	medication use, in Denver, in the winter of 1987-	patients. Cough was also associated with	
	1988. Daily $PM_{2.5}$, H^+ , $SO_4^=$, HNO_3 , and nitrates	$PM_{2.5}$, and shortness of breath with $SO_4^{=}$.	
	were monitored. Autoregressive logistic regression	HNO ₃ and nitrates were not significantly	
	was used to analyze which air pollutants were	associated with respiratory symptoms.	· · ·
•	associated with health outcomes. Minimum daily		
	temperature, daily use of a gas stove, day of survey,		
	and day of week were included in the regression.		
	Autocorrelation was corrected.		
PM ₁₀	Symptomatic and asymptomatic school children of	Associations between the incidence of	Pope and
(mean = 76 μ g/m ³ , range =	grades 5 and 6 were assessed for upper and lower	respiratory symptoms, especially cough, and	Dockery, 1992
$7-251 \ \mu g/m^3$)	respiratory symptoms and cough during the winter of	PM ₁₀ pollution were observed for both	
	1990-1991, in Utah Valley. PM_{10} , SO_2 , and H^+ were	symptomatic and asymptomatic children. The	
	monitored. Autoregressive logistic regression using	association was strongest for the symptomatic	
	GEE was applied to analyze the association of	sample. Respiratory symptoms were more	
	respiratory symptoms with PM_{10} and low temperature.	closely associated with 5-day moving-average	
· .		PM ₁₀ levels than with concurrent-day levels.	
		The association was also observed at PM ₁₀	
· · · ·		levels below the 24-hr standard of 150 μ g/m ³ .	
TSP	A diary study of 625 Swiss children aged 0-5 y was	The 6-week average TSP was significantly	Braun-Fahrlander
(rural area mean = 35-40	conducted in two cities in Switzerland during 1985-	associated with incidence of coughing	et al., 1992
μ g/m ³ ; suburbs mean = 40-	1986. Incidence and duration of symptom episodes	episodes, and marginally significant as a	
			•

45 μ g/m ³ ; cities mean = 50-	were examined separately. Daily air pollution data	predictor of upper respiratory episodes. NO ₂	
55 μg/m ³)	included TSP, SO ₂ , NO ₂ and O ₃ in Switzerland.	measured outdoors but not indoors was	
	Logistic regression analysis was used to control for	associated with the duration of all symptoms.	
	time trend, seasonal fluctuations, and weather.	TSP was a more significant predictor of	
		duration of all symptoms than NO ₂ .	
СОН	Daily incidence of upper and lower respiratory	A significant association between the	Ostro et al., 1993
(mean = 12 per 100 ft, range	symptoms of non-smokers were studied in south	incidence of lower respiratory tract symptoms	
= 4-26 per 100 ft)	California between 1978-1979. SO ₄ ⁼ , coefficient of	and $SO_4^{=}$ levels (OR = 1.30, 95% CI 1.09-	
	haze (COH), O_3 , SO ₂ , and NO ₂ were monitored. A	1.54, for a $10-\mu g/m^3$ increase), 1-h daily	
$SO_4^{=}$	logistic regression model was used to examine the	maximum O ₃ levels (OR = 1.22, 95% CI 1.11-	
(mean = $8 \mu g/m^3$, range = 2-	association between particle pollution and symptoms.	1.34 for a 10 ppm increase), 7-h average O_3	
37 μg/m³)	Day of study, maximum daily temperature, and a gas	levels (OR = $1.32, 95\%$ CI $1.14-1.52$). No	
	stove at home were included in the regression.	association was found with COH.	
PM ₁₀	A diary was used to record acute respiratory	There was a consistent positive association	Roemer et al.,
(6 days above 110 µg/m ³ , 1	symptoms and medication use of children (6-12 years	between PM ₁₀ , black smoke, and SO ₂ with the	1993
day above 150 µg/m ³)	old) with chronic respiratory symptoms, in the winter	prevalence of wheeze and bronchodilator use.	
	of 1990-1991, in the Netherlands. PM ₁₀ , SO ₂ , NO ₂ ,		
	and black smoke were monitored. Autoregressive		
	logistic regression was used.		
	Autocorrelation was corrected.		
· · · ·			

PM ₁₀	Respiratory symptoms were examined among white	SO ₄ ⁼ was associated with increased reporting	Dockery et al.,	
$(\text{mean} = 20.1 - 28.1 \ \mu\text{g/m}^3)$	children aged 8-12 years from 24 communities in the	of bronchitis (OR = 1.65, 96% CI 1.12-2.42).	1993b	
•	U.S.A. and Canada. PM_{10} , $PM_{2.1}$, $SO_4^=$, H^+ , SO_2 , and	Children living in the community with the		
PM _{2.1}	O ₃ were monitored. A two-stage logistic regression	highest levels of particle strong acidity were		
$(mean = 7.3 - 17.2 \ \mu g/m^3)$	model was used. First, a city-specific logistic	significantly more likely to report having had		
• •	regression model for the respiratory symptoms was fit	at least one episode of bronchitis in the past		
SO ₄ ⁼	to the data, and the adjusted logits were calculated	year compared to children living in the least		
$(\text{mean} = 12-67.3 \mu\text{g/m}^3)$	controlling for sex, history of allergies, parental	polluted community (OR = 1.66, 95% CI		
. ·	history of asthma, parental education and current	1.11-2.48). No other respiratory symptoms		
	smoking in the home. The adjusted logits were then	were significantly increased in association		
	regressed against the city-specific air pollution	with any of the air pollutants of interest. No		
	measurements. The regression coefficients were	sensitive subgroups were identified.		
	expressed as odds ratios.			
PM ₁₀	A daily diary of upper and lower respiratory	A change in 24-h PM ₁₀ concentration from 20	Schwartz et al.,	-
(median = $30 \mu g/m^3$, 10%	symptoms was collected from the parents of school	to 50 μ g/m ³ was associated with a relative	1994	
tile = $30 \mu g/m^3$, 90% tile	children in six U.S. cities, between April and August,	odds of 1.53 (95% CI 1.2-1.95) for the		
$=53 \mu g/m^3$)	1984-1985. PM ₁₀ , PM _{2.5} , SO ₂ , NO ₂ , O ₃ , SO ₄ ⁼ , and H ⁺	incidence of lower respiratory symptoms, a		
	were monitored. Autoregressive logistic regression	relative odds of 1.22 (95% CI 1.03-1.45) for		
PM _{2.5}	using GEE was applied.	the incidence of coughing, and a relative odds		
$(median = 18 \ \mu g/m^3, 10\%)$		of 1.22 (95% CI 0.98-1.52) for the incidence		
tile 7 μ g/m ³ , 90% tile = 37		of upper respiratory symptoms. There was no		

Ť,

:

87

μg/m [°])		evidence that other measures of particulate pollution were preferable to PM_{10} in	
		predicting incidence of respiratory symptoms.	
		Significant associations were found between SO_2 or O_3 and incidence of coughing, and	
		between SO_2 and incidence of lower respiratory symptoms.	
PM ₁₀	A daily diary of acute respiratory symptoms was	No association of the measured pollutants	Hoek and
(mean = 44.9 μ g/m ³ ; range =	collected from 7 to 11-year-old children during three	with daily incidence and prevalence of acute	Brunekreef, 1994
14.1-126.1 μg/m ³)	consecutive winters in the Netherlands. PM_{10} , $SO_4^{=}$,	respiratory symptoms was found. H ⁺ level	
	NO_2 , SO_2 , nitrates, gaseous nitrous acid, and H^+ were	was low.	
$SO_4^{=}$	monitored. Logistic regression was used. Day of	· · ·	
$(mean = 6.7 \ \mu g/m^3; range =$	study and minimum temperature were included in the		
0-29.7 μg/m ³)	regression models. Pre-whitening was performed to	· · · · · · · · · · · · · · · · · · ·	
	remove autocorrelation. Cross-correlation function		
	was calculated to identify the most relevant lag between air pollution and symptom prevalence.		· ·
PM ₁₀	In this cross-sectional study, respiratory symptoms	No significant regional differences were	Stern et al., 1994
(annual Ontario mean = 23.0	and illness history were examined among children	observed in rates of chronic cough or phlegm,	
μ g/m ³ , 90% tile = 39.0	from 5 ontario and 5 Saskatchewan communities.	persistent wheeze, current asthma, bronchitis	
µg/m ³ ; Saskatchewan mean	PM_{10} . $SO_4^{=}$, nitrates, O ₃ , SO ₂ , and NO ₂ were	in the past year, or any chest illness that kept	
II		I	۱ ۱

$= 18.0 \mu\text{g/m}^3, 90\% \text{ tile} =$	monitored. Odds ratios were calculated and adjusted	the child at home for 3 or more consecutive	
$37.0 \mu g/m^3$)	for sex, parental smoking, parental education, and gas	days during the previous year.	
	cooking.		-
SO ₄ ⁼			·
(annual Ontario mean = 6.6			
μ g/m ³ , 90% tile = 11.5	· · ·		
µg/m ³ ; Saskatchewan mean			
$= 1.9 \ \mu g/m^3$, 90% tile $= 3.0$			-
$\mu g/m^3$)			
PM ₁₀	The daily presence of cold, cough, or wheeze	A 12-hr exposure to a 125-nmol/m ³ increase	Neas et al., 1995
$(12 \text{ hr mean} = 35.6 \mu\text{g/m}^3;$	symptoms of children during the summer of 1990	in total $SO_4^{=}$ was associated with increased	
max. = $83.4 \ \mu g/m^3$)	were recorded in Uniontown, Pennsylvania. Daily	cough incidence (OR = 1.64, 95% CI 1.08-	
PM _{2.5}	SO ₂ , PM ₁₀ , PM _{2.5} , total SO ₄ ^{$=$} , particle-strong acidity,	2.5). A 12-hr exposure to a 125 nmol/m^3	
(12 hr mean = 24.5 μ g/m ³ ;	ozone and temperature were measured. An	increment in particle-strong acidity was	
max. = $88.1 \mu g/m^3$)	autoregressive logistic regression model was used.	associated with increased cough incidence	
Total SO ₄ ⁼	The covariates included a linear trend parameter, a	(OR = 1.6, 95% CI 1.1-2.4). A 12-hr	
(12 hr mean = 147.0)	binary indicator of whether the observation point was	exposure to a 15 μ g/m ³ increase in PM _{2.5} was	
$nmol/m^{3}; max. = 515$	in the morning or evening, and the average	associated with increased cough incidence	
nmol/m ³)	temperature and pollutant concentration of a single	(OR = 1.71, 95% CI 1.16-2.5). SO ₂ and O ₃	
Particle-strong acidity	pollutant for the 12-hr monitoring period preceding	had similar effect.	

$max = 676.4 \text{ nmol/m}^3$	estimates for daytime and overnight exposures	· · · · · · · · · · · · · · · · · · ·	
	estimates for daytime and overlight exposures.		
Estimates of PM ₁₀ from TSP	A nonsmoking California Seventh-day Adventist	The RR associated with 1000 hr/year	Abbey et al.,
mornitored daily	population was followed up between 1977 and 1987	exposure to concentrations of PM ₁₀ that	1995a
	for their development of respiratory symptoms. TSP	exceeded 100 μ g/m ³ for development of	
	was mornitored from 1973 to 1987 statewide. Since	airway obstructive disease was 1.17 (95% CI	
•	PM10 was not mornitored statewide before 1985, the	1.02-1.33); RR for development of chronic	
	concentration was estimated from the levels of TSP.	productive cough was 1.21 (95% CI 1.02-	
· · ·	Multivariate statistical models were developed for	1.44); RR for development of asthma was	
	each of the three diseases-air obstructive disease,	1.30 (95% CI 0.97-1.73). Stronger	
	chronic bronchitis, and asthma. New cases of disease	associations were observed for those who	
	and persistent prevalence were analyzed by multiple	were exposed occupationally to dusts and	
· · ·	logistic regression models, and changes in symptoms	fumes. The RR of developing airway	
	severity score were analyzed by multiple linear	obstructive disease as an adult for those who	
	regressions.	had airway obstructive disease as a child was	
		1.66 (95% CI 1.15-2.33).	
PMin	A daily diary of acute respiratory symptoms was	No association was found between daily	Hoek and
$(daily mean = 26.48 y/m^3)$	collected from 7 to 11 year old shildren during aming	incidence and providence of south reconstructory	Brunckreef 1005
$(any mean = 50-40 \mu g/m^2)$	conceled from 7 to 11-year-old children during spring	mendence and prevalence of acute respiratory	Didlickicci, 1995
range =11-136 μ g/m ²)	and summer of 1989 in the Netherlands. PM_{10} , SO_4^{\pm} ,	symptoms and same-day or previous day	
	O_3 , NO_2 , SO_2 , nitrates, gaseous nitrous acid, and H^+	concentrations of the measured pollutants. H^+	
SO ₄ ⁼	were monitored. Autoregressive logistic regression	level was low.	-

.

(daily mean = 5-7 μ g/m ³ ;	was used. Cross-correlation function was calculated	
range = $0-27 \ \mu g/m^3$)	to identify the most relevant lag between air pollution	
•	and symptom prevalence. Pre-whitening was	
	performed to remove autocorrelation.	

