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PREFACE

The purpose of this booklet is to introduce elec-
trical noise theory. It is primarily intended for
workers in the electrical noise measurement field. To
restrict the topic to an introduction, only certain
traditional cases are treated.

The booklet is divided into three chapters and an
Appendix. The first chapter treats the fundamental
concepts and definitions of the two ideal kinds of noise-
random and impulsive. The definition of impulse is not
yvet rigourously defined in the standards, to the author's
knowledge; hence a definition appears that gives the impulse
as a fundamental physical quantity - the charge. The second
chapter discusses reception by an ideal receiver. The AM
receiver is particularly important; its solution provides
the basis for interpreting meter readings of the ideal RIFI
meter discussed in Chapter Three. The third chapter includes
solutions giving theoretical meter readings for noises as
well as giving the bandwidth ratios of the gaussian bandpass.
Finally, the third chapter discusses the uncertainty principle
and its uses in RIFI meter applications.

The booklet was based on a literature survey of both
theoretical and experimental work. It was written over the
summer of 1970 at the Telecommunications Engineering Lab. of
the D.0.C., in Ottawa. The author wishes to thank the Lab.

staff for the help and encouragement they gave.
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Further research is required into the more modern
techniques of electrical noise measurement, Current work
appears to favour the identification of noises by using
multi-detector instruments to measure probability density
functions. Information theory may be required to specify
acceptable noise levels, and to optimize monitoring. Also,
engineers and scientists co-operating at the international
level can organize monitoring stations over the earth's
surface to furnish planetary noise indexes. Conserving
the electromagnetic spectrum as a world communications
resource is truly one of the most important challenges to
electrical engineering in the dawn of the Second Industrial

Revolution.

Paul Irwin

Ottawa, 1970
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CHAPTER ONE

NOISE

1.1. Random Noise.
1.1.1. Gaussian or White Noise.

Random noise is often called gaussian noise because it
follows a so-called gaussian or normal probability distrib-
ution. Probability distributions are necessary to describe
the behaviour of random variables such as noise voltages and
currents.

To see how probability distributions do this, consider
a random variable, v, and let P(vo) be the probability that
v is less than Va- This is usually written as

Pr(v < v)) = P(v))
Next, consider the probability that v lies within some range,
say from v, tov,. A little thought will show that this is
the probability v is less than the larger value Voo minus the
probability v is less than V- In notation:

Pr(vl g ve v2) = Pr(v ivz) - Pr(v £ vl)
or, using function notation, this is
P(v,) - P(v,y)
The probability that v lies in a narrow range, vlto vl+dvl
is therefore
P(vy + dvy) - P(vq)

by substituting vy t dvl for v, above. This quantity .is the
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differential of P(v) at Vir therefore it may be written as

dP(v). A function called the probability density function

may now be defined as

_ dP(v)
- v

p(v)
where dP(v) = p(v)dv is the probability the random variable
is between v and v + dv. Now the probability v lies between

vy and v, may be written as

vy
P(vz) - P(vl) = [ Ip(v)dv
Vi

The probability v has any value is 1, giving

«©

P(») =/ p(vidv =1
-0
For any particular value, Vgr P(vo) may be found from p (V)

by
VO

P(vo) = [ p(v)av

- 00

The graphs of P(v) and p(v) for the gaussian distribution are
shown in Fig. 1. For a more complete discussion of the concept
of probability functions, see 'Bennett [1956].

The normal or gaussian distribution shown in Fig. 1 Is

written

p(v) = exp (-v%/202)

2T O

This is the probability density function that describes random

noise.
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Random noise is generated in conductors by thermal
action., From thermodynamics and statistical physics, the
equipartition theorem gives the energy per degree of free-
dom of a system as (1/2)kT, where k is Boltzmann's cons-
tant and T is the absolute temperature of the sYstem in
kelvins. In a conductor there are two degrees of freedom,
electric and magnetic, giving a thermal energy of kT. The
average power the conductor transfers to an ideal infinite
transmission line is kTdf per freguency interval. The
voltage is given .by

d<v?> = 4kTRA4f
where R is the resistance of the conductor. This results
in (1) the power is independent of the resistance provided
matching is obtained, and, (2) the (ideal) system is freg-
uency independent. In practice real systems have some
frequency dependence, hence the total noise power can be
found by integration. The formula

d<v?> =4kTR4f
is called Nyquist's formula [H. Nyquist, 1928].

The link between these two ideas - the noise mean square
voltage as a temperature function and the gaussian distrib-
ution - was provided by Einstein [1905] who discovered the
theory of Brownian motion. From the general case of Brownj
ian motion which includes eléctric charge fluctuations comes
the concept of a random varying voltage, v, having a prob-

ability density function



p(vl =

> exp (~v?/5 2]
where o? is the mean square voltage having the property

do? = 4kTRAf
1.1.2, Band Limited White Noise.

Since noises do not behave ideally in the sense of having
an infinite spectum, the simple case outlined above cannot be
used indiscriminately. Although many noises are white well
into the microwave region and beyond, a limit is imposed by
quantum effects. Before the quantum region is reached circuit
impedences become significant. Because of this, the band-lim-
ited cases are most often encountered.

If a noise is confined to a passband then the voltage
fluctﬁations lose some of their randomness. In the unlimited
case the voltage at any time was considered to be completely
independent of the voltage at any other time. If it is physic-~
ally possible for the voltage to fluctuate very rapidly, then
this ideal independence is approached. To achieve this, a very
wide bandwidth will be required. On the other hand, if the
bandwidth is narrow the voltage must fluctuate at a glower rate.
This means the voltage: at any time depends to some extent upon
the voltage at an earlier thme. Only for much earlier times
will the voltage again be independent. This dependence of the
voltage on the time interval is called autocorrelation, and it
is expressed mathematically in the autocorrelation function.

