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FOREWORD 

In 1971, I was given the responsibility of establishing a consumer product testing 

laboratory in the then Standards Branch of Consumer and Corporate Affairs. During 

this time I had frequent occasions to be in contact with Mr. Romanowski who, after his 

retirement from the Division of Physics of the National Research Council, was acting as 

consulting metrologist in the Standards Branch. Being a mathematician by education, 

Mr. Romanowski has always been highly intereited in the role mathematical statistics 

plays in the analysis of the reSults of precise measurements, particularly from the stand-

point of their accuracy and reliability. Since Mr. Romanowski possesses a very keen 

and inquisitive mind he became interested in the work performed in the new laboratory 

and we became involved in long discussions on the applications of statistical analysis to 

the measurement of the degree of inherent hazard in consumer products. These in-

depth discussions produced a number of collaborative publications in various interna-

tional journals. 

During the last few years 1 became aware tha,t the professionals in our laboratories 

have not acquired sufficient knowledge in the fields of calculus of probability and statis-

tics from their respective universities andar,lherefore ill prepared to solve certain prob-

lems they encounter. In order to bridge the gap in their knowledge a proposal was 

made to Mr. J.W. Black, Director, Product Safety Branch (since retired) and Mr. R.G. 

Knapp, Director, Legal Metrology Branch, that Mr. Romanowski be requested to hold a 

workshop on statistics, in our laboratories. With the blessings from the two Directors I 

approached' Mr. Romanowski and he, with some reluctance, agreed to hold a few 

workshops. These "few workshops" continued every week from April 1986 to June 

1987. 

The reader must bear in mind that the participants of the workshops have had 

very little preliminary knowledge of statistics and a poor understanding of the applica-

tion of differential and integral calculus which, of course, plays a fundamental role in 

statistics. In spite of all these diffi.culties the author not only completed the course but 

compiled his lectures in a monograph form. This mo-nograph is an attempt to adapt 

mathematical statistics to the kind of problems the present day metrologist encounters 

in his work and require a good knowledge of the advanced procedures of mathematical 
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PREFACE 

In the near future the world will celebrate the second centennial of one of the most 

important and influential events in the world's history: the French Revolution. It is 

difficult to predict what aspects of this event will be the most described and discussed as 

it was so rich in great and glorious achievements and also . in dismal failures and 

tragedies. It is however quite safe to foresee that one, particularly successful achieve-

ment is likely to be always quoted, namely the creation of the "Metric System'. 

If the year 1790 is considered as the first year of the "Metre-era", is it also legiti-

mate to consider it as the beginning of a new branch of physical sciences, namely that 

of "metrology"? From a certain point of view, the answer is "yes". Although the prob-

lem of how to treat observations had already been raised half a century earlier (see 

Chapter II), the Metric System was so grandiose and ambitious that it deeply shook all 

scientific spheres. This systera was supposed to be based on a so-called "natural unit", 

namely the length of an Earth Meridian, and its execution was supposed to be so accu-

rate that it could be recommended for adoption "by all nations and for all times". This 

emphasized the role of geodesy which thus became closely connected with metrology and 

... still is today. 

It is very likely that the shock produced by the creation of the Metric System has 

been responsible for the generation of the wide spread interest in "accuracy" and 

"errors", in particular in "random errors". Now, the notion of "randomness" automati-

cally leads to that of "probability". Up to the middle of the 19th century the term 

"probability" was used almost exclusively in the discussions concerning games of chance, 

particularly those which use dice and cards. The geodesists and the metrologists had to 

fabricate their own theory of probability in order to be able to apply it in the treatment 

of the observed results. While some of them were engaged in the herculean task of 

measuring the length of meridians, those who were more mathematically oriented 

(Legendre, Gauss, Hagen) were constructing the probabilistic theory of observational 

errors. It was not until the end of the first quarter of the nineteenth century that this 

theory took the form that remained practically unchanged until the beginning of the 

twentieth century when it became an integral part of a vast new scientific domain 

which, perhaps not very adequately, is termed now "Statistics". 
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The text that follows treats tha-  t part of this Statistics which is the most useful to 

those who take care of the objects that are called "Standards" and are of such impor-

tance to the activities of any nation. 

The reader, when perusing the monograph, must take into consideration that it is 

neither a treatise, nor a textbook; in any case it is not a meticulously written, well pol-

ished product. It is presented to the reader exactly as it wa,s presented to the partici-

pants of the workshop. It is a sort of living matter with all its peculiarities and imper-

fections. The author apologizes for all the inconveniences this may cause to the reader 

and solicits his magnanimity. He is, naturally, anxious to know the opinions of all those 

who may enter in contact with this, rather unorthodox, selection of topics in Statistics. 

Being the quintessence of a personal experience, this selection may be of interest to 

other metrologists-statisticians. The author has here particularly in mind those scien-

tists of the younger generations who try to find their way in the modern metrology 

which is, no doubt, a rather peculiar brand of applied physics. 

M. Romanowski 
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Chapter I 

General Theory 

Section 1.  Axiome  and Basic Laws 

The object of the calculus of probability (as a branch of mathematics) is a simple 

thing called an "event° or "trial" which possesses the specific property of having a 

result which can be either a "success" (positive) or a "failure" (negative). The result 

must be absolutely clear and, although the definition of the term "success" is purely 

arbitrary, it must be unambiguous. 

The term "probability° designates a primary notion i.e. it belongs to the same 

category of terras as "point", "time", "space" etc. These terms designate those entities 

which cannot be defined in terms of simplei• or more basic ones. They are directly 

created and conceived by the human mind. 

The events are considered either individually or as forming groups designated by 

terms such as "series" or "sets" of trials. The study of the results of events starts with 

a certain number of axioms. An axiom is a statement that does not have to be demon-

strated by means Of some  more basic entities. It is considered as self-evident and is sub-

stantiated by all experimental facts observed by mankind since time immemorial. 

First Axiom 

This axiom, often considered as the most important and fundamental, states that 

in certain events all possible results are equiprobable. A typical case is the throwing of a 

perfectly cubical die on a flat table top: all faces of the die are equiprobable. 

Second Axiom 

This axiom states that in certain well defined cases and in spite of the fact that the 

first a.xiom cannot be applied, each result of a trial possesses a fixed probability. A typ-

ical case is here the throwing of a rigid irregular die. 

I .  
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Third Axiom 	 - 

In those events which conform either to the first or to the second axioms, the pro-

bability of a successful result is expressed numerically by the limit to which tends the 

ratio of the n,umber of successes to the total number of events, when the latter becomes 

larger and larger. For instance, if in the throwings of an irregular die, a large number 

n of throwings are performed, of which m are considered as favorable, (the coming of.a 

selected face) then the approximate value of the chance of obtaining a success is equal 

tO 	. The probability p is then defined as being equal to: 

p =lim 
-,e3 fl  

and it is considered as a number of the same nature as the irrational numbers e etc. 

Many different problems may be examined in which the notion of probability plays 

an . important role. Some of them can be treated by the axiom of equiprobality but 

some may be analysed only by means of the second and the third axionis. . 

There are two basic theorems on probability: the theorem of total probability and 

the theorem of compound probability. They are directly and easily deducible from the 

axioms. 

Theorem of total probability 

If in an event the success may be obtained in several different (mutually exclusive) 

ways, the probability of a success is equal to the sum of probabilities of a success in all 

possible ways.• This theorem is an immediate consequence of the third axiom and is 

self-evident in all cases involving equiprobability. • 

Theorem of compound probability 

This theorem requires some introductory remarks. An "event" does not always 

consist of one single trial. It may contain several distinct trials each of which possesses 

its own specific definition of the success. Compound events can be divided into two 

classes: 
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a) events in which the probability of a success in each component trial is totally 

independent of the results obtained in all other ,  trials. 

h) events in which there are relations between the probabilities attached to the com-

ponent trials. 

Let us examine the following example. A box contains 10 objects: 7 black and 3 

white. The probability of drawing a black or a white object are thus 7/10 and 3/10, 

respectively. If, after the first draw, the object is put back into the box, the probabili-

ties in a second draw remain the same as in the first draw. But, if the object is not put 

back after the first draw, the probabilities in a second draw are modified. If, for 

instance, the first draw gave a black object, the probability of obtaining a second black 

object is 6/9; but if the first draw gave a white object, the probability of a black object 

in the second draw is 719. The trials are not independent. In the sequel we will have 

to deal mainly with independent trials so let us examine this case first. 

Now, an event will consist of two consecutive trials (drawing with replacement) the 

success being, by definition, the obtention of two consecutive black objects. If a very 

large number n of events are performed, then the number  m' of events in which the 

first trial gave a black object is, with a high approximation: 

7 m ' = 	x n. 
10 

Among all  m'  events, the number of events in which the second draw has also brought 

a black object is designated by  m" and is equal to 

m" -  I- X m 

Hence, 

m "= -1- x 749  n — — n = 0.49n . 
10 	10 	 100 

This relation is readily adapted to the case where the object is not put back into 

the box. Clearly here: 

6  m = — • m 
9 

10 



L  x  6 .n 	. n = 0.467n . 
m  —  10 	9 	90 

All this is summarized as follows in the second theorem: 

The probability of a success in an event that consists of two trials, is the product of 

the probability of a success in the first trial and the probability of a success in the second 

trial, the second probability being established on the assumption that the first trial ha,s 

been successful. 

The second part of this theorem may be simply omitted if the trials are indepen-

dent. 

Section 2. Introduction to the Theory of Permutations 

Suppose that we have a deck of 12 cards numbered 1, 2, 	12. Well shuffled and 

placed in a row they form a "permutation". Any interchange of any two cards leads to 

a new permutation. It can be readily shown that the n.umber of different permutations 

tb.at it is possible to form is equal to: 

N=1x2x3x 	xfix12= 12 ! 

The general formula for k cards numbered 1, 2, ° ° ° k —1, k is 

N= k!.  

If we remove one of the cards, say, 12 and replace it by any of the other numerals, 

12! 
eg. 5, the number of permutations will become — as the interchange of two identical 

2 

5's does not create a new permutation. If we remove the card 11 and replace it by 
12! 	12! 

another 5 the number of permutations will further decrease to — = 
2X3 	3! 

This process of increasing the n,umber of limes the numeral 5 is repeated can be 

continued and it will lead to the following convenient and simple rule: if in a set of 

N=12 symbols, a certain symbol is repeated t times the number of permutations 
12! 

becomes equal to —. 
t! 
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12! 
12! 

Suppose now that the number of different symbols is reduced to two: 3 and 8. One 

of the permutations may be, for instance, 

3 8 3 3 8 3 8 3 8 8 8 8 

so that "3" figures five tinaes and "8" figures seven times. The number of permutations 

will be equal to 

12! 	792.  
5!7! 

Note that, if all 12 cards bear the same symbol, the number« of permutations is reduced 

tO 

= 1 . 

If all syznbols are different from each other, then, of course, 

12! 	12t = 	= 12! 
1!xl!x • • • x1! 	1 

Section 3. Bernoulli Trials* 

The term "Bernoulli trials" is used to designate a set of a fixed number of consecu-

tive trials (the whole set is then called an "event"). All trials of a set have the same 

constant probability p to produce a success. The most common way of illustrating Ber-

noulli trials is to make a deck of, say k = 12 identical cards each of which has a "plus" 

(+) on one side and a minus (—) on the opposite side. To produce complete random-

ness it is recommended to throw the deck in a large box and shake it vigorously. 

Suppose that, in a row, the succession of symbols contains 4 plusses and 8 

minusses: 

1 As here the probability of all plue is p = — and that of a a aminuse  is also 
2 

q = 1—p 
1 = —, the theorem of compound probability indicates that the probability 
2 

* James Bernouilli (1654 - 1705) Swiss mathematician (Basel) of.Dutch origin. 



of the row is equal to • 

P = 1  x 	 1  x •.. x 1  = ()
12 

- 	1  
2 	2 	 2 	 — 4096 

= 0.000244 . 

It must be strongly underlined that all rows of a constant number of ca.rds (here 

k = 12) are equiprobable. 

According to the formula of permutations the number of combinations is here 
12! 	- — The general expression for this number denoted by the symbol Nx  is 

41 8! 

iv 	Id  
"x  =  

k being the number of trials (number of cards) and X being the number of plusses 

(num.ber of successes). 

The combination of the theorem of total with that of compound probability leads 

to the following expression of the probability Of obtaining X plusses in a set of k Ber-

noulli trials: 

k! 	p x(i _ p) k_x 

All trials possessing the same X form a "class" that is denoted by the symbol such as (4 

+, 8 —) and represented by its "standard  forma:  

...( 1 ) 

-(2) 

+ + + 

Nuinerical Example: 	k = 12, z = 0, 1, 2,....5, 6 . 

No  = 1 	P o  = 0.0002 

= 12 	P 1  = 0.003 

N2 = 66 	P2 = 0.016 

N3 = 220 	P3 = 0.054 

N4 = 495 	P4 = 0.121 

N5 = 796 	P5 = 0.193 

N8 = 924 	P8 = 0.226 . 
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• At this point it is necessary to introduce an important term viz. that of variate. 

This term designates that variable the probability of which is a function of its value. We 

will be concerned only with functions having simple algebraic forms. 

The method for treating the problem of the largest group (practically adequate for 

simple cases of Bernoulli trials) is given in Appendix I. It is legitimate only for obvi-

.ously unimodal distributions of probabilities. Here, it will be sufficient to say that the 

largest group is the one in which X„, satisfies,  as  closely as possible, the equation 

xm  
kXm 	1—p .  

Hence, 

= kp 

A rigorous ;elation (as indicated in Appendix I) is 

IcP P >  X,,  > kP q 

It is now appropriate to make a very important remark on X„,. Bernoulli trials 

constitute a fundamental background to the theory of random errors, particularly 

through the properties they acquire when k grows to infinity. It does not matter what 

kind of number is k and how it tends towards infinity. It can be legitimately assumed, 

without creating any loss of generality, that (for a specific value of p) the value of kp 

remains an integer. For instance, if p = 1 — we can assume that k is an even number 
2 

and remains always even; if p = 
1 we assume that k stays always divisible by 6, etc. 
6 

Of course, if kp is an integer then kg is also an integer. 

The quantity V, defined by the relation 	 • 

V = XX m = X—kp , 	 •--(3 ) 

is termed deviation (Le. deviation from its most probable value). The formulae (1) and 

(2) can now be given the following forms: 
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k! ...(4) 

...(5) 

-(6) 

1 

iii 

Nv = 
(kp+ V)!(kq  

k!  
Pv = fl (kp V) a (kq- 

(kp V)!(kq— V)! r  

It is under this form that the expression Pv  will be used in the theory of errors as 

1 
this theory has been established by Hagen. With p =  q  = —, (5) becomes 

2 

(-1 + 	V)! 
2 	2 

k!  

It is strongly recommended to avoid ambiguous expressions and symbols. Thus, for 

instance a symbol such as Po  may mean either P(X = 0)orP( V 0). Also, concerning 

k, it must be noted that, except in some cases, (which should be clearly identified) k is 

always a large number. Thus the question whether kp is (or is not) an integer is 

irrelevant. It will be always assumed that kp is numerically rounded to the nearest 

integer value. 

Section 4. Binomial Expansion 

A remarkable feature of Bernoulli trials is that they can be so directly related to 

the binomial expansion. Let us, as an introduction, consider the formula: 

(a+b)3  = a3  + 3a 2 b + 3a6 2  + b 3  

Pv 
k! 

It can be written as follows: 

(a+b)3  = 	3 ! 	
a
30 

01(3-0)!  

3! 	a i b z 
2!(3-2)! 

3 ! 	a 2 b 1  + 

b3! 	" 
3!(3 —  3)! a  

and is identical to the form above, since according to algebra, Ol -= 1. 

According to the general Binomial Theorem (established by Newton) the above 

development can be generalized for any value of the exponent. Comparing the forms of 



the second terms of (a + b )3  with the terms of the formula (5) one readily notices the 

reasons why it is of a particular interest to consider the expansion of the expression 

(q P) k  • 

The expansion can be presented in the following classical form: 

(q + p)k  - 
k!  a k 	k! 	 k! 	2 k-2 

1!(k-1)! r 	2!(k - 2)! P q  

k! 	
P k-2 q 2 + 	

k! 	 k!  
(k - 2)  2! 	 (k-1)! 1! 	 (k-0)! 0! 

pq  ...(7a) 

Each term can be simplified and the expansion takes a form that is easy to 

remember: 

(q+p)'e 	 k 	
P 

2 k 	+ -2 	k(k.-1)(k -2)  
1 Pq 
	

1X2 	q  lx2x 3 	P q 

k(k -1)(k -2)  k-3 3 	k(k - 1)  k-2 2 	k-1 
P 	q + 	 P 	q +— 

k P 
	q+ P k 	••.(7b) 

• 1x2x3 	 1x2 	 1 

By comparing each term of (7a) with the relation (2) it is easy to notice that if, in 

k Bernoulli trials p is the probability of a "plusn, the series (7a) or (7b) are equivalent 

to the fundamental relation: 

(4 + P)k = Po+Pi +  P2 + • • • + Pk = 	Px =1  
Ar=o 

In accord with the definitions presented in Appendix 17 the expression for the 

moment co 1 =x-  can be -written in the form: 

+ • 

-(8) 

(1)1 = 0P 0  +  1P1  +  2P2  + • • • + kPk = 	XP x  = 1. 
x=o 

Therefore (as X takes all the values from X = 0 to X = k): 

k 
 2 k-i 	k(15 -1 )  p 2 17 k-2 + 3  k(k-1)(k--)  p 3 q 	+ • = 1 —  pq +  

1 	 1 x 2 	 1x2x3 

k(k-1)(k-2)  k.-3 3 . 	k(k - 1)  pk-2q2 	(k 	p k - 	ke k 
(k 3) 	1x2x3 	P 	(k  -2) 1 x 2 



a 	0 

r=k 
(02 = 	= X 2 P1 , 

X=0 
...(10) 

- 10 - 

The factor kp is common to all terms in the development and thus can be put out of 

the brackets: 

— [ (0 1  — kp qh-1 ÷  

1 	11'1  
(k —1)(k -2) 

 P 
2 

q
k -3 
 ° e 

1x2  

IL: 11(11z2)(k z.3.1 3 k - 4 	(k —1)(k —2)(k 3) 	- 3 
P 	+ 	 P 	+ 

1x2x3 	 1x2x3 

(k 1)(k -2)  p k -3 q 2  + 	P 	+ 	P 
(k-1)  k -2 	k k-1 

lx2 	 1 

Close examination of the e?cpression in the square brackets shows that it represents 

the development of the binomial  (q+ p)* It is therefore equal to unity and, thus, 

This confirms that the mean and the first moment are identical quantities. The reader 

should perform all calculations in detail on a numerical case, such as e.g. (q + p) 7  Le. 

k=7. The common factor that can be put out of the brackets is then equal to kp  7p.  

The final results will be  co 1  = kp = 7p(q+ p)8  = 7p. 

The calculation (by the same procedure) of the second moment w2, i.e. 

9 0 • 

...(9) 

is much more complicated. It will not be described here but in the Appendix III. The 

result is quite simple: 

wz= kP [(k —1)p +11 , 

(02 = (kp) 2  — kp 2  + kp . 

The relation (II, 8) by means of which we can calculate the second moment of X with 

respect to col = kp is 

112 = (02 OE)? 



k! = (Lc ] VF—rk ...(13) 

11 - 

112 = (kP)2— kP 2 + 1eP — (kP)2,  

112 = kp(1—p), 

112 = kin • 	 ...(12) 

This is an important formula; it will be constantly used in the sequel. 

Important Remark 

Note that in Sections 1, 2, 3 and 4 of Chapter I, the symbols designating variable 

quantities such as X, X0, lçp, V etc. are assumed to represent integers. In certain 

numerical problems, this point (as in the problem treated in Appendix I) must be 

treated appropriately. In theoretical deductions however, starting with Section 5, these 

variable quantities become larger and larger so that it does not matter whether they are 

integers or not. And it is always permissible to assume that their numerical values are 

such that the derived quantities, involved in the a.nalysis, are also integers. Thus, for 
1 instance, when p = q= — we can assume that k is a (large) even number. 
2 

Section 5. Asymptotic Expressions 

The calculations with various expressions based on the binomial expansions would 

be almost impossible when the number of trials is large. This domain of mathematics 

has been totally transformed by the discovery by James Stirling (18th century) of his 

famous formula that expresses factorials in terms of exponentials. Stirling's formula is: 

in which e is the transcendental number defined by the converging series: 

1! 	2! 	3! ± 	• • 	2.71828 . 

e is the base of the so-called n natural" logarithms. 

The transformation of expressions such as (5) is far from being a simple operation. 

It involves various expansions (Taylor's expansions) accompanied by delicate evaluations 
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of the orders of magnitude. The remarkably simple results to which leads this serious 

mathematical operation is: 

tr2  
1  

 Py 	 e 2kpq 	 ...(14) 111 
The reader is reminded that V is the deviation of the variable from its mean kp which, 

without making a significant error, can be rounded to an integer value. In conformity 

with (12), Pv  can also be written: 

•  In all applications of these formulae which will be made in the sequel, we will not 

be interested in the probability of one specific value of V but in the probability that a 

deviation will lie between certain narrow limits V' and V" (V" > V'). Let us 

Write: 

V" = V' + AV. 	 ...(16) 

The law of total probability indicates that the probability that V will take any of the 

values Pv., Pv. +1 , Pv , 4„2, • • • Pr.Fày is equal to the sum of these values. If A V is 

small, then th,ese values are not very different from each other and it may be assumed 

that their sum is equivalent to: 

AP v  = AVP m , 	 ...(17) 

Pn., being the *probability of a value located in the middle of AV or, in any case, close 

to : 

Thus APv  denotes the probability that the variable V will be located somewhere inside 

the interval A V. The fact that P. must be multiplied by the "length” of the interval 

* Note that here the term "length" (of an interval) means the number of discrete values V located 
between V° and V". 
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à V suggests that it be called the "probability density" in the interval â V. 

Let us now re-write (16) under the form: 

1 (_y  1 2  
- 2  (772 à  

VF-12 • 
...(19) 

It shows that the probability that a deviation V will fall into an interval A V is a func-

tion of the ratios of V and à V to V72 . The quantities 

V 	 à V 
V = -- 	= 

V.1712 
...(20) 

are termed reduced values of V and à V, respectively. The reduced values are thus 

obtained by using as unit the square root of the second moment. So that, finally: 

2 

While the theory of Bernoulli trials starts with an essentially integer number  X, in 

the asymptotic expressions based on Stirling's formula all variables are no longer 

integers but should be considered as of a discrete nature. 
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Numerical Examples 

A few numerical applications will give an idea of the orders of magnitude of vari-

ous quantities encountered in preceding sections. As a first example of the Bernoulli tri- 

als let us treat the case where k = 10000, p = q = — and calculate the probability 
2 

that the deviation V from the most probable value kp = 5000 will fall into the interval 

between V' = 45 and V" = 55. 

The centre of the interval A 	 1ir = 55-45 = 10 is at Vm  = —(55+45) = 50. The 
2 

second moment F.1. 2  is equal to: 

10000   = kpq — 	=  2500,  
2 x 2 

=  50.  

The reduced value um  of Tr,,, is therefore: 

Vrn . 50 
vm  = 	= — = 1 . 

and 

Vm2 	 A V = 10  = r- 
2 	 vl-t2 	50 

The relation (21) is here 

_a  5 à.Pu  = 	1 	
e • x 0.2 . 

Y 27r 

U2 

1 There are tables for the expression w;:- e 2  as a function cb(u). We shall find 

in these tables that: 4)(v„, = 1) = 0.24 , hence: 	 . . 

apt, = 0.24 X 0.2 = 0.048. I 

Thus the probability that in a throw of 10000 cards the deviation from 5000 will fall in 
the interval between V = 45 and V = 55 is of the order of 4.8 percent. 
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For v = 0 (central interval, between V = —5 to V = +5), 4 (0) .= 0.40 so that 

the probabi lity is of the order of 0.40 X 0.2 = 0.08, i.e. 8 percent. 

It is interesting to notice that this probability is decreasing very fast with increas-

ing v. When v = 3, then 4)(3) = 0.0044 and therefore 

AP. = 0.0044 x 0.2 = 0.00088 = 0.088 percent. 

At v = 4, 4)(4) = 0.0020.. 

The fùnction: 

U2 

1 	T 
4)(v)  = 	27err e  

is often called simply the "normal function". More appropriately, it should be termed 

"probability density function (pdf) of the normal variate". The probability that v will fall 

into àv is 

àpv  = (1)(v)ilv . 	 ...(22) 
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Table of the Function 4) (v) = 
1 -1- 

 V2Tr e  

1 

1 
1 

1 

1 

9 	0.00 	0.01 	0.02 	0.03 	0.04 	0.05 	0.05 	0.07 	0.08 	0.09  

0.0 	.3989 	.3989 	.3989 	.3988 	.3986 	.3984 	.3982 	.3980 	.3977 	.3973 
0.1 	.3970 	.3965 	.3951 	.3966 	.3951 	.3945 	.3939 	.3932 	.3925 	.3918 
0.2 	.3910 	.3902 	.3894 	.3885 	.3875 	.3867 	.3857 	.3847 	.3838 	.3825 
0.3 	.3814 	.3802 	.3790 	.3778 	.3755 	.3752 	.3739 	.3725 	.3712 	.3697 
0.4 	.3683 	.3568 	.3663 	.3537 	.3621 	.3805 	.3589 	.3672 	.3555 	.3638 

0.5 	.3521 	.3503 	.3485 	.3467 	.3448 	.3429 	.3410 	.3391 	.3372 	.3352 
0.6 	.3332 	.3312 	.3292 	.3271 	.3251 	.3230 	.3209 	.3187 	.3166 	.3144 
0.7 	.3123 	.3101 	.3079 	.3056 	.3034 	.3011 	.2989 	.2965 	.2943 	.2920 
0.8 	.2897 	.2874 	.2850 	.2827 	.2803 	.2780 	.2758 	.2732 	.2709 	.2585 
0.2 	.2661 	.2637 	.2513 	.2589 	.2565 	.2541 	.2515 	.2492 	.2468 	.2444 

1.0 	.2420 	.2396 	.2371 	.2347 	.2323 	.2299 	.2275 	.2251 	.2227 	.2203 
1.1 	.2179 	.2155 	.2131 	.2107 	.2083 	.2059 	.2036 	.2012 	.1989 	.1965 
1.2 	.1943 	.1919 	.1895 	.1872 	.1849 	.1826 	.1804 	.1781 	.1758 	.1735 
1.3 	.1714 	.1591 	.1669 	.1647 	.1626 	.1504 	.1582 	.1561 	.1539 	.1518 
1.4 	.1497 	.1475 	.1456 	.1435 	.1415 	.1394 	.1374 	.1354 	.1334 	.1316 

1.5 	.1295 	.1276 	.1257 	.1238 	.1219 	.1200 	.1182 	.1153 	.1145 	.1127 
1.6 	.1109 	.1092 	.1074 	.1057 	.1040 	.1023 	.1006 	.0989 	.0973 	.0957 
1.7 	.0940 	.0925 	.0909 	.0893 	.0878 	.0863 	.0848 	.0833 	.0818 	.0804 
1.8 	.0790 	.0775 	.0751 	.0748 	.0734 	.0721 	.0707 	.0694 	.0681 	.0669 
1.0 	.0656 	.0644 	.0632 	.0620 	.0608 	.0596 	.0584 	.0573 	.0562 	.0551 

2.0 	.0549 	.0629 	.0519 	.0508 	.0498 	.0488 	.0478 	.0468 	.0459 	'.0449 
2.1 	.0440 	.0431 	.0422 	.0413 	.0404 	.0395 	.0387 	.0379 - .0371 	.0363 
2.2 	.0355 	.0347 	.0339 	.0332 	.0325 ' .0317 	.0310 	.0303 	.0297 	.0290 
2.3 	.0233 	.0277 	.0270 	.0264 	.0258 	.0252 	.0246 	.0241 	.0235 	.0229 
2.4 	.0224 	.0219 	.0213 	.0208 	.0203 	.0198 	.0194 	.0189 	.0184 	.0180 

2.5 	.0175 	.0171 	.0167 	.0183 	.0158 	.0154 	.015.1 	.0147 	.0143 	.0139 
2.5 	.0136 	.0132 	.0129 	.0125 	.0122 	̀.0119 	.0115 	.0113 	.0110 	.0107 
2.7 	.0104 	.0101 	.0009 	.0095 	.0093 	.0091. 	.0088 	.0086 	.0084 	.0081 
2.8 	.0079 	.0077 	.0075 	.0073 	.0071 	.0059 	.0057 	.0065 	.0063 	.0061 
2.9 	.0060 	.0058 	.0056 	.0055 	.0053 	.0051 	.0050 	.0048 	.0047 	.0046 

3.0 	.0044 	.0043 	.0042 	.0040 	.0039 	.0038 	.0037 	.0035 	.0035 	.0034 
3.1 	.0033 	.0032 	.0031 	.0030 	.0029 	.0028 	.0027 	.0026 	.0025 	.0025 
3.2 	.0024 	.0023 	.0022 	.0022 	.0021 	.0020 	.0020 	.0019 	.0018 	.0018 
3.3 	.0017 	.0017 	.0016 	.0016 	.0015 	.0015 	.0014 	.0014 	.0013 	.0013 
3.4 	.0012 	.0012 	.0012 	.0011 	.0011 	.0010 	.0010 	.0010 	.0009 	.0009 

3.5 	.0009 	.0008 	.0008 	.0008 	.0008 	.0007 	.0007 	.0007 	.0007 	.0005  
3.6 	.0006 	.0006 	.0006 	.0005 	.0005 	.0005 	.0005 	.0005 	.0005 	.0004 
3.7 	.00174 	.0004 	.0004 	.0004 	.0004 	.0004 	.0003 	.0003 	.0003 	.0003 
3.8 	.0003 	.0003 	.0003 	.0003 	.0003 	.0002 	.0002 	.0002 	.0002 	.0002 
3.9 	.0002 	.0002 	.0002 	.0002 	.0002 	.0002 	.0002 	.0002 	.0001 	.0001 

= 0.6435 

40.841 = 0.3251 	 35 
4){0 .85) 	0.3230  } 	= 0.0024 	-70-

0 
 

4,(0.8435) = 0.3251-0.0007 = 0.3244 
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Chapter 11 

Basic Theory of Random Errors 

Section 1. Introduction. Hagen's Theory 

There are in the history of errors in observations three particularly important 

dates. 

1755: publication by Thomas Simpson of a "Letter" in Phil. Trans. Roy. Soc., vol 

49, part I (pp. 82-93). In this letter, the author recommends that when a measurement 

is repeated several times, all results should be taken into account and not only those 

which seem to be "good". He also recommends that the mean of all measurements be 

explicitly recognized as the "best approximation" to the measured quantity. Obviously, 

Simpson had a "statistically structured" mind. 

1809: publication by F. Gauss of "Theoria Motus", Hamburg. (English modern 

translation: Dover Pub.) In this book, one of the most important and famous in the 

history of science, Gauss treats the problem of errors in a very particular manner that is 

not founded directly on the binomial theory, but on the role the mean plays in large 

samples of repeated observations. 

1837: publication of "Grundziige der Wahrscheinlichkeitsrechnung" by G.H.L. 

Hagen, Berlin 1837 (2nd edition in 1867). Although various authors have expressed, 

well before Hagen, the idea that an accidental error results from a combination of a 

large number of very small errors, the great merit of Hagen is that he gave this idea a 

clear and rigorous mathematical forrn. Thus it became possible to apply to the study of 

random errors the methods of mathematical analysis that constitute the basis of the cal-

culus of probability. 

Hagen was certainly an outstanding engineer and mathematician. His book must 

have had a serious impact on the scientific spheres of his time. Perhaps Hagen's work 

was partially eclipsed by his illustrious contemporary, Gauss. . 

Before we start the analysis of Hagen's theory, it is appropriate to make the follow-

ing general remarks. 

a) A sample of "repeated" measurements (or measurements that  are  collected by a 

process which is equivalent to "repetition" e.g. formation of loops in geodesy) must be 
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of the highest possible quality. This implies that all scientific knowledge available at 

the date of the measurements has been fully put into action. Here, the personality of 

the observer(s) plays a predominant role and, as such, cannot be intrinsically evaluated. 

The goodness of a metrological operation is the result of an enormous number of partial 

efforts and endeavours. 

h) Although Hagen does not express it explicitly, the structure of  his  ideas shows 

that he accepts the concept of "true value" of the measured quantity. This concept is 

more fully analysed in Appendix V. Here we shall simply adhere to a sort of general 

consensus that such a concept can be used in the discussions that follow. 

Let us assume that the repeated measurements of a stable physical quantity, 

yielded a set of N results mi (i=1, 2, • • • N). If these numbers are represented by 

points on an axis (origin m = 0), a simple inspection will show that these points mi  will 

form a dense cluster in a clearly visible region. The density of points will decrease with 

the distance from the cluster. 

The probability that an additional point will be close to the cluster  is  larger than 

the probability that it will be far from it. There is therefore a relation bet-ween the 

magnitude of a result and its probability of occurence. 

Hagen's theory is based on the following fundamental assumptions: 

1. Every measurement is disturbed by a very large number of small errors termed ele-

mentary errors. 

2. All elementary errors are of the same magnitude. 

3. Every elementary error has the same chance.to be positive as to be negative. 

One readily notices that all theorems concerning elementary errors and their com-

binations will be deducible from those established for Bernoulli trials. Suppose now 

that each card of the pack of k cards bears the s3rmbol + — on one side and — — on the 
2 	 2 

other side. In a set containing X plusses, the deviation V is equal to V = X— kp and 

the sum H of all symbols  ± will be equal to: 
2 

H = (+ --€2 ) X + (— —€2 ) (k — X) . 



H = EV ...(23) 	• 

If = q 

and, therefore, 

H2 

1 
e
- 27572 1 	 1 	— 2s2  LEI 

PH = S; àPH 	•\/ 	e 	7.57  • 

As X = V+ kp , we have 

H = 
2 

1 and, because p = 	, this gives the simple relation 
2 

by means of which the expression APH will be deduced from that of aPv  

This is readily done as follows. The exponent of e in (19) is put in the form 

(E V)2 =  H2  - 
(\/j)2  

so that it is easy to notice that the denominator e2 i.t 2  = e2 kpq is the second moment of 

H = e V. This moment will, in all further expressions, be designated by the symbol S 2 

 • (capital letter): 

= € 2 kpq . 	 ...(24) 

) 2 

1 
2 

S 2  = e2k  5 = 
 E'VTC 
 - 

4 	 2 
...(25) 

...(26) 

Hagen's assumptions automatically lead to our examining what happens when k 

tends toward co and therefore E tends toward O. If such hypotheses have to lead to 

experimentally meaningful results, then it is necessary to postulate that the following 

double condition must be satisfied: 

{ lim H = f inite . 
lim e2 k = f inite. E 



X 
o.  

