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FOREWORD

In 1971, I was given the responsibility of establishing a consumer product testing
laboratory in the then Standards Branch of Consumer and Corporate Affairs. During
this time I had frequent occasions to be in contact with Mr. Romanowski who, after his
retirement from the Division of Physics of the National Research Council, was acting as
consulting metrologist in the Standards Branch. Being a mathematician by education,
Mr. Romanowski has always been highly interested in the role mathematical statistics
plays in the analysis of the results of precise measurements, particularly from the stand-
point of their accuracy and reliability. Since Mr. Romanowski possesses a ve.ry keen
and inquisitive mind he became interested in the work performed in the new laboratory
and we became involved in long discussions on the applications ;)f statistical analysis to
the measurement of the degree of inherent hézard in ‘consumer products. These in-
depth discussions produced a number of collaborative publications in various interna-

tional journals.

During the last few years 1 became aware that the professionals in our labhoratories
have not acquired suliicient knowledge in the fields of calculus of probability and statis-
tics from their respective universities and‘:‘tfhcreforc ill prepared to solve certain prob-
lems they encounter. In order to bridge the gap in their knowledge a proposal was
made to Mr. J.W. Black, Director, Product Safety Brancl; (since retired) and Mr. R.G.
Knapp, Director, Legal Metrology Branch, that Mr. Romanowski be requested to hold a
workshop on statistics, in our laboratories. With the blessings from the two Directors I
approached' Mr. Romanowski and he, with some reluctance, agreed to hold a few
workshops. These "few workshops" continued every week from April 1986 to June

1987.

The reader must bear. in mind that the participants of the workshops have had
very little preliminary knowledge of sta.tisﬁcs' and a poor ﬁnderstanding of the applica-
tion of differential and integral calculus which, of course, plays a fundamental role in
statistics. In spite of all these difficulties the author not only completed the course but
compiled his lectures in a monograph form. This monograph is an attempt to adapt
mathematical statistics to the. kind of problems the present day metrologist encounters

in his work and require a good knowledge of the advanced procedures of mathematical

statistics. | : .~ K. Anwer Mehkeri
- Special Advisor
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PREFACE

In the near future the world will celebrate the second centennial of one of the most
important and influential events in the world’s history: the French Revolution. It is
difficult to predict what aspects of this event will be the most described and discussed as
it was so rich in great and glorious achievements and also in dismal failures and
tragedies. It is however quite safe to foresee that one, particularly successful achieve-

ment- is likely to be always quoted, namely the creation of the "Metric System™".

If the year 1790 is considered as the first year of the "Metre-era”, is it also legiti-
mate to consider it as the beginning of a new branch of physical sciences, namely that
of "metrology"? From a certain point of view, the answer is "yes". Although the prob-
lem of how to treat observations had already been raised half a century earlier (see
Chapter II), the Metric System was so grandiose and ambitious that it deeply shook all
scientific spheres. This system was supposed to be based on a so-called "natural unit",
namely the length of an Earth Meridian, and its execution was supposed to be so accu-
rate that it could be.recommended for adoption "by all nations and for all times". This
emphasized the role of geodesy which thus became closely connected wii:,h metrology and

... still is today.
It is very likely that the shock produced by the creation of the Metric System has

been responsible for the generation of the wide spread interest in "accuracy" and
"errors", in particular in "random errors". Now, the notion of "randomness" automati-
cally leads to that of "probability". Up to the middle of the 19th century the term
"probability" was used almost exclusively in the discussions concerning games of chance,
particularly those which use dice and cards. The geodesists and the metrologists had to
fabricate their own theory of probability in order to be able to apply it in the treatment
of the observed results. While some of them were engaged in the herculean task of
measuring the length of meridians, those who were more mathematically oriented
(Legendre, Gauss, Hagen) were constructing the probabilistic theory of observational
errors. It was not until the end of the first quarter of the nineteenth century that this
theory took the form that remained practically unchanged until the beginning of the
twentieth century when it t;ecame an iptegral part of a vast new scientific domain

which, perhaps not very adeqilately, is termed now "Statistics".
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The text that follows treats that part of this Statistics which is the most useful to

those who take care of the objects that are called "Standards” and are of such impor-

tance to the activities of any nation.

The reader, when perusing the monograph, must take into consideration that it is
neither a treatise, nor a textbook; in any case it is not a meticulously written, well pol-
ished product. It is presented to the reader exactly as it was presented to the partici-
pants of the workshop. It is a sort of living matter with all its peculiarities and imper-
fections. The author apologizes for all the inconveniences this may cause to the reader
and solicits his magnanimity. He is, naturally, anxious to know the opinions of all those
who may enter in contact with this, rather unorthodox, selection of topics in Statistics.
Being the quintessence of a personal experience, this selection may be of interest to
other metrologists-statisticians. The author has here particularly in mind those scien-
tists of the younger generations who try to find their way in the modern metrology

which is, no doubt, a rather peculiar brand of applied physics.

M. Romanowski
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Chapter I
General Theory

Section 1. Axioms and Basic Laws

The object of the calculus of probability (as a branch of mathematics) is a simple
thing called an "event" or "trial" which possesses the specific property of having a
result which can be either a "success" (positive) or a "failure" (negative). The result
must be absolutely clear and, ‘élthough the definition of the term "success" is purely
arbitrary, it must be unambiguous.

The term "probability® designates a primary notion i.e. it belongs to the same
category of terms as "point", "time", "space" etc. These terms designate those entities
which cannot be defined in terms of simpler or more basic ones. They are directly
created and conceived by the human mind.

The events are considered either individually or as forming groups designated by
terms such as "series" or "sets" of trials. The study of the results of events starts with

a certain number of axioms. An aziom is a statement that does not have to be demon-

“strated by means of some more basic entities. It is considered as self-evident and is sub-

stantiated by all experimental facts observed by mankind since time immemorial.

First Axiom
This axiom, often considered as the most important and fundamental, states th‘dt
in certain events all possible results are equiprobable. A typical case is the throwing of a

perfectly cubical die on a flat table top: all faces of the die are equiprobable.

Second Axiom
This axiom states that in certain well defined cases and in spite of the fact that the
first axiom cannot be applied, each result of a trial possesses a fixed probability. A typ-

ical case is here the throwing of a rigid irregular die.




Third Axiom

In those events which conform either to the first or to the second axioms, the pro-
bability of a successful result is expressed numerically by the limit to which tends the
ratio of the number of successes to the total number of events, when the latter becomes
larger and larger. For instance, if in the throwings of an irregular die, a large number
n of throwings are performed, of which m are considered as favorable, (the coming of a

selected face) then the approximate value of the chance of obtaining a success is equal

to “=. The probability p is then defined as being equal to:

(]
. m
p=lim —
n»> N

and it is considered as a number of the same nature as the irrational numbers ¢,m etc.

Many different problems may be examined in which the notion of probability plays
an important role. Some of them can be treated by the axiom of equiprobality but

‘some may be analysed only by means of the second and the third axioms.

There are two basic theorems on probability: the theorem of total probability and
the theorem of compound probability. They are directly and easily deducible from the

axioms.

Theorem of total probability

If in an event the success may be obtained in several different (mutually exclusive)
ways, the probability of a success is equal to the sum of probabilities of a success in all
possible ways.. This theorem is an immediate consequence of the third axiom and is

self-evident in all cases involving equiprobability. -

Theorem of combound probability

This theorem requires some introductory remarks. An "event" does not always
consist of one single trial. It may contain several distinct trials each of which possesses
its own specific definition of the success. Compound events can be divided into two

classes:

]
\ h




-3

a) events in which the probability of a success in each component trial is totally
independent of the results obtained in all other trials.
b) events in which there are relations between the probabilities attached to the com-
ponent trials.
~ Let us examine the following example. A box contains 10 ijects: 7 black and 3
white. The probability of drawing a black or a white object are thus 7/10 and 3/10,
reépectively. If, after the first draw, the object is put back into the box, the probabili-
ties in a second draw remain the same as in the first draw. But, if the object is not put
back after the first draw, the probabilities in a second draw are modified. If, for
instance, the first draw gave a black object, the probability of obtaining a second black
object is 6/9; but if the first draw gave a white object, the ﬁrobability of a black object
in the second draw is 7/9. The trials are not independent. In the sequel we will have
to deal mainly with independent trials so let us examine this case first.
Now, an event will consist of two consecutive trials (drawing with replacement) the
success being, by definition, thé obtention of two consecutive black objects. If a very
large number n of events are perfc;rmgd, then the number m' of events in which tfle

first trial gave a black object is, with a high approximation:

Among all m’ events, the number of events in which the second draw has also brought

a black object is designated by m '’ and is equal to

" _7_ % ’
m 0 m
Hence,
7 7 49 |
Nz — X —— X = —"' n = 049n .
™ 10 w0 =" 100

This relation is readily adapted to the case where the object is not put back into

the box. Clearly here:
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7 6
"z = X —-n
™ 10 9

All this is summarized as follows in the second theorem:

The probability of a success in an event that consists of two trials, is the product of
the probability of a success in the first trial and the probabilily of a success in the second
trial, the second probability being established on the assumption that the first trial has
been suecessful,

The second part of this theorem may be simply omitted if the trials are indepen-
dent. ‘

Section 2. Introduction to the Theory of Permutations

Suppose that we have a deck of 12 cards numbered 1, 2, ... 12. Well shuffled and
placed in a row they form a "permutation”. Any interchange of any two cards leads to
a new permutation. It can be readily shown that the number of different permutations

that it is possible to forra is equal to:

N =1x2 x 3 x -+ x 11 X 12 = 12!
The general formula for & cards numbered 1, 2, - - - k—1, k is
N = k.

If we remove one of the cards, say, 12 and replace it by any of the other numerals,

| .
eg. 5, the number of permutations will become % as the interchange of two identical

5’s does not create a new permutation. If we remove the card 11 and replace it by
120 _ 12!

9% 3 3

another 5 the number of permutations will further decrease to

This process of increasing the number of times the numeral 5 is repeated can be
continued and it will lead to the following convenient and simple rule: if in a set of

N=12 symbols, a certain symbol is repeated ¢ times the number of permutations

!
becomes equal to —1;?'—

e Em N AE W Gm N BN WM NP RS Ne S AN AR AN N Am W
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| Suppose now that the number of different symbols is reduced to two: 3 and 8. One

of the permutations may be, for instance,
383383838888

so that "3" figures five times and "8" ﬁgures seven times. The number of permutations

will be equal to

12!

Si7! = 792.

Note that, if all 12 cards bear the same symbol, the number of permutations is reduced

to

If all symbols are different from each other, then, of course,

! !
12! _ o120

1Ix1tx «« - x1! 1

Section 3. Bernoulli Trials*

The term "Bernoulli trials" is used to designate a set of a fixed number of consecu-
tive trials (the whole set is then called an "event"). All trials of a set have the same
constant probability p to produce a success. The most common way of illustrating Ber-
noulli trials is to make a deck of, say ¥ = 12 identical cards each of which has a "plus"
(+) on one side and a minus (—) on the opposite side. To produce complete random-

ness it is recommended to throw the deck in a large box and shake it vigorously.

Suppose that, in a row, the succession of symbols contains 4 plusses and 8
minusses:
et R e
As here the probability of a’plug’is p = % and that of a a’minug is also

g = 1-p = —;—, the theorem of compoun.d probability indicates that the probability

* James Bernouilli (1654 - 1705) Swiss mathematician {Basel) of Dutch origin.
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of the row is equal to
. ) . 12 .
1
= L L = = |= = —— = 0.000244 .
P=gx3X xz»[z] 4096

It must be strongly underlined that all rows of a constant number of cards (here

k = 12) are equiprobable.

According to the formula of permutations the number of combinations is here

P '
--—=---41’2éﬁ . The general expression for this number denoted by the symbol Ny is
k!
N .=, i ———— , ava 1
X X(k-X)! - W

k being the number of trials (number of cards) and X being the number of plusses

(number of successes).

The combination of the theorem of total with that of compound probability leads -

to the following expression of the probability of obt.é.ining X plusses in a set of £ Ber-

noulli trials:

k!

Px X(k-X)!

pX(1-p)~%. (2)

All trials possessing the same X form a "class” that is denoted by the symbol such as (4
+, 8 —) and represented by its "standard form":

N e
Numerical Example: k=12,z =0,1, 2,....5, 6 .

Ng = 1 P, = 0.0002
N, = 12 P, = 0.003
N, = 66 P, = 0.018
N, = 220 P, = 0.054
N, = 495 P, = 0.121
Ng = 796 P; = 0.193
Ny, = 924 - Py, = 0.226.
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At this point it is necessary to introduce an important term viz. that of variate.
This term designates that variable the probability of which is a function of its value. We

will be concerned only with functions having simple algebraic forms.

The method for treating the problem of the largest group (practically adequaf.e- for

simple cases of Bernoulli trials) is given in Appendix [. It is legitimate only for obvi-

ousiy unimodal distributions of probabilities. Here, it will be sufficient to say that the

largest group is the one in which X, satisfies, as closely as possible, the equation

X _ _P
k=X 1-p
Hence,
X, = kp.

. A rigorous relation (as indicated in Appendix I) is

kptp > Xn > kp—q.

It is now appropriate to make a very important remark on X,,. Bernoulli trials
constitute a fundamental background to the theory of " random errors, particularly
through the properties they acquire when k& grows to infinity. It does not matter what
kind of number is ¥ and how it tends towards infinity. It can be legitimately assumed,

without creating any loss of generality, that (for a specific value of p) the value of kp

remains an integer. For instance, if p = —;— we can assume that £ is an even number

and remains always even; if p = ?13-, we assume that k stays always divisible by 6, etc.

of course, if kp is an integer then kg is also an integer.

The quantity V, defined by the relation
V = X‘-Xm = X—kp , . ...(3)

is termed deviation (i.é. deviation from its most probable value). The formulae (1) and

(2) can now be given the following forms:



k!
(kp+ V) (kg— V)

Ny =

- k! (kp+ V) 4(kg=V) ' 5
v = G+ Mig-vi? * ~{5)

It is under this formn that the expression Py will be used in the theory of errors as

%, (5) becomes

k
%-] : (6)

this theory has been established by Hagen. Withp = ¢ =

T

It is strongly recommended to avoid ambiguous expressions and symbols. Thus, for
instance a symbol such as Py may mean either P(X = 0)orP(V = 0). Also, concerning
k, it must be noted that, except in some cases, (which should be clearly identified) & is
always a large number. Thus the question whether kp is (or is not) an integer is
irrelevant. It will be always assumed that kp is numerically rounded to the nearest

integer value.

Section 4. Binomial Expansion

A remarkable feature of Bernoulli trials is that they can be so directly related to

the binomial expansion. Let us, as an introduction, consider the formula:
(e+8)® = a® + 3a% + 3ab® + b3

It can be written as follows:

3! 3!
O = — 30 ¢ T g2p!
(a+b)" = Sa—oy *° * TE-1r °

3! 1.2 3! 0.3
SR B VS G
2(3-2) * 3(3-3) °

and is identical to the form above, since according to algebra, 0! = 1.

According to the general Binomial Theorem (established by Newton) the above

development can be generalized for any value of the exponént. Comparing the forms of

i
' I
|
¥
|
' ‘
I\ .

i
;
:
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the second terms of (a+5)® with the terms of the formula (5) one readily notices the

reasons why it is of a particular interest to consider the expansion of the expression

(g+p)*.

The expansion can be presented in the following classical form:

axe) = ol(e—oy ”* * (k-1 1 * k-2 © 1 +
Kl k-2 2 k! k=11 k! ‘o
* (k—2) 2! pre (k—1) 1! Pt (k—_O)! o P .(7a)

Each term can be simplified and the expansion takes a form that is easy to

remember;
E oo ko Kk k-1 + k(k=1) 2 k-2 + k(k=1}k—2) 3 k-3 +
(¢+p)* = ¢ + T P o P Saxz P ¢
k{k—1) (k-2 - k(k—1 - k - ) :
+ ( 1x2)(x3 ) pk=34% + £ pk=2q? + £ pt=lg + pt ..(7h)

By comparing each term of (7a) with the relation (2) it is easy to notice that if, in
k Bernoulli trials p is the probability of a "plus”, the series (7a) or (7b) are equivalent

to the fundamental relation:

k
(g+p) = P+ P+ P, + -+ + P, =XE Py=1. ..(8)
=0

In accord with the definitions presented in Appendiz II the expression for the

moment w; =z can be written in the form:

k

Therefore (as X takes all the values from X = 0to X = k):

k k—1 k!k“l! 2 k-2 k(k 1)(“ 2) 3 _k—3
wy, = 1— pgq + 9 pq + 3 p°q +
! 1 1x2 1X2x%x3

k(k—=1)0(k=2) k-3_3 k(k=1) k-2.2 4 E k-1 k
- - k— + kp* .
F k=8 g P + (k—2) T _p ¢" + ( Ul p” g t+ kp
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The factor kp is common to all terms in the development and thus can be put out of

the brackets:

- k-1 - (k=1)(k—=2) 2 k-3
= k=1 k=2 4 + coo
wy; = kplg" " + — P4 ‘ 1x3 p°q
(k=1)(k=2)(k=3) 3 k-4 , (k=1)(k—=2)(k=3) -4 3
+ + .
+ 1x32%3 P 1 1%2X3 P
(k=1)k—=2) k-3 2 k=1) k-2 k=1
voe + o+ - 4
%9 p*q LA A

Close examination of the expression in the square brackets shows that it represents

the development of the binomial (g +p)k-1. It is therefore equal to unity and, thus,

w, = kp = z. _ - ' .(9)

This confirms that the mean and ‘the first moment are identical quantities. The reader
should perform all calculations in detail on a numerical case, such as e.g. (g+p) ie.
k=7. The common factor that can be put out of the brackets is then equal to kp=7p.
The final results will be w, = kp = 7p(q+p)® = T7p.

The calculation (by the same procedure) of the second moment w,, i.e.
X=k 9
wg = 3> = X°Py, _ ...(10)
X=0

is much more complicated. It will not be described here but in the Appendix III. The
result is quite simple: '
wp=kp((k—1)p+1] , - .(11)

w,=(kp)?—kp®+kp .

The relation (II, 8) by means of which we can calculate the second moment of X with

respect to wy=kp is

g = ‘”2—‘”12v

f’




-—--‘---‘---‘—-

-1k -
we = (kp)’—kp*+kp—(kp)?
we = kp(l-p),
me = kpq . (12)

This is an important formula; it will be constantly used in the sequel.

Important Remark
Note that in Sections 1, 2, 3 and 4 of Chapter I, the symbols designating variable

quantities such as X, X, kp, V etc. are assumed to represent integers. In certain
numerical problems, this point (as in the problem treated in Appendix I) must be
treated appropriately. In theoretical deductions however, starting with Section 5, these
variable quantities become larger and larger so that it does not matter whether they é.re
integers or not. And it is always permissible to assume that their numerical values are

such that the derived quantities, involved in the analysis, are also integers. Thus, for

instance, when p=q= —21- we can assume that k is a (large) even number.

Section 5. Asymptotic Expressions
The calculations with various expressions based on the binomial expansions would
be almost impossible when the number of trials is large. This domain of mathematics

has been totally transformed by the discovery by James Stirling (18th century) of his

famous formula that expresses factorials in terms of exponentials. Stirling’s formula is:

k
k= [—’3] Vauk .(13)
e
in which ¢ is the transcendental number defined by the converging series:
1 1 1 ~
= _— —_ - 4+ = 271828 .
e 1+1'+2!+3! 2.71828

¢ is the base of the so-called "natural" logarithms.

The transformation of expressions such as (5) is far from being a simple operation.

It involves various expansions (Taylor’s expansions) accompanied by delicate evaluations
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s

of the orders of magnitude. The remarkably simple resuits to which leads this serious

mathematical operation is:
V"!

1 " Zkpg
Py = e P9, wo(14)
v ; 2w ; kpq

The reader is reminded that V is the deviation of the variable from its mean kp which,
without making a significant error, can be rounded to an integer value. In conformity

with (12), Py can also be written:

Ve

1 2uy .
P = (4 Coe, ...(15
SV weyo )

" In all applications of these formulae which will be made in the sequel, we will not
be interested in the probability of one specific value of V but in the probability that a
deviation will lie between certain narrow limits V' and V'’ (V' > V'). Let us

write:
V' = V' + AV . ...(18)

The law of total probability indicates that the probability that V will take any of the
values Py, Pyiopy, Pyrsg, * © * Pyrppy is equal to the sum of these values. If AV is
small, then these values are not very different from each other and it may be assumed

that their sum is equivalent to:
APy, = AV P, , -(17)

P, being the 'probability of a value located in the middle of AV or, in any case, close
to:

v, = —;-(V" + V). ...(18)

Thus APy denotes the probability that the variable V will be located somewhere inside
the interval AV. The fact that P,, must be multiplied by the "length"* of the interval

* Note that here the term "length" (of an interval) means the number of discrete values V located
between V' and V''. .
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AV suggests that it be called the "probability density" in the interval AV,

Let us now re-write (16) under the form:

APy = 7;—1; 'c_—z-(v:] \é.:';z .

It shows that the probability that a deviation V will fall into an interval AV is a func-
tion of the ratios of V and AV to V . The quantities

(19)

AV .(20)

4 Av =
V o

v = ———
Vl‘-z,

are termed reduced values of V and AV, respectively. The reduced values are thus

obtained by using as unit the square root of the second moment. So that, finally:

il
<
N

a

rg

<

AP, L o % Av. (21)

While the theory of Bernoulli trials starts with an essentially integer number X, in
the asymptotic expressions based on Stirling’s formula all variables are no longer

integers but should be considered as of a discrete nature.
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Numerical Examples

A few numerical applications will give an idea of the orders of magnitude of vari-

ous quantities encountered in preceding sections. As a first example of the Bernoulli tri-

als let us treat the case where k£ = 10000, p = ¢ = L and calculate the probability

that the deviation V from the most probable value kp = 5000 will fall into the interval
between V' = 45 and V'’ = 55.

The centre of the interval AV = 55—-45 = 10 is at V,, = %(554-45) = 30. The

second moment ., is equal to:

10000
B = kpg = ax2 2500 ,
Ve = 50 .
The reduced value v, of V,, is therefore:
b = Vn - 50 _ 1
" Vi, 50 .
and
2
Um AV 10
— = 0.5, Ay = —= ="— = 0.2
2 \VATI 50
The relation (21) is here
AP, = —pme ¢7%5 x 0.2
2w
”2

There are tables for the expression T;- ¢ ? asa function (v). We shall find
m

in these tables that: &(v, = 1) = 0.24, hence:
AP, = 0.24 X 0.2 = 0.048.

Thus the probability that in a throw of 10000 cards the deviation from 5000 will fall in
the interval between V' = 45 and V = 55 is of the order of 4.8 percent.

1
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For v = 0 (central interval, between V = —5 to V = +5), ¢(0) = 0.40 so that
the probability is of the order of 0.40 X 0.2 = 0.08, i.e. 8 percent.

It is interesting to notice that this probability is decreasing very fast with increas-

ing v. When v = 3, then ¢(3) = 0.0044 and therefore
AP, = 0.0044 X 0.2 = 0.00088 = 0.088 percent.

At v = 4, ¢(4) = 0.0020..
The fanction:.

is often called simply the "normal function”. More appropriately, it should be termed

"probability density function (pdf) of the normal var_'iate". The probability that v will fall
into Av is

AP, = ¢(u)AJ . | ..(22)
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Table of the Function ¢ (v)

0.00

0.01

0.02

0.03

0.04

0.08

0.06

0.07

0.08

0,09

0.0
0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8
0.9

1.0
1.1
1.2
1.3
1.4

15
1.6
1.7
i.8
i.9

2.0
2.1

2.3
2.4

2.5
2.6
2.7
2.8
2.9

3.0
3.1
3.2
3.4
3.6
3.7
3.3
3.9

.3989
.3970
3910
3814
.3683

3521
3332
3123
2897
2661

.2420
2179
1943
1714
1497

1296
.1100
L0940

0853

.0640
.0440
.0365
.0283
0224

0175
0138
0104

0060

0044
.0033
0024
.0017
0012

0009
.0008
0004
.0003
.0002

.3989
.3965
.3902
.3802
.3663

3503
3312
.3101
.2874
.2837

2398
.2158
1919
.1691
.147¢6

1276
.1092
0925
0775
0644

0629
.0431
0347
0277
0219

0171
0132
.0101
0077 |
0058

0043
.0032
.0023
.0017
0012

.0008
.0006
.0004

0002

.3989
.3961
.3894
3790
.3653

.3485
3292
.3079
.23850
.2813

2371
2131
.1895
.1669
.1456

1257
1074
.0909
0761
0632

0519
0422
.0339
0270
0213

0167
0129
.0099
.0075
.0086

0042
.0031
.0022
0018
.0012

0008
0004

0003
.0002

.3988
.3956
.3885
3778
.3637

3467
3271
.3056
.2827
.2589

2347
2107
.1872
1647
1435

.1238
.10587
.0893
0748
.0620

.0608
0413
.0332
.0264
.0208

.0163
0126
.0096
.0073
.0085

.0040
.0030
.0022
.0016
0011

.0005
.0004
.0003
0002

.3986
3951
.3876
.3765
.3621

3448
.3251
.3034
.2803
.2565

2323
.2083
.1849
.1626
.1415

1219
.1040
.0878
0734
0608

-.0498

0404

0325 |

.0258
.0203

.0158
0122
.0093
0071
0053

0039
.0029
0021
.0015
0011

.0008
.0005
.0004
0003
.0002

-

.3984
3945
.3867
3752
.3605

.3429
.3230
3011
.2730
.2541

.2299
.205¢
.1828
.1604
.1394

.1200
.1023
.0863
0721
.0596

.0488
0395
0317
.0252
.0198

.0154
0119
.0091,
0069
.0051

.0033
.0028
.0020
.0015
.0010

0007
0005
.0004
.0002
.0002

.3982
3939
3887
3739
.3589

.3410
.3209
.2989
,2758
.2516

2275
.2038
.1804
.1582
1374

.1182
.1006
0348
0707
0584

0473
0387
0310
0246
0194

0151
01148
.0088
.0067
.0050

0037
0027
.0020
0014
.0010

.0007
.0005
.0003
.0002
.0002

.3980
.3932
3847
3725
.3572

3391
.3187
.2966
2732
.2492

2251
.2012
1731
1561
.1354

.1183
.0989
.0833
0694
0873

.0468
0379
0303
.0241
.0189

0147
0113
.0086
.0065
.0043

0038
0026
.0019
0014
0010

.0007
.0008
.0003
.0002
.0002

0371

.3977
.3925
.3836
.3712
.3586

.3372
.3166
.2943
2709
.2468

.2227
.1989
.1758
.1839
1334

.1145
.0973
.0818
0881
0662

0459

0297
.0235
0184

0143
01310
.0084
0083
0047

.0035
.0025
.00138
.0013
0009

.0007
.0006
.0003
.0002
.0001

.3973
.3918
.3825
.3697
.3538

3352
3144
.2920
.2885
2444

.2203
.1965
.1736
.1518
1315

1127
.0857
.0804
.0669
05561

0449
.0363
.0290
0229
0180

.013¢9
0107
.0081
.0061
0046

.0034
.0025
.0018
.0013
.0009

.0006
0004
.0003
.0002
.0001

]

e

(]

0.3251
0.3230

$(0.8435) = 0.3251-0.0007

9

= 0.8435

} 8s = 0.0024

35

e ¢

100
0.3244

21=7
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Chapter I
Basic Theory of Random Errors

Section 1. Introduction. Hagen’s Theory

There are in the history of errors in observations three particularly important
dates.

