CANADA-MANITOBA
MEMORANDUM OF AGREEMENT
for
WATER QUANTITY SURVEYS
ANNUAL REPORT 1986/87

August 1987

| · |  |  |  |  |
|---|--|--|--|--|
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |

To: Mr. R.A. Halliday

Administrator for Canada

Mr. T.E. Weber

Administrator for Manitoba

In accordance with Article XII of the Memorandum of Agreement for Water Quantity Surveys in the Province of Manitoba, signed May 16, 1975, we submit herewith the annual report for the fiscal year 1986/87.

# PROVINCE OF MANITOBA

GOVERNMENT OF CANADA

V.M. Austford

Manitoba Department of Natural Resources

R.A. Hale

Environment Canada

Members
Manitoba Coordinating Committee

|  |  | a   |
|--|--|-----|
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  | 1   |
|  |  |     |
|  |  | -   |
|  |  | 1 _ |
|  |  | i   |
|  |  |     |
|  |  | 1   |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |

#### **EXECUTIVE SUMMARY**

The Canada-Maniotba Coordinating Committee held three meetings during the year. Frequent contact was maintained between the members of the Committee and senior staff of both agencies to attend to numerous operational matters requiring immediate attention. Major items arising from the Coordinating Committee meetings were the 1987/88 construction and maintenance plan; 1986/87 expenditure estimates; financial matters related to Schedule D for 1987/88; DCP implementation plan; implementation of Lake Winnipeg Datum; CWRB's sub-office micro-computer systems; review of the winter sediment sampling program; cost recovery of fringe benefits; and the Manitoba Sediment Program Review.

Three new stations were constructed during the year and a total of 16 DCPs were installed. Construction expenditures for the hydrometric program were \$104,401.61 (federal) and \$20,184.60 (provincial). Expenditures related to the DCP implementation Plan were \$159,081.00 federal and \$76,551.75 provincial, including \$71,952.75 for work done for Manitoba Hydro. The province recovers this amount directly from Manitoba Hydro.

The federal share of 1986/87 program costs was \$945,901.00. The provincial share was \$559,643.00. A provincial carry over deficit of \$7,156.00 from 1985/86 and a 1986/87 payment of \$562,000 results in a \$4,799.00 provincial deficit to be carried over to 1987/88. Schedule D costs for the 1987/88 fiscal year are estimated at \$552,000.

|  |  |  |   | ,   |
|--|--|--|---|-----|
|  |  |  |   |     |
|  |  |  |   | 1   |
|  |  |  |   |     |
|  |  |  |   |     |
|  |  |  |   |     |
|  |  |  |   |     |
|  |  |  |   |     |
|  |  |  |   |     |
|  |  |  |   |     |
|  |  |  |   |     |
|  |  |  |   |     |
|  |  |  |   |     |
|  |  |  |   |     |
|  |  |  |   |     |
|  |  |  |   | 1   |
|  |  |  |   |     |
|  |  |  |   |     |
|  |  |  |   | 1   |
|  |  |  |   |     |
|  |  |  | 1 | 1   |
|  |  |  |   |     |
|  |  |  |   | ı   |
|  |  |  |   |     |
|  |  |  |   |     |
|  |  |  |   | 5   |
|  |  |  |   |     |
|  |  |  |   |     |
|  |  |  |   |     |
|  |  |  |   |     |
|  |  |  |   |     |
|  |  |  |   | , . |

# Table of Contents

|       |       |          |                                       |           |        |         |      |       |       |       |       |       |      |       |         | Page |
|-------|-------|----------|---------------------------------------|-----------|--------|---------|------|-------|-------|-------|-------|-------|------|-------|---------|------|
| Lette | r of  | Transmi  | ittal                                 |           |        |         |      |       |       |       |       |       | <br> |       |         | i    |
| Execu | tive  | Summary  | · · · · · · · · · · · · · · · · · · · |           |        |         |      |       |       |       |       |       | <br> |       |         | ii   |
| 1.0   | Intro | oduction | 1                                     |           |        |         |      |       |       |       |       |       | <br> |       |         | 1    |
| 2.0   | Summa | ary of ( | peration                              | al Co     | onsid  | iera    | tior | is .  |       |       |       |       | <br> |       |         | 3    |
|       | 2.1   | •        | nating Co                             |           |        |         |      |       |       |       |       |       |      |       |         | 3    |
|       | 2.2   |          | Water C                               |           |        |         | _    |       |       |       |       |       |      |       |         | 7    |
|       | 2.3   |          | etric Ope                             |           |        |         |      |       |       |       |       |       |      |       |         | 8    |
|       | 2.4   | Sedimer  | nt Operat                             | ions      |        |         |      |       |       |       |       |       | <br> |       |         | 9    |
|       | 2.5   | Constru  | ction Ac                              | tivit     | ties   |         |      |       |       |       |       |       | <br> |       |         | 10   |
|       | 2.6   | Network  | Develop                               | ment      |        |         |      |       |       |       |       |       | <br> |       |         | 11   |
|       |       | 2.6.1    | Network                               | Chang     | ges .  |         |      |       |       |       |       |       | <br> |       |         | 11   |
|       |       | 2.6.2    | Provinci                              | -         |        |         |      |       |       |       |       |       |      |       |         | 13   |
|       |       | 2.6.3    | Network                               | Plant     | ning   |         |      |       |       |       |       |       | <br> |       |         | 13   |
|       |       |          |                                       |           |        |         |      |       |       |       |       |       |      |       |         |      |
| 3.0   | Cost  | of Oper  | ration                                |           |        |         |      |       |       |       |       |       | <br> |       |         | 20   |
|       | 3.1   | •        | ion of S                              |           |        |         |      |       |       |       |       |       |      |       |         | 20   |
|       | 3.2   |          | Operati                               |           |        |         |      |       |       |       |       |       |      |       |         | 21   |
|       | 3.3   |          | stimates                              |           |        |         |      |       |       |       |       |       |      |       |         | 22   |
|       |       |          |                                       |           |        |         |      |       |       |       |       |       |      |       |         |      |
|       | App   | endices  | 2                                     |           |        |         |      |       |       |       |       |       |      |       |         |      |
| Annen | dix 1 |          | · · · · · · · · · · ·                 |           |        |         |      |       |       |       |       |       |      |       |         | 29   |
|       |       |          | of Agreem                             |           |        |         |      |       |       |       |       |       |      |       |         | 30   |
| I-2   |       |          | 1986/87                               |           |        |         |      |       |       |       |       |       |      |       |         | 37   |
| I-3   |       |          | Annual P                              |           |        |         |      |       |       |       |       |       |      |       |         | 59   |
| I-4   |       |          | Procedur                              |           |        |         |      |       |       |       |       |       | <br> |       |         |      |
| _     |       |          | yments .                              |           |        |         |      |       |       |       |       |       | <br> |       |         | 61   |
|       |       |          | delines                               |           |        |         |      |       |       |       |       |       | <br> |       |         | 0.2  |
|       |       |          | Provinci                              |           |        |         | _    |       |       |       | er    |       |      |       |         |      |
|       |       |          | vey Stat                              |           |        |         |      |       |       |       |       |       |      |       |         | 62   |
|       |       |          | 1986/87                               |           |        |         |      |       |       |       |       |       |      |       |         | 65   |
| 1-0   | Sched | iule D,  | 1900/0/                               |           |        |         |      | • • • |       |       | • • • |       | <br> |       |         | 03   |
| Annen | div T | т        |                                       |           |        |         |      |       |       |       |       |       |      |       |         | 66   |
| II-1  |       |          | rogram Co                             |           |        |         |      |       |       |       |       |       |      |       |         | 67   |
| 11-1  | Deca  | illed II | ogram co                              | 363 1     | . 9007 | 0,      |      | • • • |       |       |       |       | <br> | • • • |         | 0,   |
| Annon | Aiv T | тт       |                                       |           |        |         |      |       |       |       |       |       |      |       |         | 80   |
| III-1 | Cha   | nana to  | Schedul                               | · · · · · | 1027   | /88     |      | • • • | • • • | • • • | • • • | • • • | <br> | • • • |         | 81   |
| III-2 |       |          | ), 1987/8                             |           |        |         |      |       |       |       |       |       |      |       |         | 82   |
| 111-2 | SCI   | edute D  | , 190//0                              |           |        | • • • • |      | • • • | • • • | • • • | • • • | • • • | <br> | • • • | • • • • | 02   |
| Appen | dix I | v        |                                       |           |        |         |      |       |       |       |       |       | <br> |       |         | 84   |
| IV-1  |       |          | Station                               |           |        |         |      |       |       |       |       |       |      |       |         |      |
|       |       | •        | n the 19                              |           |        |         |      |       |       |       |       |       | <br> |       |         | 85   |

|          |                                                                                                         | rage |
|----------|---------------------------------------------------------------------------------------------------------|------|
|          | Figures                                                                                                 |      |
| 1.       | Network Changes Effective April 1, 1986                                                                 | 12   |
| 2.       | Historical Development of Hydrometric Stations in Manitoba                                              | 16   |
| 3.       | Hydrometric Stations Ranked by Drainage Area                                                            | 17   |
| 4.       | Gauging Station Maturity, April 1, 1987                                                                 | 18   |
| 5.       | Historical Summary of Station Classification, on April 1st                                              | 19   |
| 6.       | Historical Average Station Unit Cost in Manitoba                                                        | 26   |
| 7.       | Historical Average Station Unit Cost in Manitoba                                                        |      |
|          | ( O & M and Capital Only)                                                                               | 27   |
| 8.       | Historical Average Station Unit Cost                                                                    |      |
|          | in Manitoba (1975 Dollars)                                                                              | 28   |
|          | <u>Tables</u>                                                                                           |      |
| 1.<br>2. | Canada-Manitoba Water Quantity Program Cost Summary 1986/87 Canada-Manitoba Water Quantity Program Cost | 23   |
|          | Share Summary 1986/87                                                                                   | 24   |
| 3.       | Summary of Hydrometric and Sediment Station Units                                                       | 25   |
| 4.       | Calculation of Station Unit Salary Cost                                                                 | 68   |
| 5.       | Detailed Operation and Maintenance Cost Summary                                                         | 69   |
| 6.       | Calculation of Station Unit Operation and Maintenance Cost                                              | 73   |
| 7.       | Sediment Sample Laboratory Analysis Cost Summary                                                        | 74   |
| 8.       | Data Processing Cost Summary                                                                            | 75   |
| 9.       | Vehicle Depreciation                                                                                    | 76   |
| 10.      | Capital Depreciation Unit Cost Summary                                                                  | 77   |
|          | Construction Program Cost Summary                                                                       | 78   |
| 12.      | Manitoba DCP Implementation Cost Summary                                                                | 79   |

1

1 1

|  |  |  | ١      |
|--|--|--|--------|
|  |  |  |        |
|  |  |  | 1      |
|  |  |  |        |
|  |  |  | , (    |
|  |  |  |        |
|  |  |  |        |
|  |  |  |        |
|  |  |  | ,      |
|  |  |  | `<br>• |
|  |  |  |        |
|  |  |  | 1      |
|  |  |  |        |
|  |  |  |        |
|  |  |  |        |
|  |  |  |        |
|  |  |  |        |
|  |  |  |        |
|  |  |  |        |
|  |  |  | _      |
|  |  |  |        |

#### INTRODUCTION

This is the 12th Annual Report summarizing the activities of the

Canada-Manitoba Coordinating Committee established by Memorandum of Agreement
in 1975. The Agreement (Appendix I) includes four schedules. Schedule A is a
list of active water quantity stations operated in Manitoba under the terms of
the Agreement showing their responsibility classification as "Federal",

"Federal-Provincial" or "Provincial". Schedule B defines items that are to be
included for cost-sharing under the Agreement while Schedule C describes
procedures for computing annual payments. Schedule D shows the annual
transfer payment from Manitoba to Canada. Schedules A to C are attached as
Appendix I (I-2 to I-4). The guidelines for designating Federal and
Provincial responsibility for Water Quantity Survey Stations in Schedule A are
contained in Appendix I (I-5). Schedule D for 1986/87 is presented in
Appendix I (I-6). Detailed station and financial information required for
computing shareable costs are included in Appendix II.

The Agreement is administered by the Director of Inland Waters and Lands,
Western and Northern Region for Canada, and the Director of the Water
Resources Branch for Manitoba. The Administrators in turn appoint a
Coordinating Committee to plan and review network operations, to review
Schedule A and to approve the annual construction program. The Coordinating
Committee also prepares Schedule D for approval by the Administrators.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |   | Ì        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|---|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |   | -        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |   |          |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |   | <b>^</b> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  | y | 1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |   |          |
| a a constant of the constant o |  |  |   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |   | )        |

The report contains brief summaries from the three Canada-Manitoba

Coordinating Committee meetings that were held in 1986/87 as well as a summary

of surface water conditions, hydrometric, sediment, construction activities

and hydrometric network changes which occurred in 1986/87.

Details of the cost-sharing arrangements for 1986/87 are provided in the report. The federal share of 1986/87 program costs was \$945,901.00; the provincial share was \$559,643.00. A provincial deficit carryover of \$7,156.00 from 1985/86 and a 1986/87 payment of \$562,000.00 results in a provincial deficit of \$4,799.00 for 1986/87. Program costs for 1987/88 are estimated at \$552,000 in Schedule D which includes \$40,900.00 for the DCP Implementation Program.

|  |  |  | Ÿ. |
|--|--|--|----|
|  |  |  | V  |
|  |  |  |    |
|  |  |  |    |
|  |  |  | ř  |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  | ,  |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  | ** |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |
|  |  |  |    |

#### 2.0 SUMMARY OF OPERATIONAL CONSIDERATIONS

#### 2.1 COORDINATING COMMITTEE MEETINGS

The Canada-Manitoba Coordinating Committee held three meetings in 1986/87. The highlights of the meetings are included in this section.

Canada-Manitoba Coordinating Committee Meeting May 15, 1986

Schedule D for 1986/87 equal to \$552,000 which had been signed by Mr. Weber and Mr. Halliday was presented at the meeting. The final cost summary for 1985/86 was not available for the meeting, however it was noted that due to the timing and nature of spring break-up in southern Manitoba the provincial share was expected to be higher than the Schedule D total of \$552,000.

The 1986/87 Construction Plan was reviewed and a number of changes were proposed. The most significant change was the relocation of the Seine River near Prairie Grove station due to bridge construction at the present location. CWRB reported that two of the 15 DCP sites were already installed and operating. MWRB designated Rivers Reservoir as the site for the DCP system that was purchased in 1985/86. CWRB indicated that two Telemark II Data Loggers would be installed at Lake Winnipegosis at Winnipegosis and Saskatchewan River at The Pas for a one year trial period in order to evaluate these units.

|   |  |  |   | ī   |
|---|--|--|---|-----|
|   |  |  |   |     |
|   |  |  | Ÿ | V   |
|   |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   |     |
| , |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   | Ä   |
|   |  |  |   | T . |
|   |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   | r   |
|   |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   | *   |
|   |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   |     |
|   |  |  |   | h.  |
|   |  |  |   |     |
|   |  |  |   |     |

CWRB reported that the new microcomputer system to be used for hydrometric data computations will be installed at The Pas Sub-office during the week of June 16-20. Installation of the same system at the Thompson Sub-office will be delayed until suitable office accommodations can be acquired. The new systems will allow each sub-office to complete all computations in-house.

Mr. Hale outlined the Ecological Monitoring Program that was being implemented by federal agencies in response to the Northern Flood Agreement (NFA). Treasury Board had recently approved \$1,768,000.00 to be spent over the next five years to implement this program in northern Manitoba. Mr. Hale has been assigned the duties of overall project coordinator. Some of the proposed projects which may impact on the hydrometric network in the north are:

- installation of an accoustic flow meter at Churchill River at South Bay;
- 2) upgrade of the G.S. of C. vertical control network in the area; and
- 3) assessment of the existing hydrometric network in the area.

Mr. Hale will provide reports on the progress of NFA activities at future meetings.

Canada - Manitoba Coordinating Committee Meeting October 15, 1986

|  |  |  |  | r |
|--|--|--|--|---|
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  | * |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  | - |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |

CWRB reported that there was a provincial deficit of \$7156.00 in fiscal year 1985/86 and this would be recovered in the 1986/87 fiscal year. The other factor that may affect the 1986/87 program costs is the back pay totalling \$40,000.00 that was a result of a recent contract settlement with CWRB technical staff.

The 1986/87 Construction and DCP Implementation Plans are on schedule and within the allotted budget. The decision was made to operate Seine River near Prairie Grove as a seasonal station and upgrade to electrical power at the site to ensure that spring water level record can be collected.

CWRB reported that the Ottawa Sediment Survey Section is sponsoring a Manitoba Sediment Workshop on November 18 and 19 in Winnipeg. A total of 80 participants are expected to attend.

The USGS has constructed a new sheet pile weir at Souris River near Westhope. This structure will enable USGS to accurately monitor discharges at the North Dakota - Manitoba boundary during the June 1 to October 31 period when a minimum of 0.566 cms (20 cfs) must be maintained.

CWRB indicated that the recommendations of the Lake Winnipeg Datum report would be implemented. All affected stations would be referenced to the Lake Winnipeg Datum in the 1986 Surface Water Data Publication and all real time stations would be converted by April 1, 1987.

| , |  |  |  |   |   |
|---|--|--|--|---|---|
|   |  |  |  |   | ~ |
|   |  |  |  |   |   |
|   |  |  |  |   |   |
|   |  |  |  |   |   |
|   |  |  |  |   |   |
|   |  |  |  |   |   |
|   |  |  |  |   |   |
|   |  |  |  | v | 1 |
|   |  |  |  |   |   |
|   |  |  |  |   | 4 |
|   |  |  |  |   |   |
|   |  |  |  |   |   |
|   |  |  |  |   |   |
|   |  |  |  |   |   |
|   |  |  |  |   |   |

The topic of Cost Recovery of Fringe Benefits was dealt with briefly at the meeting. MWRB stated that any change that would increase the provincial share of program costs would be reviewed very carefully.

Canada - Manitoba Committee Meeting February 17, 1987

\$562,000.00. Therefore the last quarter billing by CWRB will reflect this new total. The total for Schedule D in 1987/88 was estimated at \$552,000.00. CWRB was to forward the draft of Schedule D to MWRB for their review by March 1, 1987.

The Committee approved the construction of a new provincial water level station at Lake Minnewasta near Morden. The real time equipment from the Grass River above Wekusko Falls would be installed at the new site. The remote provincial water level station at Wintering Lake at Thicket Portage was approved for discontinuation effective December 31, 1986.

MWRB had indicated that there was sufficient data available to meet their long term needs at this site.

It was agreed that Oak River near Rivers and Oak River at Shoal Lake will be operated on a seasonal basis effective March 1, 1987. Mr. Frank Penner of MWRB distributed a status report on the Manitoba Sediment Program Review. This is a joint report with Ted Yuzyk of CWRB's Ottawa Sediment Section. The recommendations of this review will be distributed prior to the fall Coordinating Committee Meeting so that detailed discussion can take place at the meeting.

|  |  | ~  |
|--|--|----|
|  |  |    |
|  |  |    |
|  |  |    |
|  |  | i. |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |
|  |  |    |

#### 2.2 SURFACE WATER CONDITIONS

By April 1, 1986, spring runoff due to snowmelt was well underway in southern Manitoba. Both the Red River Floodway and Portage Diversion were utilized to reduce potential flooding problems. During the rapid snowmelt in early April, localized precipitation events of up to 25 mm combined with river ice jamming did create flooding problems in the Interlake area. In particular, the Fisher River and Icelandic River basins were affected. The lack of significant precipitation in early April over most of the District resulted in most rivers, large and small, experiencing flows due to snowmelt slightly below or near the forecasted median values. The situation was quickly reversed during the last 12 days of April when much above normal rainfall over southern areas of the district resulted in rapid increases in flow. The southwestern area of Manitoba, and the Dauphin and Ste.Rose du Lac areas were hard hit by flooding.

In northwestern Manitoba, snowmelt runoff was a major event. Record high discharge measurements were attained at many sites. For the Seal River basin, a number of long term daily maximum and maximum instantaneous values for the period of record were exceeded.

By mid June flows were generally in recession except for the Winnipeg
River watershed. The severe flooding in Alberta and Saskatchewan on the
North Saskatchewan River in July did not have a major impact on the
Saskatchewan River in Manitoba. Most of the flood flows were stored in

upstream reservoirs in Saskatchewan, significantly reducing the flood peaks. For the period July to October precipitation was near normal. The below average precipitation during August and October was somewhat balanced by above average precipitation in July and September.

A near record blizzard struck southern Manitoba November 7 to 9. This winter blizzard equalled Winnipeg's great March snowstorm of 1966. The storm dumped snowfall amounts of 35 to 50 centimetres over most of the area.

Winter river flows, and lake and reservoir water levels were near normal, although the winter of 1986/87 from December to March will be remembered as one of the mildest on record, which it was. Winnipeg and vicinity established a record warm winter season with a mean temperature of  $-9^{\circ}$ C over the December to February period. This eclipsed the previous record held in 1930/31 of  $-10.1^{\circ}$ C.

The above normal temperatures continued into March with precipitation being scattered in the form of rain. Snowmelt runoff began the third week of March in the upper Souris, Dauphin and Neepawa areas but the general 1987 spring runoff was awaiting warmer temperatures at month end.

## 2.3 HYDROMETRIC OPERATIONS

A total of 216 discharge and 84 water level stations were operated by

CWRB during 1986/87. The network continued to be relatively stable with only a net four station increase from the 1985/86 program.

Approximately 19 percent of the stations are designated as remote access which is above the national average. The 84 water level stations are a significant proportion of the network at approximately 28 percent. The distribution of the operational periods is 47 percent seasonal, 1 percent miscellaneous and 52 percent continuous.

Field survey positions were understaffed by one person at year end.

Person year utilization for hydrometric and sediment network operation was 19.9 out of 21 assigned for field operations. Approximately 33 percent of the hydrometric field staff participated in the Career Development Program for Hydrometric Survey Technicians. Three individuals graduated from the program during the year. The number of staff remaining in the program is the lowest in the past five years, a reflection of recent low staff turnover.

### 2.4 SEDIMENT OPERATIONS

A total of twenty one sediment stations were operated during 1986/87.

Sixteen stations were classified as full program stations and five as miscellaneous stations. Sampling at both types of stations was conducted on a discharge weighted basis following established sediment sampling guide programs. Sediment observers were used at fifteen of the

full program stations to collect depth integrated sediment samples. All sediment samples were analyzed at the Western and Northern Region sediment laboratory in Regina.

## 2.5 CONSTRUCTION ACTIVITIES

Forty-two projects were completed as part of the regular construction program and sixteen as part of the DCP Implementation Program. Of the forty-two regular projects, twenty required upgrading with the remaining twenty-two requiring maintenance. Three new stations were constructed as part of the DCP Implementation Program. The total cost of the regular construction program was \$124,586.21 (excluding instrumentation). The total DCP Implementation Program cost was \$235,632.75. The respective agency shares were: CWRB - \$159,081.00, MWRB - \$4,599.00 and Manitoba Hydro - \$71,952.75. Specific details on the 1986/87 Construction program can be found in the Contruction Upgrading and Maintenance 1986/87 Annual Report.

Station upgrading consisted of insulating five walk-in shelters and wells, providing power to nine shelters, constructing three controls, one cableway, one bank installation and upgrading electrical facilities at two sites. Station maintenance consisted mainly of repairing functional wells, electrical repairs, repairing cableways and dismantling gauging structures.

It has been recognized by both parties that a significant influx of funding will be necessary to upgrade the provincial and federal-provincial hydrometric stations in Manitoba. The physical condition of these stations has continued to deteriorate. Of the twenty-four upgrading projects completed in 1986/87 at hydrometric stations, five were at federal-provincial stations and one was at a provincial station.

The 1986/87 construction program was completed under the direction of the Construction Engineer and Construction Supervisor with assistance from a summer student (two months), a term construction assistant (five months) and Water Survey of Canada field staff.

#### 2.6 NETWORK DEVELOPMENT

## 2.6.1 Network Changes for 1986/87

Schedule A of the Memorandum of Agreement identifies the operational and financial responsibility for hydrometric stations that comprise the water quantity network and are active on April 1 of each year. Schedule A also shows the type of data collected and the period of operation. Decisions regarding changes to Schedule A are made by the Coordinating Committee with reference to the national station designation guidelines. Network changes from the preceding year (1985/86) are shown on Figure 1 and are summarized as follows:

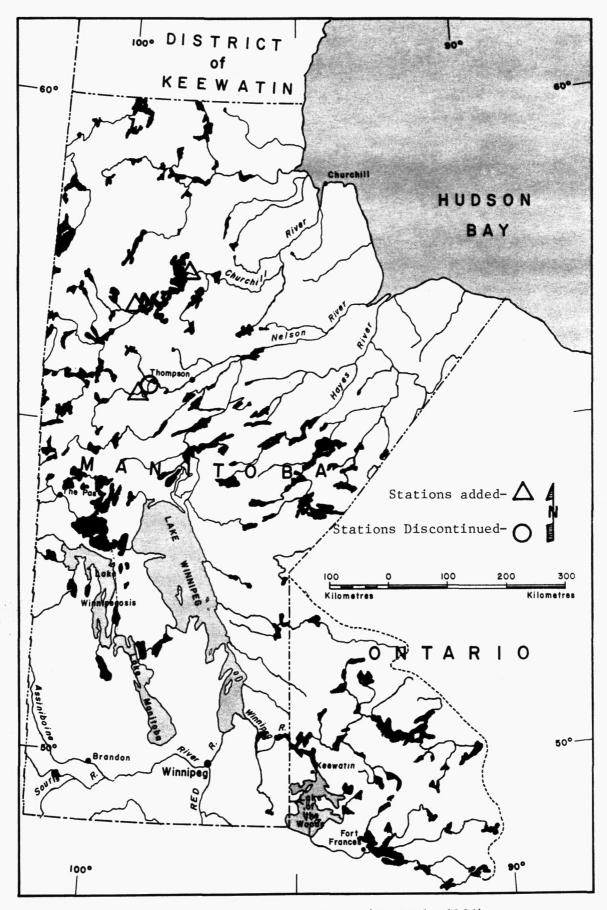



Figure 1 Network Changes (April 1, 1986)

Stations Added to the Network

- 1) 05TE002 Burntwood River above Leaf Rapids Federal-Provincial
- 2) 06EC006 Southern Indian Lake at Missi Falls Provincial
- 3) 06EC007 Southern Indian Lake near Opachuanau Lake Provincial

Stations Discontinued

1) 05TE001 Burntwood River above Threepoint Lake Federal-Provincial

Station Classification Changes

- 1) 050G009 Domain Drain near Domain Contributed to Federal-Provincial
- 2) 050G010 Mannes Drain near Sanford Contributed to Federal-Provincial

## 2.6.2 Provincial Network

In addition to participating in the operation of the federal hydrometric network, the Province of Manitoba operates numerous hydrometric stations which are not included in the hydrometric agreement. The majority are used to operate provincial water control structures, or to supplement the federal network during peak flow events. During 1986/87 the province operated a total of 125 water level stations. Of these, 11 stations were operated on a continuous basis while the remainder were classified as seasonal. A total of 42 stations were published as contributed in the 1986 CWRB Surface Water Data Publication. A total of \$119,000 was spent on the operation of the provincial hydrometric network in 1986/87.

## 2.6.3 Network Planning

The Water Resources Branch, Western and Northern Region network evaluation and planning project which was initiated in 1984

concluded with the distribution of the committee's reports. The regional summary report made a number of recommendations to the Regional Director on the streamflow and water level network and on the sediment network. The report on the Manitoba and Northwestern Ontario District documented the activities of the study team, the analysis of the questionnaires, reviews of previous studies, comparisons to World Metereorological Organization (WMO) station density criteria and consideration of water inventory requirements.