The autocorrelation function measures the independence

of a random variable upon itself at an earlier time. It is a



function of time interval.

ation functions are given in Fig. 2.
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autocorrelation function in noise work lies in the Weiner-

-Kinchine theorem which relates the autocorrelation function
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to the power spectrum as a Fourier cosine transform pair.
Essentially, this means thét the power spectrum may be

found from the autocorrelation function, and vice versa,
just as the voltage spectrum of a regular waveform may be
found from the waveform profile. The spectra for several
autocorrelation functions are tabled in Fig. 3. Note par-
ticularly the inverse property of the autocorrelation fun-
ction - power spectrum pair: ‘fhe 1bnger the autocorrelation
time, the lower the high frequency cutoff. For a zero auto-
correlation time the spectrum is infinite; this is just the
ideal white noise case first described.

1.1.3. Narrowband Noise and its Fluctuating Envelope.

It is practically important to consider the particular
narrowband noise case. Narrowbands occur often, particul-
arly in radio receivers and RIFI meters, making the results
obtained useful in later chapters.

The mathematical solution to the narrowband ﬁoise case
is given by S. O. Rice [1945] who considered white noise
being tuned by a narrowband filter.. The output of such a
filter may be thought of as having a sinusoidal component
with thé frequency of the filter midband,‘and modulated by
an irregularly fluctuating amplitudé. The rapidity if the
fluctuations is determined by the filter bandwidth.

Several important statistics may be calculates from
- the noise at the output of a narrowband filter. One imp-

ortant result is the probability density function of the
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envelope current:

R -R?
p(R) = s—exp (5—)
1Po 21Po

The envelope is not gaussian, but follows a Rayleigh dist-

ribution. The quantity wo is the mean square current, and

for the rectangular passband,

¥, = W, (BW)

where Wo is the spectral density within the band and BW is
the bandwidth. |

Rice has also given the distribution for the number
of maxima of the envelope as well as the energy fluctuation
for various time constants of smoothing filters in his clas-
sic paper [Riée, 1945]. A couple of interesting figures

are expected number of maxima for the ideal bandpass filter
N = 0,641 (BW)

and for the gaussian-shaped bandpass filter

N = 1,006 (BW)

The effect of the shape of the bandpass filter on noise

will be discussed more fully in later chapters.

1.2, Impulsive Noise
l.2.1, Definitions.
Random noise is one extreme type of interference while
periodic pulses and impulses are another. The pulses des-

cribed here are regular periodic with a constant amplitude.
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Since both pulses and impulses are described, it is import-
ant to distinguish between them.

A pulse is a burst of current, with or without a dicernable

fine structure, having a finite duration. An impulse is a

pulse whose duration is too short to be measured.

Several important consequences of this definition are:

1) The pulse is described by at least two independent
parameters - current and time. 1In addition, fine structure
parameters such as envelope shape and carrier frequency may
be given,

2) The impulse is a subjective concept. It is used
to Imply a near-zero duration with respect to the relax-
ation time of the observer (instrument).

3) Since the impulse does not have a known lifetime

it must be described by one less parameter than the pulse.
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The minimum number of parameters needed to describe a pulse
is two, therefore only one parameter is used to describe
the impulse.

4) Since the impulse duration is too brief to measure
the current will not be present long enough to measure.
The only physical quantity accessable to measurement is

the charge, i.e. the current mulﬁiplied by the time.

In order to measure the charge of an impulse, é nar-
rowband meter - a RIFI meter - is often used. This leads
to the use of a voltage-type unit in the following way.

If an impulse is passed through a resistor, then the

voltage across this resistor is given by Ohm's law
VT

R
where 1 is the lifetime of the pulse. Since R is constant,
the impulse may be given by
S =Vt = QR

which may be defined as the impulse parameter, S. The im-

pulse may be found from the impulse parameter by

_ S
Q2 =r

once S and R are known, Note that the unit of the impulse
is the ampere-second (or coulomb) and the unit of the im-
pulse parameter is the volt-second,

The impulse parameter S should not be confused with

the spectral intensity of the impulse which will be described
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later, Although a simple relationship exists between the
impulse parameter and its spectral intensity, the relation
does not hold for pulses in general - each pulse waveform
has a different spectrum.

With these definitions in mind, the balance of this
chapter will treat the general pulse and then the impulse

as a special case.

1.2.2. Pulse Trains.

A pulse train consists of an infinite number of pulses,
each following the other by the same time, T. In practice
pulses are not produced indefinitely but are started and
stopped at particular times. However, if they occur con-
tinuously during the measurement time, then they may be
considered as infinite in number.

Before a pulse train is described, the ideal case of
a single pulse will be described. The single pulse, al-
though real, is not a physical guantity. This is because
any measurement made of a single pulse cannot be confirmed
by another independent measurement. To do so would require
a second pulse exactly the same as the first, but at a later
time. This is a pulse group however, having a period bet-
ween them. However for most purposes, a pulse behaves as
a single pulse if the period T is much greater than the
measuring instrument relaxation time; this ensures that

successive pulses do not interfere with each other (Fig. 5).
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FIGURE 5. Effect of relaxation time on pulse train obser-

vations.

rectangular ll \\\\\
—_— .,\._v.> t TN \f

\/ e P
triangular /m N\\\\
gaussian
o t ' >f

FIGURE 6. Spectra of various single pulses.
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It is the voltage profile of a pulse that determines the
unique spectrum of the pulse. The spectral intensity is
the variable, and it has units of volts per hertz. The
spectra for several waveforms are shown in Fig. 6. These
spectra are the Fourier cosine transforms of the profiles.
Note that they are continuous rather than discrete like
the corresponding Fourier series of the infinite pulse trains.

The infinite pulse train has a pulse repetition freg-
uency, PRF = fp = 1/T. It is composed of harmonics; each
one at some multiple of fp. The envelope of the spectrum
is, however, independent of fp and is determined by the
size and shape of the individual pulse. Several examples
illustrating this dependence are shown in Fig. 7.