Table 3.1.4. Summaries of recently published epidemiological studies relating changes in human pulmonary function to ambient levels of particulate matter

PM Measure (Concentrations)	Study Description	Results and Comments	References
TSP (about one half of the locations in the sample had TSP levels that exceeded 80 μg/m ³)	A cross-sectional study was designed to investigate the relationship between lung function and quarterly average levels of TSP for adults in 49 of the locations where the First National Health and Nutrition Examination Survey was conducted in the United States. A multivariate regression was conducted including physiological variabels, occupational dust expsoure and TSP against lung function. A graphical technique was used to investigate the shape of the relationship between TSP levels and lung function.	Statistically significant relationships were observed between TSP levels and FVC and $FEV_{1.0}$. An one standard deviation increase (about 34 µg/m ³) in TSP from the sample mean of 87 µg/m ³ was associated with an average decrease in FVC of 2.25%. There was an apparent threshold level (approximately 60 µg/m ³ quarterly average) of TSP below which a relationship with lung function ceases to exist.	Chestnut <i>et al.</i> , 1991
PM ₁₀ (yearly mean 24-hr average = 46 μ g/m ³ ; range = 11-195 μ g/m ³)	Lung function of healthy grades 5 and 6 students and asthmatics of 8-72 y of age were examined, in Utah Valley. PM_{10} , H^+ , SO_2 , NO_2 , and O_3 were measured. Single period and polynomial-distributed lag models were estimated by regressing $\triangle PEF$ on daily PM_{10} levels, low temperature, and a linear time trend	H^+ , SO ₂ , NO ₂ , and O ₃ were well below the standards. Elevated55 PM ₁₀ levels of 150 μ g/m ³ were associated with a 3-6% decline in PEF. Current day and daily lagged associations between PM ₁₀ levels and PEF were observed. Little or no strong particle	Pope <i>et al.</i> , 1991

	variable. Weighted least-squares regression was used. Autocorrelation was corrected.	acidity was present.	
PM ₁₀ , PM _{2.5}	Asthmatic and non-asthmatic children recorded the	In asthmatic children (aged 6-15 years),	Quackenboss et
(indoor and outdoor	total quantity of time spent in 5 locations in Tucson,	significant reduction of morning PEF was	al., 1991
personal exposure)	Arizona, in a daily dairy. PM_{10} , $PM_{2.5}$ and NO_2 were	associated with PM. Significant reduction of	
	monitored indoor and outdoor. A daily total personal	PEF was also linked to NO ₂ level. No effect	
· · · ·	exposure index was estimated based on estimated or	was found in non-asthmatic children.	
	measured concentrations in 5 locations, weighted by	· ·	
· · .	the time spent there. Lung function was measured.		
	Random effects linear model was used to analyze the		
•	relation between PEF and exposure.		
TSP	The lung function of adults was measured in	A per-unit increase in ln TSP ($\mu g/m^3$) could	Xu et al., 1991
(annual mean:	residential, suburban and industrial areas in Beijing,	result in a 131.4 ml reduction in $FEV_{1.0}$ and a	
in residential area = 389	China, during August 1986. The concentrations of	478.7 ml reduction in FVC. SO_2 and heating	
μ g/m ³ ; in suburban area =	SO ₂ and TSP were measured. Multiple linear	with coal were also associated with a reduced	
261 μ g/m ³ ; in industrial area	regression techniques were used, and age, sex,	$FEV_{1.0}$ and FVC.	
$= 449 \ \mu g/m^3$)	education, passive smoking, pollutant levels, coal		
· .	stove heating, and lung fuction were included.		
PM ₁₀	Symptomatic and asymptomatic school children of	Relatively small but statistically significant	Pope and
(mean = 76 μ g/m ³ , range =	grades 5 and 6 were assessed for lung function	negative associations between PEF and PM_{10}	Dockery, 1992
		•	
	· · · .		
	· · · · · · · · · · · · · · · · · · ·		93

7-251 μg/m ³)	changes during the winter of 1990-1991, in Utah	pollution were observed for both symptomatic		
	Valley. PM_{10} , SO_2 , and H^+ were monitored. Single	and asymptomatic children. The association		
	period and polynomial-distributed lag models were	was strongest for the symptomatic sample.		
	estimated by regressing $\triangle PEF$ on daily PM ₁₀ levels,	PEF changes were more close associated with		
	low temperature, and a linear time trend variable.	5-day moving-average PM_{10} levels than with		
	Weighted least-squares regression was used.	concurrent-day levels. The association was		
	Autocorrelation was corrected.	also observed at PM ₁₀ levels below the 24-hr		
		standard of 150 µg/m ³ .		
PM ₁₀	The relation between lung function and PM ₁₀ was	A small but statistically significant inverse	Pope and Kanner,	
(mean = 55 μ g/m ³ ,	assessed among smokers with mild to moderate	association was observed between lung	1993	•
range = $1 - 181 \mu g/m^3$)	COPD in Utah Valley. PM ₁₀ and daily low	function ($\triangle FEV_1$ and $\triangle FEV_1/FVC$) and	· ·	
	temperatures were monitored. Linear regression was	changes in PM ₁₀ . An increase in 100 μ g/m ³ of		
	used.	PM_{10} was associated with a marginal (2%)	.*	
		decline in FEV_1 . The effect of PM_{10} was		
		greater for men than for women. The effect		•
	· · ·	was nearly the same for those with airway		
		hyperresponsiveness versus those without.		
PM _{2.5}	Lung function was measured among elementary	An increase in PM _{2.5} levels was associated	Koenig et al.,	
range = $5-45 \mu g/m^3$)	school children before, during and after two winter	with decline in asthmatic children's lung	1993b	
	heating seasons, in Seattle area. PM2.5 was monitored	function. FEV_1 and FVC in the asthmatic	• •	
·	using a light-scattering instrument. Random effects	children dropped an average of 34 and 37 ml		
	1. · · · · · · · · · · · · · · · · · · ·	1	• • •	I

· · · ·

	linear regression was used to analyze the association between $PM_{2.5}$ levels and children's lung function.	respectively for each 20 μ g/m ² increase in PM _{2.5} .	
PM ₁₀	A diary was used to record acute respiratory	There were small but significant negative	Roemer et al.,
(6 days above 110 µg/m ³ , 1	symptoms and medication use of children (6-12 years	associations of PM_{10} , black smoke, and SO_2	1993
day above 150 μg/m ³)	old) with chronic respiratory symptoms, in the winter	with both morning and evening PEF.	
	of 1990-1991, in the Netherlands. PM ₁₀ , SO ₂ , NO ₂ ,		
	and black smoke were monitored. Multiple linear		
	regression analysis was performed to evaluate the		
	association between air pollution and morning and		
,	evening PEF. The concentrations of pollutants of the		
	same day, the previous day and the average of the		
	previous week were used separately as independent		
	variables. Day of the week, ambient temperature, and	· · ·	
	day of study were included in the regression.		
PM ₁₀	Lung function was examined among white children	Annual particle acidity was strongly correlated	Raizenne et al.,
$(\text{mean} = 17.9 - 35.2 \mu\text{g/m}^3)$	aged 8-12 years from 22 communities in the U.S.A.	with $PM_{2,1}$ and $SO_4^{=}$. Children living in the	1993
· .	and Canada. PM_{10} , $PM_{2.1}$, $SO_4^=$, H^+ , SO_2 , and O_3	community with the highest levels of PM_{10} ,	
PM _{2.1}	were monitored. A two-stage logistic regression	$PM_{2.1}$, $SO_4^{=}$, and H^+ were significantly more	
$(\text{mean} = 5.8-20.7 \ \mu\text{g/m}^3)$	model was used. First, a city-specific adjusted means	likely to have impaired FVC and FEV_1) .
	were calculated by regressing the natural logarium of	compared to children living in the least	
$SO_4^{=}$	the lung function measurements on sex, ln age, ln	polluted community.	
·		н т.	
	·		

· · ·			
$\left[(m_{2}, m_{2}, m_{2}, m_{3}, m_{2}, m_{3}, m_{$	beight in unight and an internation of any and in		
$(\text{mean} = 0.6-77.5 \mu\text{g/m})$	height. The editated means were then represed		
	neight. The adjusted means were then regressed		
	against the city-specific air pollution measurements.		
	The prevalence of children whose lung function was		
· ·	≤85% of predicted was calculated, and the logits were		
	regressed against the city-specific pollutants. The		
·	logistic regression coefficients were expressed as		
	odds ratios.		
PM ₁₀	Lung function was recorded from 7 to 11-year-old	A weak negative association between the	Hoek and
$(mean = 44.9 \ \mu g/m^3; range =$	children during three consecutive winters in the	concentrations of PM ₁₀ , NO ₂ , SO ₄ ⁼ , nitrate,	Brunekreef, 1994
14.1-126.1 μg/m ³)	Netherlands. PM ₁₀ , SO ₄ ⁼ , NO ₂ , SO ₂ , nitrates, gaseous	nitrous acid, and lung function was found: H^+	
	nitrous acid, and H ⁺ were monitored. Linear	level was low.	
SO ₄ =	regression analysis was used. The number of days		
$(\text{mean} = 6.7 \mu\text{g/m}^3; \text{range} =$	since study was included in the regression models to		
0-29.7 μg/m ³)	adjust for lung growth.		,
TSP	Lung function was examined among smokers and	For male residents, the mean decline in FEV_1	Tashkin <i>et al.,</i>
(annual means = 85, 133 and	non-smokers in the Southern California air basin.	attributable to living in heavily polluted area	1994
$101 \ \mu g/m^3$ for Lancaster,	Levels of TSP, $SO_4^{=}$, SO_2 , NO_2 , the oxidants were	was 23.6 ml/yr. The decline in FEV_1	
Glendora and Long Beach,	monitored. Subjects were divided into never-	attributable to smoking > 1 pack of cigarettes	
respectively)	smokers, former smokers, quitters, and continuing	per day was 33.3 ml/yr. In female non-	
	smokers. One-way and two-way analysis of	smokers, but not consistently in female	
			۰.
· · ·		·	96
			Ŷ

SO4 [±]	covariance were used after adjustment for age, height,	smokers, residence in heavily polluted area		
(means = 4.5, 11.0 and 11.3)	FEV_1 at study entry, and a history of allergic	was associated with a significantly greater		
μ g/m ³ for Lancaster,	disorders. Multiple regression analysis was used for	annual decline in FEV ₁ .		
Glendora and Long Beach,	current and former smokers.			
respectively)		· · · · · ·		
PM ₁₀	Lung function was examined among white children	Annual particle acidity was strongly correlated	Raizenne et al.,	
$(\text{mean} = 17.9 - 35.2 \mu\text{g/m}^3)$	aged 8-12 years from 22 communities in the U.S.A.	with $PM_{2.1}$ and $SO_4^{=}$. Children living in the	1995	
	and Canada. PM_{10} , $PM_{2.1}$, $SO_4^=$, H^+ , SO_2 , and O_3	community with the highest levels of PM_{10} ,		
PM _{2.1}	were monitored. A two-stage logistic regression	$PM_{2.1}$, $SO_4^{=}$, and H^+ were significantly more		
$(mean = 5.8-20.7 \ \mu g/m^3)$	model was used. First, a city-specific adjusted means	likely to have impaired FVC and FEV_1		
· ,	were calculated by regressing the natural logarium of	compared to children living in the least		
SO ₄ ⁼	the lung function measurements on sex, ln age, ln	polluted community.		
$(\text{mean} = 6.8-77.3 \mu\text{g/m}^3)$	height, In weight, and an interaction of sex and In			
	height. The adjusted means were then regressed		×	. *
	against the city-specific air pollution measurements.			
	The prevalence of children whose lung function was			
	≤85% of predicted was calculated, and the logits were			
	regressed against the city-specific pollutants. The		- с	
	logistic regression coefficients were expressed as		•	
	odds ratios.			
PM ₁₀	Twice daily peak expiratory flow rate (PEFR)	A 12-hr exposure to a 125-nmol/m ³ increase in	Neas et al., 1995	~
· ·	· · ·			
	· · · · · · · · · · · · · · · · · · ·			
			97	
			•	

$(12 \text{ hr mean} = 35.6 \mu\text{g/m}^3;$	measurements during the summer of 1990 were	total $SO_4^{=}$ was associated with a -2.8 l/min	
max. = $83.4 \mu g/m^3$)	reported in Uniontown, Pennsylvania. Daily SO ₂ ,	deviation in the group mean PEFR (95% CI -	
PM _{2.5}	PM_{10} , $PM_{2.5}$, total $SO_4^{=}$, particle-strong acidity, ozone	0.54 to -5.08). A 12-hr exposure to a 125	
$(12 \text{ hr mean} = 24.5 \ \mu \text{g/m}^3;$	and temperature were measured. An autoregressive	nmol/m ³ increment in particle-strong acidity	
max. = 88.1 μ g/m ³)	linear regression model was used. The covariates	was associated with a -2.5 l/min deviation in	
Total SO₄ ⁼	included a linear trend parameter, a binary indicator	the group mean PEFR (95% CI -0.8 to -4.2).	
(12 hr mean = 147.0	of whether the observation point was in the morning	O ₃ had similar effect.	
$nmol/m^{3}; max. = 515$	or evening, and the average temperature and pollutant		
nmol/m ³)	concentration of a single pollutant for the 12-hr		
Particle-strong acidity	monitoring period.		
$(12 \text{ hr mean} = 102 \text{ nmol/m}^3;$			· ·
$max. = 676.4 \text{ nmol/m}^3$)			.*
PM ₁₀	Lung function was studied among children	A decrease in FEV_1 was associated with an	Studnicka et al.,
$(\text{mean} = 6.6 \cdot 10.7 \mu \text{g/m}^3)$	participating in a summer camp in the Austrian Alps.	increase in the levels of PM_{10} and H^+ (- 6.7	1995
	PM_{10} , H^+ , $SO_4^=$, O_3 , ammonium ion components, and	ml/ μ g/m ³ for PM ₁₀ , and -0.99 ml/nmol/m ³ for	
SO ₄ ⁼	daily pollen counts were monitored. Linear	H^+). The decrease in FEV ₁ was more	
$(\text{mean} = 53.4-84.5 \ \mu\text{g/m}^3)$	regression analyses for repeated measurements were	pronounced when the mean exposure during	
	used. Models were also stratified by asthma	the previous 3 days was considered (-16.54	· .
	medication and respiratory symptoms. The time trend	ml/ μ g/m ³ for PM ₁₀ , and -3.07 ml/nmol/m ³ for	
	of lung function measurements was analyzed by	H ⁺).	
			1

regression of the c	day of study on the d	aily mean FEV_1	· · · · · · · · · · · · · · · · · · ·				
and FVC.		·					
							, X
* .*	: · · · · ·						
			÷		·		•.
	· · · · · · · · · · · · · · · · · · ·			• • •			
						99	. • •

Exposure concentrations and particle size	Study Description	Results and Comments	References
Mouthpiece study: Hydrox ymethnesulfonic acid (HMSA, 0-1000 μ M) + H ₂ SO ₄ (50 μ M), or H ₂ SO ₄ (50 μ M alone); MMAD 6.1 μ m. Chamber study: HMSA (1 mM) + H ₂ SO ₄ (5 mM), or H ₂ SO ₄ (5 mM alone); MMAD 7 μ m	HMSA is a bisulfite adduct of formaldehyde, a common constituent of California acid fogs. Mild to moderate asthmatics, 20 to 40 years old, were studied. Nine subjects performed mouthpiece inhalation for 3 min. In chamber study, 10 subjects inhaled acid aerosols for 1 hr while doing intermittent exercise. Lung function was measured. Specific airway resistance was analyzed.	Mouthpiece study did not show any significant changes in lung function by inhalation of H_2SO_4 or H_2SO_4 plus HMSA. In chamber study, acid exposures caused sight increases in respiratory symptoms. The increase caused by HMSA was not statistically different from that caused by H_2SO_4 .	Aris <i>et al.</i> , 1990
aione); ΜΜΑΟ / μm. H ₂ SO ₄ 46 or 127 μg/m ³ ; MMAD 0.5 μm.	Thirty two asthmatics (8-16 years old) were exposed to low and high concentrations of H_2SO_4 oronasally, for 30 min, while doing intermittent moderate exercise. A subgroup (21 subjects) were exposed to 134 µg/m ³ of H_2SO_4 with 100% oral breathing. Symptoms and lung function were recorded.	No symptomatic or lung function changes were observed with any treatments.	Avol <i>et al.</i> , 1990

