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PREFACE 

The purpose of this booklet is to introduce elec-

trical noise theory. It is primarily intended for 

workers in the electrical noise measurement field. To 

restrict the topic to an introduction, only certain 

traditional cases are treated. 

The booklet is divided into three chapters and an 

Appendix. The first chapter treats the fundamental 

concepts and definitions of the two ideal kinds of noise-

random and impulsive. The definition of impulse is not 

yet rigourously defined in the standards, to the author's 

knowledge; hence a definition appears that gives the impulse 

as a fundamental physical quantity - the charge. The second 

chapter discusses reception by an ideal receiver. The AM 

receiver is particularly important; its solution provides 

the basis for interpreting meter readings of the ideal RIFI 

meter discussed in Chapter Three. The third chapter includes 

solutions giving theoretical meter readings for noises as 

well as giving the bandwidth ratios of the gaussian bandpass. 

Finally, the third chapter discusses the uncertainty principle 

and its uses in RIFI meter applications. 

The booklet was based on a literature survey of both 

theoretical and experimental work. It was written over the 

summer of 1970 at the Telecommunications Engineering Lab, of 

the D.O.C., in Ottawa. The author wishes to thank the Lab. 

staff for the help and encouragement they gave. 
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Further research is required into the more modern 

techniques of electrical noise measurement. Current work 

appears to favour the identification of noises by using 

multi-detector instruments to measure probability density 

functions. Information theory may be required to specify 

acceptable noise levels, and to optimize monitoring. Also, 

engineers and scientists co-operating at the international 

level can organize monitoring stations over the earth's 

surface to furnish planetary noise indexes. Conserving 

the electromagnetic spectrum as a world communications 

resource is truly one of the most important challenges to 

electrical engineering in the dawn of the Second Industrial 

Revolution. 

Paul Irwin 

Ottawa, 1970 
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CHAPTER ONE 

NOISE 

1.1. Random Noise. 

1.1.1. Gaussian or White Noise. 

Random noise is often called gaussian noise because it 

follows a so-called gaussian or normal probability distrib-

ution. Probability distributions are necessary to describe 

the behaviour of random variables such as noise voltages and 

currents. 

To see how probability distributions do this, consider 

a random variable, v, and let P(vo ) be the probability that 

is less than vo . This is usually written as 

Pr(v < v ) = P(v) — o 	o  

Next, consider the probability that v lies within some range, 

say from v l  to v2 . A little thought will show that this is 

the probability v is less than the larger value v2 , minus the 

probability v is less than v l . In notation: 

Pr(v1  < v < v 2  ) = Pr(v <v 2  ) - Pr(v <  v) — — 	 — 	 — 1 

or, using function notation, this is 

P(v2 ) - P(v1 ) 

The probability that v lies in a narrow range, vi to vi+dvi  

is therefore 

P(v1 + dv 1 ) - P(v ) 1 

by substituting v l  + dv1  for v 2  above. This quantity.is  the 

-1- 
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differential of P(v) at vl , therefore it may be written as 

dP(v). A function called the probability density function 

may now be defined as 

dP(v) 
P (v) 	dv 

where dP(v) = p(y)dy is the probability the random variable 

is between v and v + dv. Now the probability y lies between 

v1 and v 2 may be written as 

P(v 2 ) 	P(v1 ) = ,13(y)dy 
v
1  

The probability y has any value is 1, giving 

P(03) = f p(vidv = 1 

For any particular value, yo P(vo) ma  y be found  front  p(v) 

vo 
P(vo ) = f 	p(v)dy 

•■ 00 

The graphs of P(v) and p(v) for the gaussian distribution are 

shown in Fig. 1. For a more complete discussion of the concept 

of probability functions, see 1Bennett [1956]. 

The normal or gaussian distribution shown in  Fig. 	s 

written 

1 
P(v) = 	exp(-v 2 /2a 2 ) 

b42-7f a 

This is the probability density function that describes random 

by 

noise. 
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probability density, p(y) 
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cumulative probability, P(v) 
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Random noise is generated in conductors by thermal 

action. From thermodynamics and statistical physics, the 

equipartition theorem gives the energy per degree of free-

dom of a system as (1/2)kT, where k is Boltzmann's cons-

tant and T is the absolute temperature of the system in 

kelvins. In a conductor there are two degrees of freedom, 

electric and magnetic, giving a thermal energy ot kT. The 

average power the conductor transfers to an ideal infinite 

transmission line is kTdf per frequency interval. The 

voltage is given.by  

d<v 2 > = 4kTRdf 

where R is the resistance of the conductor. This results 

in (1) the power is independent of the resistance provided 

matching is obtained, and, (2) the (ideal) system is freq-

uency independent. In practice real systems have some 

frequency dependence, hence the total noise power can be 

found by integration. The formula 

d<v 2 > =4kTRdf 

is called Nyquist's formula [H. Nyquist, 1928]. 

The link between these two ideas - the noise mean square 

voltage as a temperature function and the gaussian distrib-

ution - was provided by Einstein [1905] who discovered the 

theory of Brownian motion. From the general case of Brown-

ian motion which includes electric charge fluctuations comes 

the concept of a random varying voltage, v, having a prob-

ability density function 

5. 
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1 exp(-v2/21 pCvl 
‘reZTTCY 

where a 2  is the mean square voltage having the property 

da 2  = 4kTRdf 

1.1.2. Band Limited White Noise. 

Since noises do not behave ideally in the sense of having 

an infinite spectum, the simple case outlined above cannot be 

used indiscriminately. Although many noises are 'white well 

into the microwave region and beyond, a limit is imposed by 

quantum effects. Before the quantum region is reached circuit 

impedences become significant. Because of this, the band-lim-

ited cases are most often encountered. 

If a noise is confined to a passband then the voltage 

fluctuations lose some of their randomness. In the unlimited 

case the voltage at any time was considered to be completely 

independent of the voltage at any other time. If it is physic-

ally possible for the voltage to fluctuate very rapidly, then 

this ideal independence is approached. To achieve this, a very 

wide bandwidth will be required. On the other hand, if the 

bandwidth is narrow the voltage must fluctuate at a elower rate. 

This means the voltageêat any time depends to some extent upon 

the voltage at an earlier thme. Only for much earlier times 

will the voltage again be independent. This dependence of the 

voltage on the time interval is called autocorrelation, and it 

is expressed mathematically in the autocorrelation function. 