The relationship between pulse width and spectrum is
important to an understanding of the impulsive case. For
an impulse the pulse width is very small, hence the spec~-
trum is very broad. Considering impulses as having almost
zero width, they may be seen tb have a spectrum practically
flat. Por the single impulse, this is a constant value
throughout the entire spectrum observable‘by the instrument
concerned. For an impulse train, this would be a spectral
line each fp throughout the band; each line having equal
intensity. The height of each line is 2fpS. The quantity

v2Ss

has historically been taken as the spectral intensity of
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the impulse, and is called the RMS SPectral intensity.
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1.2.3. Random Occﬁring Pulses.

Although the general case of randbm occuring pulses
~has been solved, [Lawson and Uhlenbeck, 1950], it is much
simpler to consider only thé case where the pulses do not
overlap. This is a valid assumption where the pulse width
is much less than the average interval between pulses. If
the pulse width is veryshort, the impulsive case may be

found.

Consider a current pulse

i? % , for 0 < t < 1
0

, otherwise.

By applying Campbell's theorem, the average current is

ij i'(t)dt
0 .

N(%)r

<i>

"

= Ne = I

whose mean square fluctuation is

. 00
<§i?> = Nj‘ i'?2(¢)dat
0

e, 2
= N(T)_r
2
= Ne” _ Ie
T T

where N is the average rate or pulse repitition frequency. .

The autocorrelation function is
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#

p(e) = nJirmir(r+erar
0
=N J; (?) art

il

I
Ea-5 ,foroct<n
Y(t) = 0, for t:>"7t
The spectral density is found by applying the Weiner-Kinchine

theorem:

W(£)

.4J\ (t)cos(2wft)dt
0 ‘

T

4£gJ\(l - %)cos(wat)dt
T0 .
' sinwfg, 2

= 2Je (—-—Ff—)

= 2Ie*sinc?ft
For the impulsive case, sinc?ft = 1, and the result is the
Schottky formula
W(f) = 2Ie
which describes the shot effect. _

It should be noted that the Weiner-Kinchine theorum
gives the spectral density for randém processes, while the
Fourier transform of the square of the function profile
gives the spectral density for regular functions. The spec-‘
tral density should not be confused with the spectral int-

ensity which is found by the Fourier transform of the pro-

file itself,
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Random occuring pulses arise in other ways than by
" the shot effect., For example, if white noise is strongly
clipped, then the result is a rectangular waveform whise
length varies according to an exponential law. The correl-

lation funétion and spectral density are [Rice, 1945]

Y(t) = alexp(-ult])
_ . 2a* .
W(E) = e

The strongly clipped narrowband case is more complex, and

is treated by Lawson and Uhlenbeck [1950].
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CHAPTER TWO

NOISE RECEPTION

2.1. Noise in AM Receivers.
2.1.1. Linear and'Square Law Detection.
The output of random noise from a narrowband filtér
was given in chapter 1 as the Rayleigh distribﬁtion

2
PAR)dR = %ﬁxp(- gﬁldR

where R is the amplitude of the envelope. In the case of
an AM receiver, the tuner may be considered as a narrow-
band filter followed by a detector. The output of the nar-
rowband filter is first considered as noise only, and later
as signal with noise.

The probability density function of the envelope is
given above. This gives the density function of the det-
ected noise. 1In addition, Rice [1945] géve the probability
density function of the maxima as

1.13<y2-1)exp(_x;)

np———

le]
where y = R//mo. From the Rayleigh distribution may be

found the average

R = /$§ﬂ72
and the mean square

o

of the envelope.
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If a signal (CW) is being received, then the distrib-
ution changes. The envelope probability density then dep-

ends on the signal-to-noise ratio

P2 _ ave. sine wave power

x = .
7$6 Ave. noise power

In this case, the envelope probability density is

R R2+p?2 RP
ngP[ s ]Io [K]

Here; R is the envelope composed of signal and noise, P is
the peak sine wave voltage, and Io is a bessel function

of the second kind. A graph of the envelope probability
density is shown in Fig. 8. For x = 0 the Rayleigh dist-
ribution is obtained, as expected, since this is the noise-
-only case. For large x, the distribution becomes gaussian

with mean P//wo and variance wo. The distribution for

large x is approximately .
. -p) 2
! expl- -(-52%;—)-—]

Jﬁﬂwo | ©

It should be noted that the mean square envelope now becomes
oegl
‘R P* o+ 2y

With these distributions the action of various kinds of

detectors may be evaluated,
The first detector considered here is the square law
or quadratic detector, Let the detector be described by

I = av?



22,
0.75

0.50

P (R)

0.25

FIGURE 8.

~

PRE————

0.0
‘ 8

and the input to the detector by

| V = VN + Pcosaxipt)
where VN is the noise and Pcos(pt) is the signal. The en-
vélope will be given by

R = Vi + P?

If V i substituted'info the rectifier equation, and If

the expression for R together with its distridbution are

.used, then the current may be found IRice, 19451, The éurxent
is composed of two parts: a DC component and an (LFIAC come

ponent, These are

P2,
Ipc = alby + =3l

Bp = 82¢°(¢° + P?)
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The total mean square current is

— 2= N
2 . 8'p2 . ;2 2 P
I 7 R | a (zwO + 2P wo f 7 )
The linear detector may be solved in much the same
manner. The equation of the ideal linear rectifier is
I =0, whenever V < 0

= aV, whenever V > o

from which the DC and LF components may be found:

- 7.
Ipe = %R = a/f% e x/z[(l+x)10(§5 + xll(g)]
_a? T, .
Irp = 2% (2 - 3

m

'

The total mean square current is

- (@)% =@
I? = (R'R® =(R2(P* + 2y)

2.1.2. Minimum Detectable AM.

Before proceeding to the detectability of AM it might
be worthwhile to first consider the spectrum of the detector
outpuﬁ. This may be found from the probability distribution
of the envelope by employing the proper rectifier equation
- linear or quadratic - to find the distribution of the
detector output. From the distribution, the autocorrelation
function may be found, and hence the spectrum by the Weiner-

-Kinchine theorem, A solution has been obtained for the
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quadratic detector [Lawson and Uhlenbeck, 1950] which con-

tains four terms.

