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1. Introduction  

The aim of this paper is to provide an analytical framework for 

the analysis of seasonal time series. From this framework, a general class 

of seasonal stochastic processes is generated, which encompasses the majority 

of the seasonal processes commonly used today, and the model structure of 

such processes is analysed. 

The seasonal analysis of stochastic processes was introduced in 

the early sixties to tackle two separate problems: the forecasting of a 

time series characterized by seasonality and the seasonal adjustment of 

economic time series. Those problems were studied independently of one 

another and distinct approaches were adopted. The modelling of a seasonal 

time series for forecasting purpos%has been dominated by the introduction 

of the seasonal multiplicative model by Box, Jenkins and Bacon (1967). 

The seasonal adjustment analysis has mostly started from the unobservable 

components model in which the process is seen as the sum of three unobservable 

components, the trend-cycle, the seasonal, and the irregular or noise component. 

In this context two paths have been followed: Nerlove (1964) and others 

have proposed spectral criteria a seasonally adjusted series ought to follow, 

leading to Granger's (1976) definition of the seasonal, while Hannan (1964), 

Hannan, Terrell, and Tuckwell (1970), Couts, Giether, and Nerlove (1966), 

and Grether and Nerlove (1970) have proposed parametric stochastic models 

for the unobservable components. 

a 
In spite of extensive development, great degree of confusion is 

still found even at the most elementary level of what constitutes a seasonal. 

Hence, if one starts from one of the simplest seasonal  mode', the model 

(1- e' re)15)Pql the approaches proposed by Grether and Nerlove, Ashworth 

and Tunicliffe Wilson (1972), Brewer (1976), Hannan, Terrell and Tuckwell, 



1 

and Box, Hillmer and Tiao (1976),... can be shown to all imply different 

decompositions 	. Alternative approaches to the conceptualization and 

definition of seasonality in terms of spectral properties or in terms of 

a causal eodel are shown to be inadequate in providing a general definition 
etkel4 

of the unobserverl seasonal component. 

The basic problem with seasonality has been seen as "the close but 

not perfect approach to regularity",and this has led to the use of vague 

concepts such as "slowly" moving seasonality,... 	This view is somewhat 

misleading since slower changes in seasonality do not imply that the series 

is somehow more seasonal. Generally, it would only imply that the presence 

of seasonality in a given process can be detected more easily. In fact 

the basis for the periodicity of a seasonal series and the only periodicity 

which is exactly "regular" is the periodicity which is embodied in the 

concept of time and which reflects the relative position of the earth and 

the sun. The realIation of this problem has led Guilbaud (1968) and Fontenay 

(19/3) to present an alternative conceptualization of a seasonal time series. 

These ideas are developped and the model of a bi-dimensional time is proposed 

in which this periodic dimension is distinguished from the chronological 

dimension. Those dimensions are directly related to the unobservable components 

since the trend-cycle is a representation of the process which will depend 

solely upon the chronological time while the seasonal is a residual associated 

with the periôdic dimension, the irregular being that unobservable component 

which is independent of time. Yet this time model does not imply a prior 

definition of the unobserved components. In bidimensional time) stationarity 

is immediately generalized in terms of seasonal stationarity, i.e. stationarity 

in the seasonal dimension, and chronological stationarity, i.e. stationarity 

(1) Throtighout this paper, in as much as possible, the notation introduced 
by Box and Jenkins (1970) will be used, 



in the 	chronological dimension. The process being exactly periodic 

in its seasonal dimension, it can be repreSented by a Fourier expel-peon over 

the seasonal dimension. Such a representation enables one to disassociate 

the periodic aspect of the process which is associated with the frequencies 

from its Chronological aspect which is associated with the amplitudes. 

Such amplitudes, which depend solely upon the chronological time, can be 

conceived as stochastic processes defined in the chronological time. If 

those are specified to be simple random walks, the model implicit to Hannan, 

Terrell, and Tuckwell is obtained. In general the aggregation of these 

Fourier sums, given seasonal stationarity, is shown to yield ARMA seasonal 

processes. 

It is shown that the assumptions needed to derive Box, Jenkins and 

Bacon's multiplicative model, i.e. a model which is multiplicative both in 

its AR and in its MA polynomials are very restrictive - thus providing an 

explanation for Plosser (1977)'s observation to this effect. In other words, 

the approaches used for modelling time series and for seasonal adjustment 

are shown to be particular specifications all reiated to the same framework. 

The general seasonal model will yield a general form of Box, Jenkins, and 

Bacon's trigonometric model. In particular, in the eventuality that the full 

complement of seasonal frequencies is s needed and that at least one root is 

common to the amplitude processes correspondini to the zero frequency and 

to each of the seasonal frequencies, a model multiplicative in its AR 

polynomial is obtained. This result does not depend upon the other roots of 

the AR polynomials, the variance of the various generating white noise processes, 

or even their 	respective MA polynomials. 

It is shown that not all ARMA multiplicative seasonal models can 

thus be derived form the general seasonal model. However, even though processes 

which are Clearly seasonal, and which are not thus derivable, can be obtained, 



such as t 
0, 

found to establish whether a given model which cannot be obtained from 

the general class of models is properly a seasonal model. 

In chapter 2, the literature is reviewed. In chapter 3, the bidimen-

sional model of time is introduced and the general seasonal model is developped. 

In chapter 4, the general seasonal model is shown to yield in general a 

trigonometric seasonal model, and under certain assumptions a multiplicative 

model. It is shown, also, that not all multiplicative seasonal models can 

thus be obtained. 

general criterion is 

I  

I. 



2. A CRITICAL REVIEW OF THE LITERATURE  

2.1 Introduction  

Two alternative approaches to the introduction of seasonality in 

a stochasric process are reviewed. The first, introduced by Bacon (1965), 

consists in an approach based onthe premise that observations made in the 

same month years away should help explain today's observation. Even though 

it has the meritremarkably simple, in that a seasonal component needs 

not be defined - the process is modelled as a whole - , the class of models 

thus obtained, isk• sed on a heuristic argument and has the added disadvantage 

that the itnroduction of even a small error will yield a model which does not 

belong to this class. 

The second type of approach is based on the work which has been 

done toward developping a seasonal adjusbInt method. It implies both that 

the composition of a seasonal series as a sum of unobserved components and 

that the definition of the seasonal unobserved component are accepted by most 

researchers. It is shown that this is not the case with the second step: 

e 
even the most inocuous seasonal AR model, 	0-15 3.) )1,„ :CI 	g:>< b4 I  , will 

lead to alternative decompositions, depending upon the analyst. 

Alternative approaches to the definition of seasonality, by means of 

a spectral criterion and causal seasonal variables, are then reviewed and 

rejected. 

From the existing literature one can only choose between the Box, 

Jenkins and Bacon class of models, which is shown to be inadequate, and 

classes of models based on the arbitrary acceptance of one of the various 

definitions of a . seasonal component proposed in the literature. 



2. 	The Box, Jenkins, and Bacon  (BJB) Multiplicative Seasonal Model 

The development of what is commonly known under the name of 

multipl±tative seasonal ARIMA model can be traced back to Bacon (1965), Box, 

Jenkins, and Bacon (1967) and Box and Jenkins (1970). In the development 

of this model, two approaches were investigated. 

The first approach considered to study the modelling of a 

seasonal process is based on desired property of the eventual forecast function 

of any seasonal process; such an eventual forecast function should trace out the 

seasonal pattern of the series. In fac4 Bacon suggests that 

"... its solution was a mixture of sines and cosines 

possibly mixed with polynomial terms to allow for 

changes in level and changes in seasonal pattern". (p •  

The first approach has been illustrated with various examples, 

both to show its eventual applicability and its supposed limitation. Its 

supposed limitation is that 

... it is not true that periodic behavior is necessarily 

represented economically by mixtures of sines and cosines. 

Many sine-cosine components would,-for example, be needed to 

represent sales data affected by Christmas..." (Box and 

Jenkins, 1970, p. 302). 

Even though it has been revived recently (see,for instance ,Abraham 

and Box, 1975),this approach has received little attention on the grounds that 

it is not parsimonious. 