1755: publication by Thomas Simpson of a "Letter" in Phil. Trans. Roy. Soc., vol
49, part I (pp. 82-93). In this letter, the author recommends that when a measurement
is repeated several times, all results should be taken into account and not only those
which seem to be "good". He also recommends that the mean of all measurements be
explicitly recognized as the "best approximation" to the measured quantity. Obviously,
Simpson had a "statistically structured" mind.

1809: publication by F. Gauss of "Theoria Motus", Hamburg. (English modern
translation: Dover Pub.) In this book, one of the most important and famous in the
history of science, Gauss treats the ﬁroblem of errors in a very particular manner that is
not founded directly on the binomial theory, but on the role the mean plays in large
samples of repeated observations. _

1837: publication of “Grundi\'ige der Wahrschei;ﬂichkeitsrechnung" by G.H.L.
Hagen, Berlin 1837 (2nd. edition in 1867). Although various authors have expressed,
well before Hagen, the idea that an accidental error results from a combination of a
large number of very small errors, the great merit of 'Ha.gen’is that he gave this idea a
clear and rigorous mathematical form. Thus it became possible to apply to the study of
random errors the methods of mathematical analysis that constitute the basis of the cal-
culus of probability. o

Hagen was certainly an outstanding engineer and mathematician. His book must
have had a serious impact on the scientific sphereé of his time. Perhaps Hagen’s work
was partially eclipsed by his illustrious contemporary, Gauss.

Before we start the analysis of Hagen’s theory, it is appropriate to make the follow-
ing gene;'al remarks.

a) A sample of "repeated’ measurements (or measurements that are collected by a

process which is equivalent to "repetition" ¢.g. formation of loops in geodesy) must be
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of the highest possible qu'a.lity-. This implies t.hé.{; all scientific knowledge available at
the date of the measurements has been fully put into action. Here, the personality of
the observer(s) plays a predominant role and, as such, cannot be intrinsically evaluated.
The goodness of a metrological operation is the result of an enormous number of partial
efforts and endeavours.

b) Although Hagen does not express it explicitly, the structure of his ideas shows
that he accepts the concept of "true value” of the measured quantity. This concept is
more fully analysed in Appendix V. Here we shall simply adh;ere to a sort of general
consensus that such a concept can be used in the discussions that follow.

Let us assume that the repeated measurements of a stable physical quantity,
yielded a set of N results m;(i=1, 2, - -+ N). If these numbers are represented by
points on an axis (origin m = 0), a simple inspection will show that these points m; will
form a dense cluster in a clearly visible region. The density of points will decrease with
the distance from the cluster.

The probability that an additional point will be close to the cluster is larger than
the probability that it will be far from it. There is therefore a relation between the

magnitude of a result and its probability of occurence.
Hagen'’s theory is based on the following fundamental assufnptions:

1. Every measurement is disturbed by a very large number of small errors termed ele-

mentary errors.
2. All elementary errors are of the same magnitude.
3. Every elementary error has the same chance-to be positive as to be negative.

One readily notices that all theorems concerning elementary errors and their com-

binations will be deducible from those established for Bernoulli trials. Suppose now

that each card of the pack of k cards bears the symbol +§ on one side and —-% on the

other side. In a set containing X plusses, the deviation V is equal to V = X—kp and

the sum H of all symbols 1-—;- will be equal to:

H = [+§}x + [‘%] (k—-X) .
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. As X = V+kp , we have

H = ¢ V+§(2p—1)]

and, because p = -é- , this gives the simple relation

H = eV ..-(23)

by means of which the expression APy will be deduced from that of APy .

This is readily done as follows. The exponent of ¢ in (19) is put in the form

R

\v/l:"—z (‘5\/:2)2 e’

so that it is easy to notice that the denominator ezp.z = e’kpq is the second moment of

H = eV. This moment will, in all further expressions, be desigriated by the symbol S

(capital letter):

S = €p, = e*kpq . ...(24)
1
Ifp=gq=—,
p q 9

2 Yk

2 - £k k S = eYk 25

S = > (25)
and, therefore,

2 _ P

=t T AE ..(26)

Pa ; 2w S

|
] | el
= |

(41
U |~

5

o>

i

Hagen’s assumptions automatically lead to our examining what happens when &
tends toward « and therefore € tends toward 0. If such hypotheses have to lead to
experimentally meaningful results, then it is necessary to postulate that the following

double condition must be satisfied:

k - lim H = finite.
€-0 lim €2k = finite.
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The symbols for these limits are:
imHAd =z, .0:(27)
lim ‘%& = ¢? (variance) . | ...(28)

The variable z must now be treated as continuous and so is also the function f(z) the
form of which is
1 T20?

f(z) = SYor : -(29)

By similarity with the function which defines the variate V, it is termed the "probability
density function” (pdf) in the vicinity of the value z. The probability dP, that z will
fall into dz is therefore equal to

:2
- 1 T 202
dP, = f(z)dz = € dz . ...(30)
* o ; 2m : (
In literature, f (z) is often called simply the "normal curve” or "Gaussian curve".
Similarly to the transformation of V into v, the variate z is transformed into the

reduced variate A by the relation

= f— : (31)
Then also:
= —f;i, .(32)
and (30) becomes
1 WA
dP, = Yo © 2 odn (33)

U(A) = W‘; e | ..o(34)
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{

are tabulated®. The central value {(0) is ¥(0) = 0.3989. If, for instance Az = -13,

then AN = 0.1 and therefore

dP, = 0.3989%x0.1 = 0.03989 .

Thus the probability that z will fall into the central interval Az, Az being equal to one

tenth of the standard deviation o, is of the order of 4 percent.

Section 2. Fitting of a Normal Curve

Let us now go back to the set of N numbers m; obtained by measuring repeatedly
a certain physical quantity mqy. There are cases where it is legitimate to consider m,
not only as really existing but as known; for instance in geodesy m; may mean the devi-
ation of the sum of the three separately measured angles of a triangle from the true

value my = 180°. If the deviations (m; —180) conform to the Hagen theory then we can

write

; = my—mg ' A :..(35)

and therefore the value z; should conform to the function f(z) as it is defined in (30).
If the whole set of m;’s 1s available, the calculations can be carried out without

difficulty as follows.

The value of the variance o is directly computed from the individual results m;:

2

g = z(m;—-mo)z . ..(36)

L
N 5
This operation presents no difficulty when modern computational machinery is avail-

able. Once ¢? is calculated, the operator can choose a convenient fraction of o as the

classification interval Az. For very large N, it is convenient to use Az = % or

Az = L. For not very large N, -g- is frequently used. The As.ample is now "classified"

* The table of the normal function was given in Chapter I, Section 5; the variable v is
identical to the variable A.
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' : — +
(see Fig. 1 and Fig. 2). Its central interval extends from ;:c to gz,-(centre C,y at
: : +
zq = 0), then, to the right, from +2Az to L342 (centre C, at z; = +1), from 30z

+5Az

to (centre Cy at z, = +2Az) etc. The same operation is then performed

towards negative values. Sometimes both wings (on medium size samples, say N=1000)
terminate abruptly and meatly at £ = 4¢ or z = 50 and at the same distance from the
origin. However, somefimes the wings present certain "problems", the handling of
which cannot be made according to stringent and precise rules. The opinion of the
observer-experimenter is then the most important factor and must be taken into

account.

If my is not known, it is legitimate to use the mean m as an estimate for my. The

mean m is computed by the formula:

m o= %-zm,-, i=1,23..N ..(37)

It is shown in Appendix V that the formula for the variance is slightly different from
(36) and is:

o? = __1__.2(,,,,._,;)2, | .(38)

,
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::‘1 é * x x
¥ T < S 5
) ) X =0 M i i
‘ o T < >l<“ <
hd % ) L] d =o .L L] .A ‘i r
Ax--g- Ak--gl- AX N A S AS 5

Fig. 1. Horizontal axis prepared for a classified sample.

Once all the A’s are calculated, the values of the corresponding ¢(A) are found in
the table of the Normal Function. For instance, the probability AP,(\;) is expressed
by the product

AP\(A) = (A )AN, = q‘,(xl)x%. (39)

The final step is the calculation of the so-called "theoretical™ class frequency:

flz)) = f() = A)XTXN . .(40)

We shall now treat those cases where the whole set of observations m; is not avail-
able. This often happens in literature when a sample is already classified by means of a
certain interval Am but the classification of which is not referred to the central interval
(centered on m). This is represented in Fig. 2 which shows (k+1) intervals of

classification numbered from 7 = 0 to ;7 = %=k,
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J2+275
G G S:o ?l. C, 93 uuuuuu C,
420 + +2 +3 jatk
A ju )
Fig. 2. Use of the "rank” j as variable.
J being the rank of the interval and F; being the class frequency.
It is, of course, perfectly possible to calculate the value of the mean 7 = 7{7 E JF;
: J
and the variance ¢? = 1 (7 —3')21"',-. It is obvious that the position of m will

N-1

not coincide with the centre of an interval. Let us assume that it is located as shown in

b

Fig. 2, f.e. at a point corresponding to 7 = 2.75. The distances of all points

Cy, Cy * + + from 7 are calculated as follows:

Cy distant from ;3 by 0-—2.75

3 ~2.75
C, distant from 7 by 1-2.75
j

-1.75
by 2-2.75 = —0.75
C; distant from 7 by . 3—-2.75 = +0.25
C, distant from 7 by 4-2.75 = +1.25

C, distant from

i

°

Each of the numbers in the last column must be now divided by o to give the \’s of the
centres C;. If the observed class frequencies F'; are of proper structure (i.e. suggest that
the distribution could be normal) the calculation of theoretical class frequencies is car-
ried out as in (40) with AN = 47 (A7 = 1) and N equal to N = 3 F,.
G .
. ]
It is to be noted that the axis of symmetry of the curve passes through m but the

central ordinate cannot be calculated and the theoretical points are not placed symmetr-

ically with respect to the central ordinate.
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. The example that follows is taken from the measurements of electrical energy by
means of domestic meters. -

There are 144 nominélly "identical" meters registering (in series) the electrical
energy consumed over a one year period and measured against a group of "monitors"
considered as yielding the true value of consumed energy. It is assumed that the devia-
tions of the ordinary meters are distributed quasi-normally and thus in conformity with

a normal curve.

The 144 numbers obtained are actually the percentages that indicate the deviations

of a meter with respect to the monitors. They are classified by means of an interval

equal to 0.1 percent. The individual elements are all listed in Table I A.

The classification intervals are numbered from ;7 = —9 to j = +25 as shown in

Table IB, F; being the observed class frequency. The calculation of the mean 7 and the
variance s? leads to the values .

——

7 = +4.3681 (axis of symrnetry),

52 = 21.5909, s = 4.6466 .




Table I - A

Y., = =001 | Yy, +0.72 | Yu, = 4062 | Y, =  +1.24
-0.20 +0.56 +0.60 +1.40

+0.12 -0.95 +0.09 +0.72

+0.39 +0.83 +0.76 +1.15

+0.07 +0.24 +0.14 +0.80

-0.17 —0.40 -0.72 +0.62

+0.16 +0.44 +0.73 +0.64

-0.01 -0.91 +1.06 +1.02

Yie= +054 | Yo ~049 | Yy =. +0.87 | Y,9=  +0.95
Yl,lo = +0.31 Y2,10 -0.13 Y3,10 = +0.05 Y4,10 = +0.70
+0.30 +0.27 -0.29 +0.64

+0.11 +0.43 -0.21 +1.20

+0.65 +0.34 -0.38 +0.57

+0.36 +0.07 +1.17 +0.89

+0.58 -0.07 +0.60 +0.75

+0.56 +0.40 -0.14 +0.92

: +0.65 - +0.53 -0.18 +0.87
Y1,18 = +0.47 Y2,18 +0.05 Y3,18 = +0.24 Y4,18 = +0.81
Yie= +032 | Yy0= +0.26| Y3,0= 4039 | Yyo= +0.51
+0.11 +0.69 -0.07 +0.60

+0.07 +0.98 +0.68 +0.98

+0.65 +0.55 -0.18 +0.44

+0.72 +0.83 +0.59 +0.72

+0.69 +0.30 -0.03 +0.25

+0.68 +0.62 +0.98 +0.92

+0.62 +0.31 +0.31 +0.81

Y1,27 = +0.35 Yz,z-( +0.42 Y3,27 = +0.03 Y4,27 = +1.20
Yige= +022 | Yyge= +050 | Yzpe= +027 | Yoo = +0.27
+0.46 +0.66 +0.40 +2.50

+0.36 +0.30 +0.03 +0.59

+0.05 +0.77 +0.28 +0.45

+0.42 -0.03 +0.15 +0.47

+0.99 +0.50 -0.43 +0.56

+0.40 +0.04 +0.56 +1.65

+0.40 +0.20 +0.57 +0.88

Y1,35 = +O.63 Y2,3Q = +0-32 Y3’35 = "0»08 Y.‘,ss = +0.45




l - 27 -
' TableI- B
-9 2] 0.20
' -8 0 0.36
-7 1 >4 0.62 »3.83
-6 0 1.03
l -5 =11_ o L62.
3 APt et
| 2 5 4.83
-1 ) 6.34
0 9 7.95
l +1 9 9.51
+2 7 10.86
. +3 14 11.84
+4 15 12.32
+5 10 12.25
' <+6 20 11.62
+7 13 10.53
| +8 8 9.11
l +9 7 7.52
+10 5. 5.93
: +11 2 4.46
i +12 478 32177
+13 0 2.20
‘ +14 1 1.44
. +15 0 0.90
+16 0 0.54
I +17 1 0.31
+18 0 0.17
+19 03 0.09 —5.72
' +20 0 0.04
+21 0 0.02
+22 0 0.01
l +23 0 0.00
+24 0 0.00
+25 1] 0.00
' 144 143.80
. For the disposition of the calculations follow the pattern of Ex. 4 (Screws
' Fabricating Machine)
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N= 144
j=4.3681
$=24.6466

Normal Curve

Fig. 3. Sample of measurements performed on a group of

electrical energy meters.

Note that the dots on the j-axis represent the centres of the intervals: eg. in the

interval y = 7 are located all elements the values of which are between 0.65 and 0.75.
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Section 3. Basic Integrals Related to the Normal Function

The fundamental integral from which all other integrals are derived is: -
J, = [2"e dz . ..(41)
0

The important feature of J, is that it can be expressed by means of an integral of lower
order, namely J,_,. Thus,if the expressions for J; and J, can be directly established,

all other integrals can be formed step by step by a recurrence formula.

Only J, possesses a simple primitive function. It is

J1=

" The calculation of the expression for J, is not simple: it is based on the calculation of a

double integral by using polar coordinates. This operation will not be described here
and the expression for J, will be deduced by the following indirect method which is, in
its essence, based on the theory of binomial expansion as it has been treated in Chapter

I, Section IV.
Let us refer to the equation (30),

: -2
f(z)ds = ——m= & *dz.
0';217

It is obvious that the summation of f(z)dz for all values of z (from -© to + ) must

lead to the total probability equal to "unity® (i.e. to be equivalent to "certitude"):

+oo to ©- . X
[ f(z)dz = 1 [ e 20 4r = 2 fe ¥dz = 1.
~a 0';271- By 0';211' 0

The change of variable
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= zo‘ﬁ, dz = GVEdz

leads to

- s
e *dz =

_ Vx
J@—' T.

ot—8

The above mentioned recurrence formula is deduced from the following differential rela-

tion:
d(z"'1 c"z] = (n=1)z""2eFd; - 2z%e "% dz.

Integrating between 0 and « we obtain

] amw?
Iznlcz

The left-hand term is equal to zero and thus we have

- =

0 = (n—l)fz"-ze"z'zdz - 2fz"c“’2dz .
o : 0

0 = (n—l)Jn_z—an,

S
S
]
—
N
NS
(1
i
H
|
&
|
e
00
»
o
[<) ]

il
—
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[19
|
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|
I
|
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By means of these formulae, and those which can be further established, it is possi-

ble to form the integrated expressions for various forms of moments w, of the normal

variate.

The moment p.,, is defined by the integral

+ e

1 n.  20°
= dz .
b = e L 43)

The curve f(z) is symmetrical with respect to the y-axis so that when n ts odd, the
integral from — to 0 is equal, but of the opposite sign, to the integral from 0 to +<°.

Hence, when n is odd, all moments ., are equal to zero: p; = pg = pg = -+ = 0.

To express the values of w, (n even) in terms of the basic integrals of Table II, use

the change of variable
z = 20Y2, dr = oY2dz.

This will lead to the results given in the Table III below.

In this table are also listed the so-called "absolute" moments v,. The formulae for

these moments are the same as for p, except that the variable z is replaced by its abso-

lute value I:c |: .

- == flzl" 1 g,

Because of the symmetry of the curve with respect to the vertical axis this expression is

equivalent to

+c0 _i
= —2_ [z"c ¥4z, .(44A)
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Table III
Moments of the Normal Variate

oy = 1 f zle 2 dz
CY2T ~-w
i v B
2
g = . f ze 7 dz
FY2T -
i 4oc0 _“__f_
X 2
B3 = f g% %% dz
cY2r -=
.t =

3¢t

Yo

Vi

Va2

V3

¥4

Vs

Mo = 1
+e0 - z*
2
lee 20° Jz
og¥Y2m o
_ 2
K = @
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It is obvious that, when n is even, y,=wn,. But each v, in which n s odd, has its own

specific value.
As all expressions for v, are obtained by transforming v, into J,, there must be a

recurrence relation that expresses v, in terms of v,_,. This relation is
= (n—=1)q2
Vo = (n 1)0 Vp-2 -

Its demonstration is very simple and is performed by the same substitution as in all pre-

vious calculations, i.e.

It leads to the equation

1

I

1

1

1

i

I

i

l | v, = —Y;—o“ z e~Fardz = Tf-—o“)n. ...(44B)
B - replaced by n—2, this becomes
i

]

i

i

i

i

i

i

1

¥
22 -
Vp-2 = a” 2Jn—2,
T
and therefore,
2 L]
22 g 2 22 ..

Finally

y

— = ¢¥n-1). . .(45)
Yn-2

The notion of moment can be further generalized by ébnsidering n as a non-

integer, in particular as a fractional number. This has already been partly done and

described in the author’s previous studies and publications. However, it is only a small

incursion into a vast domain of mathematical investigations.
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Chapter III
Mixtures and Dichotomy

Section 1. Mixture of Centered Normal Populations

Let /,(z) and f,(z) denote the pdf’s of two normal variates:

fiz) = le:;e i fa(z) = me
1 .

The probability that a value z of the first variate will fall into an interval Az is
equal to f,(z)Az and the probability that the same z, but belonging to the second vari-
ate, will fall into the same Az is fy(z)Az.

Consider now 2 large sample of N, elements the distribution of which conforms to
the pdf f,(z) and a large sample of N, the distribution of which conforms to the pdf
fo{z). If these two samples are mixed i.e. combined into one single sample of
N=N, + N, elements, the sample N; will introduce into Az a number of elements
equal to N,f,(z)Az. The .sa.mple N, will intro&uce Nof o(z)Az. The total population

in Az will therefore be equal to

lel(:z:)Az + szz(z)Az .

It is always permissible to assume that (in theory) there is a pdf for the mixture
the size of which is of course, N = N; + N,. Let U(z) denote this pdf. It is now pos-

sible to write the equation

Nlb(z)Az = lel(Z)Az -+ szz(z)Az . -..(46)
This equation is called "equation of mizture". If the sizes N, N, are replaced by
the "proportional sizes"

N _ N,
Pl—Ns Pz—Ns
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" the equation takes the following final form

28 z?

g ik e ¥ipz . ...(47)

208
z)Az = e "TTAr + ———
¥{z) T, Q2Tr oy Y 2w

This equation, in which Az is replaced by the differential dz, is directly suitable for

the calculation of the expressions for the moments of the variable z. The expressions
for the moments in terms of Y(z) are thus expressed in terms of the moments of the
components, f;(z) and f4(z).

Before calculating the expressions for the moments, let us first notice that by put-

ting £ = 0 we obtain the expression for the central ordinate y(0):

: 1 P Pa
W(0) = Vor [0—1 + -(;;] ..(48)

The expressions for the successive moments by means of the equation

+x +x +x@

Pon = ;f::"lb(z)dz = pl—f z" f(z)dz + pz! g™ fo(z)dz ...(49a)_

are directly obtainable from Table III. Thus we have:

n=0, o =p1tpp=1.

ne = 2, Be = p10? + pyof. ...(49b)
ng =4, we = 3p,07 + 3pg0¢.

n =135 - By =pg=pg - =0.

All moments of odd orders are equal to zero.

If the parameters p,, @y, ps, O, are not given explicitly but the components are

represented by "observed" diagrams (i.e. class frequencies) the calculation of the mix-
ture moments can be made in two different ways:
a) by mixing the populations of the diagrams and calculating the moments by means

of the mixture class frequencies,




=36 -

b) by fitting into each component a normal function and using the resulting parame-

ters of the functions.

There will be a difference between a) and b). Its magnitude will depend on how
well the normal curves represent the corresponding diagrams. If the diagrams are not

sufficiently normal the operation is meaningless.

As an illustration, the calculations will be performed on the following numerical

data:

Ny=300, p =+ o,=3 of=09
g Aj =1
Np = 600, py= 3, o, =6 of=236
The computed values for.the p,, ¥(0) and F, are
(1 2
= |=3%2 + =62| = 27,
Mg \3 3 ] |

’

1 1 2
= + = 0.0886
Vo Yor |3%3  3%6 ] ?

Fo = (300 + 600)x0.0886 = 79.74 .

The variance of the normal curve that fits into the mixture is equal to

s = p, = 27. Hence the central class frequency of the normal curve is

N 900

1
F'y = - = 0.3989- = 69.06 .
° " Vor Vi Yo7

The leptokurtosis is therefore of the order of 15 percent. It is due to the fact that

the variances are unequal. If the variances of the components are equal to each other it

is easy to show that the mixture is also normal, with the same variance. This property

of mixtures has been known for some time. A new and ingenious demonstration of this

property is due to the National Research Council’s mathematician N.T. Gridgeman.

The main practical interest of the theory of mixtures resides in the.fact that this

theory forms the base of the operation which is termed "dichotomy" and which is the
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inverse of that of mixture: calculation of the parameters of the components from the-
observed class frequencies. It is presented in the sequel under the form of a numerical

operation.

A Numerical Example of Dichotomy.

A sample of N = 2000 elements is assumed to be a mixture of two sub-samples of

1000 elements each:

Nl = 1000 - _ _L .
N, = 1000f P1 = P2= 3
0 179.5 = Fo

*1 | 1749 *11 9.5
2 | 160.9 12 5.6
3 | 1419 13 | 3.2
4 | 118.5 14 1.8
) 94.1 15 1.0
6 | 71.2 16 0.7
7 91.5 17 0.4
8 35.7 18 0.2
9 23.7 19 0.1

+10 15.2 +=20 0.0

1999.7
The sample N, is distributed into 41 classes, from 7 = —20 to j =+20. Here the vari-

able is the rank j and therefore Aj = 1 (omitted from equations).

The equation (49) can be put under the form:

_ N [Py P2
Ntb(O)—m[o,x"'qz] Fy,




Simplified, it becornes

009 ) )

To use the relation (48b) it is necessary to calculate the second moment w, of the

variable j as it is presented in the Table. Direct calculation by the formula

1
= L1 _sF
b2 = 00027

gives
e = 20.5
so that by (48):
ol + o} = 2u, = 41.0.

Thus the values of o, and o, are the solution of the system of equations

0102
5) ol + of = 41.00
Solution:
1) square the equation a) and eliminate the term (o} + o) to obtain

41 + 2(0'10'2)

(0102)

= 0.2025.

2) Consider (0,0,) as an unknown: ¢,0, = Q. Solve the equation
0.2025Q% — 2Q — 41 = 0.

The useful solution is: @ = 20.
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3) From a): oy + 0, =9 so that o; and o, are the solution of the equation
s? = 9s + 20 = 0. These solutions are s' = o, = 5 and 8’ = g, = 4. The

mixture’s components are represented in Fig 4.

MNFMNZMN

. s e 48 4o S G S ot B

z

1=

-
(3]
+
(-3

Fig. 4 Components of the mixture of two coaxial normal populations.

Section 2. Mixture of Decentered Normal Populations

1If the centre of the variate is not at the origin of the axes (z = 0) but at a distance

a from the origin, then the expression for the ordinate y is

(50)

1 -
y = ¢
o¥Y2m
so that the moment of n* order of z with respect to the origin z = 0 is

4o _!3—0!2
1 fa:"c L

On = oY2M -

All w-moments can be calculated by means of the change of variable

(x;a) =u, dzr = du
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Thus
+oco o
' 1 25"
W, = == (a+u)te du
§ o4 ZW;L
Calculation of a few first moments:
+oo _ _u°
ey
g = f € du ’
s A ™
Wo =1
1 oo _ﬁ%
0y = = (a+u)e * du,
! oVo2r -
o u? 4+ _ u?
5 =

= a 0 Jy + 1 Zv‘d .

w; =a+0=a.