The first term is the direct current term. Thié is
composed o% the square of the mean signal power, the square
of the mean noise power, and a cross term of the average
value of the beats between signal and noise. The second
term is the signal at the modulating frequency and its sec-
ond harmonic. The third term is a continuous spectrum due
to cross—modulation of signai and noise., The fourth term is
caused by beats among the noise components. Lawson and
Uhlenbeck [1950[ gives the equation on p. 158, ahd it is
illustrated and explained.on p. 159 for the rectangular
bandpass case.

The minimum detectable signal is a statistical quan-
tity. Any steady signal may be detected, no matter what
the noise level, if there is sufficient time available.

This is because the noise term tends to be self-cancelling
whenva'long average is taken. Unfortunately, this averaging
or integrating of the detector current will mask the var-
iation of signal during the averaging time. Hence the sig-~
nal can be detected only if it is constant during fhe‘int—
egrating time necessary to sepe¥ate it from the hoiae. ‘
This integrator is usually a rasistance—cépacitance network
placed across the detector output, and having some specified

time constant.
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To define the minimum detectable signal, several

approaches may be taken. One approach by Lawson establishes
a detectability criterion based on either a betting curve.
which expresses the ability of an observer to guess the
presence of absence of a signal pulse, or as a signal-to-
-noise ratio employing signal peak power to bandwidth int-
egrated noise power ratio of the order of unity, but reg-
uiring empirical determination. This second criterion is
called the power critefion, and it is described in Ch., 7
of Lawson and Uhlenbeck [1950]. The results of this approach
includes the specification of the mdnimum detectable mod-
ulation, €nin’ 25 2@ function of x, the ratio of un-
modulated signal power to noise power. Significant in the
results is equations [4] on p.369 [Lawson and Uhlenbeck,
1950] which show

for small signal-to-noise, x, and

(ezmi‘n )AM v 1/x

for large x.

While the above approach may be useful in some cases,
it has its shortcomings. For ingtance, the constant is
empirical, hence it must be measured for each system. Also,

the criteria are not directly applicable to interference
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study in their present form, except in radar perhaps, where
they were first established. Another approach which would
give the signal-to-noise acceptable as a "clean" detector
output is required. This would involve somewhat larger
signal-to-noise ratios; a minimum modulation level and band-
width for a minimum signal strength. This problem will be

discussed after the methods of the reception and measurement

have been developed.

2.1.3. Inpulseé in AM Receiveis.

If impulses are received and tuned by an AM receiver,
the output to thé detector will usually consist of a pulse
train. If the impulses occur randomly, thén the oufput
will be a\noise. On the other hand, if the impulses are
regular then the output will have regular features.

The response Qf a receiver to an impulsé train depends
a great deal on the pulsg repitition frequency, fp. If
fp is low, then there is'a long time between pulses and
each pulse behaves like a single pulse in the detector.
Further, the output will be independgnt of the receiver
tuning. However, if fp is high, then thelpulses will inter- -
fere with each other in the tuner; somef;mes constructively
to produce an enhanced output, sometimes destructively to
produce a reduced output, depending on the receiver tuning

and the bandwidth.
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The effedt'of a high fp on impulse reception can per-
haps best be seen as a Fourier series. An impulse has a
spectrum extending beyond the tuning range of the receiver,
each component having a constant amplitude. The spectrum
is compoéed of a series of discrete lines, each fp apart.
Hence, if the bandwidth of the receiver is less than the fp
then the receiver will display a series of peaks and nulls
as it is tuned across the band. When tuned to a peak, the
output to the detector will be a condgtant sine wave of mid-
band frequency.

On the other hand, if the fp is quite low then it is
easier to view the situation in the time domain. The pulses
are formed by the tuned circuits of the receiver independ-
ently of each other and they may therefore be treated as
single impulses.

The impulse response of a cascade of series~tuned circuits
is given by Sabaroff [1944] who éi#es the peak valus of
the output as
E ® 5G(w2 - wl)/z
where S is the impulse parameter and G is the midband gain.

This ts Sabaroff‘'s equation which may be written as

E = i%g-(ana) SG
where (3DB) = (w,~w,)/2y is the 3 db bandwidth, and

g“ x 3.0
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FIGURE 9. Response of a
cascade of series~tuned

circuits to an impulse,

Sabaroff derived his equatioh by cascading several tuned
circuits and obtained a general expreséion for the output‘
containing both amplitude and phase terms for n tuned cir-
cuits. The equatién was found by first finding the maxi-
mum value of the amplitude and then making the appropriate
symplifyiné assumptions. If it is assumed there are enough

tuned circuits to ensure a gaussian frequency response,

- VZW
E = 157(3DB)SG

then

is exact.

2.2. Noise in FM Receivers.

2.2.1. The Random Noise Spectrum,
When signal-to-noise ratios are high enough, an expr-

ession may be found fairly easily, The main parameters



29.

involved are

f_, the maximum carrier deviation at 100% modulation,

sl
fa’ the accepted output band,

W the mean carrier power,

cl

W the equivalent mean noise power, ZfaW(f),

n’
The solution for S2/N?, where S’= £2/2 is given by almost
any textbook of FM as

Sz_ l,"s8,2, ¢,
=2= 7(5—) (W-)

Bennett [1956] shows the derivation and also gives the case

for smaller S/N ratios. This solution is
L N

where /YdX is the integral over.the power spectrum of the
sine wave plus noise. Graphs of the power spectrum are
given in Fig. 10. Note that the noise increases with freq-
uency for the audio frequencies. For this reason, the broad-
casting industry employs a combination of FM and PM; the
PM taking the form of a 6db per octave pre-emphasis'of the
treble frequencies on transmission. For a more specific
analysis of FM, the reader is recommended to texts.

The other feature to hote from ﬁhe curves of Fig. 10
is the dependence of S/N on carrier intensity. As the
carrier (wc) is increased, the noise decreases. The comb-

ination of these factors make any realistic analysis of FM
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Undoubtedly, the spectrum gives

noise somewhat cumbersome.

the easiest picture to grasp.