The autocorrelation function measures the independence 

of a random variable upon itself at an earlier time. It is a 



narrowband wideband 

noise noise 
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FIGURE 

function of time interval. Several examples of autocorrel- 

ation functions are given in Fig. 2. The importance of the 

7, 

W ( 	 W ( f 

autocorrelation function in noise work lies in the Weiner- 

-Kinchine theorem which relates the autocorrelation function 
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to the power spectrum as a Fourier cosine transform pair. 

Essentially, this means that the power spectrum may be 

found from the autocorrelation function, and vice verse, 

just as the voltage spectrum of a regular waveform may be 

found from the waveform profile. The spectra for several 

autocorrelation functions are tabled in Fig. 3. Note par-

ticularly the inverse property of the autocorrelation fun- 

ction - power spectrum pair: the longer the autocorrelation 

time, the lower the high frequency cutoff. For a zero auto-

correlation time the spectrum is infinite; this is just the 

ideal white noise case first described. 

1.1.3. Narrowband Noise and its Fluctuating Envelope. 

It is prabtically important to consider the particular 

narrowband noise case. Narrowbands occur often, particul-

arly in radio receivers and RIFI meters, making the results 

obtained useful in later chapters. 

The mathematical solution to the narrowband noise case 

is given by S. O. Rice [1945] who considered white noise 

being tuned by a narrowband filter.  The output of such a 

filter may be thought of as having a sinusoidal component 

with the frequency of the filter midband, and modulated by 

an irregularly fluctuating amplitude. The rapidity if the 

fluctuations is determined by the filter bandwidth. 

• Several important statistics may be calculates from 

the noise at the output of a narrowband filter. One imp-

ortant result is the probability density function of the 
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envelope current: 

P(R) = 11—exn( -R2 % 

1 () 	4o 1  

The envelope is not gaussian, but follows a Rayleigh dist-

ribution. The quantity 4)0  is the mean square current, and 

for the rectangular passband, 

1Po = Wo (BW)  

where W is the spectral density within the band and BW is 

the bandwidth. 

Rice has also given the distribution for the number 

of maxima of the envelope as well as the energy fluctuation 

for various time constants of smoothing filters in his clas-

sic paper [Rice, 1945]. A couple of interesting figures 

are expected number of maxima for the ideal bandpass fiater 

N = 0.641(BW1 

and for the gaussian-shaped bandpass filter 

N = 1.006(BW) 

The effect of the shape of the bandpass filter on noise 

will be discussed more fully in later chapters. 

1.2. Impulsive Noise 

1.2.1. Definitions. 

Random noise is one extreme type of interference while 

periodic pulses and impulses are another. The pulses des-

cribed here are regular periodic with a constant amplitude. 
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The Rayleigh 

Distribution. 

Since both pulses and impulses are described, it is import-

ant to distinguish between them. 

A pulse is a burst of current, with or without a dicernable  

fine structure, havin. a finite duration. An impulse is a  

pulse whose duration is too short to be measured. 

Several important consequences of this definition are: 

1) The pulse is described by at least two independent 

parameters - current and time. In addition, fine structure 

parameters such as envelope shape and carrier frequency may 

be given. 

2) The impulse is a subjective concept. It is used 

to imply a nearezero duration with respect to the relax-

ation time of the observer (instrument). 

3) Since the impulse does not have a known lifetime 

it must be described by one less parameter than the pulse. 
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The minimum number of parameters needed to describe a pulse 

is two, therefore only one parameter is used to describe 

the impulse. 

4) Since the impulse duration is too brief to measure 

the current will not be present long enough to measure. 

The only physical quantity accessable to measurement is 

the charge, i.e. the current multiplied by the time. 

In order to measure the charge of an impulse, a nar-

rowband meter - a RIFI meter - is often used. This leads 

to the use of a voltage-type unit in the following way. 

If an impulse is passed through a resistor, then the 

voltage across this resistor is given by Ohm's law 

VT 
= R 

where T is the lifetime of the pulse. Since R is constant, 

the impulse may be given by 

S = VT = QR 

which may be defined as the impulse parameter,  S. The im-

pulse may be found from the impulse parameter by 

= 

once S and R are known. Note that the unit of the impulse 

is the ampere-second (or coulomb) and the unit of the im-

pulse parameter is the volt-second. 

The impulse parameter S should not be confused with 

the spectral intensity of the impulse which will be described 
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later. Although a simple relationship exists between the 

impulse parameter and its spectral intensity, the relation 

does not hold for pulses in general - each pulse waveform 

has a different spectrum. 

With these definitions in mind, the balance of this 

chapter will treat the general pulse and then the impulse 

as a special case. 

1.2.2. Pulse Trains. 

A pulse train consists of an infinite number of pulses, 

each following the other by the same time, T. In practice 

pulses are not produced indefinitely but are started and 

stopped at particular times. However, if they occur con-

tinuously during the measurement time, then they may be 

considered as infinite in number. 

Before a pulse train is described, the ideal case of 

a single pulse will be described. The single pulse, al-

though real, is not a physical quantity. This is because 

any measurement made of a single pulse cannot be confirmed 

by another independent measurement. To do so would require 

a second pulse exactly the same as the first, but at a later 

time. This is a pulse group however, having a period bet-

ween them. However for most purposes, a pulse behaves as 

a single pulse if the period T is much greater than the 

measuring instrument relaxation time; this ensures that 

successive pulses do not interfere with each other (Fig. 5). 
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FIGURE 5. Effect of relaxation time on pulse train obser- 

vations. 

FIGURE 6. Spectra of various single pulses. 
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It is the voltage profile of a pulse that determines the 

unique spectrum of the pulse. The spectral intensity is 

the variable, and it has units of volts per hertz. The 

spectra for several waveforms are shown in Fig. 6. These 

spectra are the Fourier cosine transforms of the profiles. 

Note that they are continuous rather than discrete like 

the corresponding Fourier series of the infinite pulse trains. 

The infinite pulse train has a pulse repetition freq-

uency, FRF = f = 1/T. It is composed of harmonics; each 

one at some multiple of f. The envelope of the spectrum 

is, however, independent of f and is determined by the 

size and shape of the individual pulse. Several examples 

illustrating this dependence are shown in Fig. 7. 