The second approach to be proposed starts from the Buys-Ballot 

table in which columns are used to denote months while rows 



denote 	years. It is hypothesized that the process at time t, i.e. in 

year r and month j, should not only be dependent upon past observations 

within the same row (same year),as for a non-seasonal process, but that it 

should simultaneously depend upon the observations within the same column, 

i.e. made in the same month, years away. A stepwise method was then proposed 

such that,considering any column, the following relationship was hypothesized: 

G (10) e 

Evidently e t  was not assumed to be white noise; rather it was assumed that 

was such as to filter all seasonal effects out of the 

original process. To that extent, it was further assumed . that et  could be 

modelled as any ordinary ARIMA process i.e. 

<PC3) 

where a t is a white noise. 

Combining the two models, the general multiplicative seasonal model 

is obtained: 

cpc9e) §celh eub) 0 E  

In practice, however, most attention has been given to the particular 

multiplicative seasonal model (or Airlines model), also developped by Box, 

Jenkins, and Bacon, i.e. the (0, 1, 1) x (0 .5  1, 1) model, This model is clearly 

related to the first approach considered here since its eventual forecast 

function can alternatively be written as: 

k 	 (-0 	(-E 

‘. 
v t 	‘ o) vvx 

or  
bo  -}- /, 	bli 	*Is >i .e.Q. + 62  e  S•tet 

Where ) do - tit .e f ib 	(Box and Jenkins, 1970, p'. 303 and p. 310). 
..s.. - 
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The latter result follows from the decomposition of the polynomial 

(1 - B
s

) in terms of the roots of unity, i.e. from 

(t_vbje 	(‘...7))(1..Tv?›+tn(1-t4112. )(14e)(i+E.411 )(1+Fyit.ve,') ( 1-1-1.) 

It follows that the particular multiplicative seasonal model can be 

represented as a periodic function with adaptive coefficients provided the 

full complement of sines and cosines is used. 

The argument that the process in time t should depend both upon 

observations month away (same row),and upon observations years away (same 

column) does not appear, sufficient at,first sight, to justify the multiplicative 

model above a model such as 

11 or - . the one proposed by Sims (1976). Both Sims' model and the above model  

however would have eventual forecasting functions which do not generally meet 

the desired criterion. Furthermore they will be shown not to be generally 

related to simple notions of seasonality. 

2. 	Couts, Grether, and Nerlove's (C.G.N) Approach  

A different approach to the development of seasonal time series models wai 

pionneered by Couts, Grether, and Nerlove (1966) and expanded by Grether 

(1966), Nerlove (1967), Grether (1968), Grether and Nerlove (1970) and 	 11 

Pagan (1973). Starting from the classical decomposition of the seasonal 

time series 	unobserved (and unobservable) components, the trend-cycle 

(C ) the seasonal, (S
t

) and the irregular 
(It)' 

such that, if z
t 

is the 
t 	• • 

observed series, 

C .L  + 	+ 

stochastic models are proposed for each of the unobserved components. The 

specification of those models evolved, and, in Grether and Nerlove (1970), 



( t_ 	S L 

• 
those models are given in their general forms as: 

(i)(1)  c 	G, (ee) ctett  

Oel 	Gs C'1) 

1 - 

where lip (B),ED c  (B), and() (B) are assumed to be low order polynomials in 

B while 4* (ES) 18  assumed to be a.low order polynomial in B
s 

and where 

are assumed to be independent white noises with - a
C,t' 

a
S,t' 

and a
I,t 

variances le
2 ct-2 ' and 	. 
C' 	S 

The proposed justification for,S
t
's model evolved over time, 

hence Couts, Grether, and Nerlove, having'specified a non-stationary process 

for S
t

: 

St  

noted that: "the seasonal component S is trending as well; it 

follows a model much like the trend-cycle in the 

original Theil-Wage model if 's' is taken to be 

the number of observation periods in a year" (p. 11). 

Grether (1968) shifted to a stationary seasonal process. In a 

first step, considering the simplest model: 

he introduced the justification that S t' to be a seasonal unobserved component, 

should peak at each of the seasonal frequencies. In other words, hé 

shifted to a model consist#nt with Nerlove (1964)'s definition of a seasonal. 

In fact, it was on the basis of this general justification that a non-

seasonal moving average, i.e. a moving average characterized by a low order 

polynomial in B rather than in Bs , was proposed. Noting that, in the simplest 



model given above, all the peaks, in the spectrum, are of equal height, 

the following generalization was proposed: 

C) < 11 
( 	 ast  

Such a model does generate a seasonal the spectrum of which will have 

progressively smaller peaks, as one moves toward higher seasonal frequencies. 

Unfortunately, he overlooked the fact that, through this transformation, the 	11 
spectrum will not peak anymore at the seasonal frequencies. 

The intent of those authors was to propose a method to investigate 
11 

seasonal adjustment and not to model stochastic seasonal processes. Even though 

both objectives are closely related, they are not identical. In fact, the 

implied model for z t  was not formally derived. Nevertheless all the results 
necessary to its derivation were provided; having specified 11 c cç) 	= c t 
the autocovariance generating function (AGF) of zt'  K 	obtained, on 

the assumption that the generating white noises are normally distributed, 

and independent,as the sum of the unobserved components'.AGF, so that 	 1 

4trt" ( 1-  Qt'b °- C .1 0.21 '‘  ( 1 Crf) i 	) 
0 	 1 

	

(‘-ere) - ' 	G )(1- e  (I -  4' F j'Y' ‘  r2" 4  e.7" 

(1 0? t 	ça.e) 

+ (1- cpt e" ( c)e)(1- et;)(i_. 	cçl 1 ) S 

.2 

If 

Each of the three elements of the sum, within the last bracket 	 11 

on the right handside of the equation, can be viewed as the AGF of moving 

average processes, and, once they are specified on the unit circle, (B = e )‘) 

they are non-negative, and their sûm will be non-negative at all frequencies. 11 



11 

It follows.from Wold (1954) that the last bracket, on the left handside, 

can be rewritten in the form E?
% 
 (B)ED (F)er2 where (57

2 is such that glp 
= 1 

iAc (B), and where Gc (B) will be (s-21edegreeit polynomial. Then ' 

2 

0 

0 	D 
The model implicit to Couts, Grether, and - Nerlove's approach has 

thus been derived as 

çt - cc)2:b1) Vee 
The general model will be 

c (ID)
&  

cP(5) ce) 	c%) 

It follows that a multiplicative seasonal class of models was implicit to 

Couts, Grether, and Nerlove's approach, and that this class of models, which will be 

called the C.G.N. class, differs from the B.J.B. class of models in its being multipl 

cative only with respect to the autoregressive portion of the model. 

Finally, it can also be shown, not only that the C.G.N. model 

is more general than the B.J.B. model but also that the B.J.B. model is 

a most unlikely model. Assume that on the basis of an observed series, z t , 

a multiplicative B.J.B. seasonal model is hypothesized, but that in fact, the 

real process z t 
has been observed with an independent error, et , which will 

be assumed to be white noise, in such a way that 
,e 

°I4 	e k. 
then, since z

t 
and e t are 

independent, 

og 
1e( C9e) 	(.3) + 	Ca) 

#i 
Had a C.G.N. multiplicative seasonal model originally been 

sepcified, then z* would also be described by C.G.N. model, and'possibly a 



S
t 't

hen :hen 

_ 	)7+?(.P1 

11— 

B.J.B. model, even though the latter possibility is highly unlikely, since 

where 

( t) 2 i cp.1)Cide-b)(Pl cr?c;)'?(' e'2ec.) 11.cr-) 

9 , 	q3:6-  Ce) 6-7-cts  z %I L%) e.e) 	 (_;'n qcpi) cr2  

It is clear that it is unlikely that) 1,s, (B) can be written as the product 

of two low order, but non-null, polynomials, one in B and the other in Bs . 

Itvac1 
However , A  a B.J.B. multiplicative seasonal model been specified for 

and, again, it would clearly not generally be the case .that 	* (B) could 

lr 
be written in the desired multiplicative form. 

