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1. Introduction

?Pe aim of this paper is to provide an analyticél;framework for
the analysis of seasonal time series. From this framework, a general class
of seasonal stochastic processes is'generatéd, which encompasseé the majority
of the seasonal processes commonly useditoday, and the model structure of-

such processes is analysed.

The seasonal analysis 6f stochastic processes was introduced in.
the early sixties to tackle two separate problems: ;he>forecasting of a
time serieé characteriééd By seasonaiity a;d the seaéonal a&justﬁent of
economic time series. Those problems wefé studiéd.independéntiy‘of one
another and distinct approaches were adopted. The mo&elling 6f a seasonal
time series for forecastiﬁg purpos%.has been dominated by the introduction
of the seasonal multiplicative moael by de, Jenkins and Bacon (1967).
The séasonal adjustment anaiysis has ﬁostly started:f;om the unobservable
compbﬁents model in which the process isiséen as the'sum of fhfee_qnobservable
compOnenté, the trend—cyéle, the seasonal, and fﬁe irregular or noiéé component.

In this context two paths have been followed: Nerlove (1964) and others

 have proposed spectral criteria a seasonally adjusted series ought to follow,

leading to Granger's (1976) definition of the seasonal, while Hannan (1964),
Hannan, Terrell, and Tuckwell (1970), Couts, Grether, and Nerlove (1966),‘
and Grether and Nerlove (1970) have proposed parametric stochastic models

for the unobservable components.

-

R . a . . .
-In spite of extensive development, great degree of confusion is
still found even at the most elementary level of what constitutes a seasonal.
Hence, if one starts from one of the simplest seasonal mode%, the model

(l - {3”\3»)75&7 d-l; s, the approaches proposéd by Grether and Nerlove, Ashworth

and Tunicliffe Wilson (1972), Brewer (1976), Hannan, Terrell and Tuckwell,
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and Box, Hillmer and Tiao (1976),... can be shown to all imply different

decomppsitio’nsl . Alternative approaches to the conceptualization and

definition of seasonality in terms of spectral propefties or in terms of

a causal'ﬁbdél are Shown.foﬁbe inadequate in providing a general definition
able

of the unobserved seasonal component.

The basic probiem with seasonality has been seen as "the close but
not perfecf approach to regularity',and this has led to the use of vague
concepts such as "slowly" moving seasonality,... This view is somewhat
misieading since slower.changés in seasonality do not imply that the series
is somehow more seasonal. Generally, it w0uld only imply that the presénce
.of seasonality in a given process can be detected more easily. In fact
the basis for the periodicity of a seasonal series and the only periodicity
which is exactly "regular" is the ?eriodicity which is embodied in the
concept of time and whlchvreflects the relatlve position of the earth and
the sun. The real%}atlon of this problem has led Guilbaud (1968) and Fontenay
(1973) to present an alternative conceptualization of a seasonal time series.
These ideaé are developped and the mOdel-@f a bi—diménsional time is proposed
in which fhis periddic dimension is distinguished from the chronological
dimension. Those dimensions are directly rélated to the unobservable cdmponents
since the trend-cycle is a representation of the process which will depend
solely upon the chrondiogicél time while the seasonal is a residual associated
with.the periédic dimension, tﬁe irregular being that unobservable component
which is independent of time.: Yet(this time model does not imply a pridr
definitioq of the unobserved components. In bidimensional tim%)stationarity
is immedi;;ely.generalized in terms.of Seasonal stationarity, i.é; stationarity

in the seasonal dimension, and chronological stationarity, i.e. stationarity

(1) Throughout this paper, in as much as possible, the notatlon introduced
by Box and Jenkins (1970) w111 be used.




in the chronological dime#sion. The.process being'exactly periodic

in its seasonal diﬁenéion; it cén be represented by a Fourier expénﬁion over

the seasonal dimension. ' Such a ‘representation enables one to disassociate
- - ]

the periodic aspect of the process which is associated with the frequencies

from its Qhronological aspect which is associated with the-amp;itudes.

Such aﬁﬁlitpdes, which deﬁendASOIély uﬁon tﬁe thonological time, can be

conceived aé stochastic procééses.deﬁimed in the~chronqlpgical‘time. If'

those ére specified»?o be simgie random walks, the model iﬁplicit to Hannan,

Terrell, and Tuckwell is obtaiﬁed. In general Ehe aggreéagion of £heséV

Fourier sums, given seasonal stationarity, is shown to yield ARMA seasonal

processes.

It is shown that the assuﬁﬁtions needed to de;ive Box, Jenkins and
Bacon's multiplicative model, i.e. a model which is multiplicative both in
its AR and)in its MA polynomialé are very reStriétive - thus proyiding an
explanation for Plosser (1977)'s observation to this effect.‘ In pther words,
the approaches used forAmodelling time series and for seasonal adjustment
are shown to be partiéular specifications.all‘reiated to the same frémewdrk.
The general seasonal model will’yield a general form of Box, Jenkins, and
Bacon's trigonometric model; In particular, in the éventuality that the fuil

complement of seasonal frequencies is needed and that at least one root is

" common to the amplitude processes corresponding to the zero frequency and

to each of the seasonal frequencies, a model multiplicative in its AR
polynomial is obtained. This result does not depend upon the other roots of
the AR polynomials, the variance of the various generating white noise processes,

or even their respective MA polynomials,

It is shown that not all ARMA multiplicative seasonal models can
thus be derived form the general seasonal model. However, even though processes:

which are clearly seasonal, and which are not thus dérivable, can be obtained,




Cy e A AT [ S ’ - :
such as (i~ § '\B"W'%,, = (H—% )(26 3 o< CE< r general criterion is -
T ~ )
found to establish whether a given model which cannot be obtained from

the general class of ﬁodels is .properly a seasonal model.

-

Iﬁ chapter 2, the literature is revieﬁed. In chapter 3, the Eidimen—
sibnal model of time is introduced'and the géneral seasoﬁai model is deVelopped.
:In chapter 4, the general seasonal m&del is éhown to yield in general a
trigonometric seasonal model, and under certain assumbtiéns,a multiplicat;ve
model. It is shown, also, that not all multipiicative‘seasonal modélé'can

thus Be obtained.
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2. A CRITICAL REVYEW OF THE LITERATURE

2.1 Introduction

Two alternative approaches to the introduction of- seasonality ip

a stochastic process are reviewed. The first, introduced by Bacon (1965),

.consists in an approach based onthe premise that observations made in the

same month years away should hélp.explain-toaay's observation. ©Even though
it has'the meritég'bﬁ«gremarkably simﬁle, in that a seasonai'compgnent needs
not be defined — the process is modelled as a whqle - , the clasé of models
thus obtained, isk .sed on a heuristic arguﬁent aﬁd:has the édded disadvantage
that the itnroduction:of even a smaii érror will yield a model which:d;és not

belong to this class.

The second type of approach is based on the work which has been
done toward developping a seasonal adjustr,ant method. It implies both that
the composition of a seasonal series as a sum of unobserved components and

that the definition of the seasonal unobserved component are accepted by most

- researchers, It is shown that this is not the case with the second step:

B A A e
even the most inocuous seasonal AR model, (l —-é ® 373.6: Cle )O<§sl , will -~

lead to alternative decompositions, depending upon the anélyst.

Alternative approaches to thé‘definition'of seasonality, by means of °
a spectral criterion and causal seasonal variables, are then reviewed and

rejected.

From the existing literature one can only choose between the Box,

Jenkins and Bacon class of models, which is shown to be inadequate, and

" classes of models based on the arbitrary acceptance of one of the various

definitions of a“seasonal component proposed in the literature.



2. The Bbx, Jenkins, and Bacon (BJB) Multiplicative Seasonal Model

- The development of what is commonly known under the name of
multipli#tative seasonal ARIMA model can be traced back to Bacon (1965), Box,
Jenkins, and Bacon (1967) and Box and Jenkins (1970). In the development

of this model, two approaches were investigated.

The first approach considered to study the modélling of a
seasonal pfocess is based~on§desired property of the eventual forecast function
of any seaéonal-process;vsuch an eventual forecast function should trace out the
seasonal patterﬁ of the series. In fact Bacbn suggests that

"... its solution was a mixture of sines and cosines
possibly mixed with polynomial terms to allow for

changes in level and changes' in seasonal pattern'. (p. )

The first approach has been illustrated with various examples,

both to show its eventual applicability and its supposed limitation. Its

)

supposed limitation is that

"... it is not true that periodic behavior is necessarily

represented economically by mixtures of sines and cosines.
Many sine-cosine components would, -for example, be needed to
represent sales data affected by Christmas...'" (Box and

Jenkins, 1970, p. 302).

Even though it has been revived recently (see,for instance,Abraham
and Box, 1975),this approach has received little attention en the grounds that

it is not parsimonious.