The Manitoba Sediment Issues Workshop held on November 18 and 19 was attended by 58 representatives from consulting firms, universities and various government agencies. The objective of the workshop was to identify sediment issues and comment on the existing network of stations. A number of recommendations were made regarding the direction of the sediment program in terms of agriculture, fisheries, water quality, water resource engineering and interagency cooperation. The proceedings of the workshop were published and distributed in March, 1987.

A sediment station analysis report was completed for the Pembina River near Windygates station by Hydrocon Engineering. The final report contains a variety of data summaries and graphs for the data collected between 1962 and 1984. The report concludes that the data sufficiently describes the present sediment regime and

|  |  | 8. |  |
|--|--|----|--|
|  |  |    |  |

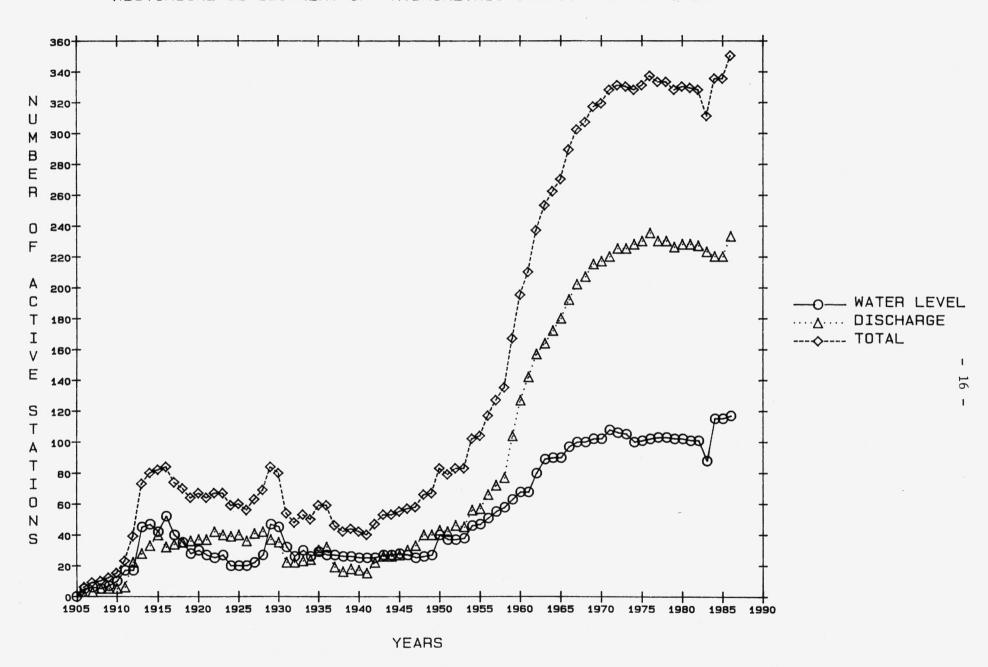
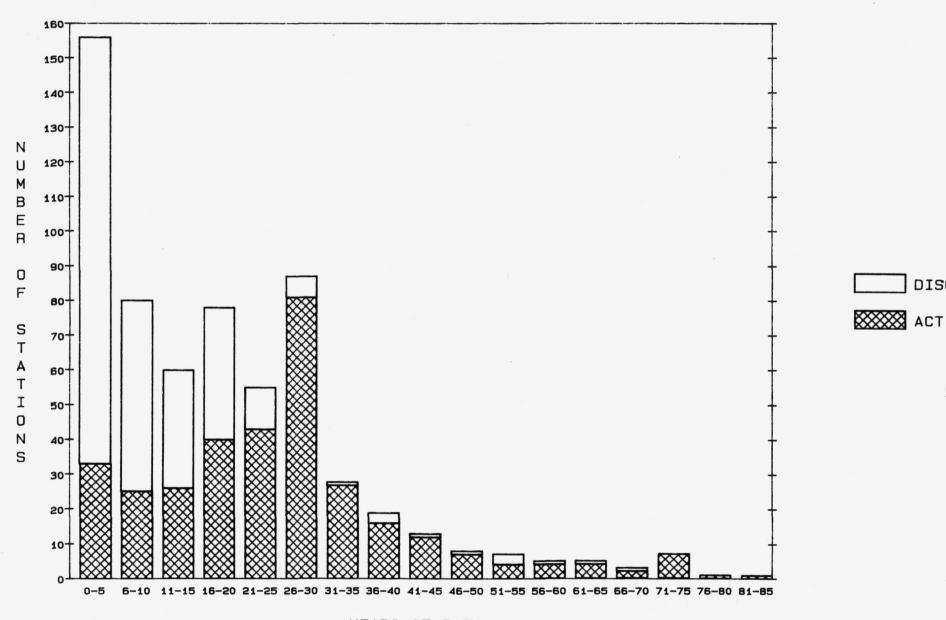
that the detailed sediment data collection program can be suspended. The report also recommends that a miscellaneous sediment data collection program be instituted to study organic contaminant loading, sediment concentrations at low and high flows and particle size at low flows. The report will be printed and distributed in 1987/88.

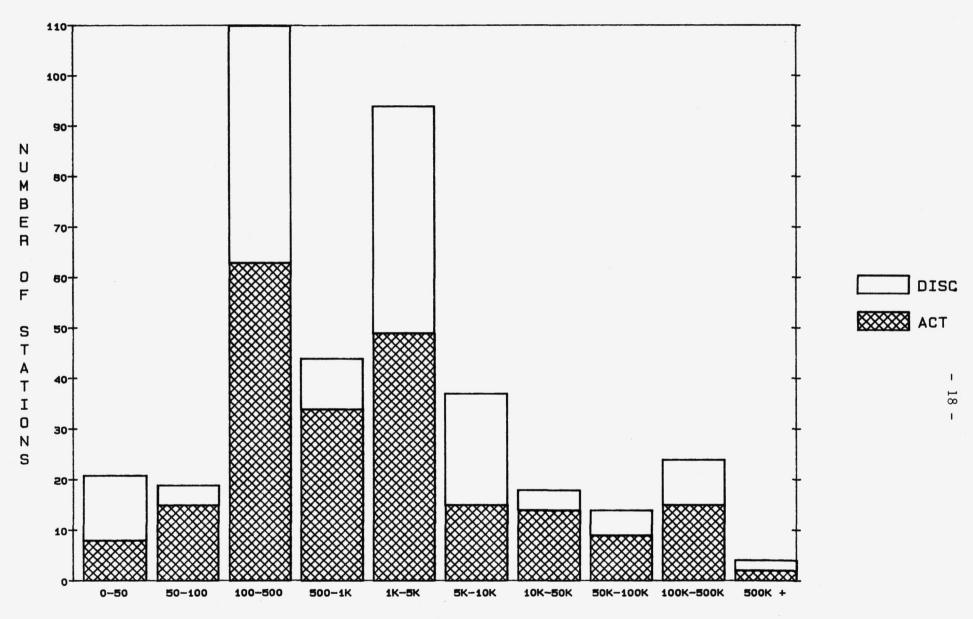
The winter suspended sediment data for 11 stations was analyzed to follow up on previous suggestions to discontinue all winter sampling. Based on the criteria of winter sediment loads being less than 7% of the annual load, concentrations less than 50 mg/L and loads having low temporal variability; winter sampling was discontinued at eight stations and retained at two stations. Due to the limited amount of data available for the Burntwood River near Thompson it was recommended that a regular sampling program be instituted if there is a defined need for winter sediment data.

The historical development of the Manitoba hydrometric network is shown on Figure 2. The distribution of the network by drainage area and maturity is shown on Figures 3 and 4. The historical development of the network with respect to station classification is shown on Figure 5.

| • |  |  |
|---|--|--|
|   |  |  |
|   |  |  |
|   |  |  |

FIGURE 2
HISTORICAL DEVELOPMENT OF HYDROMETRIC STATIONS IN MANITOBA



FIGURE 3 GAUGING STATION MATURITY-APRIL 1, 1987



DISC

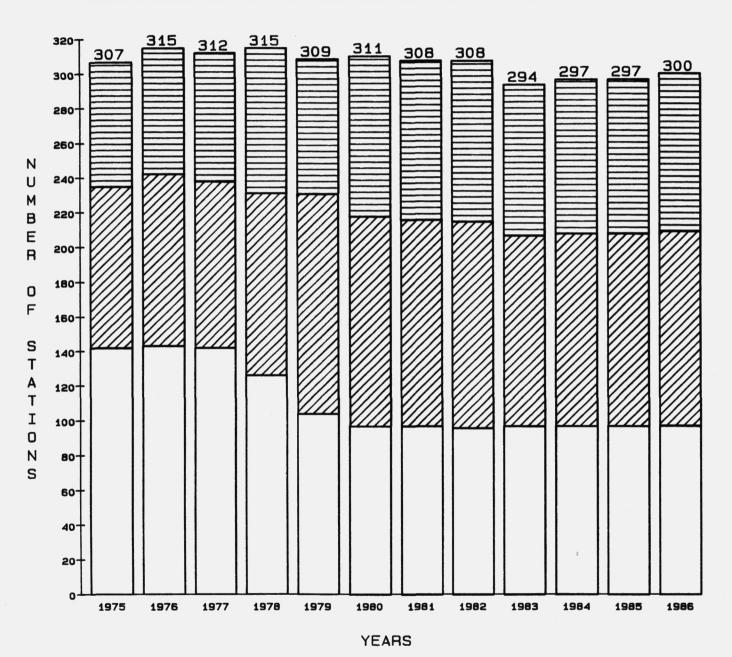

YEARS OF DATA

FIGURE 4
HYDROMETRIC STATIONS RANKED BY DRAINAGE AREA



DRAINAGE AREA sq.km.

FIGURE 5
HISTORICAL SUMMARY OF STATION CLASSIFICATION ON APRIL 1st



PROVINCIAL
FED-PROV
FEDERAL

9 -

|  | • |  |  |
|--|---|--|--|
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  | * |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |

3.0

### COST OF OPERATION

### 3.1 DERIVATION OF STATION UNITS

The calculation of station units (Table 1) is derived from Schedule A of the Memorandum of Agreement which lists the hydrometric network stations existing and operating as of April 1, 1986. Total operating costs of hydrometric and sediment stations vary significantly according to period of operation and type of record produced. Weighting factors have been developed to account for these differences.

The standard weighting factors used by the Water Resources Branch in the Western and Northern Region to calculate program costs for remote and conventional stations are:

| 12 month flow station (Q12)        | - 1.00 |
|------------------------------------|--------|
| 8 month flow station (Q8)          | - 0.75 |
| 12 month water level station (H12) | - 0.40 |
| 8 month water level station (H8)   | - 0.25 |
| 12 month sediment station (S12)    | - 1.00 |
| 8 month sediment station (S8)      | - 0.75 |
| Miscellaneous record (M)           | - 0.00 |

Table 3 contains the summary of hydrometric and sediment station units for 1986/87.

#### 3.2 COST OF OPERATION: 1986/87

Station unit costs and total network cost for salary, operations and maintenance, and capital for 1986/87 are derived from detailed program costs contained in Appendix II.

Tables 1 and 2 show the station unit costs and cost share summary for 1986/87. Figure 6 shows the changes in station unit costs since 1979/80. Figure 7 shows the changes in unit costs for 0 & M and capital and Figure 8 shows the historical station unit costs in 1975 dollars. The provincial share of the program cost in 1986/87 was \$559,643. Combined with a payment of \$562,000 and a 1985/86 deficit of \$7,156 a net deficit of \$4,799 will be applied to the 1987/88 provincial invoice.

Salaries for the hydrometric program increased significantly over the 1985/86 values. This was due to the contract settlement for the technical category combined with a large backpay award. The extremely large increase in remote salaries is also due to the fact that the remote operation was almost fully staffed for 1986/87 and there were a number of Career Development Program promotions in the technical category during the year. In previous years there were vacancies and the technicians were classified in more junior categories.

The O & M portion of the program showed a slight decrease during 1986/87. This was due in part to the nature and timing of spring

|  |  |  | ) |
|--|--|--|---|
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  | ( |
|  |  |  | 3 |
|  |  |  |   |

breakup in 1986; adjustment of remote winter trip schedules; and the reduction in field trips as a result of the DCP Implementation Program.

Increases in the capital depreciation portion of the station unit cost resulted from the acquisition of new vehicles. Although the inventory was unchanged in 1986/87, additions to the (capital equipment) inventory in 1985/86 resulted in an increase in the average 1986/87 depreciation cost for this category.

### 3.3 COST ESTIMATES: 1987/88

Changes affecting the 1987/88 Schedule A and the computation of the 1987/88 Schedule D are included in Appendix III. Schedule D for 1987/88 is \$552,000.

|  |  | , |  | 1 |
|--|--|---|--|---|
|  |  |   |  |   |
|  |  |   |  |   |
|  |  |   |  |   |
|  |  |   |  |   |
|  |  |   |  |   |
|  |  |   |  |   |
|  |  |   |  |   |

# TABLE 1 CANADA-MANITOBA WATER QUANTITY PROGRAM COST SUMMARY 1986/87

Part A - Unit Cost Summary

| Station Category                         |            | No. of<br>Station<br>Units | Salary<br>\$ | Operations<br>\$ | Capital<br>Depreciation | Total   |
|------------------------------------------|------------|----------------------------|--------------|------------------|-------------------------|---------|
| 1. Hydrometric Convention                | onal Acces | s 1.0                      | 2,642        | 1,252            | 306                     | 4,200   |
| 2. Hydrometric Remote A                  | ccess      | 1.0                        | 4,585        | 3,628            | 306                     | 8,519   |
| 3. Sediment Program (incremental cost on | ly)        | 1.0                        | 2,378        | 515              | 122                     | 3,015   |
| *not including sediment                  | lab costs  | 1                          |              |                  |                         |         |
|                                          | Pa         | rt B - <u>To</u>           | tal Cost Su  | mmary            |                         |         |
| Station Category                         | No. of     | No. of                     | Salary       | Operations       | Capital                 | Total   |
| Classification                           | Stations   | Station<br>Units           | \$           | \$               | Depreciation            | #       |
| <u>Federal</u>                           |            |                            |              |                  |                         |         |
| Conventional Access                      | 72         | 57.15                      | 150,990      | 71,552           | 17,488                  | 240,030 |
| Remote Access                            | 25         | 20.05                      | 91,929       | 72,741           | 6,135                   | 170,806 |
| Sediment Program                         | 13         | 11.50                      | 27,347       | 5,925            | 1,403                   | 34,638  |
| (incremental cost only)                  |            |                            | 270,266      | 150,216          | 25,026                  | 445,508 |
| Federal-Provincial                       |            |                            |              |                  |                         |         |
| Conventional Access                      | 87         | 64.15                      | 169,484      | 80,316           | 19,630                  | 269,430 |
| Remote Access                            | 25         | 16.60                      | 76,111       | 60,225           | 5,080                   | 141,416 |
| Sediment Program                         | 5          | 1.75                       | 4,162        | 901              | 214                     | 5,271   |
| (incremental cost only)                  |            |                            | 249,757      | 141,442          | 24,924                  | 416,123 |
| Provincial                               |            |                            |              |                  |                         |         |
| Conventional Access                      | 85         | 52.35                      | 138,309      | 65,542           | 16,019                  | 219,870 |
| Remote Access                            | 6          | 2.40                       | 11,004       | 8,707            | 734                     | 20,446  |
| Sediment Program                         | 5          | 2.25                       | 5,351        | 1,159            | 275                     | 6,777   |
| (incremental cost only)                  |            |                            | 154,664      | 75,408           | 17,028                  | 247,100 |

Totals

<u>674,687</u> <u>367,066</u> <u>66,979</u> <u>1,108,731</u>

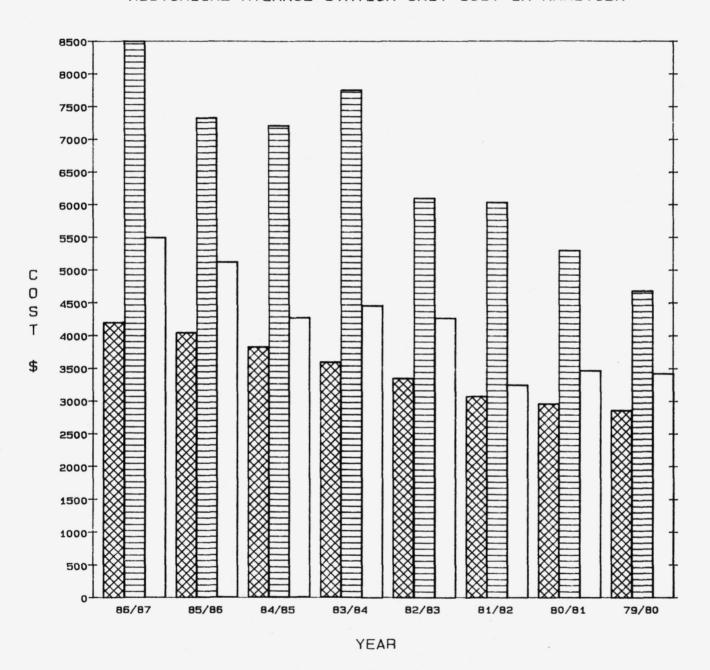
|  |  |  | , |
|--|--|--|---|
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  | ı |
|  |  |  | , |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |

### TABLE 2

# CANADA-MANITOBA WATER QUANTITY PROGRAM COST-SHARE SUMMARY 1986/87

| FEDERAL SHARE HYDROMETRIC COSTS                                |     | \$653,570 |
|----------------------------------------------------------------|-----|-----------|
| FEDERAL SHARE SEDIMENT LAB COSTS                               | =   | 28,848    |
| FEDERAL DCP IMPLEMENTATION PROGRAM CONSTRUCTION COSTS          | =   | 12,661    |
| FEDERAL CONSTRUCTION COST                                      | =   | 104,402   |
| FEDERAL INSTRUMENTATION COST                                   | =   | 146,420   |
| TOTAL FEDERAL SHARE                                            | = ' | \$945,901 |
|                                                                |     |           |
| PROVINCIAL SHARE HYDROMETRIC COSTS                             |     | \$455,162 |
| PROVINCIAL SHARE SEDIMENT LAB COSTS                            | =   | 8,794     |
| PROVINCIAL CONSTRUCTION COST                                   | =   | 20,185    |
| PROVINCIAL INSTRUMENTATION COSTS                               | =   | 4,350     |
| SATELLITE REAL TIME HYDROMETRIC NETWORK                        | , = | 72,202    |
| PROUTINGTAL OPERATE FOR OPERATING AN O MONTH LIAMER            |     |           |
| PROVINCIAL CREDIT FOR OPERATING AN 8 MONTH WATER LEVEL STATION | =   | - 1,050   |
| TOTAL PROVINCIAL SHARE                                         |     | \$559,643 |
| Provincial payment received for 1986/87 operating year         |     | \$554,844 |
| Adjustment to be made to 1987/88 provincial invoice            |     | \$ 4,799  |

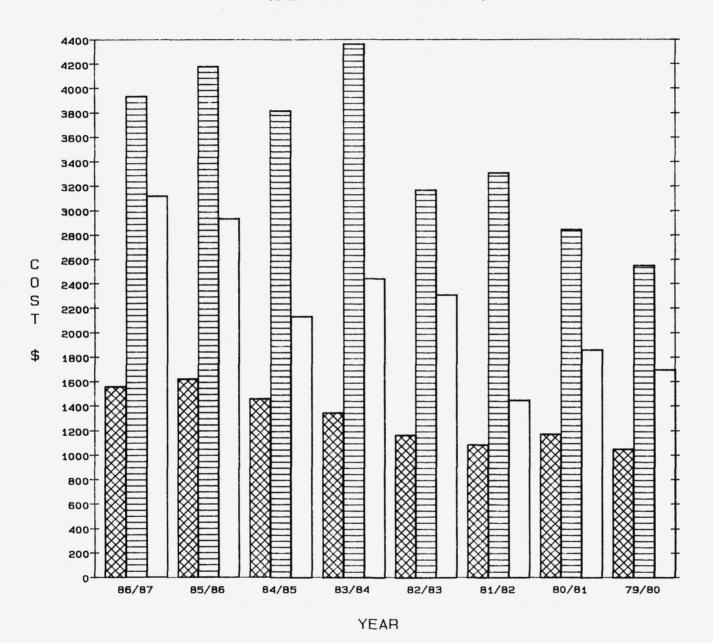
TABLE 3


1 - 1986-87

# HYDROMETRIC SUMMARY (STATION UNITS) OPERATED BY WATER SURVEY OF CANADA

| FEDERAL      | CONV                         | ENTIONAL                              |                            | REMOTE                                                                 |         |
|--------------|------------------------------|---------------------------------------|----------------------------|------------------------------------------------------------------------|---------|
| FEDERAL      | DISCHARGE(C)                 |                                       | 00 DISC                    | HARGE(C) 17 X 1.00                                                     | = 17.00 |
|              | DISCHARGE(S)                 |                                       |                            | HARGE(S) 0 X 0.75                                                      |         |
|              | DISCHARGE(M)                 |                                       |                            | HARGE(M) 0 X 0.00                                                      |         |
|              | WATER LEVEL(C)               |                                       |                            | R LEVEL(C) 7 X 0.40                                                    |         |
|              | WATER LEVEL(S)               |                                       |                            | R LEVEL(S) 1 X 0.25                                                    |         |
|              | SUB-TOTALS                   |                                       | 15                         | 25                                                                     | 20.05   |
|              |                              |                                       |                            |                                                                        |         |
| FEDERAL-PROV | INCIAL                       |                                       |                            |                                                                        |         |
|              | DISCHARGE (C)                |                                       |                            | HARGE (C) 11 X 1.00                                                    |         |
|              | DISCHARGE (S)                |                                       |                            | HARGE (S) 0 X 0.75                                                     |         |
|              | DISCHARGE (M)                |                                       |                            | HARGE (M) 0 X 0.00                                                     |         |
|              | WATER LEVEL (C)              | $11 \times 0.40 = 4$                  |                            | R LEVEL(C) 14 X 0.40                                                   |         |
|              | WATER LEVEL (S)              | $\frac{6}{0.3}$ X 0.25= $\frac{1}{1}$ |                            | R LEVEL(S) $0 \times 0.25$                                             |         |
|              | SUB-TOTALS                   | 87 64                                 | 15                         | 25                                                                     | 16.60   |
| PROVINCIAL   |                              |                                       |                            |                                                                        |         |
| INOVINCIAL   | DISCHARGE(C)                 | 7 X 1.00= 7                           | 00 DISC                    | HARGE(C) 0 X 1.00                                                      | = 0.00  |
|              | DISCHARGE(S)                 | 50 X 0.75= 37                         |                            | HARGE(S) 0 X 0.75                                                      |         |
|              | DISCHARGE(M)                 | $2 \times 0.00 = 0$                   |                            | HARGE(M) 0 X 0.00                                                      |         |
|              | WATER LEVEL(C)               |                                       |                            | HARGE(C) 6 X 0.40                                                      |         |
|              | WATER LEVEL(S)               | $17 \times 0.25 = 4$                  | 25 WATE                    | R LEVEL(S) _0 X 0.25                                                   | = 0.00  |
|              | SUB-TOTALS                   | 85 52                                 | 35                         | 6                                                                      | 2.40    |
|              | TOTALS                       | 244 173                               | 65                         | 56                                                                     | 39.05   |
|              |                              |                                       |                            |                                                                        |         |
|              |                              | SEDIMENT SUMM                         | RY (STATION UNI            | TS)                                                                    |         |
| FEDERAL      | CONVE                        | NTIONAL                               | REMO                       | TE                                                                     |         |
| LEDBIGLE     | SEDIMENT (C)                 | 10 X 1.00= 10                         |                            |                                                                        | .00     |
|              | SEDIMENT (S)                 | 2 X 0.75= 1                           |                            |                                                                        | .00     |
|              | SEDIMENT (M)                 | $0 \times 0.00 = 0$                   |                            |                                                                        | .00     |
|              | SUB-TOTALS                   |                                       | 50                         |                                                                        | .00     |
|              |                              |                                       |                            |                                                                        |         |
| FEDERAL-PROV |                              | 0 ¥ 1 00 1                            | AA GEDIMENE                | (a) 0 ¥ 1 00 - 0                                                       | 00      |
|              | SEDIMENT (C)<br>SEDIMENT (S) |                                       | 00 SEDIMENT<br>70 SEDIMENT |                                                                        | .00     |
|              | SEDIMENT (M)                 |                                       |                            |                                                                        |         |
|              | SUB-TOTALS                   | $\frac{3}{5}$ X 0.00= $\frac{0}{1}$   | 75                         | 0 0                                                                    | .00     |
|              |                              | -                                     |                            |                                                                        |         |
| PROVINCIAL   |                              |                                       |                            |                                                                        |         |
|              | SEDIMENT (C)                 | 0 X 1.00= 1                           | 00 SEDIMENT                | (C) $0 \times 1.00 = 0$                                                | .00     |
|              |                              |                                       |                            | (S) $0 \times 0.75 = 0$                                                | .00     |
|              |                              | $2 \times 0.00 = 0$                   |                            | $(\texttt{M})  \underline{0} \; \texttt{X} \; 0.00 = \; \underline{0}$ |         |
|              | SUB-TOTALS                   |                                       |                            | <u>0</u> 0<br>1 0                                                      | .00     |
|              | TOTALS                       | 22 15                                 | 50                         | 1 0                                                                    | .00     |
| SUMMARY:     | CONVENTIONAL OF              | ATTONO                                | DEMOTE CTATION             | C TOTAL C                                                              |         |
| SOFFIART:    | CONVENTIONAL ST              | HITONS                                | REMOTE STATIONS            | S TOTALS                                                               |         |
|              | SEDIMENT (C) =               | 11                                    | SEDIMENT (C) =             | O SEDIMENT                                                             | = 23    |
|              | SEDIMENT(S) =                |                                       | SEDIMENT(S) =              |                                                                        |         |
|              | SEDIMENT (M) =               | 5                                     | SEDIMENT (M) =             | 1                                                                      |         |
|              |                              |                                       |                            |                                                                        |         |

FIGURE 6


HISTORICAL AVERAGE STATION UNIT COST IN MANITOBA

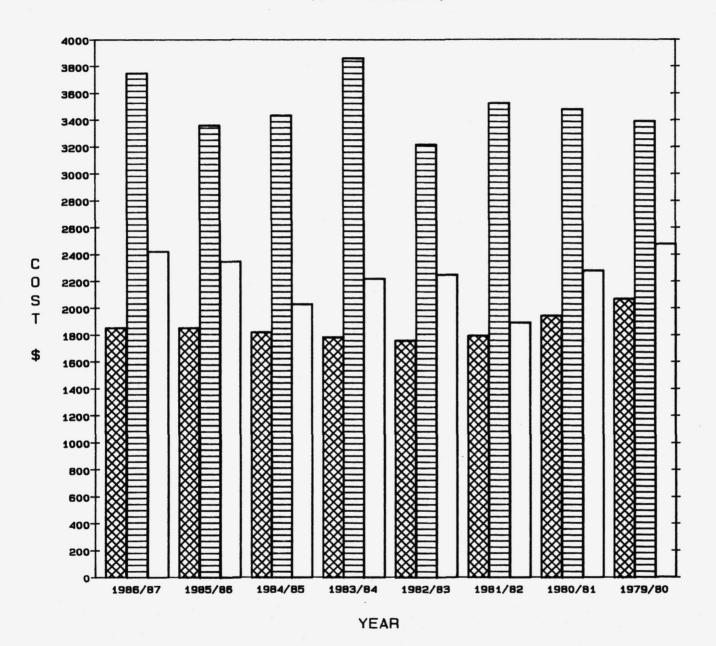


CONV

|  | , |  |  |  |
|--|---|--|--|--|
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |
|  |   |  |  |  |

FIGURE 7
HISTORICAL AVERAGE STATION UNIT COST IN MANITOBA
(O&M and CAPITAL ONLY)




CONV
REM
SED

- 27

|  |  |  | ř |
|--|--|--|---|
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |

FIGURE 8

HISTORICAL AVERAGE STATION UNIT COST IN MANITOBA
(1975 DOLLARS)



CONV
REM
SED

07

|  |  | , |  |  |
|--|--|---|--|--|
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |

## APPENDIX I

|  |  | - |
|--|--|---|
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |

I-1 MEMORANDUM OF AGREEMENT

BETWEEN:

The Government of Canada, hereinafter called "Canada", represented by the Minister of the Environment

OF THE FIRST PART

-and-

The Government of the Province of Manitoba hereinafter called the "Province", represented by the Minister of Environment

OF THE SECOND PART

Whereas co-operative water quantity surveys have been carried on for many years under various informal federal-provincial agreements in the Provinces of Canada by the Water Survey of Canada of the Department of the Environment, for the purpose of securing co-ordinated and standardized basic data to facilitate resource planning and management in general and the design and implementation of project related to navigation, hydroelectric development, irrigation, drainage, flood control, recreation, domestic and industrial water supply and other purposes:

AND WHEREAS the Governor-in-Council has by Order-in-Council No. PC 1975-1/72 dated January 28, 1975, authorized the Minister of Environment to execute this agreement on behalf of Canada;

AND WHEREAS THE Lieutenant Governor in Council has, by Order-in-Council No. O.C. 282/75 dated April 30, 1975 authorized the Minister of Environment to execute this agreement on behalf of the Province subject to funds being voted by the Legislative Assembly.

