





ABSTRACT

The amplification of microwave signals is corrupted by nonlinearities
present in typical high power amplifiers (HPA). Undesired intermodulation
products and significant AM-to-AM and AM-to-PM conversion may result.

A relatively simple remedy to this problem is the intentional predistortion

of the input signal prior to amplification by the nonlinear HPA.

In this report, a 900 MHz, RF predistorter 1s outlined and its
performance in an adaptive system is presented. An overview of nonlinear
analysis methods suitable for modelling general nonlinear and predistortion

processes is also included.
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CHAPTER 1

AN OVERVIEW OF NONLINEAR SYSTEMS

1.1 Introduction o

All amplifiers have inherent nonlinearities which limit their
usefulness and range of applications. For example, in microwave HPAs,*
the input power level must be kept below a certain level to ensure operation
in a region of sufficiently linear amplification. Ignoring this requirement

leads to the generation of significant intermodulation products caused

by amplitude and phase nonlinearities.

Alternatives to power back off exist, however, and some of the more

popular methods of linearization will be outlined in a subsequent chapter.

A brief classification of types of nonlinear systems, and .the

effects they produce, 1s given below,

*
High power amplifiers.




1.2 Classification of Nonlinear Systems

Nonlinear systems can be classified as belonging to one of three
types [1]:

(a) Nonlinear systems without memory,

(b) Nonlinear systems effectively without memory,

(c) Nonlinear systems with memory.
Each type of system produces distinct nonlinear effects. These three types
of systems and their effects are characterized in the following subsections.

\]

1.2.1 Nonlinear systems without memory

Systems belonging to this category have the following three

characteristics:
(1) The output instantaneously responds to the input.
(2) The system does not have a frequency respomse.

(3) There are no phase nonlinearities.

Nonlinearities without memory are sometimes called resistive
nonlinearities. Indeed, a nonlinear circuit without energy storage

elements cannot possess memory.

A mathematical description of members of this category follows.
If

VN T A cos (wt+e) ¢D)

then the bandpass (narrowband) component at the output would be



v = G(A) cos (wt+d) 2)

ouT

where G(A) represents the AM-to-AM conversion coefficient @n envelope-
dependent gain quantity). It should be understood that in general, an

infinite number of harmonic products will also result.

A necessary requirement for inclusion in the memoryless category is
that G(A) should not depend upon frequency. Consequently a single

AM-to-AM coefficient holds for any frequency present at the system input.

The effects of memoryless nonlinearities are:

(1) Nonlinear amplitude distortion, i.e., AM~to-AM conversion.

(2) The generation of frequencies not associated with the input,
i.e., harmonics and intermodulation products.

(3) A possible shift in the system's DC operating point for even-

order nonlinearities.

Example of this type of nonlinearity are the piecewise-linear

limiter and the comparator, as shown in Figure 1.1.

An appropriate representation for such characteristics is the
relatively simple classical power (Taylor) series; for this reason,
memoryless nonlinearities are often used in nonlinear modelling. It should
be understood that no real system can ever be truly without memory

because of the always-present reactive elements.
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>
VIN
Figure 1.la. Piecewise Linear Limiter.
VouT
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#"VIN

Figure 1.1b. Comparator.




1.2.2 Nonlinear systems effectively without memory

The additional requirement for membership in this category 1s
that the nonlinear phase and amplitude transfer functions do not have a
measurable frequency response due to either (or both) of the following
causes:
(a) The input signals are restricted to a narrow band over which
no significant frequency response is observed.
(b) The nonlinear transfer functions simply do not depend on
frequency.
An important implication of this system requirement is that phase non-
linearities can be present, but no frequency response is allowed. Such
a system therefore represents a cross between the memoryless system,

and a full-memory nonlinear system.

Members of thls category have the following mathematical descriptiom.

If

Vi = A cos (ut+9) (3)

then the bandpass component of the output would be

v
OUTBP

= G(A) cos (wt++F(A)) (4)

where G(A) represents the AM-to-AM coefficient and F(A) represents the
envelope-dependent phase or AM-to-PM coefficient. It must be emphasized
that G(A) and F(A) are respectively due to the amplitude and phase voltage
nonlinearities. These systems can therefore only be used for narrowband

inputs/outputs centered around the input passband.



The "effectively without memory" type of nonlinearity is
popular for the analysis of microwave HPAs because of the inclusion
of a description for AM-to-PM conversion. Modelling of these systems
is more complex than for memoryless systems, Volterra series representations
often being used. Conventional power series analysis may be employed if
the complex amplitude and phase nonlinearities are represented by the

"in-phase/quadrature”" method [2], [3]. For example, an output voltage

VOUTBP = G(A) cos (wt+8+F(A)) ' (5

can be resolved into quadrature components P(A), Q(A) where

P(A)

G(A) cos (F(A)) . (6)

Q(A) = G(A) sin (F(a)) , (7)

see Figure 1.2, Therefore

Vour.. = P(A) cos (wttd) - Q(A) sin (wt+d), (8)

BP
see Figure 1.3. The resultant output power spectrum is found by addition
of the individual spectra for each of the two signal paths, since they
are linearly independent for narrow band systems (see Appendix 1 for a

definition of "linear independence', and its relevance to this situation).

This type of nonlinearity is frequently used for modelling TWT
amplifiers because they are normally operated over a bandwidth small

compared with their inherent broadband capabilities.



- sin wt

G(A)

F(a)

> cos wt

Figure 1.2. "In-phase/quadrature" representation.




IN

— = P(A)

90° P Q(a)

Figure 1.3.

"In-phase/quadrature" representation.

ouT

BP




1.2.3 Nonlinear systems with memory

This last category is the most general. It includes the previous
two categories as special cases. All of the nonlinear effects of the
previous two categories are still present, but the additional property
of a frequency dependence in the AM~to-AM and AM-to-PM coefficients

may be observed.

Mathematicaliy, members of this category can be defined in the

following way. If

v... = A cos (wt+8) 9

IN

then the bandpass component at the output would be

VOUTBP = G(A,w) cos (wt+B+F(A,w)) . (10)

Proper modelling requires that attention be paid to the frequency
characteristics of the nonlinearities. The Volterra series is an appropriate
representation [4], although frequency dependent "in-phase/quadrature"

models have been proposed [5].

Potential applications for nonlinear models incorporating memory
include broadband amplifiers, where the input signal is spread over a
wide frequency range, and narrowband amplifiers. This would include all

present TWT and solid-state amplifiers.
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1.3 Analysis Methods for Nonlinearities

1.3.1 Introduction

Mathematical analyses of nonlinear systems tend to be complicated,
mainly because of the infinite number of possible frequency combinations
produced at the output. Certain analysis methods tend to dominate the

majority of modelling efforts; some of them will be presented here.

1.3.2 C(Classical power series

The power series representation of nonlinear functions involves the
determination of the Taylor series coefficients expanded about the

point of operation, for example

Vo= I a VIN (11)

The power series approach is useful for modelling of weak, memoryless
nonlinearities. Convergence problems may prevail for more severe types

of nonlinearities.

An important characteristic of the power series representation is
that a given term of the series produces frequency products of order no
higher than the power of that term. Thus for a sinusoidal input of
f¥equency fIN’ a model including terms up to the seventh order would
produce harmonic frequencies no greater than 7 fIN' This most easily

demonstrated with the help of the Chebyshev transform [6]. Modelling of

high-order intermodulation or harmonic components, therefore requires
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one to increase the number of terms present in the series representation.
This represents a serious limitation to the modelling of general

nonlinearities.

1.3.3 Fourier methods

Fourier methods involve fitting a Fourier series to the transfer

characteristic. For example, for
v, = f(vIN) (12)

the Fourier approximation might be synthesized as shown in Figure 1.4.

It is important to clarify the proper use of the Fourier series.
One must not think in terms of harmonic analysis of time domain waveforms,
rather the concept is similar to the power series approach where the goal

is an analytic description of the input-output relationship.

George, Kaye and Eric [3] proposed a periodic extension to the
transfer curve to aid in convergence of the fitted series:
© (22-1)7 v

v = I b, sin |
o o=1 L R

LN, . (13)

<

N

R
P T 25 ViN

This is shown in Figure 1.5. The bz coefficients are usually determined
numerically, using either a discrete Fourier series algorithm or a least-

squares curve-fitting procedure.

Assuming that the Fourier series converges, then since the sine

functions can be expressed as powers of their arguments, (here the input
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< $ViN
Figure 1.4. Fourier series representation.
Yoyt
- T
~
\\
-R -R/2 \
‘ \ ? { ’ vIN
N R/2 R
\
N\
~

Figure 1.5. Periodic extension of Fourier representation.
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voltage), then the Taylor expansion can be deduced from the Fourier
series. Thus since

(20-D71 v

. . . IN,, _R R
v, = T bz sin [ 0 13 2 VN ST (14)
=1
and
© K x2K+l
sinx = ¢ (-1) ——— (15)
Koo (ZK+1) 1
then ’
(28-1)7 VIN (2k+1)
I b oz )K[ - (16)
v = I L (-1 . 16
R (ZK+D)1

Note that the resultant power series involves an infinite number of
terms. It does not terminate at a given order; this fact is independent
of the number of sinusoids involved in the Fourier series. (A practical
Fourier series representation requires truncation after a finite number
of terms). Hence Fourier methods appear to be more useful for the
prediction of high-order products than are the conventional power series

approaches.

1.3.4 Chebyshev transform methods

The Chebyshev transform is a mathematical operation used to predict
fundamental and harmonic components generated by an arbitrary nonlinear,
memoryless amplitude characteristic. Mathematically, it is equivalent
to the determination of the time-domain output waveform for a single
sinusoidal input. The output waveform is then harmonically analysed by

a Fourler series, and the envelope level of each fundamental and harmonic
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component tabulated. The Fourier series employed for this operation is
one which relates the time domain to the frequency domain, as opposed
to the series described in the previous section which relates input
levels to output levels., An analytic description of the transfer
characteristic and the use of the Chebyshev transform is sufficient for

modelling memoryless amplitude-dependent nonlinearities with a single
input sinusoid.
Thus for a transfer function described by a power series

. vIN“, n odd, 17)

where

ViN = A cos (wt+9) (18)
one obtains using Transform T5 of Blachman [6] (see Appendix 2)

) n

v (&) pommnmar = E 28 (% (n-m)) (%)n cos (wt+8) . (19)
n=1
m=1

Note that only odd powers are employed for the Taylor series, since

only odd power coefficients contribute to the fundamental output. This
follows directly from the indicated Chebyshev transform. Any desired
harmonic output could just as easily have been obtained from the series
representation simply by substituting for m the required harmoﬁic number;
m < n, m odd. The Chebyshev transform approach also emphasizes the fact
an nth—order power cannot produce harmonic terms of frequency greater

than n times the input, although it will produce lower—order harmonics.
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For the Fourier method representation, T7 of Blachman can be
used [6], see Appendix 2. Thus, for the Fourier representation as

per equation (13)

© © 1/(2(M-1)) (28-D Vin
v (A) = T T (1) b, 2J_ [ ] cos m (wt+d)
° 2=1 m=1 bom R
(20)
where Jm(u) is the Bessel function of the first kind of order m.
Selecting m=1 yields the fundamental output
. © (-1 v
VO(A)FUNDAMENTAL = 221 2b£ J1 [ = ] cos (wt+8) . (21)

An interesting application of the Chebyshev transform method is
the analysis of the effect of amplitude nonlinearities on phase modulated
signals. One can readily see from either equations (19) or (21) that
for a simple amplitude nonlinearity, the bandpass output phase-modulated
signal is undistorted, the amplitude level conveying no information.
This is the basis of the commonly accepted notion that class C (highly
nonlinear) amplifiers can be employed fof successful power amplification
of angle-modulated signals with no resultant distortion. Unfortunately,
this concept is not entirely realistic for two reasons/ First, if a
multi-carrier FM system is to be employed over an octave bandwidth
(or greater), second harmonics will fall in band. This effect would not
be troublesome at microwave frequencies, on account of the usually small
fractional bandwidths, but could be a problem in lower frequency applications.

Second, and more important, no real nonlinear system is memoryless and
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consequently phase distortion will occur, resulting in potentially severe
distortion of the angle modulation and a corresponding loss of information.
For a single carrier input, the net effect to the FM user would be a
distorted demodulated output (d.e. the effects of AM-to~PM conversion
would be present in the output signal). For multi-carrier systems,
however, severe in-band intermodulation may result, filling the passband

with noise and obviating the usefulness of the communication channel.