The second approach to be proposed starts from the Buys-Ballot

table in which columns are used to denote months while rows

S Ey My mE Ae my g S Em SN mm Am

}




—-'n—:-n-u-ﬁ-"-_

- e

7

denote years. It is hypothesized that the process at time t, i.e. in

year r and month j, should not only be dependent upon past observations

within the same row (same year) as for a non-seasonal process, but that it
should simultaneously depend upon the observations within the same column,
i.e. made in the same month, years away. A stepwise method was then proposed

such that,considering any. column, the following relationship was hypothesized:
o : N
G )y, = @@Ne,
Evidentiy e£ was not assumed to be white noise; réther it was assumed that

oA '
é(_’&)))@ (% ) was such as to filter all seasonal effects out of the

original process. To that extent, it was further assumed'that'et could be

modelled as any ordinary ARIMA process i.e.

C{)(E) e»\L_ = QUﬁ)aé

where a, is a white noise..

Combining the two models, the general multiplicative seasonal model -

\

P BN %, = ele) ©(sM)a,

In practice, however, most attention has been given to.the particular

is obtained:

‘multiplicative seasonal model (or Airlines modél);'also-deVelopﬁed by Box,

Jenkins, and Bacon, i.e. the (0, 1, 1) x‘(oail, 1) model., This model is clearly
related to the first approach considered here since its eventual forecast

function can alternatlvely be written as

. A CO v;\ PeR |
| 16 (Q} - ‘o % Q Cos 0¢ + m \p

where>\ = "-K‘Q /ﬁ (Box and~Jenk1ns, 1970, p. 303 and p. 310).
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The latter result follows from the decomposition of the polynomial

@a - BS) in terms of the troots of unity, i.e. »from - l
(o83 = (L) (1554 88) (L ran) (H) (e aset) (R Bae™) (18) "

It follows that the particular multiplicative seasonal model can be
represented as a periodic fu_nqtion with adaptive coefficients provided the

full complement ©f sines and cosines is used.

. The argument that the process in time t should depend both upon

observations month away (same row),and upon observations years away (same '

column) does not appear, sufficient at,.first sight, to justify the multiplicative

model above a model such as

’%t = 15-&-\ * é Yeont - ga{-\ -© qt—» 5 '

or ‘... the Xone proposed by Sims (1976). Both Sims' model énd the above model I
however would have eventual forecasting functions which do not generally meet

the desired criterion. Furthermore they will be shown not to be generally

related to simplé notions of seasonality.

T

‘2.’2) Couts, Grether, and Nerlove's (C.G.N) Approach | l

A different approach '1;0 the development of seasonal time series models waf.'
pionneered by‘.Couts, Grether, and Nerlove (1966) and expanded by Grether
(1966), ‘Nerlove (19675; Grether (1968)A, Grether and Nerlove (1970) and
Pagan’ (19'73)‘. Starting from the classical decomposition of the seasonal

. )
time series i unobserved (and unobservable) components, the trend-cycle
L4

(Ct), the seasonal, (St) and the irregular (It)’ such that, if z, is the

observed series,

stochastic models are proposed for each of. the unobserved comp‘onents. The

specification of those models evolved, and, in Grether and Nerlove (1970),

I
|

, y
rCetsert 1
1

i
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those models are given in their general forms as:

D) e, = B (B) G
$ () s

AV gk

1}

GS C%\ aS,t

il

where CP"(B), @c (B), and @ (B) are assumed to be low order "polyinomi‘als in
B while éé (Bs)is assumed to be a. low order poiynomiai in B° and where
aC,t’ aS,t’ and aI,t are assumed to be independent white noises with

2 2 2
variances G‘C, G‘S, and G‘I .

The proposed justification for¢St's model evolved over time,
hence Couts, Grether, and‘Nerlove, having'specified a non-stationary process
for St: .A N S
(lufb ) Stf = ‘%#'
noted that: "the seasonal component S, is‘trending as well; it
follows a model much like the tremd-cycle in the

original Theil-Wage model if 1g" is taken to be

- the number of observation‘periods in a year" (p. 11).

Grether (1968) shifted to a stationary seasomal process. In a
first step, considering the'simplest model: |
Nod -
(\_% ) Sy = gy | o< & < |
- 1 _
he introduced the justification that Sé, to be a seasonal unobserved component,
should peak at each of the seasonal frequencies. in other words, he

shifted to a model consistﬁnt with Nerlove (1964)'s definition of a seasonal.

In fact, it was on the basis of this general justification that a non-
seasonal moving average, i.e. a moving avérage-chafacterized by a low order

polynomial in B‘rather‘than in BS, was proposed. Noting that, in the simplest



\o
model given above, all the peaks, in the spectrum, are of equal height,
the foliowing generalization was proposgd:
(-3 e*)s = (1-98) ag ¢ 0<¢g”

Such a model does generate a seasonal the spectrum of which will have

-

progressively smaller peaks, as one moves toward higher seasonal frequencies.

Unfortunately, he overlooked the fact that, through this transformation, the

spectrum will not peak anymore at the seasonal frequencies.

The intent of those authors was to propose a method to investigate

seasonal adjustment and not to model stochastic seasonal processes. Even though
both objectives are closely related, they are not identical. In fact, the

implied model for z,_ was not formally derived. Nevertheless all the results

t
necessary to its derivation were provided; having specified

'(\_.cp;% _sz,&'z) Ct = qc,i:

the autocovariance genérating function (AGF) of =z KZ (B), is obtained, on

t,
the assumption that the generating white noises are normally distributed,

and independent, as the sum of the unobserved components'. AGF, so that

ﬁ\L

iy #)= (-9p- %) (1-9F. @ FY et
+0-3)" (- 08)(1- OF) (1. 3 F*) ' 6% + &7
= {008 0NN -2 F) (- ef-
Jopspee
+ (- 069,87 (1.08)(1- 0F) (- @F - ¢, F?) s:

+ (1 3-0, 8 (1-3°6) (LB (1.0 F 4F) 67 &

Each of the three elements of the sum, within the last bracket
on the right handside of/the equation, can be viewed as the AGF of moving
average processes, and, once they are specified on the unit circle, (B = e \)

they are non-negative, and their sum will -be non—negatiﬁe at all frequencies.

i

’

) ,
mE Sn = B

m g

~(
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It follows. from Wold (1954) that the last bracket, on‘the left handside,

can be rewritten in the form 9,,6(13) 9%‘(1?) 6‘2 where cs“: is such that 9%0 =1
‘ )

in®©® (B), and where e (B) will be (s~ Z’Q"degreec polynomial. Then

(2
Us\ i(\-w\s ¢, “H\-é’“ ) (1. @AF*)U-@F D, Fzﬁ o
« 8 us\e (F) 64

The model implicit to Couts, arether, and Nerlove's approach has

“y

thus been derived as

(\- - cP; ")(\-@”s )7“ ® (s\a

The general model will be

o) (M3, = Oy wya,

It follows that a multlpllcatlve seasonal'class of models was implicit‘to
Couts, Grether, and Nerlove s approach and that thlS class of models, which will be
called the C.G. N. class, dlffers from the B.J. B. class of models in its being multlpl

cative only with respect to‘the-autoregresslve‘portlon of the model.

Finally, it cah also be shown, not only that the C.G.N. model -

i

is more gemeral than the B.J. B. model but also that the B.J.B. model is

a most unlikely model. Assume that on the basis of ‘an observed ser1es,‘zt,

a multiplicative B.J.B. seasonal model is hypothesized, but that in fact, the

, which will

real process z, has been observed with an independent error, e

be assumed to be white noise, in such a way that

T "h-*e

*
then, since z, and e, are 1ndependent,

K (8) = Ky " (®) + K (s)

Had a C.G.N. multipllcatxve.seasOnal model originally been

sepcified, then Zi.WOUld also be described by C.G;N, model, and possibly a



1.
" B.J.B. model, eQen though the latter péssibility is highly unlikely, since

e 19936 3E)eA] § el o) ST

2
9; (_(g)qa,% ) @a, = %,GU‘QSBU:\ % - Q(&)@(&‘)QG‘)QCM S
It is clear that it is unlikely thatﬂé* (B) can be writtenras the product

%

of two low'order, but non-null, polynomials, one in B and the other in B°.

had

Howaver,Aa B.J.B. multiplicative seasonal model been specified for

then

t?

and, again, 11: would clearly not generally be the case that 6 * (B) could

be written in the desired multlpllcative form.

2.4 The Hannan, Térrell, and Tuckwell (H.T.T.) Approach

Hannan (1960, 1§63, 1964, 1970),‘Hannan; Terrell, and Tuckwell

(1970), and Pagan (1973) studied the same problem as Couts, Grether, and Nerlove;

‘seasonal adjustment, For this same reason, they also opted for the unobservable

components approach, and a seasonal .model for the overall process, implicit

to their approach, will be shown in this paper to be an ARIMA model multipli-
" cative in its autoregressive part.