NOW THEREFORE this agreement witnesseth that water quantity surveys in the Province and financing thereof shall be continued and maintained upon the following basis;-

### INTRODUCTION

### **DEFINITIONS**

- a) ANNUAL PAYMENT a sum, agreed to by both parties in advance of the fiscal year, which shall represent the costs of operation and construction of water quantity survey stations.
- b) CONSTRUCTION includes the construction of new water quantity survey stations and the maintenance, repair and reconstruction of existing water quantity survey stations.
- c) CONSTRUCTION PERSONNEL includes foremen and labourers on full time duty as well as engineering and technical staff and part time supervisory duty or reconnaissance assignment.
- d) FIELD PERSONNEL includes hydrometric supervisors and field technicians on full time duty as well as engineering and technical staff on temporary assignment.
- e) NETWORKS an organized system of gauging stations for collection of water quantity survey data.
- f) OPERATING PARTY either party to this agreement which operates water quantity survey stations.
- g) PUBLISHED DATA includes streamflow, water level and sediment data. The data is to be available in publications and computer compatible data files.
- h) SEDIMENT STATIONS any location where surveys are undertaken to collect data on suspended sediment or bed material.
- i) WATER QUANTITY SURVEY STATIONS any location where surveys are undertaken to collect streamflow or water level or suspended sediment or bed material or bed load data singly or in combination Water temperatures data may be collected.

#### ARTICLE 1

Each water quantity survey station presently in operation has been identified according to the designation federal, federal-provincial or provincial. The current designation is given in Schedule A, hereto attached. Schedule A may be revised to include a change in the designation of a station, the addition of new stations or the deletion of stations as agreed by the Co-ordinating Committee (Article XII) and approved by the officials named in Article XIII.

### OPERATIONAL CONSIDERATIONS

### ARTICLE II

Canada will construct and operate and pay the cost of construction and

|  | * |  |  |
|--|---|--|--|
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |
|  |   |  |  |

the annual cost of operation of water quantity survey stations which have been designated as federal. Where Canada deems it desirable in the interest of efficiency of operation, the Province may be requested to construct and operate some federal water quantity survey stations. If the Province agrees to such agreements, Canada would in such cases reimburse the Province for the cost of construction and annual cost of operation in accordance with Article VI.

#### ARTICLE III

Where Canada constructs and operates water quantity survey stations designated as federal-provincial, the Province will reimburse Canada for 50% of the construction costs and 50% of the annual cost of operation. Where the Province constructs and operates these stations, Canada will reimburse the Province 50% of the construction costs and 50% of the annual cost of operation in accordance with Article VI.

#### ARTICLE IV

If requested by the Province, Canada will construct and operate water quantity survey stations designated as provincial provided the Province reimburses Canada for the construction cost and annual cost of operation. If the Province constructs and operates these stations the Province will assume the cost of construction and operation in accordance with Article VI.

#### ARTICLE V

- a) The operating party shall provide the staff to meet its responsibilities under this agreement.
- b) Canada will at its own expense publish data from stations that it operates. Canada will on request at its own expense, publish data from stations operated by the Province providing the data meets national standards.
- c) Water quantity surveys under this agreement shall be carried out to national standards in field procedures, equipment and instrumentation, data compilation and will use national guidelines for station designations. Such standards and guidelines shall be developed and maintained by Canada in consultation with all of the Provinces.
- d) Canada and Province shall work together to take advantage of technological advancements which improve the quality of data and the efficiency of standard procedures and to develop methods and techniques to assist in planning water quantity survey networks.
- e) Canada at its own expense will provide calibration service for water quantity survey velocity instruments for both parties.

| • |  |  |  |  |
|---|--|--|--|--|
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |
|   |  |  |  |  |

#### FINANCIAL CONSIDERATIONS

#### ARTICLE VI

- a) Procedures for computing the annual payment are given in Schedule C.
- b) The annual payment for 1975-76 is set out in Schedule D. The annual payment for subsequent years shall be determined according the terms of this agreement and the procedures as set out in Schedule C.
- c) Annual construction costs, except for sediment stations, will be computed using average annual water quantity survey station costs and the number of stations to be operated. The average annual water quantity survey station costs shall be recomputed annually according to the items listed in Schedule B.
- d) Annual construction costs, except for sediment stations, will be the cost of constructing new water quantity survey stations plus repairs to and major reconstruction of existing water quantity survey stations.
- e) The annual operation costs for sediment stations will be the summation of the individual station operation costs.
- f) The annual construction costs of sediment stations will be the cost of constructing new sediment stations plus repairs to and major reconstruction of existing stations.

#### ARTICLE VII

- a) The party operating the water quantity survey stations in accordance with Articles II, III and IV, will be responsible for providing and paying the total cost of the water level recording equipment.
- b) All costs associated with the purchase, installation and operation of specialized water quantity survey equipment will be paid for by the party or parties requiring service.

#### ARTICLE VIII

Canada or the Province, depending on the operating responsibilities shall submit invoices for one-quarter of the annual payment of July 1st of each fiscal year in accordance with the annual payment set out in Schedule D. Payment is to be made as soon as possible after receipt of each quarterly claim but in no case later than March 31st of each year.

#### ARTICLE IX

Except as agreed by the parties hereto where both parties have an interest, either operational or financial, the annual net change in the total number of water quantity survey stations, including federal,

|  |  |  | • |  |
|--|--|--|---|--|
|  |  |  |   |  |
|  |  |  |   |  |
|  |  |  |   |  |

#### ARTICLE IX (Cont'd)

federal-provincial and provincial, as set out in Schedule A, is not to exceed 6% in any year.

#### ARTICLE X

Each party constructing or operating a water quantity survey station or stations shall keep complete records of all shareable expenditures made pursuant to this agreement and shall support such expenditures with proper documentation. Canada and the Province upon request shall make these records and documents available to auditors appointed by each other.

#### CO-OPERATION

#### ARTICLE X1

There shall be a free exchange of water quantity survey data between Canada and the Province. The party operating the water quantity survey station shall retain originals or a microfilm copy of observations, measurements, recorder charts and computations and these are to be available to the other party on request.

#### ARTICLE XII

The officials named in Article XIII shall establish a Co-ordinating Committee representing each of the parties affected by this agreement. The Co-ordinating Committee shall be responsible for:

- a) Planning and continuing review of water quantity survey networks, including addition and deletion of all stations within Provincial boundaries.
- b) Determining and reviewing the designation of water quantity survey stations using national guidelines which may from time to time be changed, subject to ratification by Canada and all of the Provinces.
- c) Assuring the maintenance of standards in procedures, data compilation and instrumentation.
- d) Reviewing annual operating costs and establishing average annual station costs, as per Article VI for revision of Schedule D.
- e) Preparation annually of new Schedules A and D which with the approval of the officials named in Article XIII would apply for the second and each subsequent year of the agreement.

The committee shall meet at least one a year and shall report to the officials named in Article XIII.

#### ADMINISTRATIVE ARRANGEMENTS

#### ARTICLE XIII

This agreement is to be administrated for Canada by the Regional Director of the Inland Waters Directorate located at Regina, Saskatchewan, and for the Province by the Director, Water Resources Branch, Department of Mines, Resources and Environmental Management, located at Winnipeg, Manitoba.

#### IMPLEMENTATION

#### ARTICLE XIV

The parties hereto agree that water quantity surveys will be carried out as indicated in Articles I to XIII inclusive and Schedules attached hereto.

#### PERIOD OF AGREEMENT

#### ARTICLE XV

This agreement shall become effective and binding on the parties upon the first day of April, 1975.

The agreement may be terminated by Canada or the Province on March 31st of any year provided that eighteen (18) months notice in writing is given. The agreement may be revised with the consent or the Governor-in-Council and Lieutenant Governor-in-Council.

IN WITNESS WHEREOF the Honourable Jeanne Sauve, Minister of Environment has hereunto set her hand on behalf of Canada, and the Honourable Sidney Green, Minister of Mines, Resources and Environmental Management has hereunto set his hand on behalf of the Province of Manitoba.

| Signed on behalf of Canada     | ) |
|--------------------------------|---|
| by the Honourable Jeanne Sauve |   |
| Minister of Environment        | ) |
|                                | ) |
|                                | ) |
|                                | ) |
|                                | ) |
|                                | ) |
| IN THE PRESENCE OF             | ) |
|                                | ) |
|                                | ) |
|                                | ) |
|                                | ) |
|                                | ) |
|                                | ) |
| Signed on behalf of the        | ) |
| Province of Manitoba by the    | ) |
| Honourable Sidney Green,       | ) |
| Minister of Mines, Resources   | ) |
| and Environmental Management   | ) |
|                                | ) |
|                                | ) |
|                                | ) |
|                                | ) |
|                                | ) |
|                                | ) |
|                                | ) |
| IN THE PRESENCE OF             | ) |
|                                | ) |
|                                | ) |
|                                | ) |

| 1986-1987 SCHEDULE A                     |      |
|------------------------------------------|------|
| ÖF                                       | ,    |
| MEMORANDUM OF AGREEMENT                  |      |
| BETWEEN                                  |      |
| DEPARTMENT OF THE ENVIRONMENT            |      |
| MANITOBA - NORTHWESTERN ONTARIO DISTRICT |      |
| WATER SURVEY OF CANADA, WINNIPEG         |      |
| AND                                      |      |
|                                          | -37- |
| GÖVERNMENT ÖF MANITÖBA                   | 7-   |
| DEPARTMENT OF NATURAL RESOURCES          |      |
| WATER RESOURCES BRANCH                   |      |
|                                          |      |
|                                          |      |
|                                          |      |
|                                          |      |
|                                          |      |

|    |  | * |  |
|----|--|---|--|
|    |  |   |  |
| y. |  |   |  |
|    |  |   |  |
|    |  |   |  |
|    |  |   |  |

### HYDROMETRIC COST SHARE AGREEMENT 1986/1987

| GAUGE INFORMATION                                        | DATA COLLECTION CODES                               |
|----------------------------------------------------------|-----------------------------------------------------|
|                                                          |                                                     |
| H=WATER LEVEL STATION                                    | R=REMOTE ACCESS STATION                             |
| Q=DISCHARGE STATION                                      | S=SEDIMENT SAMPLING                                 |
| R=RECORDING GAUGE                                        | T=TELEMARK                                          |
| M= MANUAL GAUGE                                          | G=WATER QUALITY DATA                                |
| P=POWERPLANT RATING                                      | DEDATA COLLECTION PLATFORM                          |
|                                                          | A=ARTIFICIAL CONTROL                                |
|                                                          | W=WATER TEMPERATURE DATA                            |
|                                                          | P=PRECIPITATION DATA                                |
|                                                          | C=CABLEWAY                                          |
|                                                          | M=METERING PLATFORM                                 |
|                                                          | I = INTELLIGENT MICROPROCESSOR                      |
|                                                          | I- INTELLIGENT THOROT ROCESSON                      |
|                                                          |                                                     |
| FUNDING CODE INDEX                                       | STATION RESPONSIBILITY CODES                        |
| FONDING CODE INDEX                                       | STATION RESPONSED LITT CODES                        |
| E1 FEDERAL 1 FEDERAL DEPARTMENTAL DESCRAME               | 01 - WINNIPEG - MANITOBA CENTRAL                    |
| F1= FEDERAL 1. FEDERAL DEPARTMENTAL PROGRAMS             |                                                     |
| F2= FEDERAL 2, INTERPROVINCIAL WATERS                    | 02 - WINNIPEG - MANITOBA WEST                       |
| F3= FEDERAL 3. INTERNATIONAL WATERS                      | 03 - WINNIPEG - MANITOBA EAST                       |
| F4= FEDERAL 4. NATIONAL WATER QUANTITY INVENTORY         | 04 - THOMPSON SUB-OFFICE - W. ANTONYSHYN            |
| FP1= FEDERAL-PROVINCIAL 1. FEDERAL-PROVINCIAL AGREEMENTS |                                                     |
| FP2= FEDERAL-PROVINCIAL 2. RIVER BASIN MANAGEMENT        | 06 - KEEWATIN SUB-OFFICE - J.R.G, ROUSSON           |
| FP3= FEDERAL-PROVINCIAL 3. REG. WATER QUANTITY INVENTORY |                                                     |
| P1= PRÖVINCIAL 1. PRÖVINCIAL DEPARTMENTAL PRÖGRAMS       | 00 - OTHER WRB REGIONS                              |
| P2= PROVINCIAL 2. SPECIFIC PURPOSE MONITORING PROGRAMS   | 10 - OPERATED BY MANITOBA WATER RESOURCES BRANCH    |
|                                                          | 11 - CONTRIBUTED BY MANITOBA HYDRO                  |
|                                                          | 12 - CONTRIBUTED BY FRESHWATER INSTITUTE            |
| CONT= CONTRIBUTED DATA                                   | 13 - CONTRIBUTED BY GREAT LAKES PAPER COMPANY       |
| CONF= CONTRIBUTED BY OTHER FEDERAL AGENCY                | 14 - CONTRIBUTED BY ONTARIO HYDRO                   |
| NEW= NEW CONSTRUCTION                                    | 15 - CONTRIBUTED BY GREATER WINNIPEG WATER DISTRICT |
|                                                          | 16 - CONTRIBUTED BY WINNIPEG HYDRO                  |
|                                                          | 17 - CONTRIBUTED BY BOISE CASCADE CANADA LTD        |
|                                                          |                                                     |
| OPERATION SCHEDULE - OP                                  |                                                     |
|                                                          |                                                     |
| C - CONTINUOUS OPERATION                                 |                                                     |
| S - SEASONAL OPERATION                                   |                                                     |
| M - MISCELLANEOUS                                        |                                                     |
|                                                          |                                                     |
|                                                          |                                                     |

|   | er. |  |  |  |  |
|---|-----|--|--|--|--|
|   |     |  |  |  |  |
|   |     |  |  |  |  |
|   |     |  |  |  |  |
|   |     |  |  |  |  |
|   |     |  |  |  |  |
|   |     |  |  |  |  |
|   |     |  |  |  |  |
|   |     |  |  |  |  |
|   |     |  |  |  |  |
|   |     |  |  |  |  |
| * |     |  |  |  |  |
|   |     |  |  |  |  |
|   |     |  |  |  |  |
|   |     |  |  |  |  |
|   |     |  |  |  |  |
|   |     |  |  |  |  |

# ACTIVE GAUGING STATIONS FOR MANITOBA FEDERAL 1. FEDERAL DEPARTMENTAL PROGRAMS

| STA. NO. | DR. AREA | DIST | RESP | GAUGE DATA | FUND. CD. | ŐΡ | STATION NAME PAGE NO. 1                  | NØ                                      |
|----------|----------|------|------|------------|-----------|----|------------------------------------------|-----------------------------------------|
| 05MH005  | 152000.0 | M    | 03   | QR TSCW    | F1        | С  | ASSINIBOINE RIVER NEAR HOLLAND           |                                         |
| 05LM006  | 81600.0  | M    | 01   | QR C       | F1        | C  | DAUPHIN RIVER NEAR AMANA BAY             |                                         |
| 05LK002  | 0.0      | M    | 01   | HR I       | F1        | C  | LAKE MANITOBA AT STEEPROCK               |                                         |
| 05LK003  | 0.0      | M    | 01   | HR         | F1        | С  | LAKE MANITOBA AT THE NARROWS             | *************************************** |
| 05LL012  | 0.0      | м    | 01   | HR T       | F1        | С  | LAKE MANITOBA NEAR WESTBOURNE            |                                         |
| 05LM005  | 0.0      | M    | 01   | HR         | F1        | С  | LAKE ST MARTIN NEAR HILBRE               |                                         |
| 05RD005  | 0.0      | M    | 03   | HR RT      | F1        | C  | LAKE WINNIPEG AT BERENS RIVER            |                                         |
| 05SB006  | 0.0      | М    | 01   | HR T       | F1        | С  | LAKE WINNIPEG AT GIMLI                   |                                         |
| 05SD002  | 0.0      | М    | 03   | HR         | F1        | s  | LAKE WINNIPEG AT MATHESON ISLAND LANDING |                                         |
| 05SG001  | 0.0      | M    | 05   | HR RD      | F1        | С  | LAKE WINNIPEG AT MISSION POINT           | 1                                       |
| 05RF001  | 0.0      | M    | 04   | HR R       | F1        | S  | LAKE WINNIPEG AT MONTREAL POINT          | 1                                       |
| 05SD001  | 0.0      | М    | 03   | HR         | F1        | С  | LAKE WINNIPEG AT PINE DOCK               | 1                                       |
| 05SA003  | 0.0      | M    | 03   | HR I       | F1        | С  | LAKE WINNIPEG AT VICTORIA BEACH          | 1                                       |
| 05LD002  | 0.0      | M    | 05   | HR         | F1        | С  | LAKE WINNIPEGOSIS AT DAWSON BAY          | 1                                       |
| 05LH001  | 0.0      | М    | 01   | HR         | F1        | С  | LAKE WINNIPEGOSIS AT WINNIPEGOSIS        | 1                                       |
| 05UB003  | 0.0      | М    | 04   | HR R       | F1        | С  | NELSON RIVER AT WARREN LANDING           | 1                                       |
| 05MJ007  | 0.0      | М    | 07   | QR         | F1        | S  | OMANDS CREEK NEAR METRO ROUTE 90         | 1                                       |
| 05MJ008  | 0.0      | M    | 07   | QR         | F1        | S  | OMANDS CREEK NEAR BROOKSIDE CEMETRY      | 1                                       |
| 050J015  | 287000.0 | M    | 01   | HR         | F1        | C  | RED RIVER AT JAMES AVE PUMPING STATION   | 1                                       |
| 056J010  | 287000.0 | M    | 03   | QR CSW     | F1        | С  | RED RIVER NEAR LOCKPORT                  | 2                                       |
| 05MJ009  | 0.0      | M    | 07   | QR         | F1        | s  | TRURO CREEK AT WESTERN AIRPORT BOUNDARY  | 2                                       |
|          | 0.0      | M    | 07   | QR         | F1        | S  | TRURO CREEK NEAR ASSINIBOINE GOLF COURSE | 2                                       |

| DR. AREA. = 0.0 | IS | NOT | APPLICABLE |
|-----------------|----|-----|------------|
|                 |    |     |            |

| DIAGNIA DOE (A)   |      |                 |   |   |             |   |    |  |
|-------------------|------|-----------------|---|---|-------------|---|----|--|
| DISCHARGE (C) =   | = 3  | DISCHARGE (C)   | = | 0 |             |   |    |  |
| DISCHARGE (S) =   | = 4  | DISCHARGE (S)   | = | 0 |             |   |    |  |
| DISCHARGE (M) =   | = 0  | DISCHARGE (M)   | = | 0 | DISCHARGE   | = | 7  |  |
| WATER LEVEL (C) = | = 10 | WATER LEVEL (C) | = | 3 | WATER LEVEL | = | 15 |  |
| WATER LEVEL (S) = | = 1  | WATER LEVEL (S) | = | 1 | TOTAL       | = | 22 |  |

|  |  |  | . ( |
|--|--|--|-----|
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |

|            |             |        |      | TAT I ON:<br>PROVING |      | MANITOBA<br>IATERS |    | 1 -1986-87                               |    |
|------------|-------------|--------|------|----------------------|------|--------------------|----|------------------------------------------|----|
| STA. NO.   | DR. AREA    | DIST   | RESP | GAUGE.               | DATA | FUND. CD.          | ØР | STATION NAME PAGE NO. 2                  | NO |
| 05NF002    | 3210.0      | М      | 02   | QR                   | SW   | F2                 | С  | ANTLER RIVER NEAR MELITA                 |    |
| 05ME001    | 19300.0     | M      | 02   | QR                   |      | F2                 | С  | ASSINIBOINE RIVER NEAR RUSSELL           |    |
| 06EA006    | 228000.0    | M      | 04   | QR                   | R    | F2                 | С  | CHURCHILL RIVER ABOVE GRANVILLE FALLS    |    |
| 06DA002    | 25000.0     | M      | 04   | QR                   | RDQ  | F2                 | С  | COCHRANE RIVER NEAR BROCHET              |    |
| 05NF007    | 1130.0      | М      | 02   | QR                   |      | F2                 | s  | GAINSBOROUGH CREEK NEAR LYLETON          | 3  |
| 05NF008    | 754.0       | M      | 02   | QR                   | Α    | F2                 | S  | GRAHAM CREEK NEAR MELITA                 |    |
| 05NF015    | 451.0       | M      | 02   | QR                   |      | F2                 | S  | JACKSON CREEK NEAR MELITA                |    |
| 05MD009    | 0.0         | М      | 02   | HR                   | T    | F2                 | С  | LAKE OF THE PRAIRIES NEAR SHELLMOUTH     |    |
| 05LD001    | 3550.0      | М      | 05   | QR                   | С    | F2                 | s  | OVERFLOWING RIVER AT OVERFLOWING RIVER   |    |
| 05NG024    | 0.0         | M      | 00   | QR                   |      | F2                 | S  | PIPESTONE CREEK NEAR MANITOBA BOUNDARY   | 1  |
| 05LC004    | 14300.0     | M      | 05   | QR                   | C    | F2                 | С  | RED DEER RIVER NEAR MOUTH L WINNIPEGOSIS | 1  |
| 06DB001    | 0.0         | М      | 04   | HR                   | RD   | F2                 | С  | REINDEER LAKE AT BROCHET                 | 1  |
| 05KJ001    |             | М      | 05   |                      | CST  | F2                 |    | SASKATCHEWAN RIVER AT THE PAS            | 1  |
| 05NG019    | 474.0       | М      | 02   |                      |      | F2                 | S  | STONY CREEK NEAR BROOMHILL               | 1  |
| 05LE006    |             | М      | 05   | QR                   | С    | F2                 | С  | SWAN RIVER NEAR MINITONAS                | 1  |
| 05LE004    | 2110.0      | М      | 05   | QR                   | С    | F2                 | s  | WOODY RIVER NEAR BOWSMAN                 | 1  |
| EA. = 0. 0 | IS NOT APPL | LICABL | E    |                      |      |                    |    |                                          |    |
|            |             |        |      |                      |      |                    |    |                                          |    |

| SUMMARY: | CONVENTIONAL STATIONS                                       | REMOTE STATIONS                                             | TOTALS                        |  |
|----------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------|--|
|          | DISCHARGE (C) = 5<br>DISCHARGE (S) = 7<br>DISCHARGE (M) = 0 | DISCHARGE (C) = 2<br>DISCHARGE (S) = 0<br>DISCHARGE (M) = 0 | DISCHARGE = 14                |  |
|          | WATER LEVEL (C) = 1<br>WATER LEVEL (S) = 0                  | WATER LEVEL (C) = 1<br>WATER LEVEL (S) = 0                  | WATER LEVEL = 2<br>TOTAL = 16 |  |

| r | - | - |  |  |
|---|---|---|--|--|
|   |   |   |  |  |
|   |   |   |  |  |
|   |   |   |  |  |
|   |   |   |  |  |
|   |   |   |  |  |
|   |   |   |  |  |
|   |   |   |  |  |
|   |   |   |  |  |
|   |   |   |  |  |
|   |   |   |  |  |
|   |   |   |  |  |
|   |   |   |  |  |
|   |   |   |  |  |



## ACTIVE GAUGING STATIONS FOR MANITOBA FEDERAL 3. INTERNATIONAL WATERS

|   | STA. NO.         | DR. AREA | DIST | RESP | GAUGE DATA | FUND. CD. | OP | STATION NAME PAGE NO. 3                 | NO. |
|---|------------------|----------|------|------|------------|-----------|----|-----------------------------------------|-----|
| - | 05NF017          | 0.0      | M    | 02   | QM         | F3        | М  | ANTLER RIVER AT WESTERN CROSSING        | 1   |
|   | 05@A007          | 1520.0   | M    | 02   | QR         | F3        | С  | BADGER CREEK NEAR CARTWRIGHT            | 2   |
|   | 0500025          | 448.0    | M    | 01   | QR         | F3        | S  | BUFFALO LAKE CHANNEL NEAR ALTONA        | 3   |
|   | 05 <b>0</b> B006 | 153.0    | M    | 02   | QR         | F3        | S  | CRYSTAL CREEK NEAR CRYSTAL CITY         | 4   |
|   | 056B010          | 389.0    | м    | 02   | QR         | F3        | s  | CYPRESS CREEK NEAR CLEARWATER           | 5   |
|   | 050B031          | 184.0    | M    | 02   | QR C       | F3        | č  | CYPRESS CREEK NEAR SARLES               | 6   |
|   | 050A005          | 68.1     | M    | 02   | QR         | F3        | č  | HIDDEN ISLAND COULEE NEAR HANSBORD      | 7   |
|   | 050A006          | 578.0    | M    | 02   | QR         | F3        | S  | LONG RIVER NEAR HOLMFELD                | 8   |
|   | 056B021          | 262.0    | м    | 02   | QR A       | F3        | s  | MOWBRAY CREEK NEAR MOWBRAY              | 9   |
|   | 0500004          | 8470.0   | M    | 01   | QR A       | F3        | C  | PEMBINA RIVER AT NECHE                  | 10  |
|   | 050B007          | 7510.0   | M    | 03   | QR CTSW    | F3        | C  | PEMBINA RIVER NEAR WINDYGATES           | 11  |
|   | 056D027          | 156.0    | M    | 03   | QR         | F3        | C  | PINE CREEK DIVERSION NEAR PINEY         | 12  |
|   | 0560001          | 104000.0 | м    | 03   | QR TSW     | F3        | С  | RED RIVER AT EMERSON                    | 13  |
|   | 0500022          | 138.0    | M    | 01   | QR         | F3        | S  | RIVIERE AUX MARAIS NEAR CHRISTIE        | 14  |
|   | 056D030          | 4120.0   | M    | 03   | QR D       | F3        | С  | ROSEAU RIVER NEAR CARIBOU               | 15  |
|   | 050D001          | 5150.0   | M    | 03   | QR STW     | F3        | С  | ROSEAU RIVER NEAR DOMINION CITY         | 16  |
|   | 050D004          | 4430.0   | М    | 03   | QR SW      | F3        | S  | ROSEAU RIVER NEAR GARDENTON             | 17  |
|   | 050B016          | 979.0    | M    | 02   | QR C       | F3        | С  | SNOWFLAKE CREEK NEAR SNOWFLAKE          | 18  |
|   | 05NG001          | 60300.0  | M    | 02   | QR TSW     | F3        | С  | SOURIS RIVER AT WAWANESA                | 19  |
|   | 05NF016          | 43300.0  | M    | 02   | QR SWD     | F3        | СС | SOURIS RIVER NEAR COULTER               | 20  |
|   | 05NF012          | 43000.0  | м    | 02   | QR CTA     | F3        | С  | SOURIS RIVER NEAR WESTHOPE              | 21  |
|   | 05NG016          | 75.1     | M    | 02   |            | F3        | S  | TURTLEHEAD CREEK ABOVE DELORAINE RESERV | 22  |