2.4 The Hannan, Terrell, and Tuckwell (H.T.T.) ApEroach  

Hannan (1960, 1963, 1964, 1970), Hannan, Terrell, and Tuckwell 

(1970), and Pagan (1973) studied the same problem as Couts, Grether, and Nerlove; 

11 seasonal adjustment. For this same reason, they also opted for the unobservable 

components approach, and a seasonal.model for .Èhe overall process, implicit 

to their approach, will be shown in this paper to be an ARIMA model multipli-
cative in its autoregressive part. 

The R.T.T. approach is comparable to the CGN approach in another 

way; the corner stone of the approach is Nerlove (1964)'s seasonal 

definition in terms of the spectrum. The stable seasonal is associated with 

a periodic function, the Fourier represensation of which is favouredl 

( 
,Q Cos ‘ r\  e e 	Sgt.\ )i {7 

X  

where ID 	is identically zero. 
2,J)/2_. 	 11 

1 
1 
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The amplitudes could just as well be the realization of some 

random variables, and they find it natural to introduce a further genera-

lizatidri by letting these amplitudes be stochastic processes which vary 

with time. Denoting those stochastic processes by  Sand  S t,r1j2 44„, 

Hannan assumed that they are AR (1) and independent processes, such that 

Observing that even if 	if very close to 1, say .98, given a monthly 

series, the autocorrelation of the seasonal . components, five years apart, would 

only be .3, which would'imply a very unstable seasonal, Hannan further 

simplifies the model by letting those seasonal components be modelled as 

random walks, i.e. he sets § A  = 1. The following model for the seasonal 

unobservable component is thus assumed: 
e ht. 

Co S 

 

?\Q  

\v (4eet 

The approach adopted by those authors, in their seasonal adjustment 

procedure, consists in an iterative approach , in which the trend is first 

filtered out (partial prewhitening), and then the seasonal sub-components correspon-

ding to each seasonal frequency are filtered, one frequency at a time. Three 

alternatives but related.procedures are proposed to remove the trend; it will 

suffice at present to look only at the implications of the third method, in 

which the trend-cycle, C '  is assumed to. be 
of the form: 

t 



1 1+ 

e, 

It will be one of the object of this paper to show that this model, 
••• 

together with the irregular implies that z t  is represented by an ARIMA 

(0, 1, 2 1- s) x (0, 1, 0). It will follow, from this result that the HTT 

approach generates a class of redels generally similar to that generated by 

a CCN type of model. 

2.5 The Seasonal Unobserved Component  

Only the first of the various approaches reviewed attacks the 

problem of seasonal modelling without worrying about the seasonal composition 

of a time series. However it has been shown that the class of models thus 

entertained was not conceptually a fully appropriate class. To  accepta 

seasonal class of model on analytical grounds, at this stage, either Couts, 

Grether, and Nerlove's approach or Hannan, Terrell and Tuckwell's one would 

have to be adopted. Both of these approaches depend crucially on a series 

of assumption, and in particular they both depend on accepting the process 

has been "composed" of a sum of three unobservable components C t' S t' and 

I
t' and on'accepting the specificationgiven to each of those processes. 

The composition assumption, i.e. z t  = C t t S t 	I t , is quite 

generally accepted, hence, in as much as the class of models proposed depends 

upon this assumption, it will still be a very general class. Similarly the 

component (C t  4- I t ) does not raise, for most analysts, too many questions, 

since it can, without loss of 	generality, be assumed to be represented, 

for instance, by a standard ARIMA model. It is with S t , the seasonal 

unobservable component, that a serious problem arises. To illustrate the 

• disarray one can observe today in the literature, it is sufficient to study 

one of the simplest seasonal model: 



Jb.1 

• 

VIt›>) 

and the.hypothesis that 

e .E  + st  + t t  

and to ask the question as what is the seasonal? It has already been shown 

that Grether and Nerlove's answer is simply that this is a seasonal unobserved 

component, hence that 

C t = I t = 0 

Ashworth and Tunnicliffe Wilson (1972) and Brewer (1976), however, 

have proposed also a seasonal adjustment procedure for ARIMA models. While 

Ashworth and Tunnicliffe Wilson's approach can only treat the situation in 

which ti = 1, Brewer's is not so constrained. In either case, the proposed 

procedure implies that the irregular alone would be zero, for this model, 

and that 
(1- 	 a k  

% 

-Q s  e s  (-1 ) ct  

where k
c 

and k are constant, L e  CS1 ) = I # (Î'Ve> +  

and eld,(B) is an (s 	2)degree polynomial in B.  

It follows from results which will be obtained below that, for Hannan, 

Terrell, and Tuckwell, none of the three unobserved components would be null, 

and  that  the following models can be derived: 
( ■ -czkve) 

 

Oc  
t. a 

(?)) 
Q 	 I 

where i are  independent white noises and 
Ct e 	a E 	Lkek 	 b 

where Exn›.) le 	 a  cr,,,L)k degree polynomial in B. 
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Recently Hillmer (1976) and Box, Hillmer, and Tiao (1976) have 

developped a method to deseasonalize the BJB particular multiolicative model. 

Their aeroach, translated in the present context, assumingti = 1, would 

imply an answer generelly similar to Hannan, Terrell, and Tuckwell, but for

•  the fact that both C t and S t 's model would be non-invertible, hence that 

a 	and a 	would have smaller variances while aI,t 
would have a greater 

C't 	S,t e 49. ate ee  variance, and that ED (B),would generally be a (s - 1),Do1ynomia1 in B. 
A' 

The review of the state of the art can stop at this stage, even 

though this is far from an exhaustive list; it is sufficient to note that, 

unless some further clarification is offered, one would still face the 

11 

1 approaches, which amount to designing the model from its unobserved components, the- 

appears a need to develop a general definition of seasonality. 

fundamental problem of the conceptualization of the seasonal problem. 

When one starts with the Buys Ballot table, one is apparently miÀed in 

proposing the B.J.B. model, yet, to have some confidence in the alternative 
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2.6 The Spectral Definition  

In the stochastic domain, just as in the deterministic one, 

seasonal modelling has evolved and "progressed" despite the obvious lack 

of egreement as to what constitutes the seasonal unobserved component. The 

problem of defining the seasonal is necessarily intertwined with the seasonal 

adjustment problem and.most researchers have approached the question from the 

later point of view. 

The general attitude toward the definition of the seasonal has 

been one of caution. This reluctance has led to purposedly vague proposed 

definitions. For instance, Baron (1973) defines seasonality as "the monthly fluctuations 
which recur every year with more or less the same timing and intensity" (p.21). 

In spite of this vagueness, two distinct but related themes appear time and 

again, namely, first, that the seasonal is what could be called "quasi-

periodic", i.e. that the same pattern "almost" repeats itself year after 

year, then that, as a component, it should average over a calendar year close to 

zero, hence that it ie some sort of deviation about the trend. The first 

attempt to a systematic treatment of the seasonal composition of a series was 

proposed by Lovell (1963) in the form of a set of. axioms. Unfortunately, 

the proposed axioms did not necessarily apply even to the simplest 

specifications (Lovell, 1966), and this failure can be traced back to two of 

Lovell's desired properties; orthogonality and symmetry, for which an 

had been 	• 	
• 

inadequate rationalization ,. developped (Fontenay, 1973). 