1.3.5 A mathematical description of phase nonlinearities and

resultant AM-to-PM conversion: nonlinear envelope modelling

Having introduced a discussion of phase nonlinearities, a more
detailed analysis in now in order. This exercise will show the effect

of phase nonlinearities and the degree of complexity involved in their

analysis.
Consider a system which is nonlinear only in phase. Thus for
= w t
Vi = A cos u (22)
we describe the output as
(23)

v, = A(cos [wot + ¢(VIN)])

where the phase nonlinearity of the input voltage is described by the

Taylor series

o (vpy) = o a) Viy . (24)

o e

- - e e, —
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| The mathematical analysis is complicated for the general case.
However, insight may be obtained by truncating the phase nonlinearity

: after a single quadratic term, thus

2

¢(VIN) =a, Vig o (25)
? so that
%
_ 2
v, = A cos(wot + a, (A cos wot) ) (26)

The trigonometric identity

~w ma— o~

cos(A+B) = cos A cos B - sin A sin B (27)
i then gives
[ v_ = A(cos w t cos (a A2 c032 wt) - sin w t sin (a A2 cos2 wt)).
i 0 o 2 o o 2 o
{ (28)

! Using the trigonometric relationships
|
{
i

2

c032 8 = 1 +2cos © , (29)
: sin (A+B) = sin A cos B - cos A sin B (30)
ji
; and equation (28), one obtains
t a a® a, A’
1 v = A(cos w t[cos( ) cos(( ) cos 2 W t)
| o) o] ) 2 ) 2 o]
; azA a2A
| -
| sin ( 0 ) sin (( 5 ) cos 2 wot)]
; azA2 a2A2
. - sin wot [sin ( 5 ) cos (¢ 3 ) cos 2 wot)
, azA2 aZA2
\ - cos ( 2 ) sin (( > ) cos 2 wot)]) . (31)

-l-.II-_..____.___._._______;_____________________________________ﬁAAAA,?,
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Finally, use of the sine-Bessel relationships

cos (u cos x) = J_(u) +2 I -n" Jyn (@) cos [2nx] (32)
n=1
. _ ® n+l
sin (u cos x) = 2 nil (-1) Jon-1" cos [(2n-1)%] (33)
yields the result
a2A2 a2A2 @ n azAz
_ -t g n W
v, A(cos wot {cos ( 5 )[Jo( 5 ) + 2 nil (-1) 7n ( 5 ) cos {4 ot}]
a A2 o n+l a2A2
- sin (%) [2 il (-1) 3y 1 (—5—) cos {(2n-1) 2 w t}]}
2
a2A2 a2A2 ® u a,A
- sin wot {Sin ( > ) [Jo( 2 ) + 2 nil (_l) J2n ( I ) cOos {4n wot}]
2 2
a. A © a, A
_ 2 n+l 2 - w
cos ( - ) [2 il (-1) J2n—l ( 5 ) cos {(2n-1) 2 ot}]})
(34)

Note that the single quadratic phase-voltage relationship has produced

every order harmonic of the input. The same quadratic relationship

multiple FM signals would result in severe intermodulation distortio

Continuing the derivation by extracting the bandpass components

centered about the input frequency yields

a2A2 azA2 . (a2A2) ; (azAz)

VOBP = A{cos “bt {cos ( 5 ) Jo ( > ) - sin > 1 5 }
a A% a.a? a A2 a Al

- sin Wt {sin (5) I (30 - cos () 3 oM

for

n.

(35)
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hence the bandpass output phase is given by

; (azA2 S (a2A2 (azAz azA2
¢0UT = arctan = Z ) ° Z ) =2 2 ) Jl ( Z )
BP a2A2 32A2 a2A2 a2A2
cos(——) J, () = sin (5=) J; ) (36)
whete ¢0UTBP refers to the resultant phase shift obtained from the

bandpass output of equation (23). This is commonly referred to as the
AM-to-PM coefficient. Note that the coefficient is envelope-dependent,
although the original quadratic phase nonlinearity responds to instantaneous
input voltages. It is analogous to the Chebyshev traznsform relationship

for memoryless nonlinearities where the bandpass resultant amplitude

varies with input enevelop level, although caused by instantaneous

voltage nonlinearities.

To summarize, nonlinear results presented to the system user may
appear to be envelope-dependent, and one may choose to model the
nonlinearity according to the AM~to-AM and AM-to-PM coefficients.
However, this is not in general correct, except for the case of single-
carrier (or at the most narrowband) inputs restricted to the frequency
range within which the AM~to-AM and AM-to-PM ccoefficients apply. The
effect of memory is to enable the nonlinear envelope coefficients to
change with frequency, as well as with envelope level. This places a
more fundamental limitation on the applicability of the "in-phase

/quadrature' modelling method. Not only is the bandwidth restricted
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according to the "linearly independent" restriction previously discussed,
but the AM-to-AM and AM-to-PM coefficients can be expected to vary

considerably over a wide bandwidth.

A demonstration of the error incurred by modelling nonlinearities
in terms of their envelope coefficients will now be presented. Consider

a memoryless cubic nonlinearity
v =V (37)
where

VIN = A sin ot . (38>

Using simple trigonometry or the Chebyshev transform, the output is found

to be

v_= IZ—' (3 sin ot + sin3 wt) . (39)

=3
v, =7A (40)

and an attempt might be made to use this model for prediction of the

third harmonic level, giving the output

% (A sin ot)° - (41)

<
U

or

3 3
o —1—6'A (3 sin wt + sin 3 wt) | (42)

<
i
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which is an incorrect result. The correct approach is to apply the
inverse Chebyshev transform, [6], to the observed %-AB relationship
for the fundamental, obtaining the correct nonlinear characteristic

of equation (37), as required for further modelling.

A similar result for an observed AM-to-PM coefficient could be

obtained by adjusting the a, coefficient in equation (36) for best fit

2
for the predicted AM-to-PM relationship.

To summarize, nonlinearities are caused by instantaneous voltage
relationships, not envelope levels. Prediction of narrowband
nonlinearities can be obtained by simply using the measured nonlinear
coefficients. Wideband prediction requires one to obtain the voltage

relationships by a mathematical inversion process.

1.3.6 Power series with frequency response

|
|
This representation includes the effect of a system frequency |
response, while maintaining memoryless conditions through isolation of
the nonlinearity from the input and output filters [4]. That is, the
three cascaded networks of Figure 1.6 are assumed to be non-interacting.
It is assumed that x(t) consists of Q different cosine signals:
Q
x(t) = £ |E | cos (w t+86). (43)
q=1 q q q

Analysis is simplified by the use of complex representation, thus:

*
= |E ; E =E 3 = b4
E, I ql exp(jeq) g = Eq 3 u_g = g (44)



x(t)

H(w)

w(t)

n
Z aw
n

n=1

z(t)

K(w)

y(t)

Figure 1.6.

Power series with frequency response system block.
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so that (43) becomes

Q
x(t) =L 5 [E exp (Ju t) + E exp (-ju_t)]
q=1 q q q q
or
L Q
x(t) == I E exp (Jw t)
=-q ¢ 1

which represents a real input signal. If the response of the first

filter is represented by

]

Hw) = |Hw)| exp [Jy@w)]

then

w(t)

N Mo

%’ E H(wq) exp [jwqt]

g=—Q ¢
where w(t) is taken to be real so that

*
H(w) = H (w) ’

This prefiltered waveform, w(t), can now be input to the memoryless

nonlinearity:

N
2() = I a W (t)
n=1

where
Q
wi(e) = [%- T E H(w.) exp (Jw £)1®
q=-Q q q

(45)

(46)

(47)

(48)

(49)

(50)

(51)
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th
A useful concept for nonlinear analysis is to change an n -power
relationship into an n-fold product, indexing each term in the
multiplication to distinguish individual terms. In this way we can

write

.0

E H(w ) exp (jwat)]...

Wt = [E
T 24=q U109

9

-[%' E H(wq ) exp (jqut)] .

-Q 94 n

Interchanging the order of summation and multiplication yields

Q Q

wi(t) = l; I ... I Eq ces Eq H(wq ) B H(wq )
2" q;=-Q q=-Q "1 n 1 n
vexp {jw + ... +w_ ) t} .
1 qn
Therefore
) : L y : H@ ) ... H@_ )
z(t) = L — a z z E ves E w vee w

. exp {j(wq + ...+ wy ) t}
1 n

(52)

(53)

(54)

The final output, y(t), is simply the response of the post-filter to z(t).

Since

K@) = |K@)| exp (GIpw)])

then

(55)
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) N Q Qe
y t = z z LY Z _Il E E H
n=1 q.=-Q qn=_Q Zn ql see o H(wa) oo (qu)

Klw + ..o4+w ) .exp [ + .. +w ) t] ,
9 94 q1 9
(56)

The filtered memoryless system described is ideal for band-limited
representation of nonlinearities, e.g. using the "in-phase/quadrature"
method. The concept of frequency mixing is useful for the prediction
of the total output at any given frequency [4]. Denote the frequency

mix vector

. m ) (57)

M= (m_ -1 Q

Q

where m__ denotes the number of times that frequency w_Q appears in
the frequency mix. For example, for a third-order intermodulation mix
of 2w2—ml, the frequency mix vecter (m_2, m_,s ml, m2) would be given

as (0, 1, 0, 2) since m-y = 1, mg = 2. The frequency is then given by

+1-w,+0" 0w, +2-°0w,=2u,~w . (58)

0-w 1 1 2 2791

-2

In general, the resultant frequency mix is given by
: (59)
w, = L w .
M g e “x
k#0

Also, the number of components in the mix is limited by the order of thé
nonlinearity. For example, a third-order product involves three

frequency elements mixed together. Thus in general

e e ek e et aeee e s
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Q

z =n (60)
keq K
k#0

where n is the order of the nonlinearity.

Note that the third order intermodulation product Zmz-wl can also

be produced by permuting the frequency indices:

(—mliwz’mz); (mziu’z ’_ml) ; (mzsmllmz) . . (61)

In fact, the number of possible permutations such that N—Q appears
m_Q times, w_, appears m_, times etc., is given by the multinomial

coefficient

n!

@ )T o @ D @1 .. () (62)

(n;M) =

where n is the order of the nonlinearity and M denotes the frequency

mix vector. For the 2m2—ml product given in (58), there are therefore

3!
P (63

permutations in question. The total output for the intermodulation

product 2m2-ml is therefore given by (56) in conjunction with (62):

oM .5 E OB H@ ) Hw, ) Hlog

) Kﬁﬂq +u +w )
2t B9 q9y 493 4 2

3 1 9 93

. 64
exp [j (mql + qu + qu) t] (64)
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We denote the total output of any order frequency mix as yn(t;M).

Then
_ 3 * 2 % 2
y3(t;-fl,f2,f2) =3 23 El E2 H (wl) H (wz) K(2m2—wl)
* exp [j (2w2—w1) t] . (65)

Since the output is real-valued, there exists a corresponding negative

frequency output at w1—2w2:

4

*
y3(E3E),6,0 ) = 3 ag B (B H@)) B w2 K (2w,

« exp [j (-szﬁul) t] (66)
*
which is in fact equal to Ys (t;—fl,fz,fz). Therefore

*
y3(t;—f1,f2,f2) + y3,(t;-fl,f2,f2) = 2Re {y3(t;-fl,f2,f2)}}

3 * 2 % 2
7 23 E, E2 H (wl) H (wz) K(Zcuz—wl) cos (2m2—w1) t. (67)

The above example demonstrates the relative ease of analysis of any

particular frequency component produced by any order of nonlinearity.

Note that the net frequency component of 2w2—w1 could be formed
from a fifth-order mix, (mys =Wys Wys Wy w,) or from any higher-order
odd-power nonlinearity. Therefore the total output at any given frequency

is likely to involve a summation of all contributing powers. The products
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produced by individual powers will either be in phase or out of phase,
with products produced by other orders of nonlinearity, depending on the
sign of the power series coefficient. For example, if a3 is positive

and ag negative, then the products generated by the third- and fifth-order
nonlinearities will add out of phase. The resultant phase outputs from
the pre- and post-filters are identical for all powers, as they produce
identical net frequency components. This fact eliminates any phase

dependance on input amplitude level other than 0° or 180°.

Finally, it is instructive to show the result for the total output

at any frequency mix, w for any power:

M’
m m m m m-
-Q -1 -1 Q -
. _ (n'M) * * *
yn(t,M) = —zé—— a_ (EQ) ce (El) (El) cee (EQ) [H (wQ)]
. M ) "o
... [H (wl)] [H(wl)] [H(wQ)] exp [j wytl. (68)

This will be useful for comparison with the results generated by the

Volterra series, as derived in the next section.

1.3.7 Volterrg series:

The Volterra series [4] allows modelling for the full effects of
memory, although the resultant mathematical expression may be difficult

to work with.

h
The series involves calculating impulse responses due to an nt -order

nonlinearity, where the driving signal consists of an n-fold product of
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the input signals in convolutional form. The nth-order output therefore
depends on the current input, as well as all previous inputs. In this
manner, the system models memory; it is similar to an impulse response
of a linear system as calculated by a convolution integral, where the
output at any time depends on all previous inputs. Separate nth-order
impulse responses are then added together, forming the composite time-
domain output. A mathematical description follows. If the input at any

time t is x(t), then the nth—order output is given by

yn(t) = -i —i cee _i hn (Tl, Tos eoes Tn) x(t-rl) x(t—rz) :
cee x(thrn) dTl de e dTn (69)

where the integration limits for the convolution integrals have been
extended to -~, as the input is assumed to be zero for t<0 and the impulse
12, oo, Tn) is assumed to be zero for negative arguments.