 Table 3.1.5.
 Summaries of recently published controlled human clinical studies relating adverse health effects to particulate matter exposure

HNO ₃ 0.5 mg/m ³ , or H ₂ O fog, or air, followed by O ₃ 0.2 ppm; MMAD of aerosols 6 μm.	Healthy, athletic subjects were exposed to aerosols or air for 2 hr while doing exercise. After a 1-hr break, they exercised for 3 hr in an atmosphere containing 0.2 ppm of O ₃ . Lung function was measured.	No direct effects of acid aerosol exposure were observed. Exposure to acid aerosols did not potentiate O ₃ -induced decrements of lung function.	Aris <i>et al.</i> , 1991a
Mouthpiece study: H ₂ SO ₄ or NaCl 3 mg/m ³ ; MMAD 6 or 0.4 μm. Chamber study: H ₂ SO ₄ 0.96-1.4 mg/m ³ ; MMAD 6 μm.	Asthmatics (23-37 years old) were exposed to H_2SO_4 as follows: (1) Mouthpiece: Subjects were exposed to H_2SO_4 (6 or 0.4 µm) for 16 min, at rest. (2) Mouthpiece: Subjects were exposed to H_2SO_4 (relative humidity 100%, 6 µm; relative humidity <10%, 0.3 µm), at rest or doing exercise. (3) Chamber: Subjects were exposed to H_2SO_4 for 1 hr, at water contents of 0.5 or 1.8 g/m ³ while doing intermittent exercise.	In study (1), no effect on specific airway resistance or symptom scores were found. In study (2), no effect of either high or low humidity and H ₂ SO ₄ was found. In chamber study (3), no effect of different water contents and H ₂ SO ₄ was seen on lung function or symptom scores.	Aris <i>et al.</i> , 1991b
H ₂ SO ₄ (100 μ g/m ³ , MMAD 0.5 μ m) Carbon black (200 μ g/m ³ , MMAD 0.5 μ m) H ₂ SO ₄ -coated carbon (100 μ g/m ³)	Normal and asthmatic subjects aged 18-45 years, were exposed particles for 1 hr, with intermittent heavy exercise. Subjects gargled citrus juice before exposure to suppress airway ammonia. Lung function and bronchial reactivity to methacholine were measured.	Group data showed no effects of any exposure on any health measure. One asthmatic subject showed clinical symptoms with excess airway constriction after exposed to H_2SO_4 coated carbon.	Anderson <i>et al.,</i> 1992

H ₂ SO ₄	Healthy, non-smokers (20-39 years old) were exposed	Exposure to H_2SO_4 did not change the	Frampton et al.,
(1000 μg/m ³ ; MMAD 0.9	to aerosols for 2 hr, with intermittent exercise.	numbers of polymorphonuclear leucocytes and	1992
μm)	Bronchial lavage was performed 18 hr later.	T lymphocytes significantly. No significant	
-		change was seen in release of superoxide	
		anion or in inactivation of influenza virus by	
		macrophages in vitro. Antibody-mediated	
· · ·		cytotoxicity of alveolar macrophages	
	· · · ·	increased in association with H ₂ SO ₄ exposure.	,
H ₂ SO ₄	Adolescent asthmatic subjects (13-18 years of age)	The 45 min, but not 90 min, exposures were	Kocnig et al.,
(35 or 70 μg/m ³ ; MMAD	were exposed to H_2SO_4 via a mouthpiece with nose	associated with significant decreases in FEV ₁	1992
0.6 μm)	clips in place for 45 or 90 min, while doing	(-6% or -3% for 35 or 70 min, respectively).	
	intermittent moderate exercise. Oral ammonia was	Changes in FVC or resistance were not	
	measured. All subjects drank lemonade prior to and	significant.	
-	during exposure. Lung function was measured.		
H ₂ SO ₄	Young asthmatic subjects (12-19 years of age) were	FEV ₁ and FVC were significantly reduced at	Hanlcy et al.,
(70 or 130 μ g/m ³ . At the	exposed to H_2SO_4 via a mouthpiece for 40 min	2-3 min post-exposure, but not 20 min after	1992
mouthpiece, H ₂ SO ₄ is at 51-	including 10 min moderate exercise. In a separate	exposure. The slopes of the change in FEV_1 ,	
176 μg/m ³).	experiment, subjects drank lemonade to reduce the	V_{max50} and V_{max75} versus H ⁺ concentrations	
	oral ammonia before the 45 min exposure. Lung	were related to the subjects' response to the	
MMAD 0.72 μm	function and ammonia were measured.	percentage decrease in FEV ₁ after exercise	
· · · · · · · · · · · · · · · · · · ·		challenge.	
$(NH_4)_2SO_4$ (70 µg/m ³ ;	Healthy and asthmatic subjects aged 60-76 years,	Lung function parameters in either group did	Koenig et al.,
		· · · ·	
---	--	--	----------------
MMAD 0.6 μm);	were exposed to aerosols for 40 min including 10 min light exercise, via a mouthpiece. In a separate study,	not show significant changes. After H_2SO_4 exposure, the changes in total respiratory	1993a
H ₂ SO ₄ (74-82 μg/m ³ ;	subjects drank lemonade before inhaling H_2SO_4 . Oral	resistance from baseline were significantly	
MMAD 0.6 μm)	ammonia levels and lung function were measured.	higher in asthmatic subjects (+16%) than in healthy subjects (-6%).	
H ₂ SO ₄	Healthy subjects aged 20-31 years, were exposed to	Symptoms, lung function and methacholine	Laube et al.,
(500 μg/m ³ ; MMAD 10.9	H_2SO_4 or saline fog for 40 min at rest and 20 min of	response were not affected by either fog.	1993
μm)	exercise, in a head dome. The lung function,	Tracheal clearance and outer zone clearance	
	symptoms and responses to methacholine challenge	were more rapid after acid exposure than after	
	were measured. The subjects inhaled technetium-	saline exposure.	
	99M radioaerosol (MMAD 3.4 μ m) to detect the		
	mocociliary clearance function of lower airways.	· · ·	
$O_3 (0.12 \text{ ppm}) + NO_2 (0.3)$	Adolescent allergic asthmatic subjects (12-19 years	There was no significant change in lung	Koenig et al.,
ppm);	old) were exposed to test atmospheres by mouthpiece	function after any exposure protocol. Some	1994
	for 90 min with intermittent exercise. Lung function	subjects left the study because of	
O ₃ (0.12 ppm) + NO ₂ (0.3	was measured on both test day and on the third day.	uncomfortable symptoms associated with the	
ppm) + H_2SO_4 (68 $\mu g/m^3$);	The responses to methacholine challenge was	exposures to pollutants (6/28).	
• •	measured on the third day post-exposure.		
O ₃ (0.12 ppm) + NO ₂ (0.3			
ppm) + HNO ₃ (0.05 ppm).			
			:
MMAD 0.6 μm.			
	· · · · ·		
			10

	·		,
$H_2SO_4 (100 \ \mu g/m^3);$	Healthy and asthmatic subjects (18-50 years old)	Exposure to H ₂ SO ₄ alone caused no	Linn et al., 1994
· .	were exposed to aerosols in a chamber for 6.5 hr,	significant changes in lung function,	3
O ₃ (0.12 ppm);	with six 50-min exercise periods. Subjects drank	symptoms or bronchial reactivity. Exposure to	-
	lemonade before exposed to H ₂ SO ₄ . Lung function,	O_3 alone or $O_3 + H_2SO_4$ caused significant	,
$H_2SO_4 + O_3;$	bronchial reactivity to methacholine, and symptoms	decline in FEV_1 , smaller on the second day	
	were measured.	than on the first day. Bronchial reactivity	
MMAD 0.5 μm.		increased significantly after exposure to O_3	
		with or without H ₂ SO ₄ . Marginally greater	
	···;	changes in lung function and bronchial	
· .		reactivity were seen with $O_3 + H_2SO_4$ than	
•	· · ·	with O_3 alone.	
Bagged polluted air, TSP	Healthy and asthmatic subjects (23-48 years old)	For normal subjects, no differences in lung	Yang and Yang,
(202 µg/m ³); SO ₂ (112 ppb);	were exposed to bagged polluted air via a mouthpiece	function and bronchial reactivity were noted	1994
NO ₂ (488 ppb); CO (3.4	for 30 min. Lung function and bronchial reactivity to	after exposure to polluted air. For asthmatics,	
ppm)	methacholine challenge were measured.	significant decreases in FEV ₁ and FEV ₁ /FVC,	-
		and increases in airway reactivity and baseline	
· .		resistance values, occurred after the exposure	
		to polluted air.	
H ₂ SO ₄ (100 μg/m ³) or	Healthy and allergic asthmatic subjects (18-45 years	For the healthy subjects, no changes in	Utell et al., 1994
saline, followed by O_3 (0.08,	old) were exposed to H_2SO_4 or saline aerosols for 3	symptoms or lung function were seen after	
0.12, or 0.18 ppm)	hr. On the next day, subjects were exposed to O_3 for	exposure to either aerosols or ozone. No	
,	3 hr. Lung function was measured 2 and 4 hr after	aerosol- O_3 interaction was found. For the	
			1

	exposure on the O ₃ days.	asthmatic subjects, Preexposure to H ₂ SO ₄ had	
		no direct effect on lung function but appeared	
		to enhance the small mean decrements in FVC	4
· · · ·		that occurred in response to 0.18 ppm O_3 (-	
		6.8%). Individual response in asthmatics was	
х.		variable. There was interaction of H_2SO_4 and	, ÷ '.
		O ₃ on lung function both immediately and 4 hr	,
		after exposure.	,
H_2SO_4 (90 ± 10 µg/m ³) or	Seventeen asthma (age 20-57 years) and 17 COPD	In subjects with COPD, exposure to NaCl or	Morrow et al.,
NaCl (100 µg/m ³)	patients (age 52-70 years) were exposed to H_2SO_4 or	H ₂ SO ₄ aerosols did not cause a significant	1994
	NaCl for 2 hr with intermittent exercise. Lung	decrease in FVC, FEV_1 or SG_{aw} from baseline.	
-	function was measured before and after exposure.	In asthmatic subjects, mild decrease in FEV_1	
		and SG_{aw} from baseline was found after H_2SO_4	
. · · ·		exposure.	ì.

۰,

SO ₂ concentrations	Study Description	Results and Comments	References
mean of the hourly max.: May - October =13.7 - 16.1 ppb; November - April = 12.0 - 16.4 ppb)	Attendances at the emergency departments of 9 acute care hospitals in Vancouver region from July 1, 1984 to October 31, 1986, were recorded. Daily temperature, SO_2 , NO_2 , $SO_4^{=}$, COH and ozone were mornitored. Pearson correlation coefficients were calculated between asthma visits and pollution variables on the same day and lagged 24 and 48 hr, separately for the periods May-October, and November-April.	In summer, in 15-60 age group, asthma and respiratory visits were correlated with SO ₂ and SO ₄ ⁼ levels on the same day or lagged 24 hr. In winter, in all age groups, all respiratory visits but not asthma alone, were correlated with SO ₂ levels on the same day, and lagged 24 and 48 hr. In the \geq 60 yr age group in winter, SO ₂ levels were correlated to asthma.	Bates <i>et al.,</i> 1990
annual mean: in residential area = 128 μ g/m ³ ; in suburban area = 18 μ g/m ³ ; in industrial area = 57 μ g/m ³)	The lung function of adults was measured in residential, suburban and industrial areas in Beijing, China, during August 1986. The concentrations of SO_2 and TSP were measured. Multiple linear regression techniques were used, and age, sex, education, passive smoking, pollutant levels, coal stove heating, and lung fuction were included.	A per-unit increase in $\ln SO_2 (\mu g/m^3)$ could result in a 35.6 ml reduction in FEV _{1.0} and a 142.2 ml reduction in FVC. TSP and heating with coal were also associated with a reduced FEV _{1.0} and FVC.	Xu et al., 1991
Yearly mean = 9- 19 ppb; standard	Shumway <i>et al.</i> 's 1970-1979 Los Angeles mortality dataset was analyzed using a high-pass filter to allow	There was no significant associations between short-term variations in total mortality and SO_2	Kinney and Ozkaynak,

· · .

Table 3.2.1. Summaries of recently published epidemiological studies relating human mortality and morbidity to ambient SO₂ levels

deviation = 4-6	investigation of short-wave (acute) associations with	concentrations, after controlling for temperature.	1991
ppb.	environmental variables (by removing seasonality	Day-of-week effects were found not to affect the	
	effects). Environmental variables were considered in	relationships. The results demonstrated	
	regression analyses included temperature, relative	significant mortality associations with O ₃ lagged 1	
	humidity, extinction coefficient, KM, SO ₂ , NO ₂ , CO	day, and with temperature, NO ₂ , CO and KM.	
	and O ₃ .		· ·
Yearly 24-hr	Emergency room admissions for chronic obstructive	SO ₂ , black smoke, CO, and NO ₂ were	Sunyer et al.,
mean = 56.5 \pm	pulmonary disease (COPD) in Barcelona, Spain,	intercorrelated. After adjusting for meteorologic	1991
22.5 µg/m ³ , range	during 1985-1986, were assessed. Black smoke, SO ₂ ,	and temporal variables, daily emergency room	î.
$= 17-160 \ \mu g/m^3;$	CO, NO ₂ , and O ₃ were measured. Autocorrelation	admissions for chronic obstructive pulmonary	
yearly 1-hr mean	was controlled by transfer function modelling for 2-	disease increased by 0.02 and 0.01 for 1 μ g/m ³ of	
for max. = 141.9	day lag minimum temperature, season, day of week	SO_2 and black smoke, respectively, and 0.11 for 1	
$\mu g/m^3$, range =	and 1-day lag wind velocity. Autoregressive linear	mg/m ³ of CO.	
14-720 μ g/m ³ .	regression analysis was used.		
Yearly 24-hr	Total- and cause-specific daily mortality in	Strongest associations were found with pollution	Schwartz and
mean = 21.0 ppb;	Philadelphia, PA during 1973-1980 was related to	on the same and prior days. SO ₂ associations	Dockery
5% to 95% tiles	daily TSP and SO ₂ ($n = 2,700$ days). No other	were non-significant in simultaneous models with	1992a
= 6 to 46 ppb)	pollutants were considered in the analysis. Poisson	TSP, but correlations of their coefficients were not	
	regression models, using GEE methods, included	reported.	
· *	controls for year, season, temperature, and humidity.		
	Autocorrelation was addressed via autoregressive		
	terms in model.		