2

1 7 a1
2
Wy = [ (a+u)e % du
cY2T -
+a __u? reo 42 . __u?
2 Y 2
0y, = 1 azfc 2"du+2afue 2"du+fuze 2% du

m2=a,2+0+0'2=0'2+az.

Further moments:
w; = 3ac? + a3,

w, = 3c* + 6ac? + a*,

w; = 15¢0* + 10a%0? + a°

..(52a)

.(52b)

.+(52¢)

...(52d)

..(52e)

..(52f)

The importance of these expressions for w-moments has been shown at the turn of

the century by K. Pearson who was the first to analyse skew distributions which are
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found in biology and which may be considered as mixtures of decentered normal popu-

lations.
Let us assume with Pearson, that a skew curve represents a mixture of two normal
distributions the parameters of which are
Curve 1: Prop.size p,, variance o}, position a, .
Curve 2: Prop.size p,, variance o7, position a, .
The moments with respect to the origin of the mixture are wg, ®;, wg, wj, ®, ;.

Using the expressions (52)'we form Pearson’s system:

Py + P = wy =1

Pi¢y + paa; | = W

pi(af + af) + py(og + aF) = wg ...(53a)
0,(3a,0¢ + af) : + py(3ay0f + a3) = wg

p,(3cf + 6alaf + af) + py(304 + 6alal + aj) = o,

2,(15¢,0¢ + 10adal + af) + py(15a,05 + 10ajcf + ad) = ws

The solution of this system by a rigorous algebraic method would be a practically
impossible undertaking. What made it possible is Pearson’s idea to calculate the
moments with respect to the mean ; instead of the origin. Hence the set of symbols’
wg * * * wg is replaced by the set wy * * + wg in which w, = 0. Also, of course, the sym-
bols ¢, and a, refer now to the distances from the mean j and are therefore replaced

by m, and m, respectively. The system Pearson actually uses in his memoir is there-

fore:

Py | + P = Ho =1

pim, ~ F pamy =p =0

pi(ef +mi) + py(of +mF) =py  ..(53b)
pi(8mof + m}) + pa3myof + m3) , = M3

pi(3af + 6mic] + my{) + pa30; + 6mia; + my) = My

p(18my0f + 10mPa? + m¥)  + py(lsmecd + W0mPad + m§) = ps .

The solution of this system with respect to the six unknowns p,, pj, m,, mq, @y,

o, requires a lot of ingenuity and therefore Pearson’s accomplishment must be



- 42 -

considered as an outstanding mathematical success. The detailed examination of

Pearson’s memoir is strongly recommended and is highly rewarding.

As in the preceeding section a case of dichotomy will be described briefly under the

form of a numerical operation.

A Numerical Example of Pearson’s Equations

The class frequencies considered as "observed" are presented in the adjoining table.

The diagram clearly indicates that the distribution is skew and triangular.

J Fj . J Fj

2| 0| +12| 0
11| 6 | +11
-10 | 6 | +10 | 13

-9 | 19 +9 32
-8 | 25 +8 .| 38
-7 | 25 +7 o7
-6 | 37 +6 51
-5 | 31 +5 70
-4 1 37 +4 75
-3 | 44 +3 64
-2 | 38 +2 87
-1 | 87 +1 64

0| 51

903




v

Fig. 5 Triangular Distribution

The calculation of the mean and of the six moments leads to the following results:

7 = +1.1639

e = 1 wy =  —41.5599 ,

k= 0  pg = +1501.0062,

me = +25.7672 g - —5583.1893 .
Pearson’s system of equations is therefore:
Py + P | = po =1
p1m, ‘ + pamy =m =0
py(c} +m}) + pylod +m?) = py = +25.7672
pi(3myof + m)  + py(3muof + mJ) = w3 = —41.5599
py(3cf + 6mic! + m}) + p2(30'; + 6miof + mg) = pg = +1501.0062
pi(15mof + 10micl + mf) + py(15my0f + 10mPcd + mf) = ps = —5583.1893
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The solution of this system is accomplished by successively eliminating the unk-
nowns. It finally leads to one eqﬁa,tion of ninth degree which must be solved numeri-
cally. When examining Pearson’s memoir one is impressed by the authér’s skill and
ingenuity in handling complicated algebraic expressions and his confidence in the final
success. The solution of the final nonic with the author’s primitive calculating hand
operated machine must also be considered as an outstanding achievement. The parame-

ters of the component populations are:

m; = —4.996 my = 3.419
Cl P = 0.406 Cz P2 = 0.594
oy = 3.179 oy = 2.777
a; = —3.833 ay = +4.582
N, = 366.618 . N, = 536.382 .

The curves C;, C, and their mixture are represented in Fig. 6.

X
°
ey

Fig. 6 Dichotomy of the sample in Fig. 5
ay = -3.833, ay = +4.582, j = +1.164
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Chapter IV
Theory of Least Squares and Systems of Equations

Section 1. Compound Probability of a Sample

This section is a natural extension of Section 2, Chapter III. Let us call m,, m,,
mg4 the values obtained by measuring a fixed quantity and z,, z,, x‘3 the corresponding
deviations from the mean. Without affecting the generality of the reasonings we may
assume that the three values z;, z,, z; belong to the operations of the same metrologi-
cal quality i.e. have the same variance 2. The question may arise what is the com-
pound probability dP, that another set of three measurements will yield values that
will fall in the same intervals dz,, dz,, dz3. The reader can easily establish by means of

the theorem of compound probability that the answer is:

zf zf =z}

sl
dPC' = sz“z_m:s = [_OTV]';.] e 20®  20° 202 dxl dzz d:z:s

1 o AN
- {z? + z27 + z{)
1 o

dP; = m)—se' 2o (dz)?

This formula can be readily generalized for samples of any number of values in

m;(¢=1,2, - -+ N) so that it is possible to write

N 1
1 ] — gt 2

. e N,
dP, [:\7;;' (dz)

Naturally, dP¢ will be 2 maximum when Fz? will be 2 minimum. One must bear in
mind that z; = m; —m so that it is legitimate to raise the question whether the sum of

squares 3 z? is really the smallest when the variable £ in the expression of the function

QE) = (m =& + (mg— + -+ + (my—§)° «(54)

takes on the value £ = m. To answer this question consider the derivative of @ (&) with
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respect to &, t.e.

42 = afimi=g) + (mym9 + o+ (my=p)]

= —2[mIl Fomgt e+ mN—Ng] = ~2(Sm~Ng) .

This expression, equated to zero, yields

>Sm;—~NE=0 te. €= -llvgm,- = m. ...(53)

This is one of the most important theorems of the whole calculus of probability: if

a set of N points m; ta aiven on an azis and a mobile point &, the sum of squares of the

distances (m;~§), i.e. @(E) = S(m,;~£) is a minimum when £ coincides with m. It is
i

to be noted that this theorem is valid in all cases, i.e. is independent of the positions of

the points m,. If m; represent the results of N measurements of a fixed quantity and if ‘

it is assumed that these m; conform to a binomial - normal theory, then the mean m is

the value that renders a maximum the compound probability dP, of the whole sample.
| This is the reason why the mean m is termed the most probable value of the measured
quantity. It is a remarkable coincidence that the constant and generalized use of the
"mean" in science and in everyday life is perfectly justified by the properties of the nor-
mal distribution. But it also raises the question whether the normal law is absolutely
and universally valid? There is no simple and clear-cut answer to this important

mathematical and philosophical question.

A few remarks concerning the mean:

1* A set of N values m; as they are defined above, i.e. as results of N measure-

ments of an unknown quantity X,
X=m,- 8.=1,2,"'N_. -

constitutes a system of what in the sequel will be termed "equations of condition". An
equation of condition i3 not an equation in a strict mathematical sense but only a sym-

bolic representation of the outcome of a physical measurement. Furthermore, the rela-

tion
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X=m

is termed a "solution" of the above system by the "method of least squares".

2™ It has been already mentioned in the preceeding sections that the mean of the
square of (m,-—r?;f-) should be taken under the form (generally called Bessel’s For-

mula):

i —
8% = mfi,(m;—m)z.
This is due to the fact that by forming the set of N differences (m;—m) we lose one

degree of freedom, i.e. reduce by one unit the number of independent measurements.

However, such a justification of the fact that (N—1) is substituted to /N, is not a

real mathematical demonstration. The latter is given in Appendix V.

~ Let us nov;' consider the question how, in p.ractice, large samples are formed. In all
preceeding cases we have assumed thé.t the values m; are the result of repeated meas-
urements of a given stable.physical quantity, ¢.g. the length of a gauge. In the litera-
ture the term "fixed quantity" is frequently used for this purpose. What is the actual
meaning of the term "fixed"? The objective of the present work is not to get lost in
endless philosophical discussions. Perhaps, in order to make a long story short, it would'
be appropriate to simply replace this term by that of "statistically stable". On a
macroscopic scale nothing is perfectly stable but we easily distinguish between the
height of a cloud and the height of a mountain. The position of the top of a mountain
fluctuates in appearance according to the atmospheric conditions during the measure-
ment operations and oscillates about a certain average position: we call it statistically

stable. In the seduel such quantities will be simply termed "stable".

The second question is what is the meaning of the term "repeated’ measurements?
In certain cases this meaning is clear, e.g. when an observer (using a goniometer) meas-
ures 100 times a stable azimuth. But, when a geodesist surveys a region containing a
hundred triangles, he actually determines the sum of internal angles of the triangles in
the net but he does not measure the angles of the same unique triangle. However, as

theoreticall}*-‘:“' the sum of internal angles in all triaﬁgles is 180°, the hundred values
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obtained by the surveyor may legitimately be considered as 100 repeated measurements
of one single quantity. Various other, more complicated, cases will be treated in the fol-
lowing sections. It will be always possible to show there that they can be reduced to the

simple case of "repeated"” measurements.

Section 2. Formation of Systems of Equations

In all previous cases the unknown quantity is assumed to be measured directly as
e.g. an angle is measured by means of a theodolite. Very often, in practice, measure-
ments ai'e performed on combinations of several unknown quantities and the values of
individual components are deduced from the solutions of more or less complicated sys-
tems of simultaneous equations termed "equations of condition". The calibration of
wor}cing mass standards presents a typical case of such operations and will be used as a

convenient example.
There are three types of operations that are performed on mass standards:

Type I: a working standard (e.g..a kilogram) is calibrated against a high quality
- standard e.g. against a "National Standard® the value of which may have been deduced
from direct comparisons against the Prototype Kilogram of the International Bureau of
Weights and Measures. Such calibrations are generally performed many times and the

results are treated by methods described in preceeding sections.

Type II: a typical example of this type, leading to a system of simultaneous equa-
tions of conditions, is the calibration of multiple and submultiples of the kilogram. A
set of weights may contain weights of the following values: 1) multiples (in kg): 1, 2, 3,
5, 10, 20, 30, 50, 100 etc. 2) submultiples (in kg): 0.1, 0.2, 0.3, 0.5, 0.01, 0.02 etc.
Every Type I calibration is characterized by the fact that it contains a reference mass
the value M of which is indicated by an equation termed equaiion of definition. Its
value is thus assumed to be known with an accuracy that is superior to that of other

weights of the set. Weights are denoted by symbols such as (5), (2), (0.1) ete.

If the weights are well adjusted to their nominal values, the comparisons {on a dou-

ble pan balance) can be carried out without the help of additional masses. Very often,
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however, small additional masses are necessary, e.g. of the order of a milligram.

Let us consider, for instance, the following set of weights:
(10) = M; (8), (2), (2'), (1), (1) . -(56)

With these weights it is possible to make ten comparisons and thus to obtain ten equa-
tions of condition. There are five unknowns so that the number of equations exceeds
that of unknowns by 10 — 5 = 5 units. It is, of course, possible to repeat or to omit
some of the weighings and thus to increase (or to decrease) the number of equations of
condition with respect to the number of unknowns. High quality weighings are long
and tedious operations so that an observer is reluctant to increase their number. In

fact, "repetitions" are used only if they are really justified.

- The system containing all possible equations may be called "basic system"; other
systems may be simply called "modified" systems: in Table IV, B is presented a system
deduced from the basic system A by omitting the equations marked with an asterisk (4,
5, 12) .and using twice the equations marked with a circle (9, 10, 11). Note that the

subscripts in the modified system are totally independent of those in the basic system.
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Table IV
Masses: (10) = M, (5), (3), (2), (1), (1').
A.. Basic System ‘ B. Modified System
+(5) +(3) +(2) +1) —(1)) = m, + M +(5) +(3) +(2) +(1) (1) = m; + M
+(5) +(3) +(2) —(1) +(1) = mg + M +(5) +(3) +(2) (1) +(1') = my + M
+(5) +(3) +{(1) +(1') = m3 + M +(5) +(3) +(1) +(1') = mz; + M
+(5) +(3) +(2) = my + M *+(5)—(3) —(2) +(1) =(1') = m,
+(5) —(3) —(2) = mg* +(5) =(3) =(2) —(1) +(1") = mg
+(5) =(3) =(2) +(1) =(1’) = my4 +(5) —(3) =(1) =(1') = m4 -(57a,b)
+(5) = (3) —(2) —(1) +(1') = m, +(3) —(2) - (1) = my
+(5) —(3) =(1) = (V") = mg +(3) —(2)-(1) = mg
+(3) —(2) (1) =mgo +(3) = (2) =(1') = myg
+(3) —(2) —=(1') = mpo +(3) —(2) =(1') = my,
+2)-(1) - (V') =my @ +(2) - (1) =(1) = my,
+1) = (V) = myp * +(2) =(1) =(1") = my,

Type II: This type differs from type II by the fact that it does not contain a
separate defining mass M. A combination of masses is postulated to have a known mass

and this constitutes the necessary equation of definition.

An example of type III is the set of weights (8), (4), (2), (1), (1), (1"’) in which the

equation of definition is
M= (8) + (4) + (2) + (1) + (') = (16) = 16 ounces .

It leads to the following system of equations of condition:
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+(4) +(2)
+(4) +(2)
+(4) +(2)
+(4) -(2)
+(4) —(2)
+(4) -(2)
+(2)
+(2)
+(2)

‘- 5% -

Equations of Condition

+(1")

+(1")
—-(1)

-(1)

—(1)

—(1')

-(1)
-(1")

-(1")
~(1")

..(57¢)

It is to be noted that, in this system, the lowest mass put on a pan is équal to 2 ounces.

This is due to the fact that the balance has no longer the appropriate sensitivity when

charged with masses of the order of one ounce. This system is used for the masses

expressed in pounds and ounces.

Since the universal acceptance of the (metric) SI units, the set of weights which

became the most useful, and which is likely to remain the most used, is the set (5), (2),

(2"), (1), (1'). It can be used as well for calibrating the submultiples as the multiples of

the kilogram. Its system of equations is:

+ + +
/-\/GAA

+

—-(1)

—(1)
-(1)
+(1')

-(1)
—(1)
—(1)

(57d)
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The equation of definition can be either

1) of typeIl, e.g. (1') = M, M designating a mass of nominal value 1 kg. The unk-
nowns are the multiples of the kg.

2) of type III, e.g. (8) + (2) + (2') + (1) = M being a mass also of nominal values 1
kg but the unknowns are now expressed in submultiples of the kg: here they are

expressed in a unit equal to 100g, i.¢. "hectogram”.

Even if one of the unknowns, say (1') is eliminated between the equations of condi-
tion and one of the equations of definition, the number of equations (8) remains larger
than that of unknowns (4). Therefore, from a rigorous mathematical standpoint, the

system has no real solution.

How the method of least squares can lead us to the most satisfactory set of approx-

imate solutions is described in the next section.

Section 3. Solution of Linear Systems

Suppose we have a length standard the value of which at 0° C is not known and
the coefficients of temperature of which (linear « and quadratic 8 ) must be determined.
All temperatures ¢ will be considered as known without error but length measurements
will be considered as affected by random errors (Hagen’s type). The classical form of

the dilatation equation, /y being the length at 0°C and I, at t°C, is
g+ at + Bt =1, . ' ..(58)

However, for a general study of similar problems, this equation is given a more general

form:
z+yt+ z2l=m - ...(59)

in which z, y, z are the unknowns and m is the observed quantity. We can also treat

systems of such equations, each of which is of the form:

a"z + b,y + ciz = my t = 1, 2, R N .-.(60)

\
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where a;, b;, ¢; are known numerical coefficients and m; are the observed quantities. It
is to this type of systems of equations, in which NV may become quite large (in any case
N=4), that the method of least squares will now be applied. It is, however, necessary
to underline very strongly the fact that the relation such as (59) is not a real rigorous |
mathematical equation but only a symbolic re;}rentation of the result of a measure-

ment. In all rigor, we must write:
ez + by + ¢z — m; = vy, i=12 -+ N. ..(61)

The second term v; being due only to the presence of random errors, is in general very
small. Let us also note that any set of three equations chosen arbitrarily in the system

(60) has a specific set of solutions. In practice, these solutions present no particular
interest. .

The solutions which are deduced from the totality of all evaslable equations of con-
dition are termed "adjusted”’ solutions. The compensation is made by means of the
"method of least squares”. It is described as follows.

If there are for insi;.a.nce, N = 12 measurements, the condition of "least, squares" -

takes the form:
S=vl+vi+vi+ - +ovh= T vl=mn ..(62)
Replacing v; by their expressions (61) we obtain for S~
2
§ = (alz + by + ez — ml) +
' 2
-+ (023 + be -+ €2z — mz] +
2
+ (0.3:: + b3y + c3z - m3] +
+ . e +

2

-+ (alzz + blzy + Clzz - mlz») .
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The(.condition S = min is equivalent to the equations:

ds dS ds
L =9 22 =, L~y ...(63
dz ’ dy 0 dz ( )

. These equations are termed normal equations. They form the following system, linear

in z,y, 2
(aajz + (ab)y + (ac)z = (am),
(ba)z + (bb)y + (be)z = (bm), ...(64)
(ca)z + (cb)y + (cc)z = (em),
with
(aa)-= af + af +af + --- + o},
(66) = 6% + b + 62 + -+ + b3, ...(65)
(ce) = ef +e,’f»+ e+ - + e}y,
(ab) = ayby + azhy + azbs + - -+ + apby,,
(ac) = ajey + agey + ageg + ¢+ ¢ + a6y,

(am) = alml + azmz + ‘aama + e+ alzmlz o

The system of ‘normal equations (64) has a set of 3 well defined solutions z, y, z if the

following condition is satisfied

(aa) (ab) (ac)
A = |(ba) (bb) (be) |# 0. - ...(66)
(ca) (eb) (ec)

In many systems (particularly in' the domain of masses) A is equal to zero. The

calculations that follow do not apply to such cases. This point is examined at the end

of the present section.
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Here the calculation is continued as follows.

i
[y

a; =1 a, =1 az ap =1,

tl’ b2=t2, b3=t3, wee b12=t12,

[~
[*
il

- 42 - 12 - 32 - 42
cl_tl N 02—t2,03—t3, .ee c12_t12‘)

so that
(aa) = 12, (ab) = 3t , (ac) = Sit?,

(ba) = St , (06) = St*, (be) = Zt°,
(ca) = 38, (b)) =3,  (ec) = IH,

(am) = 3Sm , (bm) = Imt , (em) = Emt2 .
As the determinant A is clearly not equal to zero, the normal equations are
12 + y>t + zEt2 =3>m
>t + y2t2 + zzt3 = > mi
x2t2 + y2t3 + zEt‘_ = Emt2 .

The solution of this system t.e. z, y, z are the adjusted values of the unknowns
obtained by the method of least squares. "As the latter is based on the fundamental pro-
perties of the normal curve, the adjusted solutions are also rightly termed the most
probable values.

The substitution of z, y, z into the equations (61) will yield the numerical values

for v;:

v; = (a;z + by + ¢;z — my) . ..(67)

These values can now be considered as "deviations". They play the same role as
the deviations of individual (repeated) observations from their mean m. The variance is

computed by dividing the sum of squares Zv,-z by the number of degrees of freedom. In
i

(38) this number was equal to the number of observed m;’s reduced by one unit (from
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139 to 138). Here it must be reduced by three units because there are three normal
equations the effect of each of which is to reduce by one unit the number of indepen-

dent equations of conditions t.e. of degrees of freedom. Hence

o =

vl + vi + 2-’i--“-’!-vz]. ..(68
(12_3)[1 2 Vs 12 (68)

The subscript m indicates that a2 is the variance of the deviations of the observed

quantities m; and not of the deviations related to any specific unknown. The pro-
cedures for establishing the variances on specific unknowns are treated individually in
various cases found in practice.

Let us now study the algebraic methods for solving normal equations. The method

that is the most used in practice is that of determinants. Applied to (64) this method

leads to the following expressions of z, v, z:
...(69)
am) (ab) (ac) aa) (am) (ac) 4 ‘aa) (ab) (am)|
z = —% bm) (58) (be)|, v = —‘2} ba) (bm) (be)|, z = —%1- ba) (b8) (bm)|.
em) (cb): (ce) fea) (em) (ce) o ca) (cb) (em)

The determinants are calculated by classical develop;nent procedures as given in alge-
bra. The calculations are not difficult but they become more informative when they are
combined with the method of undetermined coefficients. This method is described as
follows.

The first equation of (64) is multiplied by A, the second by w, the third by v. This

gives:

M ae)z + N(ab)y + A(ac)z = A(am),

w(ba)z + w(bd)y + w(be)z = w(om), ...(70a)

v(ca)z + v(cb)y + v(ce)z = v(em) .
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The summation of all terms leads to
- ' 1
z|A(aa) + p(ba) + v{ca)| +

1

+y ;}\(ab) + p,(‘bb) + v(cb)

+z L}\(ac) + n(be) + v(cc)- = \(am) + w(bm) + v(em) .

ol

It is always possible to select A, ., v sc as to make the coefficient ot z equal to 1 and
those of y and z equal to zero. The resulting system in which A, ., v are the unknowns
is:

(aa)X + (ab)p + (aclv =1,

(ba)N + (bb)p + (be)v = 0, ...(70b)
(ea)N + (cb)p + (chv =0-

Its solutions \, p, v, (always finite as A#0) will lead to the value of z:

z = Mam) + u(bm) + em) . {71)

"If now in (70a) we designate the unknowns by \', ', v’ and shift 1 to the second equa-

tion, we obtain the system
(ea)\" + (ab)p' + (ac)v’ = 0,

(ba)\' + (8b)n' + (be )’ = 1, «(72)

i
o
.

(eca)\" + (eb)p' + (c'c)v'

It will lead to an equation for y. Finally, using the symbols A'', n'’, v'’, we form an

equation for z. The compensated values of z, y and z are therefore

£ =ANaem) + p(bm) <+ . v(em),
y=Nem) + pibm) +  v(em), 79)
z =N'(am) + un''(dm)-+ - v'(em).
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It is still possible to go somewhat farther in these transformations by noticing that

(73) can be put under the form

z = ImNe + pb; + ve;) = %miai ;
]

y = Imi(Na + u'b + v'e) = 2miBi,
] 1]

= Zmi()\"a,- + w''h + V') = 2miYi
i i

where

a; = Ag; + wb; + ve;,
B; = Na; + p'b; + vie;

v; = Niagg + w'he + v .
Hence finally the expressions of z, y, z in terms of observed quantities become:
z = Zm,—a; = (ma),

t

ZmiB; = (mB), ..(74)

y

2= Smvi = (my).

The theory presented in this section has been used as the fundamental tool not
only in the calibration of mass standards but also other metrological domair;s. It has
remained in a stable form for more than a century until the publication of an article in
"Metrologia" by M. Grabe in 1978 (Metrologia 14:143). In this article the author shows
that the system such as (57a) and (57b) can be significantly modified so as to make it
easier to calculate and to improve the accuracy of the results. He also points out that
such suggestiéns have been made and published by well known authors (Lenk,
Kohlrausch) in the thirties but, for some strange reasons, have never been adopted by
mass metrologists. Grabe’s article has been thoroughly analyzed at the N.R.C. and fol-
lowed by an article in Metrologia by Dr. M. Zuker, N.R.C. biomathematician.

As a conclusion of the present section we shall simply establish the correspondence
between the symbols of this section and the symbols specifically used in the calibration

of masses.
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The first equation of (57d) is now written as follows:
(+1)(5) + (=1)(2) + (=1)(2") + (-1)(1) + (0)(1) = m, .

Hence, a; = +1, b, = =1, ¢; = =1, d; = —1, ¢, = 0, m; = m,, and all equations of

the system are treated in the same manner. The calculation of the normal equation can

be made in two different but equivalent ways:

a) either the substitution (1') = mi is made into the equations of condition and then
the normal equations (64) are established, or .

b) the normal equations are established first and then the substitution (1') = M is

made. The procedure a) yields:

+(5) -©@ -@) 1) =m
+(5) =(2) -2 =mg+ M
+(2) -(2) +1) =mzg+ M
+(2) —(2) -(1) =m,—- M .
+(2) -(2) = mg .(75)
+(2) ' (1) =mg+ M
+2) -(1) =m;+ M
+1) =mg+ M.
and the system of four normal equations takes the form
2(5) -2(2) -—-2(2) -(1) =N, +M
-2(5) +6(2) -(2") = N, ..(76)
- —2(5) -(2) +6(2') = N,
-(5) _ +6(1) = N+ M.

in which N, ... NV, are linear functions of m;,.

The procedure b) will yield the following system of five normal equations:
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23) -2(2) -202') (1 -Qv) =M,
-2(5) +6(2) —(2') = N,
-2(5) —(2) +8(2) =N, . (77)
—(8) +6(1) —(1") =N,

—(5) -(1)  +6(1) = Ng.

As the determinant A is equal to zero it indicates that one of the equations is
redundant and that therefore there exists a linear relation between the N’s. This rela-

tion is
8Ny + 2Ny + 2N; + Ny + N; = 0.

If, for instance, we discard the last equation (N;) and put (1') = M we find the system
above (76).

Section 4. Orthogonal Systems

The main objective of this section is to show why the "basic" system of the linear
equations of condition (57A) can be advantageously replaced by the "modified" system
(57B). For this purpose let us form, in each of these two systems, one of the coefficients

(a B ) which figure in the normal equations, and in which a#@, for instance,
(bC) = blcl + szz + “ + blzclz.
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System A System B
b c b c
+1 +1 +1 +1
+1 +1 +1 +1
+1 0 +1 0
+1 +1 -1 -1
-1 -1 -1 -1
-1 -1 -1 0
-1 -1 +1 -1
-1 0 +1 -1
+1 -1 +1 -1
+1 -1 +1 -1
0 +1 0 +1
0 +1

Sbe = (be) = +4 , Sbe = (be) =0

The specific property of this modified system is that all coefficients in which a # B are
equal to zero. This is the reason why the system is termed orthogonal. The values of

the coefficients form (aa) are:

(aa) = 6,
(66) = (ce) = (dd) = (ee) = 10 .