The relationship between pulse width and spectrum is 

important to an understanding of the impulsive case. For 

an impulse the pulse width is very small, hence the spec-

trum is very broad. Considering impulses as having almost 

zero width, they may be seen tb have a spectrum practically 

flat. For the single impulse, this is a constant value 

throughout the entire spectrum observable by the instrument 

concerned. For an impulse train, this would be a spectral 

line each f throughout the band; each line having equal 

intensity. The height of each line is 2fpS• The quantity 

has historically been taken as the spectral intensity of 
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the impulse, and is called the RMS spectral intensity. 

	 >f 

Decreasing the pulse width extends the spectrum of the pulse 

train. The position of the spectral lines remains unchanged. 

11/4. 

■ 	.17,.= 

[ 

E  

Decreasing the interval between pulses increases the int-

erval between spectral lines. The envelope of the spectrum 

remains unchanged. 

FIGURE 7. The dependence of a square wave spectrum on the 

pulse interval T and the pulse width T. 



1.2.3. Random Occuring Pulses. 

Although the general case of random occuring pulses 

has been solved, [Lawson and Uhlenbeck, 1950], it is much 

simpler to consider only the case where the pulses do not 

overlap. This is a valid assumption where the pulse width 

is much less than the average interval between pulses. If 

the pulse width is veryshort, the impulsive case may be 

found. 

Consider a current pulse 

= 	, for 0 < t < T 

= 0 / otherwise. 

By applying Campbell's theorem, the average current is 

<i> = NSe  il(t)dt 
0 

= N*1-  

= Ne = I 

whose mean square fluctuation is 

	

<isi2 >  = 	(t)dt  NS 
 0 

= N(77-) 2 T 

	

Ne 2 	le 

	

= 	= 

where N is the average rate or pulse repitition frequency. 

The autocorrelation function is 

17. 
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1P(t) = NS 	(T) 	(T-I-t)dT 
0 

2 
= N $ (-=.) dT 

Ie for 0 < t < T 

1P(t) = 0 p for t:>'T 

The spectral density is found by applying the Weiner-Kinchine 

theorem: 
00 

W(f) =.4$ (t)cos(2wft)dt 
0 

= 41ep 1 - I)cos(2nft)dt 
T 0 

sinnft 2 = 

= 2Ie.sinc 2 ft 

For the impulsive case, sinc,gft = 1, and the result is the 

Schottky formula 

W(f) =  21e 

which describes the shot effect. 

It should be noted that the Weiner-Kinchine theorum 

gives the spectral density for random processes, while the 

Fourier transform of the square of the function profile 

gives the spectral density for regular functions. The spec-

tral density should not be confused with the spectral int-

ensity which is found by the Fourier transform of the pro-

file itself. 



Random occuring pulses arise in other ways than by 

the shot effect. For example, if white noise is strongly 

clipped, then the result is a rectangular waveform whise 

length varies according to an exponential law. The correl-

lation function and spectral density are [Rice, 1945] 

Ip(t) = a 2 exp(-pitl) 

2 . 2a  W(f) - n'f 4  + u 2  

The strongly clipped narrowband case is more complex, and 

is treated by Lawson and Uhlenbeck [1950]. 

19. 
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CHAPTER TWO  

NOISE RECEPTION  

2.1. Noise in AM Receivers. 

2.1.1. Linear and Square Law Detection. 

The output of random noise from a narrowband filter 

was given in chapter 1 as the Rayleigh distribution 

R 2  pe)dR = 7,exp(- 	dR 

where R is the amplitude of the envelope. In the case of 

an AM receiver, the tuner may be considered as a narrow-

band filter followed by a detector. The output of the nar-

rowband filter is first considered as noise only, and later 

as signal with noise. 

The probability density function of the envelope is 

given above. This gives the density function of the det-

ected noise. In addition, Rice [1945] gave the probability 

density function of the maxima as 

2 1.13(y2-1) exp(-Y7) 

where y = Ri/e(7) . From the Rayleigh distribution may be 

found the average 

= l* on/2 

and the mean square 

21,bo 

of the envelope. 
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If a signal (CW) is being received, then the distrib-

ution changes. The envelope probability density then dep-

ends on the signal-to-noise ratio 

p.42 	aveiv:inielonveeezr  x = wm  
9)o - 

In this case, the envelope probability density is 

R 2 +P 2 	RP Texp[- 2 ,4 	]I [--1 
0

o Y,0 

Here, R is the envelope composed of signal and noise, P is 

the peak sine wave voltage, and Io  is a bessel function 

of the second kind. A graph of the envelope probability 

density is shown in Fig. 8. For x = 0 the Rayleigh dist-

ribution is obtained, as expected, since this is the noise-

-only case. For large x, the distribution becomes gaussian 

with mean P/1/7 and variance 1)0 . The distribution for 

large x is approximately 

1 	 (R-P) 2  	 exp[- --rr--] y_ /PT; 

It should be noted that the mean square envelope now becomes 

e en  P 2  
Yo 

With these distributions the action of various kinds of 

detectors may be evaluated. 

The first detector considered here is the square law 

or quadratic detector. Let the detector be described by 

I = aV 2  
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and the input to the detector by 

V = VN + Pcos'ipt) 

whereVN  is the noise and Pcos(pt) is the signal. 

velope will be given by 

The en- 

If V is eubstituted into  the' rectifier  equation, and if  

the expression for R together with its distribution are 

used, then the current may be found !Rice, 19453, The current 

is composed of two parts: a DC component and an C4FLAc comr 

• ponent. These are 
p2 

IDC n  a (1Po + 

LF = a 2 1 01) (4)o  + P 2 ) 



The total mean square current is 

2-- 	 n4 
r2 	a m42 = nr%24. 	e-  % 

T , 	 " 	T ' 

The linear detector may be solved in much the same 

manner. The equation of the ideal linear rectifier is 

I = 0 , whenever V < 0 

= aV, whenever V > 

from which the DC and LF components may be found: 

a- 	 x 
'DC = TR  = a 1/77 e  [ (1+x) I o  (r )

r   + xi, (7) ] 

2 a TLF = 	- 2 0 	2 Tr 

The total mean square current is 

— 
i 2 = (..)2 R 2 = (..1)2 (p 2 	) 

iT  

2.1.2. Minimum Detectable AM. 

Before proceeding to the detectability of AM it might 

be worthwhile to first consider the spectrum of the detector 

output. This may be found from the probability distribution 

of the envelope by employing the proper rectifier equation 

- Unear or quadratec - to find the distribution of the 

detector output. From the distribution, the autocorrelation 

function may be found, and hence the spectrum by the Weiner- 

-Kinchine theorem. A solution has been obtained for the 

23. 
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quadratic detector [Lawson and Uhlenbeck, 1950] which con-

tains four terms. 