Most researchers have been content with proposing some a priori  model for 

the seasonal and have concentrated their attention on the estimation problem 

of the specified model (Jorgenson, 1963; Grether and Nerlove, 1970 ; Box, 

Hillmer, and Tiao, 1976,...). Even though it would be foolish to imagine 

that the approach to seasonality exists, this shyness toward defining the 

problem renders much of the existing worleof little use for the researcher 

who has to select one among the many methods proposed. 
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Nerlove (1964) was, with Lovell, one of the first to attempt to 

cope with this problem and to propose a definition for seasonality which 

be as...general as possible. Since Nerlove's approach is still relevant 

today (Granger, 1976) it is useful to review it. The analysis begins from 

the concept of a stable seasonal with which is associated a periodic 

function, with the year as period, yt . The Fourier representation of this 

function.is  , 
10 0 -t- 	3k) C°3 4- i b 2,-É+1 5%1V\  

A  
He begins by letting be jt= 0, 	s , since  b 5  = 0, be 

random variables. Then‘he lets bo be any stochastic process, as long as 

b o is independent of 13)2 	je 7- e s ,, • • • , . 	Denoting the component which 

corresponds to the_kith frequency by ït) where x,t 

where -.(k is a uniformely distributed random variable, he lets ddk be 

itself a stochastic process xA with spectral density function Kygt,e. x,t 

X.eit cos ( À.,e+ re-) 
's spectral density at the frequency It follows that 15An px, t 

will be proportional to the sum of Ke Olih) 	and 

and, provided, as it is generally assumed, that Kx 00 peaks at the zero 

frequency and has its power concentrated close to that frequency, K 

will be approximately K 	()\) shifted to the frequency XjLat least in the 
neightourhood of that ficequency. 	Nerlove is 
thus led to propose .the following definition: 

"In the more general case *, then, we may define seasonality 
as the characteristic of a time series that gives rise to 
spectral peaks at seasonal frequencies". (p. 262). 



This definition does not follow precisely 

from the theory of narrow band processes used to arrive at it.As long as 

Kx j (À) does not reach a local maximum or minimum at the frequency 2À...e, 

will have a non-null slope at that frequency, and, ifé4À , 

K 1  (k will differ from K 	(0) by K;e  (2 Xj ) , hence K
Y 
 k (A) will 
tX 

not peak at ill . In practice, most of K A (A)'s power is expected to be 

concentrated Close toÀ= 0, and the-above problem was cleared by  Oranger  

(1976) whoallows 	K A 0
) 
 to peak in an appropriately chosen neighbourhood 

37 ,X 

Even though this definition is attractive, it has  the  shorthcoming 

to fail to explain how the seasonality of a process is generated.  As such 

it only provides an ex post guideline on how to investigate seasonality. The 

added 
problem raised by non-stationary series has also been dealt with by  Oranger,  

however there remains other - problems. • For instance, Granger cites, as an 

example of a seasonal component, Grether and Nerlove's model: 

Ci—.  3 /1),Sc 	/i.ce 5) 

While, if neighbourhoods are properly chosen about the seasonal frequencies, 

S t 's spectrum will be concentrated in thoserighbourhoods it will also be 

concentrated about the zero frequency. More important, S t 's spectrum does 

not peak at seasonal frequencies, and finally the selection of the neighbourhoods 

is very sensitive to the value of the AR and MA coefficients. 

Similarly a model such as 

Zip (3) St 	a_4,t 
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would be rejected by Nerlove's spectral criterion as being the model of a 
seasonal unobserved component. It would only be accepted by 
Granger if the neighbourhood,about  the  seasonal frequencies•are not too 

small and if  qb is close to 1. In other words, while a strict application of 

Nerlove's criterion would force us to reject processich are intuitively 

seasonal, Granger's criterion leaves a lot of ambivalence. 

However, regardless of the approach, this definition fails if, 

in fact, the changes in seasonality are subject to cyclical movements, since, 

then, the spectral density function rather than peaking at the seasonal 

frequencies, will peak about those frequencies. The possibility of a cyclical 

evolution in the seasonal is accounted for in the ARIMA model, since a possible 

model with cyclically moving seasonality would be 

where 

Qt 	(172- 

rle 
i.e. such that ( i" eel 4" -4(i. 0  has complex rcots. The possibility of such an 

occurence was explicitly investigated by Kuznets (1933) . Similarly, this 

definition does not help, when studying the problem of the seasonal "dip" 

which is observed in the spectrum of most seasonally adjusted series, since 

it could not be associated with seasonality. Even though the narrow use of 

the spectral criterion itself is rejected in this paper, Nerlove's original 

justification, in the form of the theory of narrow band processes, will be 

maintained to develop a general class of seasonal models. 
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2. 7 Causal Analysis of Seasonality  

For most researchers, the "ideal" approach is implicitly or 

explicitly what  Oranger  (1976) has called, with respect to the seasonal 

adjustment problem, the "causal adjustment" approach (Grether and Nerlove, 

1970). It is considered "ideal" for two distinct reasons; first of all, 

it is usually assumed that there does not exist a unique decomposition of 

a univariate series and that the components can only be specified uniquely 

if specific causes are associated with each component, then, even more fundamen-

tally, the components are assumed to be the results of well defined "causes". 

Even though it has yet to be developped in the form of an operational method, 

in view both of its implication for the modelling of seasonal processes and of 

the underlying 	view on how seasonality is generated, it is important, 

at this stage, to review it. 

Oranger  has probably provided 	the most explicit analysis 

of this approach and Granger's presentation will be the base of the present 

discussion. Granger states that 

"... ignoring consideration of causation can lead to imprecise 
or improper definitions of seasonality and consequently-to 
misunderstanding of why ,  series require seasonal adjustent,. 
to improper criteria for a goodmethod of adjustment and.to  have 
implications for the evaluation of the effects of adjustment..." 
(p. 1.). 

Four classes of causes are listed: calendar, timing decision, weather, 

and expectation, andgiven the decomposition 

z t A
t 	

S t 

where At 
is the non-seasonal component 

and S t is the seasonal, 

it is assumed that S
t 

and A
t 

are independent...' 



However, in as much as a univariate approach is chosen, and some 

model, say an ARIMA model, is specified for each of the unobserved components: 

€A (p)  

(8)  

where a
A,t 

and a
S 
 are two independent white noises, 
,t 

(B) and É> (B) are such that A
t
's spectrum has almost no power outside 

A 

some neighbourhood about the seasonal fre*quencies. 
and 	are selected such that S t 's spectrum has almost 

no power 

outside of some neighbourhoods about the seasonal frequencies. 

Granger notes "that there is no unique decomposition" (p.15) unless 

very arbitrary and stringent conditions are imposed. Infàct he notes rightly 

that the components are not only unobserved but also unobservable, and he 

suggests that, only through the use of a causal model, can they be rendered 

"observable". In the above example, to state that (to A  (B) and GA (B) must be 
• 

such that A
t
's spectrum does not peak at seasonal frequenciesvshile 	(B) and 

&s (B) are such that S t 's spectrum's power is concentrated In the neighb6urhood, 

of the seasonal frequency is insufficient to spedify At and S
t
's models. 

However, if in fact S is generated by causes, say the weather measured by 
and denoted 4 sav the rainfalloRt  , given that z t is the California tomato production, 

such that 

then, in principle, S
t 
can be "observed" through R , since 

g).“. 

 

R ( &  ex_ sie  

1 

1 

I. 

where 

and 

v- (8) CP 5  

r ir  (a) 	( Rt 	(B) 



i.e. since S t can be retrieved from z t through a simple transfer function model. 

This approach raises serious questions, in as much as it is seen 
•ob 

as a method to model seasonality, or to deseasonalize. There is however no 

doubt that whenever proper causal variables such as R
t can be found, z

t
's 

estimation from its transfer function model should often be superior to an 

estimation based on a -  univatiate model, i.e. one does not have to accept 

"S r  =11r(B) R
t
" to model z

t 's transfer function. Questions relating to seasonal 

adjustment proper being beyond the scope of this paper, it is stifficient to 

consider the transfer function model of z t' 

First of all this model implies that z t 's seasonality enters solély 

through Rt , but whether the seasonality enters solely through some exogeneous 

variables.is exactly the question which was studied by Plosser (1976). Hence, 

this approach to seasonality would restrict one to a subclass of transfer 

functions, since there is no a priori  reasons to exclude the possibility that 

eitherleB) ce
A (B) or A

(B) be themselves "seasonal" filters. That 

Zr(B) 9A  (B) might be a seasonal filter would iMply, in Granger's example, 

that the production of tomato is not affected in every season the same way by 

the rainfall, i.e. th at a fluctuation in rainfall will affect the output of 

tomatoes .differently depending upon the stage of growth of the tomatoes, That 

e (B) Might also be seasonal would only imply"that not all of z t 's seasonality A 

can be accounted for by Rt . Whereas whethereA (B) ihight also be seasonal 

appears academic, it seems very plausible that in general Ir(B) 97 A (B) will 

be a seasonal filter. 