		· · ·	
Daily mean 5% to	Daily total mortality in Erfurt, East Germany, during	Both SO ₂ and SP were found to be significantly	Spix et al.,
95% tiles in	1980-1989 (median = $6/day$) was related to SO ₂ , SP,	associated with increased mortality. In a	1993
winter = 103-	temperature, relative humidity, and precipitation. SP	simultaneous regression, SP remained significant	
1206 µg/m3, in	measurements were made only 1988-1989.	while SO ₂ did not. Correlations of these	
summer = 20-376	Autoregressive Poisson models employed (due to low	coefficients were not provided, however.	
µg/m3, all season	deaths/day) also included indicator variables for	Pollution effect size was similar to that for	
= 27-952 µg/m3;	extreme temperatures and adjustments for trend,	meteorology.	
daily maxi. 5% to	season, and influenza epidemics.		
95% tiles in			
winter = 200-			
2700 µg/m3, in			· ·
summer = 40-840	· · ·		
µg/m3, all season			
= 60-2200 µg/m3.			
Daily mean =	Daily attendances for asthma attacks at the emergency	Significant correlations were found between	Rossi <i>et al</i> .,
10.0 μg/m ³ , range	room of Oulu University Central Hospital were	asthma visits and the levels of NO_2 , SO_2 , TSP, and	1993
$= 0.56 \mu g/m^3$;	recorded during 1985-1986, together with daily	H_2S . Intercorrelations were found between	
daily max. $= 31.0$	temperature, humidity, barometric pressure, rainfall,	pollutants and temperature. Only NO ₂ correlated	
μ g/m ³ , range = 1-	NO ₂ , SO ₂ , H ₂ S, TSP, and pollen counts. Pearson's	significantly with attendances after standardisation	
241 µg/m ³	correlation coefficient and partial correlations were	for temperature.	
	calculated. The stepwise discriminant analysis and		
	multiple regression analysis were used.		
•			

Mean = 102.3	Daily deaths during 1989 in two residential areas in	Significant mortality associations were found for	Xu et al.,
μ g/m ³ ; 5% to	Beijing, China, (mean total = 21.6/day) was related to	$\ln(SO_2)$ and $\ln(TSP)$. Associations were	1994
95% tiles = 6-391	TSP and SO_2 using Poisson methods. Controlling	strongest for chronic respiratory diseases. In	
μg/m ³ .	indicator variables for quintiles of temperature and	simultaneous regressions, SO_2 was significant, but	
	humidity, as well as for Sunday also were included.	not TSP. However, the two pollutants were highly	
	Long-wave confounding and autocorrelation were not	correlated with each other $(r = 0.6)$, as well as	
	directly addressed. However, season-specific results	with temperature. In season-specific analyses,	
	presented.	both pollutants were significant in summer, but	
· · ·		only SO ₂ in winter.	
Maximal 24-hr	A daily diary of upper and lower respiratory	A 10 ppb increment in 24-h SO ₂ concentration	Schwartz et
level = 81.9 ppb;	symptoms was collected from the parents of school.	was associated with a relative odds of 1.28 (95%	al., 1994
10% to 90% tiles	children in six U.S. cities, between April and August,	CI 1.13-1.46) for the incidence of lower	
= 0.8-17.9 ppb.	1984-1985. PM_{10} , $PM_{2.5}$, SO_2 , NO_2 , O_3 , $SO_4^=$, and H^+	respiratory symptoms, and a relative odds of 1.15	
-	were monitored. Autoregressive logistic regression	(95% CI 1.02-1.31) for the incidence of coughing,	
	using GEE was applied.	after controlling for temperature, city, and day of	
, ÷		the week. Significant associations were also	۰ ۰
		found between PM_{10} or $PM_{2.5}$ and incidence of	
• * . *		coughign, and upper and lower respiratory	
		symptoms.	
Daily mean = 19	The relation between hospital admissions for chronic	The effect of SO_2 was observed only among those	Ponka and
µg/m ³ (6.7 ppb):	respiratory diseases and low-level air pollution in	\leq 65 yr. RR for admissions for 2.7-fold increase	Virtanen,
range = $0.2-95$	1987-1989 was studied in Helsinki. SO ₂ , NO ₂ , O ₃	of SO_2 concentration on the same day was 1.31	1994
5		ý	

$\mu g/m^3 (0.1-33)$	and TSP were monitored. The relation was analyzed	(95% CI 1.01-1.70). RR for admissions for 2.7-	
ppb).	using Poisson regressions controlled for weather,	fold increase of SO ₂ concentration after a 3-day	
	season, time trends, and day of the week.	lag was 1.39 (95% CI 1.05-1.86).	
Yearly mean =	Hospital admissions for asthma and acute respiratory	Significant associations were found between	Walters et al.,
39.06 μg/m ³ ,	diseases between 1988-1990 were studied in	hospital admissions for respiratory diseases lagged	1994
10% to 90% tiles	Birmingham, UK. Smoke and SO ₂ levels were	by 2 days, and smoke and SO_2 levels in winter.	-
$= 24-62 \ \mu g/m^3;$	monitored. Data were divided into seasons, and the	Asthma admissions were also significantly	
summer mean =	relations between hospital admissions and pollutnat	associated with smoke and SO ₂ levels lagged by 2	
37.77 μg/m ³ ;	levels were analyzed by stepwise least squares	days in winter. In winter, a $100 \mu g/m^3$ rise in SO ₂	
spring mena =	regression models. Temperature, pressure, and	might result in 4 (95% CI 0-7) mor asthma	
42.87 μg/m ³ ;	humidity were entered into the model if they showed	adimssions and 15.5 (95% CI 6-25) more	• •
autumn mean =	significant association with hospital admissions.	respiratory admissions each day.	
40.91 µg/m ³ ;		·	
winter mean =			
34.18 μg/m ³ .			
12 hr mean =	The daily presence of cold, cough, or wheeze	A 12-hr exposure to a 10 ppb increase in SO ₂ was	Neas et al.,
10.2 ppb; max. =	symptoms and lung function changes of children	associated with increased cough incidence (OR =	1995
44.9 ppb	during the summer of 1990 were recorded in	1.53, 95% CI 1.07-2.2), and with decrements of	
	Uniontown, Pennsylvania. Daily SO ₂ , PM ₁₀ , PM _{2.5} ,	lung peak expiratory folw rate (-1.25 liters/min,	
	total $SO_4^{=}$, particle-strong acidity, ozone and	95% CI -2.75 to 0.25). PM and O ₃ had similar	
•	temperature were measured. An autoregressive	effect.	
	logistic regression model was used. The covariates		• :

	included a linear trend parameter, a binary indicator]
	of whether the observation point was in the morning		
	or evening, and the average temperature and pollutant		
	concentration of a single pollutant for the 12-hr		
	monitoring period preceding the diary report with	•	
	separate pollutant effect estimates for daytime and		
· , ·	overnight exposures.		
Mean = 4.7 ppb;	Hospital admissions for respiratory diseases during	All the environmental variables were positively	Burnett et al.,
95% tile = 17	April 1, 1981 to December 31, 1991, were	associated with respiratory hospitalizations.	1995
ppb.	investigated for 16 cities across Canada. Daily ozone,		
	SO ₂ , NO ₂ , CO, and soiling index (COH) were		
	recorded. COH is correlated with airborne particles.		
	The multivariate random effects relative risk	•	
	regression model was used to relate the environmental		
•	variables to the daily respiratory admissions. A 19-		
	day weighted moving regression filter was employed		
	to remove seasonal patterns from the data.		、 、
Mean in New	Daily counts of hospital admissions for respiratory	In one pollutant model, RR for a 50 μ g/m ³	Schwartz,
Haven = 78	diseases were constructed for persons aged ≥65 years	increase of SO ₂ levels in New Haven was 1.03	1995
µg/m ³ (29.8 ppb);	in New Haven, Connecticut, and Tacoma,	(95% CI 1.00-1.13); in Tacoma RR was 1.06	
10% to 90% tiles	Washington, during January 1, 1988 to December 31,	(95% CI 1.01-1.12). The SO ₂ association with	·
$= 23-159 \ \mu g/m^3$,	1990. Daily SO ₂ , PM_{10} and ozone were monitored.	respiratory hospital admissions of the elderly was	
			1

0.0.(0.7)		and standing the second s	
8.8-00.7 ppb).	Daily respiratory admission counts were regressed on	substantially altenuated by control for O_3 in both	
Mean in Tacoma	temperature, humidity, day of the week, and air	cities, and by control for PM_{10} in Tacoma. The	
$= 44 \ \mu g/m^3 (16.8)$	pollutants. A 19 day weighted moving regression	PM_{10} associations were little changed by	
ppb); 10% to	filter was used to remove all seasonal and subseasonal	controlling for ozone or SO_2 . Levels of O_3 were	
90% tiles = 18-74	patterns from the data. Each pollutant was first	also associated with respiratory admission	
µg/m ³ , 5.7-28.2	examined individually and then multiple pollutant	independently.	
ppb).	models were fitted.		
Daily mean = 117	Adult patients with diagnoses of asthma or COPD	There were modest but significant increases in	Higgins <i>et al</i> .,
μg/m ³	were studied for a period of 4 weeks during which	PEF variability, bronchodilator use, and wheeze	1995
	they kept records of their peak expiratory flow (PEF)	with increasing SO ₂ levels. Patients in whom the	
	rates, symptoms and bronchodilator use. Ambient	provocative dose of methacholine causing a 20%	
	SO_2 , O_3 and NO_2 were measured. Multiple regression	fall in FEV ₁ was below 12.25 μ mol were refered	
	analysis was used.	to as reactors, and were more sensitive to the	
		increases in SO ₂ concentrations.	
Mean = 42.6	This is a cross-sectional study. Data on respiratory	No symptoms were associated with SO ₂ . Phlegm	Scarlett et al.,
μ g/m ³ , min. = 7.0	symptoms were available on 11,552 members of the	symptoms increased with increasing black smoke	1995
μ g/m ³ , max. =	1958 national birth cohort. Counties in the UK were	levels with evidence of a plateau.	
87.7 μg/m ³	ranked by annual average levels of black smoke and		
	SO ₂ , and then divided into five groups. The subject's		
	county of residence determined their categorisation of		
	pollution exposure. Logistic regression was used,		
· .	adjusting for social class, sex, and smoking.		
•	5		

No exact number	Data on hospital admissions for acute respiratory	SO ₂ and black smoke were not associated with	Walters et al.,
reported in the	conditions during 1988-1990 were obtained by	hospital admissions. NO_2 was associated with	1995
paper.	electoral ward from the West Midlands, UK. Data on	hospital admission rates for all ages.	
	black smoke, NO2 and SO2 were collected. Indirect	• •	
	age-sex standardised hospitalisation rates (SHR) for		
	all respiratory conditions and asthma were calculated.		
	Multivariate regression models were used to assess		· ·
4	the relationship between individual pollutants and the		
	SHR. The Townsend score and percentage of the		
×	population from non-white ethnic groups were		
	included in all models to adjust for ethnicity and	- - -	
	socioeconomic deprivation.		
Daily mean = 70	Emergency visits for childhood asthma during the	The levels of O_3 and SO_2 were significantly	Romieu et al.,
ppb; range = 10-	first 6 months of 1990 were investigated in Mexico	associated with the number of emergency visits	1995
490 ppb.	City. Data on SO ₂ , O ₃ , NO ₂ , TSP and temperature	for asthma. The multivariate regression showed	
•	were collected. Partial correlation and Poisson	that the effect of SO_2 was substantially reduced	
	regression models were used, and day of the week,	when O_3 and other potential confounders were	
·	seasons, age, sex, pollutants and emergency visits	included in the model.	
	were included. No autocorrelation was found.		
Spring mean =	Daily total mortality in Philadelphia during 1973-	When all three pollution covariates and weather	Moolgavkar et
16.8 ppb, min. to	1988 was investigated, and related to TSP, SO ₂ ,	were considered simultaneously in the regression	<i>al.</i> , 1995a
max. = 0.3 -	ozone. Poisson regression and nonparametric	model, SO ₂ was associated with mortality in	