The first term is the direct current term. This is 

composed of the square of the mean signal power, the square 

of the mean noise power, and a cross term of the average 

value of the beats between signal and noise. The second 

term is the signal at the modulating frequency and its sec-

ond harmonic. The third term is a continuous spectrum due 

to cross-modulation of signal and noise. The fourth term is 

caused by beats among the noise components. Lawson and 

Uhlenbeck [1950[ gives the equation on p. 158, and it is 

illustrated and explained on p. 159 for the rectangular 

bandpass case. 

The minimum detectable signal is a statistical quan-

tity. Any steady signal may be detected, no matter what 

the noise level, if there is sufficient time available. 

This is because the noise term tends to be self-cancelling 

when a long average is taken. Unfortunately, this averaging 

or integrating of the detector current will mask the var-

iation of signal during the averaging time. Hence the sig-

nal can be detected only if it is constant during the int-

egrating time necessary to seperate it from the noise. 

This integrator is usually a resistance-capacitance network 

placed across the detector output, and having some specified 

time constant. 
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To define the minimum detectable signal, several 

approaches may be taken. One approach by Lawson establishes 

a detectability criterion based on either a betting curve 

which expresses the ability of an observer to guess the 

presence or absence of a signal pulse, or as a signal-to-

-noise ratio employing signal peak power to bandwidth int-

egrated noise power ratio of the order of unity, but req-

uiring empirical determination. This second criterion is 

called the power criterion, and it is described in Ch. 7 

of Lawson and Uhlenbeck [1950]. The results of this approach 

includes the specification of the minimum detectable mod-

ulation, emin , as a function of x, the ratio of un- 

modulated signal power to noise power. Significant in the 

resUlts j'ns equations 143 on p.369 [Lawson and Uhlenbeck, 

1950] which show 

(,2 	
"y 1/x 2  min'AM 

for small signal-to-noise, x, and 

( e 2 	) 

Mln  
el,  1/x 

for large x. 

While the above approach may be useful in some cases, 

it has its shortcomings. For instance, the constant is 

empirical, hence it must be measured for each system. Adso, 

the criteria are not directly app1icable to enterference 
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study in their present form, except in radar perhaps, where 

they were first established. Another approach which would 

give the signal-to-noise acceptable as a "clean" detector 

output is required. This would involve somewhat larger 

signal-to-noise ratios; a minimum modulation level and band-

width for a minimum signal strength. This problem will be 

discussed after the methods of the reception and measurement 

have been developed. 

2.1.3. Inpulses in AM Receivers. 

If impulses are received and tuned by an AM receiver, 

the output to the detector will usually consist of a pulse 

train. If the impulses occur randomly, then the output 

will be a noise. On the other hand, if the impulses are 

regular then the output will have regular features. 

The response of a receiver to an impulse train depends 

a great deal on the pulse repitition frequency, fp . If 

f is low, then there is a long time between pulses and 

each pulse behaves like a single pulse in the detector. 

Further, the output will be independent of the receiver 

tuning. However, if f is high, then the pulses will inter-

fere with each other in the tuner; sometimes constructively 

to produce an enhanced output, sometimes destructively to 

produce a reduced output, depending on the receiver tuning 

and the bandwidth. 
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The effect of a high f on impulse reception can per-

haps best be seen as a Fourier series. An impulse has a 

spectrum extending beyond the tuning range of the receiver, 

each component having a constant amplitude. The spectrum 

is composed of a series of discrete lines, each f apart. 

Hence, if the bandwidth of the receiver is less than the f 

then the receiver will display a series of peaks and nulls 

as it is tuned across the band. When tuned to a peak, the 

output to the detector will be a contant sine wave of mid-

band frequency. 

On the other hand, if the f is quite low then it is 

easier to view the situation, in the time domain. The pulses 

are formed by the tuned circuits of the receiver independ-

ently of each other and they may therefore be treated as 

single impulses. 

The impulse response of a cascade of series-tuned circuits 
4-- 

is given by Sabaroff [1944] who gives the peak valus of 

the output as 

E e EG(W2   1 

where S is the impulse parameter and G is the'midband  gain.  

Thts es Sabaroffis equation •which may be written as 

E m4:1(3DB)SG Ind 

where (3013) 	(w2-w1 1/21i is the 3 db bandwidth, and 

3 . 0 
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FIGURE 9. Response of 

cascade of series-tuned 

circuits to an impulse. 

Sabaroff derived his equation by cascading several tuned 

circuits and obtained a general expression for the output 

containing both amplitude and phase terms for n tuned cir-

cuits. The equation was found by first finding the maxi-

mum value of the amplitude and then making the appropriate 

symplifying assumptions. If it is assumed there are enough 

tuned circuits to ensure a gaussian frequency response, 

then 

E = 	( 3DB) SG 

is exact. 

2.2. Noise in FM Receivers. 

2.2.1. The Random Noise Spectrum. 

When signal-to-noise ratios are high enough, an expxr 

ession may be found fairly easily.  The main parameters 
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involved are 

f s' the maximum carrier deviation at 100% modulation, 

fa , the accepted output band, 

W , the mean carrier power, 

Wn , the equivalent mean noise power, 2faW(f), 

The solution for S 2 /N 2 , where S 2 = f 2 /2 is given by almost 

any textbook of FM as 

S 2 
I, S % 2, C% 

-2= 15- lr-/ 1W•1 

- a 

Bennett 11956] shows the derivation and also gives the case 

for smaller S/N ratios. This solution is 

g 2 	fS 2 	-1 
= y(re..) ( rYdX) 

where fYdX is the integral over the power spectrum of the 

sine wave plus noise. Graphs of the power spectrum are 

given in Fig. 10. Note that the noise increases with freq- 

uency for the audio frequencies. For this reason, the broad-

casting industry employs a combination of FM and PM; the 

PM taking the form of a 6db per octave pre-emphasis of the 

treble frequencies on transmission. For a more specific 

analysis of FM, the reader is recommended to texts. 