 The H.T.T. approach is comparable to the CGN approach in another
way; the corner stone of the aﬁproach is Nerlove (1964)'s seasonal
definition in terms of the‘spectrum. The stable seasonal is associated with

a periodic function, the Fourier represensation of which is favoured:

Al2 ‘ - N
. g‘[: = }_ S\ b Q C’oi >\ {.— + AQIQ SH.\‘ )\Q(. <
where bQVA/ is idetticallyvzero.

%‘:6 Usva U=) SN e T e(@@(%‘)ew)e(msz ; )& (&) SE) QP &%

oy M
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The amplitudes could just as well be the realization of some
random variables, and. they find it natural to introduce a further genera-
lization by letting these amplitudes be ‘stochastic processes which vary

. h » . D ’ . . :
with time ~ Denoting those stochastic pr»o-cesses by St,uand St,-'?.Q-\-l)

Hannan assumed that they are AR (1) and independent processes, such that -

(H—@Q’BB S,f,‘?{— = 'QE)Q Q:\,'z)...)xst

Observing that even if § if very close to 1, say \V.9EE3, g;iven a monthly
series, the autocorrelation of the seasonal'COmponénts,.five yeafé apart; would
only be .3, which would'imply a very unstable seééonal, ﬁanﬁaﬁ further
simplifies tﬁe model by letting those seasonal Comﬁonenté be'moaelled as
randoin walks, i.e. he setsl§£;= 1. The following model for the'séaédnal

unobservable component is thus assumed: ’
»la : : ‘ : .
- _ s Nt +~S Siv A \:73
Sy T f‘ SJc,o.Jem, 1-‘?& ke TR
=t o

where : .
R B
& * ‘ (Al =\
?_2 - 6‘ {~,;\"Z".') -

AR

The aﬁﬁroach adobted by those authors, in their seasonal adjustment
procedure, consists in an.iterative ébproach , in which the'tfend is first
filtered out (partial_prewhitening), and then the seasonal sub-components correspon-
dipg to each seasonai frgqueﬁcy are filtered, one fréquency‘a;.a time. Three
alternatives but related -procedures ére-proposed,to remove the trend; it will
suffice at present to look only at the implicationms of the third method, in

which the trend-cycle, Ct’ is assumed to, be of the form:




I

.
(\-1@3 sz‘ = Clc'§:

It will be one of the object of this paper to show that this model,

-

together with the irregular implies that z, is represented by an ARIMA
(0, 1, 2 + s) x (0, 1, 0). It will follow from this result that the HTT

approach generates a class of models generally. similar to that generated by

a CGN type of model.

e

25 The Seasonal Unobserved Compéﬁent

Only the first of the various approaches reviewed attacks the
problem of seasonal modelling without worrying about. the seasonal composition
of a time series. However it has been shown that the class of models thus
entertaiqed was not conceptually a fully aﬁpropriate class. To accept-a
seésonal class of model on analytical grounds, at this stage, either Couts,
Grether, and Nerlove's approach or Hannan, Terrell and Tuckwell's one would
have to be édopted. Both of .these apbroaches deﬁend crucially on a series
of assumption, and in particﬁlar they both debend on acceﬁting the process

has been "composed" of a sum of three unobservable components C.» S, and

t

It’ and on' accepting the specification given to each of those processes.

The composition assumption, i.e. z, = Ct % St + It’ is qu;te
generally accepted, hence, in as mﬁch as the class of models proposed depends
upon this assumption, it will still bewa very general class. Siﬁilarly the
component (Ct.+ It) does not raise, for most analysts, too many questiors,
sincé it can, without loss of generalify,_be assumed to be repfeseﬁted,
for in;taﬁcé, by a standard ARIMA model. It is with Sy the seasonal
unobservable:qomponent, that a serious ﬁroblem-arises. To illustrate the

. disarray one can observe today in the literature, it is sufficient to study

one of the simplést seasonal model:

n
p
i

.
?
- =u

i Wy BN Sy Ny B ay B S AD @5 oy SN =
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("‘ @A%)> Ye = Q

and thenhypothesis that

and to ask the question as what is the seasonal? It has already been shown

" that Grether and Nerlove's answer is simply that this is a seasonal unobserved-

component, hence that

. Ashworth and,TuﬁniCliffe Wilson (1972) and Brewer (19765, however,
have proﬁosed also a seesonal adjustment ﬁfecedure for ARIMA models. ' While-
Ashworth and Tunnicliffe Wilson's approach can only treat- the situation in
whlch €§ = l; Brewer's is not so constralned. In elther case, the proposed

procedure implies that the irregular alone would be Zero, for this model,

and that . -
(\-é%-}@ezac‘ ae
ZQQ?,) S_= R, o, ") e,
‘ RPN
where kC and kS are constant, :§ (?:) \ "“5%"' é e éh ‘7:»)’. '

and ?5(3) is an (s + 2y, degree polyhomial 1n_B.

- It follows from results which will be Obteined below that, for Hannan,
Terrell, and Tuckwell, none of the three unobserved eomponents would be null,

and that the following models can be derived:

(- $6) C, = U-@cva} a‘
"'-%(%)94' O(®) agt

where wnd are independent white noises and

c t, O.; k 1: k
where @(V;) e Q (}; Q.)@\ degree polynomlal in B.

Iy RN
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Recently Hillmer (1976) and Béx, Hillmer, and Tiao (1976) have

developped a method to deseasonalize the BJB particular muitiplicative'model.

Their approach, translated in the ];')resent context,. assuming§ = 1, would
imply an answer generelly similar to Hannan, Terrell, and Tuckwell, but for
the fact‘thatvboth C. and St's model would be nQn—iﬁvergible, hence that
aC,t and/as,t would have smaller variances while aI,t wouifeas:e a greater
variance, and that C) (B)- would ggnerally be a (s - i?iyolynomial in B.
The re&iew of the state of the art can stop at this stage, even
though this is far from an exhaustive list; it is sufficient to.note that,
unlesé some further clarification is offered, ome would still face the
fundamental problem of éhe concebtualization of the seasdnal pfoblemf

When one starts with the Buys Ballot table, one is apparently miéﬁed in

proposing the B.J.B. model, yet, to have some confidance in the alternative

" approaches, which amount to designing the model from its unobserved components, thew

appears a need to develop a general definition of seasonality.

}

]

- 4
N ’ s -

L

J

-l .

-

Ba aa o By




2.6 The Spectral Definition

In the stochastic domain, just as in the deterministic one,

seasonal modelling has.evelved and‘“ﬁrogressed"_desﬁite-the obvious lack

of dgreement as to what constitutes the seasonal‘unobserved component. The
problem of defining the seesonaliis necessarily intertwined wirh'the seasonal
adjustment problem and.most researchers. have aﬁproached the questien from the

later point of view.

w

The general attitude toward the definition of the seasonal has
been one of caution. This reluctance has led to purposedly vague proposed

definitions,
fluctuatlons

which recur every year w1th more or less the same tlmlng and intensity" (p.21).

For instance, Baron (1973) defines seasonality as 'the monthly |

In spite of this vagueness,.rwo distinct but related themes appear time and
again, mamely, first,.that tbe‘seasonal is whet could be called ”quasi_;‘
periodic", i.e. that the saﬁe pattern "almost" repeats itself year after
year, then that, as a componeﬁt,fir should average overfa calendar'yeer close to
zero, hence that it ié‘seme sort of deﬁietion about the trend. The first
attemﬁr‘to a systematic treatment of the seasonal composition of a series was
ﬁreposed by.Lovell (1963) in the form of a set of, axioms. Unfortunately,
the proposed axioms did not necessariiy apply even to the simplest
specifications (Lovell, 1966), and this failure can be traced back to two of
Lovell's desired propertles' orthogonallty and symmetry, for whlch an
1nadequate ratlonallzatlon . b%evelopped (Fontenay, 1973)

.Most researchers have been cdnteﬁt with proposing some a Eriori model  for
the seasonal and have concestrated their attention on the estimation problem
:of the spec1f1ed model (Jorgenson, 1963 .Grether and Nerlove, 1970 ; Box,
Hillmer, and Tiao, 1976,...). Eveﬁ.thoughtit would be foolish to imagine

that the approach to seasonality exists, this shyness toward defining the

problem renders much of the existing works of little use for the researcher

=

who has to select one among the many methods proposed.
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Nerlove (1964) was, with Lovell, one of the first to attempt to
cope with this problem and to propose a definition for seasonality which -

be as.general as pessible. Since Nerlove's approach 1s still relevant

-todéy (Granger, 1976) it is useful to review it. The analysis begins from

the concept of a stable seasonal with which is associated a periodic

function, with the year as period, Vi The Fourier representation of this

pre

function. is -
ﬂ/?.