The system of porma.l equations is therefore:
6(5) = (eam) + 3M
10(3) = (bm) + 3IM
- 10(2) = (em) + 2M
10(1) = (dm) + M
10(1') = (em)+ M .

The symbols (am), (bm) ... ete. are oftem replaced by the symbols Ny, Ny, ... N;.
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The solutions are obtained without effort since each equation may be solved .

independently, as demonstrated below:

(5) =‘-éf[(m'1 + my + my + my + mg + mg) + 3M] .

= L [(m, + - - - — mg — mg — My + my; + my,) + 2M|,
(2) = 0 L(mz Mg — My — Mg — My ) 9 10 11 12
(1)=’1% (ml_m2+m3+m4—ms"mu‘m7_ms“mu“mlz)’*"M}s
= L f(=m, + + - + — Mg — Mg — Myg — My — Mmyp) + M
(1) = 10 (—my + myg + my — my + mg s 9 10 1 12 .

The group variance o2 is calculated in the usual manner and the theorem of pro-

pagation of variance leads to the following values of the variances of the individual unk-

nowns:

2
1 1 _ 2
oy = [z] (4 4 B 204 174 oy = g on = 01670n

2
ofy) = ofy = ofy = o) = []‘1(‘,‘} on = 0lon .

The most important property of orthogonal systems resides in the fact that all unk-
nowns are totally independent of each other. Thus if a "permanent" group of masses is
formed, the variance of the group is exclusively equal to the sum of variances of the
components. This is due to the fact that, in orthogonal systems, all so-called "covari-
ances" are equal to zero, while in ordinary systems, théir numerical values must be

taken into account. This point is .beyond the level of this course and the reader is

referred to treatises based on the matrix calculus.

The reader who is interested in orthogonal systems will find in the Bibliography all
information concerning this highly interesting subject. Recently, Dr. G. Chapman, from

the Division of Physics of NRCC, has applied the methods based on the use of
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orthogonal systems to the calibration of angles. He also greatly simplified the methods
for transforming the non-orthogonal systems into orthogonal ones. His contribution
completes that of Grabe and Zuker.

Taking into account the amount of information accumulated in all metrological
laboratories of the world in the course of the last century (based on ordinary non-
orthogonal methods) it is likely that progress due to the introduction of new procedures
will be rather slow. It is nevertheless obvious that orthogonal systems will finally elim-
inate all non-orthogonal ones in all those domains of metrology in which they can be

applied.
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Chapter V

Combination of Variates

Section 1. Summation of Normal Variates

This section -must start with a strong emphésis'on the difference between the mean-
ing of the term "mixture" and that of the term "sum". Suppose that we have two vari-
ates X and Y represented by large samples of sizes N, and N,, respectively. The "mix-
ture" is represented by the sample of size N; + N, obtained by simply pooling the
populations of the components.

The "sum" of the variates X and Y is denoted by the symbol (X +'Y) and is
represented by the sample of N; X N, .lements. It is constituted by all sums that can

be formed by adding each element of X to each element 6f.‘Y.-

In general, capital letters are used to designate’ variates and the corresponding

small letters to designate individual elements. Thus we can write*
Z=X+7,
z=z +vy.

The probability density functions (pdf) will be designated by the symbols $,(z) and
Do(y)- d

Let z4 be a certain arbitrary value of z. Hence, . .
Zg=z + vy, Yy =29— 2, dy = dzy — dz.

The probability that z will fall into dz is

* In some treatises on higher statisiics published since the mid-century, the "summation of

variates" belongs to a more general type of operation termed "convolution of functions". A narrower
practical point of view does not require such an extension of the theory.
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and the probability that y will fall into dy is therefore
By(y) dy = Dyzq = 2)(dzq = ds) .
The compound probability of z and (z9—z) is
®,(z)dz * Dyfzg—z)(dzg— dz) (78)

and is a function of z. Its expression should be formed for all possible values of z. If

[z] designates the domain of integration in z, the probability dP,, that z will fall into

dzg is equal to the integral

szo = f(bl(z) (bz(Zo—Z) dl: dZo

(2}

as, obviously the term in (dz)? can be omitted. The final formula is

A

dP, = dzq [®,(z) ®y(zo—z)dz . .(79)
RE - ,

Concerning the domain of integration: [z] sérhe remarks are necessary. The
extreme limits between which X and Y are comprised ‘are not necessarily infinite: X
may exist only between z' and z'’ while Y may exist only between y' and y'’. It is
thus necessary to remember the following rule: the integration domain [z] eztends to all
values of © which satisfy the relation zy = z + y, under the formal condition that y be

located tn ils own range, i.e. between y” and y’’.

Numerical Example
Suppose that X and Y range both between 0 and +%« and that we have z = 5.
Obviously we can select £ = 2 so that y can be equal to 3 (which is of course in its

range). We can write

z=35—-y

and consider the values of z from 2 upwards: when z = 3 then y = 2; when z = 4,
then y = 1; when z = 5 then y = 0. It is not possible to go beyond z = 5 because

y = 0 is the lowest value y can take. Thus z = 5 is the highest limit of integration.
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Similarly, we find that, forz = 2,y = 3;forz =1, y = 4; for z = 0, y = 5. Hence

z = 0 is the lowest limit z can take. Thus {z] extends from z = 0 to z = 5 and
’ 8
dP, -5 = dzg J®(z) Py(5-z)dz .
0

This expression is generalized for any possible value of z and takes the forms

2

dP, = dz [®y(z) Po(z—z) dz ' ...(80) |

0

in which the subscript of z is not necessary and is therefore omitted.

In the summation of two normal variatés i.e. when ®; and @, represent the

expressions
22
®y(z) = —=e 7,
g, Y2
y2
1 i

d = e ,
2o(¥) ;;7;’

the limits in the integrals are- ~ and +®. The integrations can be performed by well

known methods*, and lead to the formula:

22
1 2(:5;-' +aj) dz.

dp, = e | ..(81)
* Yoel+ oX¥ 2w ,

This result is often presented under the form of a theorem termed theorem of addition

of variances: the summation of two normal variates leads to a normal variate the vari-
ance of which ts equal to the sum of the variances of the components.
Another fundamental transformation is the multiplication of a variate (z) by a

constant factor a:

* A detailed presentation of this integration is given in Section 3 of this Chapter
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Z=akX
z = az, dz = adz , 0-22=a20'§.

If in the expression of dP, for a normal variate, i.c.

dP, = ——F=—¢ ">xdz,
x oo Vaw

the variable z is replaced by the variable z, dP, takes the form

_z
1 20%3
dP, = ———1¢ "% | ...(82)
in which
ol = a’el, o, =ag,. - ...(83)

" Combining this" with (81), we obtain, for any linear combination of two normal

variates
Z =aX + BY, _ ...(84)

the following expression for @

of = o’ol + plol. ' ...(85)
This is one of the most important relations constantly applied in the analysis of
linear equations as they appear e.g. in the calibration of mass standards. The reader

should refer to the end of Ex. 15 and to the final part of Ex. 16.

The above expressions for 7 = X + Y and Z = aX must be modified when the
components are decentered; t.e. not centered on z = 0. The calculations with decen-
tered expressions are somewhat more complicated but present no specific ciifﬁculty and

constitute excellent exercises. Their results are extremely simple.
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For a linear form:

.1) X (centre ay) + Y(centre a,) = Z(cenire ¢ = ay + ay)

2)  aX(centre ay) = Z(centre ¢ = aay)

aX(centre a;) + BY(centre ¢) = Z(centre ¢ = aay + Bay)

The expression for variances are not affected by the presence of centres:

Z = oX(ay) - a? = o’cl,
Z(e) = aX(ay) + BY(q,) 0722 = alal + [320'3 .

...(86)

.+(87)

...(88)

To a.yoid any misunderstanding the above calculations are summarized as follows:

Components of the sum:

X: element z, centre gy, variance crz%, coefficient a,

Y: element y, centre a,, variance 0’3, coefficient B3,

Variate sum:
Z =aX + BY

Z: elementx, centre ¢, variance .’
Probabilsty dP .

_(z—e)
L o ° _ ¢ = aa. + Ba
dP = ¢ dz in which 2 2.7, a22
z oy V2 Oz = ®op T By
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Section 2. Expected Values

There are good feasons for having a universally adopted symbol for denoting the
mean value of a variable quantity. Because of the historical origins of the calculus of
probability, this symbol is E( ), the initial of "expectation" (in French, "esperance").
The symbol between parentheses designates the quantity the mean value of which is
considered.

Here are some of the quantities previously considered expressed by means of the

symbol E:

It must be strongly underlined that when the symbol E is used in combinations of -
independent variates X and Y as e.g. E(z+y), the symbol (z+y) designates the sum of
any element z of X and any element y of Y. Thus the process of summation of vari-
ates is considered in a convolutional sense, i.e. each element of one variate is associated

with each element of the other variate. In the operation below the addition is per-

formed on the following variates:

variate X, represented by m elements z;( = 1,2, - -+ m) the probability of z;
being p;.

variate Y, represented by m elements y;(; = 1,2, - - - n) the probability of y;
being p;.

The variate (X'+ Y) can thus take m Xn values the compound probability p;; of

each of them being equal to
Pij = Pji = PiPj = Pjibi »

By the theorem of-compound probability:
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m n .
E(X+Y)=E(z+y) = 3 I pj(mty;) =3 Seepi(zity;),
=1 i=1 i

=2 2Pz t 3 ZpipiYj,
E J i j

= 2p; Zpiz + Tpi ZpiYi.
i i i g

As zi)j = 1 and Ep,- = 1, weé have
] g
Sz +y) = Ipw + iy
i ]

Z(z+y) = E(z) + E(y) . ..(92)
Expressed in symbolic notation this is: -
E(X+Y) = E(X) + B(Y).

Hence we have the important theorem: the ezpected value of the sum of two indepen-

dent variates is equal to the sum of their respective ezpected values.

In a similar way may be calculated the expeéted value of the product (X71):

E(XY) = E(zy) = 2 2PiPiTiY; -
t J

By two successive summations

" E(zy) = TpizE(y) = E(v)Zpiz

= E(z)E(y) . ...(93)

Here the theorem is: the ezpected value of a product of two independent variates is equal

to the product of their respective ezpected values.

These theorems lead to very interesting conclusions when they are applied to two

normal variates X and Y both distributed about their mean values 2 = 0 and y = 0 »
/
- respectively. Then '
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E’(z+y) = E(z) + E(y) = 0,
E(zy) = E(z)E(y) = 0.
A very important expectation is of the form
E[(X+ Y)Z] = E[(z:+y)2] .
The sum z+y is of course considered in the convolutional sense: any element z is added

to any element y. Now,
(z+y)’ = z* + 22y + ¢°
and, hence,
E[(z+y)2] = E(z%) + E(y%) + 2E(2)E(y) .
As the last term is equal to Zero,
,E[(x+ Y)z] = E(_zf) + E(y?). ...(94)
This equation is equivalent to the theorem of addition of‘ variances. If we write
Z=X+17,
E(:%) = E(z%) + E(v") »
or, what is the same,
ol =al+ O‘yz . (95)
The above theorems may be established by means of expressions in which the vari-

ables are continuous. As it has been said previously such operations are not always sim-

ple. However, they should be performed by a reader who is interested in the mathemat-
ical aspects of the theory.
A very important point, particularly for observational techniques, is the distribu-

tion of the mean of a small sample drawn from the population of a normal (or quasi-

normal) variate X(w, o). Let us for instance, consider a sample consisting of five
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elements z; ({ = 1, 2, e 5). Instead of treating them as drawn from the same X let

us assume the existence of five variates having identical populations each population

supplying one single element to the sample. . Thus the sum
S=EZ{=$1+22+33+24+£5=5;’;°

8

can be treated as an element created by the summation of of five individual (but identi-
cal to each other) variates. It is easy to establish that according to the above described

theorems,

E(z) = pn, ...(96)

i.e. that z has the same centre as all other variates. The variance of z is calculated as

follows.

According to the theorem of summation, the variance of the sum S is equal to na?.

" Its standard deviation is cr‘\/;. As S is formed on n terms, the standard deviation on

Gv; o

each term, te. .on z, is equal to = . Those observers who perform
n n

repeated measurements (e.g. geodesists) but groﬁp them into small samples, are very

familiar with the expression -\—/q==-. They follow the simple rule that if the samples are
n

all of the same size n then

std. dev. of the sample mean = . T ...(97)

square root of n
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Section 3. - Integration of the Equation of Summation

The fact that "variance" (or, what is the same, "standard deviation") occupies such
an impbrtant place in statistics is actually relatively new. In most of the older treatises,

t.e. in the nineteenth century and the first half of the twentieth century, the Normal

Law was used under the form

The parameter h is then termed "precision" and, in terms of the standard deviation o,

is equal to

Obviously certain algebraic calcula.tio'n's.~should be of a simpler form when A is used

instead of '@. Such is the case when the calculations concerning convolutions are per-
formed in detail.
So far as the limits of the integrations are concerned, the fact that they are always i

equal to =« removes the complications that are treated when formula (79) is described.

The formula (79) applied to the component variates

h ~h222 h —hZy?
fi(z) = 7‘;c M= fa(y) = Vi;e hay

gives

h h + - 2\ps - 2 223
dPZ°= dzq 17%2 f‘ [Uh:*'h'z):‘ 2hizq% + hg ]dz

T -

This integral is of the type that can be integrated by means of the identity

2 2
a92+b9+c=a[6+—b']+ﬁ£—é“'
2a da

The substitution



introduced into the integral

4@

G = J" e-—(a92+ be + c)de

gives

Ya 2 v 4a

and therefore

+o

€

=L

. By (43)

’G=;§v;

The expressions of ¢, b and ¢ in terms of the symbols k,, h, and z, are

e = hi+hi; b= -2hizg; ¢ = hizf;
so that
4(hE+h3)nEz8 ~ 4hjz§  RiRz§

4(h?+h}) h2+h2’

Ya = Vh2+h?
and, finally

_ hERE 28
G = Y , b

so that (79) becomes




-i----—-_-‘

-.-75"

hih 1 k4 ‘[
dP, = dzg—= G = ot
- Y Chf+h22

A simple replacement of h; and h, by the symbols o, and o, will lead directly to the

expression (95).

Summary: if the "precisions" of the components are A, and h,, and the "precision"

of the variate Z obtained by summations is designated by H, then

hyhy

H = ’
Chf+h§

Expressed in terms of variances, this relation, in conformity with (95),takes the

or
1 1 1
= +
H* R A
form
§t=¢l+ o},
in which
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Chapter VI
. Euler’s Functions and Variates

Section 1. Gamma and Beta Functions

The Gamma; function I'(n) is defined by the definite integral
' a3
I(n) = fe™= 2z dg . +0-(98)
o T

The variable takes on therefore only positive values (z=0) and it can be shown that the

integral is convergent only when n is positive.

I'(n) satisfies the fundamental relation
[(n) = (n=1)(n—-1) .--(99)

provided, of course, that (n —1) is also positive. This relation is demonstrated by means
of the method of "integration by parts". To apply'th_is method, it is convenient to put

the integrand under the form

(2"~ 1)e(e~%dz) .
which suggests that we consider the following partial functions:
=1 and v =(-e7%).

u =2z

As dv = ¢~ *dz, the integrand in (98) is of the form udv. According to the method of
integration by parts, the formula

d(uv) = udv + vdu
leads here to the relation -
d[(z""l)-(—c"’)] = (z"'l)-(e""‘dz) + (-e_x) [(n—l)z"'zdz] -

Integrating both sides, we obtain:
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-zl e""‘q’ = [e ¥ 2" 4z - (n—-1 ?“ (r=)=14p
° 9 0

As the left-hand term is equal to zero, this relation reduces to

fem* 2" ldz = T(n) = (n—1)fe ™ z(*~V~14z

0 0
i.e. to (99):
I'(r) = (n-1(n-1).
So far as n is concerned, two cases must be examined
a) n integer, e.g. n=4. Then
I'(4) = 3I'(3) = 3x2I'(2) = 3x2x1xTI(1).
As I'(1) = 1, therefore I'(4) = 3!, and, in general, for any integer n we'have
C(n) = (n=1)! | ...(100)
b) n not integer, e.g. n=4.25. Then
I(4.25) = 3.95%2.25% 1.251(0.25)
and the value of I'(0.25) must be &eterrﬁined by a numerical integratioﬁ.

The function I'(n) is tabulated between n¥1 and n =2 so that, in practice, we can

calculate I'(4.25) by the relation

I'(4.25) = 3.25%2.25x 1.25I(1.25) . ..(102)
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Table V
Values of I'(n), 1=n=<2

n I n I n I ol r

1.00 | 1.00000 || 1.25 | .90640 | 1.50 | .88623 || 1.75 91906
1.01 99433 || 1.26 | .90440 || 1.51 | .88659 | 1.76 92137
1.02 .98884 || 1.27 | ..90250 || 1.52 | .88704 || 1.77 .92376
1.03 .98355 || 1.28 | .90072 || 1.53 | .88757 || 1.78 .92623
1.04 97844 || 1.29 | .89904 || 1.54 | .88818 || 1.79 .92877

1.05 97350 || 1.30 | .89747 || 1.55 | .88887 | 1.80 93138
1.06 96874 || 1.31 | .89600 || 1.56 | .88964 || 1.81 93408
1.07 96415 || 1.32 | .89464 | 1.57 | .89049 | 1.82 .93685
1.08 .95973 | 1.33 | .89338 || 1.58 | .89142 || 1.83 .93969
1.09 95546 || 1.34 | .89222 | 1.59 | .89243 || 1.84 94261

1.10 95135 || 1.35 | .89115 || 1.60 | .89352 | 1.85 94561
1.11 94739 || 1:36 | .89018 || 1.61 | .89468 || 1.86 .94869
1.12 94359 || 1.37 | .88931 || 1.62 | .89592 || 1.87 .95184
1.13 93993 || 1.38 | .88854 || 1.63 | .89724 | 1.88 .95507
1.14 93642 || 1.39 | .88785 || 1.64 | .89864 | 1.89 95838

1.15 .93304 || 1.40 | .88726 | 1.65 | .90012 | 1.90 96177
1.16 .92980 |l 1.41 | .88676 || 1.66 | .90167 | 1.91 96523
1.17 92670 || 1.42 | .88636 |I-1.67 | .90330 || 1.92 .96878
1.18 92373 || 1.43 | .88604 || 1.68 | .90500 | 1.93 97240
1.19 .92088 || 1.44 | .88580 |- 1.69 | .90678 | 1.94 97610

1.20 91817 || 1.45 | .88565 | 1.70 | .90864 || 1.95 .97988
1.21 91558 || 1.46 | .88560 || 1.71 | .91057 || 1.96 98374
1.22 91311 || 1.47 | .88563 || 1.72 | .91258 || 1.97 .98763
1.23 91075 || 1.48 | .88575 || 1.73 | .91466 || 1.98 99171
1.24 90852 || 1.49 | .88595 || 1.74 | .91683 || 1.99 99581
2.00 | 1.00000

If the value such as I'(0.25) is required, it can be deduced, as follows, from the rela-
tion I'(1.25) = 0.25I'(0.25) : F;;; = 4%0.00640 = 3.61560 .

The substitution z = y? leads to the frequently used form:

I'(n) = 2fe_5’2 y2" =1 dy . ...(104)
0
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This shows that (Table I, Jg):

(%) = 2}3‘”2 dy = Y. ...(105)

Another frequently used form is obtained by the substitution z=ay:

[(n) = a®fe~% y"‘_1 dy . : ...(108)
0

The Beta Function B is defined by the integral
1
B(l,m) = fz!"' (1-z)™~! 4z . ...(107)
L0 -
This integral is convergent only for positive vglues of | and m: [ >0, m >0. It is easy
to see immediately that'for ! = m =1,

-

. 1
B(1,1) =:fdz = 1. ...(108)
0

The integral B({,m) can take several forms as shown in the sequel. In particular,

the substitution a) z=1-y shows the symmetry in | and m:
B(l,m) = B(m,l) .

Here are a few of the currently used forms of B:

N
%M

a) z=1-y B y™ " (1-y) " dy (Symmetry )
0
I
2

b) z = sin?0 : B = fsinzl_le cos>™~19 d@
0

1 e m-1
¢) = — : = f—y——ﬂ_— dy ...(109)
1+y o.(1+y) m
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d) In ¢)
1 -]
= = : B =
y z f(1+z I+ m

e) In ¢): Decompose B as follows:
1 g™t = m=1
= [t dy + [

+
0 1+ )l+m dy ] (1+y)l+m
Then, in the second integral, put y= i to obtain
z

B=f[—4— 4y + [—F—dz.
0(1+y)!+m y 0(1+2)l+m

The integrals can be grouped in one single integral by replacing y and z by the same

symbol, say z:

L m—i -1
z + z
B = . ..(110

{ (i+2) I+m (110)

This form confirms that B is symmetrical in | and m. Note that the form b) leads to

™
2

B(%, ¥)=2[do=m. - . (111)
0

Beta and Gamma functions are interconnected by the relation

_ () I(m)
B(l,m) = T(+m) «(112)
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This relation can be proven by means of a double integral but there is still another
method, due to Jacobi, which is very direct and elegant. It starts with the relation
(106) in which we replace ¢ by (1+y) and n by |+ m. Hence,

T{+m) _ f —(+y)e d+m=1 g

(1+y l+m

Now both sides are multiplied by y™~ldy and integrated between O'and oo:

T(i+m) f_.’L..__ y = {ym—l dy {e"“"‘” gFm=1 gz

)H-m

The order of integrating is arranged as follows:
CT(+m)B(l,m) = [zl*™~1 ¢~ 4z [y™~1 ™ 4y,
0 0

This shows that the integral in y is equal to

3 , .
For ot gy = Tlm)
0 : z"

and that therefore

(-]

T(l+m) B(l,m) = T(m)[z!~! e™* dz = T(m)T(1),
0

which is equivalent to (112), t.e.:

B(l,m) = LHL(m)

T(l+m)

Section 2. Gamma and Beta Variates

A very important event in the calculus of probability was the discovery in 1875 by
Helmert (who was a geodesist) that there is a link between the Gaussian normal func-
tion and Euler’s functions. It was provoked by the fact that Helmert had the idea to

investigate the properties of the exponent in the normal function, s.e. the properties of




the variate u-defined as being equal to
u = =, ~(114)

If the symbol u is introduced into the expression of dP,, the result takes the form

=z

1 e e %
e dz = ~—dy .
oY2n 2 ; T
Here an important point must be taken into account: when z varies from —® to

+ but u varies only from 0 to +, each single value of u corresponds to two equal

values (+::-:)2 and (—z)%. Hence,in the formula for dP,, the right-hand term must be
doubled:

e”t y~¥

dPu. = Tdu .

We can notice that, on the one hand, —% = %—1 and, on the other hand, that
Vo= (%). Hence, dP, can be given the form

Now, the right-hand term can be treated as a special case of a function f(u) the general

form of which is
f(u) = =" .(115)

The function f(u) is considered as the pdf of a variate u termed "Gamma Variate
with parameter n. It must be always borne in mind that u ranges from 0 to +® and n

is always positive. Note also that the expression for f(u) is automatically normalized as

[ u)dy = 1 c“c"‘u"'l u=ﬂ£)-"=
JHl)dy = oy L™ vt e = 10

The first and the second moments of u are easily calculated as follows:
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First Moment :
w, = E(u)=u = F(ln) {ue"‘ u*" ! du ,
1 r -u ,(n+1)—-1 = F(,n____”l = :
= e " u du = =n. ..(1186)
F(n)‘!; I(n)
Second Moment
Q (=]
wg = 1 Jute ™ u"ldu = 1 fem a1l gy = (n+1)n . .(117)

I'(n) % I'(n)o

The second moment p, about the mean, i.e. the variance, is

— 2
Po = Wo—wy

(n+1)n—n?,
Re =1 . : ...(118)

It must be noted that the moments (about the inean) of odd orders are not equal to

zero. For instance

|.|.3=2n.

Note: In the literature, the Gamma variate is often denoted by the symbol y(n),
this symbol being used adjectively.

The outline of the fundamental properties of Euler’s second variate, namely the
"Beta variate", follows the same pattern as that of the Gamma variate. The Beta vari-
ate will play an important role only after other variates have been introduced, in partic-
ular after the role of the Gamma variate had been described in the theory of chi-square.
There are two kinds of Beta variates termed the B,(!,m) variate and the Bo(!,m) vari-

ate.

Beta variate of the first kind. The pdf of this variate is

- —m\ym—1 o
f(z,0,m) = £ 1&, :3) . ..(119)

The parameters [, m are both positive, and z is a continuous variable ranging from 0

to +1. B(lym) is the normalizing factor:
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i
=1 (1 =z gy = 1.
B(l,m) {z (1~2)

The calculation of the moments w; and w, presents no difficulty:

First Moment:

1= E(z) =1z fz('“) 1i-z)" ' dz,

B(l m)

o = B(l+1,m)
1 B(l,m) '’

F+1)T(m). T{+m) _ IT T+ m)

“1Z Tl+m+1) T()T(m) (+m)(l+m)T() "’
@y =I = T{_L; : ...(120)
Second Moment:
0y = B(l+2,m) _ T(I+2)T(I+m) _ z(l+i) . ..(121]
B(l,m) Tl+m+2) T(1) (I+m)(l+m+1)
Variance:
Py = Wp—wf = (l+m)zi7ln+m+l) . ...(122)

It must be strongly underlined that when operating with individual values of the
pdf of the B,-variate, the symbols ! and m cannot be considered as interchangeable.
Their positions - should be always strictly controlled, f.e. the order in the symbol

f(u,l,m) should correspond to the order in the right-hand term.