The other feature to note from the curves of Fig. 10 

is the dependence of S/N on carrier intensity. As the 

carrier (Wc ) is increased, the noise decreases. The comb-

ination of these factors make any realistic analysis of FM 
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noise somewhat cumbersome. Undoubtedly, the spectrum gives 

the easiest picture to grasp. Some further analysis may 

be found in Ch. 13 of Lawson and Uhlenbeck [1950]. 

W(f)/(47r 2 a) 

0 
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o 	 (JI 
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Impulses In FM Receivers. 

The case of impulses in FM receivers is essentially 

the same as random noise. When a carrier is present quiet-

ing occurs, but in the absence of a carrier, the audio 

output is determined by the limiter action only. It is 

the combination of limiting and detection - each being a 

non-linear process - that makes analytic solutions diffi-

cult in the FM case. Some work has been done in this dir-

ection as cited earlier [Lawson and Uhlenbeck, 1950]. 

2.3 Noise in TV and Radar. 

2.3.1. Radar. 

The AM receiver has already been discussed; radar 

and TV are further applicdions of the general case. The 

particular case considered here is the establishment of a 

minnum detectable signal. 

Consider a radar signal being received. The signal 

may be a gaussian, square-, or other shape pulse of RF. 

Let f be the pulse repitition frequency and n be the number 

of pulses observable in a time, t. Hence 

n = f t 

Now, a detector may be considered as an energy-measuring 

device having an uncertianty of the order kT where k is 

Boltzmann's constant and T is the (noise) temperature. 

31. 



The signal-to-noise ratio is 

S 2  
172 

then given by 

Ef 

Zee) 
MVP 
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This gives a noise power measurement of 

k 2  = kT(RN) 

where (RN) is the bandwidth. If each pulse has energy E, 

then the signal power is 

g2 = 	f  
T p 

= Ef 

providing the bandwidth admits the entire pulse spectrum. 

after the IF amplifier. If z is the signal-to-noise ratio 

before reception then 

z  = kT = 1. 

gives the detectability criteria for a single pulse. This 

gives 	 2 	f 
- -2 

 N-  - (RN) 

where the signal may be detected with near-certianty. 

Solving for the minimum power: 

Pm Ef = kTf 

for a single pulse, or 

P
"" 	kTf 

ra 771  P 

for n pulses. Recalling n f t, the minimum detectable 
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pulse train has an average power 

mP = kT  t 

This is Eqn. 7-37 of Lawson and Uhlenbeck [1950]. It is 

important to note that the formula assumes a sufficient 

bandwidth to accept the entire pulse. The dependence on 

bandwidth is easy to see; if the band is too narrow then 

signal will be lost, if it is too wide then unnecessary 

noise will be included. It can be shown that the lowest 

value of the minimum detectable signal occurs when 

(RN)1. 1 = J. 

T being the pulse width. A thorough discussion of noise 

and radar signals may be found in Lawsom and Uhlenbeck[1950]. 

2.3.2. Television. 

In television as in radar, there is an AM receiver 

with a cathode-ray tube display. Television is a differ-

ent application however, so the noise requirements are 

also different. For instance, in radar it is necessary 

to determine whether or not a signal is present, while 

in television the depth of modulation in each small time 

interval must also be discerned. 

To illustrate the effect of noise on television, two 

problems will be discussed. The first problem is the spec-
ie'« 

ification of mknimum allowable internal receiver noise, 
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while the second problem is the measurement of noise ac-

companying a television signal. 
Wray 

The mil.nimum allowable internal receiver noise may be 

specified in at least two different ways. One is simply 

to state the noise figure [see Appendix] of the receiver; 

the other is to specify the maximum signal input required 

to produce an acceptable picture. The latter method req-

uires careful measurement of the effect of noise upon the 

picture. By varying the input consisting of some common 

television test signals to several domestic receivers, 

some interesting results may be obtained. These tests 

were performed at the Telecommunications Engineering Lab. 

of the Dept: of Communications in Ottawa during the summer 

of 1970. 

One standard signal - the staircase - gives interest-

ing results. If the signal is slowly decreased until the 

noise first appears, the noise is seen first in the grey 

steps. For very low signal levels, the noise is also seen 

in shadow and highlight'steps while the grey steps deter-

iorate. From the staircase test can be seen the loss of 

contrast and the degradation of the middle tones by grain-

iness. 

Another standard signal is the multiburst. This con-

sists of several bursts of tone at different frequencies, 

appearing on the raster as vertical bars arranged in groups 

of different line densities. As the signal level is dec-

reased, noise begins destroying the resolution of the signal. 
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Now, resolution is defined either by the number of discern-

able lines the frame can contain, or by the video band-

width - there being 75 lines per MHz. Using a multiburst 

of 4.2 or 3.6 MHz, the noise of the xeceiver could easily 

be specified by stating the maximum signal to give a spec-

ified resolution - 315 or 270 lines. 

The second problem - measuring the noise level of a 

television signal on a line - is more difficult. Here, 

the standard signal cannot be used; the noise must be dis-

tinguished from an arbitrary television program. One line 

of attack is to examine only the blanking and syncronization 

portions of the signal. By analyzing an oscilloscope trace 

the noise distribution may be found. Another line of 

attack would be through autocorrelation measurement. Noise 

would be more random than the video signal, hence the auto-

correlation time would be lower. This approach at first 

appears to be hampered by leckr!of low cost instrumentation. 



<v> = ç T 

J n 

ST0  
0 vosin(wt)dt 

dt 
0 
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CHAPTER THREE 

NOISE MEASUREMENT 

3.1. Voltmeters 

3.1.1. Average, RMS, and Peak. 

Most commercial voltmeters respond to the average 

voltage. They are usually calibrated with sinusoidal volt-

ages to read RMS (sine). Before discussing average and RMS 

noise voltages, the sine wave will first be described. 