Some further analysis may

13 of Lawson and Uhlenbeck [1950].

be found in Ch.

W(f)/ (4m20)

p=0 i

O- 5 ,r.(.,lixl.l.éf@“?_mvf RS '
i ;

0.2 — e — e CT I ol

0.1 e e e
_./m ) ) o
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FIGURE 10. Power spectra of sine waye plus

Tafter Bennett, 1956]

A

e

10

W(E)/ (4720)
©
]

0.0~ - - oo

0 0.5 1.0
f/0

noise as given by S.0. Rice,
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Impulses in FM Receivers.

The case of impulses in FM receivers is essentially
the same as random noise. When a carriér is present quiet-
ing occurs, but in the absence of a carrier, the audio
output is determined by the limiter action only, It is
the combination of limiting and detection - each being a
non-linear process - that makes analytic solutions diffi-

cult in the FM case. Some work has been done in this dir-

ection as cited earlier [Lawson and Uhlenbeck, 1950].

2.3 Noise in TV ahd Radar.

2.3.1. Radar.

The AM receiver has already been discussed; radar
and TV are further applicafions of thé general case. The
particular case considered here is the establishment of a
minimum detectable signal,

Consider a radar signal being'received.' The signal
may be a gaussian-, square-, or other shape pulse of RF.
Let f£_ be the pulse repitition frequency and n be the number
of pulses observable in a time, t. Hence

| ' n = fpt
Now, a detector may be considered as an energy-measuring

device having an uncertianty of the order kT where k is

Boltzmann's constant and T is the (noise) temperature.
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This gives a noise power measurement of

N2 = kT (RN)
where (RN) is the bandwidth. If each pulse has energy E,

then the signal power is

82 = % f 1

n
[z}
Hh

providing the bandwidth admits the entiré pulse spectrum.
The signal-to-~noise ratio is then given by

g2 Ef

N2 T kT (RN)
after the IF amplifier. If z is the signal-to-noise ratio

before reception then

gives the detectability criteria for a single pulse. This
gives §2 _ EE
N2 T (RN)
where the signal may be detected with near-certianty.

Solving for the minimum power:

Py = Bf = kTf,

for a single pulse, or

_ kT
Pn = Vap

for n pulses. Recalling n H;fpt, the minimum detectable



pulse train has an average power
5 = kr P
Pm =.kT‘t -

This is Egn. 7~37 of Lawson and Uhlehbeck [1950]. It is
important to note that the formula assumes a sufficient
bandwidth to accept the entire pulse. The dependence on
bandwidth is easy to see; if the band is too narrow then
signal will bevlost, if it is too wide then unnecessary
noise wili be included. It can be shown that the lowest
value of the minimum detectable signal occurs when
(RN)T,= 1

T being the pulse width. A thorough discussion of noise

!
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and radar signals may be found in Lawsom and Uhlenbeck[1950].

2.3.2. Television.

In television as in radar, there is an AM receiver
with a cathode~ray tube display. Television is a differ-
ent application however, so the noise requirements are
also different. For instance, in radar it 1is necessary
to determine whether or not a signal ié present, while
in television the depth of modulation in each small time
interval must also be discerned.

To illustrate the effect of noise on television, two
problems will be discussed. The first problem is the spec-

may
ification of minimum allowable internal receiver noise,
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while the second problem is the measurement of noise ac-
companying a television signal.

The gi;imum allowable internal receiver noisé may be
specified in at least two different ways, One is simply
to state the noise figure [see Appendik] of the receiver;
the other is to specify the maximum signal input required
to produce an acceptable picture. The latter method reqg-
uires careful.measurement of tﬁe effect of noise upon the
picture. By varying the inpﬁt consisting of some common
television test signals to éeveral domestic receivers,
some interesting results may be obtained. These tests
were performed at the Telécommﬁnications Engineering Lab.
of the Dept. of Communications in Ottawa during the summer
of 1970.

One standard signal - the staircase - gives interest-
ing results. If the signal is slowly decreased until the
noise first appears, the noise is seen first in the grey
steps. For very low signal levels, the noise is also seen
in shadow and highlight steps while the grey steps deter-
iorate. From the staircase test can be seen the loss of
contrast and the degradation of the middle tones by grain-
iness.

Another standard signal is the multiburst. This con-
sists of several bursts of tone at different frequencies,
appearing on the raster as vertical bars arranged in groups
of different line densities. As the signal level is dec-

reased, noise begins destroying the resolﬁtion of the signal.



35.

Now, resolution is defined either by the number of discern-
able lines the frame can contain, or by the video band-
width - there being 75 lines per MHz. Using a multiburst
of 4.2 or 3.6 MHz, the noise of the receiver could easily
be specified by stating the maximum signal to give a spec-
ified resolution - 315 or 270 lines.

The second problem - measuring the noise level of a
television sighal on a line - is more difficult. Here,
the standard signal cannot be used; the noise must be dis-
tinguished from an arbitrary television program. One line
of attack is to examine only the blanking and syncronization
portions of the signal. By analyzing an oscilloscope trace
the ndise distribution may be found. Another line of
attack would be through autocorrelation measurement. Noise
would be more random than the video signal, hence the auto-
correlation time would be lower. This approach at first

appears to be hampered by lackrof low cost instrumentation.
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CHAPTER THREE
NOISE MEASUREMENT
3.1. Voltmeters
3.1.1. Average, RMS, and Peak.

Most commercial voltmeters respond. to the average
voltage. They are usually calibrated with sinusoidal volt-
ages to read RMS (sine). Before discussing average and RMS
noise voltages, the sine wave will first be described.

For a sine wave, the voltage at any time, t, is

| v(t) = vosin(wt)
where Yo is the peak, or maximum, voltage. To’find the
average over a time T, the following integral is found:

T
\Y v_sin(wt)dt
<y> = 0 o..