DR. AREA. = 0. 0 IS NOT APPLICABLE

| SUMMARY: | CONVENTIONAL STATIONS | REMOTE STATIONS       | TOTALS          |
|----------|-----------------------|-----------------------|-----------------|
|          | DISCHARGE (C) = 13    | DISCHARGE (C) = 0     |                 |
|          | DISCHARGE (S) = 8     | DISCHARGE (S) = 0     |                 |
|          | DISCHARGE (M) = 1     | DISCHARGE (M) = 0     | DISCHARGE = 22  |
|          | WATER LEVEL (C) = 0   | WATER LEVEL (C) = 0   | WATER LEVEL = 0 |
|          | WATER LEVEL (S) = 0   | WATER LEVEL $(s) = 0$ | TOTAL = 22      |
|          |                       |                       |                 |

## ACTIVE GAUGING STATIONS FOR MANITOBA FEDERAL 4. NATIONAL WATER QUANTITY INVENTORY

| STA. NO. | DR. AREA         | DIST   | RESP | GAUGE DATA   | FUND. CD. | ØΡ       | STATION NAME PAGE NO. 4                              | NØ. |
|----------|------------------|--------|------|--------------|-----------|----------|------------------------------------------------------|-----|
| 05MJ001  | 153000.0         | М      | 03   | QR CTSW      | F4        | C        | ASSINIBOINE RIVER AT HEAD!NGLEY                      | 1   |
| 05RD007  | 0.0              | M      | 03   |              | F4        | C        | BERENS RIVER AT OUTLET OF LONG LAKE                  | 2   |
| 05ME003  | 1120.0           | M      | 02   |              | F4        | S        | BIRDTAIL CREEK NEAR BIRTLE                           | 3   |
| 050F011  | 565.0            | M      | 02   |              | F4        |          | BOYNE RIVER NEAR ROSEISLE                            | 4   |
|          |                  |        |      |              |           |          |                                                      |     |
| 06FD001  | 287000.0         | M      | 04   |              | F4        | C        | CHURCHILL RIVER ABOVE RED HEAD RAPIDS                | 5   |
| 0561002  | 697.0            | M      | 03   |              | F4        | S        | COOKS CREEK NEAR EAST SELKIRK                        | 6   |
| 06FD002  | 1880.0<br>1360.0 | M<br>M | 04   | QR R<br>QR C | F4<br>F4  |          | DEER RIVER NORTH OF BELCHER FISHER RIVER NEAR DALLAS |     |
| 05SD003  | 1360.0           | М      | UI   | GR C         | F 4       | C        | FISHER RIVER NEAR DALLAS                             | •   |
| 04AD002  | 65500.0          | M      | 04   | QR R         | F4        | С        | GODS RIVER NEAR SHAMATTAWA                           | g   |
| 05TD001  | 15400,0          | M      | 04   | QR R         | F4        | С        | GRASS RIVER ABOVE STANDING STONE FALLS               | 10  |
| 05UA003  | 4400.0           | M      | 04   |              | F4        | С        | GUNISAO RIVER ABOVE DIAMOND RAPIDS                   | 11  |
| 04AB001  | 103100.0         | М      | 04   | QR RQ        | F4        | С        | HAYES RIVER BELOW GODS RIVER                         | 12  |
| 05SC002  | 1140.0           | M      | 01   | QR           | F4        | s        | ICELANDIC RIVER NEAR RIVERTON                        | 13  |
| 05UF004  | 1960.0           | M      | 04   | QR CAT       | F4        | С        | KETTLE RIVER NEAR GILLAM                             | 14  |
| 06EA009  | 0.0              | M      | 04   | HR R         | F4        | С        | KISSISSING LAKE AT COLD LAKE                         | 15  |
| 05UG001  | 3160.0           | M      | 04   | QR C         | F4        | С        | LIMESTONE RIVER NEAR BIRD                            | 16  |
| 06FB002  | 4250.0           | M      | 04   | QR RD        | F4        | С        | LITTLE BEAVER RIVER NEAR MOUTH                       | 17  |
| 06FC001  | 5800.0           | M      | 04   |              | F4        | -        | LITTLE CHURCHILL RIVER ABOVE RECLUSE LAKE            | 18  |
| 05MF001  | 2620.0           | M      | 02   |              | F4        |          | LITTLE SASKATCHEWAN RIVER NEAR MINNEDOSA             | 19  |
| 05RD010  | 0.0              | M      | 03   |              | F4        |          | LONG LAKE NEAR LITTLE GRAND RAPIDS                   | 20  |
|          |                  |        |      |              |           |          |                                                      |     |
| 05RA001  | 1800.0           | M      | 03   |              | F4        | С        | MANIGOTAGAN RIVER NEAR MANIGOTAGAN                   | 21  |
|          | 1000000.0        | M      | 04   |              | F4        | C        | NELSON RIVER ABOVE BLADDER RAPIDS                    | 22  |
| 06GB001  | 17800.0          | M      | 04   |              | F4        | C        | NORTH SEAL RIVER BELOW STONY LAKE                    | 23  |
| 05NG010  | 1060.0           | M      | 02   | QR           | F4        | С        | MAK CREEK NEAR STOCKTON                              | 24  |
| 05LJ005  | 344.0            | М      | 01   | QR           | F4        | s        | OCHRE RIVER AT OCHRE RIVER                           | 25  |
| 05RD008  | 0.0              | M      | 03   |              | F4        | C        | PIGEON RIVER AT OUTLET OF ROUND LAKE                 | 26  |
| 05RE001  | 6798.0           | M      | 03   |              | F4        |          | POPLAR RIVER AT OUTLET OF WEAVER LAKE                | 27  |
| 050E004  | 414.0            | M      | 03   |              | F4        | C        | RAT RIVER NEAR SUNDOWN                               | 28  |
| 04AC008  | 0.0              | М      | 04   | HR R         | F4        | С        | RED SUCKER LAKE AT RED SUCKER LAKE                   | 29  |
| 06GD001  | 48200.0          | M      | 04   |              | F4        | C        | SEAL RIVER BELOW GREAT ISLAND                        | 30  |
| 050H007  | 704.0            | M      | 03   |              | F4        | s        | SEINE RIVER NEAR STE ANNE                            | 31  |
| 05MD005  | 2000.0           | M      | 02   | 500.5        | F4        | C        | SHELL RIVER NEAR INGLIS                              | 32  |
|          | 2000.0           |        |      |              |           |          |                                                      |     |
| 06GA001  | 12200.0          | M      | 04   |              | F4        | С        | SOUTH SEAL RIVER ABOVE FOX LAKE                      | 33  |
| 05LJ010  |                  | M      | 01   |              | F4        | S        | VALLEY RIVER NEAR DAUPHIN                            | 34  |
| 05LH005  | 55200.0          | M      | 01   |              | F4        | С        | WATERHEN RIVER NEAR WATERHEN                         | 35  |
| 05PH003  | 3700.0           | M      | 03   | QR C         | F4        | <u>C</u> | WHITEMOUTH RIVER NEAR WHITEMOUTH                     | 36  |
| 05LL005  | 1750.0           | М      | 01   | QR A         | F4        | С        | WHITEMUD RIVER NEAR KEYES                            | 37  |

|  |  | 8.0 | i. | - |   |  |
|--|--|-----|----|---|---|--|
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   | - |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |
|  |  |     |    |   |   |  |

#### ACTIVE GAUGING STATIONS FOR MANITOBA FEDERAL 4. NATIONAL WATER QUANTITY INVENTORY

| SUMMARY: | CONVENTIONAL STATIONS                                        | REMOTE STATIONS                                              | TOTALS                        |   |
|----------|--------------------------------------------------------------|--------------------------------------------------------------|-------------------------------|---|
|          | DISCHARGE (C) = 12<br>DISCHARGE (S) = 7<br>DISCHARGE (M) = 0 | DISCHARGE (C) = 15<br>DISCHARGE (S) = 0<br>DISCHARGE (M) = 0 | DISCHARGE = 34                |   |
|          | WATER LEVEL (C) = 0 WATER LEVEL (S) = 0                      | WATER LEVEL (C) = 3 WATER LEVEL (S) = 0                      | WATER LEVEL = 3<br>TOTAL = 37 | - |
|          |                                                              |                                                              |                               |   |
|          |                                                              |                                                              |                               |   |
|          |                                                              |                                                              |                               |   |
|          |                                                              |                                                              |                               |   |
|          |                                                              |                                                              |                               |   |
|          |                                                              |                                                              |                               |   |
|          |                                                              |                                                              |                               |   |
|          |                                                              |                                                              |                               |   |
|          |                                                              |                                                              |                               |   |
|          |                                                              |                                                              |                               |   |

| - | , | - |  | - : |  |  | - |
|---|---|---|--|-----|--|--|---|
|   |   |   |  |     |  |  |   |
|   |   |   |  |     |  |  |   |
|   |   |   |  |     |  |  |   |
|   |   |   |  |     |  |  |   |
|   |   |   |  |     |  |  |   |
|   |   |   |  |     |  |  |   |
|   |   |   |  |     |  |  |   |
|   |   |   |  |     |  |  |   |
|   |   |   |  |     |  |  |   |
|   |   |   |  |     |  |  |   |
|   |   |   |  |     |  |  |   |
|   |   |   |  |     |  |  |   |
|   |   |   |  |     |  |  |   |

#### ACTIVE GAUGING STATIONS FOR MANITOBA FEDERAL-PROVINCIAL 1. FEDERAL PROVINCIAL AGREEMENTS

| STA. NO.           | DR. AREA | DIST       | RESP           | GAUGE  | DATA | FUND. CD.  | ŐΡ     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATION NA | AME PAG                                                                                    | E NO. 5    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NØ. |
|--------------------|----------|------------|----------------|--------|------|------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 0500009<br>0500010 | 0.<br>0. |            | 01<br>01       |        |      | FP1<br>FP1 |        | DOMAIN DRAIN<br>MANNES DRAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 2 |
| REA. = 0. 0 I      | S NOT AP | PLICABLE   |                |        | V    |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        | Add a 1970 for the day of the day of the first of the fir |            | e en en en 1999 de 1990 de en anoman de en en en de en |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            | the second of th | -   |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                | •      |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          |            |                |        |      |            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                            |            | programme and the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|                    | 45V.     | 0.00111.00 |                |        | ~\.C |            | = 140= |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 76741.6                                                                                    |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| SUMM               | ARY:     | CONVENT    |                |        |      |            |        | E STATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | TOTALS                                                                                     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          | DISC       | HARGE<br>HARGE | (C)    | = 0  |            | DI     | SCHARGE (C)<br>SCHARGE (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 0<br>= 0 |                                                                                            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          | DISC       | CHARGE         | (M)    | = 0  |            | DI     | SCHARGE (M)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 0        | DISCHARGE                                                                                  | = 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          | WATE       | R LEV          | EL (C) | = 0  |            | WA     | TER LEVEL (C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 0        | WATER LEV                                                                                  | EL = 0     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|                    |          | WATE       | RIFV           | EL (S) | = 0  |            | WA     | TER LEVEL (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 0        | TOTAL                                                                                      | <b>=</b> 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |

| f      | - 4 | i. |  |
|--------|-----|----|--|
| ,<br>, |     |    |  |
|        |     |    |  |
|        |     |    |  |
|        |     |    |  |
|        |     |    |  |
|        |     |    |  |
|        |     |    |  |
|        |     |    |  |

#### ACTIVE GAUGING STATIONS FOR MANITOBA FEDERAL-PROVINCIAL 2. RIVER BASIN MANAGEMENT

| STA. NO.        | DR. AREA | DIST     | RESP | GAUGE DATA | FUND. CD. | ØР | STATION NAME PAGE NO. 6                    | NØ.          |
|-----------------|----------|----------|------|------------|-----------|----|--------------------------------------------|--------------|
| 05MH013         | 85700.0  | M        | 02   | QR CD      | FP2       | С  | ASSINIBOINE RIVER NEAR BRANDON             | 1            |
| 05ME006         | 76100.0  | M        | 02   | QR TC      | FP2       |    | ASSINIBOINE RIVER NEAR MINIOTA             | 2            |
| 05MJ003         |          | M        | 01   | QR C       | FP2       | č  | ASSINIBOINE RIVER NEAR PORTAGE LA PRAIRIE  | 3            |
| 05KG005         | 0,0      | M        | 05   | HR         | FP2       | Č  | ATHAPAPUSKOW LAKE AT CRANBERRY PTGE        | 4            |
| 05LL015         | 1050.0   | м        | 01   | QR         | FP2       |    | BIG GRASS RIVER NEAR GLENELLA              | 5            |
| 05RB003         | 9090.0   | M        | 03   |            | FP2       | S  | BLOODVEIN RIVER ABOVE BLOODVEIN BAY        | 6            |
| 05TE002         | 0.0      | M        | 04   | QR RD      | FP2       | S  | BURNTWOOD RIVER ABOVE LEAF RAPIDS          | 7            |
| 05TG001         | 18100.0  | M        | 04   |            | FP2       | C  | BURNTWOOD RIVER NEAR THOMPSON              | 8            |
|                 |          |          |      | _          |           |    |                                            |              |
| 06EB004         |          | M        | 04   | QR T       | FP2       | С  | CHURCHILL RIVER ABOVE LEAF RAPIDS          | 9            |
| 06FB001         | 269000.0 | <u> </u> | 04   | QR RD      | FP2       | С  | CHURCHILL RIVER BELOW FIDLER LAKE          | 10           |
| 05UD001         | 0.0      | M        | 04   | HR RT      | FP2       | C  | CROSS LAKE AT CROSS LAKE                   | 11           |
| 05LJ009         | 0.0      | M        | 01   | HR I       | FP2       | С  | DAUPHIN LAKE AT GUTLET                     | 12           |
| 05LM001         | 79300,0  | M        | 01   | QR CT      | FP2       | С  | FAIRFORD RIVER NEAR FAIRFORD               | 13           |
| 05TF001         | 0.0      | M        | 04   | HR T       | FP2       | С  | FOOTPRINT LAKE AT NELSON HOUSE             | 14           |
| 06EB002         | 0.0      | M        | 04   | HR RD      | FP2       | С  | GRANVILLE LAKE AT PICKERAL NARROWS         | 15           |
| 05UB013         | 0.0      | M        | 04   | HR R       | FP2       | C  | KISKITTO LAKE NEAR NORWAY HOUSE            | 16           |
| 05UB007         | 0.0      | M        | 04   | HR R       | FP2       | С  | KISKITTÖGISU LAKE NEAR NÖRWAY HÖUSE        | 17           |
| 05LK004         | 0.0      | M        | 01   | HR         | FP2       | C  | LAKE MANITOBA NEAR TOUTES AIDES            | 18           |
| 056B014         | 0.0      | M        | 02   |            | FP2       | č  | MARY JANE RESERVOIR NEAR LA RIVIERE        | 19           |
| 050F020         | 2200,0   | M        | 01   | QR         | FP2       | _  | MORRIS RIVER NEAR ROSENORT                 | 20           |
|                 |          |          |      |            |           | _  |                                            |              |
| 05LJ025         | 8700.0   | M        | 01   | QR C       | FP2       | С  | MOSSY RIVER BELOW OUTLET OF DAUPHIN LAKE   | 21           |
| 05UB001         | 0.0      | M        | 04   | HR T       | FP2       | С  | NELSON RIVER AT NORWAY HOUSE               | 22           |
| 05UB008         | 0.0      | M        | 04   | QR         | FP2       | C  | NELSON RIVER BELOW SEA RIVER FALLS         | 23           |
| 05 <b>MG004</b> | 1160.0   | М        | 02   | QR A       | FP2       | С  | OAK RIVER NEAR RIVERS                      | 24           |
| 05LM002         | 104.0    | M        | 01   | HR         | FP2       | s  | PARTRIDGE CREEK NEAR ST MARTIN             | <b>25</b> 45 |
| 056A010         | 544.0    | M        | 02   |            | FP2       | S  | PEMBINA RIVER ABOVE LORNE LAKE             | 26 1         |
| 050B023         | 4480.0   | М        | 02   | QR         | FP2       | С  | PEMBINA RIVER BELOW CRYSTAL CREEK          | 27           |
| 05NG007         | 6630.0   | M        | 02   | QR         | FP2       | s  | PLUM CREEK NEAR SOURIS                     | 28           |
| 056019          | 782.0    | М        | 01   | QR         | FP2       | s  | PLUM RIVER NEAR ROSENFELD                  | 29           |
| 05LL019         | 0.0      |          | 01   | QR         | FP2       | S  | PORTAGE DIVERSION NEAR PORTAGE LA PRAIRIE  | 30           |
| 05MJ006         | 0.0      | M        | 01   | HR T       | FP2       | č  | PORTAGE RESERVOIR NEAR PORTAGE LA PRAIRIE  | 31           |
| 050E001         | 1350.0   | M        | 03   | QR C       | FP2       | č  | RAT RIVER NEAR OTTERBOURNE                 | 32           |
| 05LC003         | 0.0      | M        | 05   | HR         | FP2       | С  | RED DEER LAKE NEAR BARROWS                 | 33           |
| 05@C021         | 0.0      | M        | 03   |            | FP2       | S  | RED RIVER ABOVE FLOODWAY CONTROL STRUCTURE | 34           |
| 0500021         | 0.0      | M        | 03   | HR T       | FP2       | S  | RED RIVER BELOW FLOODWAY CONTROL STRUCTURE | 35           |
| 050C020         | 0.0      | M        | 03   |            | FP2       | S  | RED RIVER FLOODWAY NEAR ST NORBERT         | 36           |
| 0300017         | 0.0      | - 11     | - 03 | UIT 13     |           |    | NED KIVEK I LOODWAT NEAK 31 NORDERT        | 30           |
| 0500010         | 0.0      | M        | 01   | HR T       | FP2       | S  | RED RIVER NEAR LETELLIER                   | 37           |
| 0500012         | 117000.0 | M        | 01   | QR CT      | FP2       | C  | RED RIVER MEAR STE AGATHE                  | 38           |
| 0500008         | 124000.0 | M        | 03   | QM S       | FP2       |    | RED RIVER NEAR ST NORBERT                  | 39           |
| 05@F009         | 212.0    | M        | 02   | QR         | FP2       | S  | ROSEISLE CREEK NEAR ROSEISLE               | 40           |
|                 |          |          |      |            |           |    |                                            |              |

DR. AREA. = 0.0 IS NOT APPLICABLE

|   | · · |  |  |
|---|-----|--|--|
|   |     |  |  |
| - |     |  |  |
|   |     |  |  |
|   |     |  |  |
|   |     |  |  |
|   |     |  |  |
|   |     |  |  |
|   |     |  |  |
|   |     |  |  |
|   |     |  |  |

#### ACTIVE GAUGING STATIONS FOR MANITOBA FEDERAL-PROVINCIAL 2. RIVER BASIN MANAGEMENT

| STA. NO. | DR. AREA | DIST | RESP | GAUGE DATA | FUND.CD. | ØΡ | STATION NAME PAGE NO. 7                     | NO. |
|----------|----------|------|------|------------|----------|----|---------------------------------------------|-----|
| 05UD006  | 0.0      | M    | 04   | HR RD      | FP2      | С  | SIPIWESK LAKE AT FORESTRY DOCK              | 41  |
| 05NG021  | 58000.0  | M    | 02   | QR         | FP2      | S  | SOURIS RIVER AT SOURIS                      | 42  |
| 06EC003  | 0.0      | M    | 04   | HR RD      | FP2      | С  | SOUTHERN INDIAN LAKE AT SOUTH BAY           | 43  |
| 06EC001  | 0.0      | M    | 04   | HR RD      | FP2      | С  | SOUTHERN INDIAN LAKE NEAR SOUTH INDIAN LAKE | 44  |
| 05UF003  | 0.0      | М    | 04   | HR D       | FP2      | С  | SPLIT LAKE AT SPLIT LAKE                    | 45  |
| 05MJ004  | 572.0    | M    | 07   | QR         | FP2      | S  | STURGEON CREEK AT ST JAMES                  | 46  |
| 056B018  | 0.0      | M    | 02   | HR         | FP2      | S  | SWAN (PEMBINA)LAKE NEAR SWAN LAKE           | 47  |
| 05LJ046  | 0.0      | M    | 01   | HR A       | FP2      | С  | VERMILION RESERVOIR NEAR DAUPHIN            | 48  |
| 05LL002  | 6320.0   | М    | 01   | QR CA      | FP2      | С  | WHITEMUD RIVER AT WESTBOURNE                | 49  |
| 05NG023  | 0.0      | M    | 02   | HR         | FP2      | s  | WHITEWATER LAKE NEAR BOISSEVAIN             | 50  |

DR. AREA. = 0.0 IS NOT APPLICABLE

| SUMMARY: | CONVENTIONAL STATIONS | REMOTE STATIONS       | TOTALS           |
|----------|-----------------------|-----------------------|------------------|
|          | DISCHARGE (C) = 13    | DISCHARGE (C) = 2     |                  |
|          | DISCHARGE (S) = 11    | DISCHARGE (S) = 1     |                  |
|          | DISCHARGE (M) = 0     | DISCHARGE (M) = 0     | DISCHARGE = 27   |
|          | WATER LEVEL (C) = 10  | WATER LEVEL (C) = 7   | WATER LEVEL = 23 |
|          | WATER LEVEL $(S) = 6$ | WATER LEVEL $(S) = 0$ | TOTAL = 50       |

| , | - |  | - | - 4 | <i>*</i> |  |
|---|---|--|---|-----|----------|--|
|   |   |  |   |     |          |  |
|   |   |  |   |     |          |  |
|   |   |  |   |     |          |  |
|   |   |  |   |     |          |  |
|   |   |  |   |     |          |  |
|   |   |  |   |     |          |  |
|   |   |  |   |     |          |  |
|   |   |  |   |     |          |  |
|   |   |  |   |     |          |  |
|   |   |  |   |     |          |  |
|   |   |  |   |     |          |  |
|   |   |  |   |     |          |  |

### ACTIVE GAUGING STATIONS FOR MANITOBA FEDERAL-PROVINCIAL 3. REGIONAL WATER QUANTITY INVENTORY

| STA. NO.               | DR. AREA       | DIST     | RESP     | GAUGE    | DATA | FUND. CD. | ØР       | STATION NAME PAGE NO. 8                                  | NO.      |
|------------------------|----------------|----------|----------|----------|------|-----------|----------|----------------------------------------------------------|----------|
| <br>05UH001            | 1630.0         | M        | 04       | QR       | R    | FP3       | C        | ANGLING RIVER NEAR BIRD                                  | 1        |
| 05MG001                | 671.0          | M        | 02       |          |      | FP3       | Š        | ARROW RIVER NEAR ARROW RIVER                             | ż        |
| 04AA003                | 0.0            | M        | 04       | HR       | _    | FP3       | č        | BACK LAKE NEAR OXFORD HOUSE                              | 3        |
| <br>06EB003            | 1770,0         | M        | 04       | QR       |      | FP3       | č        | BARRINGTON RIVER BELOW FIRST RAPIDS                      | 4        |
|                        |                |          |          |          |      |           |          |                                                          |          |
| 05LE010                | 136.0          | M        | 05       | QR       |      | FP3       | S        | BIRCH RIVER NEAR BIRCH RIVER                             | 5        |
| 05PJ001                | 1070.0         | M        | 03       | QR       |      | FP3       | S        | BIRD RIVER AT OUTLET OF BIRD LAKE                        | 6        |
| <br>05LL017<br>05RA002 | 62.9<br>712.0  | M        | 01       | QR<br>QR | _    | FP3       | S<br>C   | BIRNIE CREEK NEAR BIRNIE<br>BLACK RIVER NEAR MANIGOTAGAN | 7<br>8   |
| 05KA002                | 712.0          | М        | 03       | ur       | C    | FF3       | C        | BLACK RIVER NEAR MANIGOTAGAN                             | 8        |
| 05SA002                | 1580.0         | М        | 03       | QR       |      | FP3       | С        | BROKENHEAD RIVER NEAR BEAUSEJOUR                         | 9        |
| 05ME005                | 88.1           | M        | 02       | QR       |      | FP3       | S        | CONJURING CREEK NEAR RUSSELL                             | 10       |
| <br>05MH008            | 254.0          | M        | 02       | QR       |      | FP3       | S        | CYPRESS RIVER NEAR BRUXELLES                             | 11       |
| 05 <b>6</b> J016       | 249.0          | M        | 03       | QR       | С    | FP3       | S        | DEVILS CREEK NEAR LIBAU                                  | 12       |
|                        |                | ••       |          |          |      |           | _        |                                                          |          |
| <br>05LG004<br>05SD004 | 223.0<br>394.0 | M<br>M   | 01<br>01 | QR<br>QR |      | FP3       | <u>S</u> | DUCK RIVER AT COWAN  EAST FISHER RIVER NEAR HODGSON      | 13       |
| 05NG012                | 1180.0         | M        | 02       |          |      | FP3       | S        | ELGIN CREEK NEAR SOURIS                                  | 14       |
| 05MG012                | 399.0          | M        | 02       |          |      | FP3       | S        | EPINETTE CREEK NEAR CARBERRY                             | 15<br>16 |
| 03/4/1007              | 399.0          | - 11     | 02       | GIT      |      | 773       | 3        | EFINETTE CREEK NEAR CANDERNY                             | 16       |
| <br>05RD006            | 0.0            | М        | 03       | HR       | RD   | FP3       | С        | FAMILY LAKE AT LITTLE GRAND RAPIDS                       | 17       |
| 05TF002                | 598.0          | M        | 04       | QR       | C    | FP3       | C        | FOOTPRINT RIVER ABOVE FOOTPRINT LAKE                     | 18       |
| 05LJ016                | 258.0          | M        | 01       | QR       |      | FP3       | S        | FORK RIVER NEAR ETHELBERT                                | 19       |
| <br>05LG006            | 438.0          | M        | 01       | QR       |      | FP3       | S        | GARLAND RIVER NEAR DUCK RIVER                            | 20       |
| 06FA001                | 0.0            | м        | 04       | QR       |      | FP3       | С        | GAUER RIVER BELOW THORSTEINSON LAKE                      | 21       |
| 04AC006                | 0.0            | M        | 04       |          |      | FP3       | c        | GODS LAKE AT OUTLET OF GODS LAKE                         | 22       |
| 04AC005                | 25900.0        | M        | 04       | QR       |      | FP3       | Č        | GODS RIVER AT OUTLET OF GODS LAKE                        | 23       |
| <br>05MG003            | 290.0          | M        | 02       |          |      | FP3       | s        | GOPHER CREEK NEAR VIRDEN                                 | 24       |
|                        |                | 3.5      |          |          |      |           |          | ,                                                        |          |
| 05TB002                | 3290.0         | M        | 05       | QR       | D    | FP3       | С        | GRASS RIVER AT WESKUSKO FALLS                            | 25       |
| <br>04AA004            | 8880.0         | M        | 04       |          |      | FP3       | C_       | HAYES RIVER BELOW TROUT FALLS                            | 26       |
| 04AC002                | 0.0            | M        | 04       | HR       |      | FP3       | C        | ISLAND LAKE NEAR ISLAND LAKE                             | 27       |
| 04AC007                | 14000.0        | М        | 04       | QR       | RC   | FP3       | С        | ISLAND LAKE RIVER NEAR ISLAND LAKE                       | 28       |
| 0566001                | 1900.0         | м        | 01       | QR       |      | FP3       | С        | LA SALLE RIVER NEAR SANFORD                              | 29       |
| <br>05MF018            | 3910.0         | M        | 02       |          |      | FP3       | c        | LITTLE SASKATCHEWAN RIVER NEAR RIVERS                    | 30       |
| 05MH006                | 453.0          | M        | 02       |          |      | FP3       |          | LITTLE SOURIS RIVER NEAR BRANDON                         | 31       |
| 05LC005                | 697.0          | M        | 05       |          |      | FP3       | s        | LITTLE WOODY RIVER NEAR BARROWS                          | 32       |
| <br>                   |                |          |          |          |      |           |          |                                                          |          |
| 06EA008                | 1420.0         | M        | 04       |          | R    | FP3       | C        | LOON RIVER ABOVE BRITTON LAKE                            | 33       |
| 050D028                | 177.0          | M        | 03       |          |      | FP3       | S        | MAIN DRAIN NEAR DOMINION CITY                            | 34       |
| 050D033                | 0.0            | M        | 03       |          |      | FP3       | S        | MAIN DRAIN NEAR RIDGEVILLE                               | 35       |
| <br>05LJ027            | 78.2           | <u>M</u> | 01       | QR       |      | FP3       | <u> </u> | MCKINNON CREEK NEAR MCCREARY                             | 36       |
| 05NG020                | 458.0          | м        | 02       | QR       |      | FP3       | s        | MEDORA CREEK NEAR NAPINKA                                | 37       |
| 05LJ019                | 132.0          | M        | 01       | QR       |      | FP3       | s        | MINK CREEK NEAR ETHELBERT                                | 38       |
| 0501008                | 598.0          | М        | 01       | QR       |      | FP3       | s        | NETLEY CREEK NEAR PETERSFIELD                            | 39       |
| <br>05TG003            | 0.0            | M        | 04       |          | SW   | FP3       | С        | ODEI RIVER NEAR THOMPSON                                 | 40       |
|                        |                |          |          | ,        |      |           |          |                                                          |          |