‘at =bot 2 gb C@S/{ﬁt'}' buﬂ&mhz }
L=)

He begins by letting by, £ = 0, l,..., s , since b_ = 0, be
| Y A |

s+|
random variables, Thepshe lets bo be any stochastic process, as long as

bo is independent of eQ ) )ﬁ ?iﬁ,l‘, - Denoting the component which

corresponds to the ,ch frequency by ?;@ t where
3

“d'!z,{# dy cos (Ret t¥e) ~ ,éét,z,s,.., ey )

. where ‘fl is a unlformely dlstrlbuted random varlable, he lets qﬂ be

itself a stochastlc process xﬁ : w1th spectral density functlon kfy(i) c.f,.
‘&Q,t = X,é,t Cos ()\/Qf'/' bl)

It follows that gﬁ : 's spectral density at the frequency
) : '

will be proportional to the sum of K)}e (/\*kl) and Kx,ﬂ (/\'Al) D

and, provided, as it is generally assumed, that K (A) peaks at ‘the zero

frequency and has its power concentrated close to that frequency, K ,f “(\)

will be approx1mately kai (A) shifted to the frequency X‘-at least in the
neighbourhood of that-fréquency. - Nerlove is
thus led to propose -the following definition:

"In the more general case, then, we may define seasonality
as the characteristic of a time series that gives rise to
spectral peaks at seasonal frequencies". (p. 262).

|
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This definition does not follow precisely

from'theAtheory of narrow band processes used to arrive at it.As long as
Kth’QK) does not reach-aklocal_maximum or minimum at the frequency Z)Ug,

K ,O- (}\-})\Q) will have a non—null slope‘at that frequency, and, if /\=‘)\ »

-

ﬁ (A) will differ from K ﬁ (0) by K%£ (2 Xi), hence K ,ﬁ Q&) will
not peak at )\ﬁ In practlce most of K ﬁ.()Q'S power is expected to be
concentrated tlose to)r” 0, and the “above problem was cleared by Granger
(1976) whoallous . Ky,,Q (A) t'o_ peak in an appr0priately chosen neighbourholod
OfA;Q' ' . . .

vt

Even though this definition is attractive, it has the shorthcoming
to fail to ekplain how the seasonality of a process is generated.- As such-
it only provides an ex post guideline on how to investigate seaSonality. The .
added
problem raJsed by non—statlonary ‘series’ has also been dealt with by Granger,

however there remains other‘problems. For 1nstance, Granger cites, as an

example of a seasonal component, Grether and Nerlove's model:

(1-.9 595 = (1+B)as

While, if ﬁeighbourhobds are properly chosen about.-the seasonal frequencies,

Sﬁ's spectrum will be concentrated in those neighbourhoods it will also be

concentrated about the zero frequency. More important, S_'s spectrum does

"
not teak at seasonal frequeﬂcies; and finally the selection of the neighbourhoods

is very sensitive to the value of the AR .and MA.coefficients. :
, .

i_>_“ Similarly a model such asd

: ZP (B> St = Q¢




Lo

would be rejected by Nerlove's spectral criterion as being the model of a
seasonal unobserved component. It would only be accepted by

' Granger if the neighbourhood about the seasonal frequencies are not too

small and if @ is close to 1. 1In other words, while a strict application of

Nerlove's criterion would force us to reject processes vhich are intuitively

seasonal, Granger's criterion leaves a lot of ambivalence.

However, regardless of the approach, this definition fails if,

in fact, the changes in seasonality are subject to cyclical movements, since,

then, the spectral density function rather than peaking at the seasonal

frequencies, will peak about those frequencies. The possibilify of a cyclical

evolution in the seasonal is accounted for in the ARIMA model, since a possible

model with cyclically moﬁing seésonality would be
L , puy
(- ¢, B“- @.B )gf = e
-where ' S o
B2 ,5%) |
i.e. such that \/- CP; '(P:. ‘has complex roots. The possibility of such an

occurence was explicifly investigated by Kuznets (1933) . Similarly, this

definition does mot help, when studying the problem of the seasonal "dip"
which is observed in the spectrum of most seasonally adjusted series, since

it could not be associated with seasonality. Even though the narrow use of

the spectral criterion itself is rejected in this paper, Nerlove's originmal’

justification, in the form of the theory of narrow band pfocessés, will be

maintained to develop a general class of seasonal models.
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2.7 Causal Analysis of Seasonality

For most researchers,‘the "ideal”.appfoaéh.is impliéitly or
explicitly what Granger (1976) has calléd, with réspect to the~séasoﬁal
adjustme;t problem, the "causal adjustment" approach (Grether'énd Nerlove,A
1970). It is considered "ideal" for two‘distinct reasons; fitst of all,
it is usually assumed that there does not e#iét a’unique decompdsition of
a univariate series and that ﬁhe componénts can only be specified uniquely
if specific causes are assoéiated with,eagh component, then, evén more fundamen;
tally, the components are assumed to be the resﬁlts of well defined ”éauses”,
Even though it has yet to be developped in the form of an operational method,:
in view both of its‘implication'for the ﬁodelling'of séasonai‘ processes and of

the underlying view on how séasonality is generated, it is important,

at this stage, to review it.-

Granger has probably provided . the most explicit analysis’
of this approach and Granger's presentation will be the base of the present
discussion. Granger states that

" .. ignoring consideration of causation can lead to imprecise
or improper definitions of seasonality and consequently to
misunderstanding of why series require ‘seasonal adjustifint,.

to improper criteria for a good method of adjustment and to have
implications for the evaluation of the effects of adjustment..."

(p. 1.).

Four classes of causes are listed: calendar, timing decision, weather,

and expectation, and7given the decomposition

2, =_At + St

where At'is the non-seasonal component
and_St is the seasonal,

it is assumed that St and‘At are independent. . PIRAN



However, in as much as a univariate approach ‘is chosen, and some

model, say an‘ARIMA:model, is. specified for each of the unobserved components:

Qn (B A= (D) epe
'CQs (6)55_— ‘:. es C&) aAs,¢t

where a and a are two independent white noises,
At S,t
(€A (B) and 9 (B) are such that_At's spectrum has almost no power outside

some neighbourhood about the seasonal fregquencies.
and. are selected such that St's spectrum has almost no power
outside of some neighbourhoods about the seasonal frequencies.

Granger notes ''that there is no‘unique decomposition” (p.15) unless
very arbitrary and stringent oonditions‘are imposed. Infact he notes rightly
toat the components are not only unobserved buF also unobservable, and he
suggeste that, only through the use of a causal model, can they be rendered

"observable". In the above example, to state that qk (B) and GZ'(B) must be

such thatlAt's spectrum does not peak at seasonal frequencieS\shile’qz (B) and

Qg (B) are such that St's spectrum's power is concentrated in the neighbourhood,

of the seasonal frequency is insufficient to 'specify At and S 's models.

However, if in fact S_ is generated by causes, say the weather measured by
and denoted by » .
»the ralnfall,th, given that z,. 18%¥he California tomato production, such that

Se=V (L’J) Re
then, i‘n)principle,)St can be observed" through R , Since

@R(@) Re = es(g)a.s,

Or(8) = v (8) @s( o)

and

C{"Q(B)»'-t =V (8) ¢4(8) Ret &, (‘B)o%t
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-doubt that whenever proper causal variables such as R

.2%

i.e. since St can be retrieved from =z

t

This approach raises serious questions, in as much as it is seen
-

as a method to model seasonality, or to deseasonalize, There is however ﬁq

S
t

p can be found, =z

estimation from its transfer function model should often be superior to an

estimation based on a" univatiate model, i.e. one does not have to acéept

"St = V(B) Rt” to model zt's transfer function. Questions relating to seasonal

adjustment proper being béyond the scope of this paper, it is sufficient to

consider the transfer function model of z, .

First of all this model implies that z_'s seasonality enters solély

t
through Rt’ but wﬂether the seasonality enters solely through some exogeneous
variables is exactly the question which was studied by Plosser (1976). Hence,
this approach to seasonality woﬁld restrict one to a subeclass of transfér
functions, since there is no a priori reasons Eo:exclude the poséibility thét
either V(B) CPA (B) or BA (ﬁ)’be 'themselveé "seasonal" filtefs. . That
U"(B)ﬁpA (B) might be a seasonal filter would ihp}y, in Gfangef‘s example,
that the pro@uction of tométo is ﬁot affécted in>gvéfy season the éame way by
the rainfall, i.e. that>a fluctuation in rainfall will affect the output of
tomatoes differently depending upon the stage of gréwth of the tomatoes, That

1

62 (B) might also be seasonal would only imply’ that not all of z,

can be accounted- for by R.. Whereas whether€9A(B) might also be‘seasonai
appears academic, it seems very plausible that in general [ (B) q7A(B) will

be a seasgnal filter.