If the modeibmg problem is conàidered, it must be noted that,even if 

exogeneous "seasonal causative" variables such as R
t 
are given,seasonality in 

the transfer filter might have to be modeled and that no guidelines on how to 

model "seasonal Causative" variables haveb(aengenerated. In fact, the very 
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principle of a seasonal causative variable is questionable. If R
t' 

the 

rainfall, is taken as an example, even though there is little doubt that, 

usually, seasonal movements will dominate (this is not necessarily the case, 

as can be seen by observing rainfall in desertic or equatorial regions) 

there are also unseasonal rainfalls, and both long "cyclicae movements and long 	- 

run trends in rainfall. The only "cause" which is unchanging,as far as seasonality, 
11 

 
_ 

is the calendar, i.e. time, and this is the object of the next section. 

1. 
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3. A GENERAL CLASS OF SEASONAL MODELS 

3.1 Introduction  

On the observation that the periodicity associated with seasonality 

is above all a property of time, the periodic aspect of time is isolated 
e.  

from its chronological nature and a bidimensional model is developped. 

The concept of seasonality, in this broader concept of time, is 

reconsidered, and two distinct stationarities, seasonal and chronological 

stationarities, are defined. Henceforth the analysis is restricted to 

seasonally stationary processes. 

The ARMA model is generalized to the multidimensional model of time, 

and an example'is given to illustrate how a simple seasonal multiplicative 

model can be generated. Nevertheless this approach does not enable the 

researcher to discriminate, in general, between .non-seasonal and seasonal 

models. 

A Fourier transformation of the white noise process from which any 

process is generated is shown to be itself a white noise process. The 

Fourier representation being an equivalent representation of the generating 

white noise process, a seasonal process can be viewed as linearly generated 

from this transformed white noise. Successive transformations of the white 

noise process into equivalent forms in the complex domain enables one to 

represent the seasonal process as a sum of indepedent real and complex 

processes, each being symmetrical about either the zero frequency or a 

seasonal frequency. Those processes are the elementary components of a 

seasonal  rime  series. 

The Fourier representation and the complex representation are alterna- 

tive forms of the general seasonal model. 
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3.2 A Bi-dimensional Time Model  

The Concept of seasonalitY is fundamentally tied to the concept of 

periodicity, however a seasonal series is not in general a periodic series nor 

is there any reason to expect it to be periodic. The problem in conceptualizing 

seasonality, therefore, is that, even though one knows that there is periodicity, 

a strct periodicity is not observed: 

It 1S the close but not perfect approach to regularity which 
renders the precise definition of seasonality so difficult.''' 
(Nerlove, 1964, p. 259). 

The problem, however, is, at least conceptually, not all that 

intractable: a time series is an observation made through time, and the perio-

dicity in question is function of the periodicity of time. When a seasonal time 

is considered, the underlying time on which the series is indexed is 

conceived as having two completely distinct Properties; on the one hand we 

think of the past, present and future, i.e. we conceive of time as a chronology, 

a flow which passes but never comes back, and, on the other hand, we think of 

time as the seasons which pass away only to come tack faithfully year after 

year. With each conceptualization of time we associate a conceptualization of 

the series; with chronological time we associate the concept of a trend-cycle 

and with periodic time, we associate that of a seasonal. Both are abstract 

concepts which describes the series as if the o'ther were held constant. A 

trend-cycle, therefore, is some path the series would follow were it not for 

the periodic change in seasons; it is an imaginary construct since, in real life, 

the procesp cannot be observed independently of the periodic change of the seasons; 

A seasonal, similarly, is the periodic path the series would follow were it 

not for the chronological time. It follows immediately thate while a trend-

cycle should be indexed in terms of the seaso5a seasonal should be indexed 

in terms of the date. Such a decomposition would be of limited utility since 
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at the limit we would have as many trend-cycles as we have season0.: and as 

many seasonals as there are dates, and given one series, no way to estimate 

those components. 

Now, for an observed process, chronological time and periodic time 

pass simultaneously, hence the evolutionary  changes • in the seasonal, over 

chronological time, should be expected to.be  related to the evolution . of the 

series itself, hence to the trend-cycle. This evOlutionary change in the 

seasonal is what gives rise to the concept of "moving" seasonality, of 

"slowly evolving" periodicity,... The periodicity•in time, which is directly 

attributable to the relative positions of the sun and the earth, is taken as 

exact and fixed, even though the process itself will appear -only'more and less 

neriodic. • • 

• The dichotomization of time to conceptualize within the observed 

process a trend-cycle and a seasonal implies that the time one observes, this 

time which simultaneously both passes neVér'to come-back and  comes back 

periodically year after year, is tobe seen as a silbset of the time within 

'which tr(, nd-cy, 	and saseni  arc 	 f  Lme may 

L-- 

be called real time, its complement being called 	imaginary time. 

Whereas a point in real time is well known, say (1 June 1978, 1 June), an 

example of a point in imaginary time would be, say, (1 June 1978, 14 January). 

There 1 June 1978 indicates the date, independently of the season and 14 January 

indicates solely the season.
1  

1. The roots of this approach can be traced back to the work of Buys Ballot 
. 	 (1847). It is Guilbaud (1968) Who was the first to point out that the 

Buys Ballot array, as used traditionally, was inadequate, because the 
first month of the year, say January 1979, should be as close to the last 
month'of the preceding year, December 1978, as to the second month of the 

year, February 1979. This led to the indexation of the series'both,in• 
terms of the chronological date and in terms of the season (Calot, 1969). 
The concept of a multidimensional time was proposed by Fontenay' (1973). 
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Given such a view of the time series, the observed process is an 

observation of the realization of the process only over real time. The process 

itself would be defined over the overall time, i.e. over imaginary time as 

wen .1 over real time. However the very nature of periodic time simplifies the 

specification of the process. Real time can be rewritten as 

«L 	(. 1.vIod 4) 

such that t denotes the chronological date while t denotes the season. This 

leads to denote the process in terms of both t and t subscripts, i.e. to write 

A 
real tiMe, the above relation between chronologicaltime,t and periodic time'L 

needs not hold anymore. For instance, we eould have t - to be the chronological 

A 
date 1 July 1978 while the season, t,.is 14 January (see Figure 1). 

If now the process z 	is observed while holding the chronological 
t,t 

date constant, say at t o , then z 	depends only upon t and it is a periodic 
to , t 

process 

z es. In generalized time, that is, when the process is not constrained to 
t,t 
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3. 	Bi-dimensional Time and Stationarity  

As the process if defined in terms of two time dimensions, t and t, 

it is necessary to consider stationarity in each dimensions. The present paper 

considers only weak stationarity and weak stationarity and stationarity will 

be used interchangeably.  Stationarity in the seasonal dimension will be called 

seasonal stationarity while stationarity in the chrondlogical dimension will 

"/. A series which is both seasonally stationary 

and chronologically stationary is stationary. 

Seasonal stationarity implies that both the mean and the variance-

covariance of the process are independent of the seasons and that they depend 

only on the relative position of the seasons, in other words that the impact 

of a given shock in January on an observation in June is siffiilar to that of the 

same shock in June on an observation made in November. Seasonally stationary 

process do not need to be indexed by the season. 

B.J.B., C.G.N., and H.T.T. models are all seasonally stationary, 

however in recent years Cleveland (1972). , Froeschle (1975), Cleveland and Tiao 

(1978) Havenner and Swamy 	(1979) have investigated processes which were 

not seasonally stationary. Cleveland and Tiao have called seasonally stationary 

process homogeneous. Since, before passing to the more general form of the 

seasonally non-stationary processes, the properties of the seasonally stationary 

processes should be established, and since this is the objective of this paper, 

seasonally non-stationary series will not be considered. 

An additional motivation to restrict the analysis to seasonally 

stationary processes was provided by Froeschle: 

"The theoretical motivation for this Using non-seasonally stationary 
model) is good but in many cases the number of observations in a 
time series is not sufficient to permit good analysis" (p. 272). 

be called chronological,:" 

I .  