For a sine wave, the voltage at any time, t, is 

v(t) = vosin(wt) 

where vo is the peak, or maximum, voltage. To find the 

average over a time T, the following integral is found: 

Choosing T to be the first quarter-cycle, 

2 <v› = -v TT 0 

Similarly, the mean square voltage is found by integrating 

over the square: 

1 fro  <V 2 > 	 v 2 sin 2 (wt)dt 

Again, choosing T to be the first quarten-cycle, 

<v 2 › = v 2 / 2 



hence, the root mean square voltage is 

rms(sine) = 	=  V01— 

The ratio of these two is sometimes called the form factor, 

rms(sîne)  
ave(sine) = Y7Y 

These quantities may also be found for noise voltages. 

The average (rectified) noise,voltagefis 

1 S oe  <v> = — 	xp(x)dx 2 0 

where p(x) is the probability density function. When this 

integral is evaluated for gaussian noise, the average noise  

voltage is seen to be 

/Yà <V> . 

where a is the standard deviation. Similarly, the mean 

square voltage is found, 

1 
	co 

<V
2 > = y S X

2p(x)dx 
0 

which when solved for gaussian noise is seen to be 
4y 2p. = c 2 

This gives the form factor as 

ems.tylotee) 	FT 
aVéChoiseJ 	y! 
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The statistical quantities average and root mean square 

are easily found. Other quantities such as the peak may 

depend on a conventional definition. For regular functions 

such as the sine wave, it is clearly defined. For statr 

istical functions such as noise, the only sorcalled peak 

voltage depends on its partiqular definition. Usually it 

is chosen as some voltage that is exceeded only some small 

fraction of the time. Specifying this quantity then gives 

the multiple of a that is defined as the peak voltage. 

Whenever "peak voltage" of a noise is asked for, the pea, 

uliar definition must be given. 

Sometimes however, "peak voltage" refers simply to 

the scale reading of a peak-responding Cquase-peakl or 

peak-to-peak responding voltmeter. In this case, a calibr, 

 ration curve must be found, usually empirically. Readers 

interested in peak responding meters are referred to Brodr. 

erick 11965]. Examples of noise measurements with various 

meter types may be found in Noise-Measurements,  AEI, Report 

251(1968) by the present author. 

3.1.2. Bandwidths. 

Instruments used in noise measurements may be roughly 

divided into two classes: narrowband and broadband. Nar-

rowband instruments include radio noise meters, and they 

have bandwidths often much less than the noise. Broadband 
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instruments include VTVM's and they have bandwidths that 

may or may not exceed the actual noise bandwidth. In either 

case, a knowledge if the instrument bandwidth is necessary 

to interpet the scale reading. 

The random noise bandwidth is defined as the area 

under the normalized power response curve, i.e. 

RN 1 	- = V S 
o  

where Vo is the maximum voltafge response. This gives the 

bandwidth of a rectangular passband having the same power 

gain. It is important to realize that the power gain is 

proportional to the bandwidth but the boltage gain is prop-

ortional to the root bandwidth. 

A narrowband instrument such as an RIFI meter reads 

voltage per root bandwidth. A wideband instrument such 

as a VTVM reads voltage. If the bandwidth of a wideband 

instrument is less than the noise bandwidth, then a cor-

rection factér of 

noise bandwid 
V 	

th  
 instrument bandwidth 

must be multiplied by the instrument voltage reading. 
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• 3.2 RIFI Meters. 

3.2.1. Response to Impulses. 

The input to any instrument may be considered as the 

sum of many individual impulses just as it may be consid-

ered  as .the  sum of sines and cosines. This is just another 

kind of Fourier series, but one that uses impulses instead 

of sines. For impulse-type noises, this representation 

has the advantage of simplicity oneethe response of the 

instrument is known. 

Impulses have already been described [see Sect. 1.23 

and an idea of their impact upon an ideal AM receiver has 

been discussed.  •The effect of an impulse on an instrement 

may be analyzed more generally using Fourier transform 

techniques. 

From the Appen4x comes the spectrum and time responses 

to an impulse train by a gaussian bandpass: 

71(f-f ) 2 	1 
Fg) = -Texp[ - —re--]•III(q) 

0 

V(t) = 25f tœexp[-nf 2.(t-nT) 2 ]cos[2nfât-nT)] 

where fo is the area under the normalized frequency resp-

onse curve and T = l/f is the interval between pulses. 

From these two expressions may be found the readings of 

different detectors - average, ruts, and peak - and the 

effect of the pulse repitition frequency,  f 1  and bandwidth, 



fo , on the readings. 

The first case to be considered is that of a high 

pulse repetition frequency, f . Each sine Fourier comp- 
P 

onent may be seperated by tuning the instrument since the 

lines are far apart. Because each line is sinusoidal with 

peak value 2Sf
' 
 it follows that a meter calibrated on CW P 

to read rms sine will read iîSf . 

The second case is of a .low  f.  Here the time view 

is taken since each pulse is seperate. The peak envelope 

of the pulse is 

2Sf0expr-r f2t21 o ' 

and each pulse is 1/f apart. If the gaussian filter is 

followed by a peak detector, then the reading will be 

info 

If the detector is average responding, then the results 

from Sect. 3.1.1. are used to give a reading of 

inf 

The rms value will now be derived. By definition, the 

mean square is 

1 

= 4f f 2s2jr exp(-' -.024.2%At 
P0 	 en.t o t. ,u4 

0 
4f f 2 S 2  = 	 exp(-u2)du 
In7 	0 

41. 

irce  
(2Sfoex ms = 	(2Sfoexp( -ef 2 t 2 )1 2 dt 
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4f f S 2  p 	(4)  

Hence, the ruts  value is 

ruts = p 

.2.2. Response to Random Noise. 

The results of Section 2.1.1. may be used to determine 

the instrument readings of random noise. Again, the inst-

rument is assumed to have a gaussian response and an average-

-responding meter calibrated in rmssine. Both the quad-

ratic and the linear detection cases have been solved. 

From the IF amplifier having a gaussian response, the 

mean square voltage is 2*o where *o is the value of the 

autocorrelation function at zero time. This value may be 

shown to be 

2#10  = W0 (RN) 

• where Wo  is the spectral noise density and RN is the ran- 

dom noise bandwidth. The noise may be applied to either 

a quadratic (1=41\1 2 ) or a linear (I=aV) detector. 