Beta variate of the second kind. The pdf of this variate has a form that is
significantly different from that of the first kind:

Ilﬂl

B(l,m)1+z)*™

f(z,d,m) = ..(123)

As in the B;-variate, | and m are positive and the range of z is 0 to +«. The order of

parameters in the right-hand term should correspond to the order in the symbol
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f(z,l,m). It is easy to check that the expression (123) is normalized.
The calculation of moments is done as for other variates:

First moment:

1 G gt B(l+lm—1)
B(l,m) o (1+z)(l+l)+(m—l) B(l,m) .

wy =

If all B are expressed in terms of the Gamma function, the expression for w; becomes

@ = —— . ..(124)

It must be underlined that this.calcula.tion is valid only if m >1. If such is not the case,
the integrals will not be convergent. The same remark applies also to the calculation of

@, but it is now the condition m >2 that must be satisfied.

Second moment:

gt B(l+2,m=2)

Weo = 1 } z L =
®T B(,m)y (1+z)*™ B(l,m)
[{({+1)
w, m-D(m-2) ' ...(125)
Vartance:
p_ _d*d) _# __I(+m=—1) ..(126)

(m-1)(m=-2) (m—1F (m-1)}m-2)

Taking into account the existence of a relationship between the normal variate and
the y-variate, it is easy to forsee that the summation of y-variates will also be a funda-
mental operation. It is treated in the following section. As for the Gamma variate, the

symbols B,({,m) and B4(!,m) are used adjectively.
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Section 3. Summation of Gamma Varxafes

Let U and V be two Gamma variates with parameters a and b, respectxvely.

Their pdf’s are therefore




Wp(v) = e

The variate Z = U+ V resulting from the summation of U and V will be calculated by

means of an integral expression that is analogous to (80). We can therefore write
Zo
dP,, = dzg Ji(8) Ya(ze—u)du ,
0

dzg

Zo
dP,, 3 {e"‘ u“'l-e-(z'-“)(zo—u)b'l du

= T(a)I(

. e‘-‘:odzo Ko

dP,, = W {u“‘l(zo*u)b'l du .

The form of the integral suggests that it can be reduced to a Beta function with param-

' eters ¢ and b. Actually this can be done by means of the substitution
. . : ’ u = Zot .
l It leads to the following expression of dP, in which the éubscript 0 in zg is omitted:

x4z - ! - -
dP, = ——E—g(a*t)=1 [pa=i(q_ph=tge
T(a)r() Jemian

The definite integral is, by definition, equal to the Beta function B(a,5). By applying

to the latter the transformation (112), we obtain

p —32(54-6)—1

dP, = dz .
Fz T(atb)

Hence the following theorem: the sum Z of two Gamma variates X and Y (with param-
- eters @ and b, respectively) is a Gamma variate the parameter ¢ of -which is equal to

the sum (a+9).

dP; = S—E——dz, with ¢ = (a+b). - (3R7)

This can also be expressed using the symbols for the means:
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z=FE(z)=E(z)+ E(y)=z+y = a+b = ¢ .

If we have a set of n identical Gamma variates and constitute a sample of n ele-
ments by drawing one element from each variate, the sum of this sample’s elements will
be an element of a Gamma variate the parameter of which is equal to na. Such an

operation is totally equivalent to that of drawing n elements from the population of one

single variate of parameter ¢. Hence, we can write

z=gag+a+ - +a= na

?

3 e

na
= — =q.
n

...(128)

The distribution of the mean of the sample is thus identical to the distribution of the

population from which the sample has been drawn.

The process of surnmation is readily generalized for any number n of Gamma vari-
ates:

W=U'1+U2+"'+Un'
The expression for dP, is a simple extension of {(125) and takes the form

- [ T PR P -1
e Gw( ' 2 “u)

dP, = .(129)

[(ay+aep+...+ap

Let us now consider a set of n identical normal variates (i.e. all centered on zero

and having the same variance 0’2). If an exponent u; is drawn from each variate, the

sum
w =y, b ouy o +u, = —Fxf

will be a Gamma variate with the parameter n X1%.

The probability dP, that w will fall into an interval dw is thus equal to

e""’w(-;—ul)
dp, = St ..(130)
)
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Suppose now that a set of n elements u; (i=1,2, * - n) is considered as a refer-
ence set to which all subsequent similar sets will be referred. Designating by- wy the

reference set, we obtain for the probability dP, the expression

e 0 wé%_l)
den = d‘UJO . ...(131)
T3

Having calculated the numerical value of w,, we can calculate the total probability that

any other value w will be larger than wy by the integral

® gy (%—‘)
P(w>uwg) = [= “’n dw . (132)
. g F(E) .

>

Similarly, it is possible to calculate P(w <wq) by the integral

(2-1)

P(w<wy) = ?—‘:’w—nz———dw : (133)
T

These integrals will play an important role in the presentation of the theory of
Pearson’s chi-square test. However, some subtle transformations must still be per-
formed before the above developed theory becomes directly applicable to observed data.
These transformations, due to the genius of Pearson and Fisher, lead to the famous
"chi-square" test so frequently applied in many domains, sometimes to cases which are

only loosely connected with the normal distribution.

Section 4. Pearson’s Chi-square Variate

Karl Pearson, two decades after Helmert and totally ignoring Helmert's work,
undertook to investigate the properties of the exponent in the normal function and its

relation to the Euler’s Gamma variate. Instead of considering the whole exponent
2 .

(E:E?) as a new variate, he defined the new variate x by the formula
' : .



Hence,

’

2
x% = 2u, u=-%°

and all formulae and relations expressed in terms of u may be rewritten in terms of x°.
Thus, for instance, the number of identical normal variates being denoted by N, the

formula (130) becomes

N

_Xx 5 -1
P o = —L—e 2[212-2-]2 d[-%z]
) r(ﬁ,)
2
1 X N,
dP,2 = ————¢ 2(xH? d(x?) ...(134)
| p| N
T r[z]

In the most general case, we may apply the chi-square theory to a set of N normal
variates in which all variates are different from each other. Each component is, how-
ever, centered on zero but has its specific variance o2, i=1,2, -+ N. Each variate

yields its specific chi-square x? :

2
e _ %
Xi

- 2
o

and, according to the theorem of addition of gamma variates, the sum

N N z-z
xX}=3Ix}= 33—
i=1 =10

will be a variate the probability dP > of which is equal to the expression (analogous to

(134))

1 -x I
dPyz = ——¢ 2 (x5 2 d(x®) ...(135)
271(2)
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From this expression, it is possible to compute (numerically) the values of the pro-

babilities (132) and (133) with respect to a certain selected reference value Xe.

As here all normal variates are centered on z=0 or (what is the same) on a known

centre, the number of degrees of freedom is v=N.

The reader must always bear in mind that, instead of considering a set of N
independent variates of the same mean and the same variance, it is equivalent to con-

sider one single variate from the population of which /V elements are drawn at random.

In the applications that will be made in Section §, the variates have all different
centres and different variances but in certain cases these parameters are considered as
known so that the formula (135) is directly applicable. If there is any loss of degrees of

freedom, it is due to causes which must be appropriately evidenced.

Such would be the case if for example the normal variate were represented by a
population z; with a known variance o2 but with an unknown mean w. The sum of

squares

S(z—1)°

1
would be a chi-square variate but with a number of freedoms y equal to (n—1). The
proof of this fact is based on a method that uses the so-called linear orthogonal

transformations.

The impact of x2 theory on the analysis of large samples of observations became
considerable when Pearson realized that it can be applied to "class-variates" that are
formed in the process of repeated sampling. In this process, each sample produces a
completely indépendent set of parameters but, when samples are large a.nd‘ of high qual-
ily, it can be reasonably assumed that they conform to certain plausible conditions
which lead to less stringent but still useful conclusions.

The first condition that can thus be assumed is that in repeated sampling all sam-

ples have the same mean . and the same variance o?

. If all samples are distributed in
the same number (2k+1) of classes (ranging from j=-—k to j=+k), the probability
that an element will fall into the j** interval is also practically constant and equal to

]'2

1 WA, (Aj=1). ..(136)

e
oY2r

py =
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The theoretical class frequency in the class j is therefore
f; = Np; . ..{137)

Let us designate by F; the observed class frequency. In repeated sampling, F; will
become a variate and its value will be oscillating about f; in a manner which we may
assume to be very close to normality, with Fj=f j- In accord with a well-known

theorem, the variance 0'12- of F; is equal to
0‘,g = E’[(F,--Np,-)Z] = Np;q; , (9;=1-p;). ...(138)

This expression would be adequate if the size N of the sample was constant.
However, the constancy of N would imply that the variates F; are not independent of
each other. In order to remove thi; cox{st’raint, we must assume that NV is also a variate
in itself and that it oscillates in an approximately "normal® way, about a mean value

N. Thus the variate which must be examined is not (F — Np;) but

(F—Np;) ..(139)

and therefore instead of (138), we must analyse

of = E|(F;- M| . ..(140)
This is done by means of the identity
(F;—=Np;) = (F;—Np;) + (Np;—Np;) .
Its square is
(F;—Np;)* = (F;—Np;)* + sz(,N‘mz + 2(F;— Np;)(Np;j—Np;) .

The expectation of the left-hand term is, according to (140), equal to o ]2 The expecta-

tions of the three terms in the right-hand side are calculated as follows.

A) E [(F j—NpJ-)Z]. By analogy with what had been done in Bernoulli Trials, this

expectation is calculated in two steps: first with respect to F;, then with respect to N.

These steps give:
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1) - By [0 Ne?| = Noge; -
2)  Bw(Np;q;) = Npjq; -
B) E[p,?(N—'N)z] = plof .

C) The term is considered as practically equal to zero. While in A) and B) all com-
ponents are positive, in C) they are positive or negative. As the positive terms are as

probable as the negative ones, the total sum is likely to be close to zero.
The combination of A), B) and C) leads to
o} ="Np,(1-p;) + pfck . ...f141)
j p;(1—p;) + pjoN

This is an important relation which expresses all class variances o-f in terms of the

parameters of the samples. Here will be used again the fact that the sample’s size N is

.an independent variate. Thus, according to the theorem of addition of variances:

2 2
O'N—ZO']'
i

and, by (141)

of = N3(pjg;) + ok=pf .
]

J

As Y p;=1, this relation can also take the form
0%21_:(1’,-—17,-’) = W%iji :
Finally, the division of both sides by pj(l—pj) yields the remarkably simple relation
chk=N. ‘ ...(142)
If this is substituted into (141) we obtain another remarkable relation
o} =1Np; = f; . ..(143)

This formula has an enormous impact on the theory of x? and its practical applica- ..

tions. Now, in each class j, the component of x® can be calculated by a formula
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deducible from (134) by simply replacing o‘f by f;:

2 _ E(Fi'"fj)z ]

..(144)
] fj

This is probably one of the most important formulae in the whole domain of
Statistics. It forms the base of the celebrated "Pearson’s Chi-square Test" which is used
in all those domains of human activity where "hypotheses" are formulated and tested.
It is 2 powerful tool which, as all powerful tools, should be used very cautiously. As it
has been underlined above, it involves some conditions that are not stringent but only
reasonable and have no precise limits. There are, for instance, in practice, certain
operations in ﬁhich the notion of "repeated observations" has no real meaning. In such
cases, the result of a Chi-square test can be considered only as leading to simple

"suggestions”.

Section 5. Analysis of Large Samples

From the standpoint of the validity of the conclusions drawn from the Chi-square
test those scientific activities in which "repeated observations" play a major role are
particularly privileged. They operate with large aggregates of observations, generally

performed in the best possible conditions of scientific control and stability.

In major metrological operations (in geodesy, gravimetry etc.), "chi-square" is used
to test the hypotheses concerning the distribution of large samples of observations i.e.
the fitting into these samples of the normal curve or the curves which derive from the

normal law and which are termed "modulated normal".
In order to clarify the ideas about x? let us summarise its main characteristics:

a) In the expression (144) the right-hand term contains only class frequencies.
First, F;, t.e. the observed frequencies directly resulting from the classification of the
sample elements z;. Second, f,, i.e. the theoretical frequencié§ as they result from the
well-known process of fitting into the sample an appropria;te curve. This constitutes the
hypothesis to be tested, viz: that there are good reasons to believe that the sample can

be considered as drawn from a universe distributed in accord with the function defining
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the curve.

b) The numerical value obtained for x* is obviously capable of informing us about
the adequacy of the chosen curve: a small x® shows that the observed frequencies are
close to the theoretical frequencies, in other words that the curve is appropriate. A

large x? would indicate that the choice is not correct. Our opinion would be, however,
exclusively "qualitative" and not "quantitative".

¢) A particularly important property of x2 is to be a variate. Thus, for each value
of x& it is possible to calculate the .chance that it will fall into an interval dx¢ and, in
repeated sampling, the total chance P to obtain a x* which is larger than x¢ or, on the
contrary, which is smaller than x¢.

So far as the sample size IV is concerned, let us remind the reader what has already
been said above: |

d) In high quality repeated sampl'esi the fact that they are "large" authorizes us to
assume that all such samples have the same mean and the same variance. Although
these parameters are calculated from the sample elements, they are treated as indepen-
dent and their calculation does not constitute a constrainf.

e) The only operation which establishes a constra.int is f‘.he calculation of N which,
in its turn, is used to calculate o'}. This. leads to the conclusion that the number of
degrees of freedom may be reduced by one unit, i.e. that it can be considered as equal

to
v = (2k+1)-1. «.(145)
In the table of x2, the first column is that of p, f.e. the number of degrees of free-

dom. This number is given either by (145) or is further reduced by 1 or 2 units accord-

/ing to our opinion on the nature and quality of the sample.
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Table VI

Values of Chi-square with Probability P of Being Exceeded

v P

0.99 0.95 050 | 030 { 020 | 0.0 | 0.05 | 0.01
1| 0.0002 | 0.004 | 046 | 1.07 164 | 271 | 3.84 | 6.64
2 | 0.020 0.103 | 1.39 | 2.41 | 3.22 | 4.60 | 5.99 | 9.21
3| 0.115 0.35 237 | 3.66 | 4.64 | 6.25 | 7.82 | 11.34
4 | 0.30 0.71 3.36 | 488 | 599 | 7.78 | 9.49 | 13.28
5| 0.5 1.14 435 | 6.06 | 7.29 | 9.24 | 11.07 | 15.09
6 | 0.87 1.64 5.35 | 7.23 | 8.56 | 10.64 | 12.59 | 16.81
7 1.24 2.17 6.35 | 8.38 | 9.80 | 12.02 | 14.07 | 18.48
8 1.65 2.73 7.34 | 9.52 | 11.03 | 13.36 | 15.51 | 20.09
9 | 2.09 3.32 8.34 | 10.66 | 12.24 | 14.68 | 16.92 | 21.67
10 | 2.56 3.94 9.34 | 11.78 | 13.44 | 15.99 | 18.31 | 23.21
11 3.05 458 | 10.34 | 12.90 | 14.63 | 17.28 | 19.68 | 24.72
12 | 3.57 523 | 11.34 | 14.01 | 15.81 | 18.55 | 21.03 | 26.22
13 | 4.11 5.89 12.34 | 15.12 | 16.98 | 19.81 | 22.36 | 27.69
14 | 4.66 6.57 13.34 | 1622 | 18.15 | 21.06 | 23.68 | 29.14
15 | 5.23 7.26 14.34 | 17.32 | 19.31 | 22.31 | 25.00 | 30.58
16 | 5.81 7.96 15.34 | '18.42 | 20.46 | 23.54 | 26.30 | 32.00
17 | 6.41 8.67 16.34 | 19.51 | 21.62 | 24.77 | 27.59 | 33.41
18 | 7.02 9.39 | 17.34 | 20.60 | 22.76 | 25.99 | 28.87 | 34.80
19 | 7.63 10.12 18.34 | 21.69 | 23.90 | 27.20 | 30.14 | 36.19
20 | 8.26 10.85 | 19.34 | 22.78 | 25.04 | 28.41 | 31.41 | 37.57
21 | 8.90 11.59 | 20.34 | 23.86 | 26.17 | 29.62 | 32.67 | 38.93
22 | 9.54 12.34 | 21.34 | 24.94 | 27.30 | 30.81 | 33.92 | 40.29
23 | 10.20 13.09 | 22.34 | 26.02 | 28.43 | 32.01 | 35.17 | 41.64
24 | 10.86 13.85 93.34 | 27.10 | 29.55 | 33.20 | 36.42 | 42.98
25 | 11.52 14.61 | 24.34 | 28.17 | 30.68 | 34.38 | 37.65 | 44.31
26 | 12.20 15.38 | 25.34 | 29.25 | 31.80 | 35.56 | 38.88 | 45.64
27 | 12.88 16.15 | 26.34 | 30.32 | 32.91 | 36.74 | -40.11 | 46.96
28 | 13.56 16.93 | 27.34 | 31.39 | 34.03 | 37.92 | 41.34 | 48.28
29 | 14.26 17.71 | 28.34 | 32.46 | 35.14 | 39.09 | 42.56 | 49.59
30 | 14.95 18.49 | 29.34 | 33.53 | 36.25 | 40.26 | 43.77 | 50.89
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To interpret the indication of this table one has to remember the following rule: if
for a calculated x2, P is small (small chance to be exceeded) this means that x? is large
and that the formulated hypothesis is likely to be unacceptable. But if P is large (large
chance to be exceeded) this means that x% is small and that the formulated hypothesis
is likely to be acceptable.

The problems which often arise on both extreme wings of the observed samples are
due to the fact that these wing terminals present strange complicated structures. The
common practice is to group some thinly populated classes in which the observed fre-

quency is of the order of at least a few units.

Section 6. Basic Integrals and Moments in terms of I

The basic integral
J, = [2" e ™% dz
: 0
may be expressed in terms of the Gaussian function by the change of variable

2=y, z=y5‘, dz=%y""dy,

This leads to

Jn=-;—fc-yy ¢ dy.
0 :

To determine the parameter of the Gamma function we use the identity

n—1 _ n—1+1 _1=n+1_1
2 2

so that

and, finally,




- 98 -

1 n+1
= =T .
w5

...(146)

If now n is replacéd by (n+2) and the resulting expression for J, ., is introduced

into the recurrence formula., the resulting equation is identical to the equation (99).

This point is treated in detail in Ex. 22 (B).

The relation (146) in which n is successively made equal to 0, 1, 2

corresponding, often used, values of I':

r(-é—)=\/;, r() =1,

The transformation z =

g =5

, ... leads to the

Vu re) =1,

—\z/=-, which leads to the expressions of the moments .,
oVvV2

and v, in terms of J,, finally leads to their expressions in terms of Gamma functions:

k4

-
-+
2 1

...(147)

This formula is also valid for w, moments but only for even values of n:

i +®
= z
o ; 27 -j;
For n odd, p.l.= Mg = ,_;,5 =
to Table III.

Summary : Y, even and odd}

Mp €ven only

K, odd

= 0. For the numerical values of ., and v,

L=

2° 4z, (n even) .

refer

[

n
2
\/;?
0

The recurrence formula for v, moments has been established in Chapter II, Section

3. by means of the recurrence formula for

.

x
i

|
i
I
i
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Appendices

Existence Theorem for the Most Probable Group
Elementary Theory of Moments

Calculation of the Second Moments of the Variable X

in Bernoulli Trials

Hagen’s Derivation of the Normal Law

Comments on the Bessel Formula

Rgle of the Mean in Samples of Repeated Observations

Theory of Modulation

(incl. Statistical Analysis of the Residuals in a Gravimetric Survey)

Note

100

102

107
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Each appendix constitutes an extension of the study of a subject treated in the

text: either towards the more elementary theory on which the study is based, or, on the

contrary, towards a deeper understanding of the finer points of the subject matter.

finally completely understood and assimilated.

Although the appendices can be omitted in the first reading, their contents must be
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Appendix I
Existence Theorem for

the Most Probable Group

If z designates the number of 'plusses in the largest group, then obviously it must

satisfy the condition:

Peey < Pz > Pryy

in which
k! k—
P = —— % x
T YL
- k! z+1 k~xz-1 ,
Py (z+ 1) k—z—1)! P '
. k! x=1 _k~z+1 "
Pe-s (z=1)(k—z+1)! 1 ’
Now
Pz =k—z+1__g>1
Pz—l . z q
and
Py41 _k-z p <1.
P, z+1l ¢
Hence

kp —zp + p > zq,

kp —zp — q < zq,

and this can be arranged as follows:
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kp —zp + p >z¢ >kp —2p — ¢,
kp + p>zq+azp >kp—q, zq+zp =073,
kp+p>z>kp-4q. " . w(L1)
Let us compute the difference between the first and third term’
(kp+p)—(kp —q)=kp+p—kp +qg=1.

The fact that the difference is equal to 1 indicates that between these two numbers

exists an integer, unless both numbers are themselves two consecutive integers.

Example:

k=12, p=q=-;-.

6.5 -

11
kp +p = 12X - + — =
p +p st 3
11
kp — g = 12 X &= — — =55.
A T

It can happen that (kp+p) and (kp—gq) are both integers (e.g. when

k=13,p = ¢ = %) Then, the relation (I.1) must be given a more general form

kp + p=z=kp - q. ’ '
This indicates that

7=z=6

and that 6 and 7 have the same probability.
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Appendix II .
Elementary Theory of Moments

Suppose that a variable of nominal value m is represented numerically by a set of

N values m; (f = 1,2, - -+ N). The mean value defined by this set is equal to

— i
m = Ef: m; . (I1.1)
Similarly, the mean square of m is equal to
0 1
(m®) = v 2 mi . . (11.2)
1

If the numbers m; can be distributed into classes (each class containing only numbers

that can be treated as identical to each other) and if each class is attributed a rank j

(e.g. from j = 1 to j = k) then
== S Fim; , ..(I1.3)
N &

1 .
(m?) = N = Fim} ..(I1.4)
]
F; desigﬁating the number of values in the class of the j** rank. F; is generally termed
j j

“elass frequency”.

All formulae above are, of course, directly applicable to the sets constituted by the

values of the variable X as it results from our repeating N times Bernoulli trials. If N

is large so that all class frequencies are properly constituted then the expressions (3) and
(4) are

Y=L FX (IL5)
J
) = iN SF. X} .(IL6)

i

Here, the rank j of a class indicates the number of obtained plusses so that, with 12
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cards, j takes the values j =0, 1,2, - 12. -

It is to be noted that in the binomial expansion (7a,‘b) the symbols P; represent the

F.
~ true theoretical probabilities while the ratio TVL is only an approximate value of P;.

Hence the values obtained from (11.5,6) are termed "estimates" of the mean X and the

mean square (X°).

Important point of nomenclature: a variable such as X, i.e. the probability of
which is given either by an algebraic formula or deduced from a sufficiently large
number N of events, is termed varigte and then the quantities such as X and X? are

termed moments of the variate X, and denoted by the symbols w; and w, respectively:
1 -y 1
(.01 = X = _EF]JYI » (.02 = (JY ) = HZF]'XJF . nva(IIo?)
N _ N5
Instead of computing moments with respect to X = 0, we can compute them with

respect to the mean X. These moments are then denoted by the symbols ., and p,.

The moment p, is equal to zero:

By = %Z(x,’ - Y)Fj.

The moment p., is computed as follows.

by = =SFiX; - X = ~SF(XF - 2XX + X7)
N,' ! Nj

-_-_1_ ,?*l. ,.+_1_X2F.
N%FJXJ N 2X§F)XJ N % J

=w = 2X X+ X =w, - X = wy — wf ...(11.8)
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It is to be noted that all formulae in this Appendix are expressed in terms of the
symbols F; and N. In fact, their form is thus the most general as they can be used for
all possible meanings of the variable Xj. This symbol may be applied to a totally
erratic aggregate of numbers or to a set of values obtained by means of a device closely

and clearly related to the notion of probability (cards, dice, wheel of fortune, lottery

etc.). Now, two cases can be considered:

First case: N being a moderately large number, all F; are obtained experimentally

by making a device operate N times.

\
*

Second case: The ratio —I-é- (according to the Third Axiom) is equal to the proba-

bility, in its strict sense, of the variable X}, this probability being given by the probabil-

ity function, such as P; in Bernoulli Trials.

In the First Case all formulae given above may be used as they are and the

moments thus obtained are called "estimates” of true moments.

In the Second Case the formulae must be written as follows:
wy = %Pf}'f" , o, = SP:X},
= zj:P,-(XJ- -X), ...(11.9)
he = '%TP,'(X,' -X)?.

The symbols w,, wg, .y, 14 are now termed ezact moments of the variate.

Numerical Example

A die is thrown 450 times. The results are recorded gmd classified: '

X = 1 2 3 4 ) 6

F- = 8 70 92 59 65 83

Calculate: a) the theoretical mean X and its actual estimate,
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b) the theoretical second moment w, and its actual estimate,

c) deduce the values of the theoretical moment p, and its actual estimate.

Calculation of w; (observed) and w; (theoretical)

X F(obs) f(the) XTI Xf

1 81 75 81 75
1556
2 70 5 150 bs) = —> = 3.46°
7 140 w,(0bs.) 150
3 92 75 276 225
4 59 75 236 300
1575
5 6 75 32 the) = —> = 3.50
5 5 375 wy(thes) 450
6 83 75 498 450
21 450 450 1556 1575
X?  F(obs) f(the) XF  X%f
1 81 75 81 75
470 75 280 300 wp(obs) = L9 = 14,99
. 450
9 92 75 828 675
16 59 75 944 1200
%5 65 75 1625 1875  wg(the) = 252 = 15.17
, 450
36 - 83 75 29875 1625
36 83 75 2988 2700
91 450 450 6746 6825
ma(0bs) = w, — wf = 14.99 — (3.458)% = 3.03

Bo(the) = wy — wf = 15.17 — (3.5)% = 2.92
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The calculation of y{0bs) may be made directly by wusing as reference
X = w,(obs) = 3.46

X X-X (X-XP F{(X-X)p

1 —2.46 6.05 490.05
2 —1.46 2.13 149.10
3 —0.46 0.21 19.32
4  +0.54 0.29 17.11
5. +1.54 2,37 154.05
6 +2.54 6.45 535.32

1364.98

o1 0
= —SF(~-
K2 N 12 ( X)_

It is'to be noted that here one degree of freedom has been used to calculate X so that in

this formula the denominator must be equal to N—1. Hence

1
= X 1364.98
H2 = Ys0-1
' o = 3.04 -
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Appendix I
Calculation of the Second Moments of the

Variable X in Bernoulli Trials

According to (10) the expanded expression for w, is: .

wy = 0%¢* + lzif_qu_—x + Qzﬂt}lpzqk—z + 32 k(k—1)(k—2) p3gk=3 &

1-2 1-2:3

+ (k—2)? :c'(2k—-1)'(k(—k2}3)'(l‘c;23) P

+ (k=1)? fgkwl)(k(—kz_)z)(k_g P*lq
T T

Simplifying, we find
- - - klk—1)(k—-2 -
mz___l_’if_qul_*_?ﬂ_fsl_ﬂpzqk 2 4 gkl 1)2( )paqk 34

—1)(k=2) - ' k—1) 4-
+ (k'“"2) k(k 11.)2(’5 g)pk 2q2 + (k"‘l)’&Ll—‘ll'Pk Iq + k‘kp" .