1 

1 

1 
•11■ • 
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Chronological stationarity parallels much more closely standard 

stationarity and it has been considered by Pagano (1976)'s under the name of 

periodic correlation. In fact Grether (1966)'s had already established that 

stationarity implied that a process could not be indexed by the season, i.e., 

in the present terminology, that it is seasonally stationary. 
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3.1.i Time Representation of a Seasonal PrOcess  

A white noise process can be defined over the bidimensional grid(t). 

If it is denoted by a ^ we may define linear filters on this white noise to 

generate stochastic processes. The general . form of the linear processes thus 

obtained would be 

and seasonal stationarity would imply 
j 

j  

It is convenient to define subprocesses in the chronological dimension 

as x
t,d 

where d = 	and where d + s = d. Then 
/ 

E 	d 
1  

liUd  03) ct,  

The s processes x
t,d 

are simple unidimensional stochastic processes and 

(B) is rational so that 	 • 

Yd (3)Y01cL 

d 
is a standard ARIMA process. 

t, 	- 

Intuitively since, B.J.B. multiplicative models were generated from 

a Buys Ballot table, it should also be possible to generate them this way. An 

example earl be given, at this stage, to illustrate a possible procedure. Let 

4  (3),. (i_ces4 3 -4 ) —  CI— 	ce d 

Ole 
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Given that a B.J.B. model is defined in real time, let a 

 t,t 

then z 	= z and t,t 	t 
et 

(1- (e .4 54) 	ci 	134) c(i 	13,  
v 

(e 4' 154) CI- cl, "41 54)t 	(5).cut 

However, since (1 —e 

seasonal AR model is obtained: 

= -(1 —PB) rl(B), a B.J.B multiplicative 

54)
.é 

A second example will be used to show that this framework is more 

general than models in which the seasonality is generated solely by introducing 

mutiples of lag s, and that B.J.B. trigonometric and multiplicative models have 
common foundations. 

Let y d (B) be such that 

Va(b) ..= (1 -  Cr.13 4) -1 	'B et  

where cr3 	Vrà-  1?3  

r- -vs (eq 

s 	0 

CS 0 	 ) 	 CP 	 ) 
z 	Ss: 0 	d‘ 
:-cr ) 	Lr."5-  e)  & to - (r)  

	

As in the preceeding example, let a A. 	a
t' 

hence z 	= zt 

	

t,t 	 t,t 

't: 	- 	(3) at 
and 



where 	4 
But then, sinc , . ,ko ( (-3) ,(1-v73-  40134 eP etz) t- 

(1- U73 ft0 5 4-  

which is, when (P = 1, the B.J.B. first example of a seasonal process. In 

fact, then, the coefficients of IrScp(B) are the values taken by a sinusoidal 

with a period of one year and an amplitude of 2. 

It follows however from those two examples that, short of adopting 

a definition for the seasonal component, there is no direct way to establish 

whether, in general, a model will be seasonal, thus in the first example, 

one could have had i5 = 0. The only models which appear unambiguously seasonal 

are those in which z A  depends only on observations made in month t. In t 

real time, those models will be:  

'f)CB 4) 	e 	40 ex, t  
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3.5 The Fourier Representation of a Seasonal Process  

Even though the link between the time representation of a stochastic 

process and a simple seasonal ARIMA model was illustrated in the previous 
el 

section, the relationship is not particularly intuitive and the kind of 

interpretation one can hope to make appears rather limited. An alternative 

is to follow the path of Hannan and Nerlove and to work with the Fourier 

representation. The Fourier representation, given the bi-dimensional model 

of time, is particularly logical since the process, in its seasonal dimension 

is periodic, hence exactly representable by a Fourier series. Thus, given 

the chronological date t, the white noise process a, I. is periodic with 

respect to t. Its Fourier representation is: 

î c 	a,)i (^I) 

(a- 	Cir4d 	el-t -U4 ( 	t 
t:t 

where 

2,1,1 
Then 

a. 
IF 	co s  a.1 

edA_  L ct,t,7e 	)) 
1. 

'  
I, z, , Wz)-i 



eà 

(ek. 

suf,„ e, 14A 

(c)t ei t  e  

6-7- 

) 	0, 

o 

n 
- 

t■  
é. t 4 

A 	I\ 
t 

) 

•., 

E. (a 	• n 
) .4 	t)  

-et 2. 0, 



_37  

In other words , Ce- eit  J 	IL.  1 ,  

is a white noise process and, furthermore, a 	and 	a 	are two t,t 

equivaleU representations of the same white noise process. Since they are 

equivalent, a process z A. can just as well be represented as being generated t,t 

linearly from a
t / 

such that 

(v2.)-/ 

Z + (x /Ze 5  i co 	2/ 	tr,à.12i)+(-1:L2L-6,o. 
LI el") 	 / 4  t à. 	1  

,u1 

where 

fi (13) 7-6 2— Yde  0-2  (5) cLu 	 o 	• e 
/ 

and where IA is some constant depen ,.1g Gnly upon . 

The desirability of this representation compared to the previous 

renresentation becomes obvious when it is noted that the seasonal 

dimension has been isolated, in the trigonometric terms, from the chronological 

dimension, in which are defined the amplitude processes  toc 

Seasonal stationarity implies immediately that  t2  
rzlif I 	) 

9,..e  (13) 	g,e+ , 	 d 	Y.x.e41 	J, 2 	, , j ()//2)-1 

Such seasonal models can be seen to be the stim of sine and cosine waves 

at each of the seasonal frequencies and of one year width, in periodic time. 

The amplitudes of those curves are described, in chronological time, by ARIMA 

processes generated by linear combinations of the white noises a t, e.È. The 

underlying idea of analysing seasonality in terms of amplitude can be traced 

back to Kuznets (1933). Wald, implicitly, introduced the stochastic formulation. 

If the subset of this process defined on real time is considered, since 

cos XI'? = cosî4.  t and sin'htP 	=Siret, and if it is assumed that the amplitude 

processes are random walks,Hannan, Terrell and Tuckwell's model is obtained. 
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An alternative but more useful representation of the process can 

be developped as follows: 

) 

etetil 	( ett i'LP 

a.)  ti A, 

where â is the complex conjugate of a 

Then 	 (o4.) • / / ) 	- i. .40  é 	— ) 	i. a.i F \ 	) 	"i 	 1 
e 

1 
1 
11 

Once again a new and equivalent representation of the white noise 
II 

process, i 0- ) ti e ; ..6 :- (:) ,± i/ 4- 2-9"7 1::  Cl / i l # • ../ 	is obtained, 	_ 

which can be used to generate the process z t, ..qt., which can be represented as 	 11 

r 	> Vi 	 / 

-t)  e e 

where 1 

eee  

	

: 	 Il 
-) 

	

and where 	(B) and 9.,L(B) are polynomials in B with real coefficients and 
II 

is a real scalar. 

+ ), le  
1 

1 



1 

4P1-2 (B) -z el-e+1 	0.z.¢ (B ) 	&j,j2 +1  (t) )  v)c/ 	) A 
tf‘ en cf ■i(b) r, Q22 (3), 	(13) 	e2.e(& end r. lp, 	j2 	e 

 

II 

process, since 
/ 

1 

In fact, since z A is seasonally stationary, i.e. since t,t 

This form will henceforth be written as 

Y )-5À 	Of ( . ) a2é,) 	I  
In fact this is not a new representation of the process  z'  since t,t 

one can pass directly from the representation of zt,e,. in terms of x 	to  

that in terms of x
) 
LI. .The present formulation woUld,also , be.equivalent.to  

t, 

Godfrey's own formulation had he assumed seasonal stationarity. 

II 
It is useful however to further transform the representation of 

11 	z -• so as to look at n' 	t: .-t 	as one elementary process, provided ps-q:Ant 
t,t 	 ( a t .e 

II
the analysis is restricted to real time, i.e. t = t. Let 

II 
I . is an equivalent representation of the same white noise 

P.t ::...4.1.D. 