T
e
0

Choosing T to be the first quarter-cycle,

‘ 2
vr = Zy
m™T O

Similarly, the mean squére voltage is found by integrating

over the square:

1 (T |
<v?> = F J~ vésin’(wt)dt
0

Again, choosing T to be the first quarter«cycle,

<vi> = y2/ 2
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hence, the root mean square voltage is

rms(sine) = V&vZs = Yo/VZ

The ratio of these two is sometimes called the form factor,
rms(sine) _ 7
ave (sine) V2

These quantities may also be found for noise voltages.

The average (rectified) noise.voltage:iis

l o0
> =3 50 Xp (x)dx

where p(x) is the probability density function. When this
integral is evaluated for gaussian noise, the average nojse

voltage is seen to be

<V>=_/g%

where ¢ is the standard deviation. Similarly, the mean

square voltage is found,

<vi> = % j~ x2p (x)dx
‘ 0

which when solved for gaussian noise is seen to be
Ay2p = 2 4
This gives the form factor as

- rms (noise) =;JF
ave (noise) 3
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The statistical quantities average and root mean square
are easily found. Other quantities such as the peak may
depend on a conventional definition. Por regular functions
such as the sine wave, it is clearly defined. For state
istical functions such as noise, the only so-rcalled peak
voltage depends on its particular defﬁﬁﬁtion. Usually it
is chosen as some voltage that is exceeded only soﬁe small
fraction of the time, Specifying this quantity then gives
the multiple of o that is defined as the peak voltage,
Whenever "peak voltage" of a noise is asked for, the pec-
uliar definition must be given.

Sometimes however, "peak voltage" refers simply to
the scale reading of a peak~responding (quasi-peak] or
peak-to-peak responding voltmeter., In this case, a calibe~
ration curve must be found, usually empirically. Readers
interested in peak responding meters are referred to Brod-
erick [1965]. Examples of hoise measurements with various

N N NN .
meter types may be found in Noise Measuxements, REL Report

251(1968) by the present author.

3.1.2, Bandwidths.

Instruments used in noise measuremen#s may be roughly -
divided into two classes: narrowband and broadband. Nar-
rowband instruments include radio noise meters, and they

have bandwidths often much less than the noise; Broadband
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instruments include VTVM's and they have bandwidths that
may or may not exceed the actual noise bandwidth. In either
case, a knowledge if the instrument bandwidth is necessary
to interpet the scale reading.
The'raﬁdom noise bandwidth is defined as the area

under the normalized power response curve, i.e.

P
10
RN = A S V2 (£)af
o]

where Vo is the maximum voltafe response. This gives the
bandwidth of a rectangular passband having the same power
gain. It is important to realize that the power gain is
proportional to the bandwidth but the koltage gain is prop-
ortional to the root bandwidth.

A narrowband instrument such as an QIFI meter reads
voltage per root bandwidth. A wideband instrument such
as a VTVM reads voltage. If the bandwidth of a wideband
instrument is less than the noise bandwidth, then a cor-

rection factonw of

\/ nolse bandwidth
instrument bandwidth

must be multiplied by the instpument voltage reading.
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3.2 RIFI Meters.
3.2.1. Response to Impulses. .

The input to any instrument may be considered as the
sum of many individual impulses just as it may be consid-
ered as .the sum of sines and cosines. This is just another
kind of Fouriér series, but one that uses impulses instead
of sines. For impulse-type noises, this representation
has the advantage of simplicity on@e' the response of the
instrument 8 known.

Impulses have already been described [see Sect. 1.2]
and an idea of their impact upon an ideal AM receiver has
been discussed. The effect of‘an impulse on an instrument
may be analyzed more generally using Fourief transform
techniques.

From the Append;x comes the spectrum and time responses

to an impulse train by a gaussian bandpass:

- 2
F{f) = E%exp[ - Eizzgol—]°111(%)
o

Vit) = ZSfofwexp[—wf;(t-nT)2]cos[2wf$t-nT)]

g0

where fo is the area under the normalized frgquency resp-
onse curve and T = l/fp is the interval between pulses.
From these two expressions may be found the readings of
different dete¢tors - average, rms, and peak - and the

effect of the pulse repitition frequency, f._, and bandwidth,

p



41,
fo’ on the readings.

The first case to be considered is that of a high
pulse repetition frequency, fp. Each sine Fourier comp-
onent may be seperated by funing the instrument since the
lines are f&r apart. Becausé each line is sinusoidal with
peak value ZSfp, it follows that a meter calibrated onvCW
to réad rms sine will read /ESfp.

The second case is of a .low fp. Here.the time view
is taken since each pulse is seperate.. The peak envelope
of the pulse is

ZSfoexp[-wf;tzl
and each pulse is l/fp apart. If the gaussian filter is

followed by a peak detector, then the reading will be
V2S£

If the detector is average responding, then the results

from Sect. 3.1.1. are used to give a reading of

St
& P

The rms value will now be derived. By definition, the

mean square is

+eo ‘
ms = %T j[ [ZSfoexp(-ﬂf;tz)lzdt

2g2
4fpf° S

exp(—2wf;t2)dt
22
4f_t2s

exp (-u?)du

o‘L—)s<:c“3s
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Hence, the rms value is

ms = S//?Tofp‘

3.2.2. Response to Random Noise.

The results §f Section 2.1.1. may be used to determine
the instrument readings of random noise. Again, the inst-
rument is assumed to have a gaussian response and an average-
-fesponding meter .calibrated in rmssine. Both the quad-
ratic and the linear detection cases have been solved.

From the IF amplifier having a gaussian response, the
mean square voltage is 2¢° where wo is the value of the
autocorrelation function at zero time. This value may be
shown to be |

ZWO = WO(RN)

where W_ is the spectral noise density and RN is the ran-
dom noise bandwidth. The noise may be applied to either
a quadratic (I=aV2?) or éhlinear (I=aVv) detector.