If the modelling problemis considered, it must be noted that, even if
exogeneous '"'seasonal causative" variables such as Rt«are given, seasonality in
the transfer filter might have to be modéfedﬂand that no guidelines on how to

model ''seasonal Causative" variables have beengenerated. In fact, the very

through a simple transfer function model.

s seasonality



A
pfinciple of a seasonal causative variable is questionable. If Rt’ the

rainfall, is taken as an example, even though .there is little doubt that,

3
l- I
[( -

usually, seasonal movements will dominate (this is not necessarily the case,

-
as can be seen by observing rainfall in desertic or equatorial regions

L

there are also unseasonal rainfalls, and both long "eyclical® movements and long -

run trends in rainfall. The only "cguse" which is unchanging,as far as seasonality, |

(

is the calendar, I.e. time, and this is the object of the next section.
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3. A GENERAL CLASS OF SEASONAIL MODELS

3.1 Introduction’

On the observation that the periodicity associated with seasonality
is above all a property of time, the periodic aspect of time is isolated

-y

from its chronological nature and a bidimensional model is developped.

The concept of seasonality, in this broader concept of time; is
reconsidered, and two distinct stationarities, seasonal and chronological
stationarities, are defined. Henceforth the analysis is restricted to -

seasonally stationary processes.

The ARMA model is generalized to the multidimensional model . of ‘time,
and an example'isngiven‘to illﬁétrafé how a simple.seasonal multiplicative
model can be generated. 'Neverfheless this approach does not enable-the
researcher to discriminate, in general, between‘non—seasonél and sgasonal

models.

A Fourier transformation of the white noise process from which aﬂy
process is generated is shown to be. itself a white noise process;‘ The
Fourier repreSentation being an equivalent reﬁreSentation of‘fhe generating
white noisé process, a .seasonal process can be viewed as linearly generated
from this transformed white noise. ~Sucééssive‘transformations of the white
noise process into equivalent forms in the compléx domain enables one to
represent the seasonal process as a sum of indepedeﬁt real and cbmplex
processes, each being symmetrical about either the. zero frequency or a
seasonal'frequency. Those processes are the elementary components of a

seasonal trime series.

The Fourier representation and the complex representation are alterna-

tive forms of the“general seasonal model.
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3.2 A Bi-dimensional Time Model

P

p a
}

The concept of seasonality-is fundamentally tied to the concept of

periodicit;,'however a seasonal series is not in general a periodic series nor
.is there-any reason to expect it to be periodic. The problem in conceptualizing
seasonality, therefore, ié that, even though one knows that there is periodicity,
a striyct periodicity isvnot observed:

- “It is the close but not perfect afﬁroach to regularity which

. renders the precise definition of seasonality so difficult.”

(Nerlove, 1964, p. 259).

Thé problem, however, is, at least conceptuélly, not all that
intractable;.a time series is an observation made through time, and the perio-
dicity in quesﬁion is funétién of the periodicity of time. When a séasonal time sele s
is considered, the underlying time on which the series is indexed ié
'conceived as having two completely distinct properties; on the one.hand we
think of the past, present and future, i,e. we conceive of time as a chronology,

a flow whicﬁ passes but never comes back, and, on the other hand, we think of
fime as the seaéons which pass away only.to come back faitﬁfully yvear after

year. With each conceptualization of time we associate a- conceptualization of
the series; with chronological time we associate the concept Qf a trend-cycle
and with periodic time, we éssociate that of a seasonal. Both are abstract
concepts whiéh describes the .series as if the other were held constant. A
trend-cycle, therefore, is some path the series would follow were it not for

the periodic change in seasons; it is an imaginary construct'since, in real life,
the procesg cannot be observed independently of the periddic change of the seasons.
A seasonal, similarly, is ;he'periodic fath the series would follow were it

not fof the chponological time. It follows immediately ;hat,while a trend-
cycle should be indexed in terms of the season,a seasonal should be indexed

?

in terms of the date. Such a decomposition would be of limited utility since

Y
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-at the limit we would have as many trend-cycles as we have seasond and as L

" many scasonals as there are dates, and given one series, no way to estimate

w7

those components.

-

Now, for an observed proceés, chronologicai time and periodic time
pass simultancously, hence the evolutionary changes»in the sedsonal, over
chronological time, should.be expected to.be relapéd to the evolution of the

series itself, hence to the trend-cycle. This evolutionary change in the

seasonal is what gives rise to thé concebt of "moving' seasonality, of

"slowly evolving" periodicity,... The periodigityrih time, which is directly
attributable to the relative positions of the sun and.thé earth, is taken as
exact and fixéd, even though théjprocess itself will appear ~only more and less

periodic.

- . The dichotomization of time to conceptualize within the observed
process a trend-cycle and a seasonal implies that the time one observes, this
time which simultaneously both passes never to come back and comes back

periodically year after year, is to.be seen as a subset of the time within ' o

which trend-cyrle and scasonn? are conceptanlined. Tihls guhsetl f Uime may

be called real time, its complement being called . imaginary time.
Whereas a point in real time is well known, -say (1 June 1978, 1 June), an

example of a point In imaginary time would be, say,'(l June 1978, 14 January) .

‘There 1 June 1978 indicates the date, independently of the season and 14 January

e o ' 1
indicates solely the season.

1. The rogts of this approach can be traced back to the work of Buys Ballot

(1847). It is Guilbaud (1968) who was the first to point out that the
Buys Ballot array, as used traditionally, was inadequate, because the
first month of the year, say January 1979, should be as.close to the last
month of the preceding year, December 1978, as to the second month of the
year, February 1979. This led to the indexation of the series both in-
terms of the chronological date and in terms of the season (Calot, 1969).
The concept of a multidimensional time was proposed by Fontenay (1973).
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Given such a &iew'qf theftime series, the observed process is an
obsefyation of'fhe fealiiatibﬁ’of the.process only over real time. The process
itself would be definea over the overall time, i.e. over imaginafy ;ime as
well 5 over real time. However the very nature of periodic time simplifies the

specification of the process. Real time can be rewritten as

txl(moda)s T

A .
such that t denotes the chronological date while t denotes the season. This
~
leads to denote the process in terms of both t and t subscripts, i.e. to write

z, e In generalized time, that is, when the process is not. constrained to
, ,

: A
real- time, the above relation between chronologicalitime.t. and periodic time t

needs not hold anymore. For instance, we could have t-to be the chronological

date 1 July 1978 while the season, ?,4is 14 January (see Figure 1).

If now the process zt/? is observed while holding the chronological
b

date constant, say at ty then z, ‘? depends only upon t and it is a periodic
. ‘0, Ve
process e
A |- ) ’L:">_ - "' -+
oy 4= 021,22,
n "
4k t,t+8p

-
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3.5 Bi-dimensional Time and Stationarity

(As the process if defined in terms of two time dimensions, t and %,
it is necessary to consider stationarity in each dimensions. The present paper
considers Bnly weaﬁ stationarity and weak stationarity and stationarity will
bhe uéed intefchangeably.. Stationarity in the seasonal dimension will be called
scasonal stationarity while stationmarity in the chronological dimension will
be called chroﬁological;i RS "f A series which is both seasonally stationary

and chronologically stationary is stationary.

Seasonal stationarity imﬁlies that both the mean and the variance-
covaiiaﬁce of the process are independent of the seasons and that they depend
onlyvon the relative position of the seasons, . in other words that the impact
of a'given sﬁqck in January on an observation in June is similar to that of the
same shock in June on an obsefvation made in November. Seasconally stationary

process do not need to be indexed by the season.

B.J.B., C.G.N., and H.T.T. models are all seasonally stationary,
however in recent years Cleveland (1972), Froeschle (1975), Cleveland and Tiao

(1978) Havenner and Swamy (1979) have investigated processes which were

not seasonally statiomnary. Cleveland and Tiao have called seasonally stationary

process homogeneous. Since, before passing to the more general form of the

seasonally non-stationary processes, the properties of the seasonally stationary

processes should be established, and since this is the objective of this paper,

seasonally non-stationary series will not be considered.

An additional motivation to restrict the analysis to seasonally

stationary processes was provided by Froeschle:
"The theoretical motivation for this [using non-seasonally stationary

model} is good but in many cases the number of observations in a
time series is not sufficient to permit good analysis" (p. 272).