DR. AREA. = 0. 0 IS NOT APPLICABLE

| . , |  |  |
|-----|--|--|
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
| •   |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |
|     |  |  |

### ACTIVE GAUGING STATIONS FOR MANITOBA FEDERAL-PROVINCIAL 3. REGIONAL WATER QUANTITY INVENTORY

| STA. NO. | DR. AREA | DIST | RESP | GAUGE | DATA | FUND. CD. | ØP | STATION NAME PAGE NO. 9                | NO. |
|----------|----------|------|------|-------|------|-----------|----|----------------------------------------|-----|
| 04AA002  | 0.0      | М    | 04   | HR    | R    | FP3       | С  | OXFORD LAKE AT OXFORD HOUSE            | 41  |
| 05LL027  | 9.1      | M    | 01   | QR .  | Α    | FP3       | S  | PELICAN CREEK NEAR BIRNIE              | 42  |
| 050A008  | 355.0    | M    | 02   | QR    |      | FP3       | S  | PEMBINA RIVER NEAR KILLARNEY           | 43  |
| 05LL014  | 293,0    | M    | 02   | QR    | AM   | FP3       | СС | PINE CREEK NEAR MELBOURNE              | 44  |
| 05LL007  | 635.0    | м    | 01   | QR    |      | FP3       | s  | PINE CREEK NEAR PINE CREEK STATION     | 45  |
| 05LJ031  | 262.0    | М    | 01   | QR    | C    | FP3       | Š  | PLEASANT VALLEY CREEK NEAR GRANDVIEW   | 46  |
| 05LE005  | 837.0    | M    | 05   | QR    |      | FP3       | Š  | ROARING RIVER NEAR MINITONAS           | 47  |
| 05MF008  | 759.0    | M    | 02   | QR    |      | FP3       |    | ROLLING RIVER NEAR ERICKSON            | 48  |
| 05RD011  | 0.0      | м    | 03   | HR    | RD   | FP3       | С  | ROUND LAKE AT OUTLET                   | 49  |
| 05MD007  | 1330.0   | M    | 02   | QR    |      | FP3       | s  | SHELL RIVER NEAR ROBLIN                | 50  |
| 050F017  | 7383.0   | M    | 02   | QR    | AM   | FP3       | S  | SOUTH TOBACCO CREEK NEAR MIAMI         | 51  |
| 05TG002  | 883.0    | M    | 04   | QR    |      | FP3       | c  | TAYLOR RIVER NEAR THOMPSON             | 52  |
| 05LJ007  | 974.0    | м    | 01   | QR    | С    | FP3       | s  | TURTLE RIVER NEAR LAURIER              | 53  |
| 05LJ012  | 673.0    | M    | 01   | QR    |      | FP3       | S  | VERMILION RIVER NEAR DAUPHIN           | 54  |
| 05NF014  | 104.0    | M    | 02   | QR    |      | FP3       | S  | WASKADA CREEK NEAR CRANMER             | 55  |
| 05LH008  | 0.0      | M    | 01   | HR    |      | FP3       | С  | WATERHEN LAKE AT SKOWNAN               | 56  |
| 05RE002  | 0.0      | М    | 03   | HR    | RDP  | FP3       | С  | WEAVER LAKE AT GUTLET                  | 57  |
| 05UH002  | 2280.0   | M    | 04   | QR    | R    | FP3       | С  | WEIR RIVER ABOVE THE MOUTH             | 58  |
| 05LL013  | 414.0    | M    | 01   | QR    |      | FP3       | S  | WHITEMUD RIVER ABOVE NEEPAWA RESERVOIR | 59  |
| 05LJ801  | 22.8     | M    | 10   | HR    | CA   | FP3       | S  | WILSON CREEK NEAR MCCREARY             | 60  |
| 05LJ045  | 0.0      | М    | 01   | QR    |      | FP3       | s  | WILSON RIVER NEAR ASHVILLE             | 61  |

DR. AREA. = 0.0 IS NOT APPLICABLE

| SUMMARY: | CONVENTIONAL STATIONS | REMOTE STATIONS       | TOTALS          |
|----------|-----------------------|-----------------------|-----------------|
|          |                       |                       |                 |
|          | DISCHARGE (C) = 10    | DISCHARGE (C) = 8     |                 |
|          | DISCHARGE (S) = 34    | DISCHARGE(S) = 0      |                 |
|          | DISCHARGE(M) = 0      | DISCHARGE (M) = 0     | DISCHARGE = 52  |
|          |                       |                       |                 |
|          | WATER LEVEL (C) = 1   | WATER LEVEL (C) = 7   | WATER LEVEL = 9 |
|          | WATER LEVEL (S) = 1   | WATER LEVEL $(S) = 0$ | TOTAL = 61      |

4

### ACTIVE GAUGING STATIONS FOR MANITOBA PROVINCIAL 1. PROVINCIAL DEPARTMENTAL PROGRAMS

|   | STA. NO.           | DR. AREA     | DIST   | RESP | GAUGE DATA | FUND. CD. | ØΡ       | STATION NAME PAGE NO. 10                       | NO.          |
|---|--------------------|--------------|--------|------|------------|-----------|----------|------------------------------------------------|--------------|
| - | 05LJ803            | 0.0          | M      | 10   | НМ         | P1        | S        | BALD HILL RESERVOIR NEAR MCCREARY              | 1            |
|   | 05LL028            | 275.0        | M      | 01   | QR         | P1        | Š        | BEAVER CREEK EAST OF BEAVER                    | 2            |
|   | 05LG801            | 0.0          | M      | 10   | HM         | P1        | s        | BEAVER LAKE NEAR PINE RIVER                    | 3            |
|   | 05LG801            | 0.0          | M      | 10   | нм         | P1        | S        | BELL LAKE NEAR OUTLET                          | 4            |
|   | 05LF002            | 170.0        | м      | 05   | QR         | P1        | s        | BELL RIVER NEAR BELLSITE                       | 5            |
|   | 05LL025            | 0.0          | M      | 01   | QM         | P1        | M        | BIG GRASS DRAIN NEAR LANGRUTH                  | 6            |
|   | 05KH003            | 2430.0       | M      | 05   | HR         | P1        | s        | BIRCH RIVER ABOVE BRACKEN DAM                  | 7            |
|   | 05KH004            | 2430.0       | M      | 05   | HR         | P1        | S        | BIRCH RIVER BELOW BRACKEN DAM                  | 8            |
|   | 05@A801            | 0.0          |        | 10   | UM         | P1        | _        | BOISSEVAIN RESERVOIR NEAR BOISSEVAIN           | 9            |
|   |                    | 0.0          | M      | 10   | HM         |           | C        |                                                | 10           |
|   | 050F801<br>050F003 | 0.0          | M      | 10   | HM<br>QR   | P1<br>P1  | S<br>C   | BOYNE RIVER ABOVE CARMAN DAM                   | 11           |
|   |                    | 976.0        | M      | 01   |            | P1        |          | BOYNE RIVER NEAR CARMAN                        |              |
|   | 050F006            | 873.0        | М      | 02   | QR         | PI        | С        | BOYNE RIVER NEAR STEPHENFIELD                  | 12           |
|   | 056F010            | 277,0        | M      | 02   | QR         | P1        | S        | BOYNE RIVER NEAR TREHERNE                      | 13           |
|   | 05PG003            | 0.0          | M      | 03   | HR         | P1        | S        | BRERETON LAKE NEAR RENNIE                      | 14           |
|   | 05SA004            | 847.0        | M      | 03   | QR         | P1        | S        | BROKENHEAD RIVER NEAR VIVIAN                   | 15           |
|   | 05LN002            | 334.0        | M      | 01   | QR         | P1        | S        | BURNT LAKE DRAIN NO 1 NEAR DEERHORN            | 16           |
| - | 05LN003            | 746.0        | M      | 01   | QR         | P1        | S        | BURNT LAKE DRAIN NO 2 NEAR LUNDAR              | 17           |
|   | 05PG806            | 0.0          | M      | 10   | HM         | P1        | S        | CADDY LAKE AT CADDY LAKE CAMPGROUND            | 18           |
|   | 05KL005            | 0.0          | M      | 05   | HR RD      | P1        | C        | CEDAR LAKE NEAR OLESON POINT                   | 19           |
|   | 05MD008            | 0.0          | M      | 02   | HR         | P1        | S        | CHILDS LAKE NEAR BOGGY CREEK                   | 20           |
|   | 05KK009            | 0.0          | м      | 05   | HR         | P1        | С        | CLEARWATER LAKE AT GUY HILL                    | 21           |
|   | 0501006            | 513.0        | M      | 03   | QR         | P1        | s        | COOKS CREEK AT COOKS CREEK                     | 22           |
|   | 050J007            | 183.0        | M      | 03   | QR C       | Pi        | s        | COOKS CREEK NEAR GLASS                         | 23           |
|   | 05KK002            | 0.0          | M      | 05   | HR         | P1        | C        | CORMORANT LAKE AT CORMORANT                    | 24           |
|   | 05@B801            | 0.0          | M      | 10   | нм         | P1        | s        | CRYSTAL CREEK ABOVE CRYSTAL CITY DAM           | <b>25</b> 49 |
|   | 050B001            | 0.0<br>572.0 | M<br>M | 02   | QR         | P1        |          | CYPRESS RIVER NEAR CYPRESS RIVER               | 26           |
|   | 05LJ816            | 0.0          | M      | 10   | HM         | P1        | C        | DAUPHIN LAKE AT OCHRE BEACH                    | 27           |
|   | 05LL023            | 0.0          | M      | 01   | QM         | P1        | M        | DEAD LAKE DRAIN NEAR GLADSTONE                 | 28           |
|   | 0500015            | 100.0        |        | 00   | QR         | P1        | s        | DEADHORSE CREEK AT MORDEN                      | 29           |
|   | 05NG014            | 136.0        | M<br>M | 02   | HR         | P1        | S        | DELORAINE RESERVOIR NEAR DELORAINE             | 30           |
|   | 05NG014            | 0.0          |        | 10   | HM<br>HM   | P1        | S        | DENNIS LAKE NEAR MALONTON                      | 31           |
|   | 05LN005            | 0.0          | M<br>M | 01   | HR         | P1        | S        | DOG LAKE NEAR WALONTON                         | 32           |
|   | 03211003           | 0.0          | М      | 01   | пк         | FI        | 3        | DOG ENRE NEAR VOGAR                            | 32           |
|   | 05LJ047            | 0.0          | М      | 01   | QR SCW     | P1        | S        | EDWARDS CREEK DRAIN BELOW JACKFISH CREEK TRIB  | 33           |
|   | 05NG803            | 0.0          | M      | 10   | HM         | P1        | S        | ELGIN RESERVOIR NEAR ELGIN                     | 34           |
|   | 0500005            | 673.0        | M      | 01   | QR .       | P1        | S        | ELM CREEK CHANNEL 2 NEAR ELM CREEK             | 35           |
|   | 0500006            | 484.0        | M      | 01   | QR         | P1        | <u> </u> | ELM CREEK CHANNEL 3 NEAR ELM CREEK             | 36           |
|   | 05PD801            | 0.0          | M      | 10   | нм         | P1        | S        | FALCON LAKE AT FALCON LAKE                     | 37           |
|   | 05SB005            | 632.0        | M      | 01   | QR C       | P1        |          | FISH LAKE DRAIN NEAR CAMP MORTON               | 38           |
|   | 05SB003            | 0.0          | M      | 01   | HR         | P1        | S        | FISH LAKE AT OUTLET CONTROL STRUCTURE NR MELEB | 39           |
|   | 050A015            | 0.0          | M      | 02   | QR         | P1        | S        | GIMBY CREEK NEAR CARTWRIGHT                    | 40           |

DR. AREA. = 0. 0 IS NOT APPLICABLE

# ACTIVE GAUGING STATIONS FOR MANITOBA PROVINCIAL 1. PROVINCIAL DEPARTMENTAL PROGRAMS

| STA. NO.         | DR. AREA | DIST                                    | RESP | GAUGE DATA | FUND. CD. | ØΡ         | STATION NAME PAGE NO. 11                                  | NO.      |
|------------------|----------|-----------------------------------------|------|------------|-----------|------------|-----------------------------------------------------------|----------|
| 05LL026          | 0.0      | М                                       | 01   | QR CA      | P1        | S          | GLENELLA DRAIN NEAR GLENELLA                              | 41       |
| 05LL024          | 73.3     | M                                       | 01   | QR         | P1        | s          | GOPHER CREEK NEAR GLADSTONE                               | 42       |
| 05KJ002          | 0.0      | M                                       | 05   | HR         | P1        | s          | GRACE LAKE NEAR THE PAS                                   | 43       |
| 05ØJ017          |          | M                                       | 03   | QR         | P1        | S          | GRASSMERE DRAIN NEAR MIDDLECHURCH                         | 44       |
| 0303017          | 471.0    |                                         | 03   | <u>ur</u>  | FI        |            | GRASSMERE DRAIN NEAR MIDDLECHORCH                         |          |
| 0500016          | 0.0      | М                                       | 01   | QR I       | P1        | S          | HESPELER FLOODWAY NEAR ROSENFELD                          | 45       |
| 05LJ807          | 0.0      | M                                       | 10   | HR         | P1        | S          | JACKFISH LAKE ABOVE JACKFISH LAKE DAM                     | 46       |
| 05LL802          | 0.0      | M                                       | 10   | HR         | P1        | S          | JACKSON LAKE NEAR SYDNEY                                  | 47       |
| 050E007          | 311.0    | M                                       | 03   | QR         | P1        | S          | JOUBERT CREEK AT ST PIERRE-JOLYS                          | 48       |
| 0540000          | 45.0     |                                         | 00   | 00.4       | В1        | _          | VENTON OBEEV AT VENTON                                    | 40       |
| 05MG006          | 45.8     | M                                       | 02   |            | P1        | S          | KENTON CREEK AT KENTON                                    | 49       |
| 05MG803          | 0.0      | M                                       | 10   | HM         | P1        |            | KENTON RESERVOIR NEAR KENTON                              | 50       |
| 050A803          | 0.0      | M                                       | 10   | HM         | P1        | S          | KILLARNEY LAKE AT KILLARNEY                               | 51       |
| 0500024          | 0.0      | М                                       | 01   | QR         | P1        | S          | KRONSGART DRAIN NEAR SEWELL                               | 52       |
| 05 <b>6</b> 6802 | 0.0      | М                                       | 10   | нм         | P1        | s          | LA SALLE RIVER ABOVE HOGUE'S DAM                          | 53       |
| 050G803          | 0.0      | M                                       | 10   | HM         | P1        | S          | LA SALLE RIVER ABOVE LEWKO'S DAM                          | 54       |
| 05 <b>6</b> 6804 | 0.0      | M                                       | 10   | HM         | P1        | s          | LA SALLE RIVER ABOVE ST. NORBERT DAM                      | 55       |
| 05 <b>0</b> 6807 | 0.0      | M                                       | 10   | НМ         | P1        | Š          | LA SALLE RIVER AT ELIE                                    | 56       |
|                  | 0,0      | • • • • • • • • • • • • • • • • • • • • |      |            |           |            |                                                           |          |
| 056G801          | 0.0      | M                                       | 10   | НМ         | P1        | S          | LA SALLE RIVER AT HAMPSON'S DAM                           | 57       |
| 05 <b>6</b> 6808 | 0.0      | М                                       | 10   | HM         | P1        | S          | LA SALLE RIVER AT LA SALLE                                | 58       |
| 056G806          | 0.0      | M                                       | 10   | HM         | P1        | S          | LA SALLE RIVER AT SANFORD                                 | 59       |
| 0500805          | 0.0      | M                                       | 10   | НМ         | P1        | S          | LA SALLE RIVER AT STARBUCK                                | 60       |
| 0566008          | 100.0    | м                                       | 07   | QR         | P1        | s          | LA SALLE RIVER NEAR ELIE                                  | 61       |
|                  | 198.0    | M                                       | 07   |            |           |            |                                                           |          |
| 05RE005          | 0.0      | M                                       | 03   |            | P1        | C          | LAKE WINNIPEG AT GEORGE ISLAND                            | 62       |
| 05MF801          | 0.0      | <u>M</u>                                | 10   | HM         | P1        |            | LITTLE SASKATCHEWAN R. ABOVE RAPID CITY DAM               | 63       |
| 05KG006          | 0.0      | M                                       | 05   | HR         | P1        | S          | MANISTIKWAN LAKE NEAR FLIN FLON                           | 64       |
| 05 <b>6</b> E006 | 490.0    | M                                       | 03   | QR         | P1        | s          | MANNING CANAL NEAR ILE DES CHENES                         | 65       |
| 05PF801          | 0.0      | M                                       | 10   | HM         | P1        |            | MARGARET LAKE NEAR OTTER FALLS                            | 66       |
| 050E010          | 445.0    | M                                       | 03   | QR         | P1        | S          | MARSH RIVER NEAR OTTERBURNE                               | 67       |
| 05NG022          | 0.0      | M                                       | 02   |            | P1        | s          | MAPLE (MARSHY) LAKE NEAR PIPESTONE                        | 68       |
| OFMEOOO          | 200 0    |                                         | -00  | 00         | ъ.        | •          | MINNELLACIA OPERE NEAD DELL'ALL                           | 60       |
| 05ME008          | 360.0    | M                                       | 02   |            | P1<br>P1  | <u>S</u> _ | MINNEWASTA CREEK NEAR BEULAH MORDEN RESERVOIR NEAR MORDEN | 69<br>70 |
| 0500801          | 0.0      | M                                       | 10   | HM         |           | S          |                                                           |          |
| 05LL009          | 165.0    | М                                       | 01   | QR         | P1        | S          | NEEPAWA CREEK NEAR NEEPAWA                                | 71       |
| 05LL010          | 0.0      | M                                       | 01   | HR         | P1        | С          | NEEPAWA RESERVOIR NEAR NEEPAWA                            | 72       |
| 050J009          | 245.0    | M                                       | 01   | QR         | P1        | S          | NETLEY CREEK NEAR MATLOCK                                 | 73       |
| 05KK005          | 0.0      | M                                       | 05   | HR D       | P1        | C          | NORTH MOOSE LAKE AT MOOSE LAKE CONTROL STR                | 74       |
| 05LN004          | 0.0      | M                                       | 01   | HR         | P1        | Č          | NORTH SHOAL LAKE NEAR !NWOOD                              | 75       |
| 05NG008          | 0.0      | M                                       | 02   |            | P1        | Š          | OAK LAKE AT OAK LAKE RESORT                               | 76       |
|                  |          |                                         |      |            |           | _          | CAN DIVED AT OUT I AVE                                    |          |
| 05MG008          | 370.0    | M                                       | 02   |            | P1        | С          | MAK RIVER AT SHOAL LAKE                                   | 77       |
| 05SD801          | 0.0      | М                                       | 10   |            | P1        | S          | OTTER LAKE NEAR BROAD VALLEY                              | 78       |
| 05MH012          | 435.0    | M                                       | 02   |            | P1        | S          | OXTAIL CREEK NEAR CYPRESS RIVER                           | 79       |
| 050E014          | 0.0      | M                                       | 03   | QR         | P1        | S          | FANSY DRAIN NEAR SARTO                                    | 80       |

DR. AREA. = 0. 0 IS NOT APPLICABLE

# ACTIVE GAUGING STATIONS FOR MANITOBA PROVINCIAL 1. PROVINCIAL DEPARTMENTAL PROGRAMS

| STA. NO.         | DR. AREA | DIST  | RESP | GAUGE DATA | FUND. CD. | ØР       | STATION NAME PAGE NO. 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NO.         |   |
|------------------|----------|-------|------|------------|-----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---|
| 050A802          | 0.0      | M     | 10   | НМ         | P1        | С        | PELICAN LAKE NEAR NINETTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81          | - |
| 05 <b>6</b> B025 | 147.0    | M     | 02   | QR         | P1        |          | PILOT CREEK NEAR PILOT MOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 82          |   |
| 05 <b>6B803</b>  | 0.0      | M     | 10   | HM         | PI        |          | PILOT MOUND RESERVOIR NEAR PILOT MOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 83          |   |
| 05LG001          | 210.0    | M     | 01   | QR C       | P1        | -        | PINE RIVER NEAR PINE RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 84          |   |
| 0020001          | 210.0    |       |      | GIV O      |           |          | THE RIVER HEART INC. RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |   |
| 05NG003          | 4200.0   | M     | 02   | QR         | P1        | C        | PIPESTONE CREEK NEAR PIPESTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 85          |   |
| 05LJ808          | 0.0      | M     | 10   | HM         | P1        | S        | PLEASANT VALLEY RESERVOIR NEAR PETLURA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 86          |   |
| 05NG801          | 0.0      | M     | 10   | HR         | P1        | S        | PLUM LAKE ABOVE DELEAU DAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87          |   |
| 05NG809          | 0.0      | M     | 10   | HR         | P1        | S        | PLUM LAKE NEAR FINDLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 88          |   |
|                  |          |       |      | 00         |           | •        | DAT DIVER NEAD OF MALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |   |
| 05@E002          | 901.0    | M     | 03   | QR         | P1        | S        | RAT RIVER NEAR ST MALO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 89          |   |
| 0500026          | 0.0      | M     | 03   | HR T       | P1        | S        | RED RIVER ABOVE RED RIVER FLOODWAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 90          |   |
| 0560803          | 0.0      | M     | 10   | HM         | P1        | S        | RED RIVER AT ST ADOLPHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91          |   |
| 05PG002          | 159.0    | M     | 03   | QR A       | P1        | С        | RENNIE RIVER NEAR RENNIE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 92          |   |
| 05MF020          | 0.0      | M     | 02   | HR         | P1        | С        | RIVERS RESERVOIR NEAR RIVERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 93          |   |
| 05 <b>6</b> B804 | 0.0      | M     | 10   | HM         | P1        | C        | ROCK LAKE NEAR GLENORA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 94          |   |
| 05 <b>6</b> D802 | 0.0      | M     | 10   | НМ         | P1        | S        | ROSEAU RIVER AT DOMINION CITY (P.R. 200)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 95          |   |
| 05ME803          | 0.0      | M     | 10   | HM         | P1        | S        | RUSSELL RESERVOIR NEAR RUSSELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 96          |   |
|                  |          |       |      |            |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |   |
| 050E003          | 0.0      | M     | 03   | HR         | P1        | С        | ST MALO RESERVOIR NEAR ST MALO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 97          |   |
| 05KG004          | 0.0      | M     | 05   | HR         | P1        | S        | SCHIST LAKE NEAR CHANNING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98          |   |
| 05ME009          | 162.0    | M     | 02   | QR         | P1        | S        | SCISSOR CREEK NEAR MCAULEY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99          |   |
| 05ØE011          | 0,0      | M     | 03   | QR A       | P1        | S        | SEINE RIVER DIVERSION NEAR ILE DES CHENES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100         |   |
|                  |          |       |      |            |           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25- 50- 50- |   |
| 05 <b>6</b> H008 | 0.0      | M     | 03   | QR A       | P1        | S        | SEINE RIVER DIVERSION NEAR STE ANNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 101         |   |
| 05 <b>6</b> H006 | 1090.0   | M     | 03   |            | P1        | C        | SEINE RIVER NEAR PRAIRIE GROVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102         |   |
| 05 <b>6</b> F021 | 308.0    | M     | 02   | QR         | P1        |          | SHANNON CREEK NEAR MORDEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 103         |   |
| 05 <b>6</b> F014 | 653.0    | M     | 01   | QR         | P1        | S        | SHANNON CREEK NEAR MORRIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 104         |   |
| 05 <b>6</b> F015 | 168.0    | М     | 01   | QR         | P1        | s        | SHANNON CREEK TRIBURARY NEAR MYRTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 105         | Ġ |
| 05NG805          | 0.0      | M     | 10   | HR         | P1        |          | SHARPE LAKE NEAR DELORAINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 106         | T |
| 05MG007          | 0.0      | M     | 02   | HM         | P1        | <u>s</u> | SHOAL LAKE NEAR SHOAL LAKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 107         |   |
| 05LJ040          | 137.0    | M     | 01   | QR         | P1        | S        | SILVER CREEK NEAR GRANDVIEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 108         |   |
| 0323040          | 137.0    |       | 01   | GIT        |           | 3        | STEVER CREEK HEAR GRANDVIEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100         |   |
| 05TB801          | 0.0      | M     | 10   | нм         | P1        | С        | SNOW LAKE AT SNOW LAKE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 109         |   |
| 05NG025          | 0.0      | M     | 02   | QR SW      | P1        | S        | SOURIS RIVER NEAR LAUDER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 110         |   |
| 05NG026          | 0.0      | M     | 02   | S          | P1        | M        | SOURIS RIVER NEAR MINTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 111         |   |
| 05KK006          | 0.0      | M     | 05   | HR D       | P1        | C        | SOUTH MOOSE LAKE AT MOOSE LAKE CONTROL STR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112         |   |
|                  |          |       |      |            |           |          | OTTERDOON BUILD MADE WATER THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |   |
| 05LF001          | 300.0    | M     | 05   |            | P1        | S        | STEEPROCK RIVER NEAR MAFEKING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 113         |   |
| 05 <b>6</b> F008 | 0.0      | M     | 02   |            | P1        |          | STEPHENFIELD RESERVOIR NEAR STEPHENFIELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 114         |   |
| 05MJ011          | 541.0    | M     | 07   | QR         | P1        |          | STURGEON CREEK NEAR PERIMETER HWY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 115<br>116  |   |
| 05LE007          | 0.0      | M     | 05   | HR         | P1        | - 5      | SWAN LAKE NEAR NOVRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 116         |   |
| 05 <b>6</b> F018 | 87.3     | М     | 02   | QR         | P1        | s        | TOBACCO CREEK NEAR ROSEBANK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 117         |   |
| 05ØE009          | 237.0    | M     | 03   | QR         | P1        |          | TOUROND CREEK NEAR TOUROND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118         |   |
| 05LJ811          | 0.0      | M     | 10   |            | P1        |          | UPPER GRANDVIEW RESERVOIR NEAR MERRIDALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119         |   |
| 05LJ812          | 0.0      | M     | 10   |            | P1        |          | VALLEY RIVER AT GILBERT PLAINS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120         |   |
| COLOUIZ          | 0.0      | • • • |      | 1.11       |           | •        | The second secon |             |   |