If the detector is quadratic, then the mean square

envelope gives the output:

00

' <R?> = JR’p(R)dR = 2%
0

while if the detector is linear, the mean envelope gives
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the output:

| ~ D
<R’ > = jR Rp(R)dR = _?2
0

where p(R) is the Rayleigh probability density function.
In using these results it should be borne in mind that a

meter responding to average, but calibrated in rms sine,

will read

N

of the noise voltage. Hence, for such a meter the linear

detector giVes a reading of

T T T Jm ‘
_m - 7T Y
wz==" o/ e
3

=~y (R

= 0.984/W_(RNY
It has been common practice to simplify the noise voltage
readings by ignoring the 1.6% correction. The actual value
was calculated here to giva a complete view of what is
actually being measured - the noise average voltage on an

RMS sine scale.

The results of Sect. 3.2.,1. and the above are summar-

ized in the table of Fig. 11,
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peak

quadratic

input Iinear

cw 1, p p
Psin(27f t) V2 , 72 vz

impulse

train V28 (IMP) V2S (PRF) V252 (IMP) (PRF)
S, fp<<IMP

random 3

noise undefined LI F(f)/RN Fz(f5°(RN)'
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F(f) |
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FIGURE 11.

and inputs.

RIFI meter readings for various detectars



3DB RN ~ 6DB IMP
1 v _ _ - . .
3DB 1 s = 1.07 V2 = 1.41 T3 1.51
v |2 B2 _ o.03 1 2\\2_.___11‘“2 =1.32 V¥ = 1.414
1 1[7  _ | . A7
6DB —/:2_— = 0,707 .Z-Jm = 0,72 1 IR = 1.07
IMP qzi-—:rl-?- 0,66 2o 0,707 2yiR2 - 0,03 1
L V2

FIGURE 12, Ratios of bandwidths for a gaussian response bandpass curve,

)4
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3.3. Bandwidth and Uncértianty.
3.3.1. Bandwidth. |
Various kinds of bandwidths have been defined and
assumed. These definitions will now be formally made.
The first bandwidth to be considered is fo; the
well-normalized voltagé bandwidth. The gaussian band-

pass was written

- 2
expl- Tizfal
- To
where fc is the centre frequency and fo is the well~
-normalized bandwidth. This bandwidth is also referred

to as the impulsive bandwidth, IMP. Hence, the author

defines the impulsive bandwidth as

oo

1

IMP = a—(?—;T j‘o G(f)df

which is the well-normalized bandwidth. For example,

in the gaussian case

(-]
: _ 2
IMP sg'exp[-“(f £fo) ] = fo
0 o
The second bandwidth of interest is the random
noise bandwidth, RN. This is defined as the welle~norme
alized power bandwidth:
(-]
0

c
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which, in the case of the gaussian bandpass, is

RN = jexm an{Efel’
0 . ‘
Two other bandwidths are now treated, because of

their ease of measurement: the 3 dB and the 6 dB band-
widths. By definition, the 3 dB bandwidth is the frequency
difference between two points where the voltage gain is ,Lﬂfi
of the centre frequency. For the gaussian bandpass, this

is

-wxz

1
t#)
x = 41n2 - (3DB)
Similarly, the 6 dB bandwidth is defined where the voltage

gain is 1/2 of the centre. Again, solving for the gaussian

case,
1 _ _-mx?
758
x =kn2 _ (6DB)
\m (IMPY

where, x has been taken as the bandwidth with respect to 1MP,
The notation (3DB) and (6DB)} are used for the 3 dB and 6 dB
bandwidths, respectively.

The results of this section summarizing the ragios of

various bandwidths are given in FIG, 1l2.

3.3.2. Uncertainf¥ Principle.
Up to now, concepts of time and frequency domains
have been used almost interchangeably to find expressions

of tunar outputs. However, it should be noted that there
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is a basic uncertainty principle underlying any discussion
of filtering. Here, the principle states that the impulses
being observed cannot be simultaneously distinguished and
tuned by the same instrument.

The unceftainty principle means that an impulse train
cannot be resolvéd into individual pulses and individual
frequency.line components at the same time. If the pulses
are well-seperated, the spectrum appears continuous; while
if the bandwidth is narrowed so .as to resolve the frequency
components, the pulses are no longer distinguishable. |

To see how the principle operates, consider a "classical"
model of an impulse train. This can be represented in a
three~dimensional graph of amplitude vs. time and frequency
(see Fig. 13). On sﬁch a graph, a CW sine wave appears as
Fig 13 (a), while a single impulse éppears as Fig 13 (b).
The impulse ﬁrain can look like a set of sine waves from a
fregquency view, or as a set 6f singlé impulses from a time
view (Fig. 13 (c¢)). However, in réality, both views cannot
Be taken together.

As an illustration, consider the gaussian response to
an impulse. Call the impulse bandwidth, £, = IMP = BW, the
bandwidth. The width of the pulse in the time domain at the

same level would be

1
= PW
5
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which is the pulsewidth. Then the product
(BW) (PW) = 1
With this restriction, consider the display of pulses,
each being'seperated. To do this, the pulsewidth must be

less than the period:

\ 1
PW < T, orPW<§ﬁ
But, if (BW) (PW) = 1, then
PW = 1/BW
‘'so that Pw < T bacomes
PW<1%'R‘F
1 . 1
BW ~ PRF
which may be re-written as
PRF < BW

But, if the PRF is less than the BW, the frequency
componénts cannot be seperated.
Similarly, starting with the requirement for frequency
resolution, |
PRF » BW
the result is obtained that
PW > T
which means the pulses cannot be seperated.
The illustration just given does not prove the un-
certainty principle generally. For a general proof, the
mathematical reader is referred to Bendat [1958], wgp 53~5,

where the case of the Fourier-transform pair is treated.
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The radio noise worker should be alert to uncertainty, for
example sampling for brief times will require a corfesponding
wide bandwidth. Such uncertainty, it should be noted, is a
characteristic of the process of observation, but is indepen-
dent of any pafticular observer (ie. a FIM). Another more
fundamental aspect of undertainty is the effect of relaxation
time as receiver noise. If very short times are used, the
bandwidth is wide, hence the receiver noise increases. Re-
ducing receiver noise by using long relaxation times is often
done (radio telescopes, quasi-peak RIFI meters, etc.) but

at the expense of being able to follow a varying signal.
Here, it can be shown that the signal strength and its (time)

rate of change is constant. [Furth, 1950].
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sine wave