2. j.9. J È 1... 2. C>,, 2 1  3/ . . 2  /  
II 	e  (ci:ft),e,. 0-Z, -£2.) : e2  

II 	, 

II 
II 
II 

* 	e iOnce again the same properties are maintained and  

a
* 	has nevertheless some distinct characteristics. Hence a lag 

operator B* defined on a* A such that 

*  
OC. 	Le--  é-)1 ,k 



if B, the standard lag 

I 	+E 

7=L X -t,0 

r (ei  ( .54) 

-E bit 

• • 

and where 

coefficients qp 	and (É)1  respectively. 

)( 
t - (i3) 	and g 

1-2  
and bee „t, 	y . 	are polynoinials in B* with complex 

I. 

e°  
e 

•14-o 
(> on the unit circle, *Will be specified as e 	. -)9) 

-à 
operator is specified as e i 	. This follows either from the Cramer 

representetion or simply by observing that 

, *  

, 	 -iket E
. , 

13w '  

The general model z ^, restricted in the real time, is now represented t,t 

as the sum of elementary processes x* 	and their conjugat9; where 

In fact, once again, this is not a new representation of z t  but only 

a simple transformation of the previous representation since,considering 
4 t) 

L1i E 

/Ct 
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Similarly 
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where 

e7(->  

(13)  (5*) d_t",j 

- tie  ( 9.),e • 	(eui - 

LT:: Le) 224 .e 

we■ 

and whère 1P; ( le) 	and (A (le) 	are polynomials in B* with respectively 

ê e  e-AJà 
(Q  -Q) 	

and 	n . as jth coefficient. 

Given that x 	is an ARMA process, its autocovariance generating 

function, AGF, 1(1 (B), will be 

?)) 	

6(2(5) Gy2  (F) 

(Pt1.13) cet(r) 
) Given seasonal stationarity, this would also be x 	T s AGF. 

the other hand, x t, e's AGF can be written as 

105) =  

) 

.)4 	Mrr w1ll1Die 

- 	13) 	( 	
(F) 

ee(8) 7-ei(p) 
while 
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This result follows from observing that the AGF is a z-transform. 

Noting that, given any polynomial P, with jth coefficient p ., j 	.. II 
.. 

P 'e  ( 5) -.2.-  ?13x) Il 

where P*'s jth coefficient is 1Pj e ( V 	

. 
t 	ke (5) 

	

re) 	

11 

_ 
the following relation is obtained between x l t,e and >c , t 	:A.AGFs: 	 111 

(e 	(e) 
_ 

By passing from x'll 	* 	the shape of the spectral density t„ tÉ ° 	t,e , 	 . 	Il 
function has been left unchanged but a lateral translation of the spectrum 

lu.: ipeev, faloewed . 	 . 1  II byX4, the Center of symmetry passing from Q to kl.  . Similarly, if .* is 
,—L  

defined on the unit circle as t:., 
11 

• 

I 
and the following relation is obtained between x.  0 and xe! A 's AGFs': 	 - 

Crt 	ne£ --* 	) II 
. 	 . 

I Specified on the unit circle, 

(it) 

À.1)=. kOL) 	 11 
- 	II 

Even though this approach to the construction of a seasonal process 

is closely related to the theory of narrow band processes, it differs from it 

by the fact that, since complex elementary processes are used, the spectrum of 

the transform process is solely the translation of the original process. If 
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one were to return to Nerlove (1964), instead of worrying with 

1- 1/ , 	% \ we h I Al) 	 . 
Z. 	( À-bt .e )-f-pu 	 collectively, one studies them individually. 

Just as xl  «A'S spectrum is symmetrical about the zero frequency, since x 

is real; 
x*t,12's 

 spectrum will be symmetrical about the.kh seasonal frequency, 

and the intuitive idea of  Nerlove.  and  Granger has been recovered in a meaningful 
way. A seasonal process is a sum of elementary complex processes which are 
symmetrical  about the  origin and about seasonal frequencies respectively. 

,An alternative way to look at the seasonal model, if one uses the 

signal extraction terminology, is to . conceive of a seasonal process as a 

signal, possibly with noise, made up of a series of messages, each sent at the' 

zero frequency or at a seasonal freauency. 

Thoe components,are said to be elementary since for them and for 

them alone the symmetry property holds. A component such as (Itee CaS)ik,Q± 

--* 
is notstationary while a component such as  

lt X6 2.J2,4 1 SiY1 
/ 	 1 

while being real and hence symmetric about the zero frequency, neither 

is symmetric about nor peaks at the seaosnal frequency Ài .• , 

The distinction is not frivolous if  its  implications are considered, 

in the cases  sa y of Hannan, Terrell, and Tuckwell's seasonal adjustment 

method. If the variance of the white noise generating the random walks 

corresponding to each seasonal frequency is the same regardless of that 

frequency, by smoothing each frequency at a time there is the possibility to 

extract more noise fç'm the seasonal frequencies closest to TYL than from those 

farthest - a spurious result since all are generated the same way  

similar white noise process. 
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4. 	The General Seasonal Model and the Multiplicative Seasonal Models  

4.1 Introduction 	 . 	. 

Starting from elementary, notions of what constitutes seasonality, 

a general class of seasonal models has been developed. H.T.T.'s seasonal 
■•■ 

model has been shown to be a particularisation of this model obtained by 

allowing the amplitude of each of the seasonal sine and cosine waves to be 

random walk processes. In this chapter the relationship between the general 

seasonal model and the multiplicative seasonal models 	is investigated. 

Provided that attention is restricted to seasonally stationary processes, 

the general seasonal model will be shown to include not only both the BJB and 

CCN multiplicative models but also the trigonometric models as developped 

by Bacon(1965) and Box and Jenkins (1970). On the other hand,it will be 

shown that the proposed class is in another way less general since both 

multiplicative and trigonometric models can be designed which cannot be 

derived from the class of general seasonal models. The class of models derived 
in this paper will nevertheless still be called a general class of models since 
models thus designed are related to fundamental notions of seasonality while 

et,eraii 

multiplicative models which cannot thus,be derived canonly be iustified as 

seasonal models on intuitive grounds. 

4.2 Derivation of the Multiplicative Seasonal Model  

The general seasonal model is a sum of stochastic processes, and, 

to deduce the implied overall model for z t , these processes must be 

aggregated. This will be done in three stages, the first stage consisting 

in deriving the component which corresponds to-the .e.th seasonal frequency, the 

next one being use to aggregate either over  all seasonal frequencies,  or,- 

if the AR polynimial4 (2) ) Q. 1'2. 	A(2..., is simultaneously independent ) 	) 	) 

of 2and a factor of aiD (B), over all seasonal frequencies together with 
.1 0 

the element of x
t,o 

which hes014 (B) as 	AR polynomial. The last step 

consists in aggregating all the components thus obtained to kenerate z 's 

model. 
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where k D is some constant. 
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-k 

2- 
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4.  
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Let 

.4 

•%t t)t2J2i.‘  slv■ ›.e  

then, denoting 

+ 

AGP 
t i k 

\K L‘i 	.(..rs) )  

(%) 	\<41 (s)  + -"\:‹ )1.4e  ( s 

For instance, if s = 12, .9. = 1 ) 
CP k (5) •-e (% - q e. 

(r  -
2. 1.. -N 71 q S + q 11. ) 

If cle = 1, this is Box and Jenkins's :trigonometric model. 
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• , 

where 
1;24 i s 
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(B) will be a real polynomial in B of degree (ti 
It 4 	 t 9 

where p and q, are respectively Cp ;13)  and ,„ (B)'s degrees. It should be 

noted that-as the sum corresponding to 	a 

1,Q  C) 	rt- a elve 	is a complex 

polynomial plus its complex conjugate, G. 	(B) will not be of a degree 
Y , 

smaller than (p -F q). The aggregation used to obtain I? 	A (B) is possible 
Y, 

since, as ele (G) 	(.e) (9' (a) cle (y-.) 	and its conjugate are AGFs of 
J1 	J2 	k 

complex moving average processes, their spectrum will be non-negative for 

all),
A' 

 the sum of their spectrum will be non-negative, and, being real, 

symmetrical about the zero frequency, hence the sum of their AGFs will be 

the AGF of some real MA process and it can be written as the product of a 

real polynomial in B multiplied by the same polynomial in F. . It is this 

polynomial which is denoted hy
Y,Q 

(B). 