The output is therefore

response, hn(rl,

N
y(t) = ¢ yn(t) (70)
n=1

assuming that the system is truncated after the Nth—order response.

Since x(t) has not been specified, the nonlinear system response

can be calculated for any input signal.
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1.3.7.1 Volterra response for multiple sinusoidal inputs

For this derivation, it is illuminating to use the complex

exponential form to represent sinusoids, as was done in Section 1.3.6.

That is,
1 Q
x(t) = 3 b E exp j wqt (71)
“e=q 1
so that
© ®© Q 1 )
yn(t) = [ ... f hn (Tl, cees Tn) [ E E-Eq exp j wq (t—rl)]
L0 —00 q——Q 1 1 )
1
;1 (t-t )]
X — E exp j w t-T
[q fo2 PJ a n
n
dTl oo dTn . | (72)

Interchanging the order of sdmmation and integration yields

Q Q
z I E ...E expij @q +...40 )t

2" q;=~q q_=-@ U In 1 %

an

yn(t) =

(-3

-j + ... +
~£ ce _i hn (Tl, ey Tn) exp -j (wa T, qu rn)

dr, ... dT . (73)
n

th
Defining the nth-order Fourier transform of the n -order impulse response

to be

Hn(wq, ...,w )=-£ c-.-i hn (C'tl’ AR ] Tn)

exp [—j (mql Tl + ... + wq Tn) d-[l vee dTn] (74)
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yn(t) is given by

1 Q Q
yn(t) = f ... I E ...E Hn(w %)
2 q=-@¢  q=-q U UL
n
exp [ (w + .o.+w_ )t] . (75)
q qn

The quantity Hn(wl, w .y wn) is sometimes called the nth—order

2!
nonlinear transfer function. Note that the restriction to a real output

signal implies that

*
Hn(—wl, cees —mn) =H (wl, cees wn) . (76)

Again, the frequency mix concept is employed to calculate the total

nth-order response for any given frequency; so that

Q
w, = X w (77
Mool q kUK
k#0
and
> (78)
z =n :
k=_ka .
k#£0

Also, permuting the indices will produce the same frequency result,

hence the multinomial coefficient

n!

(m_Q)! cos (m;l)! (ml)! oo (mQ)!

;M) = (79
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Therefore the total third-order response for any given frequency

mix would be

(n;M)
t;M) ==—2-<E E E H , ,
Y3 (M) T T Bq) B, Fqy Falpr v, “ay’
exp [ (w +w +w }t] . (80)

9 2 93

For example, for a total output of 2w , one obtains

2%

My = 2 EF 2
y3(t,M) =5 El-EZ H, (—ml, By mz) exp [} (_ml + 2w2) t] (81)

Again

If

y; (t;-M) y3(t;M) (82)

so the total real response is

2 By ES Hy (mup, w,, wp) cos [(2wy-w) t ], (83)

2Re {ys(t;M)}'Z 1 By Hy

a result similar to the result generated by the power-series-with-frequency
~-response approach. In fact, it is not immediately obvious how this
result differs from those of the previous section. Examination of which

fifth~order transfer function would generate the frequency 2m2—-wl yields
H(wp, ys 8ys By @) o (84)

Note that in genereal, Hn(wl, Wos +ves mn) is a complex-valued function
with amplitude and phase components. Hence the Zmz-ml components produced

by H3(-wl, Wy mz) and HS(-wl, Wy Wos Wy wz) could add in any
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arbitrary phase, not just in phase or out of phase as for the
memoryless case. This allows for the output phase to be a nonlinear
function of the input, and is the end result of allowing the nth—order

output to depend on values input previously in time.

The general result for any particular frequency mix produced by

an nth-order transfer function is:
m m m m

. - ST Q
7, (630 =i‘j;}‘l B - ED @)

. Hn(w_Q, ooy w_Q, sees W_gs ey W_gs eeey Ug 1
oo wq, e wQ exp (j wMt) . (85)
\._—V——-—r
™o

The total real result is simply twice the above value.

It is useful to compare the power-series-with-frequency response
with the special Volterra case without memory. Both systems will then

provide identical results. Thus

m_Q m_, m, mQ m_
Lm;M) * L *
0 a (EQ) (El) (El) (EQ) [H (wQ)]
m m. m

=1

1 E Q
[H(wl)] [H(wQ)] K(ugm) exp (J wMt)

.. [H*(wl)] )
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m m m m
;M) -Q -1 1 Q
_ (o;M * *
n (EQ) oo (El) (El) cee (EQ)
Hn(w—Q’ LRI w—Q’ * ey w-]., oo w—'l’ . wl’ o0 o9 wl,
gy e wQ) exp (j wMt) , (86)

Hence

m m_l ml m

* - Q
8y [ Gl e [ Gl [HG]  eee (BT Kl

=Hn (w_Q, seey w_Qs ce ey w.-l, st W_q% vt Wy e wq

R TwmT R
Qs +res wg) _ (87)
m
Q

This exercise demonstrates that an nth-order Volterra transfer function
consists of an nth-order power coefficient and a frequency response
transfer function. This result will aid in the analysis of cascade

relationships for nonlinear systems.




CHAPTER 2

CORRECTION METHODS FOR MICROWAVE AMPLIFIER NONLINEARITIES

2.1 Introduction

A wide variety of nonlinear distortion correction systems have been
proposed and implemented. An excellent overview of some of these systems
has been presented by Green [7], while King [8] has related amplifier
linearity to the concerns of efficiency in a spacecraft environment.
Feedforward linearization has been utilized by Seidel [9], Bennet [10],
and Prochazka and Neumann [11], the latter having attempted a wideband
linearization sche@e. Predistortion systems are popular, with analysis
and implementation of su‘ch linearizers having been undertaken by George,
Kaye, and Eric [3] and Hetrakul and Taylor [12] among others. Envelope
elimination and restoration systems were pioneered by Kahn [13] and
later developed by Cox [l14]. However, some of these systems have
limitations affecting their usefulness at higher frequencies or require
a great deal of complexity for practical realization. An examination

of some of these methods follows.

35
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2.1.1 Power back—off

The linearization method of power back-off [15], [16] consists of
keeping the magnitude of the input envelope sufficiently small so as to
ensure operation over a region of linear amplification. 1In this
approach, there is no true linearization of the amplifier, rather one
submits to the limitations imposed by the system. An extension to this
method is to use power dividers with multiple amplifiers, each amplifier

therefore being backed off to a region of linear operation.

Given a memoryless voltage nonlinearity with a (VIN, vo) - relation-

ship given by
v, = ni an VIN (88)

use of two identical system amplifiers in parallel, with their outputs

recombined will yield, see Figure 2.1,

0 v n
v.=/2 1 a (89)
n=1 V2
or
v n
v,= 3 a —Ll—= . (90)

n=1 n (/z)n—l

Hence each term in the nonlinear series has been reduced by a factor of

/Zn—l compared with that of a single amplifier system.



IN

VIN/Y2

VIN/ V2

Figure 2.1.

Dual amplifier topology.
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The advantage of this system is the ease of implementation of
the "linearizer". The drawbacks are obvious, and include the increased

weight and power consumption for the additional amplifier(s).

2.1.2 Negative feedback

Negative feedback [17] is a familiar concept and is a popular method
of minimizing nonlinear distortion at low frequencies. At microwave
frequencies, however, transit-time delays preclude the use of feedback
on a modular®level. Some success can be obtained by applying feedback
at the device (e.g., transistor) level, although careful design is
required to ensure stability over all frequencies and source/load

impedances [18].

Feedback also results in a loss of HPA gain, a somewhat costly

drawback.

2.1.3 Feedforward

Feedforward [19] is a less familiar concept than feedback, although
similar in function. Both systems are based on the comparison of the input
signal with the distorted output signal, generating an error signal.
Feedforward, however, does not encounter the transit time difficulties
associated with the feedback system, and consequently does not degrade
amplifier stability. The feedforward system does require two amplifiers
(the main and an error amplifier) which have substantially the same

performance. In addition, the overall system is very sensitive to errors




Power Amplifier Delay

Input

—MA~ 1/A

Delay Error Amplifier

Figure 2.2. Feedforward distortion reduction. topology.

Output
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in coupling factors and delay lines, therefore a high level of
precision is required for these components [20]. Adaptive control is
almost essential [9] in order to compensate for drifting and aging

incurred by the system components. See Figure 2.2.
Feedforward does have the capability of distortion correction
regardless of the type of amplifier frequency response (i.e., including

nonlinearities with memory) and should be a topic for future research.

2.1.4 Predistortion/postdistortion techniques

Pre- and postdistortion [3], [12], [21] -~ [30] are functionally the
same concept, differing only in the order in which the signal encounters
the nonlinear amplification and correction devices. The following
discussion applies specifically to predistortion, postdistortion being
less in favour due to the inherently larger power losses involved in

distorting a higher signal level.

Predistortion systems involve the introduction of a nonlinearity
complementary to that of the amplifier, the result being an essentially
linear amplifier up to the point of amplifier compression. This
predistortion can occur at baseband, intermediate frequency, or directly
at RF, the only limitation being the generation of in-band harmonics

for up-converted systems (see Chapter 3.2.6).

By implementation of an "in-phase/quadrature" system [3], both
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————p Predistorter

Figure 2.3a. Predistortion system.

Postdistorter

Figure 2.3b. Postdistortion system.
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amplitude and phase nonlinearities can be corrected using two nonlinear
amplitude predistorters, as shown in Figure 2.4, Drawbacks to this

system include the difficulties in predistorter design, particularly for
nonlinearities with memory, and potential system performance degradation

with temperature changes or ageing. An adaptive system may be required.

2.1.5 Linear amplification with nonlinear components (LINC)

LINC involves the separation of the complex AM signal input into
two angle-modulated components [13], [14], [31], [32]. Amplification is
then achieved by high-efficiency Class C amplification, and the signals
recombined to regenerate an amplified, undistorted AM signal, as shown

in Figure 2.5.

The system has a very serious flaw, even with perfect component
separation,if phase nonlinearities are present in the Class C HPA's.

Here

EM EM
512(8) = G sin (ut +4(£)); S, () = G) sin (u t = ¢(t))

(91)
where EM represents the maximum input amplitude.

If the amplifiers only possess memoryless nonlinearities, then the

output is given by

Gsla(t) - GSZa(t) = GEM sin ¢(t) cos wt (92)



90° p—> Z

Figure 2.4.

"In-phase/quadrature" predistortion topology.
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Figure 2.5. LINC topology.
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an undistorted replica of the input. If, however, a phase nonlinearity

is present, then

’ E
65,,(8) = GG sin (_t + $(t) + O(E)) (93a)
and
: B,
GSza(t) = G(E—) sin (wot - ¢(t) + 0(E)) (23b)

where ©(E) represents an AM-to-PM term present in the HPA's.

Now
GSia(t) . Gs;a(t) = GE, sin ¢(£) cos (u_t + O(E)) . (94)

Thus the original AM-to~PM term for the amplifier is still present.
Recalling that AM-to-PM conversion represents not only a change in the
instantaneous frequency of the signal, but is symptomatic of harmonic
and intermodulation distortion (Sectiom 1.3.5), one sees that LINC has

a major flaw, precluding its use as a stand-alone linearization technique.



CHAPTER 3

PREDISTORTION: CONCEPT AND THEORY

After a survey of known linearization techniques, it was decided
to attempt to realize a predistortion system. This technique was chosen
on account of its relative ease of implementation while utilizing only
one HPA. It was also decided, in advance, to employ an adaptive system,
that is the predistorter would be required to realize a wide variety of

nonlinear transfer functions.
Before attempting a design, all mechanisms of predistortion
correction should be thoroughly understood. A detailed theory of

predistortion follows.

3.1 A Heuristic View of Predistortion

Superficially, a predistortion system appears to be readily
analyzed. For example, if an amplifier exhibits a convex type nonlinearity,

correction requires predistortion with a concave nonlinearity.

46
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Understanding of predistortion requires a thorough examination
of correction requirements over a wide range of system conditioms.

These requirements are considered in detail below.

3.1.1 Cascading of transfer functions
This operation yields little insight into predistortion, but serves

the purpose of solidifying general concepts.

Given two memoryless amplitude nonlinearities represented by

f(x), g(y), (see Figure 3.1), the output is given by

f(x) (95)

g(y) = g(£(x)) . (96)

<
n

N
n

The functions f(x) and g(y) can be representative of the instantaneous
voltage transfer functions, or of the envelope transfer functions
(Chebyshev transforms). The instantaneous voltage transfer function
representation is useful for wideband applications, while the envelope
transfer function approach is useful for narrowband systems. In either

case, the desired end result is

z = Ax (97)
or

Ax = g(£(x)) (98)



8y

* £(x) A g(y) -

Figure 3.1. Cascaded amplitude transfer functioms.
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where A represents the overall system gain. Thus one requires
-1
f(x) =g~ (ax) . : (99)

Hence the correct predistorter transfer function is given by a scaled
reflection of the amplifier transfer function in the line f(x) = x.