i

101 1			1
101ppb; summer	bootstrap and bias-corrected accelerated bootstrap	spring (RR1.19, 95% CI = 1.06-1.33), fall (RR =	
mean = 15.7 ppb,	confidence intervals were used. Both methods	1.14, 95% CI = 1.00-1.29) and winter (RR = 1.21,	
min. to max. =	yielded similar results. The effects of weather were	95% CI = 1.09-1.35), while Ozone was associated	
0.4 - 156 ppb; fall	controlled by analyzing mortality separately for each	with mortality in summer (RR = 1.15, 95% CI =	
mean = 17.8 ppb,	season and including both pollution variables and	1.07-1.24). TSP was not significantly associated	
min. to max. =	quintiles of temperature in the regression models	with mortality in any season. The pollutant	
0.7 - 100.4 ppb;	simultaneously.	covariates were highly correlated.	
winter mean =			
25.4 ppb, min. to			
max. = 5.4 -		· .	
`			
102.8 ppb			
102.8 ppb Mean = 16.98	Age and cause-specific daily mortality in	When all three pollutants were in the model, the	Li and Roth,
102.8 ppb Mean = 16.98 ppb; standard	Age and cause-specific daily mortality in Philadelphia, PA during 1973 and 1990 was related to	When all three pollutants were in the model, the significance of ozone was stronger than that of	Li and Roth, 1995
102.8 ppb Mean = 16.98 ppb; standard deviation = 11.87	Age and cause-specific daily mortality in Philadelphia, PA during 1973 and 1990 was related to daily TSP, SO ₂ , and O ₃ . Other environmental	When all three pollutants were in the model, the significance of ozone was stronger than that of SO ₂ , and the significance of SO ₂ was stronger than	Li and Roth, 1995
102.8 ppb Mean = 16.98 ppb; standard deviation = 11.87 ppn; 5% to 95%	Age and cause-specific daily mortality in Philadelphia, PA during 1973 and 1990 was related to daily TSP, SO ₂ , and O ₃ . Other environmental variables included were: temperature, barometric	When all three pollutants were in the model, the significance of ozone was stronger than that of SO_2 , and the significance of SO_2 was stronger than that of TSP. SO_2 effects were found in summer	Li and Roth, 1995
102.8 ppb Mean = 16.98 ppb; standard deviation = 11.87 ppn; 5% to 95% tiles = 4.10-39.46	Age and cause-specific daily mortality in Philadelphia, PA during 1973 and 1990 was related to daily TSP, SO ₂ , and O ₃ . Other environmental variables included were: temperature, barometric pressure, humidity, and precipitation. Various models	When all three pollutants were in the model, the significance of ozone was stronger than that of SO ₂ , and the significance of SO ₂ was stronger than that of TSP. SO ₂ effects were found in summer and fall for people ≤ 65 yr, and only in winter	Li and Roth, 1995
102.8 ppb Mean = 16.98 ppb; standard deviation = 11.87 ppn; 5% to 95% tiles = 4.10-39.46 ppb.	Age and cause-specific daily mortality in Philadelphia, PA during 1973 and 1990 was related to daily TSP, SO ₂ , and O ₃ . Other environmental variables included were: temperature, barometric pressure, humidity, and precipitation. Various models were employed, including Poisson and autoregressive.	When all three pollutants were in the model, the significance of ozone was stronger than that of SO ₂ , and the significance of SO ₂ was stronger than that of TSP. SO ₂ effects were found in summer and fall for people ≤ 65 yr, and only in winter season for people ≥ 65 yr. SO ₂ levels were	Li and Roth, 1995
102.8 ppb Mean = 16.98 ppb; standard deviation = 11.87 ppn; 5% to 95% tiles = 4.10-39.46 ppb.	Age and cause-specific daily mortality in Philadelphia, PA during 1973 and 1990 was related to daily TSP, SO ₂ , and O ₃ . Other environmental variables included were: temperature, barometric pressure, humidity, and precipitation. Various models were employed, including Poisson and autoregressive. Prefiltering methods also were applied to remove	When all three pollutants were in the model, the significance of ozone was stronger than that of SO ₂ , and the significance of SO ₂ was stronger than that of TSP. SO ₂ effects were found in summer and fall for people ≤ 65 yr, and only in winter season for people ≥ 65 yr. SO ₂ levels were associated with dealth due to cancer,	Li and Roth, 1995
102.8 ppb Mean = 16.98 ppb; standard deviation = 11.87 ppn; 5% to 95% tiles = 4.10-39.46 ppb.	Age and cause-specific daily mortality in Philadelphia, PA during 1973 and 1990 was related to daily TSP, SO ₂ , and O ₃ . Other environmental variables included were: temperature, barometric pressure, humidity, and precipitation. Various models were employed, including Poisson and autoregressive. Prefiltering methods also were applied to remove long-waves in data.	When all three pollutants were in the model, the significance of ozone was stronger than that of SO ₂ , and the significance of SO ₂ was stronger than that of TSP. SO ₂ effects were found in summer and fall for people ≤ 65 yr, and only in winter season for people ≥ 65 yr. SO ₂ levels were associated with dealth due to cancer, cardiovascular diseases and pneumonia.	Li and Roth, 1995

4. Review of Indirect Health Effects

Potential indirect health effects of acid rain were reviewed in the 1990 Canadian Long-Range Transports and acid deposition assessment report (Toxic Air Pollution-Health Effects Section, 1990). The review reached the following conclusions:

(1) The acid deposition, and acidification of water supplies and soil result in subsequent mobilization of heavy metals, which may increase exposure to these metals through drinking water and food. Unregulated water supplies are not pH neutralized before distribution and increased acidification of the water can result in corrosion of the distribution system. The corrosion of metal plumbing systems can result in increased levels of potentially toxic heavy metals in the water.

(2) Of significant interest are cadmium, mercury, lead, arsenic, aluminum and chromium. Cadmium and mercury may enter into food chain to humans. Very low doses of lead can have subtle effects on the central nervous system that are observed as peripheral nerve dysfunction in adults or neurobehaviourial and developmental effects in children.

(3) Shallow wells may be especially susceptible to increases in metal concentrations and drilled bedrock wells may not be immune as heavy metals, like arsenic, may be mobilized from mineral sources into aquifers.

(4) In Ontario, elevated levels of dissolved copper, lead, and cadmium have been observed in water that was left undisturbed in distribution systems drawing water from privately supplied lake water. Northern Ontario, southwestern Ontario, the north shore of the St. Lawrence River in Quebec and areas of New Brunswick and Nova Scotia are areas in Canada that are very sensitive to acidification. An estimated 300,000 people in these areas obtain their drinking water from unregulated sources that may be affected by acid deposition.

(5) Flushing of the systems for five minutes reduced the concentrations of these untreated water systems.

In addition, the pollution of ambient particulate matter may cause visibility reduction, changes in climate, and damage to vegetation, which also indirectly affect the well-being of the entire human species.

4.1 Changes in visibility and climate

The term visibility implies that an object can be seen by an observer. Visibility reduction can be attributed to natural hazes formed from volcanic emissions or forest fire, or anthropogenic activities. Visibility reduction associated with anthropogenic activities is due primarily to light scattering by particles and to a lesser extent to absorption of light by atmospheric gases such as NO₂. Fine particles (i.e., those particles of diameter less than 1 to 3 μ m) usually dominate light scattering. Particles smaller than 0.1 μ m, though sometimes present in high numbers, are individually very inefficient at scattering light and thus contribute very little to visibility loss; particles larger than about 1 to 3 μ m, though individually efficient at scattering light, usually exist in relatively small numbers and contribute only a small fraction of visibility loss.

Particle-induced visibility reduction may affect climate by reducing solar radiation at ground level, making less energy available for photosynthesis. Reduced solar radiation may alter local or regional temperatures. Furthermore, increased cloud formation may alter precipitation patterns.

4.2 Acidic deposition

Acidic deposition is the combined total of wet and dry deposition, with wet acidic deposition being commonly referred to as acid rain.

Land, vegetation, and bodies of water are the surfaces on which acidic deposition

accumulates. The ability of soils to tolerate acidic deposition depends on the alkalinity of the soil. Much of the eastern Canada is covered with thin soils with a relatively limited neutralizing capacity. In watersheds with this type of soil, lakes and streams are susceptible to low pH, resulting in the depletion of fishery resources.

A second area of concern is reduced tree growth in forests by acidic deposition, by preventing nutrients from being uptaken and by directly damaging leaves.

Acidic deposition also contributes to deterioration of building surface, and to damage to fabrics and other materials.

As discussed in the 1990 assessment report (Toxic Air Pollution-Health Effects Section, 1990), the major concern for acidic deposition lies in the increased exposure to heavy metals through drinking water and food. The acidification of soil may leach metals into surface waters, resulting in subsequent enhancement of heavy metals. Furthermore, unregulated water supplies are not pH neutralized before distribution, and increased acidification of the water can cause corrosion of the metal plumbing distribution systems, resulting in increased levels of potentially toxic heavy metals in the water.

In addition to cadmium, mercury, lead, arsenic, aluminum and chromium that have been discussed in the 1990 assessment report (Toxic Air Pollution-Health Effects Section, 1990), selenium has drawn an increasing interest as an important metalloid with industrial, environmental, biological and toxicological significance. Elevated concentrations of selenium in water samples in the United States have been noted at levels higher than U.S. EPA standard (10 ppb), which is associated with corrosion of household plumbing by soft, acidic water (Fishbein, 1991). Acute and chronic selenium toxicity has been observed in livestock and laboratory animals, involving various degrees of damage to internal organs, vascular edema, and hemorrhage (Fishbein, 1991). The signs of acute toxicity in farm and experimental animals most commonly mentioned in the literature are garlic odour of the breath, dyspnea, pulmonary edema, tachycardia, emesis, diarrhea, depression, ataxia, incoordination, paralysis and excessive salivation. Chronic exposure to elevated selenium in

food or drinking water causes reduced growth rate, decreased blood haemoglobin and liver toxicity. Human chronic toxicity of selenium has been reported, attributed to the increased selenium through consumption of food (Fishbein, 1991). The signs include bad teeth, skin disorder, gastrointestinal disturbances, garlic odour of the breath, and abnormalities of the nervous system including numbness, convulsions and paralysis.

References

Toxic Air Pollution-Health Effects Section, Environmental Health Directorate, Health and Welfare Canada (1990). The 1990 Canadian long-range transport of air pollutants and acid deposition assessment report. Part 6. Human health effects.

Abbey, D.E., Hwang, B.L., Burchette, R.J., Vancuren, T., and Mills, P.K. (1995a). Estimated long-term ambient concentrations of PM_{10} and development of respiratory symptoms in a nonsmoking population. *Arch. Environ. Health* **50**, 139-152.

Abbey, D.E., Lebowitz, M.D., Mills, P.L., Petersen, F.F., Beeson, W.L., and Burchette, R.J. (1995b). Long-term ambient concentrations of particulates and oxidants and development of chronic disease in a cohort of nonsmoking California residents. *Inhalation Toxicology* **7**, 19-34.

Amdur, M.O. (1989). Health effects of air pollutants: Sulfuric acid, the old and the new. *Environ. Health Perspect.* **81**, 109-113.

Amdur, M.O., Bayles, J., Ugro, V., and Underhill, D.W. (1978). Comparative irritant potency of sulfate salts. *Environ. Res.* 16, 1-8.

Amdur, M.O. and Chen, L.C. (1989). Furance-generated acid aerosols: Speciation and pulmonary effects. *Environ. Health Perspect.* **79**, 147-150.

Anderson, K.R., Avol, E.L., Edwards, S.A., Shamoo, D.A., Peng, R.-C., Linn, W.S., and Hackney, J.D. (1992). Controlled exposures of volunteers to respirable carbon and sulfuric acid aerosols. *J. Air Waste Manage. Assoc.* **42**, 770-776.

Aris, R., Christian, D., Sheppard, D., and Balmes, J.R. (1990). Acid fog-induced bronchoconstriction. The role of hydroxymethanesulfonic acid. *Am. Rev. Respir. Dis.* 141, 546-551.

Aris, R., Christian, D., Sheppard, D., and Balmes, J.R. (1991a). The effects of sequential exposure to acidic fog and ozone on pulmonary function in exercising subjects. *Am. Rev. Respir. Dis.* 143, 85-91.

Aris, R., Christian, D., Sheppard, D., and Balmes, J.R. (1991b). Lack of bronchoconstrictor response to sulfuric acid aerosols and fogs. *Am. Rev. Respir. Dis.* 143, 744-750.

Avol, E.L., Linn, W.S., Shamoo, D.A., Anderson, K.R., Peng, R.-C., and Hackney, J.D. (1990). Respiratory responses of young asthmatic volunteers in controlled exposures to sulfuric acid aerosol. *Am. Rev. Respir. Dis.* **142**, 343-348.

Bates, D.V. (1989). Respiratory function in disease. 3rd ed. Philadelphia: W.B. Saunders.

Bates, D.V. and Sizto, R. (1983). Relationship between air pollutant levels and hospital admissions in Southern Ontario. *Can. J. Public Health* **74**, 117-122.

Bates, D.V. and Sizto, R. (1986). A study of hospital admissions and air pollutants in southern Ontario. In *Aerosols: research, risk assessment and control strategies, proceedings of the second* U.S.-Dutch international symposium; May 1985 (Lee, S.D., Schneider, T., Grant, L.D., and Verkerk, P.J., Eds.), pp. 767-777. Lewis Publishers, Inc., Chelsea, MI.

Bates, D.V. and Sizto, R. (1987). Air pollution and hospital admissions in southern Ontario: the acid summer haze effect. *Environ. Res.* 43, 317-331.

Bates, D.V., Baker-Anderson, M., and Sizto, R. (1990). Asthma attack periodicity: A study of hospital emergency visits in Vancouver. *Environ. Res.* **51**, 51-70.

Beaumont, J.J., Leveton, J., Knox, K., Bloom, T., McQuiston, T., Young, M., Goldsmith, R., Steenland, N.K., Brown, D.P., and Halperin, W.E. (1987). Lung cancer mortality in workers exposed to sulfuric acid mist and other acid mists. *J. Natl. Cancer Inst.* **79**, 911-921.

Berg, I., Schluter, T., and Gercken, G. (1993). Increase of bovine alveolar macrophage superoxide anion and hydrogen peroxide release by dusts of different origin. *J. Toxicol. Environ. Health* **39**, 341-354.

Bjarnason, S.G., Vincent, R., Kleinman, M.T., Mautz, W.J., Green, F.H.Y., Roth, S.H., Lee, M.M., and Schurch, S. (1994). Toxicological interactions between ozone and fine particles in the lungs. *Proceedings of Society of Toxicology of Canada* 27, (Abstr).

Bouthillier, L., Vincent, R., Goegan, P., Bjarnason, S., Guénette, J., Potvin, M., Stewart, M., Kumarathasan, P., and Poon, R. (1996). Acute lung responses to urban dust and ozone in Fischer 344 rats. *Toxicologist* **16**, (Abstr).

Brand, P., Ruob, K., and Gebhart, J. (1992). Performance of a mobile aerosol spectrometer for an in situ characterization of environmental aerosols in Frankfurt City. *Atmospheric Environment* **26A**, 2451-2457.

Brauer, M., Koutrakis, P., and Spengler, J.D. (1989). Personal exposures to acidic aerosols and gases. *Environ. Sci. Tech.* 23, 1408-1412.

Braun-Fahrlander, C., Ackermann-Liebrich, U., Schwartz, J., Gnehm, H.P., Rutishauser, M., and Wanner, H.U. (1992). Air pollution and respiratory symptoms in preschool children. *Am. Rev. Respir. Dis.* **145**, 42-47.

Burnett, R.T., Dales, R.E., Raizenne, M.E., Krewski, D., Summers, P.W., Roberts, G.R., Raad-Young, M., Dann, T., and Brook, J. (1994). Effects of low ambient levels of ozone and sulfates on the frequency of respiratory admissions to Onatrio hospitals. *Environ. Res.* **65**, 172-194.

Burnett, R.T., Brook, J.R., Yung, W.T., Dales, R.E., and Krewski, D. (1995a). Association between ozone and hospitalization for respiratory diseases in 16 Canadian cities. *Submitted for publication*.

Burnett, R.T., Dales, R.E., Krewski, D., Vincent, R., Dann, T., and Brook, J.R. (1995b). Associations between ambient particulate sulfate and admissions to Ontario hospitals for cardiac and respiratory diseases. *Am. J. Epidemiol.* **142**, 15-22.