-3\
Chronological stétionarity parallels much more closely standard
stationarity and it has been coﬁsideréd by Pagano (1976)'s under the name of
periodic correlation. Invfact Grgthef (1966)'3 haa already established that

stationarity implied that a process could not be indexed by the season, i.e.,

in the present terminology, that it is seasonally stationary.
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3.4 Time Representatlon of a Seasonal Process

A white noise process can be defined over the bidimensional grld(t,k)
If it is denoted by at ?, we may define 11near filters on this white noise to

generate stochastic processes. The general,form of the linear processes thus

obtained would be

(1) @0 S
e1 2 O Z k1J Qv £-4
/ /
0 =0 T
. -
X ) L
and seasonal stationarity would imply q) - 1%/ o
AREN

It is convenient to define subprocesses in the chronological dimension

LA
as X, 4» where d = t-j and where d + s = d. Then
| )
A ?‘%_)t - Z - X d
: d=o0

where q(,t/d - % (P)) alt,?-a' and B 01{;,2_@ = Qg 2-{)

The s processes x4 are simple unidimensional stochastic processes and
, _

if qjd‘(B)'is rational so that

Lyd(?)) %—(%) Yo,

X d is a standard ARIMA process. . , -
t, : ‘

Intuitively since, B.J.B. multiplicative models were generated from
a Buys Ballot table, it should also be‘possible to generate them this way. An

example car be given, at this stage, to 111ustrate a pOSSlble procedure. Let

Y, ®= (1-¢*8*)" (- & )t B¢

3

[

R W =

- s W
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Given that a B.J.B. model is defined in real time =

, let a a

- s
t,t t
then z «=z and

‘ (a-1)

= 7 0 o) (1- 3+ 84 ¢ B
(- <e*’ib¢) (-85 5= Iy (Bac

ﬁowever, since (1 —-[es bs): = (1 -¢B)

seasonal AR model is obtained:

(- (QB)U @454)9~é Qe

Z?(B), a R.J.B multiplicative

A second example will be used to show that this framework is mere

general than models in which the seasonality is generated solely by introducing

mutiples of lag s, and that B.J.B. trigonometric and multiplicative models have
common foundations. ‘ " ‘ .

Let qu (B) be such that

Pa(®= (1-9* BAY‘ ga

where 50-_-;_}}5‘ V*CP 51:2‘.@2) gs:ﬁ@i
54:@‘/) ds-0 , b6 :—?b) =15 ¢
53-‘?)&3" r@ §1o = - (pw>§n=°

¢ g i = a ~ =z
A¢ in the preceeding example, let at,% e hence zt,t &

and

es (1- B°)7 Sy (B) @y
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M ' &
where S(P LB) :. ‘%O 51& B

But then, since . S@(B) '(I'VS(PB‘} @16‘2): <(—C€4’B‘b)

(-V5 @B +0*8) mt-ae

which is, when CP = 1, the B.J.B. first example of a seasonal process. In
fact, _theh, the coefficients of érP (B) are the values taken by a sinusoidal

‘with a period of one year and an amplitude of 2.

It follows however from those two examples that, short of adopting
a definition for the seasonal component, there is no direct 'wéy' to establish
Awhethe.r', in general, a model will be seasonal, thus in the first example,
one could have had %3 0. The only .models which appear unambiguo(;sly seasonal
are those in which z, ’t‘ depends only on observations made in month ? In

)

real time, those models will be:

5(8%) 5e = O (B%) o

-

'

b
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3.8 The Fourier Representation of a Seasonal Process

Even though the link between the time répresentation of a stochastic

process and a simple seasonal ARIMA model was illustrated in the previous

-y

section, the relationship is not particularly intuitive and the kind of

interpretation one can hope to make appearé rather limited. An alternative

is to follow the path of Hannan and Nerlove ahd.to.work with the Fourier
representation. The Fourier representafion, given-the bi-dimensional model
of time, is particularly logical sinqé the.process; in itsnéeasonal dimension
is periodic, hence exactly representable by a Fouriér series., Thus, given
the chronological date_t, tHe white noisg proéesé_at 2 is ﬁeriodic with |

3

A . .
respect to t. Its Fourier representation is:

Jod N " ' "’ A) (-l?o.t,d, | N
QT = V7 {%%24 g (‘Lf,u wr;{-lf‘*a«tp_ﬂn sf“afﬁ + ——-—L—l)}._i, } |

4=
where -
Ae=2TL
A
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In other words,{a't',tjfzolfl/iz Y Z 0,//“./4/%

is a thte noise process and, fur;hermore, a 1 and at’% are. two
equivalenf representations of the same white noise process. Since they are

equivalent, a process Zt 4 can just as well be represented as being generated
, _

linearly from a such that
’ . t’l

W)= . “ (_‘,)?
Bt - 1/‘({.— ?.'toJrZ [x£126.60514(£{Xf,22.+]S‘V\hfgt)f{-‘%‘éﬁa

where

(pj(?’)'lt,f:% 91(6)04,)@ 4 02,3...7"4«

The desirability of this representation compared to the prévious
representation becomes obvious when it is noted that the seasonal
dimension has been isolated, in the trigonometric terms, from the chronological

dimension, in which are‘defined the amplitude processes.xt ﬂ'

Seasonal stationarity implies :meedlately that" Cp Q(B> <02,0+I 6))

Qu(@ @zfu(ﬁ))é“i AYE YMH Z:}JZJ‘.-/("A)*J

Such seasonal models can be éeen to be the sum 6f'sine and cﬁsiné waves
at each ;f the seasonal frequencies and of one year Qidth,Ain ﬁeriodiﬁ time.
The amplitudes of those curves are describea, iﬁ chronological time, by ARIMA
proéesses generated by linear combinations of the white noises ‘at;%._ The 
underlyiné‘idea of analysing seasonality in terms of amplitude‘can be traced
back to Kuznets (1933). Wald, imﬁlicitly, introduced the stochastic formﬁlétion.
If the suEset of this process defined on real timei is considered, sincé *;
cos ALT = cos al t and sin?y £ =Syt , and if it is ‘assumed tjhat -the_ amplituae

processes are random walks,Hannan, Terrell and Tuckwell's model is obtained.




RS,

An alternative but more useful representation of the process can

be developped as follows:
y
Aio0 = Qv,0
)
0...:/1

i

-‘z—(-a—t,zﬂ T4 a«flz.‘e‘/) A= ), 2,0, (4//2)"/

]
QLtazldtn

where @ is the complex conjugate of a

T s 4,/ - LAY E ) 'Z
I ( "U’*/z) (0%4 ?j CL)éJ_e eLllt)“} Qt,e (-j) }‘
E (o £>: ‘ Lo, (oh)

E (d.t,iu at 0,_ fﬁ- l:-—jz

):ﬁlz ’

P
o~
>

!

Once again a new and equivalent representation of the white noise

p?QCESS,{a)tIE }‘ ‘&:O,i’ ),iz;,-.,l:o, l/ ‘. -/A/a} is obtained,

which can be used to generate the process Zy % which can be represented as

| | Gp)-, , ~idE =yt o) %j
?t/? :Uf"- g'Z’o ’r; (Xt,z € + %y © )+ %iya (0
, ' po L= |

/

where

ZP}& (8) %L, = Y, &y (8) aéi,,a Lzo,.. %

and where éEk'(B) and é%L(B) are polynomials in B with real coefficients and

\Q is a real scalar.

ya -gi. .: /, 2,0y ('&/2>'/
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In fact, since zt,’E is seasonally stationary, i.e.r,sin;e :
(r0 (B)= @rev11B), ©:9 B) = Bine) D), 20d Bt =Yopy , A= ip2,. - (00)
then 8= 4,,(8),62(8) = 0,4(8), and T) - ¥, 0 de. "

@lﬁaﬁ) ’K?}-‘,f_'b/,__g 6, (B) aa)é/[

"/

A;'ﬁzqu“yﬂﬁ

This form will henceforth be written as

@2,(6) Y;;,e :bfg-‘éj. (g’)&)f/j‘ A=0..,, 04

In fact this is not a new representation of the process z, ? since

one can pass directly from the representation of z_« in terms of x._ , to

t,t t)l

. ? : : ) . : .
that in terms of Xe | The present formulation would.also be .equivalent. to

Godfrey's own formulation had he assumed seasonal stationaritj.(

It is useful however to further transform the representation of

\‘ “E . ) . ] C :
z, p so as to look at (’x’t 2 € LA,@ as one- elementary process, provided
5 \ ¢ : Lo o .

the analysis is restricted to real time, i.e. £ =t. Let

Once again the same properties are maintained and [Q-f:,,l J‘/;OI 2,094

- i::C%lfLﬁizv.‘.? is an equivalent representation of the same white noise

process, since \
* -
E(a%, )=0 |
r Li=4s

E(q* S )=
| 44, ﬁ/lz> o ,@,J_ﬂz

t,R

operator B* defined on a*t [ such that
3

a% has nevertheless some distinct characteristics. Hence a lag

¥ * "' ;* .
/B a/-{:,ﬂ - Q"é'))’é




Ho
~on the unit circle, will be specified as e

-iA

operator is specified'as e . This fyoiiows either from the Cramer

-1 (A g B, the standard lag

representation or simply by observing that

* —
a’é—-t/,{ -

The general model Zﬁ?’ restricted in the real time, is now represented
: _ ,

as the sum of elementary processes x*t ﬂ and their conjugateS where
. : R ,

AR | e
o ¥ Y * €y

@£—E{¢6/0+£§ (/th ‘/‘7(1,—[)4'7( (_'/) }

O =g BIUBY ak, L=l o)

%‘ .
Yoy = Ao .