Thus if
2

g(y) =y . (100)

and the desired over-all linear gain is 1/4, then
-1
g (x) = Vx (101)
g—l (_J_{.) = /X . (102)
4 4 <

A similar discussion can be given for the compensation of phase
nonlinearities, see Figure 3.2. Here the phase functions ¢ (x), 6(y)
represent either AM-to-PM coefficients (narrowband case), or the phase
transfer function (wideband case). From Figure 3.2

¥y = o) (103)

vy =¥ YO . (104)



¢(x)

y 2 e(y)

Figure 3.2.

Cascaded phase transfer functions.
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We now assume that y = Ax, that is, a linearly scaled variable. Then

¥, = ¢(x) + 6(Ax) = Constant = K (105)
S0 ﬁhat
6(x) = K - 0(Ax) . ' (106)

Hence one must introduce an opposite sense of AM-to-~PM conversion
(narrowband nonlinearity) or an opposite sense of phase nonlinearity for

a wideband system.

Analysis by these methods is practical for two extreme cases; a
wideband system where one can assume that all nonlinear products are
passed unaltered on to the next stage, or a narrowband single-carrier
system where only the fundamental appears at the output. Thesé two
extremes are examined in greater detail in the next two sections, for

memoryless nonlinearities.

3.1.2 Cascading of power series

Given two wideband nonlinearities represented by their instantaneous

voltage Taylor series transfer functions, the output is given by:

o o
n.,m
vo= ¢ b [ a vinl (107)
m=1 n=1

see Figure 3.3.
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This result is best handled by changing the mth power into an m-fold

indexed product:

(-] ©© © ] (n "‘n +aco"‘n )
v = I b z z .o a 1 a g tee a vIN 12 m
© p=1 © n=l n,=1 n=1 2 1 nm

(108)

Gathering coefficients of powers of VIN, up to the fifth order, yields:

3 [b,a +2a a; b, + b,a 3]

2
[bya,+b 133 2 * bgay

<
|

a; ] + v

o = 2P Vin * VN 2 IN

+ v 4 [b,a,+b [a +2a ] + 3b,a 2a +b,a 4

IN 174 72 371 72 471 ]

2
+ v [b a; + 2b.a.a, + 2b2a3a + b3 [3a a, + 3a2 a1]

IN 27174
+ 4b, a 3a +b.a.”] (109)
4 5%1 .

Elimination of all coefficients other than those of VIN effectively
linearizes the system. Thus the an order linearization condition is

b.a, = -b_a_2 (110)

12 21
and the 3rd order linearization condition is

b.a, + 2a.a.b. + b.a.> = 0o . (111)

13 27172 371




This procedure can be continued for any order desired, defining the

exact power series relationships required for the predistorter.

This analysis approach appears tc have limited usefulness for
narrowband systems. In general, the system will have a frequency response,
Correspondingly, some frequency products produced by a given order of
nonlinearity will be eliminated. This will reduce the total signal
attributable to that order of nonlinearity. The extreme case of this
condition occurs for even-order nonlinearities which do not produce any
bandpass products whatsoever. It thus appears doubtful whether the
power series approach is of great utility for RF amplifiers, which in
general operate over less than an octave bandwidth under current

frequency plans and band allotments.

3.1.3 Envelope transfer function linearization: Cascading of

the Chebyshev transform

A more useful predistorter linearization result can be obtained
by extracting the bandpass components at the output of each nonlinear
element. These linearization results are derived initially for a single
carrier input, but will be shown later to hold for narrowband multi-
carrier inputs. Mathematically, the derivation is identical to that for
the cascade relatiomship for the power series, but in this case a
unity-gain, ideal bandpass filter follows each element. This filtéring
action is performed by taking the first order Chebyshev transform [6]

of the power series transfer functions, see Figure 3.4,
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Figure 3.4. Cascading of the Chebyshev transform.
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For any given order of nonlinearity, n, the fundamental output is

given by transform T5 of Blachman [6] (see Appendix 2) namely

v_..n
w =1 2 (1n ) (—gﬁ)
BP n=1 5 (n-1)
therefore
© © v nm
ot BB QT 0E e Gt (BT
BP m=1 3 (m-1) n=1 0l (n-1)

Again it is useful to change the m-exponent into an m-fold indexed
multiplication:

v = 1 2b_( o ) T ee. L a ., a e @
o - m 1 _ _ - nl n2 nm
BP m=1 > (m-1) nl—l nz—l n 1
n 0 n v. (n1+n2+...+nm)
1 2 m IN
(1 ) (l ) een (l ) =
3-(n1—1) E’(nz-l)

2
E‘(nm-l)

Noting that even-order nonlinearities do not contribute to a bandpass

component, and gathering coefficients of odd powers of Vin® UP to the
fifth order yields

(112)

(113)

. (114)
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, 3
IN
1V T3

. .
3 2 3,3
[bla3 (1) + 2a_b.a + b3a1 (1)]

Vo.. = 8P 22221 (1/2)

BP
3 2

v
IN 5 2 4 2
() * 2bya18, (1)5) (5,5) * 2byaza, (1))

+— [b

16 1%s

2
3 2 3 2 2
+ b3 (l) [3a1a3 (l) + 3a2al (1/2) ]

+ 4byaya, (3?2) (1] * b5 1. (115)
It is not obvious, but some of these odd-order terms can be eliminated
as they are caused by out~of~band interactions between the two nonlinearities.
It will be shown later, in Section 3.1.4, that any terms containing
even~order Taylor coefficients can be eliminated. The end result
therefore is:

3 5

v
3 IN 2
[3b +3b3al] + [lObla +27b aja

16 5 3

VIN

5
1 VIN + % + IObSal] .

Vo = ;b 123 3

(116)

Elimination of all coefficients other than those of v
d

IN effectively

linearizes the system. That is, the 3% order linearization condition

is:

b.a. = -b_a> (117)

and the Sth order linearization condition is:



10b.a, + 27b aza + 10b

> _
135 32123 58 = 0 - (118)

An important point is the discrepancy that exists between linearization
of the instantaneous voltage transfer function and linearization of

the envelope transfer function (compare (11l) to (118). Obwviously,

the prediétorter power series coefficients differ for these two cases,
indicating that for cascaded nonlinearities, one can obtain either a
linearized voltage transfer function, or linearized envelope transfer
function but these two conditions do not occur simultaneously. Consequently,
one cannot apply the Chebyshev transform for cascaded nonlinear systems.
This is contrary to existing ideas, see for example George, Kaye and

Eric [3]. This result can be emphasized by proposing linearization oﬁ the
basis of the envelope transfer function., Not only are the odd-order
predistorter coefficients different from those speclfied by voltage
linearization (excepting those of the third-order), but even-order
curvatures, which have no effect on the bandpass envelope, cannot be
corrected for in a narrowband system. These coefficients will remain
unchanged for envelope linearization. Hence for narrowband systems,

one should approach linearization on the basis of envelope transfer
functions, and net on the misconception of an overall linearized voltage

response [23], [30].

The final concept to be presented in this subsection deals with
amplitude and phase compensation by the "in-phase/quadrature" method.
If the amplifier has been modelled by the narrowband "in-phase/quadrature”

approach, it is reasonable to assume that amplitude envelope linearization
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of both signal paths would result in an amplitude and phase compensated

amplifier [3], [12], [25]}, [26] (see Figure 3.5).

The two signal paths for the predistorter simultaneously supply
a complementary sense of AM-to-AM, and AM-to-PM conversion to that of
the amplifier, the net result being an amplitude and phase compensated

amplifier.

3.1.4 Cascaded Volterra series

The cascaded Volterra series results yield by far the most
information on the performance of predistortion systems, this being due
to the inherent ease of handling nonlinear systems with memory. The

cascade derivation proceeds as follows.

As in the case of the derivation of the Volterra series relationship,
we start by defining the input. In this case, the desired input is
governed by the nth-o:der nonlinear transfer function G of the first
nonlinear system, see Figure 3.6. Here

N . v
x(t) =}:(n;Mn ) Gn(gl, ee su ) exp Janit (119)

i
n=l- oh

th
where w,, represents the frequency mix governed by the n  -order nonlinear

Mhi

transfer function. Here n is indexed over all values and i is indexed
over all mixes governed by the nth'power. Hence all possible outputs

of the first system are included.
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Figure 3.5.

"In-phase/quadratuvre" predistortion system.
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The output of the second system is given by the kth-order nonlinear

transfer function, as directed by the kth—order impulse response:

V ok --i -i ...-i h (11,12, ey Tk) x(t—Tl) x(t-Tz) cee

'x(t-tk) dty dty ... dTy ,
thus
-i i cee f h (79,75, «en, rk) E (ny; nll) Gnl(wll’
- - nl=1 ,nl

exp (ij (t-rl)) cee
nil

N .
5 (nk’Mnik) Gnk(wlk’ ceas wnk) exp (Janik(t-Tk))
nk=1 nk

2

Re-arranging the integral gives

N N

v ok = Z 00s I (n M 1) Gnl(wll, es oy wnl) e (nk;Mnik)
2nl nk

nl=l1 nk=l
2

G . (g, «eey, w ) expj( F oees * )t
nk " 1k nk “Mnil “Mnik

o© «©

S ...f hk(tl, ...,Tk) exp -j(mMnil'r1 Foer duy T )

-0 -0

dtl

drt

1

(120)

wnl)

eow dtk .

(121)

cee dtk

(122)
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The total exponential response requires the addition of all permutations

producing the same frequency, a factor of (kj;M. . ), where M

oUT represents

OouT

the frequency mix vector of the total system output. The total real

response is twice the exponential response. Thus

N N
Vok = 2% ... 2 (nl;Mnil) Gnl(wll’ ...,mnl) ees (nk;Mnik)
nl=1 nk=l —_—
2nl 2nk
G O1pr worog) Hlay o eensny ) (kM)
nil nik
cos (w + eee + ) t (123)
Mnil anik
where
HeCuy soeee s 0y ) (124)
nil nik

is the kth-order nonlinear transfer function with inputs governed by the

frequency mix of the first nonlinear system. Also

= + + oo + (125)
wMOUT anil mMniz anik '

Others [4], [21], have analyzed cascaded Volterra systems, but their
results differ from those presented here for the following reason. At the

output of the first nonlinear system, one is required to sum all components

produced by a given power, at the frequency mix of interest. Hence the origin

of the (n;M) terms for the cascaded result. The cascade results derived in
this thesis will be shown to agree with the cascaded envelope transfer

function results (derived in Section 3.1.3), verifying the analysis.

i
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Weiner and Spina [4], have demonstrated a close relationship

between cascade results for the power series and the Volterra series,

see Table 1.

TABLE 1
Coefficieﬁt of Power Series Volterra Series
VN e 61 (W) By oy
3 3 (3;M)
VIN bjaj+2a,a,bytbaa) = Gy(wgsuy,ug) Hy (wytwyte )

+ 2G2(ml,m2)Gl(m3)H2(ml+m2,m3)

L2 20

ouT

+ Gl(ml)Gl(mZ)Gl(mB)HB(ml’mZ’m3)

GsMopp)

2

Note that the frequency dependence of the Volterra transfer functions
allows the elimination of certain terms which can be filtered out of

band. For example, by examining the middle term in the third-order
Volterra relationship of Table 1:

) (126)

21 .
26, (w) »0,) Gy (W) H, (wyhwy,0,) ==5== (25 Mg
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one sees that the Gzﬁul,wz) term will mix the frequency products at
Wy and Wos providing an output at ml + Wpe In general, @, and w,

can represent any frequency, positive or negative, Thus if wy is
positive and w, is negative, then the output is a second-order
intermodulation product at Wy =W, If wy = w, (both either positive or
negative), the output is then a second harmonic at 2ml. Note that
neither of these products are bandpass components and they will therefore
have no effect on the cascaded system performance. In general, any
even—order transfer functions involved in a cascade relationship can be

ignored for narrowband linearization, as these products will be filtered

out. The remaining third-order cascade result is therefore
(3; M)
7 G3lugsupu)H

(3;M)
1(w1+w2+w3) + Gl(ml)Gl(wZ)Gl(wS)H3(w1’w2’w3) ——5“— .

(127)

If we let w, = m3, wy = -wl, producing a third-order intermodulation

product at Zmz - Wy the linearization condition requires
G3(-ml,m2,w2)Hl(2m2—w1) = -Gl(wl)Gl(mz)Gl(wz)Ha(-wl,wZ,wz) . (128)

In terms of real signals, linearization of the third-order term involves
generation of a third-order intermodulation product by the predistorter,
followed by amplification by the linear component of the HPA., This
product must have equal amplitude to but opposite phase from the same

frequency intermodulation product produced by the third-order component

A
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of the amplifier, preceded by the linear component of the predistorter.