In the right-hand term we can put kp out of the brackets, this gives
- - - (k—1){k—-2) -
w, = kp{ig 1+21c___1_qu 2 4 gli—l p2gk~3 +
1 1-2
+ (Ic—2)1"—"‘x""—)'k—11 :_2 p 3% + (k—l)——-kz1 p* 7% + k‘p"“}.

and, identically,

- - - k—1)(k—2 -
Wy = kp[(o+1)q" L+ (1+1)"1 Logt=? + (2+1) o p2g* 3 +

+ [(k—3)+1]ﬂf-"—ll):(2£—"—3)-;:“‘3§2 + [(.k-—2)+l]-l-c-i_—-1—pk_2q + [(k—1)+1]p"“}
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so that

k
kp{oqk l+1_k_.i..._qu 2.,.21___11(1"__2;1 2 k=3 4

- -9 _ k=1 .- -
+ (’C-3)'(£—1ilgc——lp" 3% + (k‘2)'—l-—P" 2g + (k—1)p*~!

1 1-2
k=1)(k=2) k- k=1 -3 _
+ L____ll_fz____lpk g4 EzLphozg 4 ph x}_

Inside {} we recognize two sums:

1° the sum of &h_ose terms in which the numerical
0, 1,2

coefficients are
* (k—=3), (k—2), (k—1); it represents the mean of a binomial variate which
takes the values 0, 1, 2, - -+ (k—1) and is therefore equivalent to (k—1)p;

2° the remaiding terms the sum of which forms the development (q+p)"‘l and

which is therefore equal to unity. Therefore

= kp [(k—l)'p+1] . ..(I11.1)

The second moment about X = kp is, as in'II.8, given by
ey = 0y — X° = "P[(k‘l)'l""l] ~ (kp)?,
2 = kp+(1-p), |
o = kpg . ' .(111.2)

An excellent exercise consists in establishing the expressions for w; and w, for a

numerical value of k, for instance k = 7. Applying the above methods one finds
without too much difficulty that:

)

= 7p(p+q)° = and  w, = Tp(6p+1).
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Appendix IV

Hagen’s Derivation of the Normal Law

In order to simplify calculations, the method produced by Hagen will be applied to

the expression (5) the second term of which will be treated as a function of V, k being

an even constant.

. |
1(v) = k! l] . I A)

AR

2

Since k£ is a large number, an increment of one unit can be legitimately considered as

very small. Hence

k
f(Vv+1) = < [%]
: {ﬁ+v+1]!{-’i—v—1}t

2 2

and

k

—-=V

f(Vv+1) _ __2 .

V) Eiy
2

The unit in the denominator can be neglected so that

f(V+1) _ k=2V
(V) k+2V

This relation is transformed by expanding f(V) by means of the Taylor expansion lim-

ited to its first term:

- df
[(v+av) = 1(v)+ “Lav.

"Here AV = 1 so that

fFV+1) = 7(V) + % L (IV.2)
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Now

fran) o, L df _ k-2

(V) f(V) dv k+2V

and the last term can be transformed as follows.

k=2V _ (k=2V): _ KP-dkV+4V?

k+2V k-4 V2 k2—4 V2
2
1_%+ 4/:;
= V2 - .(IVS)
LA
k2

In this formula all terms containing k2 can be treated as very small so that

1 df 4V
b —— e = (- (V.4
f(v) dv k ( )
and
9 _ 4V ..
I
This represents a differential equatiox’fi the solution of which is well known and has the
form
4 V*
= ——+:— + log C
log f(V) PR og
or
-2
f(Vy=Ce * . ..(IV.5)

An important remark must be made here. It substantiates the validity of the
transformation from (IV.3) to (IV.4) by emphasizing the fact that f(V) tends to zero

exponentially so that all formulae are valid not only when V has a small or moderate

value but also when V tends towards % as the latter is always very large.
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To obtain C it suffices to use the normalization equation

40 +teo  _2V?
[f(V)eVv =1= [Ce * av

which, combined with the relation

to VT
fe *dv=Ynr/2,
leads to
vz
Yo -4
(V)= Py = Vot ¢ *
Yk
As we already know that — = o2, the final form for F( V) becomes
LA
F(VY= Py = —gm ¢ .(IV.6)
oY2m :
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Appendix V

Comments on the Bessel Formula

To establish the validity of this formula it is necessary to refer to the notion of
"true value" as this term is used in repeated measurements of a fixed physical quantity.
This term is, unfortunately, not very appropriate. In fact, it ‘is misleading. It actually
has no relation to the concept of "truth" but designates a hypothetic quantity (here
denoted by M) which can only be described but not really rigorously defined. It is con-
ceived as the limit towards which tends the average value of a collection of individual
measurements m; (§=1, 2, ...N) when the size N of the collection tends towards
infinity. As the deviations of m; with respect to M are of the type we consider as ran-
dom and associated with the conviction that the measurements are highly precise, our
mind accepts, as a primary notion, that when N tends towards infinity it finally reaches

such a magnitude that further measurements (and their random deviations) cease to

produce any meaningful effect.

The deviations with respect to M are in the sequel denoted by the letter £ so that
we have

gl = m; — M
.
T=F - M, [m= = E- —2&5)
and therefore,
§—&=m—m .

Both sides of this equation will be designated by the same symbol:

a) oy

&-¢

b) a; = m;—m .

wll mE Wy WE W
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Squaring a) we obtain:

af =& - %T+ T

t4

of = SE - sk + N

of = T&} - ENT + NE

t4

2 _ 2 2
Saf = JEf - NE

The most important step in this calculation concerns the sum 2&',2 It is to be noted

that we have
() = st + @

@ being a pélynomial each term of which is a product of the form &;.&,.- in which i’
and '’ take on all values ranging from 1 to N. Taking into account the number of
deviations §;, we readily conclude that there must be in @ a quasi-total compensation
between the positive and the negative termé and that @ is thereforé practically equal to.

zero: @ =0. Hence

2 2
se? = (35) = (vE) = V.
The expression for Sa? becomes
Saf = N8 - N = NB{(N-1).

Now, in conformity with its definition, £; is the deviation with respect to the true value

M , therefore the variance o? is defined by the expression

gt o ZH _ N
2= = = = NE* .
of = =5 ~ 5

If this is introduced into the expression of za,-z it leads to Ec:t,-2 = g}{N-1)
e, to

9 _ <00
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According to b), Saf can be computed numerically from the observed values m,

2
fe.Saf =3 (m;-ﬁ] . Hence, finally

—\2
Z (m,-—m]

N-1

o =

Note

The theory above can be generalized for the systems of linear equations with
several unknowns. If the number of equations is larger than the number of unknowns,

the value analogous to the above (N —1) becomes equal to the difference (VN —k) i.e. the
difference

number of equations — number of unknowns .
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Appendix VI
Role of the Mean in Samples
of Repeated Observations

Gauss solved the problem of the mean long before (and completely independently)
Hagen published his theory of elementary errors. His genius has forseen that if a sample
of n repeated measurements m; (f = 1,2, * -+ n) is given, and an estimate m’' (for
the true value my) ca:; be proposed, it must be possible to express (at least approxi-
mately) the probability p; of obtaining m;, by a function ¢ in whit.:h Athe variable is the

distance (m;—m'). We must therefore be able to write -
pi = (m;—m').

This hypothesis being accepted, the compound probability of the total sample must

become equal to the product
P = Y(m—m’) blmy—m*) - -+ G(my—m').

Furthermore, Gauss has also forseen that it should be possible to attribute to the func-

tion ¢ a precise algebraic form by postulating that P must be a maximum when

m’'=m. Such 2 condition may be given the following equivalent form:
(my=m') + (mg—=m')+ -+ + (mp—m')=0

Now the condition P = max can be formulated by equating to zero the expression
for the logarithmic derivative of P:
1 dy(my—-m’) 1 di(my—m’) -

P(m,~m') dm'’ * P(my—m') dm'

+ o0 =0,

This equation takes a simpler form if we write

mi—m' =1z, dm' = dz
This form is
d d di(z,
1 dbe) 1 Mz 0 1 ) _

W(z,) dz, W(z,) dz, o(z,) dz,
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All n terms here have the same algebraic structure F(z) so that the final expression for

P = max can take the form

F(z,) + F(zy) + -+ + F(z,) = 0.
This form, together with a) constitute the system that can be solved:

F(z,) + Flzg) + -+ + F(z,) =0,
.’tl +Iz +"°+In =0.

The only solution for such systems is
F(z) = yz, vy = constant .
It leads to the differential equation

1 d¥(z)

U(z) dz Y

the general solution of which is

2

2
log W(z) = ‘y% + C, iey(z) = Ce' ? , C = constant.

So far as the values that can be attributed to y and C, they must conform to the

general properties we attribute to random errors. Thus, obviously, y must be a nega-
tive quantity and we can write

y=-g%
On the other hﬁnd, C is deduced from the normalisation condition.:'

o2 92"

+o

S ula)ds = o_fe"’

-3
2T
2

dr = =1.

Hence,

c =—\—/2—
2T

and therefore
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The calculation of the variance o? of z presents no difficulty. It is equal to

1
g*

+%
o’ = [ zhY(z)dz =

The final expression for y(z) is therefore

‘b(x) - e 2u
oYaw
This is the classical expression'for the normal function f(z) as it is introduced in
Chapter II, Section 1 (29).

The elegance and the conciseness of Gauss’ method is outstanding but, of course,
this method cannot be compared with Hagen’s theory so far as the deep understanding
of the nature of random errors is concerned. Some authors treat it as a sort of
"justification" of Hagen’s method. The amazing fact is that Gauss preceeds Hagen by

almost half of a century! A genius does not conform to historical orders.
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Appendix VII
Theory of Modulation

In the last two decades, the analysis of large samples of "repeated” observations
has been significantly modified by the introduction into the theory of random errors of
a new concept viz that of "modulation”. This concept does not invalidate Hagen's

theory, on the contrary, one can say that it adds to this theory 2 new dimension.

In Hagen’s theory, the variance of the error-variate z is defined as being the limit
of the expression 54—" when k tends towards infinity and € towards zero. However, so

far as "modulation® is concerned, it is convenient, for calculational purposes (on condi-

tion that k is sufficiently large) to use simply the finite form

2
€k
dz= _.

4
Now, each elementary error' € is obviously due to a specific "elementary cause” and
it is not absolutely rniecessary to postulate that, at the time when a measurement is per-
formed, all k£ elementary causes must be actually operating. A certain portion of them
may temporarily vanish and thus produce no errors; or, what is the same, produce
errors equal to zero. The modulation theory is based on the hypothesis that & can be

considered as composed of two parts,

k=n+ 2z, ..(VIL1)

n designating the number of non-zero errors (* -3-) and z the number of zero errors. As

these numbers constantly fluctuate during the. measurements, the most fundamental

question is what is the probability that, at the time when a certain measurement takes

place, the number of, say, non-zero.errors will be in the vicinity of a certain n.

Let us assume that this probability can be expressed by a function ®(n) such that
the number n of non-zero errors that will fall into a small (but finite) interval An will

be equal to

P(n)an .
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The function ®(n) is termed the "modulation function". All those errors which

correspond to a certain n, will be normally distributed with a variance a? equal to

4
and the compound probability that, simultaneously, n will fall into An and z into Az,

will be given by the product

1‘.‘

1 203
®(n)An——==¢ " "Az
(n) o, Y2m

The total probability AP, that z will fall into Az, whatever the value of n, is

: 2x?
[ty
AP, =82, 5, @ %ﬁan
€eY2m n=0 n
Remembering that £ is a very large number, we caﬁ. replace this relation by a practi-

cally equivalent form in which both variables (z and n) are considered as continuous:

k
2dz '~' CD!nZ
dP_ = ———— dn (VIL.2)
= €V {

To progress beyond this point, it is necessary to suggest an analytical expression for
®(n). This constitutes a new experimental and statistical problem which can be
approached only. pragmatically t.e. by testing various possible mathematical forms.
Actually the first form that has been tried, viz ®(n) = An, proved to be acceptable and

was readily generallzed into

®(n) = An®, (A and a constants) .

The normalized form of this definition is

, L (VIL3)

as it may be proven as follows. The constant k being a large number, the normaliza-

tion can be made by means of an integral:
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k k '
k
S ®(n)An = [P(n)dn = Afn°dn =1,
n=0 0 0
na+1 k a+1
=1, A= .
a+tl 0 ka+l

If (VIL3) is introduced into dP, (VIL.2), the latter becomes

2

] k
Na+1)dz & -
dP, = e " n®%dn . VIL4

ekt 'Wor { ' ' ( )

The integral cannot be directly calculated in a simple manner but the calculation of the
. *
variance of z, denoted here by 72, presents no difficulty . By definition, we have
222

+o k
2 - 2(G+1) 2 d —-_Ez—n. na—‘/:dn
T ek3*1Y o _j;z * {e ’

but it can be shown that it is permissible.ﬁo reverse the order of integrations:

k 40 __?i
7= _2atl) fno % dn [ % €ndz
ek®*Vogr o —eo

The integral in z is reducible to J, (Table II) by the substitution

which leads to

2 - —
e 4Y2

If this is introduced into (VI1.4) and all operations are performed, the final expression

for 72 becomes

2 k 2
2= et ooy atlek ..(VIL5)
4k°*1 a+2 4

* The symbol T is used instead of the usual @, the latter being traditionally reserved for
the normal variate,
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To be able to introduce the symbol T into the formula for dP,, it is necessary to

perform in (VIL.4) the change of variable

n
t= 2, .(VIL6
k (VIL6)

The calculation requires some attention but presents no difficulty and leads to the fol-

lowing expression:

2%
2(a+1)dz f TRy t $9=%at . ...(VIL7)
(e k)Y2w

The term (e2k) can now be taken from (VIL.5) and introduced into (VIL.7) so that the
result.inaformula will finally contain only the parameters a and 7.

To avoid any misunderstanding, here is this formula presented under the form of

the pdf of a modulated variate the parameters of which are ¢ and

. 1 &'!O‘Pl! l
2(a+1})Ya+1 e 27%(a+2) T g%

/ (a.m) = NV { ..(VIL8)

The definition of the reduced value A of a modulated variate is identical to that of

the normal variate, viz

A= =z ’ d\ = —,
T T
Hence, as in (31) - (35)
1 Ap+”l

_ 1¢+1! +1 2a+2) T ya-% ..(VIL9)
JA) = e 17 %dt .
{a, M) 2nYa+2 { .

By putting A = 0, we obtain the valie of the central ordinate

vo = #(a.0) = (:/tl)\/f; {td %dt,

_ 2a+2 a+1 1
2a+1 at+?2 ;211'
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But the factor 7;— is the value of the central ordinate y’y of the pdf of a normal
™ .

w(a) = Yo _ 2a+2 _  [a+l
v'q 2a+1 a+2

indicates the degree of kurtosis of the modulated variate. It is easy to show that w(a) is

variate. Hence,the ratio

always larger than unity in the useful range of a, t.e. when @¢=0. Here are a few

numerical values of w(a):

©(0) = 141; w(k) = 1.16; w(l) = 1.09; w(2) = 1.04; «(3)= 1.02.

The fact that w(a)>1 indicates that all modulated distributions are leptokurtic. In
practice, when large observed samples are analyzed, the most commonly found values of

¢ are in the region between ¢ = 0.5 and 0.2,

The function ¢&(a,A) has been tabulated, first by purely numerical methods and
finally by expressing the intégral in terms of converging series and continuous fractions.
All these .calcula.bions are presently considered as routine operations and are available,
to all observers, at the NRC Computation Centre (Ottawa, Canada). The theory of

*

modulation is treated in a monograph available from the publishers.

A few tables of the modulated function for the most typical values of a are given
at the end of this book., The table for ¢ = 0.5 will be used in the analysis of the

-sample of gravimetric observations described in Exercises 11 and 23.

One immediately notices that at the centre of the diagram the class frequencies are:
Foa=315, f,= 26150,

so that the leptokurtosis is of the order of 20 percent i.¢. w is in the vicinity of 1.2.
The calculation of the theoretical class frequencies by means of a table for a = 0.5

seems therefore to be a reasonable operation.

°"Theory of random errors and the influence of modulation on their distribution. Verlag
K. Witiner, Stuttgart, Federal Republic of Germany, |3,
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Belore pcr‘l'ormi\ng this operation, the reader should go back to Exercises 11 and 23

where the value of x? is calculated to test the normality. The calculation described in
Exercise 23 leads to

1) '
xznzif‘.L_.!.L)._f=54. y=18,.

i s

which indicates that, in repeated sampling, the probability P of exceeding 54 is
extremely small and thus that this P is strongly against the hypothesis.

In the following table is tested the hypothesis that the sample has been drawn from

a population which is modulated normal with a = 0.5.

Calculation of x° in & Gravimetric Operation

J | Fjlobs) | #, (theor. a=0.5) X’
21212 0.33
-1 .3 0.92
101 4 11 1.89 7.26 1.92
9] 2 4.12
-8 6 848 | 0.73
-7 18 16.46 0.14
-6 21 30.16 2.78
-5 54 52.16 0.08
-4 76 88.10 1.68
-3 132 130.69 0.01
-2 204 188.11 2.14
-1 246 251.02 0.10
0 315 300.58 0.69
+1 251 280.60 3.12
+2-° 238 220.83 1.34
+3 17 159.24 0.87
+ 104 10215 | 0.09
+5 65 67.75 0.11
+6 35 ©37 | om
+7 21 22.70 0.13
+8 10 12.05 0.35
+9 |7 0.04
+10 | 4 2.85
11 i 14 1.97 10.07 1.53
L-Oi? 2 0.54
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{x’ = 1848 y = 19-1 = 18.
P =043

The high value of P shows that the modulated curve (a=0.5) fits very well into the

observed diagram and that therefore the hypothesis formulated above is likely to be
correct. '

The modulated curve is represented in Fig. App. VII. It should be compared with
Fig. Ex. 11.

~ MOD- NORMAL CURVE

Fig. App. VII Sample of Gravimetric Residuals

Another outstanding case of leptokurtosis is described at the end of this Appendix.

As the sample analyzed in Exercise 11, it comes from the domain of gra.vimetry'.'
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Statistical Analysis of the
Residuals in a Gravimetric Survey

!

The observed data concerning this survey have been communicated to the
author by the staff of the Gravity Data Centre . They constitute the outcome
of an operation which is not only very vast but also outstanding by the quality of

the observations and the sophistication of the instruments used.

The most fundamental originality of the operation is that it has been pe;rformed on
the sea. When the depth of the sea is more than 500 m, the gravimeter cannot be
lowered to the sea bottom, but must be placed on a ship and mounted on a gyro-
stabilized platform which keeps the instrument level and, as much ‘as possible, isolated
from the motion of the ship. It is obvious that the causes which affect the readings of a
gravimeter are much more n;xmerous and more difficult to control when the instrument
is on a ship than when it is on solid ground. Thus the readings are performed every few
seconds and averaged at intervals of a few minutes to smooth out "noise” due, for
instance, to the vibrations produced by the shfp engines and a variety of other rhultiplé

causes.

A typical marine survey consists of a series of parallel tracks with a number of
cross tracks spaced at wider intervals, producing an approximately rectangular grid pat-
tern. The gravity difference is measured between successive crossovers along the ship’s
track. Each pair of successive measurements leads to an equation (equation.of condi-

tion) which contains the unknowns for the gravity values at two contiguous crossovers.

Some of the crossovers are located at port stations which belong to the national

gravimetric network. Regular passages of the ship through these ports, introduces into

. the system of equations values of g that are known "without error”, thus transforming

these equations into equations of definition. .

A vast calculation by the method of least squares of all observed data, attributes to
the gravity at each crossover an adjusted value g(adj) from which also all adjusted

values of the differences

Ag (adj) = ¢ (adj) — g (adi)
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can be calculated. The final step is the calculation of the residuals of the survey. A

residual is defined as being equal to
€ = Ag (obs) — Ag (adj),

A g(obs) being directly caiculated from the raw data i.e. measurements recorded by the

ship on any pair of two adjacent crossovers.

The sample here analyzed contains 43 929 residuals. t is, so far, the largest sam-
ple to which the modulation theory has been applied. The residuals are classified by
means of an interval equal to one-tenth of the standard deviation s. The value of s has
been calculated directly from the sample elements; it is equal to s = 0.973 milligal so
that

Az = 0.0973 mGal

The Diagram M represents the modulated normal curve with the modulator a very
close to zero (actually ¢ = 0.03). In spite of the fact that the curve has a somewhat

too pointed top, it fits into the observed line much better than the normal curve.
The Diagram N represents the normal curve that fits into the observed line (black
dots on the horizontal axis are the centres of the classification intervals). Clearly, the

sample is strongly leptokurtic.

GRAMIMETRIC OBSERVATIONS
QISTRIBUTION QF RESIDUALS

Nr43929 150973 mGot
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Exercises

- Alarm Devices

Lottery Tickets

Numerical Example of Bernoulli Trials
Screws Fabricating Machine

Calculation of Moments of X when £=7
Triangular Distribution

Distribution of the Variate V

A Model in Hagen’s Theory

Exercise on Moments

Theoretical Curve for "Screws Machine"
Sample of Residuals in a Gravimetric Operation
Recurrence Formulae for Integrals

Mixture and Dichotomy of Non-coaxial Samples

- Mixture of Two Lots of Pills

Calibration of Masses of Mercury

Calibration of Mass Standards

Measurement of g

Sum of Squares of Deviations from the Mean

Small Samples

Variate X (z; = 1, z, = 0)

Multiplication of a Variate by a Constant

Numerical Examples and Basic Values of the Gamma Function
Examples of Chi-square Tests

Another Derivation of the Recurrence Relation for v, Moments

Note

130
131
133
135
138
140
142
144
145
147
149
151
154
156
159
163
172
177
179
182
183
184
186
188

It is strongly recommended that the first part of each exercise (separated from the

rest by a line of asterisks) be examined first in itself. The reader should then try to

solve the presented proble.fr'l until he reaches the limits of his own capacity to progress.
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In this manner he will, step by step, reach the end of the exercise and should then

tackle the final questions and suggestions.

Some exercises contain significant extensions to the theory which is therefore illus-

trated, completed and clarified.

Nov. 11 18y

APPROXIMATIO AD
SumMaMTERMINORUM BINOMII
a+8" in Seriem expanfi,

Autore .4, D. M. R.S. S.

Uanquam folutio Problematum ad fortem fpe&antium non raro exi-
git ut plures T'ermini Binomii a+2" in fummam colligantur j atra-
men in poteftaribus excelfis res edeo laboriofa videtur, ur per-

pauci hoc opus aggredi curaverint; Facodus & Nicolaus Bermoulli viri Do=
&iffimi primi quod fciam tentarune quid fus induftris in hoc genere pra-

_ ftare pofiet, in quo edamfi uterque propofitum fumma cum laude fic affecurus,
aliquid wmen ultra poteft requiri, hoceft approximadio ad fummam ; non e=
nim tam de approximatione videntar fuiffe follicid quam de aflignandis cerris
Limitibus quos Summa Terminoium necefario tranfcenderet,  Quam vero
viam illi tenuerint, breviter in. Mifcellaneis meis expofui ® quz confulat
Le&or fi vacar, quod ipfi tamen fcripferint melius eric foreaffe confulere:
Ego quoque in hanc difquifitionem incubal ; qood sutem eo me primum im-
pulit non profeftum fuie sb opinione me cteros aatcicarum, fed ab obfe-
quio in Digniffimum virum qui mihi suror foerst ur hec fufciperem ; Quic~

* quid eft, novas cogitariones prioribus fubne&o, fed eo ut connexio poftres
morum cum primis melius spparcat, mihi neceffe eft ut pavca jampridem
a me tradiea dengo proferam.

L Duodecim jam funt annj & amplias cum illod iavenersm; (i Bino-
miom 34-1 ed potefiatem s permagnam attollator, ratio quam ‘Termious
Medins habet ad fommem T'erminorum omnium, hoc eft ad 2°, ad hunc mo=
dm o . . ’AX_;:‘" . . .

poterit exprimi gov—u ubi A eum aumerum exponit cujus Loga-

A rithmus
¢ Vide Miellancs Analytica peg. 96. 91.98. 99+

Abraham de Moivhe’s work on Bernmoulld Formuka -

(Ans Conjectandd, 1713)
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Exercise 1 - Alarm devices

A fire alarm device has a 90 percent chance of responding to an emergency. A
house contains three such devices: A, B, C; a positive response is denoted by A+ and a
failure by A—. Examine various possible cases, their respective probabilities and the

total degree of protection the devices can offer. Consider also other numbers of devices.

First case:

All three (separate) devices operate: A+, B+, C+.

9 9 9
ility: —X —XxX— = 0.729
Probability 10 X 0 X710

Second case:

Two devices operate: A+ B+ C-

A+ B- C+
A- B+ C+
9 9 1
ility: 3X(=—X—xX—) = 0.243
Probability: 3 (10 10 10)
Third cases
One device operates.
. 9 1 i
ility: 3X(—X=—Xx—) = 0.027
Probability '3 (10 10 10)

The total probability that at least one device will operate is therefore
0.729 + 0.243 + 0.027 == 0.999 .

Fourth case:

Total failure.

1.1 1
1  —x —XxX— = 0.001 .
Probability 10370 10 ’

Similarly two devices would lead to 0.81 + 0.18 = 0.99 and one single device to
0.9.
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Exercise 2 - Lottery Tickets

A pack of 100 lottery tickets contains three winners. How many tickets should one
buy in order to have the greatest probability of getting one (and only one) winning
ticket. '

Let us first establish the expression for the probability that in a set of, say, 20 tick-
ets one (and only one) be 2 winner. As a first step let us assume that it is the first .
ticket which will be 2 winner. The compound probability of one winner and 19 losers

takes the form of a product of fractions:

_ 3 97,9 9 94 8 8 81 80 79

100 99 98 97 96 85 84 83 82 381

One readily sees that the symbols "80" and "79" in the numerator are actually

_ designating the differences:

80 = 100-20,

79 = 100—(20+1) .