If the detector is quadratic, then the mean square 

envelope gives the output:  • 

< R 2 > = SR 2 p ( R) dR = 2*0  

while if the detector is linear, the mean envelope gives 



Rp(R)dR  

CO 

<R; 

(RN) /7 /W
-1 0 2)/7 

r4 	 
412VWo (RN) 

= 0.984iW0 (RN) 

— o = 
-7-  

1T le r 

the output: 
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where p(R) is the Rayleigh probability density function. 

In using these results it should be borne in mind that a 

meter responding to average, but calibrated in rms sine, 

will read 

272-  

of the noise voltage. Hence, 

detector gives a reading of 

for such a meter the linear 

It has been common practice to simplify the noise voltage 

readings by ignoring the 1.6% 

was calculated here to giva a 

actually being measured - the 

RMS sine scale. 

The results of Sect. 3.2. 

ized in the table of Fig. 11,  

correction. The actual value 

complete view of what is 

noise average voltage on an 

1. and the above are summar- 



linear 	quadratic peak 

C W 

Psin(27rfct) 

1 T., 

lis (Imp) (2.S(PRF) 	ifS 2 (IMP) (PRF) 

undefined 	 F(f)IN' 	F 2 (f)•(RN) 
4ii 
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input 

impulse 

train 

S, f <<IMP 

random 

noise 

F(f) 

FIGURE 11. RIFI meter readings for various detect6rs 

and inputs. 
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FIGURE 12. Ratios of bandwidths for a gaussian response bandpass curve. 
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3.3. Bandwidth and Uncertianty. 

3.3.1. Bandwidth. 

Various kinds of bandwidths have been defined and 

assumed. These deeinitions will now be formally made. 

The first bandwidth to be considered is f o , the 

well-normalized voltage bandwidth. The gaussian band-

pass was written 

2  

e P  4 

0 

where fc is the centre frequency and fo is the well-

-normalized bandwidth. This bandwidth is also referred 

to as the impulsive bandwidth, IMP. Hence, the author 

defines the impulsive bandwidth as 

IMP = 	1 
G(f)  J

G(f)df 
0 

which is the well-normalized bandwidth. For example, 

in the gaussian case 
CO 

n(f -fr) 2 1  IMP =Sexpl- f d 
0 0 

Ins 
f0 

The second bandwidth of interest is the random 

noise bandwidth, RN. This is defined as the wellg-normr, 

 alized power bandwidth: 
Co  

Ren  Ga ( ;" ) 
SG2(f)df 

0 



which, in the case of the gaussian bandpass, is 

00 

0 
Two other bandwidths are now treated, because of 

their ease of measurement: the 3 dB and the 6 dB band- 

47. 

RN = 	expt-27  fen 2   ] 

widths. By definition, the 3 

difference between two points 

of the centre frequency. For 

i s  

dB bandwidth is the frequency 

where the voltage gain is ...te 
the gaussian bandpass, this 

Similarly, the 

1 	-nx 2 
71" = e  

x  = e12117=  (3De
) 

 
6 dB bandwidth is defined where the voltage 

gain is 1/2 of the centre. Again, solving for the gaussian 

case, 

(6DB1 
7-  - (IMP) 

where, x has been taken as the bandwidth with respect to 1MP. 

The notation opal and (6DB) are used for the 3 dB and 6 dB 

bandwidths, respectively. 

The results of this section summarizing the ratios of 

various bandwidths are given in FIG. 12. 

3.3.2. Uncertgi.reee Principle. 

Up to now, concepts of time and frequency domains 

have been used almost interchangeably to find expressions 

of tuner outputs. However, it should be noted that there 
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is a basic uncertainty principle underlying any discussion 

of filtering. Here, the principle states that the impulses 

being observed cannot be simultaneously distinguished and 

tuned by the same instrument. 

The uncertainty principle means that an impulse train 

cannot be resolved into individual pulses and individual 

frequency line components at the same time. If the pulses 

are well-seperated, the spectrum appears continuous; while 

if the bandwidth is narrowed so as to resolve the frequency 

components, the pulses are no longer distinguishable. 

To see how the principle operates, consider a "classical" 

model of an impulse train. This can be represented in a 

three-dimensional graph of amplitude vs. time and frequency 

(see Fig. 13). On such a graph, a CW sine wave appears as 

Fig 13 (a), while a single impulse appears as Fig 13 (b). 

The impulse train can look like a set of sine waves from a 

frequency view, or as a set of single impulses from a time 

view (Fig. 13 (c)). However, in reality, both views cannot 

eg taken together. 

As an illustration, consider the gaussian response to 

an impulse. Call the impulse bandwidth, fo  = IMP = BW, the 

bandwidth. The width of the pulse in the time domain at the 

same level would be 

1 = PW 
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which is the pulsewidth. Then the product 

(SW)(PW) = 1 

With this restriction, consider the display of pulses, 

each being seperated. To do this, the pulsewidth must be 

less than the period: 

PW < T, or PW 

But, if (BW)(PW) = 1, then 

PW = 1/BW 

so that PW T becomes 

1  PW PRP 
1 	1 

< I5W 
which may be re-written as 

PRF < BW 

But, if the PRF is less than the BW, the frequency 

components cannot be seperated. 

Similarly, starting with the requirement for frequency 

resolution, 

PRF BW 

the result is obtained that 

PW> T 

which means the pulses cannot be seperated. 

The illustration just given does not prove the un-

certainty principle generally. For a general proof, the 

mathematical reader is referred to Bendat [1958], , F,4,  53-5, 

where the case of the Fourier-transform pair is treated. 

1 
PRF 
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The radio noise worker should be alert to uncertainty, for 

example sampling for brief times will require a corresponding 

wide bandwidth. Such uncertainty, it should be noted, is a 

characteristic of the process of observation, but is indepen-

dent of any particular observer (je. a FIM). Another more 

fundamental aspect of undertainty is the effect of relaxation 

time as receiver noise. If very short times are used, the 

bandwidth is wide, hence the receiver noise increases. Re-

ducing receiver noise by using long relaxation times is often 

done (radio telescopes, quasi-peak RIFI meters, etc.) but 

at the expense of being able to follow a vareing signal. 