...(3 1) 
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The symbols for these limits are: 

lim I/ 	 ...(27) 

km 
€2k 	c72  (variance) . 
4 

The variable z must now be treated as continuous and so is also the function f (z) the 

form of which is 

) 

1(z)  = 

2 

20.2  
7727Frr e  

...(29) 

By similarity with the function which defines the variate  V,  it is termed the "probability 

density function" (pdf) in the vicinity of the value z. The probability dPz  that z will 

fall into dz is therefore equal to 

dPz  f (z)dz — 	 
a Y 27r 

_ 
2cr2  dx  —(30) 

In literature, f (z) is often called simply the "normal curvet' or n  Gaussian curve". 

Similarly to the transformation of V into v, the variate z is transformed into the 

reduced variate X by the relation 

Then also: 

az 
d X 

o. 

and (30) becomes 

X2  
1 -T 

dP x 	 e 	dX 
y 21T 

The numerical values of the expression 

...(33) 

...(34) 
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are tabulated*. The central value 440) is 11/(0) = 0.3989. If, for instance Az = 
10 

then AX = 0.1 and therefore 

dP x  =  0.3989x0.1  = 0.03989 . 

Thus the probability that z will fall into the central interval Ax, Az being equal to one 

tenth of the standard deviation cr, is of the order of 4 percent. 

Section 2. Fitting of a Normal Curve 

Let us now go back to the set of N numbers mi  obtained by measuring repeatedly 

a certain physical quantity m o. There are cases where it is legitimate to consider m o  

not only as really existing but as known; for instance in geodesy mi  may mean the devi-

ation of the sum of the three separately measured angles of a triangle from the true 

value mo  = 180°. If the deviations (mi —180) conform to the Hagen theory then we can 

write 

Ze = Mr MO 	 (35 ) 

and therefore the value zi  should conform to the function f (x) as it is defined in (30). 

If the whole set of m i  's is available, the calculations can be carried out without 

difficulty as follows. 

The value of the variance cr 2  is directly computed from the individual results mi : 

This operation presents no difficulty when modern computational machinery is avail- 

able. Once cr 2  is calculated, the operator can choose a convenient fraction of c. as the 
cr classification interval Az. For very large N, it is convenient to use Az = — or 
10 

Az = —. For not very large N, 
5 

— is frequently used. The sample is now "classified" 
20  

* The table of the normal function was given in Chapter I, Section 5; the variable V  is 
identical to the variable X.. 
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(see Fig. 1 and Fig. 2). Its central interval extends from 	to 	(centre Co  at 
2 	2 

+Ax + &ix 
xo  = 0), then, to the right, from — to — (centre C 1  at z 1  = +1), from 	 

2 	2 	 2 

x to +U
2 

— (centre C2 at x2  = +Ur) etc. The same operation is then performed 

towards negative values. Sometimes both wings (on medium size samples, say Ne:--  1000) 

terminate abruptly and «neatly at x = 4o. or z  = 5cr and at the same distance from the 

origin. However, sometimes the wings present certain "problems", the handling of 

which cannot be made according to stringent and precise rules. The opinion of the 

observer-experimenter is then the most important factor and must be taken into 

account. 

If m o  is not known, it is legitimate to use the mean m—  as an estimate for m o . The 

mean is computed by the formula: 

= 	 = 1, 2, 3,...N. 
N " 

It is shown in Appendix V that the formula for the variance is slightly different from 

(36) and is: 

...(38) 
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Fig. 1. Horizontal axis prepared for a cla-ssified sample. 

Once all the X's are calculated, the values of the corresponding 4)(X) are found in 

the table of the Normal Function. For instance, the probability AP(X 1 ) is expressed 

by the product 

P(X 1 ) = (b(x )àx = 	1) x k.  • 

The final step is the calculation of the so-called "theoreticalm class frequency: 

...(3 0) 

f(z) = f(x 1) = 4)(x i)x x N 	 ...(4 0) 

We shall now treat those cases where the whole set of observations m i  is not avail-

able. This often happens in literature when a sample is already classified by means of a 

certain interval àm but the classification of which is not referred to the central interval 

(centered on m). This is represented in Fig. 2 which shows (k +1) intervals of 

classification numbered from j = 0 to j = ± k, 
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Fig. 2. Use of' the "rank" j as variable. 

j being the rank of the interval and F being the class frequency. 

It is, of course, perfectly possible to calculate the value of the mean 7 = 	Is  jF • 
N • 	 .7  J 

and the variance a2  = 	E(j— )2 F1 . It is obvious that the position of Fri will 
N-1 

not coincide with the centre of an interval. Let us assume that it is located as . shown in 

Fig. 2, i.e. at a point corresponding to 7 = 2.75. The distances of all points 

C1, C2, ° ' • from 7 are calculated as follows: 

Co  distant from 7 by 0-2.75 = —2.75 

C 1  distant from 7 by  1-2.75 = 1.75 

C2 distant from j' by  2-2.75 = 0.75 

C3 distant from by 3-2.75 = +0.25 

C4 distant from 7 by 4-2.75 = +1.25 

000 	 000 

Each of the numbers in the last ccilumn must be now divided by a to give the X's of the 

centres  C.  If the observed class frequencies Fi  are of proper structure (i.e. suggest that 

the distribution could be normal) the calculation of theoretical cla.ss frequencies is car- 

ried out as in (40) with AX = 	(àj = 1) and N equal to N .  = 	F.  
cr 

It is to be noted that the axis of symmetry of the curve passes through rn—  but the 

central ordinate cannot be calculated and the theoretical points are not placed symmetr-

ically with respect to the central ordinate. 
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The example that follows is taken frorn the measurements of electrical energy by 

means of domestic meters. 

There are 144 nominally "identical" meters registering (in series) the electrical 

energy consumed over a one year period and measured against a group of "monitors n 

considered as yielding the true value of consumed energy. It is assumed that the devia-

tions of the ordinary meters are distributed quasi-normally and thus in conformity with 

a normal curve. 

The 144 numbers obtained are actually the percentages that indicate the deviations 

of a meter with respect to the monitors. They are classified by means of an interval 

equal to 0.1 percent. The individual elements are all listed in Table I A. 

The classification intervals are numbered from j = —9 to j = +25 as shown in 

Table 1B, Fj  being the observed class frequency. The calculation of the mean 7 and the 

variance s 2  leadS to the values 

+ 4.3681 (axis of  symmetry ), 

8 2  = 21.5909, s = 4.6466 . 
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Table I - A 

Y1,1 = 	-0.01 	Y2,1 = 	+0.72 	Y3, 1 = 	+0.62 	Y4,1 = 	+1.24 

	

-0.20 	 +0.56 	 +0.60 	 • +1.40 

	

+0.12 	 -0.95 	 +0.09 	 +0.72 

	

+0.39 	 +0.83 	 +0.76 	 +1.15 

	

+0.07 	 +0.24 	 +0.14 	 +0.80 

	

-0.17 	 -0.40 	 -0.72 	 +0.62 

	

+0.16 	 +0.44 	 +0.73 	 +0.64 

	

-0.01 	 -0.91 	 +1.06 	 +1.02 

le1 99 ..̀71' 	+0.54 	Y48 = 	-0.49 	Y3,9 = . 	+0.87 	Y499  = 	+0.95 

Y1,10-=> 	+0.31 	Y2,10 = 	-0.13 	Y3,10 = 	+0.05 	Y4,10 = 	+0.70 

	

+0.30 	 +0.27 	 -0.29 	 +0.64 

	

+0.11 	 +0.43 	 -0.21 	 +1.20 

	

+0.65 	 +0.34 	 -0.38 	 +0.57 

	

+0.36 	 +0.07 	 +1.17 	 +0.89 

	

+0.58 	 -0.07 	 +0.60 	 +0.75 

	

+0.56 	 +0.40 	 -0.14 	 +0.92 

	

+0.65 	 +0.53 	 -0.18 	 +0.87 

Y1,18 = 	+0.47 	Y2,I8 = 	+0.05 	Y3, 18 = 	+0.24 	Y4,18 = 	+0.81 

Y1,19 = 	+0.32 	Y2,19 = 	+0.26 	Y3,19  = 	+0.39 	Y4,19 = 	+0.51 

	

+0.11 	 +0.69 	 -0.07 	 +0.60 

	

+0.07 	 +0.98 	 +0.68 	 +0.98 

	

+0.65 	 +0.55 	 -0.18 	 +0.44 

	

+0.72 	 +0.83 	 +0.59 	 +0.72 

	

+0.69 	 +0.30 	 -0.03 	 +0.25 

	

+0.68 	 +0.62 	 +0.98 	 +0.92 

	

+0.62 	 +0.31 	 +0.31 	 +0.81 
YI,27 = 	+0.35 	Y2,37 = 	+0.42 	Y3,27 = 	+0.03 	Y4,27 = 	+1.20 

YI,28 = 	+0.22 	Y2928 = 	+0.50 	Y3,28 = 	+0.27 	Y4,28 = 	+0.27 

	

+0.46 	 +0.66 	 +0.40 	 +2.50 

	

+0.36 	 +0.30 	 +0.03 	 +0.59 

	

+0.05 	 +0.77 	 +0.28 	 +0.45 

	

+0.42 	 -0.03 	 +0.15 	 +0.47 

	

+0.99 	 +0.50 	 -0.43 	 +0.56 

	

+0.40 	 +0.04 	 +0.56 	 +1.65 

	

+0.40 	 +0.20 	 +0.57 	 +0.88 
Y1,38 = 	+0.63 	Y2938 = 	+0.32 	Y3,38 = 	-0.08 	Y4,36  = 	+0.45 



j 	Fj 

-9 	2  1 	0.20 
-8 	0 	0.36 
-7 	1 4 	0.62 43.83 
-6 	01 	1.03 
-5 	1 	1.62 
-4 	T1 . 	2.44 

AP 5.96 -3 	1 	3.52 
-2 	5 	4.83 

	

-1 	5 	6.34 

	

0 	9 	7.95 

	

+1 	9 	9.51 

	

+2 	7 	10.86 

	

+3 	14 	11.84 

	

+4 	15 	12.32 

	

+5 	10 	12.25 

	

+6 	20 	11.62 

	

+7 	13 	10.53 

	

+8 	8 	9.11 

	

+9 	7 	7.52 

	

+10 	5 	5.93 

	

+11 	i1 6 	4.46 	7.67 

	

+12 	4 	3.21 

	

+13 	0 	2.20 

	

+14 	1 	1.44 

	

+15 	0 	0.90 

	

+16 	0 	0.54 

	

+17 	1 	0.31 

	

+18 	0 	0.17 

	

+19 	0 	3 	0.09 	--->5.72 

	

+20 	0 	0.04 

	

+21 	0 	0.02 

	

+22 	0 	0.01 

	

+23 	0 	0.00 

	

+24 	0 	0.00 

	

+25 	1 	0.00  

	

144 	143.80 

27 - 

Table I B 

For the disposition of the calculations follow the pattern of Ex. 4 (Screws • 

 Fabricating Machine) 



one 

N r. 144 

1 =4.3681  

S4.6466  • 
MOM MIMI WM OM LW 

Normal Curve 

-5 +5 +10  +15 +20 

.28 - 

I 

Fig. 3. Sample of measurements performed on a group of 

electrical energy meters. 

Note that the dots on the j-axis represent the centres of the intervals: eg. in the 

interval j =  7 are located all elements the values of which are between 0.65 and 0.75. 



1 	
f(e)dz — 

0 Y 21T 

_ 
20.2  dx  .•■• 
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Section 3. Basic Integrals Related to the Normal Function 

The fundamental integral from which all other integrals are derived is: 

J„ = f zn e —e dz . 
o 

...(41) 

The important feature of 4 is that it can be expressed by means of an integral of lower 

order, namely 4_ 2. Thus5 if the expressions for Jo  and J1  can be directly established, 

all other integrals can be formed step by step by a recurrence formula. 

Only J1  possesses a simple primitive function. It is 

1 
F (z) = — — e , 

2 

as it can easily be checked by differentiating F(z). Hence 

CO 

= 
1 	- "y2  e  
2 

, = 
2 

The calculation of the expression for Jo  is not simple: it is based on the calculation of a 

double integral by using polar coordinates. This operation will not be described here 

and the expression for Jo  will be deduced by the following indirect method which is, in 

its essence, based on the theory of binomial expansion as it has been treated in Chapter 

I, Section IV. 

Let us refer to the equation (30), 

It is obvious that the summation of f (x)d.z for all values of z  (from -co to +cc ) must 

lead to the total probability equal to "unity" (i.e. to be equivalent to "certitude"): 

+co 	 , • 

	

1 	— 2 	 2 	f i(x)de 	 f e 2ff  de = 	f e 2(r 	=  1.  
2ir —co 	 crY2ir o 

The change of variable 



= z = zcr)(2-, 
cr72r  

JtI  
n -1 6_ 2  

2 
...(42) 

CO 

1 
2 2 

Jo  = f e -z2  dz = fze - 7-2 clz = 
0 

= fz 2 e —2? dz  Yir J3 = fz 3 e — clz 
4 

_ 1 
- 2 

CO 

8 

• - 30 - 

leads to 

Jo  = f e -e2  dz = 
2 

The above mentioned recurrence formula is deduced from the following differential rela- 

tion: 

d (zn e -e) = (n -1)e -2 e -2-2  dz - 2z' e -L2  dz. 

Integrating between 0 and co we obtain 

- e  0 = (n-1)fzn -2 e -2-2  dz - 2fzn e --e dz 
o 

The left-hand term is equal to zero and thus we have 

0 = (n-1),4_ 2 -24 , 

Table II Basic Integrals 

J5 = fzse —e =1  



• 

+co 
— 

= —Lau" f Z n e 	dx . 
crY2ir 

...(43).  

rS 

+03 	 Z2 

2 	f 	e 20. 2  dx  xn  ...(44A) 
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By means of these formulae, and those which can be further established, it is possi-

ble to form the integrated expressions for various forms of moments p.„ of the normal 

variate. 

The moment p.,, is defined by the integral 

The curve f (x) is symmetrical with respect to the y-axis so that when n is odd, the 
integral from —co to 0 is equal, but of the opposite sign, to the integral from 0 to +co. 

Hence, when n is odd, all moments p. n  are equal to zero: p. i  = p.3  = = • • • = O. 

To express the values of p.,, (n even) in terms of the basic integrals of Table II, use 
the change of variable 

z = zcr, 	dx = cr -\(2c/z. 

This will lead to the results given in the Table III below. 

In this table are also listed the so-called it absolute moments Le y,. The formulae for 

these moments are the same as for p.„ except that the variable x is replaced by its abso- 

lute value 1z1: 

121 2  

-7-
1
-p■•r 7121 n  E 2'72  d 1 

cr Y 27r 

Because of the symmetry of the curve with respect to the vertical axis this expression is 

equivalent to 



4-ao 	Z2  

= ar2 1 	 r 2 	2cr•  
112 — 	 e 	dz 

aY-27r 2. 
= 112  = cr2  

M 

Moment a of the Normal Varîate 

+43 e 
1f e --2(3.2 (ix  = 1  

1-1.0 - a-Wriner 

÷ 02 	Z 
1 

p.i = 0-727 I e 2er x = 

vo =  Po 	1  

+a, 	22  
2  f e 

—7
2i1 d 	

2 
z Pi = 

;WIT.  0 	 Y2  

Z2 

1 

77727er 	e -e  dz = 0  
+oe 	22 

2 
v3 = 	f e3

e 	dz – 	0.3 
a y 27r 	 y 27r 

1  
114 – 	

f x4  e 2°.  dz = 3.4  
a -1-2-77 

le4 	;14 = 3174  

÷00 
11 5  = 0-727.1  r -rœ  5 	(ix  = 0  

j 	e 

	

4-03 	e 
_ 	2 	 2 , 	 16 

Ys — —77""fflir 	Z e 	az 	 CT 

	

cr Y 27r o 	 Y 27r 
a 
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It is obvious that, when n is even, 	But each v„ in which n is odd, has its own 

specific value. 

As all expressions for v n  are obtained by transforming v n  into Jn , there must be a 

recurrence relation that expresses v n  in terms of v n _ 2. This relation is 

= (n- 1)Œ 2 v_ 2  

Its demonstration is very simple and is performed by the same substitution as in all pre-

vious calculations,  1. e.  

=  z.  

It leads to the equation 

	

17+ 	02 	 + 

2 	 2 
vn = =an  f e -z-2  z'i dz = 	Jr. . 

	

IT 	0 	 Y 
... (44B) 

If n is replaced by n -2, this becomes 

a rt - 2 
Pis-2 = - 2 , 

and therefore, 

-+1 J -2 	n 

	

Yft-2 = 
27 

  
e

n-2 2.4 	22 . 	= 

	

n-1 	V 	n - 1 

Finally 

-
Yn 	

= 0.2 (n - 1) . . 	 ...(45) 
Yn-2 

The notion of moment can be further generalized by considering n as a non-

integer, in particular as a fractional number. This has already been partly done and 

described in the author's previous studies and publications. However, it is only a small 

incursion into a vast domain of mathematical investigations. 
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Chapter III 

Mixtures and Dichotomy 

Section 1. Mixture of Centered Normal Populations 

Let f 1 (z) and f 2(x) denote the pdf's of two normal variatem 

-- • 	 -- 
1 	2cr; 	 1 	20 2  

f i(x) e 	 f 2(x) -«e- ;W I; e • 

The probability that a value z of the first variate will fall into an interval Az is 

equal to f i(x)Ax and the probability that the same z, but belonging to the second vari-

ate, will fall into the 3ame Az is f 2(z)z. 

Consider now a large sample of N1  elements the distribution of which conforms to 

the pdf f 1 (x) and a large sample of N2 the distribution of which, conforms to the pdf 

f 2(x). If these two samples are mixed Le. combined into one single sample of 

N= N1  + N2 elements, the sample N1  will introduce into Az a number of elements 

equal to Nif 1 (z)z. The sam.ple N2 will introduce N2f 2(x)Az. The total population 

in Az will therefore be equal to 

N1 f i (x)Ax + N 2f 2(x)Ax . 

It is always permissible to assume that (in theory) there is a pcif for the mixture 

the size of which is of course, N = N1  + N2. Let 11,(z) denote this pdf. It is now pos-

sible to write the equation 

NIP(z)Az = 	f i (z)Pz + N2f 2(x)Ax . 	 ...(46) 

This equation is called "equation of mixture". If the sizes" NI, N2 are replaced by 

the "proportional sizes" 

N1 	 N2 

Pi = 71 ' P2 = 



...(49b) 

n =  O, 

 n2  =  2, 

 n4  =  4, 

 n = 1, 3, 5 • 

110 = Pl ÷ P2 = 1 

112 = P1 0.2  + P201 • 

114 = 	4201. 

= 113 = 	" • = 0.  
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the equation takes the following final form 

z."2. s2  

P i 	2rr.F. 	P2 	2cri.  
4.1(Z)42 = c-1-72-17e 	Az + 	e 	Ax 	 ...(47) 

er2\(Fir 

This equation, in which Az is replaced by the differential dx, is directly suitable for 

the calculation of the expressions for the moments of the variable x. The expressions 

for the moments in terms of 4,(z) are thus expressed in terms of the moments of the 

components, f 1 (x) and f 2(z). 

Before calculating the expressions for the moments, let us first notice that by put-

ting  z = 0 we obtain the expression for the central ordinate 41(0): 

1 	(P1 	P2 
«0) = 	 + 

27r 	(T2 

The expressions for the successive moments by means of the equation 

+03 	 +co 

= f etk(x)clz = 	f 	i(x)clx + P2 f e n f2(M)de 
—03 

+o3 

...(48) 

...(49a) 

are directly obtainable from. Table DI Thus we have: 

All moments of odd orders are equal to zero. 

If the parameters p i ,  o, p 2, cr2  are not given explicitly but the components are 

represented by °observed" diagrams (i.e. class frequencies) the calculation of the mix-

ture moments can be made in two different ways: 

a) by mixing the populations of the diagrams and calculating the moments by means 

of the mixture class frequencies, 



N1  = 300, 

N2 = 600, 

1 
P1 =j '  3 

2 
P2 = 1' 

= 3 
j = 1. 

=36  a2 = 6  

900 = 0.3989-=r = 69.06 . 
Y 27 

1 F' 

- 3 6 . 

by fitting into each component a normal function and using the resulting parame-

ters of the functions. 

There will be a difference between a) and b). Its magnitude will depend on how 

well the normal curves represent the corresponding diagrams. If the diagrams are not 

sufficiently normal the operation is meaningless. 

As an illustration, the calculations will be performed on the following numerical 

data: 

The computed values for .the 112, 11 (0) and Fo  are 

= (_3_2 	2 + _62 _ = 27,  
3 

a? = 9 

crî 

 

1 	1 + 2  
= .v2r, 1 3x3 	3x6  

F 	(300 +  600)X0.0886  = 79.74 

The variance of the normal curve that fits into the mixture is equal to 

2 	11 2  = 27. Hence the central class frequency of the normal curve is 

} 

The leptokurtosis is therefore of the order of 15 percent. It is due to the fact that 

the variances are unequal. If the variances of the components are equal to each other it 

is easy to show that the mixture is also normal, with the same variance. This property 

of mixtures has been known for some time. A new and ingenious demonstration of this 

property is due to the National Research Council's mathematician N.T. Gridgeman. 

The main practical interest of the theory of mixtures resides in the fact that this 

theory forms the base of the operation which is termed "dichotomy° and which is the 
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The iample N, is distributed into 41 classes, from j = —20 to j = +20. Here the van- 

able is the rank j and therefore à j = 1 (omitted frorn equations). 

The equation (49) can be put under the form: 

inverse of that of mixture: calculation of the parameters of the components from the 

observed class frequencies. It is presented in the sequel under the form of a numerical 

operation. 

I A Numerical Example of Dichotomy. 

A sample of N = 2000 elements is assumed to be a mixture of two sub-samples of 

1000 elements each: 

N1 = 1000) 	 1 
N2 = 1000} P1 = P2 = —2  • 

j 	F.  

	

I 	 j 

	

0 	179.5 = Fo  

	

±1 	174.9 	-±.11 	9.5 

	

2 	160.9 	12 	5.6 

	

3 	141.9 	13 	3.2 

	

4 	118.5 	14 	1.8 

	

5 	94.1 	15 	1.0 

	

6 	71.2 	16 	0.7 

	

7 	51.5 	17 	0.4 

	

8 	35.7 	18 	0.2 

	

9 	23.7 	19 	0.1 

	

±10 	15.2 	-±20 	0.0 

1.999.7 

	

N (Pi 	P2 	
Fo N41(0) = 	— + 	=  

	

Y 2ir cr 	cr2 



P-2 of the 
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2000 . .1  ii. 
 _E. 	= 179.5  . 

72; 2 al 472 

Simplified, it beco' mes 

+ (72  — 0.45 . 
œicr 2 

To use the relation (48b) it is necessary to calculate the second moment 

variable j as it is presented in the Table. Direct calculation by the formula 

1 	.2 
= 	F 2000 

gives 

112 = 20.5  

so that by (48): 

a.? +  c7  =  22  = 41.0. 

Thus the values of cr 1  and O2  are the solution of the system of equations 

OE2  
a) = 0.45 } 

0'1 47 2 
b) cr? + cr = 41.00 

Solution: 

1) square the equation a) and eliminate the term (al + ol) to obtain 

41  + 2(cr ics2) 

(o• 1a2)2 
0.2025.  

2) Consider (cr 1 cr2) as an unknown: cr 1 Œ 2  = Q. Solve the equation 

0.2025Q 2  — 2Q — 41 = 0. 

The useful solution is: Q = 20. 
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From a): al  + a2  = 9 so that ai  and a2  are the solution of the equation 

3 2  — 93 + 20 = 0. These solutions are s' = a l  = 5 and 3" = a2  = 4. The 

mixture's components are represented in Fig 4. 

N MN-MN MN 
2 

Fig. 4 Components of the mixture of two coaxial normal populations. 

Section 2. Mixture of Decentered Normal Populations 

. If the centre of the variate is not at the origin of the axes (x = 0) but at a distance 

a from the origin, then the expression for the ordinate y is 

1 	 2(72  
y= 	e 

crY 27r 

so that the moment of n th  order of x with respect to the origin x = 0 is 

+ cc 

..(50) 

1  f e 2C1e2 dX 
a\iPT 

w n  = 

All ce-moments can be calculated by means of the change of variable 

(x — a) = u , clz = du. 



— 4o—  

rius 

(ù 	1 	f (a u)' 	du. 	 —(51) 	1 
o.  27r —03 

Calculation of a few first moments: 

+Cie _142 

COO = =1.fr_ner r 1  du,  

coo = 1. 	 ...(52a) 

111 
1 	___ 

wi  - _,-- f (a + u)e 2'12  du, 
cr Y 27r -oe, 

1 
U 2 

(1)  1  = 	a 	f e  20.2 
du + =qr. f ue 

	

1 	
......._ 

2t 	. 111 a Y 27r -de 

	

= a +0 = a . 	 ...(52b) 1 

	

2 	 , 

w, = 	f (a+ u) 2 e 2Œ 2  du 
 

y 27r -co 

+ CC _ ti2 	 U 2 	 U 2 	 1 ' 
1 	 — —7: 	 — 

0)2 = ....77pliw a2  f e 2e-  du + 2a f ue 2e-  du + f u2e 20' 2  du 	, I 0' Y 2.Tr 	-cc 	 -cc 

to2  = a 2  + 0 + a2  = cr2  + a 2  . 	 ..(52c) 	1 

Further moments: 

3.2  + a 3 , 	 ...(52d) 

I 
w 4  = 3a4  + 6acr2  + di ., 	 ...(52e) • 

cos  = 15acr4  + 10a 3o2  + a s  o 	 .. 0 (52f) 	1 

	

The importance of these expressions for w-moments has  been shown at the turn of 	1 

the century by K. Pearson who was the first to analyse skew distributions which are . 

I 

c7:- 27.-; —cc 



Ci)2, Wo, W4, W5. 

found in biology and which may be considered as mixtures of decentered normal popu-

lations. 

Let us assume with Pearson, that a skew curve represents a mixture of two normal 

distributions the parameters of which are 

Curve 1: Prop.size p i , variance al, position a i  

Curve 2: Prop.size p 2 , variance al, position a 2 .  

The moments with respect -  to the origin of the mixture are wo, 

Using the expressions (52) . we form Pearson's system: 

Pi 	 ± 73 2  

Pia' 	 + p 2 a 2  

Pi(cri 	a?) 	 + p 2(4 + 

% ( 3 ala'? 	ai) 	 P2(3 a201 + 

p(30 4  + 64cr? + 	 + P2(301 + 6 4°1 aZ) 

7 / (15a icris  + 10aecr? + at) 	+ p 2(15a 2cril  + 1044 + 

= Wo = 1 

= 

= (0 2 
= (1)3  

= (3) 4  

5 \ 
a2 ) 	= (2)5 • 

...(53a) 

The solution of this system by a rigorous algebraic method would be a practically 

impossible undertaking. What made it possible is Pearson's idea to calculate the 

moments  with  respect to the mean 7 instead of the origin. Hence the set of symbols' 

tan  • • • cos  is replaced by the set p.,1  • • 1.1. 5  in which p. i  = O. Also, of course, the sym-

bols a l  and a 2  refer nov; to the distances from the mean y and are therefore repiaced 

by m 1  and m 2  respectively. The system Pearson actually uses in his memoir is there-

fore: 

12  

P rn 

P i ( 	+ m ) 

P ( 3 m 	+ f n 

P ( 3  cr + 6  m bcr 
v 1 (15m 1cr + 1Omi + m 

+ p 2  

▪ P2 M 2 

+ P 2(°22  

+ P2( 3771 24 	mti) 

+ 1, 2(34 + 	+ 

+ p 2(15m 24 + 1074crI + mfl  

=p.0 1  

= 0 

= 112  

= P•3 

= 11 4 

= PL5 • 

+ m ) 

+ rn ) 

M 24  ) 

...(53b) 

The solution of this system with respect to the six unknowns p i , p 2, m l , m 2 , a l , 

0. 2  requires a lot of ingenuity and therefore Pearson's accomplishment, must be 
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considered as an outstanding mathematical success. The detailed examination of 

Pearson's memoir is strongly recommended and is highly rewarding. 

As in the preceeding section a case of dichotomy will be described briefly under the 

form of a numerical operation. 

A Numerical Example of Pearson's Equations 

The class frequencies considered as "observed" are presented in the adjoining table. 

The diagram clearly indicates that the distribution is skew and triangular. 

j 	Fi 	. j 	Fi 

	

-12 	0 	+12 	0 

	

-11 	6 	+11. 	6 

	

-10 	6 	+10 	13 

	

-9 	19 	+9 	32 

	

-8 	25 	+8 	38 

	

-7 	25 	+7 	57 

	

-6 	37 	+6 	51 

	

-5 	31 	+5 	70 

	

-4 	37 	+4 	75 

	

-3 	44 	+3 	64 

	

-2 	38 	+2 	57 

	

-1 	57 	+1 	64 

	

0 	51 

903 



= —5583.1893 P-5 

Fig. 5 Triangular Distribution 

The calculation of the mean and of the six moments leads to the following results: 

=  + 1.1639 

= 1 113 = —41.5599 

P.1 = 0 	p.4  = +1501.0062, 

p. 2  = +25.7672 	p. 5  =  —5583.1893. 

Pearson's system of equations is therefore: 

Pi 	 p2 

P1 M I 	 P2M2 

Pl(e? + en ? ) 	 + P2(01 +Mi) 

P1( 3771 1 01 + rni) 	 + P2( 3771 24 + mi) 

Pi( 3cri +  6m 1  ci + 	 + P2(301 ÷ 6744 + 74) 

p 1 (15m 1cre + 10rnhr? + mr) + p 2 (15m 24 + 1044 + 

= p.0  = 1 

= = 0 

= 1.1.2  = +25.7672 

= p.3  = —41.5599 

= p. 4  = +1501.0062 

M 25 ) 



4.4 
• 

The solution of this system is accomplished by successively eliminating the unk-
nowns. It finally leads to one equation of ninth degree which must be solved numeri-

cally. When examining Pearson's memoir one is impressed by the author's skill and 

ingenuity in handling complicated algebraic expressions and his confidence in the final 
success. The solution of the final nonic with the author's primitive calculating hand 
operated machine must also be considered as an outstanding achievement. The parame-
ters of the corn.ponent populations are: 

{ 
m i  = —4.996 

C1 Pi = 0.406 
 cri  = 3.179 

a l  = —3.833 
N1  =  366.618.  

I 
m 2  = 3.419 

C2 p 2  = 0.594 
cr2  = 2.777 

a 2  = +4.582 
N2 =  536.382.  

The curves C1, C2 and their mixture are represented in Fig. 6. 

Fig. 6 Dichotoiny of the sample in Fig. 5 

a l  = —3.833, a 2  = +4.582, j = +1.164 
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Chapter IV 
Theory of Least Squares and Systems of Equations 

Section 1. Compound Probability of a Sample 

This section is a natural extension of Section 2, Chapter III. Let us call  m 1 ,  m 2 , 

m 3  the values obtained by measuring a fixed quantity and z 1 , x2, x3  the corresponding 

deviations from the mean. Without affecting the generality of the reasonings we may 

assume that the three values  z 1 , x 2, x3  belong to the operations of the same metrologi-

cal quality i.e. have the same variance o-2 . The question may arise what is the com-

pound probability di) c  that another set of three measurements will yield values that 

will fall in the same intervals (ix ' , dx 2, dx 3 . The reader can easily establish by means of 

the theorem of compound probability that the answer is: 

	

2 	2 	• 2 1  Z32  

e 	[2tr 	20. 	2cr 1 
i dx2 etez 

1  
C  

cr 3 ( Y 27r)3  

4  4? 
 2(72  + z:22  + 

dP — (dx) 3  

This formula can be readily generalized for samples of any number of values in 

m i (i =1, 2, • • • N) so that it is possible to write 

(  dP = 	1 	I N e 1  /es.2 
( ) N  

cr 

772 	
2` 

 • 7..rr 

Naturally, dPc  will be a maximum when Ez12  will be a minimum. One must bear in 

mind that xi  = mi —m—  so that it is legitimate to raise the question whether the sum of 

squares Izi2  is really the smallest when the variable in the expression of the fimction 

Q (t) = (mi - 	+  (m2_)2  + • • • + (mN- ...(54) 

takes on the value t = m— . To answer this question consider the derivative of Q(g) with 
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respect to 	i.e. 

dQ(z)  
dt 

2 	+ (Inz — g) + ° ° 	+ (n1N — e)] 

= —2 [m i  + m 2  + • • • + m N —Nt]=  

This expression, equated to zero, yields 

Emi —Nt = 0 	i. e. 1 
g = Emi N 

...(55) 

This is one of the most important theorems of the whole calculus of probability: if 

a set of N points  rn 

 1.

(liven on an azis and a mobile point t, the sum of squares of the 

distances (m —e),  i.e. (et) =  (m _) 2 is a minimum when g coincides with  i.  It is 

to be noted that this theorem is valid in all cases, i.e. is independent of the positions of 

the points mi . If mi  represent the results of N measurements of a fixed quantity and if 

it is assumed that these mi  conforrn to a binomial - normal theory, then the mean m—  is 

the value that renders a maximum the compound probability dPc  of the whole sample. 

This is the reason why the mean m—  is termed the most probable value of the measured 

quantity. It is a remarkable coincidence that the constant and generalized use of the 

"mean" in science and in everyday life is perfectly justified by the properties of the nor-

mal distribution. But it also raises the question whether the normal law is absolutely 

and universally valid? There is no simple and clear-cut answer to this important 

mathematical and philosophical question. 

A few remarks concerning the mean: 

1" A set of N values mi  as they are defined above, i.e. as results of N measure-

ments of an unknown quantity X, 

X = mi 	= 1, 2, • • • N 

constitutes a system of what in the sequel will be termed "equations of condition". An 
equation of condition is not an equation in a strict mathematical sense but only a sym- 
bolic representation of the outcome of a physical measurement. Furthermore, the rela- 
tion 
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is termed a "solution" of the above system by the "method of least squares". 

2" It has been already mentioned in the preceeding sections that the mean of the 

square of (m i  — should be taken 

mu la): 

under the form (generally called Bessel's For- 

s  2 = 	( m  77.-t  )2 
N-1«,‘" 

This is due to the fact that by forming the set of N differences (m1 — m-- ) we lose one 

degree of freedom, i.e. reduce by one unit the number of independent measurements. 

However, such a justification of the fact that (N-1) is substituted to N, is not a 

real mathematical demonstration. The latter is given in Appendix V. 