DR. AREA. = 0.0 IS NOT APPLICABLE

-52-

| STA. NO.   | DR. AREA       | DIST  | RESP     | GAUGE DATA | FUND. CD. | OP | STATION NAME PAGE NO. 13                    | NO |
|------------|----------------|-------|----------|------------|-----------|----|---------------------------------------------|----|
| 05LJ021    | 1720.0         | М     | 02       | QR C       | P1        | S  | VALLEY RIVER NEAR GRANDVIEW                 | 12 |
| 05PG803    | 0.0            | M     | 10       | HM         | P1        | s  | WEST HAWK LAKE AT WEST HAWK LAKE CAMPGROUND | 12 |
| 05LL001    | 156.0          | M     | 01       | QR         | P1        | S  | WEST SQUIRREL CREEK NEAR AUSTIN             | 12 |
| 05PH005    | 0.0            | M     | 03       | HR         | P1        |    | WHITEMOUTH LAKE NEAR THE OUTLET             | 12 |
| 05LL011    | 803.0          | м     | 0.1      | QR         | P1        |    | WHITEMUD RIVER NEAR NEEPAWA                 | 12 |
| 05PG801    | 0.0            | M     | 01<br>10 | HM         | P1        | S  | WHITESHELL LAKE AT CAMPGROUND               | 12 |
| 05PG001    |                | M     | 03       | QR         | P1        | 0  | WHITESHELL R AT GUTLET OF JESSICA LAKE      | 12 |
| 05MH011    | 883.0<br>668.0 | M     | 02       |            | P1        |    | WILLOW CREEK NEAR CHATER                    | 12 |
| OSMINOTT   | 000.0          | 11    | 02       | GIN        |           | 3  | WILLOW CREEK NEAR CHAILK                    | 12 |
| 05SB002    | 156.0          | M     | 01       | QR         | P1        | S  | WILLOW CREEK NEAR GIMLI                     | 12 |
| 05PF062    | 0.0            | M     | 03       | HM         | P1        | С  | WINNIPEG RIVER AT LAC DU BONNET             | 13 |
| 05TD002    | 0.0            | M     | 04       | HR R       | P1        | С  | WINTERING LAKE AT THICKET PORTAGE           | 13 |
| EA.=0.0 IS | S NOT APPL     | CABLE | <u> </u> |            |           |    |                                             |    |
|            |                |       |          |            |           |    |                                             |    |

| SUMMARY: | CONVENTIONAL STATIONS                                        | REMOTE STATIONS                                             | TOTALS                         |  |
|----------|--------------------------------------------------------------|-------------------------------------------------------------|--------------------------------|--|
|          | DISCHARGE (C) = 7<br>DISCHARGE (S) = 50<br>DISCHARGE (M) = 2 | DISCHARGE (C) = 0<br>DISCHARGE (S) = 0<br>DISCHARGE (M) = 0 | DISCHARGE = 59                 |  |
|          | WATER LEVEL (C) = 16<br>WATER LEVEL (S) = 52                 | WATER LEVEL (C) = 3<br>WATER LEVEL (S) = 0                  | WATER LEVEL = 71<br>TOTAL =130 |  |

|  |  |  | Y . |
|--|--|--|-----|
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |
|  |  |  |     |

# ACTIVE GAUGING STATIONS FOR MANITOBA PROVINCIAL 2. SPECIFIC PURPOSE MONITORING REQUIREMENTS

| STA. NO.   | DR. AF | REA  | DIST   | RESP   | GAUGE  | DATA | FUND. CD | . OP  | STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATION NAME       | PAGE NO    | 14 | NO. |
|------------|--------|------|--------|--------|--------|------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|----|-----|
| 06EB006    |        | 0.0  | M      | 04     |        | RD   | P2       |       | RUSSELL LAKE NEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |            |    | 1   |
| 06EC006    |        | 0.0  | M      | 04     |        | RD   | P2       |       | SOUTHERN INDIAN L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |            |    | 2   |
| 06EC007    |        | 0.0  |        | 04     | нк     | RD   | P2       | C     | SOUTHERN INDIAN L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AKE NEAR OPACHUA | NAU        |    | 3   |
| REA.=0.0 I | S NOT  | APPL | ICABLE |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       | THE CONTRACT OF THE CONTRACT O |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      |        |        |        |      |          |       | eritetinisty etit kant van ellemet liitetet. V van tietetiinsely maagemeete vagan maavase den eleksistiinselija                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
| SUMM       | IARY:  | С    | ONVENT | IONAL  | STATI  | ONS  |          | REMOT | E STATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TOTALS           |            |    |     |
|            |        |      | DISC   |        | (C)    |      |          |       | SCHARGE (C) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |            |    |     |
|            |        |      | DISC   | HARGE  | (S)    | = 0  |          | DI    | $SCHARGE \cdot (S) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |            |    |     |
|            |        |      | DISC   | HARGE  | ( M)   | = 0  |          | DI    | SCHARGE (M) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | D DIS            | CHARGE =   | 0  |     |
|            |        |      | WATE   | R LEVE | EL (C) | = 0  |          |       | TER LEVEL (C) = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | ER LEVEL = |    |     |
|            |        |      | WATE   | R LEVE | EL (S) | = 0  |          | WA    | TER LEVEL (S) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | төт              | AL =       | 3  |     |

|  |  | H |  |
|--|--|---|--|
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |

# HYDROMETRIC SUMMARY (STATION UNITS) OPERATED BY WATER SURVEY OF CANADA

| EDERAL            | CONVE                         | NTIO | INAL               |            | REMOTE                                                                                                                                                                     |                                       |                  |         |   |
|-------------------|-------------------------------|------|--------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|---------|---|
|                   | DISCHARGE(C)                  | 33   | X 1.00=            | 33.00      | DISCHARGE(C)                                                                                                                                                               | 17                                    | X 1.00           | = 17.00 |   |
|                   | DISCHARGE(S)                  |      | X 0.75=            |            | DISCHARGE(S)                                                                                                                                                               |                                       | X 0.75           |         |   |
|                   | DISCHARGE (M)                 | 1    | X 0.00=            | 0.00       | DISCHARGE (M)                                                                                                                                                              | _                                     | X 0.00           |         |   |
|                   |                               |      | X 0.40=            |            | WATER LEVEL(C)                                                                                                                                                             |                                       | X 0.40           |         |   |
|                   | WATER LEVEL(S)                | 1_   | X 0.25=            | . 25       | WATER LEVEL(S)                                                                                                                                                             |                                       | X 0.25           | = .25   |   |
|                   | SUB-TOTALS                    |      |                    | 57.15      |                                                                                                                                                                            | 25                                    |                  | 20.05   |   |
| EDERAL-PROVINCIAL |                               |      |                    |            |                                                                                                                                                                            |                                       |                  |         |   |
|                   | DISCHARGE(C)                  |      | X 1.00=            |            | DISCHARGE(C)                                                                                                                                                               |                                       | X 1.00           |         |   |
|                   | DISCHARGE(S)                  |      | X 0.75=            |            | DISCHARGE(S)                                                                                                                                                               |                                       | X 0.75           |         |   |
|                   | DISCHARGE (M)                 |      | X 0.00=            |            | DISCHARGE(M)                                                                                                                                                               |                                       | X 0.00           |         |   |
|                   | WATER LEVEL(C) WATER LEVEL(S) |      | X 0.40=<br>X 0.25= |            | WATER LEVEL(C) WATER LEVEL(S)                                                                                                                                              |                                       | X 0.40<br>X 0.25 |         |   |
|                   | WATER LEVEL(S)                |      |                    | 1.30       | WATER CEVEL(S)                                                                                                                                                             |                                       | X 0.23           | - 0.00  |   |
|                   | SUB-TOTALS                    | 87   |                    | 64.15      |                                                                                                                                                                            | 25                                    |                  | 16.35   |   |
|                   |                               |      |                    |            |                                                                                                                                                                            |                                       |                  |         |   |
| PROVINCIAL        |                               |      |                    |            |                                                                                                                                                                            |                                       |                  |         |   |
|                   | DISCHARGE(C)                  |      | X 1.00=            |            | DISCHARGE(C) DISCHARGE(S)                                                                                                                                                  | _                                     | X 1.00<br>X 0.75 |         |   |
|                   | DISCHARGE(S)<br>DISCHARGE(M)  |      | X 0.75=<br>X 0.00= |            | DISCHARGE(S)                                                                                                                                                               |                                       | X 0.75           |         |   |
|                   | WATER LEVEL(C)                |      | X 0.40=            |            | WATER LEVEL(C)                                                                                                                                                             | -                                     | X 0.40           |         |   |
|                   |                               |      | X 0.25=            |            | WATER LEVEL(S)                                                                                                                                                             |                                       | X 0.25           |         |   |
|                   |                               |      |                    |            |                                                                                                                                                                            |                                       |                  |         | , |
|                   | SUB-TOTALS                    |      |                    | 52.35      |                                                                                                                                                                            | 6                                     |                  | 2.40    |   |
|                   | TOTALS                        | 244  |                    | 173.65     |                                                                                                                                                                            | 56                                    |                  | 38.80   |   |
|                   |                               | N    | IUMBER Ö           | WATER<br>W | DISCHARGE STATIONS : FER LEVEL STATIONS : REMOTE STATIONS : SEDIMENT STATIONS : R QUALITY STATIONS : ATER TEMP STATIONS : D.C.PLATFORMS : TELEMARKS : NT MICROPROCESSORS : | 83<br>56<br>20<br>3<br>16<br>33<br>29 |                  |         |   |

|            |            | E GAUG    |      | TATIONS F | OR MANITOBA                                          |       |                                  | 1              | -1986-87 |
|------------|------------|-----------|------|-----------|------------------------------------------------------|-------|----------------------------------|----------------|----------|
| STA.NO.    | DR. AREA   | DIST      | RESP | GAUGE DA  | TA FUND.CD                                           | ). ØP | STATION NAME                     | PAGE NO. 15    | NØ.      |
| 05UB009    | 0.0        | M         | 11   | QP        | CON                                                  | IT C  | NELSON RIVER AT JENPER WEST CHAN | INEL           | 1        |
|            | 1010000.0  | M         | 11   | QP QA     |                                                      |       | NELSON RIVER AT KELSEY GEN STATI |                | 2        |
| 05KL001    |            | M         | 11   | QP        | CON                                                  | IT C  | SASKATCHEWAN RIVER AT GRAND RAPI | DS             | 3        |
| 05PD004    | 0.0        | M         | 15   |           | CON                                                  |       | SHOAL LAKE AT INDIAN BAY         |                | 4        |
| 05PF063    | 126000.0   | М         | 16   | QR CA     | Q CON                                                | іт с  | WINNIPEG RIVER AT SLAVE FALLS    |                | 5        |
| 05PF057    | 0.0        | M         | 11   | HR A      | CON                                                  |       | WINNIPEG RIVER HEAD WATER SEVEN  | SISTERS PPLANT | 6        |
| 05PF048    | 0,0        | M         | 11   |           | CQN                                                  |       | WINNIPEG RIVER TAILRACE GREAT FA |                | 7        |
| REA.=0.0 I | S NOT APPL | _ I CABLE |      |           |                                                      |       |                                  |                |          |
|            |            |           |      |           |                                                      |       |                                  |                |          |
|            |            |           |      |           |                                                      |       |                                  |                |          |
|            |            |           |      |           |                                                      |       |                                  |                |          |
|            |            |           |      |           |                                                      |       |                                  |                |          |
|            |            |           |      |           |                                                      |       |                                  |                |          |
|            |            |           |      |           |                                                      |       |                                  |                |          |
|            |            |           |      |           |                                                      |       |                                  |                |          |
|            |            |           |      |           |                                                      |       |                                  |                |          |
|            |            |           |      |           |                                                      |       |                                  |                |          |
|            |            |           |      |           |                                                      |       |                                  |                |          |
|            |            |           |      |           |                                                      |       |                                  |                |          |
|            |            |           |      |           | AND THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER. |       |                                  |                |          |
|            |            |           |      |           |                                                      |       |                                  |                |          |
|            |            |           |      |           |                                                      |       |                                  |                |          |

| SUMMARY: | CONVENTIONAL STATIONS                      | REMOTE STATIONS                            | TOTALS                       |                                                                                          |
|----------|--------------------------------------------|--------------------------------------------|------------------------------|------------------------------------------------------------------------------------------|
|          | DISCHARGE (C) = 4<br>DISCHARGE (S) = 0     | DISCHARGE (C) = 0<br>DISCHARGE (S) = 0     |                              |                                                                                          |
|          | DISCHARGE (M) = 0                          | DISCHARGE (M) = 0                          | DISCHARGE = 4                | anto de un un antercamente de Primera espaçamente con activamente e del melo mensaciona. |
|          | WATER LEVEL (C) = 3<br>WATER LEVEL (S) = 0 | WATER LEVEL (C) = 0<br>WATER LEVEL (S) = 0 | WATER LEVEL = 3<br>TOTAL = 7 |                                                                                          |
|          |                                            |                                            |                              |                                                                                          |

| * |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

# ACTIVE GAUGING STATIONS FOR MANITOBA CONTRIBUTED BY OTHER FEDERAL AGENCY.

| STA.NO. DR.AF      | EA DIST RESP GAUGE DATA FU             | UND.CD. OP<br>CONF                                                                                             | STATION NAME - NIL -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PAGE NO.15      | NØ. |
|--------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|
| AREA. = 0.0 IS NOT | APPL I CABLE                           |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        | The second of the second control of the second control of the second second second second second second second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                | Partidor alice approximation and deprivate flore (the suppose account of the control of the cont |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
|                    |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
| _,                 |                                        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |     |
| SUMMARY:           | CONVENTIONAL STATIONS                  | REMOTE STATI                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OTALS           |     |
|                    | DISCHARGE (C) = 0                      | DISCHARGE                                                                                                      | (C) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |     |
|                    | DISCHARGE (S) = 0<br>DISCHARGE (M) = 0 | DISCHARGE<br>DISCHARGE                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DISCHARGE = 0   |     |
|                    | WATER LEVEL (C) = 0                    |                                                                                                                | EL (C) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WATER LEVEL = 0 |     |
|                    | WATER LEVEL (C) = 0                    | WATER LEV                                                                                                      | EL (S) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TOTAL = 0       |     |

# ACTIVE GAUGING STATIONS FOR MANITOBA NEW CONSTRUCTION

| STA. NO.      | DR. AREA          | DIST RES             | SP GAUGE DATA FL | JND. CD.             | OP STATION                                                                                                    | NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PAGE NO. 16 | No. |
|---------------|-------------------|----------------------|------------------|----------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|
|               | 0.0<br>0.0<br>0.0 |                      |                  | NEWP<br>NEWP<br>NEWP | EAGER LAKE<br>SIPIWESK LAKE AT SIPI<br>SOUTH PLAYGREEN LAKE                                                   | WESK LANDING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 1   |
| REA. = 0. 0 ! | S NOT APP         | LICABLE              |                  |                      |                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      | derenteredid Greeningstrongen und von von von von von von der der den von von der den von von von von von von |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | ,   |
|               |                   |                      |                  |                      |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |     |
|               | MARY:             |                      | AL STATIONS      |                      | OTE STATIONS                                                                                                  | TOTALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |     |
|               |                   | DISCHAR              | E (C) = 0        |                      | DISCHARGE (C) = 0<br>DISCHARGE (S) = 0                                                                        | The second section of the sect |             |     |
|               |                   | DISCHARO<br>DISCHARO | GE (M) = 0       |                      | DISCHARGE (M) = 0                                                                                             | DISC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HARGE = 0   |     |
|               |                   | WATER L.E            | EVEL (C) = 0     |                      | WATER LEVEL (C) = 0                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R LEVEL = 0 |     |
|               |                   |                      | EVEL(S) = 0      |                      | WATER LEVEL (S) = 0                                                                                           | TOTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      | × |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|---|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DEM              | SUMMARY<br>DTE STATIONS = 56         |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SEDIME           | INT STATIONS = 30                    |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WATER QUALI      | TY STATIONS = 5                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WATER TE<br>D.   | MP STATIONS = 16<br>C.PLATFORMS = 33 |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | TELEMARKS = 29                       |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INTELLIGENT MICR | OPROCESSORS = 5                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
| DISTRIBUTION LIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
| REGIONAL CHIEF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                      |   |     |
| REGIONAL HYDROLOGIST<br>REGIONAL ENGINEER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                      |   |     |
| AREA ENGINEERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                      |   |     |
| HYDROMETRIC SUPERVISORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   | 5   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   | 58- |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |
| Approximation of the Control of the |                  |                                      |   |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |                                      |   |     |

#### I-3 SCHEDULE B

#### ANNUAL PAYMENTS - ITEMS TO BE INCLUDED

The items to be included in computing the annual payments of water quantity survey stations are:

#### 1. Operational Cost Water Quantity Survey Stations Excluding Sediment

- a) Salaries and overtime of field personnel and casual labour;
- b) Field travel expenses, board and lodging costs for field personnel;
- The computer costs associated with computing daily mean hydrometric data;
- d) Observer pay;
- e) Depreciation, operation and maintenance of vehicles and boats;
- f) Maintenance of gauging station structures including material and labour for minor repairs;
- g) Maintenance and depreciation of all field equipment and instruments (except as noted in Article VII of this agreement);
- h) Fuels such as propane for heating recorder installations and gas such as nitrogen for operating pressure-sensing equipment, electricity charges;
- Rental of aircraft, vehicles, boats, etc. supplied by either party or chartered;
- j) The annual cost of land leases;
- k) Services, e.g., cost of establishing gas caches, operation of line cabins, etc.

#### II. Operational Cost Sediment Stations

- All items in 1. Operational Cost plus:
- 1) The computer costs associated with computing daily mean sediment data;
- m) Cost of analysis of sediment samples.

# III. New Construction Repair and Major Reconstruction Costs for Water Quantity Survey Stations

- a) Salaries and overtime of construction personnel;
- b) Field travel expenses, board and lodging costs of construction personnel;

- c) Depreciation, operation and maintenance of vehicles;
- d) Construction materials;
- e) Maintenance, depreciation and operation of construction equipment;;
- f) Rental of aircraft, vehicles, boats, construction equipment, etc. supplied by either party or chartered;
- g) Land acquisition costs including legal survey costs;
- h) Construction contract payments.

|  |  | × |
|--|--|---|
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |

#### I.4 SCHEDULE C

## PROCEDURES FOR PREPARATION OF ANNUAL PAYMENTS

- a) The annual payment is composed of two parts: the annual operating costs and the costs of construction for streamflow and water level installations and sediment installations.
- b) The annual payment shall be computed for each year the agreement is in effect.
- c) Cost data to be used as a basis for computing each annual payment will be from the latest available full fiscal year.
- d) A cost index factor is to be used in computing the annual payment for the year in question commensurate with sound engineering practice.
- e) The average annual unit costs for operating water quantity survey stations listed in Schedule A, but not including sediment stations will be determined from the cost data of c) above and where necessary, because of significant differences in transportation costs, these average annual unit costs will be computed for more than one area or condition of operation.
- f) The total annual operating cost for water quantity survey stations listed in Schedule A but not including sediment stations will be the summation of the appropriate average annual unit cost for each station multiplied by the cost index factor as determined in item d) above.
- g) The total annual operating cost of the sediment stations listed in Schedule A will be the summation of the annual operating costs of each station multiplied by the cost index factor as determined in item d) above.
- h) The construction cost to be apportioned in accordance with Articles II, III and IV will be the summation of the construction cost for each new, or reconstructed water quantity survey station. The entire cost of construction is to be included in the annual payment. Construction costs are to be determined using data from reconnaissance surveys, standard plans, etc. and incorporating the cost index factor from item d) above.
- i) In cases where there is a significant deviation between the cost determined in (f), (g) and (h) and actual costs because of the cost index factor used, or changes in the construction program due to unforeseen circumstances such as flooding, an adjustment may be made in the final quarterly payment (March 1st) or the next fiscal year to more accurately reflect the cost shares of the parties to this agreement.

#### 1.5 NATIONAL GUIDELINES FOR DESIGNATING WATER QUANTITY SURVEY STATIONS

October 20, 1982

These national guidelines of the Federal-Provincial Memoranda of Agreement for Water Quantity Surveys have been prepared by Canada in consultation with the Provinces for the purpose of designating federal, federal-provincial and provincial water quantity survey stations. In compliance with the agreement, the assignment and review of station designations is the responsibility of each Coordinating Committee.

The intent of these guidelines is to provide a uniform and consistent manner for designating water quantity survey stations throughout Canada. In these guidelines, "water quantity survey stations" have the same definition as in the Memoranda of Agreement and include water level, streamflow and sediment survey stations. The word "stations" in these guidelines means "water quantity survey stations". Where not otherwise specified, the word "Province" means "Province" or "Territory". The designation of each sediment station can be considered separately from the corresponding water quantity survey station designation.

#### FEDERAL STATIONS

These are stations that support programs of primary interest to the Government of Canada. These stations are funded 100 per cent by Canada in accordance with Article II and procedures described in Schedules B, C and D (F for the Yukon) (and Schedules E, D, and F for Quebec) of the Memoranda of Agreement.

#### 1. Federal Departmental Programs

These are stations required under statutory obligations that have developed in response to federal legislation and priorities, and as a result of programs of various federal government departments or agencies to provide quantity information on inland waters. These include stations operated in support of specific federal works, benchmark basins, studies or investigations, research projects, and to meet navigational requirements and management responsibilities. A station may be so designated where Canada has formally accepted responsibility for the continued operation of the station under an implementation agreement.

### 2. <u>Interprovincial Waters</u>

These are stations required for monitoring of waters flowing across or forming part of provincial or territorial boundaries where federal responsibility has been established by an agreement or where justified by an inter-jurisdictional concern.

### 3. <u>International Waters</u>

These are stations associated with federal responsibilities arising from international agreements, treaties, orders or studies. These include:

(a) Stations specifically named under the Boundary Waters Treaty and those approved officially as "International Gauging Stations".

- b) Stations specifically stipulated under IJC orders, or required to support such orders; to provide for control of waters crossing or forming part of the international boundary and for IJC related study, surveillance, flow regulation or apportionment purposes. Such stations may also be required for similar studies carried out under unilateral or bilateral mechanisms and undertaken in anticipation of the need for formal orders.
- c) Stations related to international treaties and agreements which involve waters crossing or forming part of the international boundary and which specifically stipulate the reaches of streams required to be monitored or special arrangements that need to be made to meet water quantity survey needs.
- d) Stations on streams flowing across or forming part of the international boundary for which Canada has determined that monitoring is required for water management purposes.

#### 4. National Water Quantity Inventory

These are stations that provide information for a national inventory of surface waters. They consist of those stations required to determine water quantity trends in the major drainage basins in Canada that serve to provide an assessment of the total surface water resources and to measure significant discharge to the oceans.

#### FEDERAL-PROVINCIAL AND/OR FEDERAL-TERRITORIAL STATIONS

These are stations that support programs of joint interest to Canada and the Province. The construction and operation of these stations are funded in accordance with Article III and procedures described in Schedules B, C and D (F for the Yukon) (and Schedules E, D, and F for Quebec) of the Memoranda of Agreement.

# 1. Federal-Provincial Agreements

These are stations where joint federal and provincial (or territorial) responsibility is established under the terms and conditions of an agreement between Canada and one or more Provinces or Territories.

The joint funding arrangements for any particular agreement must be taken into consideration before designating a station in order to ensure the intended division of financial responsibility. Following the completion of a federal-provincial water study, a station may be designated in this category only if its continuation would be in the joint interest of Canada and the Province.

#### 2. River Basin Management

These are stations where both Canada and the Province have stated an interest in the need for information to support the management of the water resources of a river basin.

|  |  | * |
|--|--|---|
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  | - |

### 3. Regional Water Quantity Inventory

These are stations that provide an assessment of the quantity of water resources available in distinct hydrologic zones within each Province through representative sampling taking into consideration climatic variability, geographic and geologic differences, levels of population and development, basin size, streamflow regime, relationship to major ground water resources and length of record.

#### PROVINCIAL AND/OR TERRITORIAL STATIONS

These are stations that support programs of primary interest to a Province. They are funded 100 percent by the Province in accordance with Article IV and procedures described in Schedules B, C and D (F for the Yukon) (and Schedules E, D, and F for Quebec) of the Memoranda of Agreement.

#### 1. Provincial Departmental Programs

These are stations required strictly for provincial programs where water quantity information on inland waters is needed.

# 2. Specific Purpose Monitoring Requirements

These are stations established a a result of specific requests of provincial/territorial agencies, municipalities, or non-government organizations. All such requests shall be referred to the Province for screening and funding arrangements before being presented to the applicable Co-ordinating Committee.

|  |  | ,     |
|--|--|-------|
|  |  |       |
|  |  |       |
|  |  | i     |
|  |  | arts. |
|  |  |       |
|  |  |       |
|  |  |       |

### SCHEDULE D

This schedule provides a summary of the annual payment. The details of the calculations of operation and construction are available and have been jointly reviewed by officers for each party

# ANNUAL PAYMENT FOR 1986-87 TO BE PAID TO CANADA BY MANITOBA

|                                                              | Operation | Construction | Total     |
|--------------------------------------------------------------|-----------|--------------|-----------|
| a) Streamflow and water level installations                  | \$440,500 | \$20,000     | \$460,500 |
| b) Sediment installations                                    | 14,200    | 0            | 14,200    |
| c) Installation of Satellite based Real Time hydrometric and |           |              | 77. 200   |
| Meteorologic Data Collection Netw                            | ork       |              | 77,300    |
| ANNUAL PAYMENT                                               |           |              | \$552,000 |

ADMINISTRATOR FOR MANITOBA

(signature)

Director Water Resources Branch Department of Natural Resources Regional Director
Inland Waters Directorate
Environment Canada

(signature)

ADMINISTRATOR FOR CANADA

|  |  | 1   |
|--|--|-----|
|  |  |     |
|  |  |     |
|  |  |     |
|  |  | 3   |
|  |  |     |
|  |  |     |
|  |  | 1   |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  | 1   |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  | 1   |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  | ī.  |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  | (_1 |
|  |  |     |
|  |  |     |
|  |  | 1   |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  | ,   |
|  |  | ,   |
|  |  |     |
|  |  | Y   |
|  |  |     |
|  |  |     |
|  |  |     |
|  |  | į   |
|  |  |     |
|  |  |     |
|  |  |     |

APPENDIX II

|  |  |  | 1 |
|--|--|--|---|
|  |  |  | r |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |
|  |  |  |   |

### DETAILED PROGRAM COSTS 1986/87

Appendix II contains Tables 4 to 12 which provide details of expenditures under the Memorandum of Agreement. Program costs were determined using the departmental cost accounting and coding systems along with the Department of Supply and Services detailed transaction computer listing. Costs are summarized using three categories.

- 1. Salary Costs
- 2. Operation and Maintenance Costs
- 3. Capital Construction and Depreciation Costs

### 1. Salary Costs

The salaries of staff with full time hydrometric duties are shared under the program. Salaries of staff with partial hydrometric duties or those seconded to the program for brief periods are shared proportionately. The Isolated Post Allowances paid to the two staff members at The Pas sub-office are included in the salary total. Table 4 shows the salaries charged to the conventional and remote program and the calculation of the station unit salary cost. Incremental sediment salary costs are included with the conventional unit salary costs (estimated at 0.9 times the unit salary cost of a hyrometric station).