Simplifying and designating by z the number of bought tickets (here z=20) we

obtain

3 80 79 3
—_— XX — = —————(100—z){99—=z) .
100 99 98 100X 99X98~( ) )
If in the product, the winning ticket takes the second position, this product takes

the form:

97 3 96,95 ... x(100-2)(99-1),
100 99 98 97 _

which is identical to the product p above as the only difference is that the symbols
"100" and "97" have interchanged their positions.

There are £ =20 such products, so the total probability will be equal to:

3

——————X(100—z)(99—z)z .
100X 99% 98
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For =20, it is equal to

_3X80X79

——— X 20 = 0.391 or 39.1 percent .
100X 99 % 98

To find the value of z having the maximum probability we have to study the function
y = (100-z)(99-z)z ,
y = z3 —-199z% +9900z .

The derivatives of this cubic are;

9~ 352 —3982+9900
fiz
Ny
LY = gz -398 .
dz?

"~ The equation % = ( indicates that the nearest tnteger solution is z=33 and the

sign of the second derivative indicates that it actually leads to a maximum of y. One
can reach the same results by calculating the numerical values for y when z is made

equal to 32, 33 and 34.

The values of the probabilities for these three values of z are:
Pgy = 0.4508 ,
Pj3 = 0.4512 (mazimum) ,

Py, = 0.4510 .

It is interesting to notice that the curve y has in the vicinity of z=33 a rather flat
top. It is of interest to investigate the cases where the number of winning tickets is
different from 3. Thus we can notice that the order of the polynomial y is equal to the

number of winning tickets:

(100-z)z, z(maz) = 50 ;
with z =4, y = (100~z)(99—z)(98—z)z, z(maz) = 25 .

with z =2, y
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Exercise 3 - Numerical Example of Bernoulli Trials

Part A
Using the formula (2), trace the diagram of Pxi-as a function. of X, for

k=12, p = -é-andk = 12,p="§-’,

%* ok ok ok ow ok ok ok ok Kk

0.200 A 370.193%

0.100

)IZ-X

n)—

X
Polygon A. Px=’ﬂﬁf‘g%im"(%) (

‘X 12-X ;
Polyger B. Py=grrmeseyr (3) - (5)

Fig. Ex. 3. Bernoulli Trials.
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Part B

In Bernoulli Trials with k=11 and p=:-;- determine the value of X for which Py is

a maximum. Prove by a direct substitution in the expression of Py.

h ok ode d ok ok ok Kk X

- The relation
kpn + p >X >kp — ¢

gives

=X = —
3 3
X =4 and 3.
Check: 1) X = 4
4 7 7
it f1}.12] _ 1110987-65-4-32-1 2
4171 |3 3 1-2:3:4X1:2:3:4:5:67 311
_ 111098 2° _ 11-109 2°
1-2:3:4 311 1-2-3 311
2) X =3
. _
! (1) (2] - 11.109-87:6-5-4-3-21 2°
318 (3] |3 1-2:3%1-2-3:4°5:6-7-8 31!
_ 11109 2°
1-2-3 311

Py_4 = Py_.3 = 0238 --- (23.8 percent).
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Exercise 4 - Screws Fabricating Machine

The production of a screws fabricating machine is distributed into 100 boxes, the
nominal weight of a box being 7 kg. In reality, this weight is a variable the extreme
values of which are z = 6.20 kg and z = 7.80 kg. The weights of the boxes are distri-
buted into 17 classes by means of an interval equal to 0.10 kg. The classes are num-
bered, the interval (7.00 to 7.10) being considered as the "central" interval. Its rank j

is equal to zero (0) and its centre is at z = 7.05; the centres of extreme classes are: 6.25

(rank 7 = —8) and 7.85 (rank j = +8).

; 7.85
6.25 6.35 6.95 7.08 7.18

o - —— - . . YS——
.8 -1 -1 ¥ 3=sa0' 1 T 1

Fig. Ex. 4 - A, j-axis for distribution of screws.

In all calculations that follow the rank j (from —8 to +8) is considered as the

independent variable and it is only at the end of the calculations that the resuits

(expressed in terms of j) may be converted into kilograms.

Draw an exact diagram using the class frequencies F; presented in the Table that
follows. Then compute the values of w; = 7, w,, py (moment about 7). Check the

relation py = wy—of.

* ¥ k % % %k % %k *k %k




- 136

Table of Calculations -

i F, iF i-7 (7-7) (7 -7)°F;
-8 0 ~8.4 70.56 0.00
-7 0 ~7.4 54.76 0.00
~6 1 -6 —6.4 40.96 40.96
~5 3 —15 —5.4 29.16 87.48
—4 4 ~16 —4.4 19.36 - 77.44
-3 8 —24 ~3.4 11.56 92.48
-2 9 -18 —~2.4 5.76 51.84
-1 12 ~12 —1.4 1.96 23.52
0 10 0 -0.4 0.i6 1.60
+1 18 +18 +0.6 0.36 6.48
+2 14 +928 +1.6 2.56 35.84
+3 9 +27 +2.6 6.76 60.84
+4 6 +24 " +3.6 12.96 77.76
+5 4 +920 +4.6 21.16 84.64
+6 1 +6 +5.6 31.36 31.36
+7 0 0 +6.6 43.56 0.00
+8 1 +8 +7.6 57.76 57.76
100 +40 730.00

Formulae
— 1 . -— 40
= — F. = = +—— = +0.40
N2 = e 7~ 00
Lt J
N 5
l. . 2 - —
M2='A7:1—§(J‘_f) Fy By = wg—7°
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ey -%%9 = 7.374 Vieg = 2.7155

Caleulations of wy: 3 72F; = 746
J
(&)2 = 7.46
Ry = wp—wf = 7.46—(0.4)°

= 7.46 — 0.16 = 7.30

If the intervals are numbered from -6 to +10 the mean is equal to

7= +%—8— = 2.4. Thus the value of the extreme negative abscissa is equal to

—6 — 2.4 = —8.4 1. is the same as above. This will lead to the same value of p,,
i.e. 7.374. |

5 -
g -

—g 5

<+, O k=)

& 712 e

g 1
. VUSRS o L + e >
'8 —7 -8 -8 -4 -3 -2 -1 O0\1 2 3 4°5 6 T 8

~ J o4 '

Fig. Ex. 4 - B. Output of screws machine.

For the fitting of a theoretical normal curve into this diagram, see Exercise 10.
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Exercise 5 - Calculation of Moments of X

when k=7

When & = 7, the expression (7b) is

If the successive terms are multiplied by the numbers 0, 1, 2

form the expression for w;, (top p.17A) we obtain

y .. 7, respectively, to

7 7 6 2 3 7:6°5 3 4
== + L + + 3...__......p q +

765 4 76 5 92 7
+ 4— + 5= + 6 — + 7-
102_3Pq 12?4 IP‘I P

After the obvious simplifications, it becomes possible to put 7p out of the brackets:
= 7’ 6 -+ ipqs + .G_EP q o v v 4 .§;p5q + pe
S L 1-2 1

Thus we obtain w,=7p(p+¢)*=7p .

The expression for w, is readily deducible from that of w; by replacing the values
of the variable (i.e. 0, 1, ... 7) by their squares 0%, 12, 22 - - - 72, Thus

7 7-6 245 765 3 4
= 1X1— 4+ IXQ— + 3X3- e
1 llpq 2 12p 123"D
7:6-5 43 7‘6 52 __7
+ 4X4- + 5XG— + 6X6- + TX7-
12317 12P Pq P

The terms are now simplified and arranged as follows:

7 7-6 25 765 3 4 7°6:5°4 4 3
- + 20— + 3 + 44— +
llpq L Pe g PY 123 P4

+571625p52 6-7—1§-pq+77p
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Now, as in the previous calculation, the factor 7p can be put out of the brackets:

= . .Q. 5+..(ﬁ24+4.§'5;433+
wg 7p[1q +21pq 31_2pq 123 P ¢
+ 5"&1)4112 + 6“9'1)5(] + 7Pb
1-2 1

At this point of the analysis it becomes less clearly visible what further transforma-
tion may be apbropriate. Probably a certain number of attempts had been made before
it was discovered that all factors 1, 2, 3, 4, 5, 6, 7 should be replaced by (0+1), (1+1),
(2+1), (3+1) ... (6+1), respectively. This gives

N\

w, = Tp Q.qﬁ + l.ﬁqut + 2-—6-'-5-p2q4 + 3.2'5;41,3,?3
1 1-2 123
~ 6 (4)
+ 425402 4 5255 + 6p° +
- 1-2 1
J
\
-5 6-5°4
+ g8+ Spgt + EBprgt 4 22Lp30
1 1-2 1-2-3
6-5 6 h (B)
Do 4 2 + 2 5 + pb
+ 1.21’ q 1P q p

/

By examining closely the contents of the brackets (A) and (B) we will notice that
(A) represents the first moment w; with k=6. So that (A) = 6p. On the other hand,
we have simply (B) = (p+4)°® = 1.

Hence,

wy = 7p[6p + (p+q)°] = Tp(6p+1) .

This conforms to the formula (11): wy = kp[(k—1)p +1] .

e — i
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Exercise 6 - Triangular Distribution

A distribution is termed triangular if its representative polygon has the form of an
isoceles triangle AA’T. The extreme class frequencies (here, z = *5) are equal to 0

and the top T is on the y-axis. The class frequencies F(z) are given in Table A.

\T"
\
\
Sa FA
\\
LS S
107, \
P BN \
1 \\ \\
/ (N
{ \ \Y
£ 8t By
/ N
/ \ AN 3
/, \ \\
* S 6\"\ \\
/ AN
(2 A}
/ %\
Y
‘, 44 Q‘.\
/ vy
; Y
/ \\\\
I/ \\‘v—-—-l
' 2 e <
/ W {
F; W
4 W
/ *
Ay . Y-
8 =4 =3 w2 =% 0O 1 2 3 4 3
S ——— '3

Fig. Ex. 8. Triangular distribution.

Calculate the second moment g of z and show that it remains constant when the

top T changes its position on the F-axis.

X % %k k k ¥ k% ¥ ¥ *




-

-

A B C D
z F || 22 | Fz? F' F'z?
5| of 25 0| 0+ 0 0
4| 2ll16] 32 || 2+ 1a || 32 + 16
3] 4 9| 36 || 4+ 2« || 36 + 18
2| 6f 4| 24 || 6+ 3a | 24 + 120
1 8 1 8 + 4o 3 + da
o|l10f o 0 || 10 + 5a 0
+1 | 8| 1 8 +4da | 8+ 4o
+2 | 6| 4| 24 || 6+ 3 || 24 + 12
+3 4 9 36 4 + 2a 36 + 18«
+4 | 2f16] 32 || 2+ 1a || 32+ 16
+5 | 0|l 25 0l 0+ Ox 0
N=50 200 || 50+25« || 200+ 100« .

Calculation of the second moments:

1 .2 _ 200
= — $F - = = 4
| o L gpigr o 20041000 _
b= 2F'e 50+ 250

As a can take any value, p, is independent of @ and thus is the same in all positions of

the top T.
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Exercise 7 - Distribution of the Variate v
As a complete numerical example of the distribution of V, consider the Bernoulli

trials with =576 and p = ¢ = f;- (cards). In the diagram the classification interval

will be taken equal to AV = 4,

LR S B I I I K

For the moments w;, w,, p, we have
w, =z = kp = 288 ;
me = kpg = 144; Y, = 12.

The probabilities in successive intervals are computed for the following values of

the variables:

V=0, £tAV, 20V, --. v=0,,_,AV’,_,2AV-,_n
Y kg | Y P2
1 2
V: :4, t — ’1-._.’ :_,
01 8 v 0 3 3

Bl A

= 1 -4 .1
d(v) = We , Av n 3

For instance, Py = 0.3989><=:¥13- = (0.133, s.e. 13.3 percent. All other values of P are

given in the diagram.
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Fig. Ex. 7. Variate V.,

Note: in diagrams in which the values of the variable V' are integers the curve join-
ing the points representing the probability P has no real meaning. It may be a broken

line helping the eye to see the evolution of the ordinate.
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Assume that in a certain type of -high-precision length measurements the total

number k£ of elementary errors is equal to 40,000 and that the value of € is equal to 0.10

pm. Calculate the values of various parameters.

& K o ok k ok ok &k Kk %k

1
i
Exercise 8 - A Model in Hageg’s Theory N |
i
i
i

According to Hagen’s theory the variance of H is

40 000

5% = e’kpq = 0.01 X = 100
so that the standard deviation is

S = 10pm .

If we take AH = 2wm, then —-’3‘5— = Ak = 0.2.

If the deviations are classified by means of an interval AH = 2um then the
reduced value of an interval can be designated by Ah and the reduced abscissae of
intervals centres are h = 0, 0.2,0.4, 06, - - - Their corresponding probability densities

may be calculated by means of the tables of the normal function (k) and the probabil-
ities by the relation

AP, = &(h)Ah .
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Exercise 9 - Exercise on Moments

A variate z can take two values z, and z, the probabilities being p and ¢, respec-
tively (p+¢q = 1). Establish the expression for w,, w,, w; and solve them for z,, z,, p

considered as unknowns. Apply the results to the case  where
w; = 175, w, = 3.25, wy = 6.25. '

® k ok % ok Kk k % k %

The system of equations is

w, = pz; + qI9
= npl 2 -
We=pzy *+qry ¢ ptg=1

= 3
wg = pzi + ¢z

To solve this system let us multiply both the first and the second equations by
(zl+z2): \

)
wy(z1+3g) = (pz,+25)(31+ 25) = pzf +gz] +13,

(w2(21+ 29) =-pz] +g23 +2,24(pz, +q2,)

,
ml(Il+32) = (.02+ I1Z9

Lmz(zl""zz) = m3+m,z1z2
This is a system with two unknowns
zl+32='y, 3132=2,

| w1y = wytz

WaeYy = (.03+(.012 .
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The solutions are

Wy ™ W3 wf —w g
y 3 Tm_, z = _T—-—-v s
g —wg Wy~
and the unknowns z, and z, are respectively equal to the roots X’ and X'’ of the qua-

dratic equation
X?— yX +2=0. (Solutions:X' and X'') .

It is easy to check that the above given values for w,, w,, ‘wz and p lead to the

solutions

3

s =3, z=2.
4 y

‘X,=2i=11 X"=z2=2, p=-i-) q =
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Exercise 10 - Theoretical Curve for "Screws Machine"

This is an extension of Ex. 4: Fitting of a Normal Curve

Mo = 7.374 ’

= Vi, = 27155, T = +040.

g
% %k % %k ¥ k %k k k Xk

i i | a=ET ] ey | g
8 | ~8.4 | <3.0034 | 0003335 | 0.12
7 | =74 | —2.7251 | 0.000736 | 0.36
6 | ~6.4 | —2.3560 | 0.024 813 | 0.91
5 | 5.4 | ~1.9886 | 0.055234 | 2.03
4 | —44 | -1.6203 | 0.107 354 | 3.95
3| —34 | -12521 | 0182171 | 6.71
2| —24 | -0.8838 | 0.269957 | 9.94
1| —1.4 | -05156 | 0.349 285 | 12.86

0| ~04 | =0.1473 | 0.394 634 | 14.53
+1 | +0.6 | +0.2210 | 0.389 316 | 14.34
+2 | +1.6 | +0.5802 | 0.335370 | 12.35
+3 | +2.6 | +0.9575 | 0.252248 | 9.29
+4 | +3.6 | +1.3257 | 0.165685 | 6.10
+5 | +4.6 | +1.6040 | 0.005014 | 3.50
+6 | +5.6 | +2.0623 | 0.047575 | 1.75
+7 | +6.6 | +2.4305 | 0.020804 | 0.77
+8 | +7.6 | +2.7988 | 0.007 942 | 0.29
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Fig. Ex. 10. Fitting a normal curve into Ex. 4 - B,

The test of the hypothesis that the sample is drawn from a normal population is
performed in Ex. 23.1.
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Exercise 11 - Sample of Reéiduals
in a Gravimetric Operation
This sample consists of 1992 residuals obtained in the adjustment of the results of
measurements of "g" (Gravitational Constant) made along the line joining Ottawa and
Washington. There are twenty stations on this line. The values of g in the extreme
stations (O. and W.) are known from absolute determinations. As a final outcome of
the operation, each station is attributed an adjusted value of g. The difference between
the adjusted values in two consecutive stations can now be compared with the difference
directly indicated by the gravimeters. The discrepancy between th.ese two differences is

termed "residual®.

The residuals, denoted by the symbol z are expressed in a unit of acceleration

equal to 107° L“..z_ This unit is equivalent to'the old "milligal® (1073 _c_r§1_) which
s s
officially is no longer part of the SI system.

The population is distributed into 25 classes, from j=-12 to j=+12 (Aj=1),
each class interval beéing-equivalent to Az = 0.015 mGal. Assuming that the observed
F; indicate that the distribution is close to normality, calculate the parameters of the

normal curve that fit into the diagram and the theoretical class frequencies f;.

* ok ok ok ok ok k k ok ok

The calculation of the parameters leads to the following results:
7 = 0259547

pe = o = 9.1677 - (Aj)?

Vi

I

o = 3.0278 Aj



Normal Curve

J F; /i
-12 2 0.07 |
~11 3 0.26
~10 4 0.84

—9 2 | 245

—8 6 6.36

-7 18 14.82

—6 | 21| 3097

—5 | 54| 5806

-4 | 76| 9757

-3 | 132 | 147.03

~2 | 204 | 19867

—1 | 246 | 240.71

0| 315 | 261.50

+1 | o251 | 254.73

+2 | 238 | 222.49

+3 | 171 | 174.25

+4 | 104 | 122.37

+5 65 |  77.05

+6 | 35| 4350

+7 1 21| 2202

+8 | 10! 1000

+9 7 4.07
+10 4 1.49
+11 1 0.49
+12 2 0.14

1992 | 1991.91
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2ot oy O

=1Q -5 -1 O *5

Fig. Ex. 11. Sample of Gravimetric Residuals.
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Exercise 12 - Recurrence Formulae for Integrals

Part I

Establish the recurrence formula for the indefinite integral I, = fz"e~*dz and

-]
then transform it into the formula for the definite integral J, = fz" e *dz.
0

% ok %k k %k Xk Xk k X X

The starting function for this opeljation is
D(z) = 2" 'e
and its differential
| '(2)dz = —2z"e T dz + (n=1)z""2¢"%dz |
Integrating both sides we obtain
2" lem = —2fz"e_"=dz + (n—l)fz"_ze“zzdz

and, solving for I,

I, = fz"c""dz =‘—n-;—1-fz"'2e_zzdz - -;—z""le—'2 .

Hence the recurrence formula

From I, all integrals of odd orders (I3, I5 ...) can be calculated step by step.
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For instance,

Iy = —%e"e(l%"zz)

The expressions for integrals of even orders cannot be established.

From the recurrence formula established above, the formula for definite integrals is

readily deduced by noticing that the term

1 1 .2
_ 2 in le F4

2

0

is also equal to zero. It is obviously equal to zero for z=0 and, for z=0, it can be put

under the form

~n-1
&

2?

e

Now it is known that an exponential (such as e*°) tends towards infinity faster than any

finite power of z: the fraction, when n -, tends very fast toward zero.

The recurrence formula is thus reduced to

n—1
Jn= 2 'Jﬁ—2'

An interesting feature of the definite integral J, is that there is a simple expression for

Jo!

This leads to the expressions of all integrals J, with even values of n; for instance

Jy = :%Ei’Jﬁ = ':531

etc.
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Part II

Establish the recurrénce formula for the indefinite integral I, = fa;"e‘dz and the
definite integral J, = j‘x"c"‘dm.
0
The starting function is
O(z) = z"e®
the differential of which is
| .(I)'(:t:‘)dz = g"e%dzr + nz" le%dz .
Integrating boi‘;h sides we obtain
z"e* = fz"e*dx + n[z" 'e®dz

and the recurrence formula

Hence

For the definite integral

the recurrence formula is

and, as

it reducesto . =¢ — nJ,_;. Jo=¢, J; =0, J, = e , J3 = —2e, etc.
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Exercise 13 - Mixture and Dichotomy of Non-coaxial Samples

A theoretical sample of N = 2000 elements is considered as being a mixture of two nor-

mal sub-samples. It is distributed in 41 classes, from j = —20 to j = +20. As it is postu-

lated that nothing is known about the parameters, Pearson’s system will contain six equations

in py, pg, my, mg, 0y, 0. It will be of the form (53b).

j F; i F;
~20 0.12 | +1 | 141.93
~19 0.25 | +2 | 145.96
—18'| 048 | +3 | 145.06
-17 0.89 | +4 | 138.57
—16 1.58 | +5 | 126.61
-15 | 272 | +6 | 110.20
—14 4.48 | +7 | 91.08
—-13 7.1 | +8 | 71.29
—12 | 1083 | +9 | 52.76
—11 | 15.88 | +10 | 36.86
—10 | 22.40 | +11 | 24.29
-9 | 3045 | +12 | 15.08
-8 | 39.95 | +13 8.82
-7 | 50.67 | +14 4.86
—6 | 62.32 |.+15 2.52
~5 | 74.58 | +16 1.23
4| 8715 | +17 | 057
-3 | 99.78 | +18 0.24
-2 | 112.17 | +19 0.10
—1 | 123.87 | +20 0.04
0 | 134.15

This sample has been used to test the
correctness of all operations related to Pearson’s
equations. From the values of F; it was easy to
calculate the mean 7, which is equal to 7 = +1,
and then all moments about
7 ¢ Mgy Mqy Mg, K3, My, g. The solution of the
resulting system (53.) was then performed by
Pearson’s method based on the solution of the

nonic.

The results showed a satisfactory agreement
between the calculated values of the parameters
Py Pg, M|,-Mg, 0, &9 and the values which have
been used to calculate the class frequencies.
Pearson’s method is not described in the present
work; the reader can nevertheless, as an excellent
exercise, calculate the values of the p-moments on
the one hand from the class frequencies F; and,
on the other hand, from the parameters that have

'béen used to form the system.
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These parameters are:

p, =05, m=-3, o=35
p2=0.5, m2=+3, 0’2=4

They lead to the following values of the moments:

\

o = 10| py = -40.5
ny = 00| py=  +27525
e =  +295| ps=  -9517.5

Note: The solution of a complete system of Pearson’s equations (through the nonic) is
now available in the library of routine operations at the N.R.C. Computation Centre.

It is the outcome of the work performed by Dr. S. Ba:'cter, mathematician at the Centre.

Fig. Ex. 13. Mixture of Non-coaxial Samples.
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Exercise 14 - Mixture of Two Lots of Pills

A pharmaéist has produced two lots of pills of 100 units each. The mass of a pill
may be assumed to be normally distributed about the mean of the lot to which it
belongs. The variance is the same in all lots. After the two lots have been mixed, the
suspicion arose that one of them may be slightly heavier than the other. As the lots
cannot be physically separated, show that it is possible, by statistical methods, to evalu-

ate the difference between their weights.

It may be assumed that the nominal mass of a pill is of the order of 1 g and that

the largest deviations from the average are of the order of 15 mg.

B Rk k Kk %k k % k %k

The first operation consists in weighing all of the pills and recording the obtained

masges m; (f = 1,2, -+ 200). In order to simplify the operations, the mean may be

computed before the classification

—_ 1
m = —Nm
200 <
The deviations are
I = m; - ﬁ

and are expressed in milligrams (mg) with 2 decimals. Now z; may be classified by
means of an interval Az =1 mg, the central interval extending from —0.5 to +0.5 mg.

It receives the rank 7 = 0 and thus the whole sample is distributed into 31 intervals:
from j = —15t0 5§ = +15.

The second step is the calculation of the second moment p, and the fourth °

’

moment p, (with respect to 7 = 0).
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As the sizes (N, and N,) of both lots are identical, (N, = N, = 100) the centres of
the components are located symmetrically with respect to the centre of the mixture.
Let the abscissae of these centres be +a and —a (¢ > 0) and let the variance of both

representative curves be o?. According to Pearson’s equations we have the following

system of equations:

1

P1=Pz=“2f'

1 i
-2-(0'2+ az) + ‘5'(0'2+ az) = Mg,

%(30‘"+6a202+ at) + -%(30'4+6a20'2+ at) = py .

i

|

|

|

|

1

|

|

The simplified form is:

i ’ ol+a? = TP

l ' 304+6¢;202+ at = p,.

l The solution presents no difficulty: the first equation is squared, m‘ultiplied by 3
and the result is subtracted from the second equation. This gives

l 1

|

|

i

i

3ui-p, |4
2¢* = 3ui-p, =+ . a = [—%—i

and leads to the expression for o%:

3

2 2 _ 3“‘22—!"‘4
of = pp—af = py— | —p—

|
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Fig. Ex. 14. Mixture of two lots of pills.
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Exercise 15 - Calibration of Masses of Mercury

A mass of mercury (1 kg nominal) has been divided into four nominally equal

parts. The results ofthe weighings made on a medium precision balance are-

X, =m, =250032¢g

X, = m, = 249.979g
' X3 =m; =250.063g ..(A)
X, =m, = 249.948 ¢
X, + X, + X3 + X, =mg =1000.01i65¢g

All results are considered as of the same degree of precision.

& ok ok %k ok k ok k k &

The system (A) formed of five equations of condition contains four unknowns. It is
treated as follows. The first equation is multiplied by 1, the following 3 equations are
multiplied by 0 and the last is also multiplied by 1. The summation produces the first

normal equation (in X,):
2Xl + X2 + X3 + X4 = 1.250.0485 .

In the same manner are formed the other 3 normal equations so the total system takes

the form
20X, + Xp+ Xa+ X,= m, + mg
X, +2X,+ X3'+‘X4= m, + mg ...(B)
X,+ X2+2X3‘+ X= mg + mg

X1+ X2+ X3+2X4= my + Mg
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The determinant of the system is not equal to O:

#0

[ e
[
- DD
DO = e e

To solve the system add all equations in (B) and divide by 5. This gives
X1+X2+X3+X4= %[m1+ m2+ m3+m4+4m5)

Subtract this from each of the normal equations to -obtain, for X and similarly for

other unknowns

X, = -;—(4m1—m2-m3—m4+m5) = 250.0309
X, = ‘;—(4m2—m1—m3—m4+m5] = 240.9779. .
X, = -;—(4m3—m1-m2—m4+m5) = 250.0619 ()
X, = —;—(4m4—m1—m2~—m3+m5) = 249.9469.