Let us now consider the question how, in practice, large samples are formed. In all 

preceeding cases we have assumed that the values m i  are the result of repeated meas-

urements of a given stable .physical quantity, e.g. the length of a gauge. In the litera-

ture the term "fixed quantity" is frequently used for this purpose. What is the actual 

meaning of the term "fixed"? The objective of the present work is not to get lost in 

endless philosophical discussions. Perhaps, in order to make a:long story short, it would' 

be appropriate to simply replace this term by that of "statistically stable". On a 

macroscopic scale nothing is perfectly stable but we easily distinguish between the 

height of a cloud and the height of a mountain. The position of the top of a mountain 

fluctuates in appearance according to the atmospheric conditions during the measure-

ment operations and oscillates about a certain average position: we call it statistically 

stable. In the sequel such quantities will be simply termed "stable". 

The second question is what is the meaning of the term "repeated' measurements? 

In certain cases this meaning is clear, e.g. when an observer (using a goniometer) meas-

ures 100 times a stable azimuth. But, when a geodesist surveys a region containing a 

hundred triangles, he actually determines the sum of internal angles of the triangles in 

the net but he does not measure the angles of the same unique triangle. However, as 

theoretically the sum of internal angles in all triangles is 180°, the hundred values 
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obtained by the surveyor may legitimately be considered as 100 repeated measurements 

of one single quantity. Various other, more complicated, cases will be treated in the fol-

lowing sections. It will be always possible to show there that they can be reduced to the 

simple case of "repeated" measurements. 

Section 2. Formation of Systems of Equations 

In all previous cases the unknown quantity is assumed to be mea.sured directly as 

e.g. an angle is measured by means of a theodolite. Very often, in practice, measure-

ments are performed on combinations of several unknown quantities and the values of 

individual components are deduced  from  the solutions of more or less complicated sys-

tems of simultaneous equations termed "equations of condition". The calibration of 

working mass standards presents a typical case of such operations and will be used as a 

convenient example. 

There are three types of operations that are performed on mass standards: 

Type I: a working standard (e.g. a kilogram) is calibrated against a high quality 

standard e.g. against a "National Standard" the value of which  may have been deduced 

from, direct comparison.s against the Prototype Kilogram of the International Bureau of 

Weights and Measures. Such calibrations are generally performed many times and the 

results are treated by methods described in preceeding sections. 

Type II: a typical example of this type, leading to a system of simultaneous equa-

tions of conditions, is the calibration of multiple and submultiples of the kilogram. A 

set of weights may contain weights of the following values: 1) multiples (in kg): 1, 2, 3, 

5, 10, 20, 30, 50, 100 etc. 2) submultiples (in kg): 0.1, 0.2, 0.3, 0.5, 0.01, 0.02 etc. 

Every Type II calibration is characterized by the fact that it contains a reference mass 

the value M of which is indicated by an equation termed eggation of definition. Its 

value is thus assumed to be known with an accuracy that is superior to that of other 

weights of the set. Weights are denoted by symbols such as (5), (2), (0.1) etc. 

If the weights are well adjusted to their nominal values, the comParisons (on a dou-

ble pan balance) can be carried out without the help of additional masses. Very often, 
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however, small additional masses are necessary, e.g. of the order of a milligram. 

Let us consider, for instance, the following set of weights: 

(10) = M. ; (5), (2), (2'), (1), (1') . 	 ...(56) 

With these weights it is possible to make ten comparisons and thus to obtain ten equa-

tions of condition. There are five unknowns so that the number of equations exceeds 

that of unknowns by 10 — 5 = 5 units. It is, of course, possible to repeat or to omit 

some of the weighings and thus to increase (or to decrease) the number of equations of 

condition with respect to the number of unknowns. High quality weighings are long 

and tedious operations so that an observer is reluctant to increase their number. In 

fact, "repetitions" are used only if they are really justified. 

- The system containing all possible equations may be called "basic system"; other 

systems may be simply called "modified" systems: in Table IV, B is presented a system 

deduced from the basic system A by omitting the equations marked with an asterisk (4, 

5, 12) . and using twice' the equations marked with a circle (9, 10, 11). Note that the 

subscripts in the modified system are totally independent of those in the basic system. 
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Table IV 

Masses: (10) = M, (5), (3), (2), (1), (1'). 

• A. Basic System B. Modified System 

+(5) +(3) +(2) +(1) —(1') = m 1  + M +(5) +(3) +(2) +(1) —(1') = m 1  + M 

+(5) +(3) +(2) —(1) +(it') = m 2  + M +(5) +(3) +(2) —(1) +(1') = m 2  + M 

+(5) +(3) 	+(1) +(1') = m 3  + M +(5) +(3) 	+(1) +(1') = m 3  + M 

+(5) +(3) +(2) 	= m 4  + M *+(5) —(3) —(2) +(1) —(1') = m 4  

+(5) —(3) —(2) 	= m s  * 	+(5) —(3) —(2) —(1) +(1') = m s  

+(5) —(3) —(2) +(1) —(1') = m s 	+(5) —(3) 	—(1) —(1') = m 8 	...(57a,b) 

+(5) —(3) —(2) —(1) +(I') = m 7 	+(3) —(2) —(1) 	= m7  

+(5) —(3) 	—(1) —(1') = m s 	+(3) —(2) —(1) 	= m s  

	

= m g 	+(3) —(2) 	—(1') = m g  

+(3) — (2 ) 	— ( 1 ') = m10 0 	+( 3 ) — ( 2 ) 	—(1') = m1 0  

	

+(2) —(1) — (1') = mu 	 +(2) —(1) — (11 ° m11 

	

+(1) — (1') = m12 * 	 +(2) —(1) — (11 = m12 

Type III: This type differs from type II by the fact that it does not contain a 

separate defining mass M. A combination of masses is postulated to have a known mass 

and this constitutes the necessary equation of definition. 

An example of type  LU  is the set of weights (8), (4), (2), (1), (1'), (1") in which the 

equation of definition is 

M = (8) + (4) + (2) + (1) + (1') = (16) = 16 ounces . 

It leads to the following system of equations of condition: 
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= m 2  

= 

= m 4  

= 
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Equations of Condition 

+(4) 	+(2) 	+(1) 	+(1') 	 = m1 + (8) 

+(4) 	+(2) 	+(1) 	 +(1") 	= m2. + (8) 

+(4) 	+(2) 	 +(r) 	+(1") 	= m3  + (8) 

+(4) 	—(2) 	—(1) 	—(1') 	 . m 4  

+(4) 	—(2) 	—(1) 	
—(1,,) = m s  

+(4) 	— (2) 	 . —(1') 	—On 	..... m e  

+(2) 	—(1) 	—(1') 	 = m 7  

+(2) 	— (1) 	 — (1") 	= m8  

+(2) 	 —(1') 	—(1") 	= Mg 

...(57c) 

It is to be noted that, in this system, the lowest mass put on a pan is equal to 2 ounces. 

This is due to the fact that the balance has no longer the appropriate sensitivity when 

charged with masses of the order of one ounce. This system is used for the masses 

expressed in pounds and ounces. 

Since the universal acceptance of the (metric) SI units, the set of weights which 

became the most useful, and which is likely to remain the most used, is the set (5), (2), 

(2'), (1), (1'). It can be used as well for calibrating the submultiples as the multiples of 

the kilogram. Its system of equations is: 

+(5) 	—(2) 	—(2') 	—(1) 

+(5) 	— (2) 	— (2') 	 — (1') 

+(2) 	7 (2') 	+(1) 	—(1') 

+(2) 	—(2') 	—(1)  

+(2) 	—(2') 

+(2) 	 —(1) 	—(1') 	= m e  

+(2') 	—(1) 	—(1') 	= M7 

+(1) 	— (1 ' ) 	= Mg 

...(57d) 



+ at +  13 t2  = ...(58) 

ai z + bi y + ci z 	 = 1, 2, • • • N ...(60) 
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The equation of definition can be either 

1) of type II, e.g. (1') = M, M designating a mass of nominal value 1 kg. The unk-

nowns are the multiples of the kg. 

2) of type III, e.g. (5) + (2) + (2') + (1) 	M being a mass also of nominal values 1 

kg but the unknowns are now expressed in submultiples of the kg: here they are 

expressed in a unit equal to 100g, i.e. "hectogram". 

Even if one of the unknowns, say (1') is eliminated between the equation.s of condi-

tion and one of the equations of definition, the number of equations (8) remains larger 

than that of unknowns (4). Therefore, from a rigorous mathematical standpoint, the 

system has no real solution. 

How the method of least squares can lead us to the most satisfactory set of approx-

imate solutions is described in the next section. 

Section 3. Solution of Linear Systems 

Suppose we have a length standard the value of which at 0° C is not known and 
the coefficients of temperature of which (linear a and quadratic 13 ) must be determined. 

All temperatures t will be considered as known without error but length measurements 

will be considered as affected by random errors (Hagen's type). The classical form of 
the dilatation equation, 10  being the length at 0°C and l  at t°C, is 

1 

However, for a general study of similar problems, this equation is given a more general 
form: 

yt + zt 2 	m 	 ...(59) 

in which z, y, z are the unknowns and m is the observed quantity. We can also treat 
systems of such equations, each of which is of the form: 

1 
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where ai , b • , ci  are known numerical coefficients and mi  are the observed quantities. It 

is to this type of systenas of equations, in which N may become quite large (in_ any case 

N2:4), that the method of least squares will now be applied. It is, however, necessary 

to underline very strongly the fact that the relation such as (59) is not a real rigorous 

mathematical equation but only a symbolic representation of the result of a measure-

ment. In all rigor, we must write: 

ais + bi y 	ci z — mi  = ui , 	= 1, 2, 	• • N 	 ...(61) 

The second terra vi being due only to the presence of random errors, is in general very 

small. Let us also note that any set of three equations chosen arbitrarily in the system 

(60) has a specific set of solutions. In practice, these solutions present no particular 

interest. 

The solutions which are deduced from the totality of  all  available equations of con-

dition are termed "adjusted" solutions. The compensation is made by means of the 

"method of least squares". It is described as follows. 

If there are for instance, N = 12 measurements, the condition of "least squares" 

takes the form: 

= V? 	 + • • • + 0?2  = 	v.` = min. 	 ...(62) 
1= 1 

Replacing vi  by their expressions (61) we obtain for S 

S = (a iz + b i y + c i z — m i )
2 
 + 

(a 2z + b 2 y + c 2z — m 2 )
2 

+ 

2 
-4-  (a3s + b 3y + c 3 z — m 3 ) + 

+ • • • + 

) 2 
(aux 	buY 	c12 2 	mi2) • 



dz ...(63) 

(ab) = a l b '  + a 2 b 2  + a3 b 3  + 

(ac) = a i c i  + a2 c 2  + a 3 c 3  + 

(aa) (ab) (ac) 
(ha)  (bb) (be) 

(ca) (cb) (cc) 

= *0.  ...(66) 

• -54-.   
i 	• 

The condition S = min is equivalent to the equations: 

dS 0 
 dx 

dS _ 0 
 dy 

These equations are termed normal equations. They form the following system, linear 

in x, y, z: 

(aa)z 	(ab)y + (ac)z = (am) , 

(ba)x + (bb)y + (bc)z = (bm), 

(ca)x + (cb)y + (cc)z = (cm), 

(aa),.= a? + al + 	+ • • • + al , 

(bb) = b? 	b0 	1,1 + • 	+ b?2  , 

(cc) = c? + el + cl + • • • + cî2  

• + %biz 

• + eit212 

with 

•..(64) 

...(65) 

(am) = a i m ' 	a2 m 2  a3 m 3  + • • • + aierin • 

The system of normal equations (64) has a set of 3 well defined solutions x, y, z if the•

following condition is satisfied 

In many systems (particularly in the domain of masses) â is equal to zero. The 
calculations that follow do not apply to such cases. This point is examined at the end 
of the present section. 
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Here the calculation is continued as follows. 

{al = 1  
b1 =  t 1  , 

C1  = 	9 

a2 = 1 
b 2  =  t2 

C2 = 	e 

a 3  = 1 

b 3  = t 3  , 

= t C 3  	, • 

a12 = 1 

 b12 = t12 

C12 = 

so that 

(aa) = 12 , 	(ab) = Et , 	(ac) = Et 2  

(ba) = Et , 	(bb) = Et 2 	(bc) 1t 3  

(ca) = Et 2  , 	(cb) = Et 3  , 	(cc) = 

(am) = 	, 	(bm) = Emt , 	(cm) = Emt 2  

As the determinant A is clearly not equal to zero, the normal equations are 

x.12 + yIt + zEt 2  = Em 

xt + yEt 2  + zEt 3  = Imt 

xIt2  + yIt3  + zEt 4  = Emt 2  

The solution of this system i.e. z, y, z are the adjusted values of the unknowns 

obtained by the method of least squares. As the latter is based on the fundamental pro-

perties of the normal curve, the adjusted solutions are also rightly termed the most 

probable values. 

The substitution of x, y, z into the equations (61) will yield the numerical values 

for vi : 

vi  = (ai z + b i y + c i z — m i ) . 	 ...(67) 

These values can now be considered as "deviations".  They  play the same role as 

the deviations of individual (repeated) observations from their mean Wt. The variance is 

computed by dividing the sum of squares Evi2  by the number of degrees of freedom. In 

(38) this number was equal to the number of observed mi 's reduced by one unit (from 
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139 to 138). Here it must be reduced by three units because there are three normal 

equations the effect of each of which is to reduce by one unit the number of indepen-

dent equations of conditions i.e. of degrees of freedom. Hence 

	

cr2 	
1 2 

+ 	+ 1/1 + • ° • + v i22 ] 	 ...(68) 

	

fra 	12-3   ) 

The subscript m indicates that o-,n2  is the variance of the deviations of the observer' 

quantities mi  and not of the deviations related to any specific unknown. The pro-

cedures for establishing the variances on specific unknowns are treated individually in 

various cases found in practice. 

Let us now study the algebraic methods for solving normal equations. The method 

that is the most used in practice is that of determinants. Applied to (64) this method 

leads to the following expressions of z, y, z: 

...(69) 

+1 
z — 

(am) (ab) (etc) 
(Sm)  (56) (Sc)  
(cm) (cb) (cc) 

aa) (am) (ac) 

Sa) (Sm . ) (Sc) 
 ca) (cm) (cc) 

(aa) (ab) (am) 
+1 

z = 
	(Sa)  (bb) (bm) 

(ca) (cb) (cm) 

The determinants are calculated by classical development procedures as given in alge- 

bra. The calculations are n.ot difficult but they become more informative when they are 

combined with the method of undetermined coefficients. This method is described as 

follows. 

The first equation of (64) is multiplied by X, the second by IL, the third by v. This 

gives: 

X(aa)z + X(ab)y + X(ac)z =  

gba)z + p,(bb)y + p.(bc)z  

v(ca)za + v(cb)y + v(cc)z = v(cm) . • 

...(70a) 
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The summation of all terms leads to 

x[X(aa) + p.(ba) + v(ca)] + 

+ y [X(ab) + p.(bb) + y(cb)1 + 

+ z[X(ac) + p.(bc) + v(cc)] = X(am) + p..(bm) + v(cm) . 

It is always possible to select X, p., y so as to make the coefficient oi  Z  equal to 1 and 

those of y and z equal to zero. The resulting system in which X, p., I, are the unknowns 

is: 

(aa)X + 	+ (ac)v = 1 , 

	

(ba)X + (bb)p. + (bct ,  =  O, 	 ...(70b) 

(ca)X + (cb)p. + (cc)y =  O.  

Its solutions X, p., le, (always finite as A*0) will lead to the value of z: 

	

z = X(am) + p.(bm) + v(cm) . 	 ...(71) 

If  now in (70a) we designate the unknowns by X', p.', y' and shift 1 to the second equa-

tion, we obtain the system 

(aa)X' + (ab)p.' + (ac)vi = 0, 

(ba)X' + (bb)p.' + (bc)V =  1, 	 ...(72) 

(ca)X' + (cb)p.' + (cc)v' = O. 

It will lead to an equation for y. Finally, using the symbols X", p.", v", we form an 

equation for z. The compensated values of z, y and z are therefore 

z = X(am) 	p.(bm) 	v(cm), 

y = Xi(am) 	W(brn) 	v'(cm), 

z = X"(am) 	p."(bm) -I- • v"(cm) 
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It is sti ll  possible to go somewhat farther in these transformations by noticing that 

(73) can be put under the form 

= 	 + p.b(  + vci) 	= 

y = 	 + jilbi  + Ve i ) 	= EmiPi 

z = 	Emi (X"ai  + 	b i  + m" ci) 	= Emey 

where 

oei = 

= 

X + p.bi + vci  , 

X'ai + 	+ 1,..c1  , 

X" ai 	+ v"ci  

Hence finally the expressions of z, y, z in terms of observed quantities become: 

x 	micti = (met) , 

= Zmig( ' (m13 ) , 

z 	Emn't = (m'Y) • 

— (74) 

The theory presented in this section has been used as the fundarnental tool not 

only in the calibration of mass standards but also other metrological domains. It has 

remained in a stable form for more than a century until the publication of an article in 

"Metrologian by M. Grabe in 1978 (Metrologia 14:143). In this article the author shows 

that the system such as (57a) and (57b) can be significantly modified so as to make it 

easier to calculate and to improve the accuracy of the results. He also points out that 

such suggestions have been made and published by well known authors (Lenk, 

Kohlrausch) in the thirties but, for some strange reasons, have never been adopted by 

mass metrologists. Grabe's article has been thoroughly analyzed at the N.R.C. and fol-

lowed by an article in Metrologia by Dr. M. Zuker, N.R.C. biomathematician. 

As a conclusion of the present section we shall simply establish the correspondence 
between the symbols of this section and the symbols specifically used in the calibration 
of masses. 
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The first equation of (57d) is now written as follows: 

(+1)(5) + (-1)(2) + (-1)(2') + (-1)(1) + (0)(1') = m i  . 

Hence, a l  = +1,  b 1  = —1,  c 1  = —1, d i  = —1, c i  = 0, m i  = m i , and all equations of 

the system are treated in the same manner. The calculation of the normal equation can 

be made in two different but equivalent ways: 

a) either the substitution (1') = m is made into the equations of condition and then 

the normal equations (64) are established, or 

b) the normal equations are established first and then the substitution (1') = M is 

made. The procedure a) yields: 

+(5) 	—(2) 	—(2') 	—(1) 	= m i  

	

+(5) —(2) —(2') 	= m2  + M 

	

+(2) —(2') +(1) 	= m3  + M 

	

+(2) —(2') —(1) 	= m 4  — M 

	

. +(2) 	—(2') 	= ms  

	

+(2) 	—(1) 	= m e  + M 

	

+(2') —(1) 	= m7  + M 

	

+(1) 	= m s  +  M. 

and the system of four normal equations takes the form 

...(75) 

	

2(5) 	—2(2) 	—2(2') 

	

—2(5) 	+6(2) 	—(2') 

	

—2(5) 	—(2) 	+6(2') 

— (5)  

- (1) = 	+ M 

=N2  

=N3  

-1-6(1) 	= N4 + 

...(76) 

in which N1  ... N4 are linear functions of mi . 

The procedure b) will yield the following system of five normal equations: 
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2(5) 	—2(2) 	—2(2') 	—(1) 	—(1') 	= 

	

—2(5) 	+6(2) 	—(2') 	 '4= N2 

	

—2(5) 	—(2) 	+6(2') 	 =°- N3 	...(77) 

	

—(5) 	 +6(1) 	—(1') 	= N4 

	

— (5) 	 —(1) 	+6(1') 	= N5 

As the determinant â is equal to zero it indicates that one of the equations is 

redundant and that therefore there exists a linear relation between the N's. This rela-

tion is 

5N1  + 21V2 2N3  -1-  N4 + N5 =  O.  

If, for instance, we discard the last equation (Ns) and put (1') = A/ we find the system 

above (76). 

Section 4. Orthogonal Systems 

The main objective of this section is to show why the "basic 1' system of the linear 

equations of condition (57A) can be advantageously replaced by the n modified" system 

(57131. For this purpose let us form, in each of these two systems, one of the coefficients 

( j3 ) which figure in the normal equations, and in which et*g, for instance, 

(be) = blel 	b2e2 	• • • + b 12C 12° 
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System A 	 System B 

	

+1 	+1 	 +1 	+1 

	

+1 	+1 	 +1 	+1 

	

+1 	0 	 +1 	0 

	

+1 	+1 	 —1 	—1 

	

—1 	—1 	 —1 	—1 

—1 	—1 	 —1 	0 

	

-1 	-1 	 +1 	-1 

- 1 	0 	 -I-1 	-1 

	

+1 	-1 	 +1 	-1 

	

+1 	-1 	 +1 	-1 

	

0 	+1 	 0 	+1 

	

0 	- 0 	 0 	+1 

Ebe = (be) = +4 >2,be = (be) = 0 

The specific property of this modified system is that all coefficients in which a e 13 are 

equal to zero. This is the reason why the system is termed orthogonal. The values of 

the coefficients form (aa) are: 

(aa) = 6 , 
(bb) = (cc) = (dd) =  (ce)  = 10 

The system of normal equations is therefore: 

6(5) 	 = (am) + 3M 

10(3) 	 = (bm) + 3M 

10(2) 	 = (cm) + 2M 

10(1) 	= (dm.) + M 

10(1') 	= (em) + M 

The symbols (am), (bm) ... etc. are oftem replaced by the symbols N1 , N2, ... N5. 
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The solutions are obtained without effort since each equation may be solved 

independently, as demonstrated below: 

(5 ) 	16" [(m + m 2  + m 3  + m 4  + ru s  me) + 3M1 

1 	( 
(3 ) "e" 

 —i-- [(m1  -4' M2 + M3 — M4 — M5 — MS 1-  T71 7 4.  MS ÷ M9 + M10) + 3M1 e 
10 

1 	f 
(2) = --' [lnli ÷ M2 — M4 — M5 — MT — in8 — M9 — M10 + M11 + M12) + 211.1 e 

10 

— m2 + m3 1° m4 — ms ms — m7 — MS — Mll — M12) + 

(1') = * {(-771,. + m 2 + m3 — 	ms m s — m u m10 m 11  — m12) M] 

The group variance (71 is calculated in the usual manner and the theorem of pro-

pagation of variance leads to the following values of the variances of the individual unk-

nowns: 

12 ± 1 ( 	
2 

,..2 _ 1 (1 2 4. 	2. + 1 2 + 12 + 12) (71 = 1 2 
O.  = 0.1670. 2  "(6) — 6 ‘' 	 6 m 	m . 

2 
2 	2 	2 — 	1 	2 = 0 1Cr 2 

e7 (3) = Cr(2) = Cr( 1 ) 	er( 11) = 	em 	rn • 

The most important property of orthogonal systems resides in the fact that all unk-

nowns are totally independent of each other. Thus if a "permanent" group of masses is 

formed, the variance of the group is exclusively equal to the sum of variances of the 

components. This is due to the fact that, in orthogonal systems, all so-called "covari-

ances" are equal to zero, while in ordinary systems, their numerical values must be 

taken into account. This point is beyond the level of this course and the reader is 

referred to treatises based on the matrix calculus. 

The reader who is interested in orthogonal systems will find in the Bibliography all 

information concerning this highly interesting subject. Recently, Dr. G. Chapman, from 

the Division of Physics of NRCC, has applied the methods based on the use of 
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orthogonal systeras to the calibration of angles. He also greatly simplified the methods 

for transforming the non-orthogonal systems into orthogonal ones. His contribution 

completes that of Grabe and Zuker. 

Taking into account the amount of information accumulated in all metrological 

laboratories of the world in the course of the last century (based on ordinary non-

orthogonal methods) it is likely that progress due to the introduction of new procedures 

will be rather slow. It is nevertheless obvious that orthogonal systems will finally elim-

inate all non-orthogonal ones in all those domains of metrology in which they can be 

applied. 
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Chapter V 

Combination of Variates 

Section 1. Summation of Normal Variates 	 111 

This section must start with a strong emphas.  is on the difference between the mean-

ing of the terra "mixture" and that of the term "sum". Suppose that we have two vari-

ates X and Y represented by large samples of sizes N1  and N2, respectively. The "mix-

ture" is represented by the sample of size N1  + N2 obtained by simply pooling the 

populations of the components. 

The "sum" of the variates X and Y is denoted by the symbol (X + *Y) and is 

represented by the sample of N1  x N2 dements. It is constituted by all sums that can 

be formed by adding each element of X to each element of. Y.- 

In general, capital letters are used to designate variates and the corresponding 

small letters to designate individual elements. Thus we can write* 

Z = X + Y , 

z 	y 

The probability density functions (pdf) will be designated by the symbols c1) 1 (z) and 

Let zo  be a certain arbitrary value of z. Hence, 

zo =z+y, 	y=z0 —z, 	dy=dz o —d.z. 

The probability that z will fall into dx is 

dPx  = (1) 1 (x)dx 

* In some treatises on higher statistics published since the mid-century, the "summation of 	111 
variates" belongs to a more general type of operation termed "convolution of functions". A narrower 
practical point of view does not require such an extension of the theory. 
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and the probability that y will fall into dy is therefore 

(13 2(y) dy = (13 2(z0 	z)(dz o  — dx) . 

The compound probability of x and (z 0 — z) is 

(1) 1 (x)dx • (1) 2(z0 —z)(dz0 — dz) ...(78) 

and is a function of z. Its expression should be formed for all possible values of x. If 

[x] designates the domain of integration in z, the probability dPzo  that z will fall into 

dz o  is equal to the integral 

cipzo  = fcril(z) E02(z0—z) clz dzo 

as, obviously the term in (dx)2  can be omitted. The final formula is 

dPzo  = dz o  f 1 (z) (1) 2(z 0 — x)dx 
- 	(21 

...(79) 

Concerning the domain of integration, [z] some remarks are necessary. The 

extreme limits between which X and Y are comprised are not necessarily infinite: X 

may exist only between z' and z" while Y may exist only.  between y' and y". It is 

thus necessary to remember the following rule: the integration domain [x] extends to all 

values of x which satisfy the relation z o  =  z  + y, under the formal condition that y be 

located in its own range, i.e. between y' and y". 

Numerical Example 

Suppose that X and Y range both between 0 and +co and that we have z 

Obviously we can select z = 2 so that y can be equal to 3 (which is of course in its 

range). We can write 

z = 5 — y 

and consider the values of x from 2 upwards: when x = 3 then y = 2; when z = 4, 

then y = 1; when x = 5 then y = O. It is not possible to go beyond x = 5 because 

y = 0 is the lowest value y can take. Thus x = 5 is the highest limit of integration. 

=5.  



dP = dz fcpi(x) c1)2(z—e) dz ...(80) 

and (I) 2 represent the 

dPz  

2.2  

1 	e  

Y 

...(81) 
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Similarly, we find that, for z = 2, y = 3; for z = 1, y = 4; for z = 0, y = 5. Hence 

z = 0 is the lowest limit z can take. Thus [z] extends from z = 0 to z = 5 and 

5 

dPz0=. 5  = dz o  f cD i (z) 0 2(5— x)dx 
0 

This expression is generalized for any possible value of z and takes the form: 

in which the subscript of z is not necessary and is therefore omitted. 

In the summation of two normal variates i.e. When 

expressions 

1 	201 
11) 1(e) — 

1 
4) 2(Y) = 

72 72=77e  

the limits in the integrals are — .co and +co. The integrations can be performed by well 

known methods*, and lead to the formula: 

Y
2 

2(71 

This result is often presented under the form of a theorem terrned theorem of addition 

of variances: the summation of two normal variates leads to a normal variate the vari-

ance of which is equal to the surn of the variances of the components. 

Another fundamental  transformation  is the multiplication of a variate (z) by a 

constant factor a: 

* A detailed presentation of this integration is given in Section 3 of this Chapter 
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Z = a X 

z = ax , 	dz = adx , 	(722  = Ct 2  Crx2  . 

If in the expression of dPz  for a normal variate, i.e. 

e- 
1 	2ct 2  

(*A 	r— e 	z,  
ax v2ir  

the variable z  is replaced by the variable z, dP, takes the form 

1 	2cr 2  e 
cr2V-27r 

in which 

	

2 	2 2 

	

1:72. 	Ct cr= 1 	crz  = otcrx 

... (82 ) 

...(83) 

Combining this with (81), we obtain, for any linear combination of two normal 

variates 

Z = aX + 	 ...(84) 

the following expression for 4: 

This is one of the most important relations constantly applied in the analysis of 

linear equations as they appear e.g. in the calibration of mass standards. The reader 

should refer to the end of Ex. 15 and to the final part of Ex. 16. 

The above expressions for Z = X + Y and Z = aX must be modified when the 

components are decentered, i.e. not centered on r= O. The calculations with decen-

tered expressions are somewhat more complicated but present no specific difficulty and 

constitute excellent exercises. Their results are extremely simple. 
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For a linear form: 

1) 	X (centre a:c) + Y(centre ay ) = Z(centre c = ax  + ay ) 	—(86) 

2) 	aX(centre ax) 	Zreentre c = aa x) 	 ...(87) 

aX(centre ax) + 13Y(centre ay ) = Z(centre c = (lax  + Pay ) 	—(88) 

The expression for variances are not affected by the presence of centres: 

Z = ceX(ar) 

Z(c) = aX(ax)13 Y(a) 

	

2 	2 2 

	

Grz 	Ct Crx  

	

cr e 	= a 42 	3 2 Œ 2 

	

z 	 Y 

To avoid any misunderstanding the above calculations are summarized as follows: 

Components of the 316M: 

IC: element z, centre ax, variance al, coefficient a, 

Y: element y, centre  ai,,  variance  o, 	g, Y 

Variate sum: 

Z = aX + g 
Z: elementx , centre c, variance cr:. 

Probability dP 
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Section 2. Expected Values 

There are good reasons for having a universally adopted symbol for denoting the 

mean value of a variable quantity. Because of the historical origins of the calculus of 

probability, this symbol is E( ), the initial of "expectation?' (in French, "espe'rance"). 

The symbol between parentheses designates the quantity the mean value of which is 

coniidered. 

Here are some of the quantities previously considered expressed by means of the 

symbol  E:  

E(x) = = 

E (x —)= ,11 1 (z) = 0 , 

E(z) = (1)2(z) , 

= (1 2  , etc. 

...(91) 

It must be strongly underlined that when the symbol E is used in combinations of 

independent variates X and Y as e.g. E(r + y), the symbol (r + y) designates the sum of 

any element  r of X and any element y of Y. Thus the process of summation of vari-

ates is considered in a convolutional sense, j. e.  each element of one variate is associated 

with each element of the other variate. In the operation below the addition is per-

formed on the following variates: 

variate X, represented by m elements zi (i = 1, 2, • • • m) the probability of zi 

being pi . 

variate Y, represented by  in  elements  ( i  = 1, 2, • • • n) the probability of yi  

being pj. 

The variate (X+ Y) can thus take in  X n values the compound probability p;f  of 

each of them being equal to 

=  pi;  =  Pi PI  = 1151): • 

By the theorem of- compound probability: 
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1 

1 

m 
 E(X Y) E(x+ y) = 	
n 	

yi) = 	PfPf(xi+ Yi) 
i=l j=1 

= IMP 	 , 

= pj 	; 	EPi y 
î 	f 

As Di  = 1 and Ipi  = 1, we have 

(x+ y) = IPfzi IPiYi 

E(x+ y) = E(x) 	E(y) . 	 ...(92) 

Expressed in symbolic notation this is: 

E(X 	E (X) °F. E.(Y) . 

Hence we have the important theorem: the expected value of the sum of two indepen-

dent variates is equal to the sum of their respective expected values. 

In a similar way may be calculated the expeeted value of the product  (XI'):  

E(XY) = E(rY) = EZP:PiziYi 
f 

By two successive summations 

E(zY) = EPiziE(Y) = E(Y)EP=x; 

= E(x)E(y) . 	 ...(93) 

Here the theorem is: the expected value of a product of two independent variates is equal 

to the product of their respective expected values. • • 

These theorems lead to very interesting conclusions when they are applied to t-wo 

normal variates X and Y both distributed about their mean values F = 0 and y—  = 0 

respectively. Then 



...(95) 

- 71 - 

E(x+ y) = E(s) + E(y) = 0, 

E(xy) = E(x)E(y) =  O.  

A very important expectation is of the form 

E[(X+Y) 2 ] = E{(x÷y) 2 } • 

The sum x-t-y is of course considered in the convolutional sense: any element x is added 

to any element y. Now, 

(x+y)2  = x2  + 2xy 	y.2  

and, hence, 

E [(x + y)2 ] = E(x 2) + E ( y 2) + 2E (x)E(y) . 

As the last term is equal to zero, 

.E[(X+ Y)2 ]  = E(x) + ...(94) 

This equation is equivalent to the theorem of addition of variances. If we write 

= X + Y, 

E(z 2) = E(x 2) + E(y 2) , 

or, what is the same, 

The above theorems may be established by means of expressions in which the vari-

ables are continuous. As it has been said previously such operations are not always sim-

ple. However, they should be performed by a reader who is interested in the mathemat-

ical aspects of the theory. 

A very important point, particularly for observational techniques, is the distribu-

tion of the mean of a small sample drawn from the population of a normal (or quasi-

normal) variate cr2). Let us for instance, consider a sample consisting of five 
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elements xi  (i = 1, 2, • • 5). Instead of treating them as drawn from the same X let 

us assume the existence of five variates having identical populations each population 

supplying one single element to the sample. Thus the sum 

S 	= Z1 + Z2 + Z3 4" Z4 + Z5 = 

can be treated as an element created by the summation of of five individual (but identi-

cal to each other) variates. It is easy to establish that according to the above described 

theorems, 

p., 	 ...(96) 

i.e. that z—  lias the same centre as all other variates. The variance of is calculated as 

follows. 

According to the theorem of summation, the variance of the sum 5 is equal to n o-2 . 1 Its standard deviation is o:\/:.  As  S is formed on n terms, the standard deviation on 

cr'Yrr; 	cr  
each term, i.e. on i, is equal to — — ."— . Those observers who perform 	I n•Y n 

repeated measurements (e.g. geodesists) but group them into small samples, are very II 
familiar with the expression ., 	r—cr  . They follow the simple rule that if the samples are 

y n 
1 all of the same size n then 

o.  
square root of n 

... (97) 	I std. dev. of the sample mean = 

ii 
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	h 

--7Tr e  
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Section 3. Integration of the Equation of Summation 

The fact that "variance" (or, what is the same, "standard deviation") occupies such 

an important place in statistics is actually relatively new. In most of the older treatises, 

i.e. in the nineteenth century and the first half of the twentieth century, the Normal 

Law was used under the form 

The parameter h is then termed "precision" and, in terms of the standard deviation a, 

is equal to 

Obviously certain algebraic calculations should be of a simpler form when h is used 

instead of a. Such is the case when the calculations concerning convolutions are per-

formed in detail. 