### 2. Operation and Maintenance Costs

Table 5 shows a detailed breakdown of all expenditures. Shareable categories include: hydrometric conventional (005) hydrometric remote (006), and sediment (004). Non shareable categories are also shown for documentation purposes. An explanation of all cost codes is included in Table 5. Table 6 shows the calculation of the station unit 0 & M costs for hydrometric conventional, hydrometric remote and sediment categories. Sediment laboratory costs were computed on the basis of the total number of samples analyzed. The costs are apportioned on the basis of station classification (refer to Table 7).

Data processing station unit costs for 1986/87 (Table 8) were computed on the basis of the procedure agreed upon by the Coordinating Committee in 1984/85.

### 3. Capital Depreciation and Construction

Capital depreciation includes vehicle and equipment depreciation. The total inventory value of hydrometric, sediment and construction equipment, not including water level recording equipment is depreciated 10% per year. Table 9 shows the vehicle depreciation values for 1986/87. Vehicle depreciation is charged only for the months that the vehicle was used for field operations. Table 10 details the equipment inventory value used for depreciation purposes in 1986/87.

The summary of construction costs is shown in Table 11. This information is obtained from the 1986/87 Construction Report. Construction vehicle and equipment depreciation costs derived from Tables 10 and 11 are also included in the construction cost summary. The Manitoba DCP Implementation Cost Summary is shown in Table 12.

|  |  |  |  | ł |
|--|--|--|--|---|
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  | 1 |
|  |  |  |  | - |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  | , |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |

# TABLE 4 MANITOBA WATER QUANTITY PROGRAM SALARY COST 1986/87

#### Hydrometric Conventional Access and Sediment Stations

| Position No.                                               | Position Tit  |                         | Salary           |
|------------------------------------------------------------|---------------|-------------------------|------------------|
| 840-1468                                                   | Hydrometric   |                         | \$36 909         |
| 840-1300                                                   | **            | **                      | 36 905           |
| 840-1346                                                   | **            | **                      | 37 124           |
| 840-1298                                                   | **            | **                      | 34 771           |
| 840-1414                                                   | **            | **                      | 40 683           |
| 840-1514                                                   | Hydrometric   | Technician              | 33 778           |
| 840-1591 (1 month)                                         | **            | **                      | 1 405            |
| 840-8010                                                   | ••            | **                      | 34 170           |
| 840-8996                                                   | **            | **                      | 33 307           |
| 840-1513                                                   | **            | **                      | 33 235           |
| 840-1402                                                   | **            | **                      | 34 108           |
| 840-1590                                                   | **            | **                      | 34 183           |
| 840-8963                                                   | **            | **                      | 34 260           |
| 840-8921                                                   | **            | **                      | 24 741           |
| 840-1467                                                   | **            | **                      | 30 530           |
| 840-1592 (10 months)                                       | **            | **                      | 31 701           |
| Additional assistance by Tech                              | nical Service | es (3 pers. mo.)        | 7 673            |
| Overtime                                                   |               | •                       | 7 273            |
| Total                                                      |               |                         | 495,061          |
|                                                            |               |                         | ,,,,,,           |
| Hydrometric Remote Access                                  |               |                         |                  |
| 840-4917                                                   | Hvdrom        | etric Technican         | 27 398           |
| 840-8083                                                   | "             | "                       | 32 872           |
| 840-1415                                                   | ••            | **                      | 28 678           |
| 840-1440                                                   | **            | **                      | 32 598           |
| 840-8011                                                   | **            |                         | 25 898           |
| Overtime                                                   |               |                         | 3 790            |
| Salary reduction for Churchil                              | 1 Tidal gauge | (0.5 person months)     | - 1 195          |
| Total                                                      | - 11001 Book  | (0.5 Person monens)     | \$179,052        |
| Total p - y utilization 19                                 | 9 nerson-ves  | ers out of 21 positions | <b>41</b> /7,032 |
|                                                            |               | •                       |                  |
|                                                            | LATION OF STA | TION UNIT SALARY COST   |                  |
| Station Group                                              |               |                         | Units            |
| a) Hydrometric Conventional                                | Accord Stati  | on Units                | 173.40           |
| (includes hydrometric st                                   |               |                         | 173.40           |
| b) Sediment Station Units =                                |               |                         | 13.95            |
| (0.90 is the incremental                                   |               |                         | 13.75            |
| the sediment portion ove                                   |               |                         |                  |
| hydrometric station. It                                    |               |                         |                  |
| Combined Hydrometric & S                                   |               |                         | 187.35           |
|                                                            |               |                         | 107.33           |
| Unit Salary Cost (Hydrom                                   |               | .tonat/                 |                  |
| = \$495,061 = \$2,6                                        | 42            |                         |                  |
| 187.35                                                     |               | (40 - 0 0) 40 070       |                  |
| Unit Salary Cost (Sedime                                   |               |                         |                  |
| c) Hydrometric Remote Acces                                |               |                         |                  |
| Unit Salary cost (Hydrom                                   | etric Remote) |                         |                  |
| $= \frac{\$179,052}{3000000000000000000000000000000000000$ |               |                         |                  |
| 39.05                                                      |               |                         |                  |

|  |  |  |  | ÷ |
|--|--|--|--|---|
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  | 1 |
|  |  |  |  | 1 |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  | 1 |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |
|  |  |  |  |   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             | $\overline{\mathbf{D}}$                       | ETAILED | COST SUM | <u>MARY 198</u>       | 6-87        |                                     | Т                                 | ABLE 5                                                  |                                                             |                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|---------|----------|-----------------------|-------------|-------------------------------------|-----------------------------------|---------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| AUTHORITY CODE 101 DESCRIPTION L:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INE OBJECT                                  | 0001                                          | 0003    | 0004     | 0005                  | 0006        | 0007                                | 0010                              | 0016                                                    | 0017                                                        | 1615                                                                                          |
| DESCRIPTION  OT TRANSPORTATION & COMM TRAVEL EXPENSES CAR MILEAGE BUS TRAV CTS EXPEN TRAVEL EXPENSES CAR MILEAGE ITIN WK TRAV CHAR TRAVEL ADVANCES GOVERNMENT CONFERENCES GOVERNMENT CONFERENCES GOVERNMENT CONFERENCES TRAVEL USA TIN WORK TRAVEL TRAINING TRAVEL TRAINING TRAVEL STAFFING TRAVEL EXP NON-PS REMOVAL COSTS REMOVAL COSTS REMOVAL ADVANCE THANS GOODS AIR TRANS GOODS TRUCK TRANS GOODS TRUCK TRANS GOODS TRUCK TRANS GOODS TRUCK TRANS GOODS OTHER PARCEL POSTA | MUNICATION 401                              | 5330                                          |         |          |                       |             | 1821                                |                                   | 3237                                                    | 1500                                                        | 525                                                                                           |
| CAR MILEAGE<br>BUS TRAV CTS EXPEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 402                                         | 2538                                          | 76      | 1137     | 44237                 | 8582        | 4222<br>666<br>480                  | 6810                              | 1806                                                    | 1326                                                        | 525<br>1515<br>761                                                                            |
| CAR MILEAGE<br>TTIN MK TRAV CHAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 412                                         | 537                                           | 70      | 1137     | 44701                 | 0302        | 480<br>2046                         | 1663                              | 19<br>36                                                | 2033                                                        | 101                                                                                           |
| TRÂVEL ADVANCES<br>GOVERNMENT CONFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 420<br>423                                  | 55,                                           |         |          |                       |             | 20.0                                | 2000                              |                                                         | 2000                                                        |                                                                                               |
| GOVERNMNENT CONF.CTS<br>TRAVEL USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 428<br>430                                  | 420                                           |         |          | 844                   |             | 411                                 | 416                               | 231                                                     |                                                             |                                                                                               |
| TRAVEL US CTS TRAVEL US CTS VACATION TRAVEL IDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 433                                         | 352                                           |         |          | 303                   |             | 411<br>152<br>740                   | 416                               |                                                         |                                                             |                                                                                               |
| ŤŘÁVĚĽ ŤRÁIŇÍNĞ<br>TRÁVEL STAFFING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 444                                         | 661                                           |         |          | 505                   |             | 9205<br>615                         |                                   |                                                         | 267<br>714                                                  |                                                                                               |
| TRAVEL EXP NON-PS<br>REMOVAL COSTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 450<br>560                                  | 661<br>116                                    |         |          |                       | 3196        | ,                                   | 266                               |                                                         |                                                             | 735                                                                                           |
| REMOVAL ADVANCE<br>TRANS GOODS AIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 567<br>601                                  |                                               | 93      |          | 118                   | 104         | 50                                  | 68                                | 38                                                      | 19                                                          | 391                                                                                           |
| TRANS GOODS RAIL<br>TRANS GOODS TRUCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 602<br>604                                  | 73                                            |         |          | 535                   | 500         | 251                                 | 68<br>35<br>237                   | 16                                                      | 172                                                         | 111                                                                                           |
| TRANS GOODS OTHER<br>PARCEL POST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 609<br>651                                  | 28                                            | 6       |          | 51356<br>13266<br>101 |             | 5                                   | 9                                 | 12                                                      | 26<br>2<br>66                                               | 38<br>15                                                                                      |
| OTHER POSTAL SERVICE<br>COURRIER SERVICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 653                                         | 19                                            |         |          | 395<br>37             |             | 18                                  | 3                                 | 8                                                       | 140                                                         | 3019                                                                                          |
| CENTRAL FREIGHT SERVIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 654<br>701                                  |                                               |         | 809      | 1620<br>4307          | 1133<br>750 | 128                                 | $\frac{121}{774}$                 | 77 <b>4</b>                                             | 77 <b>4</b>                                                 | 1650<br>1650<br>613                                                                           |
| TEL INSTALL REPAIR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 702                                         | 2.3                                           |         | 2        | 2445                  | 622         | 260                                 | 0.7                               | 1.53                                                    | 1410                                                        | 39                                                                                            |
| TEL LUNG DISTANCE CHAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 703                                         | 31                                            |         | 3        | 3445                  | 623         | 2201                                | 87                                | 157                                                     | 1412                                                        | 20513                                                                                         |
| TEL SERVICE CHARGES MESS DATA COMM SERVICE FNUOV 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 704<br>806<br>815                           | 11                                            |         | 3        | 3445<br>223           | 623         | 2791                                | 1140                              | 157                                                     | 2500<br>13413                                               | 10554                                                                                         |
| PARCEL POSTAL SERVICE OTHER POSTAL SERVICE COURRIER SERVICE CENTRAL FREIGHT SERVIC TEL GTA TEL INSTALL REPAIR TEL LONG DISTANCE CHAR TEL SERVICE CHARGES MESS DATA COMM SERVICE ENVOY 100 SUB-TOTAL                                                                                                                                                                                                                                                                                                                                                              | 9534<br>7702<br>7704<br>806<br>815          |                                               | 175     | 1949     | 56336                 | 14888       | 2791                                |                                   | 6395                                                    | 2500<br>13413<br>24384                                      | 10554<br>34<br>21627                                                                          |
| SUB-TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                             | 10116                                         | 175     |          |                       |             | 2791                                | 1140                              |                                                         | 2500<br>13413                                               | 10554<br>34<br>21627                                                                          |
| SUB-TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 901                                         | 11                                            | 175     |          |                       |             | 2791<br>23866                       | 1140                              |                                                         | 2500<br>13413                                               | 10554<br>34                                                                                   |
| SUB-TOTAL  03 INFORMATION ADVERT PRINT OUTSD. PUBLIC BROCHURES PUBLICATION OUTSD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 901<br>1042<br>1053<br>1062                 | 11<br>10116<br>2521                           | 175     |          |                       |             | 2791<br>23866<br>204                | 1140<br>11632                     | 6395                                                    | 2500<br>13413<br>24384                                      | 10554<br>34<br>21627<br>188<br>263                                                            |
| SUB-TOTAL  03 INFORMATION ADVERT PRINT OUTSD. PUBLIC BROCHURES PUBLICATION OUTSD. OTHER FRINT SERV (DSS) OTHER PRINT COMM DEPT PRINT SERV                                                                                                                                                                                                                                                                                                                                                                                                                        | 901<br>1042<br>1053                         | 11<br>10116<br>2521<br>34700                  |         | 1949     | 56336                 | 14888       | 2791<br>23866<br>204<br>2352<br>675 | 1140<br>11632<br>178              | 6395<br>325<br>576<br>784                               | 2500<br>13413<br>24384<br>1955                              | 10554<br>34<br>21627<br>188<br>263<br>1824<br>129                                             |
| SUB-TOTAL  03 INFORMATION ADVERT PRINT OUTSD. PUBLIC BROCHURES PUBLICATION OUTSD. OTHER FRINT SERV (DSS) OTHER PRINT COMM DEPT PRINT SERV SUBTOTALS                                                                                                                                                                                                                                                                                                                                                                                                              | 901<br>1042<br>1053<br>1062<br>1064<br>1073 | 11<br>10116<br>2521<br>140                    | 175     |          |                       |             | 2791<br>23866<br>204<br>2352        | 1140<br>11632                     | 6395<br>325<br>576                                      | 2500<br>13413<br>24384                                      | 10554<br>34<br>21627<br>188<br>263<br>1824                                                    |
| SUB-TOTAL  03 INFORMATION ADVERT PRINT OUTSD. PUBLIC BROCHURES PUBLICATION OUTSD. OTHER FRINT SERV (DSS) OTHER PRINT COMM DEPT PRINT SERV SUBTOTALS                                                                                                                                                                                                                                                                                                                                                                                                              | 901<br>1042<br>1053<br>1062<br>1064<br>1073 | 11<br>10116<br>2521<br>34700                  |         | 1949     | 56336                 | 14888       | 2791<br>23866<br>204<br>2352<br>675 | 1140<br>11632<br>178              | 325<br>576<br>784<br>1685                               | 2500<br>13413<br>24384<br>1955                              | 10554<br>34<br>21627<br>188<br>263<br>1824<br>129                                             |
| SUB-TOTAL  03 INFORMATION ADVERT PRINT OUTSD. PUBLIC BROCHURES PUBLICATION OUTSD. OTHER FRINT SERV (DSS) OTHER PRINT COMM DEPT PRINT SERV SUBTOTALS                                                                                                                                                                                                                                                                                                                                                                                                              | 901<br>1042<br>1053<br>1062<br>1064<br>1073 | 11<br>10116<br>2521<br>140<br>34700<br>37361  |         | 1949     | 56336                 | 14888       | 2791  23866  204  2352 675  3231    | 1140<br>11632<br>178              | 325<br>576<br>784<br>1685                               | 2500<br>13413<br>24384<br>1955<br>1955                      | 10554<br>34<br>21627<br>188<br>263<br>82<br>1824<br>129<br>2486                               |
| SUB-TOTAL  03 INFORMATION ADVERT PRINT OUTSD. PUBLIC BROCHURES PUBLICATION OUTSD. OTHER FRINT SERV (DSS) OTHER PRINT COMM DEPT PRINT SERV SUBTOTALS                                                                                                                                                                                                                                                                                                                                                                                                              | 901<br>1042<br>1053<br>1062<br>1064<br>1073 | 11<br>10116<br>2521<br>34700<br>37361<br>1500 |         | 1949     | 56336                 | 14888       | 2791<br>23866<br>204<br>2352<br>675 | 1140<br>11632<br>178              | 325<br>576<br>784<br>1685                               | 2500<br>13413<br>24384<br>1955                              | 10554<br>34<br>21627<br>188<br>263<br>82<br>1824<br>129<br>2486                               |
| SUB-TOTAL  03 INFORMATION ADVERT PRINT OUTSD. PUBLIC BROCHURES PUBLICATION OUTSD. OTHER FRINT SERV (DSS) OTHER PRINT COMM DEPT PRINT SERV SUBTOTALS                                                                                                                                                                                                                                                                                                                                                                                                              | 901<br>1042<br>1053<br>1062<br>1064<br>1073 | 11<br>10116<br>2521<br>140<br>34700<br>37361  |         | 1949     | 0 2841                | 14888       | 2791  23866  204  2352 675  3231    | 1140<br>11632<br>178<br>99<br>277 | 325<br>576<br>784<br>1685                               | 2500<br>13413<br>24384<br>1955<br>1955                      | 10554<br>34<br>21627<br>188<br>263<br>82<br>1824<br>129<br>2486                               |
| SUB-TOTAL  03 INFORMATION ADVERT PRINT OUTSD. PUBLIC BROCHURES PUBLICATION OUTSD. OTHER FRINT SERV (DSS) OTHER PRINT COMM DEPT PRINT SERV SUBTOTALS                                                                                                                                                                                                                                                                                                                                                                                                              | 901<br>1042<br>1053<br>1062<br>1064<br>1073 | 11<br>10116<br>2521<br>34700<br>37361<br>1500 |         | 1949     | 56336                 | 14888       | 2791  23866  204  2352 675  3231    | 1140<br>11632<br>178              | 325<br>576<br>784<br>1685<br>15670<br>1220<br>329<br>98 | 2500<br>13413<br>24384<br>1955<br>1955<br>1070<br>900<br>72 | 10554<br>34<br>21627<br>188<br>263<br>82<br>1824<br>129<br>2486<br>1135<br>5476<br>368<br>148 |
| SUB-TOTAL  03 INFORMATION ADVERT PRINT OUTSD. PUBLIC BROCHURES PUBLICATION OUTSD. OTHER FRINT SERV (DSS) OTHER PRINT COMM DEPT PRINT SERV                                                                                                                                                                                                                                                                                                                                                                                                                        | 901<br>1042<br>1053<br>1062<br>1064<br>1073 | 11<br>10116<br>2521<br>34700<br>37361<br>1500 |         | 1949     | 0 2841                | 14888       | 2791  23866  204  2352 675  3231    | 1140<br>11632<br>178<br>99<br>277 | 325<br>576<br>784<br>1685                               | 2500<br>13413<br>24384<br>1955<br>1955                      | 10554<br>34<br>21627<br>188<br>263<br>82<br>1824<br>129<br>2486                               |

| DESCRIFTION OTHER PHOTO SERV BROKERAGE FEES CONFERENCE FEES SNOW ICE REMOVAL OTHER SERV CONTRACTS PETTY CASH PURCHASES SRV NES PUR GOV DEPT SERV NES PUR GOV                                             | LINE OBJECT<br>15364<br>15574<br>155886<br>155895<br>155996                   | 0001<br>1436<br>20<br>25 | 0003       | 0004  | 0005<br>79                                      | 0006           | 88.000<br>66.000<br>400.7 | 0010 32                                          | 0016<br>225<br>52 | 0017<br>31<br>700 | 1615                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------|------------|-------|-------------------------------------------------|----------------|---------------------------|--------------------------------------------------|-------------------|-------------------|---------------------|
| MISC SERV<br>SUBTOTALS                                                                                                                                                                                   | 1597                                                                          | 23551                    | 139        | 10438 | 4470                                            | 635            | 8698                      | 526                                              | 2<br>18653        | 11729             | 10943               |
| 07 RENTALS RENTAL LANDS WD PROC PER EQUIP OFFICE MACH EXC FURN ELECT/AUTO OFFICE SYS PHOTO/AUDIO EQUIP RENTAL MACH EQUIP LEASE MOTOR VEHICLES RENTAL AIRCRAFT PENTAL OF WAPEHOUSE                        | 1601<br>1620<br>1622<br>1623<br>1624<br>1625                                  | ,                        | 137        | 10130 | 2075                                            | 000            |                           | 320                                              | 10033             | 11/23             | 5929<br>182<br>1321 |
| RENTAL GAS CYLINDERS<br>RENTAL EQUIP NES                                                                                                                                                                 | 1650<br>1651                                                                  | 324<br>523<br>25         | 924        |       | 280<br>3340<br>34                               | 107117<br>2250 | 13800                     | 575<br>282<br>17426                              |                   | 343               |                     |
| FURN AND FIXT SUBTOTALS                                                                                                                                                                                  | 1653                                                                          | 144<br>1016              | 924        | 0     | 5729                                            | 109367         | 13800                     | 18764                                            | 0                 | 343               | 7446                |
| 08 PURCHASE REPAIR AND OTHER ELECT EQUIP MEAS CONTR LAB INSTR. FURNITURE FIXTURE OTHER EQUIP EDP EQUIP EDP EQUIP OFFICE MACHINE EQUIP OTHER MACHINE MARINE EQUIP RD MOTOR VEH MISC VEHICL GAUGE STATIONS | UPKEEP<br>1714<br>17122<br>17727<br>17727<br>17727<br>17737<br>17741<br>17747 | 303                      | 1871       | 6     | 120<br>4058<br>682<br>375<br>50<br>36647        | 900            | <b>235</b><br>7           | 467<br>1018                                      |                   | 15201<br>192      | 7446                |
| GAUGE STATIONS<br>SUBTOTALS                                                                                                                                                                              | 1805                                                                          | 310                      | 1871       | 6     | 9022                                            | 900            | 242                       | 512<br>1997                                      | 0                 | 15393             | 7446                |
| 09 UTILITIES MATERIALS ELECT CONSUMP TOPSOIL PROPANE GAS LPG AUTOMOTIVE GAS AVIATION GAS                                                                                                                 | 5 & SUPP<br>1901<br>2010<br>2013<br>2014<br>2015                              |                          |            | 6     | 35452<br>101<br>28140                           | 909            | 3076<br>129               | 434<br>3<br>5625                                 | 66                |                   | 2003                |
| JET FUEL OTH PETROL PROD WOOD FAB MAT PAPER BOARD TEXTILE FAB MAT CHEM REL PRODUCTS CHLOR OXIV IRON STEEL ALLOYS MET FAB BASIC PROD CEMENT                                                               | 2016<br>20120<br>2002223<br>2002223<br>200233<br>200331                       |                          | 108<br>346 | 4     | 800<br>712<br>144<br>891<br>1046<br>2043<br>492 | 1014           | 39<br>527                 | 152<br>336<br>7<br>54<br>114<br>933<br>102<br>34 |                   |                   | 56<br>110<br>4      |
| DEICING SALT ROOFING MAT PROTECTIVE CLOTHING FOOTWEAR APPAREL TOILET CLEAN PREP ETC                                                                                                                      | 2032<br>2033<br>2040<br>2041<br>2042                                          |                          | 3          |       | 1684<br>728                                     | 525<br>225     | 72                        | 20<br>12<br>4                                    |                   |                   |                     |

|  |  |  | - |  | - | ř |  |
|--|--|--|---|--|---|---|--|
|  |  |  |   |  |   |   |  |
|  |  |  |   |  |   |   |  |
|  |  |  |   |  |   |   |  |
|  |  |  |   |  |   |   |  |
|  |  |  |   |  |   |   |  |
|  |  |  |   |  |   |   |  |
|  |  |  |   |  |   |   |  |
|  |  |  |   |  |   |   |  |
|  |  |  |   |  |   |   |  |
|  |  |  |   |  |   |   |  |
|  |  |  |   |  |   |   |  |
|  |  |  |   |  |   |   |  |
|  |  |  |   |  |   |   |  |
|  |  |  |   |  |   |   |  |

| DESCRIFTION L                                                                                                                                                                                                                                                     | INE OBJECT                                   | 0001             | 0003                | 0004    | 0005                              | 0006                       | 0007                | 0010_               | 0016     | 0017                      | 1615                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------------|---------------------|---------|-----------------------------------|----------------------------|---------------------|---------------------|----------|---------------------------|-------------------------|
| KITCH UTENS STCK ITEM OTH DSS LIBRARY STCK PRINT MAPS CHARTS STATION OFF SUPP DRAFT ART SUPP FACSIMILE PAPER PHOTOCOF PAPER CHEM                                                                                                                                  | 2045<br>2048<br>2051<br>2052<br>2054<br>2055 | 90               | 14                  |         | 259<br>71<br>3203<br>227<br>5     | 800                        | 22                  | 5<br>70<br>4<br>6   | 19       | 220<br>1242<br>467<br>256 | 4300<br>143<br>2768     |
| DATA PROCESSING SUPP<br>PHOTO GOODS<br>MED PHARM PROD<br>FIREARM                                                                                                                                                                                                  | 22222222222222222222222222222222222222       | 161              | 46                  |         | 110                               | 6                          | 359                 | 19                  | 888<br>8 | 3882                      | 220<br>579<br>545<br>11 |
| CAMERA                                                                                                                                                                                                                                                            | 2065                                         |                  |                     |         | 34<br>322                         | 60                         |                     | 140                 | 355      |                           |                         |
| PAINT<br>GARDEN SUPP<br>MISC PROD AUD-VIS BULB<br>HARDWARE                                                                                                                                                                                                        | 2068<br>2069<br>2070<br>2071                 |                  | 50                  | 7       | 322<br>10<br>919<br>944           | 26<br>15                   |                     | 316<br>179          | 227      | 439                       |                         |
| SUBSCRIFTIONS PURCHASED CASH INC TX CONVEY ELEV MAT HNDL HT AIR COND REFRIG EQU                                                                                                                                                                                   | 22000111346<br>2200222113                    | 273              | 11                  | 27      | 1580<br>1377                      | 400                        | 81                  | ,                   | 142      | . 12                      | 88<br>58                |
| GARDEN SUPP MISC PROD AUD-VIS BULB HARDWARE SUBSCRIPTIONS PURCHASED CASH INC TX CONVEY ELEV MAT HNDL HT AIR COND REFRIG EQU FLUMBING EQUIP FIT ELECT LIGHT DIST OTH ELEC APPL EQUIP BATTERIES MEAS CONT MED OPT INST SAF SANIT EQUIP HAND TOOL CUTL GRADER BLADES | 2113<br>2114<br>2116<br>2118<br>2122<br>2124 |                  | 728<br>2940<br>6760 | 2       | 31176<br>311562<br>316024<br>3177 | 800<br>1000<br>2357<br>700 | 379<br>13<br>6194   | 57<br>8<br>37<br>16 | 67       | 124                       | 87                      |
| HAND TOOL COTE GRADER BLADES OTH EQUIP INCL X-RAY EDP EQUIP TELECOM EQUIP ELECTRONIC OFFICE EQ. OTH OFFICE EQUIP MARINE EQUIP RD MOT VEH BUB TIPE TURES                                                                                                           | 1112246785678<br>11122222233333              |                  | 93<br>50            | 2       | 1372<br>471<br>30<br>5            | 400                        | 66<br>94            | 463<br>575          |          | 228                       |                         |
| OTH OFFICE EQUIP MARINE EQUIP RD MOT VEH RUB TIRE TUBES MISC VEHICLES OVERSNOW VEHICLES                                                                                                                                                                           | 2138<br>2141<br>2146<br>2147<br>2148<br>2149 |                  |                     | 16<br>8 | 156<br>4269<br>2345<br>87<br>76   |                            |                     | 1158<br>106         |          |                           | 123                     |
| SUBTOTALS                                                                                                                                                                                                                                                         |                                              | 524              | 11149               | 72      | 105249                            | 9237                       | 11059               | 10994               | 1772     | 6870                      | 11095                   |
| 14 ALL OTHER PAYMENTS PAY MISC TX OTHER MISC EXP VEH RE FEES DEPART AWARDS                                                                                                                                                                                        | 2525<br>2527<br>2528<br>2530                 | 50<br>3 <b>4</b> |                     |         | 376<br>456                        |                            |                     |                     | 385      |                           |                         |
| CURRENT METER PARTS<br>CHURCHILL TIDAL GAUGE                                                                                                                                                                                                                      | 2330                                         | 34               |                     |         | 5180                              | 1120                       | 2624                |                     |          |                           |                         |
| SUBTOTALS                                                                                                                                                                                                                                                         |                                              | 84               | 0                   | 00      | 6012                              | 1120                       | 2624                | 00                  | 385      | 0                         | 0                       |
| TOTAL                                                                                                                                                                                                                                                             |                                              | 72962            | 14258               | 12465   | 186818                            | 136147                     | 63521               | 44190               | 28890    | 60674                     | 61043                   |
| AUTHORITY CODE 201<br>10 CAPITAL CONSTRUCTION<br>GAUGE STATION<br>WAREHOUSE                                                                                                                                                                                       | 2206<br>2260                                 |                  |                     |         |                                   |                            | 15520               | 74656               |          |                           |                         |
| SUBTOTALS                                                                                                                                                                                                                                                         |                                              | 0                | 0                   | 0       | 0                                 | 0                          | 15520               | 74656               | 00       | 0                         | 0                       |
| 11 MACHINERY & EQUIPMENT<br>OTHER ELECT EQUIP<br>MEAS CONTR LAB<br>WATER SEWER FUMPS                                                                                                                                                                              | T 2317 2322 2330                             |                  | 11850               |         |                                   |                            | 297<br>80464<br>399 |                     |          |                           |                         |

|  |  | . , |  |  |
|--|--|-----|--|--|
|  |  |     |  |  |
|  |  |     |  |  |
|  |  |     |  |  |
|  |  |     |  |  |
|  |  |     |  |  |
|  |  |     |  |  |
|  |  |     |  |  |
|  |  |     |  |  |
|  |  |     |  |  |
|  |  |     |  |  |
|  |  |     |  |  |
|  |  |     |  |  |

| DESCRIPTION SRV IND EQUIP VEND FURN FIXTEXC DSS       | LINE OBJECT                 | 0001 | 0003  | 0004 | 0005 | 0006 | 0007<br>174<br>544 | 0010 | 0016          | 0017         | 1615 |
|-------------------------------------------------------|-----------------------------|------|-------|------|------|------|--------------------|------|---------------|--------------|------|
| OTHER EQUIP<br>MESS DATA & COMP<br>OTHER EDP EQUIP    | \$ \$47<br>\$1556<br>\$1256 |      |       |      |      |      | 288<br>708         |      | 11716<br>1295 | 3580<br>4190 |      |
| EDP SOFTWARE<br>RD MOTOR VEHIC<br>MISC VEH OTH RD VEH | 2361<br>2371<br>2372        |      |       |      |      |      | 72847<br>1308      |      |               | 4130         |      |
| SUBTOTALS                                             |                             | 0    | 11850 | 00   | 0    | 0    | 157469             | 0    | 13011         | 7770         | 0    |
| TOTAL                                                 |                             | 0    | 11850 | 0    | 0    | 0    | 172989             | 0    | 13011         | 7770         | 0    |