In simpler terms, the predistorter must generate nonlinear and linear

products which combine with the nonlinear and linear products generated

by the amplifier, so as to eliminate all undesired frequency terms and

odd-order curvatures of the transfer function.

One can also obtain the cascaded Chebyshev transform results
directly from the cascaded Volterra series results. For example, by
examination of the fifth-order results, and generating a fundamental

output for a single carrier input at w

1
5
of Viy 2fe from (123)

(53w, 4=, 40 40, 0. )

1 17127171

16 GS(_wl,_wl’wl,wl’wl) Hl(wl)
(3;_wl’_wl’wl)

+ 3Gl(wl)Gl(ml)GB(—ml,-wl,-wl)HBin,wl,-wl) e (3;wl
+ Gl(wl)Gl(wl)Gl(wl)Gl(-ml)Gl(-wl)Hs(-wl,—wl,wl,wl,wl)
. (5;—(‘-’1’-‘”1’“’1’“’1,“’1)

16
which is equal to

10 2 |
T6 G50y »—0y 5w 50 50, )y (0)) + 5 G (016, (01)G5(=wy,=0,,04)

’w

, one finds that the coefficients

107%y)

(129)
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10
. H3(m1,ml,—w1) + 16 Gl(wl)Gl(wl)Gl(ml)Gl(rwl)Gl(—wl)HS(—wl,—wl,wl,ml,wl),

(130)

These coefficients are seen to agree exactly with the linearization
conditions as set for the Chebyshev transform, assuming memoryless
conditions (see equation (116) for comparison). Note that the above
derivation could just as easily have been done for the frequency mix

for a fifth-~order intermodulation product at 2m2 - W i.e., for the first

term

(5;-1‘01 ’ml’-u)l ’wz ’wz)
16

GS(—wl’ml’—wl’mz’mz)Hl(zwz—wl) + e e e (131)

The coefficients are identical to those for the cascade relationship
for the Chebyshev transform. It would appear, therefore, that linearization
of the envelope transfer function is optimal for narrowband predistortion

systems.

The cascade results for the Volterra series can be transformed into
cascade results for the power-series-with-frequency response by substitution
of (87) into (123) (substitution for the nth—order nonlinear transfer
function by the similar memoryless transfer function in the cascaded
Volterra result). Thus the linear response Gl(ml)Hl(ml) is readily

transformed into
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6, ) ;) = g h G )6 () H(w ' ;)

8,06 KW IH (wy) (132)
where
= (Ot
K(w;) = 6'(wIH@,) (133)
. see Figure 3.7.

3.1.5 The creation of new nonlinear products for cascaded systems

A point of interest for cascaded nonlinear systems concerns the
creation of nonlinear products not associated with either nonlinear
system. Let us assume that the predistorter and HPA can be completely
represented by a linear and a third-order component, as shown in Figure 3.8.
The output will now contain products up to the ninth order (i.e., a
cubic power cubed). Examining the fifth-order result, retaining only
the relevant bandpass components, one obtains

5 2 5
=
v, alblvIN + ... + ViN [bla5+3b3a1 a3+b5a1 1l . (134)

Cancellation of the fifth-order coefficient requires that

5 2
bla5 + b5a1 + 3b3a1 a; = 0. (135)
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However, since ag and b5 are zero, the resultant 3b3a12a3 term cannot

be eliminated. 1In a practical predistoftion system, one would therefore
expect to possibly see an increase in fifth-order products, if the system
objective was absolute minimization of third-order products. This
argument holds for all higher-order products and this effect is evident
in most predistortion systéms. A perfectly complementary predistorter
would, of course, provide absolute linearization, but is a practical
impossibility. ©Note that the third-order nonlinear products are usually
the Jargest, and a substantial decrease in these products, while slightly
increasing the much lower amplitude higher-order products, is a desirable

result.

3.1.6 Predistortion system performance for upconverted systems

‘The question arises, at what frequency band should the predistorter
be igtroduced, at the baseband, some IF, or directly at RF? In terms of
complexity, certainly the baseband predistortion system is the easiest to
realize with the multitude of low-frequency compression and expansion
function modules available. In general, IF predistortion is the next
easiest system to implement, while direct RF predistortion is the most

difficult , since circuit difficulties increase with increasing frequency.

This question can be partially answered analytically. We start with
a general predistortion system which incorporates an upconversion between
the predistorter and the amplifier, see Figure 3.9. Examination of the

overall second-order transfer function gives
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Predistortion system with upconversion.
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Kylogswy) = Gy pw))Hy (@ twyhw) )46, (0106, (,)H, (0 tuy 0 tuy)
( 36)

where Kzﬁml,wz) is the cascaded, second-order Volterra transfer functio
and where coefficients of the transfer functions have been omitted, as
we are only concerned with the frequencies involved in the Volterra
transfer functions. Cancellation requires the amplitude of the first
term in (136) to be of equal amplitude, but of opposite phase to the
second term., However, the first term produces an output of frequency

mc+wl+w2, while the second term produces a frequency 2wc+wl+m2. Theref re,

cancellation cannot occur, and the bandpass wc+ml+m2 term will remain

due to the frequency translation by upconversion. This is in general t ue
for all harmonic terms in an upconverted predistortion system. Note th t
cancellation can only ocecur if

w Hu_+w
e

1w, = 2mc+m +u ( 37)

172

or
w o =0. { 38)

An examination of predistorter performance for intermodulation

products yields
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K3(-w mz) = G3(-wl,m2,m2)Hl(wc-w +2u)2)

1°%2° 1

+ Gl(—wl)Gl(wz)Gl(wz)HS(-wc—ml,wc+w2,mé+w2)
+ 2G1(—wl)Gz(mz,wz)Hz(mc+2w2,mc—ml) . (139)

The first and second terms have outputs at mc+2w2—wl, the third term at
2mc+2w2—wl and this last term can be filtered out. Hence the two bandpass
terms represent intermodulation products at the same frequency and

cancellation can occur.

The mathematical results can be summarized as follows. If
predistortion is to be employed in a linearization system, one must
ensure that harmonics produced by the predistorter do not degrade performance
of the system. Good performance can be achieved either by refraining from
converting frequencies after predistortion, or by filtering out the
predistorter harmonics prior to amplification by the HPA, ‘Note that
baseband predistortion systems will not satisfy the above conditions.
For example, in a multicarrier voice system, predistorting at baseband
will produce harmonics that cannot be removed by filtering. After
upconverting and passing through the HPA, these baseband-originated

harmonic terms will not be cancelled.

IF predistortion systems require selection of an intermediate

frequency such that harmonics lie out of band, that is

N
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26 > f + BW (140)
c—™— ¢
or
f > BW (141)

where fc is the local oscillator frequency for the upconverter and BW

is the system bandwidth.

RF predistortion avoids any frequency translation and may also be
useful in the elimination of in-band harmonic terms. In addition, RF
predistortion allows for wider band systems than does IF predistortion,
IF bandwidth being limited by the upconversion frequency, as dictated by
(141). Indeed, as the IF is increased to accommodate a wider bandwidth,
the circuitry required to achieve the predistortion becomes comparable

in complexity to that required for RF predistortion.

For the above reasons, it was decided to attempt a direct RF
predistortion system. Interest in the MSAT program directed the choice

of frequency to the 900 MHz UHF range.

3.1.7 Effect of predistortion on amplifier efficiency

Predistortion possesses the added benefit of increasing amplifier
efficiency. This effect is the result of the linearization of the HPA,

allowing higher RF output powers. For example, an increase in the 1 dB




76

compression point by 3 dB would double the efficiency of a linearty
biased (class AB) HPA. This effect is of great significance for
satellite transponders where power considerations are of paramount

importance.

3.2 Summary of Theoretical Advancements

Several advancements to nonlinear theory have been developed in
this report. First, ,the cascading of two nonlinear systems and the
derivation of the resultant envelope transfer function was presented in
Section 3.1.3. It was demonstrated that linearization of the envelope
transfer function was not equivalent to linearization of the instantaneous
voltage transfer function. Hence the Chebyshev transform (or its i

mathematical inverse) is not applicable for cascaded nonlinear systems.

Section 3.1.4 illustrated the cascading of two nonlinearities modelled
by their Volterra representations. This result was shown to be equivalent
to the result of Section 3.1.3, for the single-carrier, memoryless case.

In addition, linearization of the envelope transfer function was shown
to simultaneously minimize bandpass intermodulation products. Thus the
optimum compensating function for narrowband predistortion was proven
to be the nonlinear characteristic that would linearize the single-carrier,

envelope transfer function.

Finally, Section 3.1.6 demonstrated the effect of a frequency conversion

for a predistortion system. Baseband predistbrtion was found to have
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limited usefulness in the linearization of RF amplifiers due to the
j generation of in-band harmonic products. Hence IF or RF predistortion

would have to be employed for any microwave system.




CHAPTER 4

RF PREDISTORTER DESIGN

4,1 Introduction

The design and realization of nonlinear circuits is in general a
difficult task. These difficulties become compounded at RF, where even
linear circuits can become complicated on account of packaging parasitics

and other residual reactances.
A unique RF predistorter that overcomes the problems of parasitics,
but remains flexible enough to realize a wide variety of transfer

functions for adaptive systems is presented.

4.2 Proposed RF Predistortion System

For RF predistortion systems, two topologies are the most prevalent;
the "in-phase/quadrature'" system and the 'phase modulator" system [3],
see Figure 4.1. The "in-phase/quadrature" method requires two nonlinear

amplitude predistorters, while the alternative system requires a single

78
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amplitude predistorter and a phase modulator. This phase modulator
responds to the detected RF envelope, modulating with an opposite sense
of AM-to-PM conversion. Hence the 'phase modulator" topology requires
one to develop both an amplitude nonlinearity and a phase nonlinearity
(two circuits), while the "in-phase/quadrature' method only requires
two amplitude nonlinearities (one circuit). For this reason, the

"in-phase/quadrature'" method was selected for the predistortion scheme.

4.3 Development of An RF Predistorter

Having selected the "in-phase/quadrature" system, nonlinear circuit
design was reduced to the development of an RF circuit that would realize
a wide variety of nonlinear amplitude characteristics. Note that since
the opposite sense of AM-to-PM conversion is generated by amplitude
modulation of the two quadrature components, the amplitude predistorters
should be designed so as to minimize any AM-to-PM conversion generated

by these circuits. The circuit objectives can therefore be summarized

as follows:
(1) The circuit must respond in a nonlinear manner to the RF
cycle, producing a specific nonlinear transfer characteristic.
(2) The circuit should not generate a large amount of AM-to-PM
conversion, that is, the nonlinearity should be "memoryless'.
Note that the predistorter will possess a frequency resﬁonse

as this is inevitable in RF design.
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A survey of predistorter papers [22], [24], [25] revealed little
on approaches to the design of an amplitude predistorter. All that
was evident was that Schottky diodes could be employed in an anode-
to-cathode ("head-to-tail") fashion, see Figure 4.2. Holbrook and
Rockwell [22] have demonstrated a high frequency (7 MHz) predistorter
circuit, employing semi-conductor diodes as nonlinear resistors in a
divider arrangement, see Figure 4.3. These authors voiced some concerns
about linear phase distortion generated by the circuit, but ignored
any nonlinear phase distortion. Presumably if the predistortion circuit
exhibited a significant enough frequency response to generate linear
phase distortion over a narrow bandwidth, the effects of memory would
be prevalent and AM-to-PM would be observed. Of course, the circuit
could be tuned to resonance at a center frequency, and if the Q was low,
the predistorter might appear to be memoryless close to the center
frequency. Since the circuit is nonlinear, however, circuit resonance
could not occur over the full range of oﬁération of the signal. The
reactance of the diodes would exhibit a significant change, depending
on the junction voltage. For a microwave predistorter, these effects

are more severe as the parasitic and junction reactances are usually of

such a value that tuning of the circuit can be attained over only a

moderate range of the input signal. As such, resonance representé an
inadequate solution for the effective tuning of microwave nonlinearities. {
Another mechanism would need to be employed that minimized amplitude- ;

dependent phase shifts over the full range of the amplitude characteristic.
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Figure 4.2. Anode to cathode nonlinear element.
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The solution to this phase shift problem begins with an examination
of a suitable model for achhottky diode to be employed in the
predistorter, §ee Figure 4.4. Here Cp represents parasitic packaging
capacitance, L is the packaging lead inductance, R is the junction
resistance and CI is the junction capacitance. This model was found to
be totally adequate for the modelling of all diodes'employed in the
predistorter. The impedance of the model is given by
R(l—wZLCI) + juwL

Z =
IN 2 2
(1-w LCp) + j(prR(l-w LCI) + wRCI)

(142)

and a contour of impedance with varying voltage is presented in

Figure 4.5. Here the junction capacitance is assumed to be invariant;
the junction resistance is taken to be the variable element. 1In fact,
both elements would vary but the results generated by (1l41) with a
variable junction resistance were found to agree closely to impedance
measurements made with a network analyzer on actual devices. This
approximation is also justified by the fact that junction resistance
varies exponentially with voltage, while junction capacitance increases
according to a power-law relationship (diffusion capacitance assumed to
be negligible for Schottky diodes). Hence junction resistance is the

dominant effect on the junction impedance.