Here, it can be shown that the signal strength and its (time) 

rate of change is constant. [Furth, 1950]. 
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FIG.13(a) 

sine wave 

_45:e 
TIME 

single 

impulse 

FIG.13(b) 

impulse 

train 

FIG.13(c) 

51 ,  

FIGURE 13. Time and frequency views of a tuner. The 

'classical' view. 
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APPENDIX A 

NOISE FIGURE 

The noise figure, F, of a network has been defined as 

the ratio of the available signal-to-noise ratio at the signal 

generator terminals to the available signal-to-noise ratio 

at the output terminals. F is also called the excess noise 

ratio. The modern definition gives the temperature-equivalent 

formula which is derived below: 

Si/Ni F - -§s7gs  

Si/kTB  = 
 So/No 

SiNo 
 SokTB 

Recall that power gain G = So/Si, then 

No F - "d2frg 

Total noise output is 

No = FGkTB 

The noise output due to the network only is 

N = (F-1)GkTB 

The temperature definition of noise figure depends upon the 

conventional temperature of the generator impedence (Friis,1944]. 

If T = 290K, then kT = 4x10 -21 watts/hertz, and 

No 
GB(4x10 Ale/Hz) 

Note that definitions depend on a linear gain, G. Since gains 

of receivers arenot linear due to AGC action, care must be 

taken in the use and specification of noise figure. 
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APPENDIX B. 

INSTRUMENT RESPONSE. 

Let G (t) = amplitude of input at time T 
1 

G2(t-T) = amplitude of eutptt at time t-T after being 

excited by a unit impulse 

then the instrument response to G i (t) is given by 

Iffc.°  
G (t) on 	G (T)G (t-T)dT 

1 	2 
—œ 

If F and F are the Fourier transforms of G and G respect- 
1 	2 	 1 	2 

ively, then 
+00  

F (f) = 	G (t)exp(-2nift)dt 
—œ 

+co 

F (t) = $ G (t)exp(r.2nift)dt 
2 	 2 

—œ 

and the Fourier transform of G(t) is F (f)F  (fi:  
2 

+= 

F ME' (f) = ir G(t)exp(-2wift)dt 
2 

by the convolution theorem. Hence, the inverse transform is 
+= 

G(t) = Jr F (f)F (f)exp(-27rift)df 
2 

-CD  

where F (f) is the spectrum of the input, 

F (f) is the spectrum of the instrument 
2 

G(t) is the output function of the system. 
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1. Square spectrum-Random noise. 

W(f) 
(-W,f <f<f 

= .10c: ot 
1 
herwise. 

2 

	

11) (t) = 	W(f)cos(2nft)df 

0 

	

= 	Wocos(2nft)df 

2 

Wo = 	 (sin2nf2t - sin2nfit) aent 
W, 

= - (cosn[f +f ]tsinn[f -f ]t) 
2 	1 	 2 	1 

= W_(f -f)cosn(f +f 1,t.sinc(fl-f )t 
Li 	2 	1 	 2 	1 	 2 	1 

= Wo  fo  cos(2nf ct)sinc(fot) 

2.Gaussian spectrum-Random noise. 

n(f-f ) 2  W(f) = WoexpE o  
• += 

f 2  tP(t) = W0cos(2nfct) S expj - 

r 
-rTlcos(2eft)df 

0 

= 1%f0cos (2rfctlexpI,-rfât2] 
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3. Square  spectrum-Impulse input, 

F (f) = 2S 
2 

F (f) = Fo , If-fc I < f0/2 
2 

= 0, otherwise. 

±oe 

S 
G(t) = 	F F egp(2nift)df 

J 12  
— 

f +f /2 c o 
2SF0exp(2nift)df 

c o 

f /2 

= 2SF0ir 	exp(2eift)exp(-2nifct)df 

-fo/2  

r 2SFo
teeP(7rifQt) - exp(-nif t)]  

2eIt 	
exp(-2nifct) 

sin(efnt)  
nfot 	

exp(-2eifct) 2SFofo   

2SF0f0sinc(f0t)cos(2efct) 

For the impulse train,  F(f) = ;III()  follows from 

G (t) = SIII(T) where III(x) means the unit function is 

repeated each x throughout the domain. Using this replicating 

property of III(T), the output function for the impulse train 

is the convolution 
+co 

G(t)*III(T) = E G(t-nT) 

cc 

= 2SF f Esinc[fo (t-nT))cos(2nfc (t-nT)) o o 



F (f) = 2S 

.F (f) = F
o
exp[ 

2 

+00  

G(t) = 

+co 

= 	2SF
o
exp[ - -----c—lexp(2rift)df 

e2 
-08 	 e'o 

4,00  

= 2SF0exp( -2nif t)f exp(-
ef 2
---)exp(21Tift)dt 
f

2- 

Jr 
F F exp(2nift)dt 

1 2  
-- -00 

r(f-f,) 2  
f2 
o 
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The spectrum is 

F F 	 1 	
If-f I 	f0/2 T 	c 1 2 	T 

= 0, otherwise 

+f0/2 SF_ , = 	 e(f-nf
p ) 

where f = le is the pulse repitition frequency, and 8 is 

the Dirac delta function. 

4. Gaussian spectrum-Impulse input. 

••000 0 

= 2SF0 
 fo  exp(2nifct)exp(-nf

2 t 2 ) 

= 2SF0f0exp(-nfât 2 )cos(27rfct) 

For the impulse train, the output function is found as for the 

square response case, by the convolution 

G(t)*I1I(T) 
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This may be evaluated directly without integration by 

using the replicating property of III(T): 

G(t)*III(T) = E+::,G(t-nT) 

= 2SF0  fo  Etœexp (ef 2 1t-nT) 2 )cos(2rf [t-nT]) 

It may be noted that the spectrum is given by 

2SF FF = -r-Pexpj- )2 )1'1(1) 12   

o  

2SF0f E 	r(ff)2  +=exp(- 	- jetf-nf ) 
 p -co 	 fâ 



si(nNyf 	ruts  

,i2Sf 	ave 

APPENDIX C  

W-2-Sf 

peak 

rms 

/// 
ave 

log pulse repitition fre4. 

Si(RN)f 

log nomtrui) 
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log bandwidth 

ACTION OF DETECTORS AS A FUNCTION OF THE BANDWIDTH. 

ACTION OF DETECTORS AS A FiUNCTION OF THE PRF. 
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