FIG.13(a)

AMPLITUDE

yd single
impulse

FIG.13(b)

AMPLITUDE

TIME R

impulse
train

FIG.13(c)

AMPLITUDE

FIGURE 13. Time and frequency views of a tuner. The

'classica1' view.
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APPENDIX A
NOISE FIGURE
The noise figure, F, of a network has been defined as
the ratio of the available signal-to-noise ratio at the signal
generator terminals to the available signal-to-noise ratio
at the output terminals. F is also called the excess noise

ratio. The modern definition gives the temperature-equivalent

formula which is derived below:

F =

H
|
w0}
0
w
213
olw

Recall that power gain G = So/Si, then

_ No
F = &x78
Total noise output is
No = FGKTB

The noise output due to the network only is

N = (F-1)GKTB
The temperature definition.of noise figure depehds upon the
conventional temperature of the generator impedence [Friis,1944].
If T = 290K, then KT = 4x10 2'watts/hertz, and

No
F = &87ax w/Hz

Note that definitions depend on a linear gain, G. Since gains
of receivers arenot linear due to AGC action, care must be

taken in the use and specification of noise figure,
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APPENDIX B.
INSTRUMENT RESPONSE.
Let Gl(t) = amplitude of input at time f
G2 (t-T) = amplitude of éutptut at time t-T after being
excited by a unit impulse

then the instrument response to Gl(t) is given by

+co
G(t) = j Gl('r)Gz(t-'r)d'r

o= OO

If F1 and F2 are the Fourier transforms of G1 and G2 respect~

ively, then

+c0
F1(f) = U[ Gl(t)exp(—Znift)dt

400
Gz(t)exp(PZﬂift)dt

L. .

Fz(t)

and the Fourier transform of G(t) is Fl(f)Fz(fl:

)
Fx(f)Fz(f) = J‘ G(t)exp(-2wift)dt

00

by the convolution theorem. . Hence, the inverse transform is
400
G (t) =f F_(£)F, (£)exp(-2rift)df
- 00
where Fl(f) is the spectrum of the input,

Fz(f) is the spectrum of the instrument

G(t) is the output function of the system.
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1. Sguare spectrum~Random noise.

rwo,f < £ < f
W(f) = ! 2
0, otherwise.
Y(t) = \y W(f)cos(2nft)df

0
f

1
S‘ Wocos(2wft)df

£
2

W .
= fﬁgcsinwazt - sin2mwf,t)

W
L(cosn[f +f Jtisind[f -f 1t}
Tt 2 1 2 1

W (f -f)cosm(f +f Yte+sinc(fi-f )t
-0 2 1 2 1 2 1

Wofocos(wact)San(fot)

2.Gaussian spectrum~Random noise.

_ _ m(f-f.)?
W(f) = Woexp[ -——?TCL

o
+ o

P(t) = Wocos(waét) j. expl- E%;--jcos(ZWft)df
1O

. 242
= beocos(wactIeprowot ]
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3.5quare spectrum~Impulse input,

F (£f) = 25
2

]

F_(f) = F, If-fcl < £ /2

0, otherwise.

-f:oo
\[ EleeXP(Zﬂift)df

- 00

G(t)

fc+fo/2
= .j ZSFoexp(2nift)df
fc+fo/2
£/2
= 2SF0j~ exp(2wift)exp(-2nifct)df
—f°/2

[exp (Tmif t) - exp(-nmif_t)]
mit

7 2SFo exp(-2n1fct)

sin(nf.t)

=?2SFofo S

exp(-2wifct)
F 2SF°fosinc(f°t)¢os(2nfct)

For the impulse train, F1(f) = %III(%) follows from

Gl(t) = STITII(T) where III(x) means the unit function is
repeated each x throughout the domain. Using this replicating
property of IiI(T), the output function for the impulse train
is the convolution

+
‘G(t)*III(E) = I G(t~-nT)

= ZSFofqzsinc[fo(t-nTP]cosIanc(t—nT)]

e
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The spectrum is

SF 1
FF = TOIII(E,-), |£~£,] < £,/2

0, otherwise

+£ /2
= s—;-'e $ © s(£-nf)
. —£5/2 P

where fé = 1/T is the pulse repitition frequency, and § is

the Dirac delta function.

4. Gaussian spectrum-Impulse input.

Fx(f) = 28
_ 2
.Fz(f) = Foexp[— lif_—f-c.)_—]
[0

+
G(t) = kf Fleexp(Zﬂift)dt
(-]

+0
2
\jﬂ ZSFoexp[- E--(-g-:-f-c-)--—]exp(Zﬂift)df

- OO o]

. e 0O
—mf2
ZSFoeXP(-Zvifct)f exp ( it Yexp (2rift)dt
-0

f2
(o]

' —rf242
25F £ jexp (2mif ,t)exp (-1 t )

: @242
ZSFofoexp( TElt )cos (2mf t)

For the impulse train, the output function is found as for the
square response case, by the convolution

G(t)*III(T)
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This may be evaluated directly without integration by

using the replicating property of III(T):

G(£)*ITI(T) = I oG (t-nT)

3 2 [£enT] 2 -
2SF £ I exp(mEl[t-nT]“)cos(2nf [t-nT])

It may be noted that the spectrum is given by

2
FF = —%Epexp[ —iz—iﬂl—]III(%)

o

o +0 _ T(f=fo)? Ve
(28F LT exp[- 02 14Y£-nf )
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APPENDIX C

1og$Coutput)

e e e

log bandwidth
ACTION OF DETECTORS AS A FUNCTION OF THE BANDWIDTH.

log #(output) | vase
13
V2S£ .
peak

i - T8

sYTRN T,
i ; ave
l V2Sf

SR el ‘,_.log . pulse repitition freC[ .

ACTION OF DETECTORS AS A F'UNCTION OF THE PRF.
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