So far as the limits of the integrations are concerned, the fact that they are always 

equal to ±co removes the complications that are treated when formulà (79) is described. 

The formula (79) applied to the component variates 

h1
e

-hezz 	 h 2 
e

-hey2 

Vir
f 1(4 = f2(Y) -

YlT 

gives 

hih,+' 	1.0,p 4h.  
dPz o  = dz 	 1.1- ` ' 	" 242Z0Z h 2 2  

•• ,73 

This integral is of the type that can be integrated by means of the identity 

2 
a02  + be+ c = a + 	

4ac - b 2  
2a 	4a 

The substitution 	 _ 



= (0'  + 
2a 

dy = 	, 

1 
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introduced into the integral 

4-33 

G = f e 	bo c)do 

gives •  

. 	 +CO 

1 2_ 	 4ac-b 2  G = -:.---- f e -Y edy , 	r - 
y a -œ 	 4a  

and therefore 

1 
1 

The expressions of a, b and c in terms of the symbols h l , h 2  and zo  are 

a = h? + h: ; b = -24z 0  ; c = 

so that 

r 

and, finally 

1 
4(h? +-hnhîzj 444  = .h144  .1 

4(h? +111) 	h 2  + h 2  1 	2 

\r; = Vh? + 

12 	2  -----z6 

G = 
Vh? +h 

so that (79) becomes 
1 
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h 1 h 2 	 1 	h 1 h 2 	 zr;  

	

dPro  = dzo- 	G =dz o  
.rr 	 7-rr Vh? +1q 

A simple replacement of h l  and h2  by the symbols a l  and cr 2  will lead directly to the 

expression (95). 

Summary: if the "precisions" of the components are h l  and h 2 , and the "precision" 

of the variate Z obtained by summations is designated by II, then 

h i h 2  

fq 

	

1 	1 	1 ' = 

	

H2 	',./1  2 	, h  2 • 
1 	2 	'le- 

Expressed in terms of variances,this relation, in conformity with (95), takes the 

form 

S 2  = 	+ 	, 

in which 

1  S -  
H 	

. 
Y 2 

• 
 h 1 h2 	1 2 z2  

hï+h4 



a 

r(n) = . (n-1),I(n -1) 
...(99) 	I 

Chapter VI 
Euler's Functions and Variates 

Section 1. Gamma and Beta Functions 

The Gamma function r( n) is defined by the definite integral 

r(n) = f e -e zn -1  dz  ,..(98) 

The variable takes on therefore only positive values (z.....0) and it can be shown that the 

integral is convergent only when n is positive. 

F(n) satisfies the fundamental relation 

provided, of course, that (n -1) is also positive. This relation is demonstrated by means 

of the method of "integration by parts". To apply this method, it is convenient to put 

the integrand under the form 

(z" i)'(e -ede) 

which suggests that we consider the following partial functions: 

n — 1 U z 	and v = (- e -e) 

As du = edth,  the integrand in (98) is of the forrn udv. According to the method of 

integration by parts, the formula 

d(uv) = udv + vdu 

leads here to the relation 

dpn-1x_ e -x)1 	(r n-i).( e -z dx ) e -e){(n-1)z 1-24 

Integrating both sides, we obtain: 
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e -xl: 	fe -x z n-i dz  _ 	 x(rs-1)-i dx  

As the left-hand term is equal to zero, this relation reduces to 

f e -x 	= r(n) = (n-.1)f 	x(n -1)-i dz 

i.e. to (99): 

r(n) = (n-1)r(n--1) . 

So far as n is concerned, two cases must be examined 

a) n integer,  e. g.  n=4. Then 

r(4) = 3r(3) = 3x21-(2) = 3x2x1xr(1) . 

As r(l) = 1, therefore r(4) = 31, and, in general, for any integer n we'have 

r(n) = (n-1)! 

b) n not integer, e.g. n=4.25 . Then 

114.25) = 3.25x 2.25x 1.251. (0.25) 

...(100) 

and the value of r(o.25) must be determined by a numerical integration. 

The function r(n) is tabulated between n=1 and n=2 so that, in practice, we can 

calculate r(4.25) by the relation 

F(4.25) = 3.25x 2.25x 1.25r(1.25) . 	 ...(102) 
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I  

F(n) = 2f e 	y 2TE••••1 dy  

o 
...(104) 

Table V 

Values of r(n), 1-5-n75.2 

 	n 	r 	n 	r  

	

1.00 	1.00000 	1.25 	.90640 	1.50 	.88623 	1.75 	.91906 

	

1.01 	.99433 	1.26 	.90440 	1.51 	.88659 	1.76 	.92137 

	

1.02 	.98884 	1.27 	.90250 	1.52 	.88704 	1.77 	.92376 

	

1.03 	.98355 	1.28 	.90072 	1.53 	.88757 	1.78 	.92623 

	

1.04 	.97844 	1.29 	.89904 	1.54 	.88818 	1.79 	.92877 

	

1.05 	.97350 	1.30 	.89747 	1.55 	.88887 	1.80 	.93138 

	

1.06 	.96874 	1.31 	.89600 	1.56 	.88964 	1.81 	.93408 

	

1.07 	.96415 	1.32 	.89464 	1.57 	.89049 	1.82 	.93685 

	

1.08 	.95973 	1.33 	.89338 	1.58 	.89142 	1.83 	.93969 

	

1.09 	.95546 	1.34 	.89222 	1.59 	.89243 	1.84 	.94261 

	

1.10 	.95135 	1.35 	.89115 	1.60 	.89352 	1.85 	.94561 

	

1.11 	.94739 	1:36 	.89018 	1.61 	.89468 	1.86 	.94869 

	

1.12 	.94359 	1.37 	.88931 	1.62 	.89592 	1.87 	.95184 

	

1.13 	.93993 	1.38 	.88854 	1.63 	.89724 	1.88 	.95507 

	

1.14 	.93642 	1.39 	.88785 	1.64 	.89864 	1.89 	.95838 

	

1.15 	.93304 	1.40 	• .88726 	1.65 	.90012 	1.90 	.96177 

	

1.16 	.92980 	1.41 	.88676 	1.66 	.90167 	1.91 	.96523 

	

1.17 	.92670 	1.42 	.88636 	1.67 	.90330 	1.92 	.96878 

	

1.18 	.92373 	1.43 	.88604 	1.68 	.90500 	1.93 	.97240 

	

1.19 	.92088 	1.44 	.88580 	1.69 	.90678 	1.94 	.97610 

	

1.20 	.91817 	1.45 	.88565 	1.70 	.90864 	1.95 	.97988 

	

1.21 	.91558 	1.46 	.88560 	1.71 	.91057 	1.96 	.98374 

	

1.22 	.91311 	1.47 	.88563 	1.72 	.91258 	1.97 	.98763 

	

1.23 	.91075 	1.48 	.88575 	1.73 	.91466 	1.98 	.99171 

	

1.24 	.90852 	1.49 	.88595 	1.74 	.91683 	1.99 	.99581 

	

2.00 	1.00000 

If the value such as r(0.25) is required, it can be deduced, as follows, from the rela 
r(1.25) 	

- 

tion r(1.25) = 0.25r(0.25) :  	4 X 0.90640 = 3.61560 . 
0.25 

The substitution z = y2  leads to the frequently used form: 

CO 



co 

F(n) = a n fe — n y n-1  dy 
o 

...(106) 

B(1,1) = fdz 4 
o 

.4108) 

h) x = sin2 8 

IT 

2 
B  = f s in21-10 c052m—l e  do  
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This shows that (Table II, J0): 

CO 

r ( h) = 25 e -  Y 2  dy = -V; . 	 ...(105) 

Another frequently used form is obtained by the substitution x= ay: 

The Beta Function B is defined by the integral 

B(1,m) -= f x 1-1  (1- x)r n -1  dx . 
• o 	• 

...(107) 

This integral is convergent only for positive values of I and m: 1>0, m >0. It is easy 

to see immediately  that  for  I = m = 

The integral B(I,m) can take several forms as shown in the sequel. In particular, 

the substitution a) x=1-y shows the symmetry in I and m: 

B(1,m) = B(m,l) . 

Here are a few of the currently used forms of B: 

a)  z  = 1-y 	 : B = f y m-1  (1- y) 1-1  dy (Symmetry ) 

1 c)  z =  
1+y  

o 	. 

B=  f 
0 .(i+ y )I+in 

dy 	 -(109) 



d) In c): 

1 
Y = 

e) c): 

. 	I-1 
: B = f z 	dz 

0 (i+)"  

Decompose B as follows: 

B çZ 

0  (1+z)""n 

1 nt—i  

B(½,  1/2) = 2 f 	= .rr ...(111) 
o  

- 

= 	 cly 	f  Yn-1 	dy . 

• 0 ( 1 +Y) m 	( 1 +Yrn  

Then, in the second integral, put y= 1  to obtain 

1-1 m-1 	 I 
B — 	

„ 	
dy + 

f  z  

O (i+y) I+ m 	O  

The integrals can be grouped in one single integral by replacing y and z by the same 

symbol, say z: 

—(110) 

This form confirms that B is symmetrical in 1 and m. Note that the form b) leads to 

dz 

Beta and Gamma functions are interconnected by the relation 

B(1,m) = r(m)  
ni+m) 

...(112) 
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This relation can be proven by means of a double integral but there is still another 

method, due to Jacobi, which is very direct and elegant. It starts with the relation 

(106) in which we replace a by (1+ y) and n by /+ m. Hence, 

r ( 1 + m)  
(1+ y

) 11"
n 

_ f —(1+0x z 1-4-m-1 dx  

Now both sides are multiplied by y m-l dy and integrated between 0 and co: 

u rrs+1 
r(i+M) dy = 	dy  fe -z-zy 

0 (1+y ) ns  

The order of integrating is arranged as follows: 

r(1+771)B(1,m) = fz'+'n -1  e -x dx f y ns - i e -eei dy 

This shows that the integral in y is equal to 

f e -av y m-i dy  = r(m)  

and that therefore 

f(l+m) B(1,m) = r(m)f 	= 

which is equivalent to (112), i.e.: 

, 

B( 1 ,77% ) — 

r(nr(m)  
F(1 + m) 

Section 2. Gamma and Beta Variates 

A very important event in the calculus of probability was the discovery in 1875 by 

Helmert (who was a geodesist) that there is a link between the Gaussian normal func-

tion and Euler's function.s. It was provoked by the fact that Helmert had the idea to 

investigate the properties of the exponent in the normal function,  i. e.  the properties of 

az 

Ft 
0 



— u u '1  
f (u) = e 	u  

T(n) 
...(115) 

CO 

ff (u )du 

the variate u defined as being equal to 

z z 

20.2 
U = .(114) 

If the symbol u is introduced into the expression of dP„ the result takes the form 

•=2  
1 2cr° dr  _ C 	u 

o77271; e 	
errr 

Here an important point must be taken into account: •  when z varies from -co to 

+co but u varies only from 0 to +03, each single value of u corresponds to two equal 

values (+42  and (-42 . Hence,in the formula for dP u , the right-hand term must be 

doubled: 

-u e 	u 
dPu 	«\(;;; 	du . -  

We can notice that, on the one hand, -1/2 = 1/2-1 and, on the other hand, that 

V7rr=r(1/2). Hence, dPu  can be given the form 

e  
dP u 	 du . 

r(%) 

Now, the right-hand  term can be treated as a special case of a function f (u) the general 

form of which is 

The function f (u) is considered as the pdf of a variate u termed "Gamma Variate 

with parameter n." It must be always borne in mind that u ranges from 0 to +co and n 

is always positive. Note also that the expression for f (u) is automatically normalized as 

• 
= 1 	

r( 
 le' un-1  du - r(n)  = 1 

r(n) 0 	 r(n) 

The first and the second moments of u are easily calculated as follows: 



First Moment 1 fue h u" 1  du , 
r(n) o 

CO 

1. 83 - 

= 	f e -tg u(n 	duq-1 	r(n +1) _ 
r(n)•"0 	

= 
r(n) — 

n • ...(116) 

Second Moment 

CO 

1
e 	

1 
CO 

= 	 —u 	du = —f e -u u (n+2)-1 du  
r(n)'10 - 	 r(n) o 	

= (n+l)n . ...(117) 

The second moment i.1,2  about the mean, i.e. the variance, is 

= W2 -- W? = (n+1)n-n 2  , 

11,2 = n • ...(118) 

It must be noted that the moments (about the mean) of odd orders are not equal to 

zero. For instance 

11, 3  = 2n . 

Note: In the literature, the Gamma variate is often denoted by the symbol •y(n), 

this symbol being used adjectively. 

The outline of the fundamental properties of Euler's second variate, namely the 

°Beta variaten, follows the same pattern as that of the Gamma variate. The Beta vari-

ate will play an important role only after other variates have been introduced, in partic-

ular after the role of the Gamma variate had been described in the theory of chi-square. 

There are two kinds of Beta variates termed the  13 1 (1,m) variate and the 13 2 (1,m) vari-

ate. 

Beta variate of the first kind. The pdf of this variate is 

f 	 r1-1( 1-z yn-i  

B ( 1 , m) 	• 

—(119) 

The parameters 1, m are both positive, and z is a continuous variable ranging from 0 

to +1. B(1\,m) is the normalizing factor: 



(0 1 

01 — 

(0 1 

...(120) 
1 

= 
1+ m 

r(li-m+i) r(c) r(m) 	(ttm)r(t+m) r(i) 
r 	 r(1+irt.) 	IF(l) r(i+m) 
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1 
1  	j ,_1  (1-Z) m-1  dx = 1 . 

B( 1 ,m) 0 

The calculation of the moments wi  and w2  presents no difficulty: 

First Moment: 

1 
E(x) =  Z = B(1,7n 

(1+1)-1 (1....,z)m—i dx 

B(1+1,m)  
B(1,m) 

Second Moment: 

	

w = B(1-1-2,m) _ r(r+2) ru+m) 	1(1+1)  
2  

B(1,m) 	r(r+m +2) r(i) 	(1+m)(1+m-1-1) • 

Variance: 

2 	1772  
112 	(1) 2 	= 

(1+M) 2(i+M+1) 

—(121) 

...(122) 

It must be strongly underlined that when operating with individual values of the 

pdf of the 13 1-variate, the symbols 1 and m cannot be considered as interchangeable. 

Their positions • should be always strictly controlled, i.e. the order in the symbol 

f (u,l,m) should correspond to the order in the right-hand term. 

Beta variate of the second kind. The pdf of this variate has a form that is 

significantly different from that of the first kind: 

2-1 
f (x,l,m) —  	 ...(123) 

B(1,17)(1+4 1+17' 

As in the grvariate,  I and m are positive and the range of x is 0 to +co. The order of 

parameters in the right-hand term should correspond to the order in the symbol 



1 tri3i  
in —1 

.4124) 

*- 85 - 

f (x,l,m). It is easy to check that the expression (123) is normalized. 

The calculation of moments is done as for other variates: 

First moment: 

B(1-1-1,m -1)  
w1= 	

1  
B(1,m) Jo  (1+ z)(1+1)+(m-1) 
	 dx — 	

B(1,m) 	• 

If all B are expressed in terms of the Gamma function, the expression for w i  becomes 

It must be underlined that this calculation is valid only if m >1. If such is not the case, 

the integrals will not be convergent. The same remark applies also to the calculation of 

(02  but it is now the condition m >2 that must be satisfied. 

Second moment: 

c° 	1+1 B(/+2,m-2)•  (02  = 	1 	r 	 dx = 

	

B(1,m) -10  (1- r x) 1+7n 	 B(1,m) 

_ 	1(1+1)  
(m —1)(m —2) • 

Variance: 

0.2 = 	1(1+1)  	12 1(1+m-1)  
(m-1)(m-2) (m--1) 2 	(m-1)2(m-2) • 

...(125) 

...(126) 

Taking into account the existence of a relationship between the normal variate and 

the -y-variate, it is easy to forsee that the summation of -y-variates will also be a funda-

mental operation. It is treated in the following section. As for the Gamma variate, the 

symbols  3 1 (1,771) and  132(1,m) are used adjectively. 
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Fig. 7. Gamma and Beta Variates 

Fig. 8. Chi-square Variate 

Section 3. Summatlon of Gamma Variates 

Let U and V be two Gamma variates with parameters a and b, respectively. 

Their pdf's are therefore 

r(a) 

1 

1 
1 
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e's  vh I  

r(b) tb2(v) — 

The variate Z = U+ V resulting from the summation of U and V will be calculated by 

means of an integral expression that.  is analogous to (80). We can therefore write 

dPx, = dzo f‘Pi(u) 14j2(z0 — u)du 

dP = 	ào 	r e —ts ust—t)( zo _ u )b —1 	, 
z» 	r(a)r(b) -10  

• eZO dz ao 

dP — 	u  r 	u )b —1 du  
2 )̀ 	r(a)r(b) 

The form of the integral suggests that it can be reduced to a Beta function with param-

eters a and b.  Actually this can be done by means of the substitution 

= Zot . 

It leads to the following expression of dPz  in which the subscript 0 in z o  is omitted: 

— zdz  dP, — 
ria)r(b)

z(d# b ) —I  fta - i(i—tridt . 

0 

The definite integ,ral is, by definition, equal to the Beta function B (a ,b). By applying 

to the latter the transformation (112), we  obtain 

e  
dP — 	dz . 

+ b) 

Hence the following theorem: the sum Z of two Gamma variates X and Y (with param-

eters a and b, respectively) is a Gamma variate the parameter c of•which is equal to 

the sum (a+ b). 

d 
—zZc —1 

dP — 	dz , with c = (a +b) 
r(c) 

This can also be expressed using the symbols for the means: 

—(121 



n 	n 
7 	na = a  

...(128) 
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7 = E(z) =. E(z) + E(y) = 	 = c . 

If we have a set of n identical Gamma variates and constitute a sample of n ele-

ments by drawing one element frorn each variate, the sum of this sample's elements will 
be an element of a Gamma variate the parameter of which is equal to na. Such an 
operation is totally equivalent to that of drawing n elements  from  the population of one 
single variate of param.eter a. Hence, we can write 

z a + a + + a na , 

The distribution of the mean of the sample is thus identical to the distribution of the 

population from which the sample has been drawn. 

The process of summation is readily generalized for any number n of Gamma vari- 

ates: 

W 	+ U2 4" • • • + 	. 

The expression for dP. is a simple extension of (125) and takes the forrn 

— to  
e w  

dP„ = 
r(a1+ 3 2+•••+an) 

...(129) 

Let us now consider a set of n identical normal variates (i.e. all centered on zero 

and having the same variance 0.2). If an exponent u •  is drawn from each variate, the 

sum 

n 	2 
tu = u i  + u 2  + • • • + un  = 2u2 

will be a Gamma variate with the parameter n x 1/2. 

The probability dP„ that w will fall into an interval dw is thus equal to 

dP,,, = 
e w ...(130) 

r(12-1 ) 
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Suppose now that a set of n elements ui  (i=1, 2, • • • n) is considered as a refer-

ence set to which all subsequent similar sets will be referred. Designating by w o  the 

reference set, we obtain for the probability dP. 0  the expression 

e
_.0  

w o  
	 dw o  dP. 0  — _4131) 

Having calculated the numerical value of tu n, we can calculate the total probability that 

any other value w will be larger than to o  by the integri.1 

03 

P(w>w o) = f 
w0  

e -ut w 2 
dw.  . 

r(- 1 ) 

...(132) 

Similarly, it is possible to calculate P(tu <ur n) by the integral 

_ 
f e  

(Li  —1) 
w w  2 
	dw 

r( 2-) 

2 

P(w <w o) = ...(133) 

These integrals will play an important role in the presentation of the theory of 

Pearson's chi-square test. However, some subtle transformations must still be per-

formed before the above developed theory becomes directly applicable to observed data. 

These transformations, due to the genius of Pearson and Fisher, lead to the famous 

"chi-square" test so frequently applied in many domains, sometimes to cases which are 

only loosely connected with the normal distribution. 

Section 4. Pearson's Chi-square Variate 

Karl Pearson, two decades after Helmert and totally ignoring Helmert's work, 

undertook to investigate the properties of the exponent in the normal function and its 

relation to the Euler's Gamma variate. Instead of considering the whole exponent 

x2 
(-) as a new variate, he defined the new variate x by the formula 

2a2 
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v 2 
A 	0.2 • 

Hence, 

2 
2 - 2 	- X - u, u 

2 

and all formulae and relations expressed in terms of u may be rewritten in terms of x 2 . 

Thus, for instance, the number of identical normal variates being denoted by  N,  the 

formula (130) becomes 

dp 	= 1 

( 	

- (

2  2
.  ) 7-1 ( 

2 

2 

X2) 	rf 	e 
2  1 	

-X- 

2 

N 
1  

dP X2 - N 	
2 (x2)7 d(x 2) 

27P( N  

...(134) 

In the most general case, we may apply the chi-square theory to a set of N normal 

variates in which all variates are different from each other. Each component is, how-
ever, centered on zero but has its specific variance a?, 1=1, 2, e • • N.  Each variate 

yields its specific chi-square xi 

X 	.... 
Ai - —2 

cr- g 

and, according to the theorem of addition of gamma variates, the sum 

N 
X 2  = xl = 2 

i=1 

will  be a variate the probability dPx 2 of which is equal to the expression (analogous to 

(134)) 

d
PX2 

- 
N 

1 	- 2 	2 
e 	(X

2 
 ) 	d (X 2) 

2719(f)  

...(135) 
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From this expression, it is possible to compute (numerically) the values of the pro-

babilities (132) and (133) with respect to a certain selected reference value xj• 

As here all normal variates are centered on x=0 or (what is the same) on a known 

centre, the nuraber of degrees of freedom is v= N. 

The reader must always bear in mind that, instead of considering a set of N 

independent variates of the same mean and the same variance, it is equivalent to con-

sider one single variate from the population of which N elements are drawn at random. 

In the applications that will be made in Section 5, the variates have all different 

centres and different variances but in certain cases these parameters are considered as 

known so that the formula (135) is directly applicable. If there is any loss of degrees of 

freedom, it is due to causes which must be appropriately evidenced. 

Such would be the case if for example the normal variate were represented by a 

population r ,  with a known variance cr2  but with an unknown mean p.. The sum of 

squares 

i 

would be a chi-square variate but with a number of freedoms  y  equal to (n —1). The 

proof of this fact is based on a method that uses the so-called linear orthogonal 

transformations. 

The impact of x 2  theory on the analysis of large samples of observations became 

considerable when Pearson realized that it can be applied to nclass-variates" that are 

formed in the process of repeated sampling. In this process, each sample produces a 

completely independent set of parameters but, when samples are large and of high qual-

ity, it can be rea.sonably assumed that they conform to certain plausible conditions 

which lead to less stringent but still useful conclusions. 

The first condition that can thus be assumed is that in repeated sampling all sam-

ples have the same mean p. and the same variance cr2 . If all samples are distributed in 

the same number (2k +1) of classes (ranging from j=—k to j=+k), the probability 

that an element will fall into the j ut interval is also practically constant and equal to 

_ 
1  

P j — 	 e 2'72 	9 	(ti =  1 ) • 	 "4136) 
• 	 a-  Y 21r 



- 92-  - 

The theoretical class frequency in the class j is therefore 

f = Np . —(137) 

Let us designate by F i  the observed class frequency. In repeated sampling, F will 

become a variate and its value will be oscillating about f in a manner which we may 

assume to be very close to normality, with Pi = f i . In accord with a well-known 

theorem, the variance ol of Fi  is equal to 

ct; = E[(F — Np i )2 ] = Np ;q; , (q 	p i) . 	 —(138) 

This expression would be adequate if the size N of the sample was constant. 

However, the constancy of N would imply that the variates F are not independent of 

each other. In order to remove this constiaint, we must assume that N is also a variate 

in itself and that it oscillates in an approximately "normal" way, about a mean value 

N. Thus the variate which must be examined is not (F Np i ) but 

(F 	p 5 ) 	 ...(139) 
• 

and therefore instead of (138), we must analyse 

cri = E[(Fi - 7pi ) 2 1 	 ...(140) 

This is done by means of the identity 

(F —Np i ) = (F Np i) + (Np 	i) . 

Its square is 

(F —Np)2  = (F — Np i )2  + p i2 (N — 2V) 2  + 2(F5  — Np j )(Np —3 7 p 5 ) . 

The expectation of the left-hand term is, according to (140), equal to cr, . The expecta-

tions of the three terms in the right-hand side are calculated as follows. 

A) E[(F5 — Np) 2  j. By analogy with what had been done in Bernoulli Trials, this 

expectation is calculated in two steps: first with respect to Fi , then with respect to  N.  

These steps give: 
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2 	77- _ 
°"1 — Pi 7 fi ' ...(143) 

1) E (ri)[(F — Np i) 2 ] = Np q . 

2) E (N)(Np q j) = Trp q . 

B) E[p f(N —77)2 ] = 

C) The term is considered as practically equal to zero. While in A) and B) all com-

ponents are positive, in C) they are positive or negative. As the positive terms are as 

probable as the negative ones, the total sum is likely to be close to zero. 

The combination of A), B) and C) leads to 

2 0- i — pj (.—pi) 	p 22i  c r . 

This iz an important relation which expresses all class variances ()I in terms of the 

parameters of the samples. Here will be used again the fact that the sample's size N is 

an  independent variate. . Thus, according to the theorem of addition of variances: 

crk = Ziff 

and, by (141) 

,-,. 
t'N NeS 2 	2 (p1 q5) 	("NIP/ • 

As Epi  =1, this relation can also take the form 

crivI(Pi 137) = 37rEPiqf 
5 

Finally, the division of both sides by pi (1—pi ) yields the remarkably simple relation 

4 =T . 	 ...(142) 

If this is substituted into (141) we obtain another remarkable  relation  

4141) 

This formula has an enormous impact on the theory of X 2  and its practical applica-

tions. Now, in each class j, the c.omponent of X 2  can be calculated by a formula 
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deducible from (134) by simply replacing ol by f 

( F5- f  

E 	" 
j 	f  

x2=  ...(144) 

This is probably one of the most important formulae in the whole domain of 

Statistics. It forms the base of the celebrated "Pearson's Chi-square Test" which is used 

in all those domains of human activity where "hypotheses" are formulated and tested. 

It is a powerful tool which, as all powerful tools, should be used very cautiously. As it 

has been underlined above, it involves some conditions that are not stringent but only 

rea.sonable and have no precise limits. There are, for instance, in practice, certain 

operations in which the notion of "repeated observations" has no real meaning. In such 

cases, the result of a Chi-square test can be considered only as leading to simple 

"suggestions". 

Section 5. Analysis of Large Sample-s 

From the standpoint of the validity of the conclusions drawn from the Chi-square 

test those scientific activities in which "repeated observations" play a major role are 
particularly privileged. They operate with large aggregates of observations, generally 

performed in the best possible conditions of scientific control and stability. 

In major metrological operations (in geodesy, gravimetry etc.), "chi-square" is used 

to test the hypotheses concerning the distribution of large samples of observations i.e. 

the fitting into these samples of the normal curve or the curves which derive from the 
normal law and which are termed "modulated normal". 

In order to clarify the ideas about )( 2  let us summarise its main characteristics: 

a) In the expression (144) the right-hand term contains only class frequencies. 

First,  F5 ,  i.e. the observed frequencies directly resulting from the classification of the 

sample elements xi . Second,  f,  i.e. the theoretical frequencies as they result from the 

well-known process of fitting into the sample an appropriate curve. This constitutes the 

hypothesis to be tested, viz: that there are good reasons to believe that the sample can 

be considered as drawn from a universe distributed in accord with the function defining 
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the curve. 

h) The numerical value obtained for x 2  is obviously capable of informing us about 

the adequacy of the chosen curve: a small ;( 2  shows that the observed frequencies are 

close to the theoretical frequencies, in other words that the curve is appropriate. A 

large )( 2  would indicate that the choice is not correct. Our opinion would be, however, 

exclusively "qualitative" and not "quantitative". 

c) A particularly important property of ;( 2  iS to be a variate. Thus, for each value 

of xj it is possible to calculate the chance that it will fall into an interval dxj and, in 

repeated sampling, the total chance P to obtain a x 2  which is larger than xj or, on the 

contrary, which is smaller than xj •  

So far as the sample size N is concerned, let us remind the reader what has already 

been said above: 

d) In high quality repeated samples, the fact that they are "large" authorizes us to 

assume that all such samples have the sa.me pilean .and the sanae variance. Although 

these parameters are calculated from the sample elements, they are treated as indepen-

dent and their calculation does not constitute a constraint. 

e) The only operation which establishes a constraint is the calculation of N which, 

in its turn, is used to calculate 4. This leads to the conclusion that the number of 

degrees of freedom may be reduced by one unit, i.e. that it can be considered as equal 

to 

=  (2k+1)-1  . 	 ...(145) 

In the table of x 2 , the first column is that of y, i.e. the number of degrees of free-

dom. This number is given either by (145) or is further reduced by 1 or 2 units accord-

ing to our opinion on the nature and quality of the sample. 
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Table VI 

Values of Chi-square with Probability P of Being Exceeded 

V  	 P  

0.99 	0.95 	0.50 	0.30 	0.20 	0.10 	0.05 	0.01 

1 	0.0002 	0.004 	0.46 	1.07 	1.64 	2.71 	3.84 	6.64 
2 	0.020 	0.103 	1.39 	2.41 	3.22 	4.60 	5.99 	9.21 
3 	0.115 	0.35 	2.37 	3.66 	4.64 	6.25 	7.82 	11.34 
4 	0.30 	0.71 	3.36 	4.88 	5.99 	7.78 	9.49 	13.28 
5 	0.55 	1.14 	4.35 	6.06 	7.29 	9.24 	11.07 	15.09 

6 	0.87 	1.64 	5.35 	7.23 	8.56 	10.64 	12.59 	16.81 
7 	1.24 	2.17 	6.35 	8.38 	9.80 	12.02 	14.07 	18.48 
8 	1.65 	2.73 	7.34 	9.52 	11.03 	13.36 	15.51 	20.09 
9 	2.09 	3.32 	8.34 	10.66 	12.24 	14.68 	16.92 	21.67 

10 	2.56 	3.94 	9.34 	1,1.78 	13.44 	15.99 	18.31 	23.21 

11 	3.05 	4.58 	10.34 	12.90 	14.63 	17.28 	19.68 	24.72 
12 	3.57 	5.23 	11.34 	14.01 	15.81 	18.55 	21.03 	26.22 
13 	4.11 	5.89 	12.34 	15.12 	16.98 	19.81 	22.36 	27.69 
14 	4.66 	6.57 	13.34 	16:22 	18.15 	21.06 	23.68 	29.14 
15 	5.23 	7.26 	14.34 	17.32 	19.31 	22.31 	25.00 	30.58 

16 	5.81 	7.96 	15.34 	18.42 	20.46 	23.54 	26.30 	32.00 
17 	6.41 	8.67 	16.34 	19.51 	21.62 	24.77 	27.59 	33.41 
18 	7.02 	9.39 	17.34 	20.60 	22.76 	25.99 	28.87 	34.80 
19 	7.63 	10.12 	18.34 	21.69 	23.90 	27.20 	30.14 	36.19 
20 	8.26 	10.85 	19.34 	22.78 	25.04 	28.41 	31.41 	37.57 

21 	8.90 	11.59 	20.34 	23.86 	26.17 	29.62 	32.67 	38.93 
22 	9.54 	12.34 	21.34 	24.94 	27.30 	30.81 	33.92 	40.29 
23 	10.20 	13.09 	22.34 	26.02 	28.43 	32.01 	35.17 	41.64 
24 	10.86 	13.85 	23.34 	27.10 	29.55 	33.20 	36.42 	42.9 .8 
25 	11.52 	14.61 	24.34 	28.17 	30.68 	34.38 	37.65 	44.31 

26 	12.20 	15.38 	25.34 	29.25 	31.80 	35.56 	38.88 	45.64 
27 	12.88 	16.15 	26.34 	30.32 	32.91 	36.74 	- 40.11 	46.96 
28 	13.56 	16.93 	27.34 	31.39 	34.03 	37.92 	41.34 	48.28 
29 	14.26 	17.71 	28.34 	32.46 	35.14 	39.09 	42.56 	49.59 
30 	14.95 	18.49 	29.34 	33.53 	36.25 	40.26 	43.77 	50.89 
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To interpret the indication of this table one has to remember the following rule: if 

for a calculated x 2 , P is small (small chance to be exceeded) this means that )( 2  is large 

and that the formulated hypothesis is likely to be unacceptable. But if P is large (large 

chance to be exceeded) this means that x2  iS small and that the formulated hypothesis 

is  likely to be acceptable. 

The problems which often arise on both extreme wings of the observed samples are 

due to the fact that these wing terminals present strange complicated structures. The 

common practice is to group some thinly populated classes in which the observed fre-

quency is of the order of at least a few units. 

Section 6. Basic Integrals and Moments in terms of r 

The basic integral 

co 

Jn  = fzn e —e dz 
o  

may be expressed in terms of the Gaussian function by the change of variable 

z 2  =  y, 	z =  y 4 , 	dz = lhydy 

This leads to 

n — 1 
. 1 r 

 = 	e 	
2 

dY • 2 0  

To deterraine the parameter of the Gamma function we use the identity 

n-1  = 
in - 1 —+1) - 1 = 

n+1  
 — - 1 

2 	2 	 2 

so that 

an&finally, 

co 	 n — 	 CO 	 rt+1 
1 	 1 	- 

J,, = —f c -11 	dy = —f e - Y y 2 
1 
 dy 

2 0 	 2 0 



1 	n +1 • 
n 	2 	2 

.4146) 

98 — 

n +1 
= 	

.rr 
cr n  r 

2 
...(147) 

Summary : yn  even and odd 

even only 

p.. odd 

n + 1 ) 0.- r  
-■.(7; 	2 

=0  

If now n is replaced by (n +2) and the resulting expression for '4+2 is introduced 

into the recurrence formula, the resulting equation is identical to the equation (99). 

This point is treated in detail in Ex. 22 (B). 

The relation (146) in which n is successively made equal to 0, 1, 2, ... leads to the 

corresponding, often used, values of I": 

= \Ç ,  r(1) = 1 , r(.P2-) = -Y21 , r(2) =  1,  • 

The transformation z = 	which leads to the expressions of the moments p.. 
v 2 

and v n  in terms of  4 ,  finally leads to their expressions in terms of Gamma functions: 

• n. —+1  
2 2  , 

Yn — ., /--- 	 an J n 7 

V IT  

This formula is also valid for p. n  moments but only for even values of n: 

+. 	• e 
1 	r j  

cr .\7-27rr 

For n odd,  p  = 1.1.3  = p.5  = • • ° = 0. For the numerical values of p. ,  and v. refer 

to Table III. 