Chen, L.C., Lam, H.F., Ainsworth, D., Guty, J., and Amdur, M.O. (1987). Functional changes in the lungs of guinea pigs exposed to sodium sulfite aerosols. *Toxicol. Appl. Pharmacol.* **89**, 1-8.

Chen, L.C., Miller, P.D., and Amdur, M.O. (1989). Effects of sulfur oxides on eicosanoids. J. Toxicol. Environ. Health 28, 99-109.

Chen, L.C., Miller, P.D., Lam, H.F., Guty, J., and Amdur, M.O. (1991). Sulfuric acid-layered ultrafine particles potentiate ozone-induced airway injury. *J. Toxicol. Environ. Health* **34**, 337-352.

Chen, L.C., Fine, J.M., Qu, Q.S., Amdur, M.O., and Gordon, T. (1992a). Effects of fine and ultrafine sulfuric acid aerosols in guinea pigs: Alterations in alveolar macrophage function and intracellular pH. *Toxicol. Appl. Pharmacol.* **113**, 109-117.

Chen, L.C., Miller, P.D., and Amdur, M.O. (1992b). Airway hyperresponsiveness in guinea pigs exposed to acid-coated ultrafine particles. *J. Toxicol. Environ. Health* **35**, 165-174.

Chestnut, L.G., Schwartz, J., Savitz, D.A., Burchfiel, C.M. (1991). Pulmonary function and ambient particulate matter: Epidemiological evidence from NHANES I. Arch. Environ. Health. **46**, 135-144.

Costa, D.L., Lehamnn, J.R., Winsett, D.W., Doerfler, D., and Ghio, A. (1994). Pulmonary hypertension: a possible risk factor in particulate toxicity. *Am. Rev. Respir. Dis.* **149**, A840.

Costa, D.L., Tepper, J.S., Lehmann, J.R., Winsett, D.W., Dreher, K., and Ghio, A.J. (1995). Surface complexed iron (Fe³⁺) on particles: Its role in the induction of lung inflammation and hyperreactivity. *Inhalation Toxicology* **7**, 790-791.

Damokosh, A.I., Spengler, J.D., Dockery, D.W., and et al., (1993). Effects of acidic particles on respiratory syumptoms in seven US communities. *Am. Rev. Respir. Dis.* 147, A632. (Abstr).

Delfino, R.J., Becklake, M.R., and Hanley, J.A. (1994). The relationship of urgent hospital admissions for respiratory illnesses to photochemical air pollution levels in Montreal. *Environ. Res.* **67**, 1-19.

Devlin, R.B., Joyce, M., and Madden, M. (1995). Inflammatory mediators released by human alveolar macrophages after exposure to silica and titanium dioxide. *Inhalation Toxicology* **7**, 815-816.

Dockery, D.W., Speizer, F.E., Stram, D.O., Ware, J.H., Spengler, J.D., and Ferris, Jr.,B.G. (1989). Effects of inhalable particles on respiratory health of children. *Am. Rev. Respir. Dis.* 139, 587-594.

Dockery, D.W. and Pope, III, C.A. (1994). Acute respiratory effects of particulate air pollution. *Annu. Rev. Public. Health* **15**, 107-132.

Dockery, D.W., Schwartz, J., and Spengler, J.D. (1992). Air pollution and daily mortality: Associations with particulates and acid aerosols. *Environ. Res.* **59**, 362-373.

Dockery, D.W., Pope, III,C.A., Xu, X., Spengler, J.D., Ware, J.H., Fay, M.E., Ferris, Jr.,B.G., and Speizer, F.E. (1993a). An association between air pollution and mortality in six U.S. cities. *N. Engl. J. Med.* **329**, 1753-1759.

Dockery, D.W., Damokosh, A.I., Neas, L.M., Raizenne, M., Spengler, J.D., Koutrakis, P., Ware, J.H., and Speizer, F.E. (1993b). Health Effects of acid aerosols on north American Children: Respiratory symptoms and illness. *Am. Rev. Respir. Dis.* 147, A633.

El-Fawal, H.A.N., McGovern, T.J., and Schlesinger, R.B. (1992). *In vitro* bronchial reactivity in rabbits acutely and repeatedly exposed to acid aerosol/oxidant atmospheres. *Am. Rev. Respir. Dis.* **145**, A430. (Abstr).

El-Fawal, H.A.N. and Schlesinger, R.B. (1994). Nonspecific airway hyperresponsiveness induced by inhalation exposure to sulfuric acid aerosol: An *in vitro* assessment. *Toxicol. Appl. Pharmacol.* **125**, 70-76.

Ferin, J. and Oberdorster, G. (1992). Translocation of particles from pulmonary alveoli into the interstitium. *J. Aerosol Med.* 5, 179-187.

Ferin, J., Oberdorster, G., and Penny, D.P. (1992). Pulmonary retention of ultrafine and fine particles in rats. *Am. J. Respir. Cell Mol. Biol.* **6**, 535-542.

Frampton, M.W., Voter, K.Z., Morrow, P.E., Roberts, Jr., N.J., Culp, D.J., Cox, C., and Utell, M.J. (1992). Sulfuric acid aerosol exposure in humans assessed by bronchoalveolar lavage. *Am. Rev. Respir. Dis.* 146, 626-632.

Gearhart, J.M. and Schlesinger, R.B. (1989). Sulfuric acid-induced changes in the physiology and structure of the tracheobronchial airways. *Environ. Health Perspect.* **79**, 127-137.

Godish, T. (1991). Air Quality. Lewis Publishers, Inc., Chelsea, Michigan.

Goegan, P. and Vincent, R. (1995). Lung macrophages increase bioavailability of xenobiotics from ambient air particles: Responses of reporter HepG2 cells harbouring promoter-CAT fusion genes. J. Aerosol Med. 8, 111.

Gordon, T. and Fine, J.M. (1993). Metal fume fever. Occupational Medicine: State of the Art Reviews 8, 505-517.

Gorham, E.D., Garland, C.F., and Garland, F.C. (1989). Acid haze air pollution and breast and colon cancer mortality in 20 Canadian cities. *Can. J. Public Health* **80**, 96-100.

Guilianelli, C., Baeza-Squiban, A., Boisvieux-Ulrich, E., Houcine, O., Zalma, R., Guennou, C., Pezerat, H., and Marano, F. (1993). Effect of mineral particles containing iron on primary

cultures of rabbit tracheal epithelial cells: Possible implication of oxidative stress. *Environ. Health Perspect.* **101**, 436-442.

Hanley, Q.S., Koenig, J.Q., Larson, T.V., Anderson, T.L., van Belle, G., Rebolledo, V., Covert, D.S., and Pierson, W.E. (1992). Response of young asthmatic patients to inhaled sulfuric acid. *Am. Rev. Respir. Dis.* **145**, 326-331.

Heath, S.K., Koenig, J.Q., Morgan, M.S., Checkoway, H., Hanley, Q.S., and Rebolledo, V. (1994). Effects of sulfur dioxide exposure on African-American and Caucasian asthmatics. *Environ. Res.* **66**, 1-11.

Higgins, B.G., Francis, H.C., Yates, C.J., Warburton, C.J., Fletcher, A.M., Reid, J.A., Pickering, C.A.C., and Woodcock, A.A. (1995). Effects of air pollution on symptoms and peak expiratory flow measurements in subjects with obstrutive airways disease. *Thorax* **50**, 149-155.

Hinds, W.C. (1982). Aerosol technology. Properties, behavior, and measurement of airborne particles. John Wiley & Sons, New York, NY.

Hoek, G. and Brunekreef, B. (1994). Effects of low-level winter air pollution concentrations on respiratory health of Dutch children. *Environ. Res.* 64, 136-150.

Hoek, G. and Brunekreef, B. (1995). Effect of photochemical air pollution on acute respiratory symptoms in children. *Am. J. Respir. Crit. Care Med.* **151**, 27-32.

Huang, X., Zalma, R., and Pezerat, H. (1994). Factors that influence the formation and stability of hydrated ferrous sulfate in coal dusts. Possible relation to the emphysema of coal miners. *Chem. Res. Toxicol.* **7**, 451-457.

Islam, M.S. and Schlipkoter, H.W. (1990). Dose-response pattern of inhaled sulfur dioxide (SO₂) in rabbits pretreated with papain or solium chloride aerosols. *Zentralbl. Hyg. Umxweltmed.* **190**, 302-309.

Ito, K., Thurston, G.D., Hayes, C., and Lippmann, M. (1993). Associations of London, England, daily mortality with particulate matter, sulfur dioxide, and acidic aerosol pollution. *Arch. Environ. Health* **48**, 213-220.

Ito, K., Kinney, P.L., and Thurston, G.D. (1995). Variations in PM-10 concentrations within two metropolitan areas and their implications for health effects analyses. *Inhalation Toxicology* **7**, 735-745.

Kao, A.S. and Friedlander, S.K. (1995). Temporal variations of particulate air pollution: A marker for free radical dosage and adverse health effects? *Inhalation Toxicology* **7**, 149-156.

Katsouyanni, K., Hatzakis, A., Kalandidi, A., and Trichopoulos, D. (1990a). Short-term effects of atmospheric pollution on mortality in Athens. *Arch. Hellen. Med.* **7**, 126-132.

Katsouyanni, K., Karakatsani, A., Messari, I., Touloumi, G., Hatzakis, A., and Kalandidi, A. (1990b). Air pollution and cause specific mortality in Athens. *J. Epidemiol. Commun. Health* 44, 321-324.

Katsouyanni, K., Pantazopoulou, A., Touloumi, G., Tselepidaki, I., Moustris, K., Asimakopoulos, D., Poulopoulou, G., and Trichopoulos, D. (1993). Evidence for interaction between air pollution and high temperature in the causation of excess mortality. *Arch. Environ. Health* **48**, 235-242.

Kienast, K., Muller-Quernheim, J., Knorst, M.M., Lubjuhn, S., and Ferlinz, R. (1994a). *In vitro* study of human alveolar macrophage and peripheral blood mononuclear cell reactive oxygen-intermediates release induced by sulfur dioxide at different concentrations. *Lung* **172**, 335-345.

Kienast, K., Riechelmann, H., Knorst, M.M., Schlegel, J., Muller-Quernheim, J., Schellenberg, J., and Ferlinz, R. (1994b). An experimental model for the exposure of human ciliated cells to sulfur dioxide at different concentrations. *Clin. Investig.* **72**, 215-219.

Kinney, P.L. and Ozkaynak, H. (1991). Associations of daily mortality and air pollution in Los Angeles County. *Environ. Res.* 54, 99-120.

Kinney, P.L., Ito, K., and Thurston, G.D. (1995). A sensitivity analysis of mortality/PM-10 associations in Los Angeles. *Inhalation Toxicology* **7**, 59-69.

Kirkpatric, M.B., Sheppard, D., Nadel, J.A., and Boushey, H.A. (1982). Effect of oronasal breathing route on the bronchoconstrictive response to sulfur dioxide in exercising asthmatic subjects. *Am. Rev. Respir. Dis.* **125**, 627-631.

Kleinman, M.T., Mautz, W.J., and Bjarnason, S. (1993). Evidence for reduced adaptive responses after exposure to ozone/particle mixtures in the rat. *Toxicologist* **13**, 295. (Abstr).

Kleinman, M.T., Bhalla, D.K., Mautz, W.J., and Phalen, R.F. (1995). Cellular and immunologic injury with PM10 inhalation. *Inhalation Toxicology* (In Press)

Knorst, M.M., Kienast, K., Riechelmann, H., Muller-Quernheim, J., and Ferlinz, R. (1994). Effect of sulfur dioxide on mucociliary activity and ciliary beat frequency in guinea pig trachea. *Int. Arch. Occup. Environ. Health* **65**, 325-328.

Koenig, J.Q., Pierson, W.E., and Horike, M. (1983). The effects of inhaled sulfuric acid on pulmonary function in adolescent asthmatics. *Am. Rev. Respir. Dis.* **128**, 221.

Koenig, J.Q., Pierson, W.E., Horike, M., and Frank, R. (1983). A comparison of the pulmonary effects of 0.5 ppm versus 1.0 ppm sulfur dioxide plus sodium chloride droplets in asthmatic adolescents. *J. Toxicol. Environ. Health* **11**, 129-139.

Koenig, J.Q., Covert, D.S., and Pierson, W.E. (1989). Effects of inhalation of acidic compounds on pulmonary function in allergic adolescent subjects. *Environ. Health Perspect.* **79**, 173.

Koenig, J.Q., Covert, D.S., Hanley, G.B., and Pierson, W.E. (1990). Prior exposure to ozone potentiates subsequent responses to sulfur dioxide in adolescent asthmatic subjects. *Am. Rev. Respir. Dis.* 141, 377-380.

Koenig, J.Q., Covert, D.S., Larson, T.V., and Pierson, W.E. (1992). The effect of duration of exposure on sulfuric acid-induced pulmonary function changes in asthmatic adolescent subjects: a dose-response study. *Toxicol. Ind. Health* **8**, 285-296.

Koenig, J.Q., Dumler, K., Rebolledo, V., Williams, P.V., and Pierson, W.E. (1993a). Respiratory effects of inhaled sulfuric acid on senior asthmatics and nonasthmatics. *Arch. Environ. Health* **48**, 171-175.

Koenig, J.Q., Larson, T.V., Hanley, Q.S., Rebolledo, V., Dumler, K., Checkoway, H., Wang, S.-Z., Lin, D., and Pierson, W.E. (1993b). Pulmonary function changes in children associated with fine particulate matter. *Environ. Res.* **63**, 26-38.

Koenig, J.Q., Covert, D.S., Pierson, W.E., Hanley, Q.S., Rebolledo, V., Dumler, K., and McKinney, S.E. (1994). Oxidant and acid aerosol exposure in healthy subjects and subjects with asthma. Part I: Effects of oxidants, combined with sulfuric or nitric acid, on the pulmonary function of adolescents with asthma. *Health Effects Institute Research Report* **70**, 1-36.

Last, J.A., Hyde, D.M., and Chang, D.P.Y. (1984). A mechanism of synergistic lung damage by ozone and a respirable aerosol. *Exp. Lung Res.* 7, 223-235.

Laube, B.L., Bowes, III,S.M., Links, J.M., Thomas, K.K., and Frank, R. (1993). Acute exposure to acid fog. Effects on mucociliary clearance. *Am. Rev. Respir. Dis.* 147, 1105-1111.