#### COST CODE LEGEND

0001 - General 0003 - DCP Implementation Program

0004 - Sediment Surveys
0005 - Hydrometric Surveys - Conventional Access
0006 - Hydrometric Surveys - Remote Access
0007 - Hydrometric - Non Shareable
0010 - Construction

0016 - Hydrology Division (Hydrologic Studies) 0017 - Hydrology Division (Data Control) 1615 - Common Support Services

#### CALCULATION OF STATION UNIT OPERATIONS AND MAINTENANCE COST

| Stat         | ion Group                                                                                                                                                                          | Units  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| a)           | Hydrometric Conventional Access Station Units (includes hydrometric stations where sediment is monitored).                                                                         | 173.40 |
| b)           | Sediment Station Units = $15.50 \times 0.4$ (0.4 is the incremental 0 & M cost coefficient for the sediment portion over and above the cost of a conventional hydrometric station) | 6.20   |
|              | Combined Hydrometric and Sediment Weighted O & M units                                                                                                                             | 179.60 |
|              | Combined Hydrometric Conventional and Sediment (excluding lab analysis and data processing)  O & M Costs from Table VI-5  = \$186,818 + \$12,465 = \$199,283                       |        |
| Hydr         | ometric Conventional Station                                                                                                                                                       |        |
| = <u>\$1</u> | 0 & M Cost (Hydrometric Conventional) 99,283 = \$1,110 (excluding data processing costs) 179.60                                                                                    |        |
|              | O & M Cost (Sediment incremental cost only) (Excluding costs)                                                                                                                      |        |

c) Hydrometric Remote Access Station Units 39.05

Unit 0 & M Cost (Hydrometric Remote)
= \$136,147 = \$3,486 (excluding data processing)
39.05

=  $$1,110 \times 0.4 = $444$  (excluding data processing)

#### Total O & M Station Unit Costs - Including data processing

Hydrometric Conventional - \$1,110 + \$142 = \$1,252Sediment (incremental cost) - \$444 + \$71 = \$515Hydrometric Remote - \$3,486 + \$142 = \$3,628

TABLE 7

#### SEDIMENT SAMPLE LABORATORY ANALYSIS COSTS\*

#### FOR 1986/87

Filtration Analysis Cost per sample - \$15.60 Bottom Withdrawal Tube Analysis Cost per sample - \$65.59

|                                         | Number of Samples             |          |
|-----------------------------------------|-------------------------------|----------|
|                                         | Bottom                        | Total    |
| Federal Category Sediment Sampling Site | <u>s Filtration Withdrawl</u> | Cost     |
|                                         |                               |          |
| Antler River near Melita                |                               | 1 045.20 |
| Assiniboine River at Headingley         | 119 14                        | 2 774.66 |
| Assiniboine River near Holland          | 171 7                         | 3 126.73 |
| Pembina River near Windygates           | 118 12                        | 2 627.88 |
| Red River at Emerson                    | 239 29                        | 5 630.51 |
| Red River near Lockport                 | 50 12                         | 1 567.08 |
| Red River near Lockport (Selkirk)       | 189 6                         | 3 341.98 |
| Roseau River near Dominion City         | 140                           | 2 184.00 |
| Rouseau River at Gardenton              | 57                            | 889.20   |
| Souris River at Wawanesa                | 126                           | 1 965.60 |
| Souris River near Coulter               | 94                            | 1 466.40 |
| Saskatchewan River at The Pas           | 105 9                         | 2 228.31 |
| Sub-To                                  | tal \$2                       | 8 847.51 |
|                                         |                               |          |
| Federal - Provincial Category Sediment  | Sampling Sites                |          |
|                                         |                               |          |
| Burntwood River below First Rapids      | 2                             | 31.20    |
| Burntwood River near Thompson           | 8                             | 124.80   |
| Odei River near Thompson                | 94                            | 1 466.40 |
| Sub-To                                  | tal                           | 1 622.40 |
|                                         |                               |          |
| Provincial Category Sediment Sampling S | <u>ites</u>                   |          |
| ,                                       |                               |          |
| Edwards Creek Drain below Jackfish Cree | k 49 26                       | 2 469.79 |
| Souris River below Souris               | 94 1                          | 1 531.99 |
| Souris River below Hartney              | 118                           | 1 840.80 |
| Valley River near Dauphin               | 112 6                         | 2 140.74 |
| Sub-To                                  |                               | 7 983.27 |
|                                         |                               |          |

Total Sediment Analysis Laboratory Cost -\$38,453.18Federal Share Sediment Analysis Cost  $=\$28,847.51 + \frac{\$1622.40}{2} = \$29,658.71$ 

Provincial Share Sediment Analysis Cost =  $\frac{$1,622.40}{2}$  + \$7,983.27 = \$8,794.47

<sup>\*</sup> Financial Data obtained from CWRB, Sediment Laboratory in Regina

#### 1986/87 DATA PROCESSING COSTS

#### Actual 1986/87 Costs

Capital Expenditures for Mini Computer System

as of April 1, 1986 \$281,762

during 1986/87 \_\_\_\_\_3,230 (two terminals)

Total for 1986/87 284,992

minus inputted rental

recovered <u>26,055</u> 258,937

Inputed rental charge \$32,367.13

for 1986/87 258,937/8 (Depreciated to 1994)

Annual Maintenance Costs (Data Control Shareable coded)

maintenance of hardware 17,379.74

Annual Operating Costs (Data Control Shareable coded)

software licences, communications and supplies 24,581.52

Actual Total 1986/87 Computing Costs for District 74,328.26

Manitoba Portion based on station units (220.2)

(220.2 + 34.2) \$64.336.01

#### Computing Cost Ceiling

Cost for data computations \$28,050 (base year 1983/84)

84/85 G.P.I. x 1.05 (supplied by Finance & Admin.

1985/86 G.P.I. x 1.031 Branch, Ottawa)

1986/87 G.P.I. <u>x 1.028</u>
Base Ceiling \$31,185

Total 86/87 Computing Cost Ceiling \$31,185

#### Shareable Cost for 1986/87

The lesser of the Actual or Ceiling \$31,185

#### By Station Unit

Data Processing Station Units in Manitoba

Hydrometric Conventional 173.40
Sediment (15.5 x 0.5) 7.75
Hydrometric Remote 39.05

Shareable Data Processing Costs =  $\frac{$31,185}{220.20}$  = \$138/station unit

220.20

Hydrometric Conventional Data Processing Unit Cost \$142.00
Sediment Data Processing Unit Cost (\$142 x 0.5) \$71.00
Hydrometric Remote Data Processing Unit Cost \$142.00

TABLE 9

### VEHICLE DEPRECIATION MANITOBA FY 1986/87

|                    | Original         |                 | Time                |                |              |
|--------------------|------------------|-----------------|---------------------|----------------|--------------|
| Vehicle            | Capital          | Depr.           | in use              | Annual         |              |
| Number             | Cost             | per month       | Month               | Depr.          | Remarks      |
|                    | (\$)             | (\$)            |                     | (\$)           |              |
|                    |                  |                 |                     |                |              |
| Station Wagons - 1 | Lifetime 5 years | (60 months)     |                     |                |              |
|                    |                  |                 |                     |                |              |
| 85-107             | 11 428           | 190             | 2                   | 380            |              |
| 84-121             | 10 775           | 180             | 2                   | 360            |              |
| 78–309             | 5 694            | 95              | 3                   | 285            |              |
| 79-461             | 7 106            | 118             | 4                   | 1 472          |              |
| 78-095             | 5 348            | 89              | 12                  | 1 068          |              |
|                    |                  |                 |                     |                |              |
| Multi-Purpose Veh  | icles or Light T | rucks - Lifetim | e 6 <b>year</b> s ( | (72 months)    |              |
| 79-477             | 7 731            | 107             | 4                   | 1 420          |              |
| 79-477<br>78-311   | 6 428            | 107<br>89       | 12                  | 1 428<br>1 068 |              |
| 81-005             | 8 952            | 124             | 4                   | 1 496          |              |
| 81-006             | 11 522           | 160             | 12                  | 1 920          |              |
| 81-041             | 14 281           | 198             | 12                  | 2 376          |              |
| 81-043             | 9 892            | 137             | 4                   | 1 548          |              |
| 82-004             | 9 952            | 138             | 12                  | 1 656          |              |
| 82-066             | 10 468           | 145             | 12                  | 1 740          |              |
| 82-067             | 10 684           | 148             | 12                  | 1 776          |              |
| 83-001             | 11 478           | 159             | 12                  | 1 908          |              |
| 83-153             | 10 379           | 144             | 12                  | 1 728          |              |
| 84-004             | 13 758           | 191             | 12                  | 2 292          |              |
| 84-119             | 12 593           | 175             | 12                  | 2 100          |              |
| 84-122             | 12 401           | 172             | 12                  | 2 064          |              |
| 85-106             | 13 326           | 185             | 12                  | 2 220          |              |
| 86-052             | 12 309           | 171             | 8                   | 1 368          |              |
| 86-054             | 15 344           | 213             | 8                   | 1 704          |              |
| 86-055             | 15 123           | 210             | 8                   | 1 680          |              |
| 86-056             | 15 123           | 210             | 8                   | 1 680          |              |
| 84-120             | 14 357           | 199             | 12                  |                | Construction |
| 86-003             | 13 561           | 188             | 12                  |                | Construction |
|                    |                  |                 |                     |                |              |

Field Surveys Vehicles Depreciation (excluding Construction Vehicles) = \$33 317

Construction Vehicles Depreciation = \$4 644

Capital Cost of New Vehicles for Manitoba Acquired in 1986/87 was \$57,899

#### CALCULATION OF STATION UNIT CAPITAL DEPRECIATION COST 1986/87

|   | <u>Vehicle</u>     | Depreciation                                                                                                                                                               | <b>\$</b> 33, | 317 |
|---|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|
|   | Constru            | ction Depreciation                                                                                                                                                         | \$28,         | 741 |
|   | Equipmen           | nt Depreciation*                                                                                                                                                           |               |     |
| • | Average<br>for 198 | Inventory Value<br>6/87                                                                                                                                                    | 334           | 826 |
|   |                    | Depreciation \$334 826<br>pment (10 years) 10                                                                                                                              | 33            | 483 |
|   | Total Ca           | apital Depreciation                                                                                                                                                        | 66            | 800 |
|   | Station            | Group                                                                                                                                                                      | Unit          | S   |
|   | a)                 | Hydrometric Conventional Access Station Units (includes hydrometric stations where sediment is monitored)                                                                  | 173.          | 40  |
|   | b)                 | Sediment Station Units 15.5 X 0.4<br>(0.4 is the incremental capital depreciation cost<br>coefficient for the sediment portion over and above<br>hydrometric depreciation) | 6.            | 2   |
|   | c)                 | Hydrometric Remote Access Station Units                                                                                                                                    | 39.           | 05  |
|   |                    | Combined Weighted Capital Depreciation Units                                                                                                                               | 218.          | 65  |
|   |                    | Unit Capital Depreciation Cost = $\frac{$66\ 800}{217.65}$ = $\frac{$306}{217.65}$                                                                                         |               |     |
|   |                    | Unit Capital Depreciation Cost = $$306 \times 0.4 = $122$ (Sediment only)                                                                                                  |               |     |
|   |                    | Unit Capital Depreciation Cost = $$306 \times 1.0 = $306$ (Hydrometric Remote)                                                                                             |               |     |
|   |                    |                                                                                                                                                                            |               |     |

<sup>\* -</sup> Departmental Equipment-In-Use Materiel Management System

|  |  | * |
|--|--|---|
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |

### Manitoba Construction Program Cost Summary 1986/87

#### Federal Stations

| Wallandad and Garattee             | 401 545 00          |
|------------------------------------|---------------------|
| Material and Supplies              | \$21,545.32         |
| Travel Expenses                    | 9,432.32            |
| Salaries                           | 33,153.00           |
| Labour                             | 336.62              |
| Rentals                            | 469.19              |
| Electrical                         | 4,822.84            |
| Hydro                              | 12,542.00           |
| Contracts                          | 3,226.80            |
| Vehicle and Equipment Depreciation | 5,414.97            |
| Total Federal Cost                 | \$90,943.06         |
| Federal-Provincial Stations        |                     |
| Materials and Supplies             | <b>\$</b> 5, 671.02 |
| Travel Expenses                    | 1,909.13            |
| Salaries                           | 8,320.00            |
| Hydro                              | 3,450.00            |
| Electrical                         | 2,995.67            |
| Vehical and Equipment Depreciation | 1,602.70            |
| Labour                             | 62.72               |
| Aircraft Charter                   | 2,905.85            |
| Total Federal-Provincial Cost      | \$26,917.09         |
| Provincial Stations                |                     |
| Materials and Supplies             | \$ 579.91           |
| Travel Expenses                    | 526.72              |
| Salaries                           | 4,109.00            |
| Hydro                              | 550.00              |
| Electrical                         | 380.00              |
| Contracts                          | 182.00              |
| Vehical and Equipment Depreciation | 400.43              |
| Total Provincial Cost              | \$ 6,726.06         |
| TOTAL MANITOBA                     | \$124,586.21        |
| TOTAL FEDERAL COST                 | \$104,401.61        |
| TOTAL PROVINCIAL COST              | 20,184.60           |

|  |  | * |  |  |
|--|--|---|--|--|
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |
|  |  |   |  |  |

Table 12

#### Manitoba DCP Implementation Cost Summary 1986/87

#### Federal Costs

| Construction                     | \$ 12,661.00 |
|----------------------------------|--------------|
| Recorders (12)                   | 32,400.00    |
| Servomanometers (8)              | 34,800.00    |
| Real Time Telemetry Systems (10) | 79,220.00    |
| Total                            | \$159,081.00 |
| Provincial Costs                 |              |
| Construction                     | \$ 249.00    |
| Servomanometers (1)              | 4,350.00     |
| Total                            | \$ 4,599.00  |
| Manitoba Hydro Costs             |              |
| Construction                     | \$19,292.75  |
| Servomanometers (3)              | 13,050.00    |
| Real Time Telemetry Systems (5)  | 39,610.00    |
| Total                            | \$71.952.75  |

#### APPENDIX III

|  |  | • |  |
|--|--|---|--|
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |
|  |  |   |  |

#### CHANGES TO SCHEDULE A - MANITOBA 1987/88

#### Stations Added to the Network

| 1) | 06EB007 | Eager Lake near Todd Lake                       | Provincial |
|----|---------|-------------------------------------------------|------------|
| 2) | 050C027 | Lake Minnewasta near Morden                     | Provincial |
| 3) | 05UB005 | Playgreen Lake at Entrance to East Nelson River | Provincial |
| 4) | 05UD007 | Sipiwesk Lake at Sipiwesk Landing               | Provincial |
| 5) | 050Н009 | Seine River South of Prairie Grove              | Provincial |

#### Stations Discontinued

- 1) 05TD002 Wintering Lake at Thicket Portage
- 2) 050H006 Seine River near Prairie Grove

#### Changes in Operational Schedule

| 1) | 05 <b>M</b> G008 | Oak River at Shoal Lake | Continuous | to | Seasonal |
|----|------------------|-------------------------|------------|----|----------|
| 2) | 05 <b>M</b> G004 | Oak River near Rivers   | Continuous | to | Seasonal |

#### Additions to Contributed List

- 1) 05SA801 Gull Lake at North Shore Road
- 2) 05PD802 Moose Lake near Sprague
- 3) 05PF802 Nutimik Lake near Nutimik Lake Lodge
- 4) 050H802 Seine River at Ste. Anne
- 5) O5NG806 Souris River above Hartney Dam
- 6) 05LJ810 Turtle River above Ste. Rose Dam

#### ESTIMATED COST FOR SCHEDULE D - MANITOBA 1987-88

|                                    | No. of<br>Stations | No. of<br>Units | Unit<br>Cost |        | Total<br>Cost                          | Provincial<br>Share | Schedule<br>D Amount |
|------------------------------------|--------------------|-----------------|--------------|--------|----------------------------------------|---------------------|----------------------|
| A HYDROMETRIC STATIONS:            |                    |                 |              |        |                                        |                     |                      |
| Federal                            |                    |                 |              |        |                                        |                     |                      |
| Conventional Access                | 72                 |                 | x 436        |        | = 249,574                              | 0                   |                      |
| Remote Access                      | <u>25</u>          |                 | x 857        | 7      | = <u>171,969</u>                       | 0                   |                      |
| Sub-total                          | 97                 | 77.20           |              |        | 421,543                                |                     |                      |
| Federal Provincial                 |                    |                 |              |        |                                        |                     |                      |
| Conventional Access                | 87                 | 64.15           | x 436        |        | = 280,143                              | 140,072             |                      |
| Remote Access                      | _25                |                 | x 857        | 7 :    | = <u>140,234</u>                       | 70,117              |                      |
| Sub-total                          | 12                 | 80.50           |              |        | 420,377                                | 210,189             |                      |
| Provincial                         |                    |                 |              |        |                                        |                     |                      |
| Conventional Access                | 85                 | 52.35           | x 436        | 7 :    | = 228,612                              | 228,612             |                      |
| Remote Access                      | 992                |                 | x 857        | 7 :    | = 30,877                               | 30,877              |                      |
| Sub-total                          | 92                 | 55.95           |              |        | 259,490                                | 259,490             |                      |
| TOTAL                              |                    |                 |              |        |                                        |                     |                      |
| Credit for Provincial Op           | eration of o       | one stati       | on of        | 0.25 u | nits                                   | - 1,092             |                      |
| •                                  |                    |                 |              |        |                                        | 468,586             | 470,000              |
| B <u>Sediment Stations:</u>        |                    |                 |              |        |                                        |                     |                      |
| Federal                            | 12                 | 10.50           | x 310        | 5 :    | = 32,603                               |                     |                      |
| Federal Provincial                 | 5                  | 1.75            | x 310        | 5 :    | = 5,434                                | 2,717               |                      |
| Provincial                         | <u>5</u><br>22     |                 | x 310        | 5 :    | = <u>6,986</u>                         | 6,986               |                      |
| Sub-total                          | 22                 | 14.50           |              |        | 45,023                                 | 9,703               |                      |
| Lab Analysis                       |                    |                 |              |        | 24,000                                 | 7,000               |                      |
| TOTAL                              | 22                 | 14.50           |              |        | 69,023                                 | 16,703              | 17,000               |
|                                    |                    |                 |              |        | ************************************** | <b>.</b>            |                      |
| C Construction:                    |                    |                 |              |        |                                        |                     |                      |
| a) Streamflow and                  |                    |                 |              |        |                                        |                     |                      |
| water level installations          |                    |                 |              |        | 184,750                                | 24,100              | 24,100               |
|                                    |                    |                 |              |        | -                                      |                     |                      |
| D <u>Installation of Satellite</u> |                    | <b>V</b>        |              |        |                                        |                     |                      |
| Real Time Hydrometric and          | Meteorologi        | <u>ic</u>       |              |        |                                        |                     |                      |
| Data Collection Network            |                    |                 |              |        |                                        |                     |                      |
| a) DCP installation (10 DCPs       | at 4 Fed.          |                 |              |        |                                        |                     |                      |
| 6 Fed.Prov.)                       | •                  |                 |              |        | 106,250                                | 32,100              | 32,100               |
| b) Servomanometers (4 CWRB,        | 2 MWRB)            |                 |              |        | 26,400                                 | 8,800               | 8,800                |
|                                    |                    |                 |              |        | 132,650                                | 40,900              | 40,900               |
| manus provinces and a second       |                    |                 |              |        |                                        |                     |                      |
| TOTAL PROVINCIAL SHARE FOR 1987/88 |                    |                 |              |        |                                        |                     | <b>#</b> EE2 000     |
| 170//00                            |                    |                 |              |        |                                        |                     | \$ <u>552,000</u>    |

#### SCHEDULE D

This schedule provides a summary of the annual payment. The details of the calculations of operation and construction are available and have been jointly reviewed by officers for each party.

#### ANNUAL PAYMENT FOR 1987-88 TO BE PAID TO CANADA BY MANITOBA

|     |                                                                                                         | <u>Operation</u> | Construction | Total     |
|-----|---------------------------------------------------------------------------------------------------------|------------------|--------------|-----------|
| a)  | Streamflow and water level installations                                                                | \$470,000        | \$24,100     | \$494,100 |
| b)  | Sediment installations                                                                                  | 17,000           | 0            | 17,000    |
| c)  | Installation of Satellite based<br>Real Time Hydrometric and<br>Meteorologic Data Collection<br>Network |                  |              | 40,900    |
| ANN | UAL PAYMENT                                                                                             |                  |              | \$552,000 |

ADMINISTRATOR FOR MANITOBA

ADMINISTRATOR FOR CANADA

(signature)

T. Weber Director

Water Resources Branch

Department of Natural Resources

(signature)

R. A. Halliday Regional Director

Inland Waters/Lands

Environment Canada

| i. |   |  |  |
|----|---|--|--|
|    | , |  |  |
|    |   |  |  |
|    |   |  |  |
|    |   |  |  |
|    |   |  |  |
|    |   |  |  |
|    |   |  |  |
|    |   |  |  |
|    |   |  |  |
|    |   |  |  |
|    |   |  |  |
|    |   |  |  |
|    |   |  |  |
|    |   |  |  |

#### APPENDIX IV

Station and Cost Summary Data For Inclusion in National Report

PROVINCE: MANITOBA

### TABLE 1 WATER QUANTITY SURVEYS GAUGING STATION DATA FOR 1986/87

|              | o. of Stations | 3 1         |       | Changes during 1986/87 |         |            | Stn. Designation April 1, 1986 |          |  |  |  |  |
|--------------|----------------|-------------|-------|------------------------|---------|------------|--------------------------------|----------|--|--|--|--|
| April 1/85   | April 1/86     | Change      | Added | Discontinued           | Fed.    | F/P        | Prov.                          | Contrib. |  |  |  |  |
| 335          | 350            | 15          | 0     | 0                      | 97 (13) | 113 (5)    | 91 (5)                         | 49       |  |  |  |  |
| (1) includes | contributed of | tata statio | nc    |                        | Prooket | Codimont C | Stations                       |          |  |  |  |  |

### TABLE 2 WATER QUANTITY SURVEYS COMPARATIVE GAUGING STATION DATA April 1/75 April 1/86

| Fede     | ral Statio | ns   | F        | /P Stations | 3    | Prov     | incial Sta | tions |          | Total Stat | ions       |
|----------|------------|------|----------|-------------|------|----------|------------|-------|----------|------------|------------|
| Apr 1/75 | Apr 1/86   | Chge | Apr 1/75 | Apr 1/86    | Chge | Apr 1/75 | Apr 1/86   | Chge  | Apr 1/75 | Apr 1/86   | Chge       |
| 142      | 97         | -45  | 92       | 113         | +21  | 72       | 91         | +19   | 306      | 301        | <b>-</b> 5 |

## TABLE 3 WATER QUANTITY SURVEYS DETAILED GAUGING STATION DATA 1986/87

| F-1   | F-2 | F-3 | F-4 | Total F | FP-1 | FP-2  | FP-3  | Total F P | P-1   | P-2 | Total P | Contributed | Total-All | 85 |
|-------|-----|-----|-----|---------|------|-------|-------|-----------|-------|-----|---------|-------------|-----------|----|
| 22(2) |     |     |     | 97(13)  |      | 50(4) | 61(1) | 111(6)    | 88(5) | 3   | 91 (5)  | 49          | 350(23)   | 1  |

#### Bracket Sediment Stations in all catagories

## TABLE 4 WATER QUANTITY SURVEYS TOTAL PROGRAM COSTS & SHAREABLE COSTS FOR 1986/87 (x \$1000)

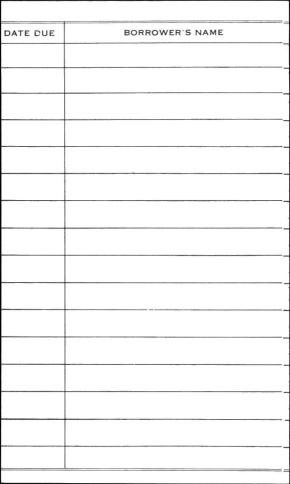
| Total Program Costs |        |       |       |        |       |       |       | Sha    | reable Cos | ts      |         |
|---------------------|--------|-------|-------|--------|-------|-------|-------|--------|------------|---------|---------|
| P/Yrs               | Sal.   | Oper. | Cap.  | Total  | P/Yrs | Sal.  | Oper. | Const. | Total      | F Share | P Share |
| 41.0                | 1350.9 | 744.9 | 336.0 | 2431.8 | 22.0  | 674.6 | 470.6 | 360.0  | 1505.2     | 945.6   | 559.6   |

# TABLE 5 WATER QUANTITY SURVEYS COMPARISON - SCHEDULED & ACTUAL COSTS FOR 1986/87 (DOLLARS)

| SALARY   | & OPERATIONS | CON      | STRUCTION   |          | TOTAL       |            | ANNUAL              | RECEIVED        |
|----------|--------------|----------|-------------|----------|-------------|------------|---------------------|-----------------|
| Sch. D/F | Actual Cost  | Sch. D/F | Actual Cost | Sch. D/F | Actual Cost | Difference | PAYMENT<br>RECEIVED | MINUS<br>ACTUAL |
| 440,500  | 455,162      | 20,000   | 20,185      | 552,000  | 559,643     | 7,643      | 5,548.44            | -4,799          |

#### AUTHOR WRB - Winnipeg, Man.

1986-87 Manitoba Annual Report.


TITLECANADA-MANITOBA MEMORANDUM OF AGRMT. FOR WATER QUANT. SURVEYS.

DATERMOREM BORROWER'S NAME Ret'd

Agr-MAN-12

6

son business services Itd.