11-41 = dz 	(n even ) . 

The recurrence formula for v ,  moments has been established in Chapter II, Section 

3. by means of the recurrence formula for J„. 
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Note 

Each appendix constitutes an extension of the study of a subject treated in the 

text: either towards the more elementary theory on which the study is based, or, on the 

contrary, towards a deeper understanding of the finer points of the subject matter. 

Although the appendices can be omitted in the first reading, their contents must be 

finally completely understood and assimilated. 
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Appendix I 

Existence Theorem for 

the Most Probable Group 

If x designates the number of plusses in'the largest group, then obviously it must 

satisfy the condition: 

Pz -1 < Px > Px+1 

in which 

Id  

x!(k - x)! 
P

xk—x 

k! 	„x+1„k-x-1 e 
P2+1  — (x -1- 1)!(k — x - 1)! r- 	'I  

k! 	x-1 
11 	

k—x-1-1 "
• 

(x - 1)!(k - x + 1)1 	
4 

Now 

k - x +1  E  > 1  
q 

and 

Pz 	z+1  q 

Hence 

kp - xp + p > , 

kp xp q < xq 

and this can be arranged as follows: 

Pz  

Px-1 - 

Pz  

Pz-1  



kp zp + p > rg > kp — zp —  q,  

kp + p > zg + rp > kp g , 	xg + zp = z, 

.kp 	p > z > kp — q . 	 ...(L1) 

Let us compute the difference between the first and third term 

(kp .+ p) (kp 	g) = kp + p — kp + g = 1.  

The fact that the difference is equal to 1 indicates that between these two numbers 

exists an integer, unless both numbers are themselves two consecutive integers. 

Example: 

1 p = q = 
2 

k = 12 , 

1 	1 
kp + p = 12 x 

2
— 	= 6.5 • 
 2 

1 	1 
kp 	g = 12 	— 	= 5.5.  

2 	2 

6.5 >  z  > 5.5 , 

= 6 . 

It can happen that (kp + p) and (kp — g) are both integers (e.g. when 

1 k = 13, p = g = — ). Then, the relation (1.1) must be given a more general form 
2 

kp + p 	kp — g 

This indicates that 

7 Pe. z .?..• 6 

and that 6 and 7 have the same probability. 



1 F-m- 
N • I I ...(II.3) 

(7-72.2 ) 	__1 z  Font- 
N • .1 ...(I1.4) 

7. liv E F,-X1 ...(II.5) 

--r  = EFiX, 
N 

...(II.6) 
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Appendix II 

Elementary Theory of Moments 

Suppose that a variable of nominal value m is represented numerically by a set of 

N values mi  (i = 1, 2, • • • N). The mean value defined by this set is equal to 

_ 1 
m  N mi  

Similarly, the mean square of m is equal to 

N 

411.1) 

...(I1.2) 

If the numbers mi  can be distributed into classes (each class containing only numbers 

that can be treated as identical to each other) and if each class is attributed a rank j 

(e.g. from j =  1 to j = k) then 

F • designating the number of values in the class of the j ele  rank. F • is generally termed 

"clam frequency". 

All formulae above are, of course, directly applicable to the sets constituted by the 

values of the variable X as it results from our repeating N times Bernoulli trials. If N 

is large so that all class frequencies are properly constituted then the expressions (3) and 

(4) are 

Here, the rank j of a class indicates the number of obtained plusses so that, with 12 
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cards, j takes the values j = 0, 1, 2, • • • 12. 	 - 

It is to be noted that in the binomial expansion (7a,b) the symbols Pi represent the 

F. 
true theoretical probabilities while the ratio 	is only an approximate value of P.  

Hence the values obtained from.  (11.5,6) are termed "estimates" of the mean X and the 

mean square (171C-ri. 

Important point of nomenclature: a variable such as X, Le. the probability of 

which is given either by an algebraic formula or deduced from a sufficiently large 

number N of events, is termed variate and then the quantities such as X and X2  are 

termed moments of the variate X, and denoted by the symbols w, and w 2  respectively: 

co l 	= 	EF).Ki  ,  1 w 2  =TO" = 	. 
N 

Instead of computing moments with respect to X = 0, we can compute them with 

respect to the mean X. These moments are then denoted by the symbols p. 1  and 

The moment p., is equal to zero: 

= kr,ri --7) F1 

=
N 

 EX i Ff — 

p., = X —  Y = o.  

The moment p.2  is computed as follows. 

1 	 1 p.2  = — "EF.(X. — 2 = --"S'F.
"
(X; — 2X5r + r) 

N  

1 	 1 
= -F;X/ —N-.211Fi  Xi + 1 

N 	NrEFi 

w 2  — 2x.y r = w2  — «12  = (0 2  — w? 	 ...(II.8) 



It is to be noted that all forrnulae in this Appendix are expressed in terms of the 

symbols Fi and N. In fact, their form is thus the most general as they can be used for 

all possible meanings of the variable Xi. This symbol may be applied to a totally 

erratic aggregate of numbers or to a set of values obtained by means of a device closely 

and clearly related to the notion of probability (cards,. dice, wheel of fortune, lottery 

etc.). Now, two cases can be considered: 

First case: N being a moderately large 'number, all Fi are obtained experimentally 

by making a device operate N times. 

Fi 
Second case: The ratio 	(according to the Third Axiom) is equal to the proba- 

bility, in its strict sense, of the variable Xi , this probability being given by the probabil-

ity function, such as Pi  in Bernoulli Trials. 

In the First Case all formulae given above may be used as they are and the 

moments thus obtained are called qestimates" of true moments. 

In the Second Case the formulae must be written as follows: 

Wi = SP/Xi  , 	co 2 	P5 X7, 

...(II.9) 

P-2 = Z ini(x; — 7)2  

The symbols (il l , w2, p. i , 112 are now termed exact moments of the variate. 

Numerical Example 

A die is thrown 450 times. The results are recorded and classified: 

X = 	1 	2 	3 	4 	5 	6 

F• = 	81 70 92 59 65 83 

Calculate: a) the theoretical mean r and its actual estimate, 
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b) the theoretical second moment co 2  and its actual estimate, 

c) deduce the values of the theoretical moment 112 and its actual estimate. 

Calculation of w i  (observed) and w i  (theoretical) 

X F(ob4 f(the) XF 	XI  

1 	81 	75 	81 	75 

2 	70 	75 	140 	150 	w 	
1556

i (obs.) = 	= 3.46 
450 

3 	92 	75 	276 	225 

4 	59 	75 	236 	300 

1575 5 	65 	75 	325 	375 	co i (thq = 	— 3.50 
450 

6 	83 	75 	498 	450 

21 	450 	.450 	1556 	1575 

X 2  F (obs) f (the) 	X 2  F 	X 2 !  

1 	81 	75 	81 	75 

4 	70 	75 	280 	300 	co 2 (obs.) — 6746= 14.99 
450 

9 	92 	75 	828 	675 

16 	59 	75 	944 	1200 

25 	65 	75 	1625 	1875 	w 2(the.) — 	 = 15.17 
450 

36 • 	83 	75 	29875 	1625 

36 	83 	75 	2988 2700 

91 	450 	450 	6746 6825 

% (06s.) = co 2  — co? = 14.99 — (3.458) 2  = 3.03 

11 2 (the.) 	(0 2  - CO? = 15.17 — (3.5) 2  = 2.92 
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The calculation of 1.1.2( 065 ) may be made directly by using as refererice 

tu i (obs) = 3.46 

X X—Y (X— 	F (X — 7) 2  

1 	—2.46 	6.05 	490.05 

2 	—1.46 	2.13 	149.10 

3 	—0.46 	0.21 	19.32 

4 	+0.54 	0.29 	17.11 

5 	+1.54 	2.37 	154.05 

6 	+2.54 	6.45 	535.32 

1364.98 

N — 1
F 

 z  

It  is  to be noted that here one degree of freedom has been used to calculate  T  so that in 

this formula the denominator must be equal to N — 1. Hence 

1  
112 — 	x 1364.98 

450-1 

= 3.04 e. 

I 



Appendix 111 
Calculation of the Second Moments of the 

Variable X in Bernoulli Trials 

According to (10) the expanded expression for tü 2  is: 

(02  = 02 17 k + 2 k k_ ± 22  k(k —1)  p 2 ii k-2 + 32  k(k —1)(k - 2)  3 k- 

i 	 1•2 	

3 p q 	+ • • • 
1.2.3 

+ (k 2)
2  k(k —1)(k —2) • • • 3  

1.2 • • • (k —3)(k —2) 

2  k(k —1)(k —2) 	• • 2  p k-i g  
+ (k -1) 1.2  . (k —2)(k —1) 

k2  k(k —1)(k —2) . • • 1  p k 

1•2 • • • (k 

Simplifying, we find 

k k-1 
+ 2 k(k -1 )  p 2 q k-2 + 3-k(k 1)(k 2)  3 k-3 

W2 1 - pq 	 P q 	' 
1 	 1 	 1.2 

+ (k 2) 
k(k —1)(k — 2)  p k-2 q2 	 k(k -1)  p  k-i 

+ (k 1) 	 q 	lc + -kp h  .  
1.2 	 1  

In the right-hand term we can put kp out of the brackets, this gives 

tù  = kj) i 	 -
2 	q k-1  + 2 Ali... 

"
„„k 2 + 3  (k — 1)(k —2) 

 r 

ti2 
(1 

k_3 
+ 

	

( 	
1 	 . 	1.2 

	' 

— 1 
+ (k 2) 

(k —1)(k —2)  p q 2 + (k —1) 
k 	

p k-2 q +  
1•2 	 1 

and, identically, 

1C - 1 	k-2 
W2 = kpl(0+1)q k-1  + ( 1 + 1)-  pq 	+ (2+1)

(k —1)(k —2)  p
2

q
k_3 

+  
1 	 1.2 

k 2
9

2 

-1)-1- id + i(k —3)+11 (k-1)(k-2)  p k-3 q 2 	[(k —2)+ 1] 1-c----- 1  e" k-2  + 
1 .2 	 1  



so that 

0)2 = kp { Oq h-1  +  1 k-1  pq"  ± 2 (k-1)(k-2) p 2e -3  + • • • 
1 	 1.2 

— + (k — 3) -(1•-•e 	- pk 3 q 2 	(k 	p k-2 q 	(k 1)p k  
1.2 	 1 

+ q + k—i 	k -1 pq k-2 	(k - 1)(k - 2)  p 2 g ig-3 + 
1 	 1-2 

(k -1)(k 72)  p k -3 q 2 	k-1  p k-2 q 	p k-1} 

1-2 	 1 

Inside 0 we recognize two sums: 

1° the sum of those terms in which the numerical coefficients are 

0, 1, 2, • • • (k -3), (k -2), (k -1); it represents the mean of a binomial variate which 

takes the values 0, 1, 2, • • • (k -1) and is therefore equivalent to (k -1)p; 

2° the remaining terms the sum of which forms the development (q +p)k -I  and 

which is therefore equal to unity. Therefore 

(0 2  = kp [(k - 1).p +1} . 	 ...(III.1) 

The second moment about X = kp is, as in 11.8, given by 

= (1) 2  - 	= kp [(k -1)-p + 11 - (kp )2  , 

P•2 = kP . ( 1— P) 

1.1.2 = kpq . 	 ...(III.2) 

An excèllent exercise consists in establishing the expressions for (» I  and (1) 2  for a 

numerical value of k,  for instance k = 7. Applying the above methods one finds 

without too much difficulty that: 

co l  = 7p(p + q)es = 7p and w2 = 7P (6P + 1) 



(

11-+VIIr k  —4 11  2 ) 

k! 	I 1 I* ...(IV.1) 

and 

[

-Lc + V +1)!( — 2 2 

f ( V+1) — 
k! 

Ic 

Appendix IV 
Hagen's Derivation of the Normal Law 

In order to simplify calculations, the method produced by Hagen will be applied to 

the expression (5) the second term of which will be treated as a function of V, k being 

an even constant. 

Since k is a large number, an increment of one unit can be legitimately considered as 

very small. Hence 

V-- 
f (V +11 	2  
f (V) 	k 

2 

The unit in the denominator can be neglected so that 

f(V+1)  _ k-2V  
f (V) 	k+2V • 

This relation is transformed by expanding f (V) by means of the Taylor expansion lim-

ited to its first term: 

f (V + L£V) = 	+ ed-22-3– il V . 

Here V = 1 so that 

f(v+i) _-,.. (v) + 
dV • 

...(IV.2) 



- 1 1 0 • 

1 
k-2V _ (k-2V) 2  _ k2- 4kV+41/ 2  

k +2V - k 2 -4V2 	k 2 -4V2  

k 2  
1 
 4V2  

4V 4V2  
1- —+— 

k 	k 2  
...(IV.3) 

1+  1 ..df_ 	4 V 
dV 

...( I V.4 ) 

and 

or 

2 lez I. 1 (V) 	Ce - ...(11/.5) 

Now 

1  + 1 	df _ k -2V  

f ( V) 	 f (V) dV 	k 

and the last term can be transformed as follows. 

11 In this formula all terms containing k 2  can be treated as very small so that 

df 	4V dv  
f (V) 	k 

This represents a differential equation the solution of which is well known and has the 

form 

V2  log f ( V) = - 4 — + log C 
/c 2 

An important remark must be made here. It substantiates the validity of the 

transformation from (W.3) to (IV.4) by emphasizing the fact that f (V) tends to zero 

exponentially so that all formulae are valid not only when V has a small or moderate 

value but also when V tends towards — as the latter is always very large. 
2 
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To obtain C it suffices to use the normalization equation 

-F•te 	 +CO 	2 V2  

f toidv =  I  = f ce  k  dV 
-co 

which, combined with the relation 

2V2  

f e k  dV = Y7rk /2 , 
-»*; 

leads to 

t ( t) = Pv - \rjk 

• 
As we already know that — = cr2 , the final form for f(V) becomes 

4 

vt 
--Zee 

e 	- 
e Y 2.rr 

...(TV. 6) 
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Appendix V 

Comments on the Bessel Formula 

To establish the validity of this formula it is necessary to refer to the notion of 

°true value" as this term is used in repeated measurements of a fixeCi physical quantity. 

This term is, unfortunately, not very appropriate. In fact, it is misleading. It actually 

has no relation to the concept of "truth" but designates a hypothetic quantity (here 

denoted by M) which can only be described but not really rigorously defined. It is con-

ceived as the limit towards which tends the average value of a collection of individual 

measurements mi  (i=.1, 2, ...N) when the size N of the collection tends towards 

infinity. As the deviations of mi  with respect to M are of the type we consider as ran-

dom and associated with the conviction that the measurements are highly precise, our 

mind accepts, as a primary notion, that when N tends towards infinity it finally reaches 

such a magnitude that further measurements (and their random deviations) cease to 

produce any meaningful e ffect. 

The deviations with respect to M are in the sequel denoted by the letter so that 

we have 

= mi - 

and therefore, 

gi -T = mi - iTz • 

Both sides of this equation will be designated by the same symbol: 

a) ai = g. -T 
b)  a  = mi —m 



It is to be noted 
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Squaring a) we obtain: 

= - 	+ 

Eg? ZEgi + 

	

? 	— *NZ" + 

	

Ea? 	- 

The most important step in this calculation concerns the sum 

that we have 

= 	Q 

Q being a polynomial each term of which is a product of the form 	in which i' 

and i" take on all values ranging from 1 to N. Taking into account the number of 

deviations t i , we readily conclude that there must be in Q a quasi-total compensation 

between the positive and the negative terms and that Q is therefore practically equal to 

zero: Qe-1 0. Hence 

(Ef ) 2  = (Nr) 2  = et-2  

The expression for Yu? becomes 

sciî =  N2u2 - Nr2= Ne ( v-1 ) . 

Now, in conformity with its definition, t i  is the deviation with respect to the true value 

M, therefore the variance oa is defined by the expression 

• 2 ze 	N2 z2  a = 	 - 

If this is introduced into the expression of Zee? it leads to Eci? = a 2 (/V— 1) 

i. e. to  

cx 2 
= 

N-1 



- 114 - 

According to b), Ectf can be computed nurnerically from the observed values mi  
2 

Hence, fi nally 

(m--771) 2  

N — 1 

Noté 

The theory above  cari  be generalized for the systems of linear equations with 

several unknowns. If the number of equations is larger than the number of unknowns, 

the value analogous to the above (N 1) becomes equal to 'the difference (N — k) i.e. the 

difference 

nutnber  of  equations — number  of  unknowns . 

CT 2 
- 
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• Appendix VI 

Role of the Mean in Samples 

of Repeated Observations 

Gauss solved the problem of the mean long before (and completely independently) 

Hagen published his theory of elementary errors. His genius has forseen that if a sample 

of n repeated measurements mi  (1 = 1, 2, • • • n) is given, and an estimate  m' (for 

the true value m e) can be proposed, it must be possible to express (at least approxi-

mately) the probability pi of obtaining mi , by a function 4, in which the variable is the 

distance (m i —in'). We must therefore be able to write 

Pi = 	m ') • 

This hypothesis being accepted, the compound probability of the total sample must 

become equal to the product 

P = 111(mi — m s ) 	 ) • • • 114 mn m ) • 

Furthermore, Gauss has also forseen that it should be possible to attribute to the func-

tion 4, a precise algebraic form by postulating that P must be a maximum when 

m '= m— . Such a condition may be given the following equivalent form: 

( 771 1 -170 	( 771 2 — rn') + • • • + (mn -771 ') = 

Now the condition P = max can be formulated by equating to zero the expression 

for the logarithmic derivative of P: 

1 	dtP(m i —m') 	1 	d(11(m2—m') 

	

dm 	+ 

	

' 	ti)(m2 — m') 111(7711:-"I') 	 dm' 

This equation takes a simpler form if we write 

m•— m' = z,  , dm' = dxi  . 

This form is 

• • • =0 . 

1 	chii (x l)  + 	1 	d tli( x2)
+ 	+ 	

dtti ( x.)  

= 0 . 
(14 1 1) 	del 	11'(e2) 	de2 	 (1)(x,,) 	dx„ 
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All n terms here have the same algebraic structure F(x) so that the final expression for 

P = max can take the form 

F(x 1 ) + F (x2) + • • + F(x,i ) 	0 . 

This form, together with a) constitute the system that can be solved: 

IF(x i ) + F(z2) + 

+ 	+ 

The only solution for such systems is 

F(x) = yx 

It leads to the differential equation 

• • 	+ F(x) =  O,  
• ° ° + z„ 	= 0 . 

1 	di(z )  _ 
"Yx 45(x) 	dx 

the general solution of which is 

log ‘1,(x) =
2

+ C , i.e.111(x) = Ce 2 , C =  constant.  

So far as the values that can be attributed to y and C, they must conform to the 

general properties we attribute to random errors. Thus, obviously, y must be a nega-

tive quantity and we can write 

'Y — 	g
2 
 • 

On the other hand, C is deduced from the normalisation condition: 

\(-2"; 
+co 

g- 
2  dz = C— = 1 . f tp(x)dx 	Cf e 

-oe 

Hence, 

c  	
y 27r 

and therefore 



g 	 - tp(x) = 	e 	. 
y 27r 

The calculation of the variance a2  of x presents no difficulty. It is equal to 

+ 03 

0.2 = f x21/). (X)dX — 

-co 

The final expression for 41(x) is therefore 

1 

9
2 

II)(s) — 
1 

a .Y1:-IT 
2(72  

This is the classical expression for the normal function 1 (x) as it is introduced in 

Chapter II, Section 1 (29). 

The elegance and the conciseness of Gauss' method is outstanding but, of course, 

this method cannot be compared with Hagen's theory so far as the deep understanding 

of the nature of random errors is concerned. Some authors treat it as a sort of 

"justification" of Hagen's method. The amazing fact is that Gauss preceeds Hagen by 

almost half of a century! A genius does not conform to historical orders. 
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Appendix VII 
Theory of Modulation 

In the last two decades, the analysis of large samples of "repeated" observations 

has been significantly modified by the introduction into the theory of random errors of 

a new concept viz that of "modulation". This concept does not invalidate Hagen's 

theory, on the contrary, one can say that it adds to this theory a new dimension. 

• 	In Hagen's theory, the variance of the error-variate z is defined as being the limit 

e2 k of the expression — when k tends towards infinity and E towards zero. However, so 
4 

far as "modulation  ° is concerned, it is convenient, for calculational purposes (on condi-

tion that k is sufficiently large) to use simply the finite form 

2 	E 2 k cr  = 
4 

Now, each elementary error e is obviously due to a specific "elementary cause" and 

it is not absolutely necessary to postulate that, at the time when a measurement is per-

formed, all k elementary causes must be actually operating. A certain portion of them 

may temporarily vanish and thus produce no errors; or, 1,vhat is the same, produce 

errors equal to zero. The modulation theory is based on the hypothesis that k can be 

considered as composed of two parts, 

k = n + z , 	 ...(VII.1) 

n designating the number of non-zero errors (± —) and z the number of zero errors. As 
2 

these numbers constantly fluctuate during the. measurements, the most fundamental 

question is what is the probability that, at the time when a certain measurement takes 

place, the number of, say, non-zero.errors will be in the vicinity of a certain n. 

Let us assume that this probability can be expressed by a function  c1(n) such that 

the number n of non-zero errors that will fall into a small (but finite) interval àn will 

be equal to 

el)( n )41 n » 



The function (I)(n) is termed the "modulation function".  All  those errors which 

correspond to a certain n, will be normally distributed with a variance (7„2  equal to 

2 	E 2 n 0. _ — 
n 	4  

and the compound probability that, simultaneously, n will fall into An and x into clx, 

will be given by the product 

.22  

1 	2ca 

cr,:\i/Frr 

The total probability ilPz  that x will fall into Ax, whatever the value of n, is 

2X2  
p 	 n 

,er 
n=.0 

Remembering that k is a very large number, we can replace this relation by a practi-

cally equivalent form in which both variables (x and n) are considered as continuous: 

	

k 	22t) 

dPz  - 	
-77-2dx  r 

e 	(1-21—. r-n1  dn 

	

EV-.2711" 0 	 Y n 
...(VII.2) 

To progress beyond this point, it is necessary to suggest an analytical expression for 

(I)(n). This constitutes a new experimental and statistical problem which can be 

approached only pragmatically i.e. by testing various possible mathematical forms. 

Actually the first form that has been tried, viz cl>(n) = An, proved to be acceptable and 

was readily generalized into 

CD(n) =  A n a  , (A and a constants) . 

The normalized form of this definition is 

(1)(n) = 
a+1  a  —n  , 
ka+1 

...(VII. 3) 

as it may be proven as follows. The constant k being a large number, the normaliza-

tion can be made by means of an integral: 



n a+1 
- 

a+1  
a +1 

= 1 , A = 	. 
0 +1  0 

A 

k 	2e2  
2 21151±ILLX  r 	a -1/2 

j e 	n 	dn 
€0 +11  27r o 

dPz  ...(VII.4) 

a+1  €2 1c 

a+2  4 • 
...(VII.5) 

+co 

 x e _ f 
22 2  

E n E 3 n --2- 1(Trr  2 

4V2-  

3 
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la(n),Chn = fie(n)dn = Afnadn = 1, 
n=0 

If (VII.3) is introduced into dPz  (VII.2), the latter becomes 

The integral cannot be directly calculated in a simple manner but the calculation of the 

variance of x, denoted here by T 2 , presents no difficulty . By definition, we have 

k  
2 T — 	

2(a +1) 	r i x 
2 

dx f e 2n n a-S4dn , 
Eka +1 *V27rr -s* 

but it can be shown that it is permissible to reverse the order of integrations: 

-Feo 	2x.2  
2(a+1) 	r 

T2 
— 	 n -34  dn -  f e €3n  dx . 

eka +1 N/Pr o 

The integral in x is reducible to J2 (Table H) by the substitution 

2x 2  = z 
E 2 n 

which leads to 

If this is introduced into (VII.4) and all operations are performed, the final expression 

for T2  becomes 

k 9 
 -  r a+1 

T2 = 
(a + 1)E 

 j n 	dx - 
40 +1  0  

The symbol T is used instead of the usual a, the latter tieing traditionally reserved for 
the normal variate. 

1 



71 
t = ...(VII.6) 

•v7": 7-1. 	1 _x2(a+1) 	• 
Je  24+2) t  t a-;4Cli . 

27r Tan -177 o 
(May X) 
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To be able to introduce the symbol T into the formula for dPi , it is necessary to 

perform in (VII.4) the change of variable 

The calculation requires some attention but presents no difficulty and leads to the fol-

lowing expression: 	. 

dPx  = 
1 	zu2  

2(a +1.)dx f 
k 	o  

ta -5‘dt . , 	 ...(VII.7) 

The term (e2 k) can now be taken from  (VILS) and introduced into (VII.7) so that the 

resultineformula will finally contain only the parameters a and T. 

To avoid any misunderstanding, here is this formula presented under the form of 

the pdf of a modulated variate the parameters of which are a and 7: 

1 	.z.2(4+1) 

 1 f(a,7,x) 	a+1 Ya+1 	272(a +2)  t a-3‘dt . 
T 27r a +2 0 

...(VII.8) 

The definition of the reduced value X of a modulated variate is identical to that of 

the normal variate, viz 

X 	 à•X 
= 	dX = 	• 

Hence, as in (31) - (35) 

...(VII.9) 

By putting  X  = 0, we obtain the value of the central ordinate 

Vo  = 4:•(a,0) f tcit 
Vi7rrVa +2 o 

2a+2.. /a+1 	1 
2a+1 a+2 Wrr 
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- 	1 
But the factor 	is the value of the central ordinate y' o  of the pdf of a normal 

V-127r 

variate. Hence,the ratio 

V ez  Yo 	2a+2 w(a) 	. 	. 	a+1 

	

V o 2a+1 	a+2 

indicates the degree . of kurtosis of the modulated variate. It is easy to show that w(a) is 

always larger than unity in the useful range of a, i.e. when  aO. Here are a few 

numerical values of w(a): 

e)(0) = 1.41 ; co(%) = 1.16 ; tu(1) = 1.09 ; (42) = 1.04 ; 69(3) = 1.02 

The fact that w(a)>1 indicates that all modulated distributions are leptokurtic. In 

pra,ctice, when large observed samples are analyzed, the most commonly found values of 

a are in the region between a = 0.5 and 0.2. 

The function cl:)(a,X) has been tabulated, first by purely numerical methods and 

finally by expressing the integral in terms of converging series and continuous fractions. 

All these calculations are presently considered as routine operations and are available, 

to all observers, at the NRC Computation Centre (Ottawa, Canada). The theory of 

modulation is treated in a monograph available from the publishers. 

A few tables of the modulated function for the most typical values of a are given 

at the end of this book. The table for a = 0.5 will be used in the analysis of the 

sample of gravimetric observations described in Exercises 11 and 23. 

One immediately notices that at the centre of the diagram the class frequencies are: 

F 0  = 315 , f 0  = 261.50 , 

so that the leptokurtosis is of the order of 20 percent i.e. 0) is in the vicinity of 1.2. 

The calculation of the theoretical class frequencies by means of a table for a .= 0.5 

seems therefore to be a reasonable operation. 

•sTheory of random errors and the influence of modulation on their distribution.' Verlag 
K. Wittwer,Stuttgart, Federal Republic of Germany, gm. 
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Before performing (1;9 operation, the reader should go back to Exercises 11 and 23 

where the value of )( 2  is calculated to test the normality. The calculation described in 

Exercise 23 leads to 

(Fj x2  am 	 in 54,  v = 18 , 

which indicates that, in repeated sampling, the probability P of exceeding 54 is 

extremely srnall and thus that this P is strongly against the hypothesis. 

In the following table is tested the hypothesis that the sample  bas  been drawn from 

a population which is modulated normal with a = 0.5. 

Calculation of X 2  in a Gravirnetric Operation 

j 	Fi  (ohs) 	f, (theor. a =0.5) 	x2  

-12 	2 	0.33 

-11 	3 	0.92 

	

-.4.11 	--1. 7.26 	1.92 
-10 	4 	1.89 

-9 	2 	4.12 

-8 	6 	 8.48 	0.73 

.7 	18 	 16.46 	0.14 

-6 	21 	 30.16 	2.78 

-5 	54 	 52.18 	0.08 

-4 	76 	 88.10 	1.66 

-3 	132 	 130.69 	0.01 

-2 	204 	 188.11 	2.14 

•1 	246 	 251.02 	0.10 

0 	315 	 300.56 	0.69 

+1 	251 	 2813.60 	3.12 

+2' 	238 	 220.83 	1.34 

+3 	171 	 159.24 	0.87 

+4 	104 	 107.15 	0.09 

+5 	65 	 67.7.5 	0.11 

+6 	35 	 40.37 	0.71 

+7 	21 	 22.70 	0.13 

+8 	10 	 12.05 	0.33 

+9 	 8.04 

+10 	4 	2.85 

	

-A• 14 	 10.07 	1.53 
+11 	1 	1.27 

+11 	2 	0.54 
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= 18.48 y = 19-1 = 18. 

p = 0.43 

The high value of P shows that the modulated curve (a =0.5) fits very well into the 

observed diagram and that therefore the hypothesis formulated above is likely to be 

correct. 

The modulated curve is represented in Fig. App. VII. It should be compared with 

Fig. Ex. 11. 

1 
1 
1 

1 

7 1 

Fig. ,A.pp. VII Sample of Gravimetric Residuals 

Another outstanding case of leptokurtosis is described at the end of this Appendix. 

As the saniple analyzed in Exercise 11, it comes from the domain of gravimetry. 
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Statistical Analysis' of the 

Residuals in a Gravimetric Survey 

The observed data concerning this survey have been communicated to the 
author by the staff of the Gravity .  Data Centre . They constitute the outcome 
of an operation which is not only very vast but also outstanding by the quality of 

the observations and the sophistication of the instruments used. 

The most fundamental originality of the operation is that it has been performed on 

the sea. When the depth of the sea is more than 500 m, the gravimeter cannot be 

lowered to the sea bottom, but must be placed on a ship and mounted on a gyro-

stabilized platform which keeps the instrument level and, as much  as possible, isolated 

from the motion of the ship. It is obvious that the causes which affect the readings of a 

gravimeter are much more numerous and more difficult to control when the instrument 

is on a ship than when it is on solid ground. Thus the readings are performed every few 

seconde and averaged at intervals of a few minutes to smooth out "noises due, for 

instance, to the vibrations produced by the ship engines and a variety of other multiple 

causes. 

A typical marine survey consists of a series of parallel tracks with a number of 

cross tracks spaced at wider intervals, producing an approximately rectangular grid pat-

tern. The gravity difference is measured between successive crossovers along the ship's 

track. Each pair of successive measurements leads to an equation (equation . of condi-

tion) which contains the unknowns for the gravity values at two contiguous crossovers. 

Some of the crossovers are located at port stations which belong to the national 

gravimetric network. Regular passages of the ship through these ports, introduces into 

the system of equations values of g that are known "without error", thus transforming, 

these equations into equations of definition. 

A vast calculation by the method of least squares of all observed data, attributes to 

the gravity  at  each crossover an adjusted value g(adj) from which also all adjusted 

values of the differences 

àg (adj) = gi  (adj) — gi  (adj) 
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can be calculated. The final step is the calculation of the residuals of the survey. A 

residual is defined as being equal to 

E 	iAg (obs) 	g (adj)  j ) , 

àg(obs) being directly cakulated from the raw data i.e. measurements recorded by the 

ship on any pair of two adjacent crossovers. 

The sample here analyzed contains 43 929 residuals. It is, so far, the largest sam-

ple to which the modulation theory has been applied. The residuals are classified by 

means of an interval equal to one-tenth of the standard deviation 3. The value of s has 

been calculated directly from the sample elements; it is equal to s = 0.973 milligal so 

that 

Az = 0.0973 mGe.I 

The Diagram M represents the modulated normal curve with the modulator a very 

close to zero (actually a = 0.03). In spite of the fact that the curve has a somewhat 

too pointed top, it fits into the observed line much better than the normal curve. 

The Diagram N represents the normal curve that fits into the observed line '(black 

dots on the horizontal axis are the centres of the classification intervals). Clearly, the 

• sample is strongly leptokurtic. 
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Note 

It is strongly recommended that the first part of each exercise (separated from the 

rest by a line of asterisks) be examined first in itself. The reader should then try to 

solve the presented problem until he reaches the limits of his own capacity to progress. 
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In this manner he will, step by step, reach the end of the' exercise and should then 

tackle the final questions and suggestions. 

Some exercises contain significant extensions to the theory which -is therefore illus-

trated, completed and clarified. 

Nov.  ii.  
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Exercise 1 - Alarm devices 

A fire alarm device has a 90 percent chance of responding to an emergency. A 

house contains three such devices: A, B, C; a positive response is denoted by A+ and a 

failure by A—. Examine various possible cases, their respective probabilities and the 

total degree of protection the devices can offer. Consider also other numbers of devices. 

First case: 

All three (separate) devices operate: A+, B+, C+. 

9 	9 	9 _ 
Probability: — 	— 0.729 

10 10 10 

Second case: 

Two devices operate: A+ B+ C- 

A+ 13.- C+ 

A- B+ C+ 

Probability: 	x -I-) = 0.243 
10 x  10 10 

Third case: 

One device operates. 

Probability: 3x ( x 	x jto  ) = 0.027 

The total probability that at least one device will operate is therefore 

0.729 + 0.243 + 0.027 =  0.999.  

Fourth case: 

Total failure. 

Probability: —
I

x —1 x 	= 0.001 
10 10 10 

Similarly two devices would lead to 0.81 + 0.18 = 0.99 and one single device to 

0.9. 
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Exercise 2 - Lottery Tickets 

A pack of 100 lottery tickets contains three winners. How many tickets should one 

buy in order to have the greatest probability- of getting one (and only one) winning 

ticket. 

Let us fi rst establish the expression for the probability that in à set of, say, 20 tick-

ets one (and only one) be a winner. As a first step let us assume that it is the first 

ticket which will be a winner. The compound probability of one winner and 19 losers 

takes the form of a product of fractions: 

3 	97 96 95 94 	83 8281 80 79 
p — —100  X-99  x-98  x-97  X-96  X • • • x-85  x-84  x-83  x x 

 82 81 

One readily sees that the symbols "80" and "79" in the  numerator are actually 

designating the differences: 

80 = 100 — 20 , 

79 = 100—(20+1) . 

Simplifying and designating by x the number of bought tickets (here x = 20) we 

obtain 

	

3 x  80 x  79 	3  

	

100 99 98 	100x99x98.
(100—x)(99—x) . 

If in the product, the winning ticket takes the second position, this product takes 

the form: 

97  x 3  x.9-Qx I-91.x • • •  X(100—z)(99—z), 
100 99 98 97  

which is identical to the product p above as the only difference is that the symbols 

"100" and "97" have interchanged their positions. 