Lehnert, B., Sebring, R.J., and Oberdorster, G. (1993). Lung clearance and occlusion of the Pores of Kohn after the deposition of ultra-fine titanium dioxide (TiO₂). *Toxicologist* **13**, 45.

Lemos, M., Lichtenfels, A.J.F.C., Amaro, Jr., E., Macchione, M., Martins, M.A., King, M., Bohm, G.M., and Saldiva, P.H.N. (1994). Quantitative pathology of nasal passages in rats exposed to urban levels of air pollution. *Environ. Res.* **66**, 87-95.

Li, Y. and Roth, H.D. (1995). Daily mortality analysis by using different regression models in Philadelphia county. *Inhalation Toxicology* **7**, 45-58.

Linn, W.S., Avol, E.L., Peng, R., Shamoo, D.A., and Hackney, J.D. (1987). Replicated dose-response study of sufur dioxide effects in normal, atopic and asthmatic volunteers. *Am. Rev. Respir. Dis.* **136**, 1127-1134.

Linn, W.S., Shamoo, D.A., Anderson, K.R., Peng, R.-C., Avol, E.L., and Hackney, J.D. (1994). Effects of prolonged, repeated eposure to ozone, sulfuric acid, and their combination in healthy and asthmatic volunteers. *Am. J. Respir. Crit. Care Med.* **150**, 431-440.

Lipfert, F.W. and Hammerstrom, T. (1992). Temporal patterns in air pollution and hospital admissions. *Environ. Res.* **59**, 374-399.

Lippmann, M. (1977). Regional deposition of particles in the human respiratory tract. In: Handbook of Physiology. Section 9: Reactions to environmental agents. (Lee, D.H.K., Falk,

H.L., Murphy, S.D., and Geiger, S.R., Eds.), pp213-232. American Physiological Society, Bethesda, MD.

Lippmann, M. and Ito, K. (1995). Separating the effects of temperature and season on daily mortality from those of air pollution in London: 1965 - 1972. *Inhalation Toxicology* **7**, 85-97.

Lundgren, D.A. and Burton, R.M. (1995). Effect of particle size distribution on the cut point between fine and coarse ambient mass fractions. *Inhalation Toxicology* 7, 131-148.

Lyon, J.L., Mori, M., and Gao, R. (1995). Is there a causal association between excess mortality and exposure to PM-10 air pollution? Additional analyses by location, year, season, and cause of death. *Inhalation Toxicology* **7**, 603-614.

Mauderly, J.L., Bice, D.E., Cheng, Y.S., Gillett, N.A., Griffith, W.C., Henderson, R.F., Pickrell, J.A., and Wolff, R.K. (1990). Influence of preexisting pulmonary emphysema on susceptibility of rats to diesel exhaust. *Am. Rev. Respir. Dis.* **141**, 1333-1341.

McGovern, T.J., Schlesinger, R.B., and El-Fawal, H.A.N. (1993). Effect of repeated *in vivo* ozone and/or sulfuric acid exposures on *in vitro* airway hyperresponsiveness and beta-adrenergic modulation of macrophage function. *Toxicologist* **13**, 49. (Abstr).

Mellon, M., Ritts, L., Garrod, S., and Valiante, M. (1986). *The regulation of toxic and oxidant* air pollution in north America. CCH Canadian Limited, Canada.

Meng, Z. and Zhang, L. (1990). Chromosomal aberrations and sister-chromatid exchanges in lymphocytes of workers exposed to sulfur dioxide. *Mutation Res.* 241, 15-20.

Miller, F.J., Anjilvel, S., Ménache, M.G., Asgharian, B., and Gerrity T.R. (1995). Dosimetric issues relating to particulate toxicity. *Inhal. Toxicol.* **7**, 615-632.

Moolgavkar, S.H., Luebeck, E.G., Hall, T.A., and Anderson, E.L. (1995a). Air pollution and daily mortality in Philadelphia. *Epidemiol.* **6**, 476-484.

Moolgavkar, S.H., Luebeck, E.G., Hall, T.A., and Anderson, E.L. (1995b). Particulate air pollution, sulfur dioxide, and daily mortality: A reanalysis of the Steubenville data. *Inhalation Toxicology* **7**, 35-44.

Morrow, P.E., Utell, M.J., Bauer, M.A., Speers, D.M., Gibb, F.R. (1994). Effects of near ambient levels of sulfuric acid aerosol on lung function in exercising subjects with asthma and COPD. *Ann. Occup. Hyg.* **38**(suppl. 1), 933-938.

Nadeau, D., Vincent, R., Kumarathasan, P., Brook, J., and Dufresne, A. (1995a). Cytotoxicity of ambient air particles to rat lung macrophages: Comparison of cellular and functional assays. *Toxicol. In vitro* (Accepted for publication).

Nadeau, D., Vincent, R., Laviolette, M., and Brook, J. (1995b). Ambient air particles inhibit the respiratory burst of alveolar macrophages from rat and human lungs upon secondary challenge. *J. Aerosol Med.* **8**, 112.

Neas, L.M., Dockery, D.W., Koutrakis, P., Tollerud, D.J., and Speizer, F.E. (1995). The association of ambient air pollution with twice daily peak expiratory folw rate measurements in children. *Am. J. Epidemiol.* 141, 111-122.

Oberdorster, G. (1995). Airborne pollutants and acute health effects [letter]. *Lancet* 345, 799-800.

Oberdorster, G., Ferin, J., Gelein, R.M., Soderholm, S.C., and Finkelstein, J. (1992). Role of the alveolar macrophage in lung injury: Studies with ultrafine particles. *Environ. Health Perspect.* **97**, 193-199.

Oberdorster, G., Ferin, J., and Lehnert, B.E. (1994). Correlation between particle size, *in vivo* particle persistence and lung injury. *Environ. Health Perspect.* **102(Suppl.5)**, 173-179.

Oberdorster, G., Ferin, J., Soderholm, S., Gelein, R., Cox, C., Baggs, R., and Morrow, P.E. (1994). Increased pulmonary toxicity of inhaled ultrafine particles: Due to lung overload alone? *Ann. Occup. Hyg.* **38(Suppl 1)**, 295-302.

Oberdorster, G., Gelein, R.M., Ferin, J., and Weiss, B. (1995). Association of particulate air pollution and acute mortality: Involvement of ultrafine particles. *Inhalation Toxicology* **7**, 111-124.

Office of Air Quality Planning and Standards, , Strategies and Air Standards Division, , and U.S.Environmental Protection Agency, (1982). *Review of the national ambient air quality standards for particulate matter: assessment of scientific and technical information*. Research Triangle Park, NC.

Ostro, B.D., Lipsett, M.J., Wiener, M.B., and Selner, J.C. (1991). Asthmatic responses to airborne acid aerosols. *Am. J. Public Health* **81**, 694-702.

Ostro, B.D., Lipsett, M.J., Mann, J.K., Krupnick, A., and Harrington, W. (1993). Air pollution and respiratory morbidity among adults in Southern California. *Am. J. Epidemiol.* **137**, 691-700.

Ostro, B.D., Sanchez, J.M., Aranda, C., and Eskeland, G.S. (1995). Air pollution and mortality: results of a study of Santiago, Chile. J. Exposure Anal. Environ. Epidemiol. (In Press)

Ozkaynak, H. and Thurston, G.D. (1987). Associations between 1980 U.S. mortality rates and alternative measures of airborne particle concentration. *Risk Anal.* 7, 449-461.

Ozkaynak, H., Xue, J., Severance, P., Burnett, R.T., and Raizenne, M. (1995). Associations between daily mortality, ozone, and particulate air pollution in Toronto, Canada. *Inhalation Toxicology* **7**, 812.

Pepelko, W.E., Mattox, J.K., and Cohen, A.L. (1980). Toxicology of ammonium sulfate in the lung. *Bull. Environm. Contam. Toxicol.* 24, 156-160.

Ponka, A. and Virtanen, M. (1994). Chronic bronchitis, emphysema, and low-level air pollution in Helsinki. *Environ. Res.* **65**, 207-217.

Pope, III, C.A., Dockery, D.W., Spengler, J.D., and Raizenne, M.E. (1991). Respiratory health and PM₁₀ pollution. *Am. Rev. Respir. Dis.* **144**, 668-674.

Pope, III, C.A. and Dockery, D.W. (1992). Acute health effects of PM_{10} pollution on symptomatic and asymptomatic children. *Am. Rev. Respir. Dis.* 145, 1123-1128.

Pope, III,C.A., Schwartz, J., and Ransom, M.R. (1992). Daily mortality and PM₁₀ pollution in Utah valley. *Arch. Environ. Health* **47**, 211-217.

Pope, III,C.A. and Kanner, R.E. (1993). Acute effects of PM_{10} pollution on pulmonary function of smokers with mild to moderate chronic obstructive pulmonary disease. *Am. Rev. Respir. Dis.* **147**, 1336-1340.

Pope, III,C.A., Thun, M.J., Namboodiri, M.M., Dockery, D.W., Evans, J.S., Speizer, F.E., and Heath, Jr.,C.W. (1995). Particulate air pollution as a predictor of mortality in a prospective study of U.S. adults. *Am. J. Respir. Crit. Care Med.* **151**, 669-674.

Quackenboss, J.J., Krzyzanowski, M., and Lebowitz, M.D. (1991). Exposure assessment approaches to evaluate respiratory health effects of particulate matter and nitrogen dioxide. *J. Exposure Anal. Environ. Epidemiol.* **1**, 83-107.

Raabe, O.G., Wilson, D.W., Al-Bayati, M.A., Hornof, W.J., and Rosenblatt, L.S. (1994). Biological effects of inhaled pollutant aerosols. *Ann. Occup. Hyg.* **389**(suppl.1), 323-330.

Rahman, Q., Norwood, J., Oberdorster, G., and Hatch, G. (1995). Rat-human differences in macrophage oxidant production by pollutant particles. *Inhalation Toxicology* **7**, 821-822.

Raizenne, M.E., Burnett, R.T., Stern, B., Franklin, C.A., and Spengler, J.D. (1989). Acute lung function responses to ambient acid aerosol exposures in children. *Environ. Health Perspect.* **79**, 179-185.

Raizenne, M., Neas, L.M., Damokosh, A.I., Dockery, D.W., Spengler, J.D., Koutrakis, P., Ware, J.H., and Speizer, F.E. (1993). Health Effects of acid aerosols on north American Children: Pulmonary function. *Am. Rev. Respir. Dis.* **147**, A635.

Raizenne, M., Neas, L.M., Damokosh, A.I., Dockery, D.W., Spengler, J.D., Koutrakis, P., Ware, J.H., and Speizer, F.E. (1995). Health Effects of acid aerosols on north American Children: Pulmonary function. *Submitted for publication*.

Riechelmann, H., Maurer, J., Kienast, K., Hafner, B., and Mann, W.J. (1995). Respiratory epithelium exposed to sulfur dioxide-functional and ultrastructural alterations. *Laryngoscope* **105**, 295-299.

Roemer, W., Hoek, G., and Brunekreef, B. (1993). Effect of ambient winter air pollution on respiratory health of children with chronic respiratory symptoms. *Am. Rev. Respir. Dis.* 147, 118-124.

Romieu, I., Meneses, F., Sienra-Monge, J.J.L., Huerta, J., Velasco, S.R., White, M.C., Etzel, R.A., and Hernandez-Avila, M. (1995). Effects of Urban air pollutants on emergency visits for childhood asthma in Mexico City. *Am. J. Epidemiol.* 141, 546-553.

Rossi, O.V.J., Kinnula, V.L., Tienari, J., and Huhti, E. (1995). Association of severe asthma attacks with weather, pollen, and air pollutants. *Thorax* **50**, 244-248.

Rubenstein, I., Bidby, B.G., Reiss, T.F., and Boushey, H.A. (1990). Short term exposure to 0.3 ppm nitrogen dioxide does not potentiate airway-responsiveness to sulfur dioxide in asthmatic subjects. *Am. Rev. Respir. Dis.* **141**, 381-385.

Saldiva, P.H.N., King, M., Delmonte, V.L.C., Macchione, M., Parada, M.A.C., Daliberto, M.L., Sakae, R.S., Criado, P.M.P., Silveira, P.L.P., Zin, W.A., and Bohm, G.M. (1992). Respiratory alterations due to urban air pollution: An experimental study in rats. *Environ. Res.* **57**, 19-33.

Saldiva, P.H.N., Lichtenfels, A.J.F.C., Paiva, P.S.O., Barone, I.A., Martins, M.A., Massad, E., Pereira, J.C.R., Xavier, V.P., Singer, J.M., and Bohm, G.M. (1994). Association between air pollution and mortality due to respiratory diseases in children in Sao Paulo, Brazil: a preliminary report. *Environ. Res.* 65, 218-225.

Samet, J.M. and Cheng, P.-W. (1994). The role of airway mucus in pulmonary toxicology. *Environ. Health Perspect.* **102**(Suppl.2), 89-103.

Scarlett, J., Griffiths, J.M., Strachan, D.P., and Anderson, H.R. (1995). Effect of ambient levels of smoke and sulphur dioxide on the health of a national sample of 23 year old subjects in 1981. *Thorax* 50, 764-768.

Schlesinger, R.B. (1984). Comparative irritant potency of inhaled sulfate aerosols-Effects on bronchial mucociliary clearance. *Environ. Res.* **34**, 268-279.

Schlesinger, R.B. (1989). Factors affecting the response of lung clearance systems to acid aerosols: Role of exposure concentration, exposure time, and relative acidity. *Environ. Health Perspect.* **79**, 121-126.

Schlesinger, R.B., Chen, L.C., Finkelstein, I., and Zelikoff, J.T. (1990a). Comparative potency of inhaled acidic sulfates: Speciation and the role of hydrogen ion. *Environ. Res.* 52, 210-224.

Schlesinger, R.B., Gunnison, A.F., and Zelikoff, J.T. (1990b). Modulation of pulmonary eicosanoid metabolism following exposure to sulfuric acid. *Fundam. Appl. Toxicol.* **15**, 151-162.

Schlesinger, R.B., Fine, J.M., and Chen, L.C. (1992a). Interspecies differences in the phagocytic activity of pulmonary macrophages subjected to acidic challenge. *Fundam. Appl. Toxicol.* **19**, 584-589.

Schlesinger, R.B., Gorczynski, J.E., Dennison, J., Richards, L., Kinney, P.L., and Bosland, M.C. (1992b). Long-term intermittent exposure to sulfuric acid aerosol, ozone, and their combination: Alterations in tracheobronchial mucociliary clearance and epithelial secretory cells. *Exp. Lung Res.* **18**, 505-534.