For the "diode off" state (infinite resistance), the junction
capacitance is the dominant reactive effect. For the '"diode on" state

(zero resistance), the lead inductance is the dominant reactive effect.
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In general, the inductive reactance is lower in magnitude than the
junction capacitance in the off state. Therefore any attempt at tuning
the diode would probably involve the addition of an inductive shunt

stub, to resonate the diode in the off state. This procedure would
produce the impedance contour of Figure 4.6. The diode is now presenting
a more ideal impedance contour, following the real axis over a wide
range. The inductive reactance problem remains, however. Evidently
another mechanism other than tuning to resonance would be required to

produce a '"memoryless" predistorter.

The solution to the problem is to base the design of the predistorter
on nonlinear reflection as opposed to nonlinear transmission. The
concept of the reflection-based circuit is as follows, see Figure
4.7. Given a Schottky diode that has been tuned, the impedance contour
follows the real axis, with the reflection coefficient varying from
i&eally 1<0° to 1<180°. Note that the reflection coefficient approaches
0 in magnitude, and the reflection angle changes from 0° to 180° as
the contour sweeps by the center of the Smith Chart. Hence this point
is to be avoided because of the erratic phase and amplitude characteristics
in this vicinity. In addition, the predistorter should possess the lowest
insertion loss possible. This requirement restricts operation to the
outside regions of the Smith Chart where reflection coefficient is largest
in magnitude. Now two areas of operation are possible, the extreme
right-hand portion of the Smith Chart on the real axis, and the extreme

left-hand portion of the Smith Chart. The right-hand portion provides a



88

i

IMPEDANCE OR ADMITTANCE COORDINATES

o ars
ot L)
. o ) o e
o0 - 3
S - k.
o) i
o
0
. n"
/ N ;
. X
- N~ \
; N ¥ ® =X
o 4 o
¥, .,
* )/ 4 \8X
o
¥
g "~
%
o
s
{5
i, pasd 8
( ¥ - >
' SH T acsisrance componeut(f-),0n conpucTanct comeontuz(E-)
= n
alzal 3 £iE
: 1%‘ . o 2=
AR\
1\ s e
% ?; v - 0]
3 % k3
°\ X < s
%
% * e Yo
23\ 9, A XX e
1. e® . ONA M
\ ok & :
%
3
O - 7
% N\ 7
° - I
" /
b, %;, | ¢ g
O, ) “7
£ >
Pl 2o ¢ “ =] e
o e, F ¢
o, h ;%3 3 y
'.._Db *.‘o. - . o
o v > ©
8, S8 - z - W
oy 2= C
o, i, = Ll
) oo o iy = -"°°
e o Ca
e
e e

Resonated impedance contour.

Figure 4.6.



89

r (VIN)
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decreasing reflection coefficient with increasing input amplitude and
therefore produces a concave type of nonlinearity. The left region,

on the other hand, provides an increasing reflection coefficient with
increasing input amplitude and therefore produces a convex type of
nonlinearity. The true advantage of the reflection-based predistorter,
however, is in the minimization of amplitude-dependant phase shifts due
to any residual reactances. Referring to any Smith Chart, it is

obvious that a change in reactance will affect the reflection angle on
the left-hand region of the chart much more severely than the right-hand
portion. For example, a residual reactance of * j 1 (normalized reactance)
would provide a phase shift of + 90° on the 0 * jX contour. The same
reactance, however, would provide a negligible change in reflection angle
as one approaches the » + jX contour. Hence the obvious approach is to
map the diode impedance into the right-hand region of tpe Smith Chart,

on the real axis. This mapping process is achieved by psing a high
characteristic impedance, quarter-wave series transformer. The contour
of Figure 4.6, used in conjunction with a 100-Ohm impedance quarter-

wave section, as shown in Figure 4.8, produces the impedance contour of
Figure 4.9. Note that the reflection angle varies far less than the
original impedance contour reflection angle. The direction of the impedance
contour, however, has been reversed, varying from left to right. This

is a consequence of the quarter-wave section, which compresses the
impedance contour into the high impedance region through an admiﬁtance-
to-impedance conversion. In general, the diode would be tuned to

resonance and the impedance contour would sweep from 1<180° to 1<0°
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with increasing input voltage. Therefore operation in the left region
produces a concave nonlinearity; operation in the right region produces
a convex nonlinearity. Normal predistortion compensation of an HPA
requires a convex nonlinearity, as all amplifiers will invariably be

found to saturate.

The next phase in predistortion design involves the search for a
mechanism which would allow for some control over the transfer function
that the predistorter would produce. A voltage divider arrangement,
as shown in Figure 4.10, would appear to be a good starting point,
although such a circuit becomes unrealizable for most microwave circuits
due to the physical length of the resistors. The solution, in fact,
was to employ a single resistor in shunt with the Schottky diodes,
see Figure 4.11. This resistor could be made variable by utilizing a
PIN diode, that is, a diode in which the RF impedance could be varied

by changing the D.C. bias current, [35].

The mechanism that allows a single resistor to affect the transfer
function can heuristically be explained as follows. Since the
predistorter is based on reflection; the effects of reflection
coefficient on the Schottky diode must be examined. For any network
with a given incident wave amplitude, the voltage across the network
depends not only on the wave amplitude, but also on the reflection
coefficient. For example, examination of a general two port by S

parameters gives, see Figure 4,12,
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(143)

a, +8§ (144)
where a;, a, represent incident waves, and bl’ b2 represent reflected
waves in accordance with normal S parameter concepts, [33]. Examining

the voltage of the input port, v gives

v =a + bl =a, (1 + Sll) (145)
where
b
1
S11 ;I ) (146)

Hence for any given a;s the input port voltage could vary from

0, (Sll = -1 = ghort circuit), to 2a1,_(S11 = 1 = open circuit). One

can readily visualize how this effect tould be utilized in a Schottky
predistorter. Referring to Figure 4.13, one can see that the impedance
of the Schottky diode/resistor network is a function of the magnitude

of the incident input wave, as well as the reflection coefficient. If
the shunt resistor is omitted, it would be anticipated that the Schottky
diodes could readily conduct at a sufficient wave amplitude. If, however,
the resistor is low in value, approaching a short circuit, then the
Schottky diodes may not realize a conduction state for any practical wave

amplitude, as the diode voltage would be kept low by the resistor.
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Figure 4.13. RF predistorter topology.
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An additional mechanism for adaptive control would be to reverse

bias the Schottky diodes, effectively increasing the input wave amplitude

required for conduction,

Combining all of the mechanisms described yields the final convex
predistorter configuration of Figure 4.14. Important points to note
are the following:

(1) The quarter-wave section characteristic impedance is sufficiently
high so as to transform the semi-conductor device impedance
to a real value approaching an open circuit. This will aid in
minimizing amplitude~dependant phase shifts and provide a
low insertion loss.

(2) The Schottky diodes are the nonlinear elements, responding to
the RF cycle.

(3) The PIN diode presents a shunt resistance to the Schottky diodes.
It is a linear element with its RF impedance controlled by a
DC bias through a suitable choke structure.

(4) The Schottky diodes can be reverse biliased through a suitable
choke,

(5) The diode network is tuned with a single shunt element.

(6) In order to ensure operation of the predistorter in the high
impedance region of the Smith Chart, a fixed resistor shunts the
PIN diode. This resistor sets the minimum reflection coefficient
attainable by the predistorter and prevents operation near the
center of the Smith Chart (matched conditions). The net linear
resistance is therefore the fixed resistance in parallel with the

PIN resistance.
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Figure 4.14. RF predistorter implementation.
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A detailed analysis of the predistorter, and the transfer functions

it produces is now presented with the aid of Figure 4.15. Here Zo is

the characteristic impedance of the system (nominally 50 Q); ZOQ is

the characteristic impedance of the quarter-wave section; ZL is the total
impedance presented by the network before transformation by the quarter-

wave section; is the peak voltage across the diode network; PIN is

VeK
the input power; and T is the reflection coefficient of the total

predistorter.

]

Analysis begins by noting that in a lossless medium, if a wave is

not transmitted it must be reflected. Therefore

Pprss = Pin = Prer (147

where PDISS is the power dissipated in the network, and PREF is the

power reflected from the network, thus

Porr = Py T (148)
8o
P_.. =P (1-T% (149)
DISS IN '
Since P must be dissipated in the network, the voltage across the

DISS

network can be obtained. Hence

e
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Figure 4.15. Analysis of the RF predistortter.
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v 2
PK

- - _r2
DISS ~ 2Z_ Pry -T7) (150)

P

where ZL is assumed to be real. Therefore,

_ vy
Vog = /zzL Py (-T) . (151)

All that is now required is to substitute for T and ZL in terms of the

voltage—-dependant impedance. We model the Schottky diodes by the ideal

equation

AV
i = -
0 Ks (e 1) (152)
Here iO is the diode current, Ks represents the saturation current, and

A is the temperature dependant constant ;%T (q is the electron charge,

K is Boltzman's constant, T is the temperature and n is the ideality
factor). Since the diodes are utilized in a "head-to-tail" topology, the

net diode current is

A =A

i) =K (e'-1) - K (7 '-1) = 2K_sinh (W) (153)
s s

We define impedance to be the single-frequency ratio of voltage to

current. Admittance is the reciprocal of this value. Hence one must

obtain the fundamental component of current in (153). For an input of

Vog €O ©_t, the current of (153) can be expressed with the aid of

PK
transform T10 of Blachman [6], (see Appendix 2), as
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i . . .
D 2KS [mil ZIm(J\vPK) cos m mot] : m odd; (154)

where Im(AvPK) is the modified Bessel function of the first kind of

order m. Thus the fundamental component of this current is

iy = QKS Il(lvPK) . (155)

The diode admittance can now be defined as

1
o = pVpg) _ “Kg L Qvpyd ‘ (156)
D vy VPR

and the total network admittance is the Schottky admittance, plus the

admittance of the linear shunt resistance G.

4KB Il(i\vPK)

YroraL ~ Yp' ¢ < ¢t T : | (157)
PK
Now , 2
0oQ
— - Z 2
Z 0o z.°%-2zz2
r-L - Z% " S0 (158)
Zog ,, Zoo * %o
z, 0

and substitution of (158) into (151} gives

7.z
v, = —oQ L 5P 72 ' (159)
2 S B m %o
0Q 0%L
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where ZL is the reciprocal of (157), that is

VPR
7 = . (160)
L Gy + 4Ks Il(AvPK)

Putting (159) into (160) and simplifying yields an equation that

defines the transfer characteristic,

z 2

0Q + 4Ks Il(kvPK)] +2 v, =2 V8 P___Z_. (161)

Gk 0 VPK - “0Q IN ‘0

Note that the output power can be obtained from (158)

2
- ZQQ, [G
2

ZOQ

Vo, + 4K I.(Av_ )] -2.v
PK s 1 PK 0 PK (162)

[c;vPK + 4Ks Il(AvPK)] + Z0 VPK

and FZ represents the input-power, output-power transfer characteristic.
Therefore, one would use (161) to solve for P for any given Vor and

then substitute v K into (162) to obtain I' and

P

P =T?p__ . ©(163)

The effects of reverse bias on the Schottky diodes can now be obtained
by substituting

A Vo = A(vPK - VBIAS) (164)
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for the Bessel function arguments in (161) and (162). Here Varas
represents the DC Schottky bias. The substitution is required to account
for the lower diode current produced by the RF signal due to the lower

1
net voltage. Il(J\vPK ) is assumed to equal zerc for negative arguments.

Curves 1llustrating some of the transfer characteristics produced by
the predistorter for various wvalues of G and VBIAS are presented in
Figure 4.16 and 4.17. Note that varying the conductance G has the
effect of changing the degree of curvatures of the transfer characteristic,
shifting along the gain axis. Varying the Schottky bias produces the
effect of delaying Schottky conduction, shifting the rransfer characteristic
along the PIN axis. The two effects combined provide the ability to

synthesize a wide variety of comvex characteristics.

The predistorters were constructed using microstrip on a low-
dielectric-constant duroid substrate (Er = 2.1), see Figure 4.18 and
4.19. Diodes were of the "general application variety", with glass
packages and high parasitic reactances, see Appendix 3. The resonating
shunt stub has been replaced with a silver-mica capacitor with 1ts

leads cut to a specific length. The tuning process was performed on a

network analyzer, with a selected center frequency of 890 MHz. Note that
the capacitor, in fact, appears inductive due to the long capacitor
lead-lengths. The choke structure employed for the Schottky and PIN
diodes is shown in Figure 4.20. It is fairly standard and need not be

further explained.
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Figure 4.16. Theoretical predistorter transfer characteristic,
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Figure 4.20. Predistorter bias structure.
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Since the phase angle of the reflection coefficient must be
maintained in the vicinity of 0°, the length of the coaxial-to-microstrip
connector is critical. By employing a semi-rigid cable slightly less
than A/2 in length, the electrical length from the comnector on the open
end of the semi-rigid cable to the A/4 transformer on the predistorter
microstrip can be tuned to be A/2. Recall that in a transmission-line
medium, reflection angle is A/Z.periodic, hence the reflection angle
at the quarter-wave impedance transformer (0 degrees), is also presented

at the open end of the A/2 line.