There are x -20  such products, so the total probability will be equal to: 

3 x(100—x)(99—x)x . 
100x 99x98 
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For x=20, it is equal to 

3x80x79 
x20 = 0.391 or 39.1 percent . 

To find the value of x having the maximum probability we have to study the function 

y = (100—x)(99—x )x , 

y =  x —199x 2  +9900x . 

The derivatives of this cubic are: 

= 3x2  —398x + 9900 , 
dx 

iJL = 6x —398 . 

c /  The equation 
t = 0 indicates that the nearest integer solution is x=33 and the 
dx 

sign of the second derivative indicates that it actually leads to a maximum of y. One 

can reach the same results by calculating the numerical values for y when x is made 

equal to 32 7  33 and 34. 

The values of the probabilities for these three values of x are: 

P32 = 0.4508 , 

P33 = 0.4512 (maximum) , 

P34 = 0.4510 . 

It is interesting to notice that the curve y has in the vicinity of x=33 a rather flat 

top. It is of interest to investigate the cases where the number of winning tickets is 

different from 3. Thus we can notice that the order of the polynomial y is equal to the 

number of winning tickets: 

with z = 2, y = (100—z)z, x(max) =  50; 

with x = 4, y = (100-499—x)(98—z)x, x(max) = 25 . 

100x99x98 

dx 2  
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Exercise 3 - Numerical Example of Bernoulli Trials 

Part A 

Using the formula (2), trace the diagram of Px  as a function‘ of X, for 

1 	 1 k = 12, p = 	and k = 12, p= 
2 	 3 

* * * * 3i■ * * * * * 

0.200 

0.100 

B 	A 

40.238 

f6,21‘ 	
A0.228 

11

1  

10.127 

// 

,, '0.046 

// 	21'0.016 

10 

0.054 

0.193 
0.191 

0.121 
1 	\cull 

‘1‘0.0i8 

.0.015 

2 4 
X 

12 

12!  	11 \ X , 1  02-x 

Px --  X1(12-X)! 	2) 

12 1 N X / 2 \ 12-x 
Px -  xi(12-X)1 	3) • 3) 

Fig. Ex. 3. Bernoulli Trials. 
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Part B 

In Bernoulli Trials with k = 11 and p= 1 — determine the value of X for which 
3 

a maximum. Prove by a direct substitution in the expression of P. 

* * * * * * * * 

The relation 

kp + p > X > kp q 

gives 

11+1 X 	11-2 —  
3 	 3 

X = 4 and 3. 

Check: 1) X = 4 

11! 	(1 1 4 .  ( 2 ) 7 	11.1009.8.7.6.5.4.3.2.1 27  
4! 7! 	3 	3 	1.2°3.4 x 1°2°3.4°5.6.7 3 11  

	

11°10.9.8  e 	11.10.9 28  
1°2.3.4 	3 11 	1.2-3 	311 

2) X = à 

11! 	(1 ) (2 )
8 	

11.10-9.8.7.6.5.4.3.2.1 28  
3! 8! 	3 	3 	7 123X1°2345678  311  

11°10.9 28  
1.2°3 	3 11  

PX=4 	Px.3 = 0.238 • • (23.8 percent) . 



- 135 - 

Exercise 4 - Screws Fabricating Machine 

The production of a screws fabricating machine is distributed into 100 boxes, the 

nominal weight of a box being 7 kg. In reality, this weight is a variable the extreme 

values of which are x = 6.20 kg and x = 7.80 kg. The weights of  the  boxes are distri-

buted into 17 classes by means of an interval equal to 0.10 kg. The classes are num-

bered, the interval (7.00 to 7.10) being considered as the "central" interval. Its rank j 

is equal to zero (0) and its centre is at x = 7.05; the centres of extreme classes are: 6.25 

(rank j = —8) and 7.85 (rank j = +8). 

7.85 

6,25 	6.35 	 6.95 	7.05 7.15 

	

e- e 	I 	4 	le  - 7 	 - 1 	j g 0 	1 

Fig. Ex. 4 - A. j-axis for distribution of screws. 

In all calculations that follow the rank j (from —8 to +8) is considered as the 

independent variable and it is only at the end of the calculations that the results 

(expressed in terms of 5) may be converted into kilograms. 

Draw an exact diagram using the class frequencies Fi  presented in the Table that 

follows. Then compute the values of w 1  =  3T (.0 2 ,  1 .1. 2  (moment about Ti).  Check the 

relation 112  

* * * * * * * * * * 
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÷ 40 
N 4" I 1u 	 100 

= +0.40 

J `Fi  
1 

N-1 112 = 0)2-712 P-2‘ - 

Table of' Calculations 

j 	F
1_ 	

IT 	j- 7 	(j --3)2 	(3.-7)2 F1  

-8 	 o 	0 	-8.4 	70.56 	 0.00 
-7 	0 	 0 	-7.4 	54.76 	 0.00 
-6 	 1 	-6 	-6.4 	40.96 	 40.96 
-5 	 3 	. 	-15 	-5.4 	29.16 	 87.48 
-4 	 4 	- 	-16 	-4.4 	19.36 	 • 77.44 
-3 	 8 	-24 	-3.4 	11.56 	 92.48 
-2 	 9 	-18 	-2.4 	5.76 	. 	51.84 
-1 	12 	-12 	-1.4 	 1.96 	 23.52 

0 	10 	 0 	-0.4 	0.16 	 1.60 
+1 	18 	+18 	+0.6 	0.36 	 6.48 	

. 

+2 	14 	+28 	+1.6 	2.56 	 35.84 
+3 	 9 	+27 	+2.6 	6.76 	 60.84 
+4 	 6 	+24 	- +3.6 	12.96 	 77.76 
+5 	 4 	+20 	+4.6 	21.16 	 84.64 
+6 	 1 	+6 	+5.6 	31.36 	. 	31.36 
+7 	 0 	 0 	+6.6 	43.56 	 0.00 
+8 	 1 	+8 	. +7.6 	57.76 	 57.76 

	

100 	+40 	 . 	 730.00 

Formulae 

.2 
-7(13 2 	 P) 



1 

co 
àf à 
Ii • 

• 201 • 

.18 

14 

12 

10 
10 

—2-1  0 \..1 2 . 

• 04 

• • 	• 	ar • 	• 
4 

0 
r-4- 
-8  3 —7 —8 —5 —4 —3 
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730 
= 	— 7.374 

99  
eL2 = 2.7155 

Calculations of to 2 : 	i2F;  = 7,46 

=, 7.46 

1.1.2 = (0 2 — w ? = 7.46 — (0.4)2 

 = 7.46 — 0.16 = 7.30 

If the intervals are numbered from —6 to +10 the mean is equal to 

240 = +
00 

 — 2.4. Thus the value of the extreme negative abscissa is equal to 
1 

—6 — 2.4 = —8.4 i.e. is the same as above. This will lead to the same value of 112, 

i.e. 7.374. 

Fig. Ex. 4 - B. Output of screws machine. 

For the fitting of a theoretical normal curve into this diagram, see Exercise 10. 



1 
Ii 

I i, 
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Exercise 5 - Calculation of Moments of X 

when k=7 

When k = 7, the expression (7b) is 

(q+p)7 	+ 2-nn6  + 	p 7°6 2 5 	7.6.5 

1 el  1.2 	1°2°3 

1 6°5_ p 4  q3 	7'6 5 2 	7 
1°2.3 P q 	—1°2 q  + —1 P  q p7  

If the successive terms are multiplied by the numbers 0, 1, 2, ... 7, respectively, to 

form the expression for cop (top p.17À) we obtain 

7 	5 	.6 2 	7-6°5 3 4 + = 0.q7  + 1.—pq + 2 —
7

p + 3.—p q 
1 	102 	1°2°3 

-I° 	 p 4 q 3 	5--7°6 p 5 q 2  + 6.-
7 

p
5  q + 7-p 7 

1°2-3 	1°2 	1 

After the obvious simplifications, it becomes possible to put 7p out of the brackets: 

6 	6°6 2 5 
(»I = 7P (q

8 
 + — Pq

5 
 + 1.2 P q + ° • • + 

—6 
P

5
q + P 6  ] 

1 	 1 

Thus we obtain w 1 =7p(p+q)8 =7p 

The expression for co 2  is readily deducible from that of co l  by replacing the values 

of the variable (i.e. 0, 1, ... 7) by their squares 0 2 ,  12 ,  22 	72 Thus 

W2 = 1 X l•-
7 
 pq5 
	

1° 
+ 2x2 7*6  p 2 q 5  + 3 x 3 7°6.5. p3 q 4 + 

1 	 2 	 1°2°3 • 

6 + 4X40-7.65 p4 q3  + 5><5.-7°ps q 2  + 6X6
7
— p q + 7X71, 7  

1°2°3 	 1°2 	 1 

The terms are now simplified and arranged as follows: 

7  76 	 7 65 5 	- 	2 5 	3 4 = 1• —pq + 2. 	p q + 3 	p 	4 
7-6°5-4 

 p 4 q a + 
1 	1 	 1 	

q + 
°2 	 1-2.3 

7°6 
+ 5. 	p 5 q 2  

1-2 	
6°-

1
-p

6  q + 7.7p7  



Now, as in the previous calculation, the factor 7p can be put out of the brackets: 

(6 
	6.5 	6-5.4 

(02 = 7P 1' q a  + 2.-
1

pq 5  + 3.—p 2 q 4  + 4.—p3 q 3  + 

	

1.2 	1.2.3 

6°5 4 2 + 	q 5.—p + 6.-
6

p
s

q + 7p 5 
1.2 	1 

At this point of the analysis it becomes less clearly visible what further transforma-

tion may be appropriate. Probably a certain number of attempts had been made before 

it was discovered that all factors 1, 2, 3, 4, 5, 6, 7 should be replaced by (0+1), (1+1), 

(2+ 1), (3+ 1) ...  (6+  1), respectively. This gives 

[ 	
6 	6 	5 	6-5 	6.5-4 3 

W2 = 7p (0.q + 1.--pq + 2—p
2 q 4  + 3.—p q 3 

1 	1.2 	1.2.3 
. 	 (A) 

+ 4--6-5 p4 q 2 + 5.-6 p 5 q + 6-p 5  )  + 

g 	6 	5 	6-5 2 4 	6-5-4 3 3 + + —pq + —p q + —p q 
1 	1.2 	1.2-3 

(B) 
6.5 4 2 	6 5 

+ —p q + —p q + 1) 6 ) I 
1.2 	1 

By examining closely the contents of the brackets (A) and (B) we will notice that 

(A) represents the first moment co l  with k =6. So that (A) := 6P. On the other hand, 

we have simply (B) = (p + q) 8  = 1. 

Hence, 

w 2  = 7p [6p + (p + q) 6 1 = 7p(6p+1) . 

This conforms to the formula (11): co 2  = kpRk —1)p +1] . 
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Exercise 6 - Triangular Distribution 

A distribution is termed triangular if its representative polygon has the form of an 
isoceles triangle AA°T. The extreme class frequencies (here, x = :4:5) are equal to 0 

and the top T is on the y-axis. The class frequencies F(x) are given in Table A. 

Fig. Ex. O.  Triangular distribution. . 

Calculate the second moment pi  of x and show that it remains constant when the 
top T changes its position on the F-axis. 

* * * * * * * * * * 



- 141 - 

1 	., F, 12.2 = 200+100a = 4  

N' 	 50+25a  1-22 = 

A 	"B 	C 	D 

z 	F 	x 2 	Fx2 	F' 	17 '2 

	

-5 	0 	25 	0 	0 + Oct 	0 

	

-4 	2 	16 	32 	2 + la 	32 + 16a 

	

-3 	4 	9 	36 	4 + 2a 	36 + 18a 

	

-2 	:6 	4 	24 	6 + 3a 	24 + 12a 

	

-1 	8 	1 	8 	8 + 4a 	8 + 4a 

	

0 	10 	0 	0 	10 + 5a 	0 

	

. +1 	8 	1 	8 	8 + 4a 	8 + 4a ' 

	

+2 	6 	4 	24 	6 + 3a 	24 + 12a 

	

+3 	4 	9 	36 	4 + 2a 	36 + 18a 

	

+4 	2 	16 	32 	2 + la 	32+  16a 

	

+5 	0 	25 	0 	0 + Oa 	0 

N=50 	200 	50+25a 	200+100a . 

Calculation of the second moments: 

= 19-2. - 4 
N 	50 

As a can take any value, 11,2 is independent of a and thus is the same in all positions of 

the top T. 

1 



A V 2A V  • 
v =  0 , 	

+ 
r-- 	 . • • 

Y112 
V = 0 ,  ±V,  ±2AV , • 
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Exercise 7 - Distribution of the Variate V 

As a complete numerical example of the distribution of V,  consider the Bernoulli 

trials with k 	
1 

=576 and p = q = 	(cards). In the diagram the classification interval 
2 

will be taken equal to A V = 4. 

* * * * * * * * * 

For the moments 	w21  1.1.2 we have 

= = kp = 288 ; 

p.2  = kpq = 144 ; 	\ff-J.2  = 12 . 

The probabilities in successive intervals are computed for the following values of 

the variables: 

2 
v = 0 	-± —

1 
, 	, • 

'3  
V = 0 , 	±4, 	-±8 ° 

They are given in the table of the normal function 

2 

(1) ( 11 ) = 	
1 	- T 

War e  
av 	4 =  1 

12 	3 

1 
For instance, Po  = 0.3989x 	= 0.133, i.e. 13.3 percent. All other values of P are 

3 

given in the diagram. 



AV 

12 18 20 24 28 32 38 

.133 

125 

.105 

.10 

.cus 

• 

\ 	• 

\ .054 
.05 	 4\ 

\ .033 
b.• 

\ 018 

009 
%*** .004 

le+ 

Fig. Ex. 7. Variate V. 

Note: in diagrams in which the values of the variable V are integers the curve join-

ing  the points representing the probability P has no real meaning. It may be a broken 

line helping the eye to see the evolution of the ordinate. 
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Exercise 8 - A Model in Flagen's Theory 

Assume that in a certain type of .high-precision length measurements the total 

number k of elementary errors is equal to 40,000 and that the value of E is equal to 0.10 

Calculate the values of various parameters. 

* * * * * * 	* 

According to Hagen's theory the variance of H is 

52 = e 	 = 2 kpq = 0.01 x 
40 000 	100 
2x2 

so that the standard deviation is 

S=  10p.m . 

àH If we take AH = 2pm, then --- = àh = 0.2. 

If the deviations are classified by means of an interval AH = 21.1.m then the 

reduced value of an interval can be designated by 4h and the reduced abscissae of 

intervals centres are h = 0, 0.2, 0.4, 0.6, • • • Their corresponding probability densities 

may be calculated by means of the tables of the normal function Ils(h) and the probabil-

ities by the relation 

APh  = 4(h )h.  



(01=  pz  i + qx2 

(02 = Pz? + qx 

(0 3  = pz? + qx 

p + q = 1 

(01(s1+x2)= (02+x1s2 

(02(z1+z2)= (03÷ 03 1x1x2 

This is a system with two unknowns 

x1+z2y, 	xi% = z 

Iwi(x1+x2) = (Jul+ 9x 2)(xi + x2) = Pri ÷ (14 +xi x2 

(02(xi+x2)= jui+q4+xis2(Pri+e2) (02(xi+x2)=-jui+q4+xis2(Pri+e2) 
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Exercise 9 - Exercise on Moments 

A variate z can take two values x 1  and x 2  the probabilities being p and q, respec-

tively (p +q =  1). Establish the expression for w i , (0 2 , w3  and solve them for x i , x 2 , p 

considered as unknowns. Apply the results to the case where 

w i  = 1.75, w2  = 3.25, (03  = 6.25. 

* * * * * * * * * 

The system of equations is 

To solve this sy.  stem let us multiply both the first and the second eqUations by 

(z 1 + x2): 

1(1) 1V = (132+z 

(1)2Y = w3+(niz • 
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lead to the 

The solutions are 

W iCO2 - 0)3 

11 = 	2 
— (02 

2 
(02 (el (e 3 

Z 
2 

— (02 

and the unknowns z 1  and z2  are respectively equal to the roots X' and X" of the qua-

dratic equation 

X2  — yX + z = 0 . 	(So/utions:X' and X") . 

It is easy to check that the above given values for w 1 , w2, "w3  and 

solutions 

3 X°=z 1 = 1, X"=z2 = 2, p= 1  7  ,  q- ,  y= 3 , z= 2 . 

I. 
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Exercise 10 - Theoretical Curve for "Screws Machine" 

This is an extension of Ex. 4: Fitting of a Normal Curve 

P•2 = 7 .374  , 	a = VT-12  = 2.7155 , 	7  = + 0.40 . 

* * * * * * * * * * 

.1 	i -7 	XI - j1:1 	Mx i) 	f5  . 
a 

-8 	-8.4 	-,-3.0934 	0.003 335 	0.12 

-7 	-7.4 	-2.7251 	0.009 736 	0.36 

-6 	-6.4 	-2.3569 	0.024 813 	0.91 

-5 	-5.4 	-1.9886 	0.055 234 	2.03 

-4 	-4.4 	-1.6203 	0.107 354 	3.95 

-3 	-3.4 	-1.2521 	0.182 171 	6.71 

-2 	-2.4 	-0.8838 	0.269 957 	9.94 

-1 	-1.4 	-0.5156 	0.349 285 	12.86 

0 	-0.4 	-0.1473 	0.394 634 	14.53 

+1 	+0.6 	+0.2210 	• 	0.389 316 	14.34 

+2 	+1.6 	+0.5892 	0.335 370 	12.35 

+3 	+2.6 	+0.9575 	0.252 248 	9.29 

+4 	+3.6 	+1.3257 	0.165 685 	6.10 

+5 	+4.6 	+1.6940 	0.095 014 	3.50 

+6 	+5.6 	+2.0623 	0.047 575 	1.75 

+7 	+6.6 	+2.4305 	0.020 804 	0.77 

+8 	+7.6 	+2.7988 	0.007 942 	0.29 
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FIG.  2 

Fig. Ex. 10. Fitting a normal ,curve into Ex. 4 - B. 
The test of the hypothesis that the sample is drawn from a normal population is 

performed in Ex. 23.I. 
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Exercise 11 - Sample of Residuals 

in a Gravimetric Operation 

This sample consists of 1992 residuals obtained in the adjustment of the results of 

measurements of "g" (Gravitational Constant) made along the line joining Ottawa and 

Washington. There are twenty stations on this line. The values of g in the extreme 

stations (O. and W.) are known from absolute determinations. As a final outcome of 

the operation, each station is attributed an adjusted value of g. The difference between 

the adjusted values in two consecutive stations can now be compared with the difference 

directly indicated by the gravimeters. The discrepancy between these two -differences is 

termed "residual " 

The residuals, denoted by the symbol  z are expressed in a unit of acceleration 

	

-5 M 	 -3 
equal to 10 —. This unit is equivalent to• the old "milligal" (10 —

CM
) which 

	

s  2 	 s 2  

officially is no longer part of the SI system. 

The population is distributed into 25 classes, from j= —12 to j= +12 (dà j= 1), 

each class interval bèing.equivalent to àx = 0.015 mGal. Assuming that the observed 

F. indicate that the distribution is close to normality, calculate the parameters of the 

normal curve that fit into the diagram and the theoretical class frequencies f j . 

* * * * * * * * * * 

The calculation of the parameters leads to the following results: 

= 0.2595à j 

112 = a2  = 9.1677 • (à j) 2  

= a = 3.0278 A j 



- 150 - 

Normal Curve 

j 	F1 	fi 

—12 	2 	0.07 

	

—11 	3 	0.26 

	

—10 	4 	0.84 

—9 	2 	2.45 

—8 	6 	6.36 

—7 	18 	14.82 

—6 	21 	30.97 

—5 	54 	58.06 

—4 	76 	97.57 

—3 	132 	147.03 

—2 	204 	198.67 

—1 	246 	240.71 

	

0 	315 	261.50 

+1 	251 	254.73 

+2 	238 	222.49 

+3 	171 	174.25 

+4 	104 	122.37 

+5 	65 	77.05 

+6 	35 	43.50 

+7 	21 	22.02 

+8 	10 	10.00 

+9 	7 	4.07 

+10 	4 	1.49 

+11 	1 	0.49 

+12 	2 	0.14 

	

1992 	1991.91 

Fig. Ex. 11. Sample of Gravimetrie Reniduala. 
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Exercise 12 - Recurrence Formulae for Integrals 

Part I 

Establish the recurrence formula for the indefinite integral 4 = fzn e z r"dz and 

then transform it into the formula for the definite integral .1,2  = f zn e -e  dz. 
0 

The starting ftinction for this operation is 

(T( z ) = z" e —  z e" 

and its differential 

(13 1 (z)dz = — 2z 1  e —  dz + (n —1)zn -2 e — z 2 dz 

Integrating both sides we obtain 

zn -1  e Zt  = 2 f zn edz + (n — 1)f.Z 71-2 e Z2  dz 

and, solving for In , 

In  = fzne —edz = 	rz n-2 e —e dz — 1- 2 n-1 e -z2 
2 	 2 

Hence the re .currence formula 

n —1 ,  
= -2 In-2 - -

2
z 	• 

The only integral that can be obtained from this relation is Ii ; for n =1 we have 

= — e 
2 

From  I,  all integrals of odd orders (13, 15  ...) can be calculated step4by step. 



n 
2 n - 2  • 
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For instance, 

1 2  _ z  13  = 11  - — z e  
2 

1 - 2 	2 
13 = —

2
e 2  (1+Z ) 

The expressions for integrals of even orders cannot be established. 

From the recurrence formula established above, the formula for definite integrals is 

readily deduced by noticing that the term 

I. 
 izn_ie-z21' 

2 

is also equal to zero. It is obviously equal to zero for z=0 and, for z 0, it can be put 

under the form 

n — 1 

e Z2 

Now . it is known that an exponential (such as ez2) tends towards infinity faster than any 

finite power of z: the fraction, when n-w, tends very fast toward zero. 

The recurrence formula is thus reduced to 

An interesting feature of the definite integral J„ is that there is a simple expression for 

Jo : 

j° 	2 '{-1T  

This leads to the expressions of all integrals Jn  with even values of n; for instance 
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Part  II 

Establish the recurrence formula for the indefinite integral In  = f x n  ex cix and the 

definite integral Jr, = f zn ez clx 
o 

The starting function is 

(14 ) = r n ex 

the differential of which is 

43 1 (x)dx= xn eedx + nxn -1  ex dx . 

Integrating both sides we obtain 

znez = Sznedx + nizn —l e'dx 

and the recurrence formula 

In  =  Xe z — 

Hence 

I = ex ,  I  = ez(x —1) , 1 2  = ex(x2  — 2x +2) etc. 

For the definite integral 

the recurrence formula is 

• 

and, as 

it reduces to 	j  = e — n.In  

Jr, = fxne'dx 

Jn  = 	— nJ n-1 

Iz n zi l  

• Jo 	e , J1  = 0 , J2 	e , 	= —2e , etc. 

e,  
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Exercise 13 - Mixture and Dichotomy of Non-coaxial Samples 

A theoretical sample of N = 2000 elements is considered as being a mixture of two nor-

mal sub-samples. It is distributed in 41 classes, from j = -20 to j = +20. As it is postu-

lated that nothing is known about the parameters, Pearson's system will contain six equations 

in p i , p 2, m l , m 2 , cr i , 0.2 . it will be of the form (53b). 

j 	F - 

	

i 	 F- 1 

	

-20 	0.12 	+1 	141.93 

	

-19 	0.25 	+2 	145.96 

	

-18 	0.48 	+3 	145.06 

	

-17 	0.89 	+4 	138.57 

	

-16 	1.58 	+5 	126.61 

	

-15 	2.72 	+6 	110.20 

	

-14 	4.48 	+7 	91.08 

	

-13 	7.11 	+8 	71.29 

	

-12 	10.83 	+9 	52.76 

	

-11 	15.88 	+10 	36.86 

	

-10 	22.40 	+11 	24.29 

	

-9 	30.45 	+12 	15.08 

	

-8 	39.95 - +13 	8.82 

	

-7 	50.67 	+14 	4.86 

	

-6 	62.32 	+15 	2.52 

	

-5 	74.58 	+16 	1.23 

	

-4 	87.15 	+17 	0.57 

	

-3 	99.78 	+18 	0.24 

	

-2 	112.17 	+19 	0.10 

	

-1 	123.87 	+20 	0.04 

	

0 	134.15 

This sample has . been used to test the 

correctness of all operations related to Pearson's 

equations. From the values of F •  it was easy to 

calculate the mean 7, which is equal to  T  = +1, 

and then all moments  about  

1 P-o, P-1, P-2, P-3, p.4,115' The solution of the 

resulting system (5g.) was then performed by 

Pearson's method based on the solution of thE 

nonic. 

The results showed a satisfactory agreement 

between the calculated values of the parameters 

Pi , p 2 ,m 1 , n 2, g 1 ,  g2  and the values which have 

been used to calculate the class frequencies. 

Pearson's method is not deicribed in the present 

work; the reader can nevertheless, as an excellent 

exercise, calculate the values of the p.-moments on 

the one hand from the class frequencies F and, 

on the other hand, from the parameters that have 

been used to form the system. 



Flo = 

= 

P-2 = 

1.0 

0.0 

+29.5 

113 = 

115 = 
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These parameters are: 

p i 	0.5 , 	m 1  = —3 , 	cri  = 5 

P 2  = 115 	1n 2 = +3 , 	cr4 

They lead to the following values of the moments: 

-40.5 

+2752.5 

-9517.5 

Note: The solution of a complete system of Pearson's equations (through the nonic) is 

now available in the library of routine operations at the N.R.C. Computation Centre. 

It is the outcome of the work performed by Dr. S. BaXter, mathematician at the Centre. 

Fig. Ex. 13. Mixture of Non-coaxial Samples. 
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Exercise 14 - Mixture of Two Lots of Pills 

A pharmacist has produced two lots of pills of 100 units each. The mass of a pill 

may be assumed to be normally distributed about the mean of the lot to which it 

belongs. The variance is the same in all lots. After the two lots have been mixed, the 

suspicion arose that one of them may be slightly heavier than the other. As the lots 

cannot be physically separated, show that it is possible, by statistical methods, to evalu-

ate the difference between their weights. 

It may be assumed that the nominal mass of a pill is of the'order of 1 g and that 

the largest deviations from the average are of the order of 15 mg. 

* •* * * * * * 	* * 

The first operation consists in weighing all of the pills and recording the obtained 

masses mi  (1 = 1, 2, • • • 200). In order to simplify the operations, the mean may be 

computed before the classification 

1 
= 	• M 

200 

The deviations are 

= 771 	M 

and are expressed in milligrams (mg) with 2 decimals. Now zi  may be classified by 

means of an interval àz = 1 mg, the central interval extending from —0.5 to +0.5 mg. 

It receives the rank j = 0 and thus the whole sample is distributed into 31 intervals: 

from j = —15 to j = +15. 

The second step is the calculation of the second moment p..2  and the fourth 

moment 0.4  (with respect to = 0). 



2a4 = 34-114 	• 

1 
131-14-114  4  

2 
a 
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I 

As the sizes (N1  and N2 ) of both lots are identical, (N 1  = N2 = 100) the centres of 

the components are located symmetrically with respect to the centre of the mixture. 

Let the abscissae Of these centres be + a and —a (a > 0) and let the variance of both 

representative curves be a2 . According to Pearson's equations we have the following 

system of equations: 

1 
P1 = P2 = 2 

12.(0.2 + az) 	î.(0.2 + a 2) = 112  

1 (3a4 +6a 20.2 4. a 4) 	1(30.4 +6a 20.2 4. a4) = '14  

2 	 2 

The simplified form is: 

0.2+a2 _ 
- F-2 P 

30.4 + 6 a 20.2 + a 4 = 

The solution presents no difficulty: the first equation is squared, multiplied by 3 

and the result is subtracted from the second equation. This gives 

and leads to the expression for 41. 2 : 

2 
- 

1 
( 3 14- 114 ) i  2 = 

2 
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I 

Fig. Ex. 14 . Mixture of two lots of pills. 
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Exercise 15 - Calibration of Masses of Mercury 

A mass of mercury (1 kg nominal) has been divided into four nominally equal 

parts. The results ofthe weighings made on a medium precision balance are 

=m 1 
 

= m 2  

= m 3  

= f/24 

= m s  

X2 

13 

X4 

XI + 12 + 13 + X4 

= 250.032 g 

= 249.979 g 

= 250.063 g 	...(A) 

= 249.948 g • 

1,000.0165 g 

All results are considered as of the same degree of precision. 

* * * * * * * * 

The system (A) formed of five equations of condition contains four unknowns. It is 

treated as follows. The first equation is multiplied by 1, the following 3 equations are 

multiplied by 0 and the last is also multiplied by 1. The summation produces the first 

normal equation (in XI ): 

211  + 12 + X3 + X4 = 1.250.0485 . 

In the same manner are formed the other 3 normal equations so the total system takes 

the form 

2X1+ 12+ X3+ X4 = /711 + 

11+2X2+ 13+  14= M2 + Ms 

11+ X2 + 2X3+ X4= M.3 + Ms 

XI+ X2+ X3+ 2X4= M4 + Ms 

...(B) 



11 =  

x2=  
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The determinant of the system is not equal to 0: 

2111  
1211  
1121  
1112 

To solve the system add all equations in (B) and divide by 5. This gives 

+  x2  + X3  + X4  = 1  (in 	+ M3 +  m4  -I-  4m 5 ) 
5 

I (im i —m 2 —m 3 —m 4 +m 5 ) = 250.0309 
5 
1 (4m 2 —m i —m 3 —m 4 +m 6 ) = 249.9775 

1 
X3 = — (47723 —  M I —  M. 2 —  M 4 + M5) = 250.0619,  

5 

* 0  

5 

for 	1 

—(e) 

Subtract this from each of the normal equations to obtain, for X1  and similarly 

other unknowns 

14 =  
1 — (4m 4 —m i —m 2 —m 3 +m 5 ) = 249.940,  
5 

v, 0) let us write 	à 

• 	111 
...(D) 

In order to apply the method of undetermined coefficients (x, p., 

the equations of condition (A) under the form 

(a) 	(b) 	(c) 	(d) 

111  + 012  + OX3  + OX4  = m i  

0X1 • .. + 1X2  + OX3  + OX4  = m2 

 011  + 012  + 1X3 .  + OX4  = m3  

()Xi  + OX2  + OX3  + 1X4  = m 4  

011  + 112  •+ 1X3  + 1X4  = ms  

The double products are therefore: 

{

(aa) = (bb) = (cc) = (dd) = 2 

All othe r products, (ab), (ca), • • • are equal to 1 
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and 

(am) = m i  + m s  , 

(6m) = m 2  + m s  

(cm) = m 3  + m s  

(dm) = in 4  + m s  

To solve the system (B) for 11  requires the solution of the auxiliary system 

2X+p.+ v+ 9 = 1 

X + 2p,+v+9=0 

x+  p. + 2v + = 0 

X + p. + v + 29 = 0 

4 	 1 
The solutions are X = 	y = 0 	—• 

5 ' 	 5 

In conformity with (73): 

7.1  = X(am) + 	+ 1,(cm) + 9(dm) , 

4 	 1 	 1 	1 
= —5 (ml+ms) — —5 (m2÷ 771 s) — —5 ( 771 3+ms)--5 (m4+ ens) , 

= —1  ettni — M2 — m3 —  712 4  .4.  Ms) . 
5 

...(E) 

The expressions for other unknowns are established in the same manner. The results 

confirm the set (C). 

To find the residuals the solutions are substituted into the equations of condition: 

e. g.  

u i  = 	— 	= 250-.0320 — 25.0309 = +0.0011 . 

All residuals are identical in the first four equations: 

v i  = V2 = V3 = V 4  = +1.1X 10 -3  

and 



2 
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v 5  = —1.1x10 -3  

Hence 

2 	2 + v 2 + v 2 +v 2 (VV) = 	-r V2 	3 	4 	5 =  6,05X10 °  . 

the variance is equal to 

0, 2 = 	6.05 X 10-6  
rn 	6-5 

-= 2.46)(10 -3  . 

The variances on all individual unknowns are identical to each other. 

The theorem of propagation of variance yields, e.g. for 4.: 

(4 2 +1+1+1+1)cr 2  = 2-a 2  m 5  m 

aL = 4.84 x 10 -8  , 

CJx.i  = 2.20x 

I  



- 163 - 

Exercise 18 - Calibration of Mass Standards 

The most convenient system of values for establishing the submultiples and the 

multiples of the kilogram is 

(5), (2), (2'), (1), (1') . 

The system of equations of condition is the same for the constitution of submultiples 

and of multiples. Let us  first establish this system and then the system of normal equa-

tions. 

* * * * * * * * * * 

Diagram N. 

Equations of Condition 

+(5) 	—(2) 	—(2') 	—(1) 	 = m i  

+(5) 	— (2) 	— (2 ') 	— ( 11 	m2 

+(2) 	—(2') 	+(I) 	—(1') 	= m 3  

+(2) 	—(2') 	—(1) 	+(I') 	= m4 

+(2) 	—(2') 	 = m s  

+(2) 	 —(1) 	—(1') 	= m e  

+(2') 	—(1) 	—(1') 	= m 7.  

+(1) 	—(1') 	= m8 



N3 N2 Sums: N 1  N4 	Ns 
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Normal Equations • 

2(5) 	—2(Z) 	—2(2') 	—(1) 	—(1') 	= N1  

—2(5) +6(2) 	—(2') 	 = N2 

— 2, (5) 	—(2). 	+6(2') 	 = Ng 	 ...(B) 

— (5) 	 +6(1) 	—(1') 	= N4 

— (5) 	 (1) 	+6(1') 	=I Ns . 

The symbols N1  • • • Ns  are equal to the linear combinations of the observed 

values mi  as they are given in the following table 

+m i  —m i  —m l  

	

+m2 — m2 — m2 	 — m2 

4-m 3  —m 3  +m3  —m 3  

+771 4 	— 7724 	— m4 	+ 

+Ms — Ms 

+ Mg 	 — 	— me  

	

+m7 	M7 — 

	

. 	+Mg 	••••Mg 

• -..(c) 

At this  point, the analysis is divided into two branches: a) that of sub-multiple 

and b) that of multiples. 

a) Calibration of submultiples 

To the system (B) is joined the equation of definition 

(5) + (2) + (2') + (1) 	M 	hectograms) 

so that (B) becomes 
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2(5) 	—2(2) 	—2(2') 	—(1) 	—(1') 	= N 1  

	

—2(5) 	+6(2) 	—(2') 	 = N2 

	

2(5) 	—(2) 	+6(2') 	 = N3 

	

- (5) 	 +6(1) 	- (V) = N4 

	

(5) 	 - (1) 	+6(1') 	= N5 

	

(5) 	+(2) 	+(2') 	+(I) 	 =  M . 