<, sl

and where 40[ (5’\‘_) and 9 yi (Dy) . are polynomlals in B* w1th complex
— - Ll A‘ . .
coefficients (p,é ('Rj ¢ and (9 e L B) respectively

In fact, once again, this is not a new representation of z, but only

a simple transformation of the previous representation since, considering

(’Xt,@ e—ckgt

R A
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I\
Yos e go(%,é -éwl’e&) (2t oA &)>
= T_P; ('B*) @i,,z
R
Sinilariy

= (At ' - —)
Keg €7 _etht % Vo, Qe s £ :/a,'.../(%}/

gy () m fm (ﬁ)w

¥ o ‘ ‘
and where Cp,e (6*) and 9[ (BX) are polynomlals in B* with respectively

(@% e'd &43 > and (@Q) L/\lé ) as Jth coefficient.

Given that X, 2 is an ARMA process, its autocovariance generating
) ) .

function, AGF, K¢ (B), will be

2 6,0 9,()_(‘:) ) - 3,
K (_B) b/ sz()@th) | /é Q/L/ /.»/’Q"
)

‘Given seasonal stationarity, this would also be x £ ﬁ's AGF. On

the other hand, x* d s AGF can be wrltten as

Kiw=1¢ @1 8) ©1() &}
: 8) (P,é (F)

wh‘ile ')(*ﬁ ia AGE will be -
XS =T oh(®) 6ff (P) 2
%(8) 95 (F/
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This result follows from observing that the AGF is a z«transform.

Noting that, given any polynomial P, with jth coefficient pj,

T PYB) = P(B)

where P*'s jth coefficient is (335 € ,ﬂéb&

the following relation is obtained between X)t ﬁ and §§ g A AGFs:
! . 2 3
* )
Kel®) =¥/ (¥)

By passing from xﬁ e, to i*t 1 the shape of the spectral density
H
function has been left unchanged but a lateral translation of the spectrum
has been ‘:av‘.eo runed ( _
by }\_l’\ the ¢enter of symmetry passulg from O to A_’( Similarly, if B* is

defined on the unit circle as EL +‘L£)
* —
(B):?(B)

and the following relation is obtained between x°’ 1 and x* ,'s AGFs:

m () = *Tﬁ (B*)

KL (A+de) = K3 (1)
Ko (A=) = Kp (A)

Even though this approach to the construction of a seasonal process
is closely related to the theory of narrow band processes, it differs from it
by the fact that, since complex elementary processes are used, the épectrum of

-

the transform process is éolely the translation of the original process. If
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.1;25
one were to return to Nerlove (1964), instead of worrying with

{Kk (k+k2> +Kjé (/‘_-' /\.,@)z collectiveiy;" bnéf studies t.hem indii»r:i:dlually.
Y

Just as x st spectrum is symmetrical about the zero frequency, since xt )
9

-

is real, x*t ﬂ 's spectrum w1ll be symmetrical about the,ﬂth seasonal frequency,

and the intuitive idea of Nerlove. and Granger has been recovered in a meanlngful
way. A seasonal process is a sum of elementary complex processes which are
symmetrical about the origin and about seasonal frequencies respectively.

-An alternative way to look at the seasonal model, if one uses the
signal extraction terminology, is to conceive of a seasonal process as a

signal, possibly with noise; ﬁade'up_of a series of messages, each sent at the’

zero frequency or at a seasonal frequency.

‘ThoSe components,are said to be elementary since for them and for

them alone the symmetry property holds. A component such as (.Zé}pACClst\ﬁ1&>

¥
is notstationary whlle a component such as {(—Xt/f"‘kti>
('7(1«_-7_1 Cos- )\1(# K¢ 244) Siwn }\22.‘) }

while being real and hence symmetric about;the4zero'frequency, neither

is symmetric about nor peaks at theJeeadsnel frequencyjAl.

The distinction is not frivolous if its implications are considered,
in the case say of Hannan, Terrell, and TuekWell's seasonal adjustment
method. If the variance of the white noise generating the random walks

corresponding to each seasonal frequency is the same regardless of that

-frequency, by smoothing each freqtency'at a time there is the-possibility to

, _ . T9/ : ‘
extract more noise ﬂgﬂm the seasonal frequencies closest to /2 than from those

- farthest — a spurious result since all are generated the same-way | ' .a

similar white noise process.
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4. The General Seasonal Model and the Multiplicative Seasonal Models

4.1 Introduction

.'Starting'from elemenﬁary‘notions of what constitute8vseasonality,
a general class of seasbﬁal models has been developed. H.T.T.'s seasoﬁal
model ha;“been shown to be a particularisation of this model}oﬁtained by
allowing the amplitude of each.of the seasonal sine and cosine waves to be
random walk processes. In thiszchapter_the relationship between the general
seasonal model’and.tbe multiplicative séasonél models. is inveétigated.
Provided»tﬁat attention is restricted to seasohally stationary‘processes,
the geﬁeral seasénal model will be shown to include not only both the BJB and
CGN multiplicative models but also the trigoﬁbmétric models as developped
by Bacon(1965) and Box and Jenkins\(l970). On the other hand?it will be
shown that the proposed class is in another way less general since both
multiplicative and trigonoﬁetric models can be designed wbich cannot be
derived from the class of géneral seasonal models. The class of models derived
in this paper will nevertheless still be called a general class of models since
models thus designed are related. to fundamental notions of seasonality while

' Se ner

multiplicative models which cannot thus.be derived canAonly be justified as

seasonal models on intuitive grounds.

1]

.2 Derivation of the Multiplicdtive Seasonal Model

The general seasonal model is a sum of stochastic processes, and,
to deduce the implied overall model for 25 these piocésses must be
aggregated. This will be done.in three stages, the first stage consisting
in deriving the component which corresponds to- the fth seasonal frequency, the
next one being use to aggregate either over all seasonal frequenciés, or, -
if the AR polynimial..(pg (‘Tb) ) Q_,: \)’2.,‘--) Mle. , is simultaneously indepcndcn;
of £ and 'ia factor oi’ Cp 0 (B), over all seasonal frequencies together with
tbe“elemehnt of X o which he_lsq)p (B) as w=:. AR polynomial.. The last step

b

consists in aggregating all the components thus obtained to generate z 's
o t
model.
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Let

thg = 'Lt‘w Cos AQJc + "\‘LIJC)Q_Q*_V*;M %2‘;_
- — &

4
= + 7
ek T T

then, denoting / | E \K i . -
Teo 2 %ef By Mg ),

Wy ®) = \K‘iu&)-\— —\2;(3) \,
| __ 19*; (®) e (%) . é}(&}‘e"‘gm | VQ'AS‘L”*
PWILE Py |

' (&)
80 ® S
98

I

| ] P ) _CP“\)Q ('F,\ !

here \ = *, o™
h q)%Q (®) < .ch('&)cPQLB)

—

o : - & "
2 (®) &, o) vy = % ORI EHOL A

‘QLQ-"Q:Q |
A ERGENO IR PP

WY

where k Q is some constant.
v, :

For instan;e, if .S = ,12, L= 1) el o
= (-q e ®)
Q%;Q(%\ - (\_F& @B +Q?"St) A

‘ .

If C? = 1, this is Box and Jenkins's ltrigonometricf model.
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& . L - ( ' )
B) will be a real pnolynomial in B of degre +
\.& ) (B) ‘ poly gree ?Q qe

where p, and q, are respectively ‘B) and &, (B)'s degrees. It should be
Py ¢ 2

noted thaf -as the sum corresponding to ?9% Q (B) e“ 0 (F')‘% G:LQ is a complex
. ) i ) ‘l

polynomial plus its complex conjugate, §© y,0 (B) will not be of a degree

2
~smaller than (p + q). The aggregation used to obtain @ v.0 (B) is possible
’ RAS
since, as Q"“ ((ﬂ‘.'-é*u:)a* ((5) q)* (_P) and its conjugate are AGFs of
’ L 2 L L

complex moving average processes, their spectrum will be non-negative for
all\ﬂ , the sum of their spectrum will be non-negative, and, being real, -
symmetrical about the zero frequency, hence the sum of their AGFs will be
the AGF of some real MA process and it can be written as the product of a

real polyﬁomial in B multiplied by the same polynomial in T. It is this

polynomial which is denoted by Q'Y 0 (B).

yt Q's model can immediately be obtained as:
b ’ .

CP%Q e) tee 7 P‘w ’ @%Q ) a‘ha,k

\

. . . . . . 2
where ay 2 tis a white noise process with variance s*a.
b b .