In order to provide separate input and output ports with a good
degree of isolation, a circulator is employed at the open end of the AJ2
line. The circulator converts the nonlinear reflection into a nonlinear

transmission.

Two 100-Ohm fixed carbon resistors'shunt the diode network. The
use of multiple resistors in parallel minimizes any lead inductance

effects in the resistors, producing a less reactive load.

Selection of the characteristic impedance of the quarter-wave section
is limited primarily by the range of impedances attainable by the diode
network, and by the need for minimum insertion loss, implying a high
reflection coefficient. A good compromise between these two liﬁiting
factors is the selection of a characteristic impedance in the region of

100-Ohms for a 50~Ohm system. Thus the minimum impedance after impedance

g—__mh_———)



transformation is

Z = — === 200 Q, (165)

where the 50 Ohm load is determined by the two 100 Ohm fixed carbon

shunt resistors. This produces a minimum reflection coefficient of

200 - 50

200 + 50 - ‘- (166)

The maximum reflection coefficient is determined by the RF input level

and the impedance of the PIN device. An estimated value for the maximum

reflection coefficient is greater than .9.

The final predistorter circuit is given in Figures 4.21 and 4.22.

4.3 A Proposed Concave, Convex Predistorter

Some applications might require both convex and concave curvatures.
The proposed circuit of Figure 4.23 could then be employed. The
cascading of two diode networks provides the ability for one section's
impedance to decrease with increasing input amplitude, while the other
section's impedance increases with increasing amplitude. Hence both

expander and compressor functions can be realized.
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Figure 4.21. Predistortion system implementation.
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CHAPTER 5

AN ADAPTIVE COMPLEX RF PREDISTORTION SYSTEM

5.1 Introduction

The "in-phase/quadrature" system has been outlined in previous sectionms.
This section will present the actual predistortion system employed for
this thesis, and illustrate the components required for predistorter

realization.

The mechanisms of adaptive control for the predistortion system

are also presented.

5.2 "In-Phase/Quadrature" System Realization

Realization of a practical "in-phase/quadrature" system is
straight-forward; most components illustrated in the conceptual system
of Figure 5.1 have a practical counterpart. For example, the input
signal is readily divided into the two required quadrature components

by using a 3dB, 90° hybrid. This microwave device splits the input signal

117
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Figure 5.1.

Conceptual "in-phase/quadrature' system.
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into two components with equal amplitude but with the phase of one
component lagging the other by 90°. Therefore such a device is ideal

for realization of the quadrature component separator of the predistorter.

The two nonlinear-amplitude transfer functionms, zp(vIN), zq(vIN),

are generated by the predistorters as outlined in detail in Chapter 4.

Signal recombination is achieved through the use of a Wilkinson in-

phase power combiner, [36].

The practical realization of the predistortion system is shown in

Figure 5.2. Analysis of the system follows.

The predistorter must realize a certain complex transfer function,
that is, a specific AM-to-AM and AM-to-PM conversion over the entire range
of the input envelope. For example, let the desired complex transfer

function to be realized by the predistorter be given by

G(A) cos (wt + 6 + F(A)) (167)
corresponding to an input of

v... = A cos (Wt +8) ., (168)

IN

This representation has previously been discussed in Chapter 1.2.2. Now,
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normally one would resolve the amplitude and phase nonlinearities into
quadrature components in accordance with equations (6), (7) and (8).

The derivation of Chapter 1,2.2 assumes that if no phase nonlinearities
are present, then the output signal will not possess a phase shift,

The derivation also assumes that in the case of no phase nonlinearity,
that the quadrature component should be absent and all of the input
signal should be directed to the in-phase nonlinearity. In general, for
any arbitrary phase nonlinearity, practical realization of the system
in accordance with Chapter 1.2.2 would require a variable coupler to
direct the power split to the two signal paths. Obviously this would

be extremely difficult to implement, An easier system to realize is

one based on a phase lag of 45° as opposed to the previous system's
reference of 0°, see Figure 5.3. Here the ocutput is assumed to be given

by

v = G(A) cos (Wt + 8 + F(A) - 7/4) (169)
Opp

and the input to be given by

Vg = A cos (wt +6). _ (170)

Resolution of (169) into components of cos (wt + €) and sin (wt + 8)

yields the desired result:
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cos wt

Output phasor for
the linear case.

45°

»sin ot

Figure 5.3. 45° reference "in-phase/quadrature"
system.
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= GSA) -cos (wt + e) [cos F(A) + sin F(A)]

v
Opp /2

+ GjA) sin (ot + 8) [cos F(A) - sin F(A)] . (171)
2

Now, if the system requires no AM-to-AM conversion for compensation,
then both the system channels will receive an equal power split and this
memoryless nonlinearity will be compensated by two equal-amplitude
nonlinearities. The previous "in-phase/quadrature' system based on no
phase lag would require the in-phase channel to receive all the input
signal, and the quadrature-signal path to be absent. Thus compensation
is performed by a single amplitude nonlinearity. It must be emphasized
that both systems are identical for analysis purposes, but that the

45° phase lag system more ideally suits the 3-dB 90° hybrid used to

separate the signal components in a microwave system.

5.3 Adaptive Control

As outlined in Chapter 4, the predistorter developed for RF
compensation lends itself readily to adaptive control. A wide variety
of transfer functions can be realized simply by varying the bias for the

PIN and Schottky diodes.
An adaptive system requires an "interactive figure of merit"

indicating the degree of linearity of the compensated HPA. One approach

to this problem is to periodically make static or dynamic measurements

V.
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of AM-to-AM and AM-to-PM conversion [34]. The goal is therefore to
obtain the most linear envelope transfer function, with minimum AM-to-PM
conversion. Such a process, however, is difficult to realize for any

adaptive system.

The same end result of optimum linearity of the transfer functions
can be attained in a far easier manner. As was demonstrated in
Chapter 3.2.4, equations .(128), (129) and (130), minimization of inter-
modulation products simultaneously provides optimum linearity of the
amplitude and phase transfer functions. Thus one need only monitor
intermodulation products, and attempt to minimize these products in an

adaptive manner to linearize the HPA.

The final adaptive predistortion system is presented in Figure 5.4.
A description of the system follows. The RF predistortion system has
previously been outlined and will not be further discussed. After
amplification by the HPA, a coupler samples a small component of the
output signal in order to obtain a measure of the intermodulation
levels present. The output spectrum is then down-converted to some IF
where one can readily filter to obtain the test intermodulation products
required for the figure of merit. Down-conversion is required because
the filter Q would be prohibitively high for direct RF filtering. Due
to filter availability, only a single third-order product was eméloyed
as a linearization parameter. Utilization of a test band of intermodulation
products would be desirable, however. This test band of I.M. products

would involve all contributing orders of nonlinearity .invelved in the

- n4;¥44AA_~__________________________________________________________________________________-l‘.
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the system and provide a more complete linearization.

For any intermodulation "figure of merit", time averaging,
(integration) could be employed. The adaptive control could then

function even with varying envelope signal inputs.

Several stages of amplification may now be required in order to bring
the signal up to a useable level. This useable level i5 determined by
the dynamic range of the detector which converts this IF intermodulation
level to a DC quantity. For example, a useful DC level would be in
the range of 3 volts in order to interface to a ITL-compatible analog~
to-digital converter. Now

2
v
_ 'PK .
T (172)

where R; is determined by the impedance of the operating system, nominally
50 Ohms. So for a detected 3 volt level, the required intermodulation

power 1is

P=<5==90mW = 19.5 dBm. (173)
For the system of Figure 5.4, one might want to obtaln a carrier-to-
intermodulation (C/I) ratio of 50 dBm. Since the amplifier is limited

to a useful range of approximately 30 dBm, the RF intermodulation level

would correspondingly be -20 dBm. The 10-dB RF coupler would then vield
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a =30 dBm level prior to down-conversion. The mixer exhibits a conversion
loss of 7 dB, so the useable IF level would approximate -37 dBm and
IF gain in the vicinity of 60 dB would be required to attain the desired

level as specified by (173).

The filtered and amplified intermodulation level is then detected,
and input to the analog-to-digital converter. The digital output is
then input to the microprocessor and software latched. A software routine
then varies the bias on the predistorter diodes; the diode bias being
generated by digital-to-analog converters where the digital words are
software originated. All digital-to-analog and analog-to-digital
converters were 10 bit, providing a good degree of resclution for both
the diode bias and detected intermodulation levels. The software routine
utilized was based on a "Monte Carlo'", or coarse search routine. After
each change in diode bias, a new intermodulation level iz sampled and
compared to the previdus level, This process continué? over the full
range of the digital-to-analog converter which sets the diode bilas, the
optimum bias level being stored in software. The next diode bias then
varies in the same manner. In all, there are six diodes to be separately
biased; three diodes per predistorter. The two Schottky diodes on each
predistorter are allowed to independently set their own blas; this might

not be required if a set of matched diodes were to be employed.

Following this routine, the predistortion system has the ability to

train itself (i.e., set the predistorter bias) from a cold start., A

;'—
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suitable optimization routine could then be employed, monitoring the
degree of linearity and compensating for drifting and temperature

effects incurred by the amplifier and predistortion system.



CHAPTER 6

EXPERIMENTAL RESULTS

6.1 Introduction

This chapter will outline the performance of RF predistorter,
which was introduced in Chapter 5 and illustrates the improvement in

linearity that can be obtained through predistortion.

System performance will be presented for various linearization
requirements and will demonstrate the limitation of a practical predistortion
scheme.

Measurement apparatus is presented in Appendix 4.

6.2 Predistorter Results

The performance of the RF predistorter introduced in Chapter 3

will now be presented.
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Recall that the predistorter should exhibit minimal AM-to-PM
conversion, and generate a wide variety of convex amplitude characteristics.
The curves of Figure 6.1 through Figure 6.4 present predistorter
amplitude and phase characteristics for a variety of Schottky bias and
PIN currents, and are the counterparts to the théoretical predistorter
curves of Figure 4.16 and 4.17. Note that the effects of diode bias
are as anticipated. Setting the PIN diode to a high state of conduction
tends to flatten the convex curve, while Schottky bias essentially delays
the effects of the nonlinearity to higher values of input powers. Phase
characteristics are also reasonable, with the AM-to-PM transfer charac-
teristics becoming more severe as the input level is decreased. This
corresponds to reflection angle becoming more dependent on residual.
reactance as one proceeds from the right to the left regions of a Smith

Chart along the real axis.

The curves of Figures 6.5 and 6.6 show the effect of memory on the
predistorter frequency response. The amplitude characteristic is seen
to remain comsistent over a wide bandwidth, but the AM-to-PM transfer
characteristic is seen to vary considerably. Hence ﬁhe variation in
AM-to-PM represents the major limitation for the useful bandwidth of the
predistorter. In fact, a non;inear HPA which exhibits the effects of
memory will require specific predistortion coefficients for each
frequency over the system bandwidth. Thus predistortion is inhérently
a narrowband process; system complexity increases greatly as one attempts

to devise wideband predistortion systems.

>
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The question of power dissipation in the diodes should be addressed.
' Dissipation is a fﬁnction of both the input power and reflection

coefficient, as evident from equation (150). An approximate value for
the maximum dissipation can be obtained from Figure 6.1. For an input
power of 20 dBm, the return loss approximatess -5 dB, hence 68 percent
of input power is absorbed. This corresponds to 68 mW. Data sheets
for the RF diodes utilized can be found in Appendix 3 and indicate maximum
allowable dissipations of 250 mW, therefore dissipation is well within

allowable limits and '"burn-out'" is not a possibility.

6.3 HPA Characteristics

The HPA employed for the linearizing experiments was a broadband,
solid-state linear amplifier, useable over a frequency range from 500 MHz
to 1GHz, see Appendix 5. Static AM-to-AM and AM~-to-PM transfer character-
istics for the amplifier are presented in Figures 6.7 and 6.8 at a
frequency of 890 MHz. The amplitude characteristic remains linear up to
an output power of 29 dBm, however, the AM-to-PM characteristic is
extremely erratic with significant AM-to-PM conversion exhibited even
over the linear amplitude region. As such, the amplifier is an extremely
challenging candidate for predistortion compensation. Amplitude
compensation must occur over the region of amplifier compression without
degrading performance of the amplifier over its inherently linear
region (POUT < 29 dBm). 1In addition, the erratic AM-to-PM characteristic
should be minimized over the full range of operation. The curves of

Figures 6.7 and 6.8 are sufficient for the characterization of the non-

4h



Pout (dBm)

140

35 T 1 ! T c
————
30 -
25 =
20 Freq=890 ME -
15 -
10 1 } i —t —
-10 -5 0 5 10 -] 20
Pin (dBm)
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linear HPA characteristics over a wide bandwidth on account of the
amplifier's broadband capability. The HPA then appears to be "nonlinear,

effectively without memory' if operation is restricted to a relatively

narrow band.