...(D) 

There is an important difference between this system of normal equations and the 

system (64): while in the latter the determinant à is not equal to zero, the determinant 

D is equal to zero. This property (easy to check numerically) indicates that there is a 

linear relation between the values NI , N2, N3, N4 and Ns . In other words, one of the 

normal equations is redundant and that, therefore, one of the unknowns can be be given 

any arbitrary value. The relation between N's is 

5N1 +  2N2 + 2N3  + N4  ±  N5=  

The fact that N's are interconnected linearly does not mean that one of them must be 

ignored. Bu it means that the unknowns will acquire finite and well-defined values only 

if they are completed by one equation of definition. The algorithm (F) uses all five 

forms of the normal equations. 

N1 	N2 	N3 	N4 	N5 

+7N1  + 	+N1 	+7N1 	+7N1 

5N2 

÷5N3 

- N4 	- N4 	- N4 	+ 23N4  +3N4  

+N5 	 +5N5 	+25N5  

S2 	S3 	&94 	195 

S1 	192 	S3 	54 	S5 

28 	35 	35 	140 	140 

M M 
2 	5 	5 	10 	10 

(5) 	(2 ) 	(2') 	(1 ) 	(1 ') 

...(E) 



• -1.8 	-1.8 

-6.2 	 -31.0 

-1.8 	+41.4 +5.4 

-155.0 
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Numerical Example 

N2 	N3 	N4 

7n 1  = -L4 mg 	-1.4 	+1.4 	+1.4 	+1.4 

m2 = -0.6 mg -0.6 	+0.6 +0.6 	+0.6 

tn 3  = +4.4 mg 	 +4.4 	-4.4 	+4.4 	-4.4 

m 4  = +2.2 mg 	 +2.2 -2.2 -2.2 +2.2 

m s  = +3.4.  mg 	 +3.4 -3.4 

m 5  = +3.2 mg 	 +3.2 	-3.2 -3.2 

m7  = 0.0 mg 	 0.0 	0.0 	0.0 

m 8  = +1.4 mg 	 +1.4 	-1.4 

N5 

...(F) 

-2.0 	+15.2 	-8.0 	+1.8 	-6.2 

N2 	 N3 	 N 4 	 N5  

-2.0 	+15.2 	-8.0 	+1.8 	-6.2 

-14.0 -2.0 	-2.0 

+76.0 

-40.0 

-14.0 	-14.0 

S 1 =-22.0 	S2= +72.2 	S3= --43.8 	S4= -3.6 	S 5 =-163.6  

-0.786 	+2.063 	-1.251 	-0.026 	-1.169 
[14-3.165 	-1.266 	-1.266 	-0.633 	-0.633 

-3.951 +0.797 	-2.517 	-0.659 	-1.802 

The equation of definition in this table is M =  (1-6.33x10) kg. The line [p.] 
consists of the parts of the quantity p. = -6.33 mg. The final results are presented 

under the following form 
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(5) = (0.5 — 3.95 1 x 10 -8)kg 

(2) = (0.2 0.797 x 10 -8)kg 

(2') = (0.2 — 2.517 x 10 -8)kg 

(1) = (0.1 — 0.659 x 10 -8)kg 

(1') = (0.1 — 1.802 x 10 -8)kg 

...(G) 

If these values are introduced into the equations of condition, we obtain the 

adjusted values m' 1 , the deviations v •  = m' 1 - mi  and the squares v12  : 

= -1.6 

m 1 2  = -0.4 

= +4.5 

m' 4  = +2.2 

m' s  = +3.3 

mi e  = +3.3 

m 1 7  = -0.1 

m' s  = +1.1 

v 1  = +0.2 

= -0.2 

V 3  = -0.1 

V 4  = 0.0 

v s  = +0.1 

v 8  = -0.1 

v7  = +0.1 

V8  = +0.3  

v?  =0.04 

 v22  = 0.04 

2  — 0 .01 V3  

— 
0• 00 V4  

2 	0 01 V5 — . 

2 	0 01 V 5  — . 

2  - 0 01 V./ — . 

= 0.09 . 

...(H) 

The value of the group variance s 	therefore 

2 	1 
 8m = 	- 

•V 2  — 1 x0.21  =  0.0525.  
 4 

Note that here the number of masses is equal to 5 but only 4 are independent because 

of the equation of definition, therefore y = 8-4 = 4. 

The calculation of the variances on individual weights is performed by establishing, 

for each weight, its algebraic expression in terms of mi  and M. For instance, from (C): 

N2 	— 111 1  —  m 2  + M3 + T71 4 	1115 + Me , 

...(I) 

and, from (E):. 



— 2m s , 
+ 5m s  

6Ms 

— 2m 3  

+4m 3 

 6m3 

 18m3 

 — 22m3  

+ 2m 4  

+6m 4  

— 4m 4 

 — 18m4 

 + 22m4  

S1 = + 8M 1  + 67782 

S2 = 	3n11 — 4m 2  

S3 = 	3T711 	4m 2  

S4 = — 16m :  +2m2  
Ss = 4m, — 18m 2  

+ 6m 6 	+ 7n 7  

+ m e 	+ 67/17 	8 
— 28m s  — 28m 7  + 18m 9 

 — 28ms  — 28m 7 	22m8 

3 (I) = 

3 22 ) = (  

2 
3 (1) — 

2 
8 ( 1 ') = 

fi 

...(K) 
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= N I  + 5N2  N4  . 

The expressions for S i  , • • • Ss are 

so that, by .the theorem of propagation of variance, we have, for instance for 5? (vari-ance of S i ): 

s  = (82 + 62 + 22 + 22 + 22)4 	112.52 . 

The final table (below) contains also the variance on M. This variance, denoted by 4 has been obtained by a high precision calibration performed by a national standar-
dizing laboratory. It is 4 = 0.008(mg 

Table of Variances 

) 2• The value for s2 is given in (I): s2 = 0.052 

2 
3 (2 1 

2 
(1 ) 3m2  

2 

( 1  ) 25. 821 
 5 

_ — 5 	-r 

10 3  el  + 
(1 ) 2  2 

10 	Siti  

2 
) 11232 =0.25s  + 0.1434 = 0.0094 (mg) 2  28 

2 
1  14032 = 0.044 + 0.11432 = 0.006 35 

2 

i } 14032 = 0.044 + 0.1143 y! = 0.006 3 
2 

(-1-) 283652 = 0.014 + 0.1452 10 

(

2— ) 2336052 = 0.014 + 0.1732 = 0.009 » . 10 

= 0.007 
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h) Calibration of Multiples 

The equation of definition is here 

(1') = M (= lkg + 0.05 mg), 

p.  = 0.05 mg , 

so that (B) becomes 

2(5) 	—2(2) 	—2(2') 	—(1) 	—(1') 	= .N1  

—2(5) 	+6(2) 	—(2') 	 = N2 

—2(5) 	—(2) 	+6(2') 	 = N3 	...(L) 

—(5) 	 +6(1) 	—(1') 	= N4 

—(5) 	 —(1) 	+6(1') 	= Ns 

	

(1') 	= M • 

The algorithm for the solution: 

N1 	N2 	N3 	N4 	N6 

12N1  12N1  

6N2 	5N2  

5N3 	6 N3  

N4 2N4  2N4 + N4  

— 6N6 	 — N5 	...(M) 

Si 	S2 	S3 	54 

5 1 	82 	53 	S4 

7 	7 	. 7 	7 

5M 2M 2M M M 

(5) 	(2) 	(2') 	(1) 	(1') 

The numerical example treated below follows the same pattern as that for submul-

tiples. 
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Solution (Unit = 1 mg) 

m 1 = -25.0 mg 

m 2 = -35,0  mg 

m 3 = -5.8 mg 

m 4 = -6.1 mg 

m s = -0.3 mg 

m 6 =-0.9 mg 

m7= -0.8 mg 

m e= -5.6 mg 

	

-25.0 	+25.0 	+25.0 	+25.0 

	

-35.0 	+35.0 	+35.0 	 +35.0 

	

-5.8 	+5.8 	-5.8 	+5.8 

	

+6.1 	-6.1 	-6.1 	+6.1 

	

-0.3 	+0.3 

	

-0.9 	 +0.9 	+0.9 

	

-0.8 	+0.8 	+0.8 

	

-5.6 	+5.6 

-60.0 	+59.1 	+59.2 	+9.2 	+54.2 

...(N ) 

	

-720.0 	-720.0 

	

+364.6 	+305.0 

	

+296.0 	+355.2 	+9.2 

-9.2 	+18.4 	+18.4 	-54.2 

-325.2 

	

-334.4 	-51.0 	-50.9 	-45.0 

	

-47.71 	-7.29 	-7.27 	-5.43 

* +0.25 	+0.10 	+0.10 	+0.05 	+0.05 

-47.52 	-7.19 	-7.17 	-6.38 	+0.05 

* The values on this line are expressed in terms of p. with p. = 0.05 mg. 
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(5) = 5 kg. - 47.52 mg 

(2) = 2 u - 17.19 mg 

, (1) = 1 	- 6.38 mg 

( 1, )  = le - 0.05 mg (by def inition) . 

1 	The substitution of these values in the equations of condition leads to the following 

table of residuals  u ,  their squares, and the value of the group variance 3: 

3 	
v i  = -25.0 + 26.8 = +1.8 

v 2  = -35.0 + 33.2 = 

111 	

V3 = -5.8 + 6,4 = +0.6 

v 4  = +6.1 - 6.4 = -0.3 

vs  = -0.3 + 0.0 = -0.3 

vs  = -0.9 + 0.9 = 0.0 

V7 = -0.8 + 0.8 = 0.0 

u te  = -5.6 + 6.4 = +0.8 

v? = 3.24 

2 	 24 - 3 V2 - . 

= 0.36 

v‘f = 0.09 

v? = 0.09 
2 _ n nn Ve - u.UU 

y'? =  0.00 

V; = 0.64 . 

...(P) 

(vu)  = 7.66, 

111 3 - 2 -  UV   = 116  = 1.92 (mg )2 . 
ns 	8-4 	4  

The variance on the calibration of M = (1') has been found equal to 

1  

= 0:008 (mg )2  . ...(Q) 
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Exercise 17 - Measurement of "g" 

200 

too 

o  
••••  e 	es• 	••e ••• •■•• 	«:••• ••■• 
_ • C.  

Fig. Ex. 17 

A 2 meter graduated rule is held vertically above the horizontal axis CC' of a cam-

era C. When the rule ia released, it falls vertically and as soon as the origin of the gra-

duation 0 passes CC' the rule is illuminated every tenth of a second by an electric 

spark. Each spark produces a photograph of a small portion of the rule's graduation on 

which the projection of the camera's fiducial line determines the point termed  "station ° 

which at the time of the flash was on the axis CC'. There are seven stations 

so , • • s o  hence six time intervals t o  t2, t3, 1 4 , t5, t o  the nominal values of which 

are 0.1, 0.2, ... 0.6 respectively. 

The distance of points s t , s 2 ,  • ..s o  from the initial point s o  are designated by the 

symbols m l , m 2, • • • rn 5 . The numerical data are presented in the following table 

1 1  = 0.09999914 s , 

12 = 0.19999922 

1 3  = 0.29999895 

1 4  = 0.39999971 

t s  = 0.50000007 

t o  = 0.59999922 

771 1  = 

n3 2  = 
= 

M 4  = 

= 

me  = 

(observed) 

8.838 407 cm 

27.482 803 

55.933 421 

94.190 082 

142.253322 

200.121 939 

It is important to underline that, by a fundamental assumption, all errors in the 

measurements of lengths will be of Hagen's type and that the intervals of time will be 
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considered as "without error". 

* * * * * * * * * * 

According to the laws of the free fall (constant acceleration) the quantities t and m 

are connected by the equation 

ta  x + ti2  Y =mi  

in which X is the velocity at the time So  crosses CC' and Y is equal to  f ,
g being the 

acceleration due to gravity. Here g is expressed in .1.11.1  -.(gal). Treating the six equa- 
S 2  

tions of the system as equations of conditions we obt'  ain the following system of normal 

equations in which the unknowns are X and Y:' . . 

xIt t? 	= z mi  

't-  YA' = Emit12  
f 

The numerical coefficients of X and Y are: 

0.099 999 14 

0.199 999 22 

0.299 998 95 

0.399 999 71 

0.500 000 07 

•0.599 999 22 

t 2  

0.009 999 828 

0.039 999 688 

0.089 999 370 

0.159 999 768 

•0.250 000 070. 

0.359 999 064 

t3 

 0.000 999 974 

0.007 999 906 

0.026 999 716 

0.063 999 861 

0.125 000 052 

0.215 999 158 

t4 

 0.000 099 996 

0.001 599 975 

0..008 099 887 

0.025 599 926• 

0.062 500 036 

0.129 599 326 

Sums: 0.909 997 788 0.440 998 667 0.227 499 146 
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m 	 ml 	 Mt 2  

	

8.838 407 	0.883 833 1 	0.088 382 55 

	

27.482 803 	5.496 539 2 	1.099 303 54 

	

55.933 421 	16.779 967 6 	5.033 972 65 

	

94.190 082 	37.676 005  5 	15.070 391 27 

	

• 142.253 322 	71.126 671 0 	35.563 340 46 

	

200.121 939 	120.073 007 3 	72.043 710 73 

Sums: 	252.036 023 7 	128.899 101 19 

The Normal equations are therefore: 

0.909 997 788 X + 0.440 998 667 Y = 252.036 023 7 , 

0.440 998 667 X + 0.227 499 146 Y = 128.899 101 2 . 

The elimination of X leads to the value of Y and the substitution into both equa-

tions yields X: 

X = 39.353 67, 

Y = 490.305 95. 

The value of g, i. e.  2Y is 

g =  2Y  = 980.612 gat, 	) • s 2 

and the value of X indicates the velocity in la with which S o  crosses the axis CC'. 

If we substitute the values Y and .7-  into the equations of condition we find ,  the 

compensated values of the various observed lengths mi 



39.353 671 x 	0.099 999 14 	+ 490.305 95 x 	0.009 999 828 = 	8.838 308 cm 

n 	0.199 999 22 	n 	0.039 999 688 = 	27.482 788 
n 	0.299 998 95 	n 	0.089 999 370 = 	55.933 287 

n 	0.399 999 71 	n 	0.159 999 768 = 	94.190 295 
n 	0.500 000 07 	n 	0.250 000 070 = 	142.253 360 
II 	0.599 999 22 	n 	0.359 999 064 = 	200.121 855 

The 	residual 	errors 	are 	computed 	by 	forming 	the 	differences 

vi = m i  (observed) - mi  (computed), for instance 

v 1  = 8.838 407 	8.838 308 = 0.000 099 

v 1  = 0.99p.m. 

To calculate the variance oln  we form the following table of residual errors and their 

squares: 

v i  = +0.000 099 cm v 1  = +0.99p.m 

	

v 2  =  +0.000015 	v 2  = +0.15 

	

v3  = +0.000 134 	v 3  = +1.34 

	

U 4  = -0.000 213 	v 4  = -2.13 

	

v s  = -0.000 038 	v s  = -0.38 

	

= +0.000 084 	v e  = +0.84 

vi2  

0.980 1 (i.un ) 2  

0.022 5 

1.795 6 

4.536 9 

0.144 4 

0.705 6 

(vu)  = 8.185 1 

The variance cr,n2  is therefore 

2 	8.1851  
17 = 	=  2.0463;  a = 1.43ttm 

As the main objectiVe of the experiment is to determine "g" i.e. 2Y, the final step 

is to solve the system 
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0.909 997 788 X' + 0.440 998 667 p.' = 0 

0.440 998 667 X' + 0.227 499 146  1j: = 1 . 

We obtain first 

1  
lil – 0.013 784 534 – 72.545 071 1 , 

and then,by the first of the above equations, the value of X', which is found to be equal 

to 

72.545 071 1 x 0.440 998 667  
X' = 	 – —35.156 436 7. 

0.909 997 788 

Hence a y -=' cr,,Yr.t° = 1.43 -\/72.545 = 12.179 milligals. 
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Exercise 18. Sum of Squares of Deviations 

from the Mean 

A set of fixed points is distributed randomly on the z-axis. Let designate the 

abscissa of a mobile point P which may be located anywhere on this axis. Denote by y 

the sum of squares: 

Y 	(zi-02  
i=1 

y can be represented by an ordinate through 	It is a well known fact that when 

1 = x 	■•••••• 	X • t n 

then the sum y = Ecx—I)2  is a minimum (y,„). Study the evolution of y considered as 

a function of the variable 

* * * * * * * * * * 

As a first step let us consider the following set of ;: 

— 12 — 10 — 9 — 6 — 4 — 3 +4 +7 +8 +10 +15, Izi  = 0 . 

The fact that I; = 0 shows that = 0. We also have for the sum of squares: 

y(0) = 2;2  = 480 . 

Let Us now make 4 =  +1:  

y (+ 1) = Efri  — 	= Exi2  — 2S'zi + 11 x (— 1) 2  . 

But Ex; = 0, so that 
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y(+1) = Zr? + 11 . 
rt 

Similarly, for 4 = - 1 we have 

= 1[x + 112  = Ex.2  + 11x(-1) 2  = 	+ 11 . 
L 

Hence 

y(+1) = y(-1) . 

Obviously the numeral 11 indicates the total number n of points and we Can write 

11 ( )  = Ix? 	nC • 

For instance, for = 

y(±2) = Exi2  +  11x2  = Er? + 11 X 4 = Ex2  + 44 . 
f 

The curve y( )  is a parabola, the axis of which is vertical and passes through F. 
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Exercise 19. Small Samples 

Samples of three elements m l , m 2, m 3  are drawn from the population of a normal 

variate M, (variance o- 2 , mean a). Give the characteristics of the variate S the element 

s of which is equal to 

8  = mi ÷ m2 + m3 • 

Then, calculate 

1) the probability that  s  will be inside the limits a —a and a +cr. 

2) the probability that the mean of the sample will be inside the same limits. 

* Ile 	* * * elf * * 

According to Chapter V, Section 1 (87), the variable s is normally distributed 

about the mean A = 3a with a variance a 2  equal to 

2 	r, 2 
= oCI" 

Hence, 

as  
i.e. a = 	. 

y3 

— A )2  

1  
dP — 	e 	2d-2 

S  ds . 5 	cr Y 2Tr 

The calculations will be simplified by the change of variable 

Z  = .3 — A 

which leads to 

	

• 	2cf 2  
— 	  

a Y27-  

	

rr
e 	

x 

with a 2  = a 2 ' As now the centre is at  z = 0, the above mentioned condition (i.e. that s 
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x be between —a and +a) requires the evaluation of the integral 

e 	 III 
1-  
,, + er 	

j 
_ 	1 	e e 20.1  dZ x .   -0- 1 

The limits of integration, by the change of variable — = X, become 
crx  

cr 	1  
x 1 = cr 	X1 =  

crx 	Y 3a 	V-31  

x2 = +if 	X 2 = 	= + 	".‘ 	= 
c•x 	Y 30•  

Hence, 

4.  vil 	x 2 
n  h, 	2 	,...— 	 .11 

77' f e 2  dX . 
Y 27r o 

1 I•  
	 — 0.580, the area under the normal curve is equal to 

. 	Y 3 

	

0.580 	X e  
X 2 	1 	f  e 2 Px  = 	 dX = 0.219 

y 27r o 

Therefore the probability that s will be between —cr.  and +a' is equal to 

2x0.219 = 0.438, i.e. 43.8 percent. 

Now, instead of considering the variate sum, s = m 1  + m2  + m 3 , we shall con- 	. 

sider the variate "mean" s' i.e. 

m i  + m 2  + M3. 	8 111 
• 

s - 	 - 	• 

	

3 	3 

This is equivalent to forming the linear equation 

1 	1 	1 
= 3 )m1 + (-3 ) 7n2 	(—) 77/3 3 



1 	2a 2r, ds' 
az:‘,67«rr 

Upper Limit: +a , 

••••• D  +ff 
-cr 
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According to the formulae given at the end of Chapter V, Section 1 we have now: 

A' = 
1 	1 

—.113 = ( -13- )a + ( -3  la ± (-3  )a = a,  

30.2 	a2 
(

1)20.2  4. 11)20.2 4. (1)20.2 _. 
3 ‘.3 3 9 3 

cre, = 
Y 3 

The expression for dPs ,  takes the form 

dPs,  = 

which, bithe substitution s' - a = x, becomes 

1  
dPx .- 	e .2(7e2 	. 

• a;\(Frr 

The usual change of variables 	= X leads to the form dP=  which is tabulated. The 
ax  

limits of the integration of dl':  i.e. -a to +cr, are calculated as follows. 

xi 	-a 	 a 
Lower Limit: x 1  = -a , hence X 1  = — - -- But crI  , 	r - —."-- , so that 

es, 	es. 	 y3 

x 1 = 	 

X2 = -FY.i. The expression for the total probability P_+:7,. is: 

4 	+Nii 	X 2 	 1.732 	X 2  _ 2  f e -  2 dx 	. 1 	Jr e  2 dX - 
\/"PT 0 

In the table of areas we find that 

1.732 _ 
f e 2  dX = 0.4584 	 = 0.9168 

11 2-n-  o 
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Exercise 20. Variate X (x i  = 1, x 2  = 0). 

A variate X can take two values: x i  = 1, with constant probability p, and x 2  = 0, 

probability q = 1—p. Calculate 

1) the expectation of x and 

2) the expectation of .Z 2 . 

Consider then two such variables X and Y with p‘p  and py , respectively. Give the 

expressions for the combinations: X + Y, XY, X 2  + Y2 , (X + Y)2  

* * 	* * * * * 

la) 	E(x) = pz .z i  + qzz 2  = pz,x1 + qz x0 = pz  , 

lb) 	E(x 2)  = pex? + qxxg = px x 1 2  + qx x 02  = px  

Combinations 

2a) E(X+ Y) = E(x) + E(y) = px  + py  

2b) E(XY) = E(z)E(y) =  papy  

2c) E(X2
÷ y2) = E( x2) E( y 2) = pz  py  

2d) E[(X +11 2 ] = E (z 2) + E(y 2) + 2E(XY) 

= px  + py  + 2pxpy. 



(L i t  
	.- 

1 	
2 l- ei 

dP- - 
crz 
a 

r.  

dz 

Exercise 21. Multiplication of a Variate by a Constant 

A normal variate X is centered on a. Establish the expression dPz  for the variate 

Z that is defined by the product Z 	ca, a being a constant. 

* * * * * * * * * * 

The probability dP, that z will fall into dz is deduced from dP, through the rela-

tions z 	az , dz = adz , 0. 2  = cx 2cr 2  which are first written as follows: 

dz cr 2 Crx 
X = 	dx = — cr 2  = — e 	= 

Ct 	 Ct 	 a" 

When these expressions are introduced into dP=  we obtain 

After all simplifications have been performed, the expression for ; becomes 

1 	2e2  
cr .\i/Pr z 

dif — 

This shows that z is centered on c = aa. 



and 

u = 0.5 and dP,, u,  

Y2.71828 Y-Fi Y3.14159 

du 
dP. = — 0.484 . 
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Exercise 22. Numerical Examples and Basic Values 
of the Gamma Function 

A. Establish the expression for the probability density dP. of the Gamma variate 

which is derived from a normal variate (I)(z) with a variance o- 2  = 25. Calculate the 

numerical value of dP. for z = 5. 

B. Using the expressions for Jo, J 1 , J2, J3 (as in Chapter II, Table II), transform 

these integrals into Gamma integrals and deduce their numerical values. 

* * * * * * * * * 

A. The formula for u and dP,, are 

Z 2 

 

- u 	1 eu 
u = — and dP. — 	du . 

20.2  

Hence for cr2  = 25 and z = 5, 

YiT  

B. The recurrence relation (42) can be put under the form 

n+1 
+ 2 = 2 



- 185 - 

so that, by (146): 

1

212 
 = 1 r (n+1 ). 

2 2 

Hence 

1 	n +1 —r 	+1 ). n+1.i r tn+i) 
2 	2 	2 	2 	2 

Let us now introduce the symbol a for 

n+1  = a  
2 

The relation above takes the form 

1- (a+1) = 

which is identical to (99). 

2 	2 	2 
n+2+1 = 	n+1 +1  

Jts + 2 = 12 r 2 	2 	2 

n+  
2 
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Exercise 23. Examples of Chi-square Tests 

Apply the )( 2- test to the hypothesis that the samples of errors described in Exer-

cises 10 and 11 can be considered as drawn from normally distributed populations. 

* * * * * * * 

L Exercise 16: Screws Machine Output 

Four extreme classes on the negative wing (F = 0+0+1+3 = 4), and three 

extreme classes on the positive wing (F = 1+0+1 = 2) are grouped in one single class. 

The calculation of the Chi square is performed as follows: 

f 	I 	ti 	x2 

	

3.42 	0.58 	0.10 

	

4 	4 	3.95 	0.05 	0.00 

	

-3 	8 	6.71 	1.29 	0.25 

	

-2 	9 	9.94 	0.94 	0.09 

	

-1 	12 	12.86 	0.86 	0.06 

	

0 	10 	14.53 	4.53 	1.41 

	

+1 	18 	14.34 	3.66 	0.93 

	

+2 	14 	12.35 	1.65 	0.22 

	

+3 	9 	9.29 	0.29 	0.00 

	

+4 	6 	6.10 	0.10 	0.00 

	

+5 	4 	3.50 	0.50 	0.07 

	

+6 	2 	2.83 	0.83 	0.24 

X 2  = 137 

For y  = 11, this is an extremely small x; the hypothesis is very likely to be correct. 

The probability P of exceeding 3.37 in repeated sampling is very large: P > 95 
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percent. 

IL Exercise 11: Gravimetric Observations 

The calculation of x2  from the data (Ff  and fj ) displayed in Exercise 11 follows 

the same pattern as that of Exercise 10. However it is necessary, in order to avoid the 

presence on both wings of thinly populated classes, to perform the following groupings: 

j 	Fi 	f,  

	

—12 	2 	0.07 

	

—11 	3 	0.26 

	

—10 	4 	0.84 

—9 . 	2 	2.45 

	

11 	. 	3.62 

j 	
. 	

F• 

	

Fi 	fi 

	

+9 	7 	4.07 

	

+10 	4 	1.49 

	

+11 	1 	0.49 

	

+12 	2 	0.14 

	

14 	6.19 

Thus the number of classes is reduced from 25 to 19 (,v = 18). The result is 

= 54.  

This is a very high value for x.2  and P is very small. This totally rejects the hypothesis 

that the sample is drawn from a normal population: the probability P of exceeding 54 

in repeated sampling is much smaller than 1 percent. 
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Exercise 24. Another derivation of the Recurrence 

Relation for p„ Moments. 

The recurrence relation for J,„ moments has been established using the expressions 

in which p n  is formulated in terms of the integrals Jn  (Chapter II, Section 3). Establish 

now this relation using the expressions based on Gamma functions 

* * * * * * * * 

Pn+2 

In the formula 

we replace n by(n +2) 

and form the ratio 

27  Pra =/— 
y Tr 

n ÷ 2 

= 2 2  en+2 11 n 	+ 
2 12 

I 
r(11+ 1 +11 

2 	2  1' Pn+2 = 2an 	 --•• 2u 2  H-1- 1 = (n +1)cr 2 0 
2 PT'

1 1 
2 2 	 I 

. 

 

The  recurrence formula is : 

111 
Yn+2 = 

It can, of course, take the form (45): 

Yn = Yn-2( 7/ —1 )a 2  111 
• 1 
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The number of books on statistics published in the last two or three decades is 

surprisingly large. This can be partially explained by the fact that this branch of 

mathematics has become an integral part of many scientific domains (e.g. biology, 

psychology, chemistry, etc.) and is also extensively used in various activities of technical 

and economic nature. One consequence of this is the proliferation of courses in statistics 

(on various levels) in the schools and universities. 

It is also surprising that among all these books only a very few devote a significant 

part of the text to the probletns found in metrology and this in spite of the fact that 

the importance of the latter is constantly growing. 

Some of the most classical of the metrologically oriented books are given below and 

can be used by all those who have a reasonable training in the calculus. It is obvious 

that the study of any classical book on higher statistics will be extremely beneficial to a 

metrologist. However, those quoted here, contain examples which are more directly 

helpful to those who start worrying about the "errors' in the "observations" they per-

form. 
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Tables of modulated functions 

I Tables for ordinates 

These tables are analogous to the table of OM, page 16. The expressions for 

4)(a, 7, X) are obtained by attributing to the modulator the numerical values 

a = 0, 0.25, 0.50, 1.00. 

The tables have been calculated, first in 1965, by F. Farrell (Computation .Centre, 

National Research Council) using numerical integration methods. The calculation has 

been repeated and completed later by J. Halpenny (Earth Physics Branch) using the 

expressions quoted in PI. 

II Tables for areas 

The function (1)(X) in these tables is defined by the integral 

À 

(1)(x) = f41(x)dx 
0 

cl)(X) being the expression (VII.9), p. 121. It represents therefore the so-called "area 

under the curve" (Ka,X) contained between the ordinates at X = 0 and X = X. 

These tables are particularly necessary in those cases where the interval of 

classi fication AX is not constant. 

Airticteis on.  Onthogonat Sy4tems  

M. GRABE, "Note on. the Application g the Method g Lewst Squaitys", 
Mettwtogia 14; p. 143-6. (1978) 

M. ZUKER, and at. "Seternatic Seanch 	Ofi.thogonat Sete_mis in the. 
CaUbkation  o  Submult.ipte and Mutt,Lpteis g the Unit  o Mas", 

 MetAotogia 16, p. 51-54. (1980) 

M. ROMANOWSKI and G. MIHAILOV, "New Devetopments in the Metiwtogy 
Mau Standauts" , Legat Metitotogy Bitench, HoUand Avenue, • 
Ottawa, Ontaxto, Canada K1A 0C9 

GoDo CHAPMAN, "Catibnation oiÇ Ki.t.ognorn Submwet,ipee", NRCC 25819 (1987) 
Nationat Re3eaitch Counc,i2, VLuLon otÇ  Phy-Le, Ottawa, 
OntaiLio, Canada K1A  0 R6 



1 

1 
1 
1 
1 

1 
1 
1 
1 
1 
1 

1 

ORDINATE FOR 0=0.00 
X 0.00 	.01 	.02 	.03 	.04 	.05 	.86 	.07 	.08 	.09 

0.0 .5642 .5592 .5542 .5493 .5444 .5395 .5347 .5299 .5251 .5203 
.1 .5156 .5109 .5062 .5016 .4970 .4924 .4878 .4833 .4788 .4743 .2 .4698 .4654 .4610 .45E6 .4523  • 4480 • 4437  •4394 .4352 .4310 .3 .4268 .4227 .4186 .4145 .4104 .4864 .4024 .3984 .3944 .3905 .4 .3866 0 3827 . 3789 .3751 . 3713 .3675 .3638 .3601 .3564 . 3527 .5 .3491  •

3455 .3419 .3384 .3348 .3313 .3279 .3244 .3210 .3176 
.6 .3142 .3109 .3076 .3843 .3010 .2978  •2945 .2913 .2882 .2850 .7  • 2819 .2788 .2758 .2727 .2697 e 2667 .2638 .2608 .2579 .2550 
.8 .2521 .2493 .2465 .2437 .2409 .2381 .2354 .2327 .2300 .2274 .9 .2247 

.2221 .2195 .2170 .2144 .2119 .2094 .2069 .2845 .2021 

1.1 .1996 .1973 .1949 .1925 .1902 .1879 .1856 .1834 .1812 .1789 1.1 .1767 .1746 .1724 
.1703 .1682 .1661 .1640 .1620 .1599 .1579 

1.2 .1559 .1540 .1520 .1501 .1482 .1463 .1444 .1425 .1407 .1389 
1.3 .1371 .1353 .1336 .1318 .1301 .1284 .1267 .1250 .1234 .1217 
1.4 .1201 .1195 .1169 .1153 .1138 .1123 .1107 .1092 .1078 .1063 
1.5 .1048 .1034 .1020 .1006 .0992 .0978 .0965 .0951 .0938 .0925 1.6 .0912  • 0899 .0886 .0874 .0861 .0849 .0837 .0825 .0813 .0802 1.7  • 0790 .0779 .0767 .0756 .0745 . 0734 . 0724 . 0713 .0703 .0692 1.8 .0682 .0672 .0662 

.0652 .0642 .0633 .0623 .0614 .0605 .0596 1.9 .0587 .0578  •
0569 .0560 .0552 .8543 .0535 .0527 .0518 .0510 

2.0 .0583 .0495 .0487 .0479 .0472 .0464 .0457 .0450 .0443 .0436 
2.1 .0429 .0422 .0415 •0409 .0402 .0396 .0389 

.0383 .0377 .0371 2.2 .0365 .0359  • 0353 .0347 .0341 .0336  • 0330 .0325 .03 1 9 .0314 2.3 .0309 .0304 .0299 .0294 .0289 .0284 .0279 .0274 .0270 .0265 2.4 .0260 .0256 .0252 .0247 .0243 .0239 .0235 .0231 .0227 .0223 2.5 .0219 .0215 .0211 .0208 .0204 .0200 .0197 .0193 
.0190 .0186 2.6 .0183 .0180 

.0177 .0173 .0170 .0167 .0164 .0161 .0158 .0155 2.7 .0153 .0150  • 0147 .0144 .0142 .0139 .0137 .0134 .0132 .0129 2.8 .0127 .0124 .0122 .0120 .0 117 .0115 .0113 .0111 .0109 .0107 2.9 .0105 .0103 .0101 .0099 .0097 .0095 .0053 .0091 .0090 .0088 
3.0 .0086 .0085 .0083 .0081 .0080 .0078 .0077 .0075 .0074 .0072 3.1 .0071 .0069 .0068 .0067 .0065 .0064 

 • 0063 .0061 .0060 •0059 3.2 .0058 .0057 .0055 .0054  • 0053 .0052 .0051 .0050  • 0049 .0048 3.3 .0047 .0046 .0045 .0044 .0043 .0042 .0041 .0040 .0040 .0039 3.4 .003e .0037  • 0036  • 0036 .0035 .0034 .0033 .0033 .0032 .0031 3.5 .0031 .0030 .0029 .0029 .0028 .0027 .0027 .0826 .0026 
 • 0025 3.6 .0025 .0024 .0024 .0023 .0822 .0822 .0822 .0021 .0021 .0020 3.7 .0020 .0019 

.0019 .0018 .0018 .0018 .0017 .0017 .0016 .0016 3.8 .0016  • 0015 .0015 .0015 .0014 .0014 .0014 .0013 .0013 .0013 3.9 .0012 .0012 .0012 .0012 .0011 .0011 .0011 .0011 .0010 .0010 