Schlesinger, R.B., Gorczynski, Jr., J.E., Dennison, J., Richards, L., Kinney, P.L., and Bosland, M.C. (1992c). Long-term intermittent exposure to sulfuric acid aerosol, ozone, and their combination: Alterations in tracheobronchial mucoliliary clearance and epithelial secretory cells. *Am. Rev. Respir. Dis.* **145**, A430. (Abstr).

Schlesinger, R.B., Zelikoff, J.T., Chen, L.C., and Kinney, P.L. (1992d). Assessment of toxicologic interactions resulting from acute inhalation exposure to sulfuric acid and ozone mixtures. *Toxicol. Appl. Pharmacol.* **115**, 183-190.

Schlesinger, R.B. and Chen, L.C. (1994). Comparative biological potency of acidic sulfate aerosols: Implications for the interpretation of laboratory and field studies. *Environ. Res.* **65**, 69-85.

Schwartz, J. (1991). Particulate air pollution and daily mortality in Detroit. *Environ. Res.* 56, 204-213.

Schwartz, J. (1993). Air pollution and daily mortality in Birminham, Alabama. Am. J. Epidemiol. 137, 1136-1147.

Schwartz, J, Slater, D., Larson, T.V., Pierson, W.E., and Koenig, J.Q. (1993). Particulate air pollution and hospital emergency room visits for asthma in Seattle. *Am. Rev. Respir. Dis.* 147, 826-831.

Schwartz, J. (1994a). What are people dying of on high air pollution days. *Environ. Res.* 64, 26-35.

Schwartz, J. (1994b). PM_{10} , ozone, and hospital admissions for the elderly in Minneapolis-St. Paul, Minnesota. *Arch. Environ. Health* **49**, 366-374.

Schwartz, J. (1994c). Air pollution and hospital admissions for the elderly in Birmingham, Alabama. *Am. J. Epidemiol.* **139**, 589-598.

Schwartz, J. (1994d). Total suspended particulate matter and daily mortality in Cincinnati, Ohio. *Environ.Health Perspect.* **102**, 186-189.

Schwartz, J. (1995). Short term fluctuations in air pollution and hospital admissions of the elderly for respiratory disease. *Thorax* 50, 531-538.

Schwartz, J. and Dockery, D.W. (1992a). Increased mortality in Philadelphia associated with daily air pollution concentrations. *Am. Rev. Respir. Dis.* 145, 600-604.

Schwartz, J. and Dockery, D.W. (1992b). Particulate air pollution and daily mortality in Steubenville, Ohio. Am. J. Epidemiol. 135, 12-19.

Schwartz, J., Spix, C., Wichmann, H.E., and Malin, E. (1991). Air pollution and acute respiratory illness in five German communities. *Environ. Res.* 56, 1-14.

Schwartz, J., Dockery, D.W., Neas, L.M., Wypij, D., Ware, J.H., Spengler, J.D., Koutrakis, P.,

Speizer, F.E., and Ferris, Jr., B.G. (1994). Acute effects of summer air pollution on respiratory symptom reporting in children. *Am. J. Respir. Crit. Care Med.* **150**, 1234-1242.

Schwartz, J. and Morris, R. (1995). Air pollution and hospital admissions for cardiovascular disease in Detroit, Michigan. Am. J. Epidemiol. 142, 23-35.

Seaton, A., MacNee, W., Donaldson, K., and Godden, D. (1995). Particulate air pollution and acute health effects. *Lancet* 345, 176-178.

Shah, R., Nadeau, D., Vincent, R., Poirier, G.G., and Lagueux, J. (1995). Detection of bulky DNA adducts in normal human bronchial epithelial cells exposed to respirable urban dust particles. *Proc. Society of Toxicol. Canada* **28**.

Sheppard, D., Saisho, A., Nadel, J.A., and Boushey, H.A. (1982). Exercise increases sulfur dioxide-induced bronchoconstriction in asthmatic subjects. *Am. Rev. Respir. Dis.* **123**, 486-491.

Sherwin, R.P. and Richters, V. (1991). Influence of community air pollution on the lungs of mice. Part I: Hyperplasia and hypertrophy of type 2 cells, and increase in alveolar wall area. *Inhalation Toxicology* **3**, 37-47.

Shusterman, D.J. (1993). Polymer fume fever and other fluorocarbon pyrolysis-related syndromes. *Occupational Medicine: State of the Art Reviews* **8**, 519-531.

Soskoline, C.L., Jhangri, G.S., Siemiatycki, J., Lakhani, R., Dewar, R., Burch, J.D., Howe, G.R., and Miller, A.B. (1992). Occupational exposure to sulfuric acid in southern Ontario, Canada, in association with laryngeal cancer. *Scand. J. Work Environ. Health* **18**, 225-232.

Soyseth, V., Kongerud, J., Haarr, D., Strand, O., Bolle, R., and Boe, J. (1995). Relation of exposure to airway irritants in infancy to prevalence of bronchial hyper-responsiveness in schoolchildren. *Lancet* **345**, 217-220.

Speizer, F.E. (1989). Studies of acid aerosols in six cities and in a new multi-city investigation: design issues. *Environ. Health Perspect.* **79**, 61-67.

Speizer, F.E. and Frank, N.R. (1966). A comparison of changes in pulmonary flow resistance in healthy volunteers acutely exposed to SO_2 by mouth and by nose. *Br. J. Ind. Med.* 23, 75-79.

Spektor, D.M., Yen, B.M., and Lippmann, M. (1989). Effect of concentration and cumulative exposure of inhaled sulfuric acid on tracheobronchial particle clearance in health humans. *Environ. Health Perspect.* **79**, 167-172.

Spengler, J.D., Keeler, G.J., Koutrakis, P., Ryan, P.B., Raizenne, M., and Franklin, C.A. (1989). Exposures to acidic aerosols. *Environ. Health Perspect.* **79**, 43-51.

Spix, C., Heinrich, J., Dockery, D., Schwartz, J., Volksch, G., Schwinkowski, K., Collen, C., and Wichmann, H.E. (1993). Air pollution and daily mortality in Erfurt, East Germany. *Environ. Health Perspect.* **101**, 518-526.

Stern, B., Jones, L., Raizenne, M., Burnett, R.T., Meranger, J.C., and Franklin, C.A. (1989). Respiratory health effects associated with ambient sulfates and ozone in two rural canadian communities. *Environ. Res.* **49**, 20-39.

Stern, B.R., Raizenne, M.E., Burnett, R.T., Jones, L., Kearney, J., and Franklin, C.A. (1994). Air pollution and childhood respiratory health: Exposure to sulfate and ozone in 10 Canadian rural communities. *Environ. Res.* **66**, 125-142.

Studnicka, M.J., Frischer, T., Meinert, R., Studnicka-Benke, A., Hajek, K., and Spengler, J.D. (1995). Acidic particles and lung function in chilren. A summer camp study in the austrian alps. *Am. J. Respir. Crit. Care Med.* **151**, 423-430.

Styer, P., McMillan, N., Gao, F., Davis, J., and Sacks, J. (1995). The effect of airborne particulate matter on daily death counts. *Environ. Health Perspect.* (in press)

Suh, H.H., Koutrakis, P., and Spengler, J.D. (1993). Validation of personal exposure models for sulfate and aerosol strong acidity. *J. Air Waste Manage. Assoc.* **43**, 845-850.

Sunyer, J., Anto, J.M., Murillo, C., and Saez, M. (1991). Effects of urban air pollution on emergency room admissions for chronic obstructive pulmonary disease. *Am. J. Epidemiol.* **134**, 277-286.

Sunyer, J., Saez, M., Murillo, C., Castellsague, J., Martinez, F., and Anto, J.M. (1993). Air pollution and emergency room admissions for chronic obstructive pulmonary disease: a 5-year study. *Am. J. Epidemiol.* **137**, 701-705.

Takenaka, S., Furst, G., Heilmann, P., Heini, A., Heinzmann, U., Karg, E., Murray, A.B., Ruprecht, L., and Heyder, J. (1994). Morphologic effects of a sulfur(IV) aerosol on the nasal cavity of beagle dogs. *Toxicol. Lett.* **72**, 145-150.

Tashkin, D.P., Detels, R., Simmons, M., Liu, H., Coulson, A.H., Sayre, J., and Rokaw, S. (1994). The UCLA population studies of chronic obstructive respiratory disease: XI. Impact of air pollution and smoking on annual change in forced expiratory volume in one second. *Am. J. Respir. Crit. Care Med.* **149**, 1209-1217.

Tepper, J.S. and Lehmann, J.R. (1994). The role of surface-complexed iron in the development of acute lung inflammation and airway hyperresponsiveness. *Am. Rev. Respir. Dis.* 149, A839. (Abstr).

Thurston, G.D., Ito, K., Lippmann, M., and Hayes, C. (1989). Reexamination of London, England, mortality in relation to exposure to acidic aerosols during 1963-1972 winters. *Environ. Health Perspect.* **79**, 73-82.

Thurston, G.D., Ito, K., Kinney, P.L., and Lippmann, M. (1992). A multi-year study of air pollution and respiratory hospital admissions in three New York State metropolitan areas: results for 1988 and 1989 summers. *J. Exposure Anal. Environ. Epidemiol.* **2**, 429-450.

Thurston, G.D., Ito, K., Hayes, C.G., Bates, D.V., and Lippmann, M. (1994). Respiratory hospital admissions and summertime haze air pollution in Toronto, Ontario: Consideration of the role of acid aerosols. *Environ. Res.* **65**, 271-290.

Touloumi, G., Pocock, S.J., Katsouyanni, K., and Trichopoulos, D. (1994). Short-term effects of air pollution on daily mortality in Athens: a time-series analysis. *Int. J. Epidemiol.* 23, 1-11.

Utell, M.J., Morrow, P.E., Speers, D.M., Darling, J., and Hyde, R.W. (1983). Airway responses to sulfate and sulfuric acid aerosols in asthmatics. *Am. Rev. Respir. Dis.* **128**, 444-450.

Utell, M.J., Mariglio, J.A., Morrow, P.E., Gibb, F.R., and Speers, D.M. (1989). Effects of inhaled acid aerosols on respiratory function: the role of endogenous ammonia. *J. Aerosol Med.* **2**, 141-147.

Utell, M.J., Frampton, M.W., Morrow, P.E., Cox, C., Levy, P.C., Speers, D.M., and Gibb, F.R. (1994). Oxidant and acid aerosol exposure in healthy subjects and subjects with asthma. Part II: Effects of sequential sulfuric acid and ozone exposures on the pulmoinary function of healthy subjects and subjects with asthma. *Health Effects Institute Research Report* **70**, 37-93.

Vincent, R., Goegan, P., Johnson, G., and Brook, J. (19954). Effects of ambient air particles on xenobiotic-, metal- and stress-inducible promoter-CAT fusion genes in HepG2 cells. *Am. J. Respir. Crit. Care Med.* **151**, A267.

Waldman, J.M., Koutrakis, P., Allen, G.A., Thurston, G.D., Burton, R.M., and Wilson, W.E. (1995). Human exposures to particle strong acidity. *Inhal. Toxicol.* 7, 657-669.

Walters, S., Griffiths, P.K., and Ayres, J.G. (1994). Temporal association between hospital admissions for asthma in Birmingham and ambient levels of sulphur dioxide and smoke. *Thorax* **49**, 133-140.

Walters, S., Phupinyokul, M., and Ayres, J.G. (1995). Hospital admission rates for asthma and respiratory disease in the West Midiands: their relationship to air pollution levels. *Thorax* **50**, 948-954.

Warheit, D.B., Seidel, W.C., Carakostas, M.C., and Hartsky, M.A. (1990). Attenuation of perfluoropolymer fume pulmonary toxicity: Effect of filters, combustion method and aerosol age. *Exp. Mol. Pathol.* **52**, 309.

Warren, D.L., Guth, D.J., and Last, J.A. (1986). Synergistic interaction of ozone and respirable aerosols on rat lungs. II. Synergy between ammonium sulfate aerosol and various concentrations of ozone. *Toxicol. Appl. Pharmacol.* **84**, 470-479.

Wolff, R.K., Henderson, R.F., Gray, R.H., Carpenter, R.L., and Hahn, F.F. (1986). Effects of sulfuric acid mist inhalation on mucous clearance and on airway fluids of rats and guinea pigs. *J. Toxicol. Environ. Health* **17**, 129-142.

Wolff, R.K., Bond, J.A., Henderson, R.F., Harkema, J.R., and Mauderly, J.L. (1990). Pulmonary inflammation and DNA adducts in rats inhaling disesl exhaust or carbon black. *Inhalation Toxicology* **2**, 241-254.

Wong, C.G., Bonakdar, M., Kleinman, M.T., Chow, J., and Bhalla, D.K. (1994). Elevation of stress-inducible heat shock protein 70 in the rat lung after exposure to ozone and particle-containing atmospheres. *Inhalation Toxicology* **6**, 501-514.

Xu, X., Dockery, D.W., and Wang, L. (1991). Effects of air pollution on adult pulmonary function. *Arch. Environ. Health* **46**, 198-206.

Xu, X., Gao, J., Dockery, D.W., and Chen, Y. (1994). Air pollution and daily mortality in residential areas of Beijing, China. *Arch. Environ. Health* **49**, 216-222.

Yamada, Y., Koizumi, A., Fukuda, S., Inaba, J., Cheng, Y.S., and Yeh, H.C. (1994). Deposition of ultrafine monodisperse particles in a human tracheobronchial cast. *Ann. Occup. Hyg.* **38(Suppl 1)**, 91-100.

Yang, S.-C. and Yang, S.-P. (1994). Respiratory function changes from inhalation of pulluted air. *Arch. Environ. Health* **49**, 182-187.

Zelikoff, J.T. and Schlesinger, R.B. (1992). Modulation of pulmonary immune defense mechanisms by sulfuric acid: Effects on macrophage-derived tumor necrosis factor and superoxide. *Toxicology* **76**, 271-281.

Zelikoff, J.T., Sisco, M.P., Yang, Z., Cohen, M.D., and Schlesinger, R.B. (1994). Immunotoxicity of sulfuric acid aerosol: effects on pulmonary macrophage effector and functional activities critical for maintaining host resistanc against infectious diseases. *Toxicology* **92**, 269-286.
For copies of the 1997 Canadian Acid Rain Assessment please call Environment Canada's Enquiry Centre at 1-800-668-67667

Issued under the authority of The Minister of Environment © Minister of Supply and Services, 1997