It should be understood that amplitude predistortion compensation
can only occur up to the point of amplifier saturation. No improvement
in linearity can be gained after this point. This is most readily
demonstrated through equation (99 ) which indicates that the predistorter
must generate a transfer characteristic which is formulated from the
inverse of the amplifier characteristic. If the amplifier has saturated
(a slope of zero), then at that point the predistorter must have infinite

slope. Obviously, this is a practical impossibility.

6.4 Predistortion System Performance

A combination of tests ig necessary to evaluate the success of
the linearization system. These include:

(1) Static AM-to-AM transfer characteristics

(2) Static AM-to-PM transfer characteristics

(3) Two-tone intermodulation tests

(4) Three-tone intermodulation tests .
The first three tests indicate the degree of linearity of the system over
a narrow bandwidth. The three-tone intermodulation test was empioyed

to simulate a multi-carrier wider band input spectrum.
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Since the system is designed to train the predistorters at a
particular amplifier output power, several of these output power
linearization points should be attempted. For example, one should not
attempt to train the system at an amplifier output power beyond saturation
as predistortion is unable to compensate for amplifier compression,
although the resultant intermodulation products will likely be reduced.
This reduction would be due to increased amplifier linearity before
compression. Similarly, it would be unwise to train the predistorter
over a region of the amplifier's inherent linearity as nothing is to be
gained. Consequently, predistorter training should occur over some region
‘of the nonlinear amplifier characteristics before saturation. For this
’thesis, two linearization points were selected; a "low power" of 27 dBm
and a "high power'" of 30 dBm. These powers represent two practical
extremes for the linearization system. The lower power linearization
simulates a system where the goal is an improvement in linearity of a
"linear" amplifier. The high power optimization more closely models the
situation where one would attempt to compensate for a nonlinear HPA.

Linearization results follow.

6.4.1 System performance; optimization at 27 dBm

Predisortion performance for system optimization at 27 dBm is

now presented.

Figure 6.9 illustrates the static, single-carrier amplitude transfer

characteristics for both the amplifier and the linearized amplifier.
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A clear improvement in linearity has been obtained up to the point of
amplifier compression; the cost of this linearity is a loss of approximately
. 8 dB in overall system gain. WNote that this loss is the minimum that

could possibly be incurred by a passive predistorter as gain compression
approximates 8 dB at the point of saturation. It is important to realize
that this 8 dB loss could be regained simply by adding 8 dB of amplifier
gain anywhere in the system. For example, since it is relatively simple

to construct low-level, small-signal amplifiers, one would most likely
regain the 8 dB before any high level amplification. The gain of the

HPA has in no way been affected. This contrasts to the situation of
negative.feedback linearization where the net effect may be an 8 dB loss in
system gain, but this 8 dB loss would be in HPA gain. The feedback amplifier
will not be able to obtain the same "linear' output power as the pre-
distortion system. Figure 6.10 shows the static AM-to-PM transfer char-
acteristic of the amplifier and the compensated amplifier. There is no
significgnt improvement here for output powers less than 26 dBm (the

phase characteristics become identical) and only a minor improvement for
powers above this threshold. Evidently, in this case, the predistortion
system was best able to minimize intermodulation products by linearizing

the amplifier characteristic while ignoring the phase nonlinearities.

Figures 6.11 and 6.12 demonstrate the carrier-to-intermodulation
(c/1) performance of the amplifier for a two-tone test. As expectad, the
third-order products were found to be lower for the linearized system

with best performance observed for output powers in the vicinity of
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system optimization. The maximum improvement in the C/I ratio is
approximately 20 dB. This improvement is achieved at the cost of
poorer fifth-order C/I performances. However, fifth-order products are

usually of such low amplitude that an increase in this level is tolerable.

Figures 6.13 and 6.14 present typical output spectra for the un-
linearized and linearized amplifier respectively. Note the increase in
higher -order products for the predistorted amplifier, as predicted in

Section 3.2.5.

6.4.2 System performance; optimization at 30 dBm

Referring to Figure 6.15, one can again see the improvement in
amplitude linearity provided by the predistorter. The characteristic

is similar to that of Figure 6.9, although not quite as linear.

A significant improvement in the phase nonlinearity has been obtained,
however, as demonstrated by Figure 6.16. The AM-to-PM coefficient,
(the slope of Figure 6.16), is much lower after amplifier linearization
than for the HPA over the entire range of output power. The important
increase in phase linearity occurs in the region of output powers from
26 dBm to 31 dBm. Here the linearized AM-to-PM coefficient is

approximately 1 deg./dB as opposed to 7 deg./dB for the HPA,

Figures 6.17 and 6.18 present the third and fifth-order ¢/I results
for the 30 dBm optimized system. Again, optimum third order C/I ratios

occur close to the optimization point; the improvement is seen to-be

approximately 15 dB.

a
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Sample output spectra are presented in Figures 6.19 and 6.20 for

the unlinearized and linearized amplifier respectively.

6.4.3 Ideal predistorter transfer characteristics

Having seen the results of the previous sections, mechanisms for

improvement of the system should be evaluated.

A good starting point is to predict the ideal predistorter transfer
characteristics required for compensation of the HPA. With the aid of
equation (171), the curves of Figure 6.21 were plotted; Figure 6.21
illustrates the ideal predistorter‘transfer functions required for
simultaneous amplitude and phase compensation. The interesting point
to note is that while the "in-phase'" channel requires a convex function
for compensation, the "quadrature' channel requires a concave function,
with gain decreasing with input power. As the input power approaches
6.5 dBm, the '"'quadrature" channel appears to be absent. In fact, this
is predicted by equation (170) as this represents the point where the
amplitude dependent phase approaches 45°. As the phase increases past
this point, the "quadrature" channél is required to produce a component
180° out of phase with the components that are required for lesser
phase shifts (on a voltage basis, this signified a negative voltage

component) .

Several limitations of the system are now evident. First, certain

compensation situations may require both convex and concave linearizers
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to be utilized. Second, the present predistortion system has no facility
for correcting for phases greater than + 45° from the linear phase
reference. Recall that the predistorters were required to produce
negligible phase shifts and that a considerable effort was made to

minimize the generation of significant AM-to-PM conversion by these circuits.

The two factors listed above contribute to the degradation of

performance of the system.

6.4.4 Three-tone intermodulation performance

The three-tone intermodulation test is useful to simulate a multi-
carrier spectrum. For this system, such a test was employed to demon-
strate the degradation in predistortion performance as bandwidth is
increased. Figures 6.22 to 6.29 illustrate three-tone intermodulation
spectra for various bandwidths. The system is seen to be less effective
for wideband intermodulation reduction; for Figures 6.28 and 6.29, the
bandwidth approaches 200 MHz and the improvement provided by the
predistorter is minimal. This was expected, as the system can no longer
be classified as "nonlinear effectively without memory'". Wideband

predistortion requires a '"'full memory' compensation system.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

o A practical, 900 MHz adaptive RF predistortion system was designed
and implemented. A significant improvement in amplifier linearity was
obtained, with two-tone carrier-to-intermodulation ratios being improved
by an average of 15 to 20 dB. Static AM-to-PM and AM-to-PM transfer

characteristics were also seen to be linearized.

Adaptive control allowed a totally autonomous system that could
initially train the predistorter for optimum linearity, and maintain this

linearity, correcting for long term aging and temperature drifts.
A unique RF predistorter was devised. This predistorter was based
on nonlinear reflection so as to minimize amplitude-dependent phase

shifts. This RF circuit also readily lends itself to adaptive control.

Predistortion performance can be improved through increased circuit

complexity.
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As presented in Chapter 6.4.3, ideal predistortion for certain
amplifiers might require the generation of both convex, as well as a
concave nonlinearity. Hence, the proposed RF circuit of Chapter 4.3

should be further developed and implemented.

Certain authors, [25], [27], have utilized equalizers to correct for
linear distortion in conjunction with nonlinear predistortion systems.
The linear equalizers improve wideband predistortion performance by
increasing the frequency limits over which the HPA can be classified
as "effectively without memory'". For predistortion systems where amplifer
operation must occur over a wide bandwidth, the proposed topology of
Figure 7.1 could be implemented. Here, linear filters provide the
frequency response required for compensation of "full memory' nonlinearities.
Each predistortion subsection is required to compensate for only a narrow
range of frequencies and each predistorter would generate a different
complex transfer function, as required for linearization in that narrow

frequency range.

In summary, direct RF adaptive predistortion has been shown to be
effective for system linearization. Adaptive control allows for an
autonomous system with the ability to train to the HPA transfer functions
and maintain 1ineariéation conditions, compensating for aging and

temperature effects.

Advancements have also been made in the analysis of nonlinear

systems; these advancements are summarized in Section 3.3.
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APPENDIX 1

NOTES ON LINEAR INDEPENDENCE

A class of random processes, [ th, th, s ,th], is considered to be
linearly independent if
Cxx(tl,t2)= Rxx(tl,t2)-E(Xt1)E(Xt2)=O. (371, [38] (Al-1)

Here Cxx(tl,tZ) is the covariance function, Rxx(tl,tZ) is the correlation

function and E(Xt) is the expected value.
If these processes are zero mean, then linear independence implies

R_ (tl,t2)=0. (Al-2)
XX

For the system with "in-phase/quadrature" components the objective is to
see under which conditions the two signal paths are linearly independent, see

Figure Al.l. Denote the output as z(t), the cos wt component as x(t), and
the sin wt component as y(t). Now

z(t)=x(t)+y(t) (Al-3)

In order to determine the output spectrum, one must first obtain the




x(t)

Input
z(t)

90°

y(t)

Figure Al.l. Quadrature signal path.

eLT
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correlation function of z(t), Rzz(tl,tZ). Assuming a stationary process

Rzz(tl,t2)= RZZ(T)= E[ z(t) z(t+1) I= E[ (x()+y(t)) (x(t+T)+y(t+1)) ]

=R__(1)+R__(T)+R__(1)+R__ (1) (Al-4)
XX vy Xy yx
where T=t2-tl. The resultant spectral density, Szz(w) is therefore
Szz(w)= Sxx(w)+8yy(w)+sxy(w)+syx(w). (Al-5)

In order to be able to acd S (w) and S_ (w) to obtain S (w), we must
XX vy 2z

* have

sxy(w)=syx(m)=0 (Al-6)
and
R (t)=R (1)=0. (Al1-7)
xy yx

Now assume a random enveiope, A(t). Then

o
~
Ll
~
L}

E[ A(t) cos wt A(t+1) cos w(t+t) ]

E[ A(t) A(t+1) 1 E[ cos wt cos w(t+1) ]

= RAA(T) cos wT., ‘ (Al1-8)

Since t=T/4 (90°), one readily sees that

R (1)=0. (A1-9)
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A similar result can be.obtained for Ryx(T). Hence for narrowband results, the
two quadrature signal paths are linearly independent and the resultant power

spectrum can be obtained through the addition of the individual spectra.
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APPENDIX 2

SELECTED CHEBYSHEV TRANSFORMS

Selected Chebyshev transforms are now presehted, [6].

We define a narrowband input waveform,
u(t)= a(t) cos[ 2nft+a(t)]. (A2-1)
The output is a function, v(u), of the input, hence

Vou= V( alt) cosl 2afesa(e)]). (A2-2)
th
Denote the m  -order frequency component of the output to be Vm(a).
The Chebyshev transform evaluates vm(a) for any given v(u).

Table A2-1 presents several relevant transform pairs.
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TABLE A2-1

v{u) v (a) Blachman's transform
m
number, [6]

%

un; n=0,1,2,... 2( )) (a/2)" T35

n
1/2(n-m

m=n,n-2,0+~4,...,0
0 Otherwise

sin u (-p{m-D/z 3 (a) T7

m Odd
0 Otherwise

sinh u 2 Im(a) T10

m Odd
0 Otherwise

*k
The binomial coefficient (:) is generalized as

T'(n+l)
I'(r+l) I'{n-r+l1)

It vanishes whenever r is a negative integer.
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Mechanical Specifications

Outline 15 Qutiine 12 (DO-35)
Lead Material: Dumet Dumet
Lead Finish: 2B00 Series: Tin Tin

2300, 2000 Series: Gold
Maximum Soidering Temperature: 230°C for 5 sec. 2680°C for 10 sec.
Minimum Lead Strangth: 4 lb. Pull 10 ib. Pull
Typical Package Inductance: 2800 Saries: 2.0 nH 1.8 nH

2800, 2000 Series: 3.0 nH
Typical Package Capacitance: 2800 Series: 0.2 pF 0.25 pF

2300, 2900 Series: 0.07 pF

The Isads on the Cutiine 15
package should ba reatricted
30 that the bend starts at
lsnst 1/18 inch from the glass
body.
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