4.0 .0010 .0010 .0809 .0089 .0009 .0009 .0008 
.0008 .0008 .0008 4.1 .0008 .0007 

.0007 .0007 .0007 .0007 .0007 .0006 .0806 .0006 4.2 .0006 .0006 .0006 .0006 .0005 .0005 .0005 .0005 .0005 .0005 4.3 .0005 .0005 .0004 .0004 .0084 .0004 .0004 .0004 .0004 .0004 
4.4 .0004 .0004 .0003 .0003 .0003 .0003 .0003 .0003 .0003 

.0003 

1 



0.0 
. 1 
. z 
•3 
•4 
.5 
•6 
.7 
.6 
.9 

•1980 
.1751 
.1542 
.1350 
.1178 
.1022 
.0883 
.0759 
.0650 
.0554 

.1956 

.1729 

.1522 

.1332 

.1161 

.1007 

.0870 

.0748 

.0640 

.0545 

.1933 .1909 

.1708 .1686 

.1502 .1482 

.1314  • 1297 

.1145 .1129 

.0993  • 0979 

.0857 .0844 

. 0736 .0725 

.0630  • 0620 

.0536 .0527 

.1886 

.1665 

.1463 

.1279 

.1113 

.0965 

.0832 

.0714 

.0610 

.0519 

.0470 

.0396 

.0333 
•0278 
.0232 
.0192 
.0158 
.0130 
•0106 
.0086 

.0462 .0454 .0446 .0439 

.0390 .0383 .0376 .0370 

.0327 .0321 .0316 .0310 

.0273 .0269 .0264 .0259 

.0228 .0223 .0219 .0215 

.0188 .0185 .0181 .0178 

.0155 .0152 .0149 .0146 

.0127 .0125 .0122 .0120 

.0104 .0102 .0100 .0098 

.0084 .0083 .0081 .0079 

.0070 .0068 
0056 .0055 
.0045 .0044 
.0036 .0035 
.0028 .0028 
.0023 .0022 
.0018 .0017 
.0014 .0013 
.0011 .0010 
•0808 .0008 

.0006 .0006 

.0005 .0005 

.0004 .0004 

.0003 .0003 

.0002 .0002 

.0067 
0054 

.0043 

.0034 

.0027 

.0021 

.0017 

.0013 

.0010 

.0006 

.0006 
0005 

.0004 

.0003 

.0002 

.0065 .0064 

.0053 .0051 

.0042 .0041 

.0034 .0033 

.0027 .0026 

.0021 .0020 

.0016 .0016 

.0013 .0013 
•0o 1 o .0010 
.0008  • 0008 

.0006 

.0005 

.0003 

.0003 

.0002 

•0006 
•0004 
.0003 
.0003 
.0002 

2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 

3.0 
3.1 
3•2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 

4.0 
4.1 
4.2 
4.3 
4.4 

ORDINATE FOR a=0.25 

0.00 .01 	.02 	.03 .04 	.05 	• 06 	.07 	.08 .09 

.4956 .4949 .4938 .4924 

.4780 .4755 .4730 .4703 

.4506 .4476 .4446 .4416 

.4197 .4165 .4133 .4101 

.3875 .3842 .3810 .3777 

. 3 551 asle 03486  • 3454 

.3233 .3202 .3170 .3139 

.2926 .2896 .2867 .2837 

.2634 .2606  • 2578 .2550 

.2359 .2332 .2386  • 2260 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
109 

•4908 .4889 .4870  •4849 .4827 .4804 .4677  •4649 .4622 .4593 .4565 .4535 
.4385 .4354 .4323 .4292 .4260 .4229 
.4069  •4037 .4804 .3972 .3939 .3907 
.3745 .3712 .3680 .3647 .3615  • 3583 . 3422 .3391 .3359 .3327 .3296 .3264 
.3109 .3178 .3847 .3017 .2986 .2956 
.2808 .2778 .2749 .2720 .2691 .2663 
.2522 .2494 .2467 .2440 .2412 .2386 
.2254 .2228 .2202  •2177 .2152 .2127 

.2102 .2077 .2052 .2028 .2804 

.1863 .1841 .1818 .1796 .1773 

.1644 .1623 .1602 .1582 .1562 

.1444 .1425 .1406 .1387 .1369 
•1262 .1245 .1228 .1211 .1194 
.1098 .1182 .1067 .1052 .1037 
.0951 .0937 .0923 .0910 .0896 
.0819 .0007  • 0795 .0783 .0771 
.0703 .0692 .0681 .0671 .0660 
.0610 

 
•0591 .0581 .0572 .0563 

.0510 .0502 .0494 .0485 .0477 

.0432 .0424 .0417 .0410 .0403 

.0364 .0357 .0351 .0345 .0339 

.0305 .0299 .0294 .0289 .0284 

.0254 .0250 .0245 .024 1  .0236 .02 1 1 .0207 .0203 •0199 .0196 

.0174 .0171 .0168 :0165 .0161 

.0144 .0141 :0138 .0135  • 0133 

.0118 .0 115 .0113 .0111 .0 1 08 

.0096 . 0 094 .0092 .0090 .0088 

.0078 .0076 .0074 .0073 .0071 

.0063 .0061 .0060 .0059 .0057 

.0050 .0049 .0048 .0047 .0046 

.0040 .0039 .0038 .0038 .0037 

.0032 .0031 .0031 .0030 .0029 

.0125 .0025 .0024 .0024 .0023 

.0020  • 0019 .0019 .0019 .0018 

.0016 .0015 .0015 .0015 .0014 .0012 .0012 .0012 .0011 .0011 

.0009  • 0009 .0009 .0009 •0009 

.0007 .0007 .0007 .0007 .0007 

.0006 .0005 .0005 .0005 .00 -05' 

.0004 .0004 .0004 .0004 .0004 

.0003 .0003 .0003 .0003 .0003 

.0002 .0002 .0002 •0002 .0002 



1 
1 

ORDINATE FOR 0=0.50 
.01 	.02 	.03 	.04 	.05 	.06 	.07 	.08 	• 09 

0.0  •
4635 .4634 .4630 .4624 .4617 .4609 .4599 .4588 .4576 .4563 .1  • 4549  •

4534 .4510 .4501 .4484 .4466 .4447 .4427 .4407 .4387 • 2 .4365 •4344 .4322 .4299  • 4276 .4252 .4228 .4204 .4179 .4154 .3 .4129 .4103 .4077 .4051 .4024 .3997 .3970 .3943 . .3916 .3088 .4 .3860 .3832  • 3804 .3776  • 3748 •3719 .3690 .3662  • 3633 .3604 .5 .3575 .3546 .3517 .3488 .3458 .3429 .3400 .3371 .3341 .3312 .6 .3283 &3254 .3224  • 3195 .3166 .3137 • 3 108 . 3079 . 3050 . 302 1 .7 .2992 .2963 .2934 .2906 .2877 .2849 .2820 .2792 .2764 .2736 
.8 .2708 .2680 .2652 .2624 .2597 .2569 .2542 .2515 .2488 .2461 .9 .2434 .2407 .2381  •2355 .2328 .2302 .2277 .2251 .2225 .2200 

1.0 .2174 .2149 .2124 .2100  • 2075 .2051 .2026 .2002  • 1978 .1954 1.1 .1931 .1907 .1884 .186/  • 1838 .1815 .1793 .1771 .1748 .1726 
1.2 .1704 .1683 .1661 .1640 .1619 .1598 .1577 .1557 .1536 .1516 
1.3 .1496 .1476 .1457 .1437 .1418 .1399 .1380 .1361 .1342 .1324 
1.4 .1306 .1288 .1270 .1252 .1235 .1217 .1200 .1183 .1166 .1150 
1.5 .1133 .1117 .1101 .1085 .1069 .1054 .1038 .1023 .1008 .0993 1.6 .0978  •

0964 .0949 .0935 .0921 .0907 .0894 .0880 .0866 .0853 
1.7 .1840 .0827 .0814 .0802 .0789 .0777 .0765 .0753 .0741 

 • 0729 1.8 .0717 .0706 . 0
695 .0684 .0673 .0662 .0651 .0640 .0630 .0520 1.9 . 0 609 . 0 599 . 0590 .0580 .0570  • 0561 .0551  • 0542 .0533 .0524 

2.0 .0515 .0506 .0498 .0489 .0481 .0472 .0464 .0456 .0448 .0441 2.1 .0433 .0425  • 0418 .0410 .0403 .0396 .0389 . 0382 .0375 .0369 2.2 .0362 .0355 .034S 
.0343 .0336 .0330 .0324 .0318 .0312 .0307 

2.3 .0301 .0295 .0290 .0285 .0279 .0274 .0269 .0264 .0259 .0254 
2.4 .0249 .0244 .0240 .0235 .0230 .0226 .0222 .0217 .0213 .0209 
2.5 .0205 .0201 .0197 .0193 .0189 .0186 .0182 .0178 .0175 .0171 
2.6 .0160 .0164 .0161 .0158 .0155 .0151 .0148 .0145 .0142 .0139 2.7 .0 137 . 0

134 .0131 .0128 .0126 .0123 .0120 .0118 .0115 .0113 2.8 .0111 .010 8  .0106 .0104 .0102 .0099 .0097 .0095 .0093 .0091 2.9 .0089 .0057 .0085 • 0083 .0082 .0080 .0078 .0076 .0075 .0073 
3.0 .0071 .0070 .0061 .0067  • 0065 . 00 64 .0062 .0061 . 0 060 . 00 58 
3.1  • 0057 .0056 .0054 .0053 .0052 .0051 .0050 .0048 .0047 .0046 3.2 .0045 .0044 .0043  • 0042 .0041 .0040 .0039 .0038 .0037 .0036 
3.3 .0036 .0035 .0034 .0033 .0032 .0032 .0031 .0030 .0029 .0029 3.4 .0028 .0027 .0027  • 0026 .0025 .0025  • 0024 .0024 .0023 .0022 3.5 .0022 .0021 .0021 .0020 .0020 .0019 • 0 019 . 0018 .0018 .00 1 7 3.6 .0017 .0016 .0016 .0016 .0015 .0015 .0015 .0014 .0014 .0013 
3.7 .0013 .0013 .0012 .0012 .0012 

.0011 .0011 .0011 .0011 .0010 3.5 .0010 .0010 .0010 .0009 .0009 .0809 .0009 .0008 .0008 .
0 008 3.9 .000e .0007 .0007 .0007 .0007 .0007 .0007 

 • 0006 .0006 .0006 

400 .0006 .0006 .0006 .0005 .0005 .0005 .0005 .0005 .0005 .0005 4.1 .0004 
.0004 .0004 .0004 .0004 .0004 .0004 .0004 .0003 .0003 

4.2 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 
.0003 .0003 4.3 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 

4.4 .0002 .0002 .0002 .0002 .0002 .onae .0002 .0001 .0001 .0001 

X 0.00 



0.0 
el 
62 
.3 
.4 
.5 
. 6 
.7 
.8 
.9 

1 

1.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 

4.0 
4.1 
4.2 
4.3 
4.4 

ORDINATE FOR ar: 1.00 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.0 
1.9 

2.0 
2.1 
2.2 
2,3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 

I.4343 •
4343 .4341 .4339 .4336 .4333 .4328 .4323 .4317 .4310 .4303 .4294 .4286 .4276  • 4266 .4255 .4244 .4232 .4219 .4206 .4192 .4178 .4163 .4147 .4132 .4115 .4098 .4081 

 • 4063 .4045 .4026 .4007 .3988 .3968  • 3948 .3927 .3906 .3885 .3864 .3842 .3819 .3797 .3774 • 3751 .3728 •3704 .3680 .3656 .3632 .3608 .3583 .3558  • 3533 • 3508 .3482 .3457  • 3431  • 3405 .3379  • 3353 
.3327 .3301 .3274 .3248 .3221 

.3195 .3168 .3141 .3114 .3087 .3061 .3034 93007 .2980 .2953  •2926 .2899 .2872 .2845 .2818 
.2791 .2764 .2737 .2710 .2683 .2657 .2630 .2603 .2577 .2550 !.2524  • 2498 .2471 .2445  • 2419 .2393 .2367 .2341 .2316 .2290 
•2265 .2239 .2214 .2189 .2164 .2 1 39 .2114 .2090 .2065 .2041 
.2017 .1993 .1969 .1945 .1921 .1898 .1874 .1851 .1828 .1805 
.1783 .1760 .1738 .1716 .1694 .1672 .1650 .1628 .1607 .1586 
.1565 .1544 .1523 .1503 .1482 .1462 .1442 .1422 .1403 .1383 
.1364 .1345 .1326 .1307 .1269 .1270 .1252 

 • 1234 .1216 .1198 .1181 .1164 .1146 .1129 .1113 .10.96 
• 1060 .1063 .1047 .1031 .1016 .1000 .0985 .0970 .0954 .0940 .0925 .0910 .0896 .0882 

1.111868 .0854 .0840 .0827 .0813 .0800 .0787 .0774 .0762 .0749 
'.0737 .0725 .0712 .0701 .0689 .0677 .0666 .0654 .0643 .0632 .0621 .0611 .0600 

.0590 .0580 .0569 .0559 .0550 .0540 
 • 0530 

.0521 .0512 .0502 
.0493 .0484 .0476 .0467 .0459 .0450 .0442 .0434 .0426 .0418 .0410 .0403 .0395 .0388 

 • 0380 .0373 .0366 .0359 .0352 .0346 .0339 .0332 .0326 .0320 .0313 .0307 .0301 .0295 .0290 .0284 .0278 .0273 .0267 .0262 .0257 .0252 .0246 
.0241 .0237 .0232 .0227 .0222 .0218. .0213 .0209 .0205 

.0200 
!.0196 .0192 s 0j m, .0184 .0180 .0 1 76 .0173 .0169 •0165 .0162 •0158 .0155 .0152 

.0148 .0145 .0142 .0139 .0136 «0133 .0130 •0127 .0124 .0122 .0119 .0116 .0 114 .0111 .0109 .0106 .0104 
.0101 .0099 .0097 .0095 .0092 .0090 .0088 .0086 .0084 .0082 
.0080 .0078 .0077 .0075 .0073 .0071 .0070 .0068 .0066 .0065 
.0063  • 0062 .0060 .0059 .0057  • 0056 .0055 .0053 .0052 .0051 .0050 

.0048 .0047 .0046 .0045 .0044 .0043 .0042 .
0 041 • 0040 .0039 .0038 .0037 .0036 .0035 .0034 .0033 .0032 .0031 

 • 0031 .0030 .0029 .0028 
 .0028 .0027 .0026 .0026 .0025 .0024 

.0024 .0023 .0022 .0022 .0021 .0021 .0020 .0020 .0019 .
0 019 . 0 018 

.0018 •
0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014 .00

1 4 
•00/3 .00 1

3 .0013 .0012 .0012 .0012 .0011 .0011 .0011 .00
1 0 .0010 •0010 .0009 .0009 .0009  • 0009 .0008 .0008 .0008 .0008 .0008 •

0007 .0007 .0007 .0007 .0007 .0006 .0006 .0006 .0006 
.0006 .0005 .0005 .0005 .0005 .0005 .0005..0005 .0004 .0004 
.0004  •0004 .0004 .0004 .0004 .0004 .0003 .0003 .0003 .0003 •
0003 .0003 .0003 .0003 .0003 .0003 .0003 

.0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 •0002 .0002 .0002 .0002 
•
0002_.0002 .0002 .0001 .0001 .0001 .0001 .0001 .0001 .0001 
.01101 .0001 .0001 .0001 .000i .000t .0001 .0001 .000t .000t 



AREA FOR a =0.00 

.0056 .0112 .0167 .0222 .0276 .0330 .0383 .0436 .0488 .0540 

.0591 .0642 .0692 .0742 .0792 .0841 .0889 .0937 .0985 .1032 

.1079 .1125 .1171 .1217  • 1262 .1306 .1350 .1394 .1437 .1480 .1523 .1565 .1606 .1648  • 1689 .1729 .1769 .1809 .1848 .1887 .1925 .1963 .2001 .2038 .2075 .2112 .2148 . 2 184 .2219 .2254 .2289 .2323 .2357  • 2391 .2424 .2457 .2490 .2522 .2554 .2586 
.2617 .2648 .2679 .2709 .2739 .2768 .2798 .2827 

 • 2855 .2884 .2912 .2939 .2967 .2994  • 3021 .3047 .3074 .3099 .3125 .3150 .3176 .3200 .3225  • 3249 •3273  •3297 .3320  • 3343  • 3366 .3389 .3411 .3433  • 3455 .3477 .3498 .3519  • 3540 .3560 .3581 .3601 
1.3621 .3640 .3660  •3679 .3698 .3716 .3735 .3753 .3771 .3789 .3806 .3824 .3841  • 3858 .3874 .3891  • 3907 .3923 .3939 .3955 . 3

970 .3986 .4001 .4016 .4030 .4045 .4059 .4073 .4087 .4101 
.4115 .4128 .4142 .4155 .4168 .4180 .4193 .4205 

 • 4218 .4230 .4242 .4253 .4265  •4276  • 4288 .4299 .4310 .4321 .4331 .4342 .4352 .4363 .4373 .4383 .4393 .4402 .4412 .4421 .4431 .4440 
.4449 .4458 .4467 .4475 .4484 .4492 .4501 .4509 .4517 .4525 .4533  •

4540 .4548 .4556 .4563 .4570 .4577 .4585 .4591 .4598 
.4605 .4612 .4618 .4625 .4631 .4638 .4644 .4650 .4656 .4662 
.4668 .4673 .4679 .4684 .4690 .4695 .4701 .4706 .4711 .4716 

.4721 .4726 .4731 .4736 .4740 .4745 .4749 .4754 .4758 .4763 .4767  •4771 .4775 .4779 .4783 .4787 .4791 .4795  • 4798 .4802 .4806 .4809 .4813 .4816 .4820 .4823 .4826 .4829 .4833 .4836 

.4839 .4842 .4845 .4848 .4851 .4853 .4856 .4859 .4862 
.4864 .4867 .4869 .4872 .4874 .4877 .4879 .4881 .4884 .4886 .4888 

.4890 .4892 .4894 .4897 .4899 .490 1  .4902 .4904 .4906 .4908 1

.4910 .4912 .4913 .4915 .4917 .4919 .4920 .4922 .4923 .4925 

.4926 .4928 .4929 .4931 .4932 .4934 .4935 .4936 .4938 .4939 .4940 .4941 .4943 .4944 .4945  • 4946 .4947  •4948 .4949 .4950 

.4951 .4952 .4953 .4954 .4955 .4956 .4957 .4958 .4959 .4960 

.4961 .4962 .4962 .4963 .4964 .4965  •4966 .4966 .4967 .4968 .4968 .4969 .4970 .4970 .4971 .4972 .4972 .4973 .4974 
 • 4974 •4975  • 4975 .4976 .4976 .4977 .4977  • 4978 •4978 .4979 .4979 .4980 .4980 .4981 .4981  • 4982 .4982 .4982 .4983 .4983 .4984 

.4984 .4984 .4985 .4985 .4985 .4986 .4986 .4986 .4987 .4987 1.4987 .4988 .4988  • 4988 .4988 .4989 .4989 .4989 .4989 .4990 .4990 .4990 .4998 .4991 .4991 .4991 .4991 .4992 .4992 .4992 

.4992 .4992 .4992 .4993 .4993 .4993 .4993 .4993 .4994 .4994 

.4994 .4994 .4994 .4994 .4994 •4995  • 4995 .4995 .4995 .4995 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 •4996 

.4996 
.4996 .4996 .4997 •4997 .4997 .4997 .4997 .4997 

 • 4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998 .4998 .4998 .4998 .4998 .4998 .4998  • 4998 .4998  •4998 .4998 .4998 .4998 .4998 
.4998 .4998 .4998 .4998 .4998 .4999 .4999 .4999 .4999 .4999 
.4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 i 

.07 .06 .05 • 04 •03 

1 
1 

3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 

4.0 
4.1 
4.2 
4.3 
4.4 

0.0 
si 

.3 

.5 
• 6 
.7 
.8 

1.0 
1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 

0.00 	.01 	.02 
.08 	• 09 

1.9 

2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2 • 9 



1 

AREA FOR a0.25 

X 	0.00 	.01 	• 02 	.03 	.04 	.05 	.06 	.07 	.08 	.09 

	

0.0 .0050 	•0099 .0140 	.0197 .  .0246 .0295 	.0344 	.0392 .0440 	.0488 .1 	.0536 	• 0583 .0631 	.0677 	.0724  • 0770 .0816 	.0862 .0908 	.0953 

	

.2 .0998 	.1043 .1087 	:1131 	.1175 	.1218 .1261 .1304 .1346 	.1388 

	

.3 .1430 .1472 .1513 .1554 .1594 .163461674 .1714 .1753 	.1792 

	

.4 .1831 	.1889 .1907 .1944 .1982 .2019 .2055 	.2092 .2128 	.2163 

	

.5 .2199 .2234  • 2268 .2303 .2337 •2370  •2404 .2437  • 2470 	.2502 

	

.6 .2534 .2566 .2598 .2629 .2660 .2691 .2721 :2751 .2781 	• 2810 

.7 .2839 .2868 .2897 .2925 .2953 .2980 .3008 .3035 .3062 .3088 

.8 .3114 .3140 .3166 .3191 .3216 .3241 .3266 .3290 .3314  • 3338 .9 .3361  • 3384 .3487 .3430 .3452 .3474  • 3496 .3518 .3539 . 3 560 

	

1.0 .3581 .3602 .3622 .3642 .3662 .3682 .3702 .3721 .3740 	.3758 

	

1.1 .3177 .3795 .3813 .3831 	.3849 .3866 	.3883 	.3900 .3917 	.3934 

	

1.2 .3950 .3966  • 3982 .3998 .4013 .4029 .4044 .4059 .4073 	• 4088 

	

1.3 .4102 .4116 .4130 .4144 	.4158 .4171 .4184 .4197 .4210 	.4223 

	

1.4 .4236 .4248 .4260 .4272 .4284 .4296 .4307 .4319 .4330 	.4341 1.5 .4352  •4363 .4373 .4384 .4394 .4404 .4414  • 4424 .4434 .4443 

	

1.6 .4453 .4462 .4471 .4480 	.4489 .4498 .4506 	.4515 .4523 .4532 

	

1 . 7  .4540  •4548 .4556 .4563 .4571 .4578 .4586 .4593 .4600 	.4607 
1.8 .4614 .4621 .4628 .4635 .4641 .4648 .4654 .4660 .4666 .4673 

	

1.9 .4678 	.4684 .4690 04696 .4701 .4707 .4712 	.4718 .4723..4728 

2.0 .4733 .4738 .4743  •4748 .4752 .4757 .4762 .4766 .4771 .4775 

	

2.1 .4779 .4783 .4788 .4792 .4796 .4800  • 4803 .4807 .4811 	.4815 

	

2.2 .4818 	.4822 .4825 .4829 .4832 .4835 .4839 	.4842 .4845 	.4848 

	

2.3 .4851 .4854 .4857 .4860 	.4863 .4865 	.4868 .4871 .4873 	.4876 

	

2.4 .4878 .4881 	.4883 .4886 .4888 	.489.0 	.4893 .4895 .4897 	.4899 
2.5 .4901 .4903 .4905 .4907 .4909 .4911 .4913 .4915 .4917 :4918 
2.6 .4920 .4922 .4923 .4925 .4927 .4928 .4930 .4931 .4933 .4934 
2.7 .4936 .4937  • 4938 .4940 .4941 .4942 .4944 .4945 .4946 .4947 
2.8 .4948 .4949  • 4951 .4952 .4953 .4954 .4955 .4956 .4957 .4958 
2.9 .4959 .4960 .4961 .4961 .4962 .4963 .4964 .4965 .4966 .4966 

3.0 .4967 .4968 .4969 .4969 .4970 .4971 .4971 .4972 .4973 .4973 
3.1 .4974 .4975 .4975 .4976 .4976 .4977 .4977 .4978 .4979 .4979 

	

3.2 .4980 .4980 .4981 .4981 .4981 .4982 .4982 .4983 .4983 	.4984 

	

3.3  •4984 .4984 .4985 .4985 	.4985 .4986 .4986 	•4987 .4987 	:4987 
3.4 .4987 .4988 .4988 .4988 .4989 .4989 .4989 .4990 .4990 .4990 
3.5 .4990 .4991 .4991 .4991 .4991 .4991 .4992 .4992 .4992 .4992 
3.6 .4992 .4993 .4993 .4993 .4993 .4943 84994 .4994  • 4994 .4994 
3.7 .4994 .4994 .4995 .4995 .4995 .4995 .4995 .4995 .4995 .4995 

	

3.8 .4996 .4996 .4996 .4996 	.4996 .4996 e4996 .4996 .4996 	.4997 
3.9 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 

	

4.0 .4997 .4997  • 4998 .4998 .4998 .4998 .4998 .4998 .4998 	.4998 

	

4.1 .4998 .4998 .  .4998 .4998 	.4998  •4998 	.4998 	.4998 .4998 	.4998 
4.2 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 

	

4.3 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 	.4999 

	

4.4 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 	.4999 



AREA FOR a =0.50  

X 	0.00 	.01 	.02 	.83 	.04 	.05 	.06 	.07 	.08 	.09 

0.0 .0046 	.0093 	.0139 .0185 	.0231 40277 	.0323 .0369 .0415 	.0460 
.1 	.0506 .0551 	.0596 	.0641 	• 0686  •0730 .0775 .0819 .0863 	.0907 •2  • 0950  • 0993 .1037 .1079 .1122 .1164  • 1207 .1249 .1290 	.1332 
.3 .1373 .1414 .1454 .1495 .1535 .1575 	.1614 .1654  • 1693 	.1731 
.4 .1770 .1808 .1846 .1883 .1921 .1,58 .1995  • 2031 .2067 	.2103 • .2139  • 2174 .2209 .2244 02278 :2312 .2346 .2380 .2413 .2446 
.6 .2479 .2511 .2543 .2575  • 2607 .2638 .2669 .2699 .2730  • 2760 
.7 .2790 .2819 .2848 .2877 .2906 .2934 .2962 .2990 .3017 .3045 
•8 .3072 •3098 .3125 .3151 .3177 .3202 .3227 .3252 . 3 277 	•33 02  
09 . 3326 .3350 .3373 .3397'.3420 .3443 .3466  •3488 .3510 .3532 

	

1.0 .3554 .3575 .3596 .3617 .3638 .3658 .3678  •3698 .3718 	.3737 

	

1.1 .3756 .3775 .3794 .3812 .3831 .3849 .3867 .3884 .3902 	.3919 1.2 .3936 	.3952 	•3969 .3985 .4001 .4017 .4033 .4048 .4064 	.4079 1.3  •4893 	.4108 	.4123 .4137 	.4151 .4165 	.4179 	.4192 .4205 	.4219 
1.4 .4231 .4244 .4257 .4269 .4282 	.4294 .4306 .4317 .4329 	.4340 
1.5 .4352 .4363 .4374 .4384 .4395 .4405 .4416 .4426  • 4436 .4446 
1.6 .4455 .4465 .4474 .4484 .4493 .4502 .4511 .4519 .4528 .4537 
1.7 64545 .4553 .4561 .4569 .4577 .4585 .4592 .4600  • 4607 .4614 
1.8 .4621 .4628 .4635 .4642 .4649 .4655 .4662 .4668 .4674  • 4681 
1.9 .4687 .4693 .4698 .4704 .4710 .4715 .4721 .4726 .4731 .4737 

2.0 .4742 .4747 .4752 .4757 .4761 .4766 .4771 	.4775 .4780 	.4784 

	

2.1 .4788 .4792 .4797 .4801 .4805 .4809 .4812 .4816 .4820 	.4824 
2.2 .4827 .4831 .4834 .4838 .4841 .4844 .4847 	.4851 .4854 .4857 
2.3 .4860 .4863 .4865 	.4868 .4871 .4874 .4876 .4879 .4882 	.4884 

• 2.4 .4887 	.4889 .4891 	.4894 .4896 	.4898 	.4900 	.4903 .4905 	.4907 2.5 .4909 .4911 	.4913 .4915 	.4916 .4918 .4920 	.4922 .4924 .4925 
2.6 .4927 .4929 .4930 .4932 .4933 .4935 .4936 .4938 .4939 .4940 
2.7 .4942 	.4943 .4944 .4946 .4947  •4948 	.4949 	.4951 .4952 	.4953 2.8 .4954 .4955 	.4956 .4957 	• 4958 .4959 .4960 	•496/ .4962 	.4963 

	

2.9  •4964 .4965 .4965 .4966 .4967 .4968 .4969 .4969 .4970 	.4971 

1.0 .4971 .4972 .4973 .4974 .4974 .4975 .4975 .4976 .4977 .4977 
3.1 .4978 	.4978 .4979 .4979  • 4980 	.4980 .4981 	.4981 .4982 	.4982 
3:2 .4983 04983 .4984 .4984 .4984 .4985 .4985 	.4986 .4986 	.4986 3.3 .4987 .4987 	.4987 .4988 .4988 .4988 .4989 .4989 .4989 	.4989 
3.4 .4990 .4990 .4990 .4991 .4991 .4991 .4991 .4991 .4992 .4992 
3 6 5 .4992 .4992 .4993 .4993 .4993 .4993 .4993 .4993 .4994 .4994 

	

3.6 .4994 .4994 .4994 .4994 .4995 .4995 .4995 .4995 .4995 	.4995 
3.7 .4995 .4996 .4996 .4996 	.4996 .4996 .4996 .4996 .4996 .4996 
3.8 .4997 .4997 	.4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 
3.9 .4997 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 .4998 

4.1 .4998 .4998 .4998 .4098 .4998 .4998 .4998 .4998 .4998 .4999 
4.1 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 
4.2 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 
4.3 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 
4.4 .4999 .4999 .4999 .4999 .5000 .5000 .5000 .5000 .5000 .5000 



1 
0.00 

1 

2.0 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.91 

3.0 
3.1 
3.2 
3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 

AREA FOR 'a= 1.00 
.01 	• 02 	.03 	.04 	.05 	.06 	.07 	.08 	.99 

0.0 .1043 '00087 .0130 .0174 .0217  • 0260 .0304 .0347 .0390 .0433 .1 .0476 .0519 .0562 .0604 .0647 .0689  • 0732  • 0774 .0816 .0858 4 2 .0900 . 0 942 .0983 .1025 .1066 .1107 • 1148 .1189 .1229 .1270 .3 .131 0 .1350 .1389 .1429 .1468 .1508 o 1547 .1585 .1624 .1662 
.4 .1700 .1738 .1776 .1813 .1850 .1A87 .1'424 .1960 .1996 .2032 
.5 .2068 .2104 .2139 .2174  • 2208 .2243 .2277 .2311 .2345  • 2378 .6 .2411 .2444 .2477 •2509 .2541  •2573 .2604 .2636 .2667 .2697 .7 .2728 .2758  • 2788 .2818 .2847 .2876 .2905 .2934 .2962  • 2990 .8 .3018 .3045 .3073  • 3100 .3126 .3153 .3179 .3205 .3230  • 3256 .9 .3281 .3306 .3330 .3355 .3379 .3402 .3426 .3449 .3472 

 • 3495 
1.0 .3518 .3540 .3562 . 3584 .3605  •3626 . 3647 .3668 .3689 .3709 1.1 .3729 .3749 .3768 .3788 .3807 .3826  • 3844 .3863 .3881 .3899 1.2  •

3917 .3934 .3951 .3968 .3985 .4002 .4018 .4034-.4050 .4066 
1.3 .4082 .4097 .4112 .4127 .4142 .4156 .4171 .4185 .4199 .4212 1.4 .4226  •4239 .4252 .4265 .4278 .4291 .4303  •4316 .4328 .4339 1.5 .4351 .4363 .4374 .4385 .4396 .4407 .4418 .4429 .4439  • 4449 1.6 .4459 .4469 .4479 .4489 .4498 .4507 .4517 .4526 .4534 .4543 
1.7 .4552 .4560 .4569 .4577 .4585 .4593 .4601 .4608 .4616 .4623 
1.8 44631 .4638 .4645 .4652 .4659 .4665 .4672  •4678 .4685 .4691 
1.9 .4697 .4703 .4709 .4715 .4721 .4726 .4732 .4737 .4743 .4748 

4.0 
4.1 
4.2 
4.3 
4.4 

.4753 .4758 .4763 .4768 .4773 .4778  • 4782 .4787 .4791 .4796 .4800 .4804 .4808 .4812 .4816 .4820 
.4824 .4828..4832 .4835 .4839 .4842  • 4846 .4849 .4852 .4856 .4859 .4862 .4865 .4868 •

4871 .4874 .4876 .4879 .4882 .4885 .4887 .4890 .4892 .4895 
.4897 .4899 .4902 .4904 .4906 .4908 .4910 .4912 .4914 .4916 •
4918 .4920 .4922 .4924 .4926 .4928 .4929 .4931 .4933 .4934 .4936 .4937 .4939  • 4940 .4942 .4943  • 4944  • 4946 .4947 .4948 .4950 .4951 .4952 .4953 .4954 .4955 .4957 .4958 .4959 .4960 
.4961 .4962 .49E3 .4964 .4965 .4965 .4966 .4967 .4968 .4969 
.4970 .4970 .4971 .4972 .4973 .4973 64974 .4975 .4975 .4976 

.4977 .4977 .4978 .4978. .4979 .4979 .4980 .4981 .4981 .4982 

.4982 .4983 .4983 .4983 .4984 .4984 .4985 .4985 .4986 .4986 

.4986 .4987 .4987 .4987  • 4988  •4988 .4988 .4989 .4989 .4989 .4990 .4990 .4990 .4990  • 4991  •4991 .4991 .4992 .4992 .4992 

.4992 .4992 .4993 .4993 .4993 .4993 .4993 .4994 .4994 .4994 

.4994 .4994 .4994 .4995 .4995 .4995 .4995  •4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4996 .4996 .4996 
 • 4997 .4997 .4997 .4997  • 4997 .4997  • 4997  •4997 •4997  • 4997 .4997 .4998 .4998 .4998 .4998 .4998 .4998  •4998  • 4998 .4998 .4998 .4998 

.4998 .4998 .4998 .4998 .4998 .4999 .4999 .4999 .4999 .4999 

.4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 .4999 

.4999 .4999 .4999 .4999  • 4999 .4999 .4999 .4999 .4999 .4999 .4999 •4999 .4999  •4999 .4999 .4999 .4999 .4999 .4999 .5000 •5 000 .5000 .5000 .5000 .5000 .5000 .5000 •5000 .5000 .5000 .5000 .5000  • 5000 .5000 .5000 .5000 .5000 .5000 .5000 .5000 
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