)

are real processes, y = x% andy

As x* and x% =
. t,o t,o ) t,M?..

t,o t,s/2

hence the procedure presented below needs be applied only forae = lr,‘ 2,

X
t,s/2’

v

(s/2) - 1

Finally it should be noted that q’ .0 (B) is the product of quadratic

simp‘lifyiﬁg_operators with complex roots at the frequency ){i :

‘P . 2 N 0.2
Que @ = i"\ (1220, tos dgn+ 7%, B7 Y2 (- g ey ey
- Q.Q.Q&QCDS)\Q+ 'QQ\ V:?' - H Q'a Q-m\_QCaﬂ\{o:&z +Q""13“' \(9

Where'p’q' 1 is the number of distinct complex roots at the frequency )‘.,Q’ rk

b B -

being the multiplicity of the kth such root and EQ 9 is the number of distinct
. . -9 .

coemplex roots in terms of both the frequencies '>\_,Q and\{ s Iig\being the corres-

pdnding multiplicity.

N

1
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The aggregation of the [(/o/g_).-\»\] %{: 2 into %t’ ig a straight=—’
‘ N

- forward operation, however two particular cases deserve attention. .

First, let's consider the modei, given s = 12,

CPO-((S) “\’tlo = 90(&) a{“q

KA A
(-Ban eals™) g =0, (0 ag,
] | B Y K
Yo = ; -

o
L%
th - L=0 QttVQ '

’ Then

k, ® = k_ &) +K‘é () R

= B, (») B, ¥

\/:_ 6": " .e‘(ﬁ) B ) : A\l\,
Qo (B) @, F) RN A

T <>\Cl ’
P (8) PP QB PP -

o %eom) eow)cé‘(ﬁ)qq_ #) \/:‘ +'é|m)s"(mcooca)c‘p°m\7’f Rt

Hence z_ will be an {Poéﬁ-,) hrak (7-*“‘10)?0%3} ARMA process with ,4

Qo) (1-Bon + 947) 1, = By (v, ¢

i.e. a trigonemetric model similar. to those developped by Box Jenkins, and

Bacon, except that it is stationary.

a model generaly smilar to
Alternatlvely,hthe CGN multlpllcatlve model may be derived.

Assuming ihat (%ﬁ

\-\\Q C@ Q(ﬁ) CQ Q (%) .Q:p)l)...) |
where q> Q(."S’) and CP ((5) -Q Q?_ _D)\) . _/517__“ s diffef solely

by the frequency of the: roots, the arguments being the same for all seasonal

frequencies, i.e. for instance "yQ 1 = 1 and -
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and if .0_. = 0, then

- (G)c. (1-o )

‘)

as long as (@ 2 (B) has at least one root, assuﬁling that ‘)Q 7{0) -0 |).,.)plz..
and regardless of \),e ) (,P,)) Q= o, \ oy /;I’Z.) aud e? 9 (."S))

.Q-_-o)\).u) Ml glaee
’ Al

e ® Ea e

. T a, (—————-——-—;,a)
o ¢=0 ©R % g
- ARau -1“:"3 AGFE  wadll ke - |
. Al -9—?. ( e\i’\Q (?ﬂ eduQ (c) v

K () = L %y .
\’L( . 2=0 C{)”Q (®) ('PQ.‘Q ) CP\),Q(M CPQ'QU:)

The deneminator of KZ (B) will contain an elemen}:

Al B :
(&
1; q)lQ(P;)q}llQ()

and, since this element contains the full c,omple(elhnt of the roots of unity
A
for the arguments, it may be rewritten as a polynomial in B, with Q 1,4 (B)'s
. ’ ' ?

argumentss at the sth po@er, i.e.
Al , o A
= F
Tr %mcp (8) $ (=*) §¢ )’
@l

where, if (\-— & &) is an element of (P (.ﬁ) , then ((_ Q‘» ’\'S}s )

is an element of @ %).

s
!
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Denoting " CP 2 U‘s) k_.\ q)(n,') the depomlnator of X, (B) may
L
be rewritten as q)(‘_m 5(@-’) §(G A) CP U—‘-) X » 1.e., since the numerator,

as the sum of AGF*s of MA processes, 1s the AGF of an MA process, denoting

this numerator by 5(‘3}9(‘:))

W (®) = %Qwﬂ ST I B \)'2_ &
¥ 19m & () & ) p® °

PMFW) 4 = By Y o

zg will be a stochastic process descrlbed by a CGN multlpllcatlve
Al‘z..
seasonal model, and ®(B) will be a ‘max 3qQ+ ,(5 degree polynomial in B.
: R0
QR

To illustrate the prbcess a very simple e}\ample may be given. Let

(1- MHu = %,

(1+ 3% ) %t\ 2‘,(\4'@1) qw‘:,\
(\+§B>\-’t£\?—: ‘

t o

(N

where & (C\éb)zzi (C\‘E‘\'L: E(Qe.i\i :G‘:\

Ihew %‘\led\‘ 2 B
vt L e

\

% (\‘_géq.ﬁuy

Ko (B) = ) (g

r (_l-@‘*Fk';\

| (- 3% 8") gy = Vyaq e
welhale -3 (Q’V,E \'z.‘ - G";

Vo= a (BT (e gt )
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If now, z, also includes a component Y. such that

(r-ee)y, = ey

L R
and = Y =t
“yel Ty
then | g . .
’ %
%, = Y- % 34t e +1r+ 9t ] -0r - BTF z\m
K, ()= a
¥ ¥l G-ws) (-8 ) (1- §4F%) (1-6)
Denoting the numerator by % (-(‘5) %(-Ff) Qﬂr ) 16{: S model is
obtained as a 1 @a, 4) x (1, 0) multiplicative seasonal model.

(l-oe) (- §“’5‘W'«( ﬁ o (%) alﬂ_

To illustrate the role of a MA, it is sufficient to return to the

original example, and assume, now,

2 (aJc,o\z = 2 (qé‘z \?-= 8" e (%H\z e FL“

then L0 0e@h)E e+ (e (e )4 (a3 ?XQ_(H@"\ £

\’(16(“)-:" _Q\—‘é“ﬂu)'(\-Q“Fq}

i.e. z, will now be an ARMA (0, 2)*%(4,0) multiplicative seasonal model rather

than a AR (0)®(4),&.. .- may be denotcd by

h—@mﬁq \'Yt" (\ "‘eiﬁz \‘,S’ ;Q'ﬁf;‘:
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4.3 Non-decomposable mﬁltiplicative seasonal models

It>has been shown in the_previous sectién that both the BJB
trigoneme¥ric seasonal model and the multipiicative seasonal models can Be
génerated frqm the general seasbnél modei-devélbppéd;in the previous éhapt
Even though; provided the assdmption of seasonal.stationarity is made, all
general seasonal models can be expressed in either the trigonometric or th
multiplicative form, the converse does not necessarily hold. This last

contention is best established by dsing'a‘Simple example.

. Let S = 2Aand

(- qg&;) (%é )
(‘\+§e;\ %E,\ = (\.-'M: aé‘)“‘

2 (“é,o\m < & oy, Yf“"i

q 4—?;) Qf,o

The two processes are ﬁon—invertible, hence they'arefsmoothest (Hillmer, 1

Hillmer and Tiao, 1978). ThenAzt, where z_ =y

£t Ye,0 Ve,
can be derived to be

(1-37) yp = (-0a) o ag

where A '( -' n
’ ) ! ) B . - S
and both €& éndzv , are obtained by solving thg,qUadratic polynomial in ®

,'L'%d}?;'-\- Tiva®a (\-ﬁ-_cp\’"l}-q)i:zs

zZ,_ is an invertible process since Ve and y are independent

t ‘ ) t,1 ,
processes and since, as z 's spectrum is ~ the sum of their spectrs’an
as y, o's zero on the unit circle i - at the frequency & , and

?

. is at the frequency 0, the sum is positive at all frequencies. It follows

er.

e

976;

J

a

Ve o1

/

A
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that there exists a process ¢ _ where

N T

and wheree.t is some independent white noise process the variance of which

’

-

is small enough to €nsure that
7 , '
Kq\d(}‘\ - Si. 7/O S 0$’>\ i4r

Then there exists a polyﬁomial %\)‘(B) and a constant \)\’_ such that

'\(\s_ (e) = \K,WU’:\ —-_G“?é

(\_étvbz\‘l{'k :\)\y'e\r(ﬁy) QU';L‘

where n
a \ = '
2 ( Uk  Tq
However U't cannot be partitioned into processes equivalent. to
' and i in fac "~ and were already the smoothest processes
yt,o a yt,l since in t yt,o yt,l y the hest p

one could obtain, hence zt' was the smoothest seasonal model which could be

‘generated from the general class of seasonal model.,
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