Y 	's model can immediately be obtained as: 

-_-_ 	. 	(%) e 
`‘Q 

where a n  is a white noise 
)1" ,k5 t  

process with variancee
2
a . 

4 

As x* 	and x* 	are real processes, y
t,o 	

x* 	and y t,o 	t,s/2 	 t,o 	t,AhL.4 

hence the procedure presented below needs be applied only for.e. = 1, 2, 

(s/2) - 1 

Finally it should be noted that 4, 	(B) is the product of quadratic 
Y ,..Q 

simplifying operators with complex roots at the frequencykt  : 
tL1 t % s, ..e_ 	)1e Qt. 	ty. 

Ckl ik 	,i. 	— ts 
44zt 	 4,?..t 

— 9.. uàçztos ?,,q 	_ 
 

Ile 

the number of distinct complex roots at the frequency .h , r 
k 

being the multiplicity of the kth such root and
(  

pA 
,L 

 , is the number of distinct 
) 

complex roots in terms of both the frequencies 	anri , re, being the corres- 
.X 

pOnding multiplicity. 
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The aggregation of the  is a straight-- 

Then 

(%) = 	c,z)  
/ 
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o  CP0  ,Ce) 
6:' os  

G.,(s) 

(PI  (P)  

forward operation, however two particular cases deserve attention., 

First, let's consider the model, given s = 12, 

CeA ‘\* 

a t.) 1  

z 

1Y* 

j ... )  

90(%) eo uP)cPt c%).rp, cf) N/ 0  + e ca) se) cpoce)cp0C.P) 

Ce) Q0  Ce> ept 	cp1 c4D) 

Hence z t will be an 
tuak ( 2.*1 0  ) fo  ARMA process with 

.cp0 (1) (1..S;“ 	+ (P L et ) 	er ir Cz) 
îç 

i.e. a trigonemetric model similar.to those developped by Box Jenkins, and 

Bacon, except that it is Stationary. 

o  nel0deACA■eraltLi emCda. ( .  ±0 

AlternatiVely,t\the  CCN  multiplicative model may be derived. 

Assuming that 
( cs•  cçl Q  (t) 

q \k 	 1 1 
0) t J)11— 

where 01(0 .  n  cm 	and 01  . On -e 	=0 	". 	 differ solely 
I ) 	) ) 	) 

by the frequency of the.roots,  the arguments being the same for all seasonal 

ja 1  =  land ,  frequencies, i.e.  for instance 
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and if = 0, then 2 	 II 
Ot 	(n) 

11 
as long as (p 	(B) has at least one root, assuming that ').Q  4 0 ) k ....,t ) ., ))/2.. 	11 1 

1 ).Q- 	 I 
and regardless of 	',Io 	qb 	(II) Q.= 0;1 )  ...) pil. ) ..4 9

1( Q 
 00 ) 

' 

II • 
.612- 

tto ‘ €%Q 	 Il 
Q 

11 ((I) 	) ,(t) ja z  

Ag.P 

B ui?  (9,) 91.1Q ()

C'3) 	1- -(1  

11( 	 \ 	Q 
	(1 ) 	( 	SD (e) 1. 1 Q 

The denominator of K (B) will contain an elemen't 

Th- 
ep„ 	(pe) 

	

. 	, 

II' 

and, since this element contains the full coMpl*Mnt of the roots of unity 
II ià for the arguments, it may be rewritten as a polynomial in B, with cf A (B) T s 

argumentsat the sth power, i.e. 	 ' 11 »?.... 

	

oft)Ire cp) r_ 	ctià) 	ce.:' ) II • t -R 

where, if (1- 	a, ) is an element of 1) 	C.11) 	, then (I_ 	 II as -2 )  
is an element of 4 .,  ( B  s). 	 . 

II 
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( t _ zt-t,i1 ■4.) us e \i< 	isz›) 
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.1.c ■nerk 
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Denoting ir  0  A  LG.) lei  9101) 
be rewritten as 1)(A) 	(ç)) 	cp 
as the sum of AGF4 s of MA processes, is the AGF of an MA process, denoting 

b y  IbM) 9(P) )  

('Iv) 	(P-) cP(e) 

(PM C'e) 	z eCrze) 

z- will be a stochastic process described by a CGN multiplicative 
Att. 

seasonal model, and b(B) will be a hax 	+ /2 ...1? 	degree polynomial in B. 
IQ 

To illustrate the process,> a very simple example may be given. -Let 

- 	 t i p 7- 

( 1 	,li t-b1- ) 

(1+4%) t.14 1. • 

f 
wke.re 	ça è, ta ) 2" 	(4 4)%  ) 2- 	 r= € 	at 

, the denominator of Kz (B) may 

, i.e., since the numerator, 

this numerator 

ci 
 +to 

2_ ( -VfL  ) t,1  

Q 
, 

irk/Z.V.  

tiz 



c 	,\rit  

To illustrate the role of a MA, it is sufficient to return to the 

If now, z
t 
also includes a éomponent y t such that 

( 	f) 	0- 4,  t. 
0 • 

and 	a ( a 	) 1-  zt 	Z . %-.1" II ‘Jt't 	 D 	
q 

then II 

	

_ § 4  eç54  .. Cp 	
.-ri+c24 

- çe" ''''  

II 

	

ça C(b)'e tt 	n 	I 	 II 
Denoting the numerator by 	, 	"tr  ) sbit s model is 

obtained as a 	(1, 4) x (1, 0) multiplicative seasonal model: 
11 

II 

II 

original example, and assume, now, 
II 

Î.. 
 (

Q 	)1  = 	Q 	
\ t r. 1 - f _ 	\ ,1 	,...\ 2 	L 

+ 1 0 

then u 2 ) t, i' 2 4- ( Vrat) (t 4 	)+ ( 1-q ). ç. 	t(prtlée- 	I A 

	

4\ 	2 \ 21. 2 

11- 

i.e. z
t 
will now be an ARMA (0, 2)X(4,0) multiplicative seasonal model rather 	II 

than a AR (0)Y-(4),L.. :. may be denoted by 
11 e t 2 

, II 
11 

II 
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4.3 Non-decomposable multiplicative seasonal models  

It has been shown in the previous section that both the BJB 

trigonemeric seasonal model and the multiplicative seasonal models can be 

generated from the general seasonal model Adevelopped in the previous chapter. 

Even though, provided the assumpeion of seasonàl.stationarity is made, all 

general seasonal models can be expressed in either the trigonometric or the 

multiplicative form, the converse does not necessarily hold. This last 

contention is best established by using a simple example. • 

. Let s = 2 and 

- 
t ic) 

(‘+..p,) 	( ■ ..-o,) 
t, 

(a 	.1" z E U:k 

The two processes are non-invertible, hence they are SMoothest (Hillmer, 1976; 

Hillmer and Tiao, 1978). Then z t , where zt = 
Yt,0  

can be derived to be 

where  
t;  

and both (:)- and ') are obtained by solving the quadratic polynomial in 

z
t 

is an invertible process since y
t,o 

and y
t,1 

aré independent 

processes ancisince, as z 's spectrum is 	- the sum of their spectreand 
Tt 

as y 
o
's zero on the unit circle  L 	at the frequency 	, and 

 t, 

is at the frequency 0, the sum is  positive  at all frequencies. It follows 



that there exists a process U-  where 

e &  ■.r = 
t 	LE 

and where£.
t 

is some independent white noise process the variance of which 

is small enough to gnsure that 

- >, o 

Then there exists a polynomiallà (B) and a constant "1.) such that 

•

\,< ,r  (ç) 	C'eA 

where 

However e't cannot be partitioned into processes equivalent to 
y
t,o and y t,1 

since in fact y
to 

and y
t,1 

were already the smoothest processes 

one could obtain, hence z
t 
was the smoothest seasonal model which could be 

generated from the general class of seasonal model. 
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