In order to apply the method of undetermined coefficients (A, p., v, 6) let us write

the equations of condition (A} under the form

(a) (b) (c). (d)

1X, +0X, +0X, +0X, =m,
0Xy. +1X, +0X; +0X, =m,
0X, +0X, +1X; +0X, = mg (D)
0X, +0X, +0X, +1X, = m,
0X, +1X, +1X, +1X, = mg

The double products are therefore:

(aa) = (bb) = (cc) = (dd) = 2
All other products, (ab), (ca), * - - are equal to 1
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and
(am) = m; + mg,
(bm) = my + mg

(Cm) = m3+ ms ,

(dm)= m4+ mg .

To solve the system (B) for X, reqfxires the solution of the auxiliary system

IN+p+v+o=1

AN+ 2u+v+8=20
AN+ u+2v+0=0
A+ p+v+20=20
The solutions are A = ;;-,p. =p=0-= --;—.
In conformity with (73):

X, = Aam) + p(bm) + v(cm) + 8(dm) ,
= %("'1"‘"‘5) - %(mz"‘ms) - T;-(m;;-l-m.s)—'—;-(m,,-l-ms) )

Xl = _;‘(47711— Mg — m‘3— m4+ ms] .

The expressions for other unknowns are established in the same manner. The resultsA
confirm the set (C).

To find the residuals the solutions are substituted into the equations of condition:
e.g.

v, = X, - X, = 250.0320 — 25.0309 = +0.0011 .

All residuals are identical in the first four equat;'xo‘ns:

v, = vy = vy = v, = +1.1x1073

and
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vg = —1.1x107% .

Hence
(w) = vl+vi+vi+vl+v? =6.05x107°.
the variance is equal to

o2 ~ ) _ 6.05%107° .
™ $-—5

o, = 2.46x107%,

The variances on all individual unknowns are identical to each other.

The theorem of propagation of variance yields, e.g. for 0')2(|:

2
o}, - (‘?] (F+1+10141)0l = Lol

5
o%, = 4.84x107°,
ox, = 2.20x107%.

i Sug bl am Wy B B
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Exercise 16 - Calibration of Mass Standards

The most convenient system of values for establishing the submultiples and the

multiples of the kilogram is

(5), (2), (2°), (1), (1)

The system of equations of condition is the same.for the constitution of submultiples
and of multiples. Let us first establish this system and then the system of normal equa-

tions.

% %k ok %k K ok k %k Xk %

Diagram N.

Equations of Condition

+(6) - -2 -(@) -() = m,
+(5) -(2) -(2) —-(1) = m,
+(2) —(2) +(1) (1) = mg
+2) -(2) (1) +() =my (A)
+(2)  —(2) = mg
+(2) —-(1) —(1") = mg
+2) (1) -1 =m,
+1) —(1) = mg.
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Normal Equations -

25)  -22) -2(2")
-2(5) +6(2) —(2')
~2(8) -(2) +6(2')

—(8)
—(5)

The symbols N; -

—(1)

+6(1)

—(1)

-(1')

—(17)

+6(1)

values m; as they are given in the following table

Ng are equal to the linear combinations of the observed

.(C)

+m; -m; —my —-my
+m, —my —m, —mg
+my —my +my  —my
+my -my -my +m,

+mg —mg
+mg —mg —m,
+my —maq —ma
+mg —mg
Sums: N, N, Ny N, Ng

At this pdint, the analysis is divided into two branches: a) that of sub-multiple

and b) that of multiples.

a) Calibration of submultiples

To the system (B) is joined the equation of definition

(5) + (2) + (2') + (1) ='.-, M (=10 hectograms)

so that (B) becomes -

N
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2(5) -2(2) -22) -Q1) -(@1) =N,
-2(5) +6(2) —(2') = N,
~2(5) —(2) +6(2') = N, ...(D)
~(5) +6(1) -1y =N,
—(5) —=(1)  +6(1") = N;
(3)  +(2) +(2) +(1) =M .

There is an important difference between this system of normal equations and the
system (64): while in the latter the determinant A is not equal to zero, the determinant
D is equal to zero. This property (easy to check numerically) indicates that there is a
linear relation between the values N, N,, N3, N, and N;. In other words, one of the
normal equations is redundant and that, therefore, one of the unknowns can be be given

any arbitrary value. The relation between N’s is
5N, + 2N, + 2N; + N, + N, =0 .

The fact that N’s are interconnected linearly does not mean that one of them must be
ignored. Bu it means that the unknowns will acquire finite and well-defined values only
if they are completed by one equation of definition. The algorithm (F) uses all five
forms of the normal equations. _ ‘

Ny Ny Ny Ny Ny

+7N, +N, +N; +IN, +7N,

+5N,
+5N;
—'N4 -“Nq "'N4 +23N4 +3N4
+ Ny +5N; +25N; ..(E)
S, S, Sq S, Se
Sl SZ ﬁ 84 55
28 35 35 140 140
M M M M M
9 5 5 10 10
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Numerical Example

Ny N, N, N, Ng

my=—1dmg | 1.4 +14 +1.4 +14

mg = —0.6 mg | —0.6 +0.6 +0.6 +0.6
" my = +4.4 mg +4.4  —44  +44 —44

m, = +2.2 mg +2.2  —22 —22  +2.2 (F)
.mg = +3.4 mg +3.4 -34

mg = +3.2 mg +3.2 -3.2 —3.2

mqe = 0.0 mg 0.0 0.0 0.0

mg = +1.4 mg +14 —14

~-2.0 +152 -80 +1.8 —6.2

Ny Ny . Ny Ny Ng
-2.0 +15.2 - —-8.0 +1.8 —6.2
—14.0 ‘ —-2.0 —2.0 —14.0 | —14.0
+76.0
—40.0
" —1.8 -1.8 -1.8 +41.4 +5.4
-6.2 —-31.0 —155.0

§,=-22.0 §,=+72.2 S3=-—43.8 $,=-3.6 Ss=—163.6

-0.786 +2.063 -1.251 -0.026 —1.169
[w]—3.165 ~1.266 —1.266 —-0.633 ~0.633
—3.951 +0.797 ~2.517  —0.659 ~1.802

The equation of definition in this table is M = (1-6.33x107°%) kg. The line [u]

consists of the parts of the quantity u = —6.33 mg. The final results are presented
under the following form
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(5) = (0.5 — 3.951 x 107 %ke
(2) = (0.2 +0.797 x 10" Ykg
(2') = (0.2 — 2.517 X 10 %)kg
(1) = (0.1 — 0.659 X 10™%)kg

(1') = (0.1 — 1.802 % 10 %kg .

If these values are introduced into the equations of condition, we obtain the

adjusted values m’;, the deviations v; = m';—m; and the squares v :

—-1.6

-04

+4.5

+2.2
+3.3
+3.3
~0.1

+1.1

2

v; = +0.2 vi = 0.04
vy = —0.2 v = 0.04
vy = —0.1 vi = 0.01
vy = 0.0 v = 0.00
vg = +0.1 vg = 0.01
vg = —0.1 v = 0.01
v, = +0.1 v? = 0.01
vg = +0.3 vd = 0.09 .

The value of the group variance s.2 is therefore

52 = %zvf = %xo.m = 0.0525 .
t

(1)

Note that here the number of masses is equal to 5 but only 4 are independent because

of the equation of definition, therefore v = 8—4 = 4,

The calculation of the variances on individual weights is performed by establishing,

for each weight, its algebraic expression in terms of m; and M. For instance, from (C):

and, from (E):,

N,

- my — myg+ mg+ my+ mg+ mg,



- 168 -

Sz= N| +5N2 - N‘-

The expressions for Sy, =+ §gare

(J)
Sp=+8my +6my; —2m; +2m, — 2my,
Sy= -3m; - im, + 4dm, + 6m, + Smg + 6m, +my " — my
S3 == 3m; - 4m, — bmy, —dmy - 5my + m, + 6m, —~ g
S¢==16m +2m, +18m; - 18m, - 28m, - 28m, + 18m
S = + 4m, — 18m, - 2m;  + 22m,

so that, by .the theorem of propagation of variance,

we have, for instance for s¢ (vari-
ance of §,):

s = (82 + 6% + 22 4 92 4 22)3,,2, = 11252

m L ]

The final table (below)

contains also the variance on M. This variance, denoted by
5% has been obtained by a

high precision calibration performed by a national standar-

dizing laboratory. It is sg = 0.008(mg )2. The value for 3,2 is given in (I): 5,2 = 0.052

Table of Variances

[
b
[ ]
[
nN
it

m = 0.2555% + 0.143s2

0.0094 {mg) 2

2 2
J s + [«l] 14052 = 0.04s2 + 0.11452 = 0.006 »

]
o
4

i

a—
[

2 2
siy = —;-] sg + {3—15] 14052 = 0.04s2 + 0.11452 = 0.006 = wo(K)
. 1 2 . -
sfy = [%] sy + [F)'] 2836s,; = 0.0157 + 0.1452 = 0.007 =
2

2
: 1 1
sy = [-1—] sk + T] 33605, = 0.01s5 + 0.17s2 = 0.009

- 28m, - 28m7 i 227718 ®
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b) Calibration of Multiples

The equation of definition is here

(1Y= M (= lkg + 0.05 mg),

p = 0.05 mg,
so that (B) becomes
2(6) -2(2) -22) -(1) -(1) =M
—-2(5) +6(2) -(2") = N,
-2(5) -(2) +6(2") = N; ..(L)
-(s) +6(1) (1) =N,
—(5) —-(1)  +6(1") = Ns
)y =M.
The a'lgorithm for the solution:
N, N, N4 N, Ng
12N, 12N,
6N, SN,
5N, 6Ng
'-N4 2N4 2N4 +N4
—6N; —Njs (M)

G ® @ o

The numerical example treated below follows the same pattern as that for submul-

tiples.
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Solution (Unit = 1 mg)

my=—25.0 mg -25.0 +25.0 +25.0 +25.0
my=—35.0 mg -35.0 +35.0 +35.0 +35.0
m3= —5.8 mg —-5.8 +5.8 -5.8 +5.8
m4=—6.1 mg +6.1 -6.1 —6.1 +6.1
mg=—0.3 mg -0.3 +0.3
me=—0.9 mg -0.9 +0.9 +0.9
m,=—0.8 mg -0.8 +0.8 +0.8
mg=—5.6 mg —5.6 +5.6
-60.0 +59.1 +59.2 +9.2 +54.2
-720.0 -720.0
+364.6 +305.0
+296.0 +355.2 +9.2
-9.2 +18.4 +18.4 —54.2
- —325.2
—334.4 -51.0 -50.9 ~45.0
—47.71 -7.29 -7.27 -5.43

* +0.25 +0.10 +0.10 +0.05 +0.05

—47.52 -7.19 =7.17 —6.38 +0.05

* The values on this line are expressed in terms of p with p = 0.05 mg.
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(5) = 5 kg. - 47.52 mg

(2)=2» - 17.19 mg

(2)=2», - 7.17 mg (o)
(1)=1» —-638mg

('Y= 12 - - 0.05 mg (by definition) .

The substitution of these values in the equations of condition leads to the following

table of residuals v;, their squares, and the value of the group variance s,%:

v, = —25.0 + 268 = +1.8 vf = 3.24

vy = —35.0 + 33.2 = —1.8 vy = 3.24

vy = —58 + 6.4 = +0.6 v = 0.36

v, = +6.1 — 6.4 = —-0.3 v} = 0.09

vg = =03 + 0.0 = —0.3 v? = 0.0 | ~(P)
vy = —09 + 0.9 = 0.0 vé = 0.00

vy = —-0.8 + 0.8 = 0.0 vZ = 0.00

vg = —5.6 + 6.4 = +0.8 vE =064 .

(vv) = 7.66,

2 - (w) 7'466 = 1.92 (mg )%

The variance on the calibration of M = (1') has been found equal to

sg = 0.008 (mg)?. | -(Q)
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Exeri:ise. 17 - Measurement of "g"

9]

200

, a0 |-

oG .
—;mu@-ﬂ —WQ—GE .
Fig. Ex. 17 '

" A 2 meter graduated rule is held vertically al_)ove the horizontal axis CC’ of a cam-
era C.. When the rule i3 released, it falls vertically and as soon as the origin of the gra-
duation O passes CC’ the rule is illuminated every tenth of a second by an electric
spark. Each spark produces a photograph of a small portion of the rule’s graduation on
which the projection of the camera’s fiducial line determines the point termed "station"

which at the time of the flash was on the axis CC’. There are seven stations

89, 33, * ° * 34 hence six time intervals ¢, t,, {3, {4, L5, ¢y the nominal values of which
are 0.1, 0.2, ... 0.6 respectively.

The distance of points s, s,, ...34 from the initial point sy are designated by the

symbols m,, m,, °*: m, The numerical data are presented in the following table

_ (observed)
t, = 0.09999914 &, m, = 8.838 407 cm
ty = 0.19999922 m, = 97.482 803

t; = 0.29999895 my = 55.933 421

t, = 0.39999971 m, = 94.190 082

ts = 0.50000007 ° mg =  142.253 322

ty = 0.59999922 . my =  200.121 939

It is important to underline that, by a fundamental assumption, all errors in the

measurements of lengths will be of Hagen’'s type and that the intervals of time will be
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considered as "without error®.

* ok ok ok ok ok ok % ok ok

| According to the laws of the free fall (constant acceleration) the quantities ¢ and m

are connected by the equation

X + tEY = m;

in which X is the velocity at the time S, crosses CC’ and Y is equal to -g-, g being the

acceleration due to gravity. Here g is expressed in..fln;i(gal). Treating the six equa-
s

tions of the system as equations of conditions we obtain the following system of normal

13

Ay Y38 = Smy
i 1 i
Xzl Yset = Imtd .
t

1

The numerical coefficients of X and Y are:

¢
0.099 999 14
0.199 999 22
0.299 998 95
0.399 999 71
0.500 000 07

"0.599 999 22

.. Sums:

$2
0.009 999 828
0.039 999 688
0.089 999 370
0.159 999 768

"0.250 000 070.

0.359 999 064

t3
0.000 999 974
0.007 999 906

0.026 999 716
0.063 999 861

- 0.125 000 052

0.215 999 158

t4
0.000 099 996
0.001 599 975
0.008 099 887
0.025 599 926
0.062 500 036
0.129 599 326

0.909 997 788

l equations in which the unknowns are X and Y:".

0.440 998 667

0.227 499 146
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m mi mt®
8.838 407  0.883 8331  0.088 382 55
97.482 803  5.496 5392  1.009 303 54
55.933 421 16779967 6  5.033 972 65
04.190 082  37.676 0055  15.070 391 27
| 142253322 71126 6710  35.563 340 46
200.121 939 120073 007 3 72.043 710 73

Sums: 252.036 023 7 128.899 101 19

The Normal equations are therefore:

0.909 997 788 X + 0.440 998 667 Y

252.036 023 7,

0.440 998 667 X + 0.227 499 146 ¥ = 128.899 101 2 .

. The elimination of X leads to the value of Y and the substitution into both equa-

tions yields X:
X = 39.353 67,

Y = 490.305 95.

The value of ¢, i.¢e. 2Y is

9 = 2Y = 980.612 gal, [-E‘E‘s]
8

and the value of X indicates the velocity in Z with which Sg crosses the axis CC’.
3 ;

If we substitute the values X and Y into the equations of condition we find the

compensated values of the various observed lengths m; :
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39.353 671 X 0.000 999 14  + 490.305 95 X  0.009 999 828 = 8.838 308 cm
" 0.199 999 22 " 0.039 999 688 =  27.482 788
" 0.299 998 95 " 0.089 999 370 =  55.933 287
" 0.399 999 71 " 0.159 999 768 = 94,190 295
" 0.500 000 07 " 0.250 000 070 =  142.253 360
" 0.599 999 22 v 0.359 999 064 =  200.121 855

The residual errors are computed by forming the  differences

v; = my (observed) — m; (computed), for instance

v, = 8.838 407 — 8.838 308 = 0.000 099 ,

v, = 0.99pm.
To calculate the variance o’ we form the following table of residual errors and their
squares: |
0;2

v, = +0.000099 cm v, = +0.99um 0.980 1 (pm )?

vy = +0.000 015 v, = +0.15 0.0225

Vg = +0.000 134 Vg = +1.34 1.795 6

v, = —0.000 213 vy = —2.13 4.536 9

vg = —0.000 038 vg = —0.38 0.144 4

ve = +0.000 084 vg = +0.84 0.705 6

(vv) = 8.185 1

The variance o, is therefore

s _ 8.1851 _ o
Om —_—(6—2) = 2.0463 ; g = 1.43pm .

As the main objective of the experiment is to determine "g" t.e. 2Y, the final step

is to solve the system
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0.909 997 788 X' + 0.440 998 667 .’

i
<

0.440 998 667 X' + 0.227 499 146 p." = 1.

We obtain first

1
' = = 72,545 071 1
BT 70.013 784 534 ’

and then,by the first of the above equations, the value of A’, which is found to be equal

to

_.72.545 071 1 X 0.440 998 667
0.909 997 788

A= = —35.156 436 7.

Hence 0, = 0, Yp' = 1.43Y72.545 = 12.179 milligals.

-
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Exercise 18. Sum of Squares of Deviations
from the Mean

A set of fixed points is distributed randomly on the z-axis. Let { designate the
abscissa of a mobile point P which may be located anywhere on this axis. Denote by y

the sum of squares:

(z—{)% .

1

Yy

]
L

y can be represented by an ordinate through {. It is a well known fact that when

—_ 1
{=1z=—2%

then the sum y = S(z—z)? is 2 minimum (y,,). Study the evolution of y considered as
i

v

a function of the variable {

Kok ok sk ok ok ok sk sk ok

As a first step let us consider the following set of z;:
-12 -10 -9 -6 —4 -3 +4 +7 +8 +10 +15, 3z =0.
The fact that $z; = 0 shows that z = 0. We also have for the sum of squares:

y(0) = Sz = 480.
i

Let us now make { = +1:

y(+1) = Sz -1 = Jzf - 237 + 11x(-1)2.

’

But 3'z; = 0, so that
i
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y(+1) = %_;zg + 11,
Similarly, for { = —1 we have
y(-1) = Slz+1]F = ;,?;f + 11x(=~1)* = §zf + 11,
Hence
y(+1) = y(-1).
Obviously the numeral 11 indicates the total number n of points and we can write

y(£) = Z° + ni®.

i
For instance, for { = =2

y(£2) = Sz + 11x2 = Tz + 11x4 = Tz? + 44,
; .

[

The curve y({) is a parabola, the axis of which is vertical and passes through z.
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Exercise 19. Small Samples

Samples of three elements m,, my, m; are drawn from the population of a normal
variate M, (variance o, mean a). Give the characteristics of the variate S the element

s of which is equal to
§ = my + mo -+ mga .

Then, calculate
1) the probability that s will be inside the limits a —c¢ and e +o.

2) the probability that the mean of the sample will be inside the same limits.

% ok ok ok ok ok ok Ak ok ok

According to C_hé.pter V, Section 1 (87), the va;'iable s is normally distributed

about the mean A = 3a with a variance o‘}, equal to
o
? 2 . s
g’ = 3g te. o= T .
5 Y3

Hence,

_ls-4Ap?
dP = ——e ¥ 45

s o, Yom
The calculations will be simplified by the change of variable
z=s5—A

which leads to

with 0';: = 0':. As now the centre is at £ = 0, the above mentioned condition (s.e. that
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z be between —a and + @) requires the evaluation of the integral

1 }“’ 2w dz

P*Y = e .
¢ Y27 -« Ox
The limits of integration, by the change of variable L = A, become
. O
Ty, = —@ A = LA I— = L
- = —- == - - ?
! ’ ! Tg YEO’ V;
g g 1

T2

i}
+
q
e
it
+
2 |
tl
+
<
1)
i
+
3

Hence,

- O

Py = i PN

+-\}§- .2
= €
Y 2w {

As 1 - 0.580, the area under the normal curve is equal to
- -V- 3

\ 1 0.580 _ A*
P.? = —=— e % dx = 0.219
MU Yor {

Therefore the probability that s will be between —o and +o is equal to
2%0.219 = 0.438, i.e. 43.8 percent.

Now, instead of considering the variate sum, s = m; + my + mj3, we shall con-
sider the variate "mean" s’ i.e.
, m; + my + m,

s = - = -,

2
3 3

This is equivalent to forming the linear equation

' 1,. 1 1
§ = “é’)ml + ‘"g’)mz + ("3")7"3 .
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According to the formulae given at the end of Chapter V, Section 1 we have now:

r - _‘i = ..1_ 4 .1. 4 .-1_ a = a
A 3 ( 3 )a ( 3 Ja ( 3 ) ,
0.2, - (__!_,)20_2 + (L)ZO_Z +A (_1-)20_2 - _&(LZ_ - _qi ,
s 3 3 3 9 3
O = =3
T Y3
The expression for dP,: takes the form
_{sf—a)®
Py = —2ee e 5 g

oy Y2m

which, by the substitution s'—a = z, becomes
1 0% 4z

Py = —=
= 0,\@;&

The usual change of variables < = )\ leads to the form dP,; which is tabulated. The
Ox

limits of the integration of dP, i.e. —o to + 0o, are calculated as follows.

.. Iy —-O a
Lower Limit: z, = —a, hence\; = — = » But gy = —=, so that
O:rf O’" \/5 .

A o=—T- = -Y3.
(TGG"-

Upper Limit: z;, = +0, Ay = +Y3. The expression for the total probability PX7 is:

) +V3 _AT g 1732 _A?
F’_'_H7 = em— 2 d\ = e 2 d\ .
7 Y2 _'{/; » ;2‘7\' {

In the table of areas we find that

d\ = 0.4584 — PXJT = 0.9168.
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Exercise 20. Variate X (z, = 1, z, = 0).

A variate X can take two values: z; = 1, with constant probability p, and zq = 0,

probability ¢ = 1—p. Calculate
1) the expectation of z and

2) the expectation of z2.

Consider then two such variables X and Y with p, and p,, respectively. Give the

expressions for the combinations: X + Y, XY, X% + Y2, (X + Y)2

k2 % & kR B R ok B K X

12)  E(z) = psy + gty = ppX1 + X0 = p,

1b) E(z®) = P2Ti + qezd = pex1* + ¢ X0 = p .

Combinations
2a) E(X+Y)=E(z)+ E(y) = pz + p,
2b) E(XY) = E(z)E(y) = p:p,
2¢) E(X*+Y?%) = E(z*) + E(y*) = po + p,
- 2d) E[(X+ Y)"’] = E(z%) + E(y?) + 2E(XY)

= px + py + 2p:0y.
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Exercise 21. Multiplication of a Variate by a Constant

A normal variate X is centered on a. Establish the expression dP, for the variate

. Z that is defined by the product Z = aX, a being a constant.

* %k %k & %k ¥k % %k %k %

The probability dP, that z will fall into dz is deduced from dP, through the rela-

tions 2 = az , dz = adz , ol = a’c? which are first written as follows:

o .

z dx % _ Oz
z=%, &&=, ¢=—, @ ="
Qa a ot a

[z
o —-q
o
B
Ta d
sz = 1 e @ . -;E A
o, _
[L ] Yo
a
After all simplifications have been performed, the expression for P becomes
- (z=aa)?
1 20 L dr.

dP =
z 02Y2-rre

aa.

This shows that z is centered on ¢
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Exercise 22. Numerical Examples and Basic Values

of the Gamma Function

A. Establish the expression for the probability density dP, of the Gamma variate
which is derived from a normal variate ®(z) with a variance a* = 25. Calculate the

numerical value of dP, for z- = 5.

B. Using the exp'x'essions for Jg, Jy, Ja, J3 (as in Chapter II, Table II), transform

these integrals into Gamma integrals and deduce their numerical values.

* % k Kk %k %k % k %k %

A. The formula for ¢ and dP, are

z? e_"u%'l

u = and dP, = du .
202 ¢ ;'rr

Hence for 0® = 25 and z = 5,

_% ~y
=05 and dP, = e——(\—(/)iL—'du ,
i)

and

dP, =

= 0.484 .

du
Y2.71828 Y0.5 Y3.14159

B. The recurrence relation (42) can be put under the form

n+l
‘Jn)

Jn+2 =
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so that, by (146):

Hence

_l_r‘[itL.g.l] = ntl ...Lr‘[n+1 ] .
2 2

2 2 2
. n+1
Let us now introduce the symbol a for :
n+1
= a »
2

The_ relation above _t.akes the form
[Ma+1) = al{a),

which is identical to (99).
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Exercise 23. Examples of Chi-square Tests

Apply the xzw test to the hypothesis that the samples of errors described in Exer-

cises 10 and 11 can be considered as drawn from normally distributed populations.

Aok k% Kk ok ok ok Kk R

I. Exercise 16: Screws Machine Output

Four extreme classes on the negative wing (F = 0+0+1+3 = 4), and three
extreme classes on the positive wing (F = 1+0+1 = 2) are grouped in one single class.

The calculation of the Chi square is performed as follows:

gL F | f [IF=f1] ax?
-5 4 3.42 0.58 | 0.10
-4 4 3.95 0.05 0.00
-3 8 6.71 1.29 0.25
-2 9 9.94 0.94 0.09
-1 | 12 | 12.86 0.86 0.06
0 10 | 14.33 4.53 1.41 '
+1 | 18 | 14.34 3.66 0.93
+2 } 14 | 12.35 1.65 0.22 '
+3 9 9.29 0.29 0.00
+4 6 6.10 0.10 |- 0.00 .
+5 4 3.50 0.50 0.07 ' |
+6 | 2| 2.83 | 083 0.24 ' |
x? = 3.37
For v = 11, this is an extremely small xz; the hypothesis is very likely to be correct. '
The probability P of exceeding 3.37 in repeated sampling is very large: P > 95 I
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percent.

II. Exercise 11: Gravimetric Observations

The calculation of ¢? from the data (F; and fj) displayed in Exercise 11 follows
the same pattern as that of Exercise 10. However it is necessary, in order to avoid the

presence on both wings of thinly populated classes, to perform the following groupings:

j F; fi J F; fi
~12 2 0.07 +9 7 4.07
-11 3 0.26 +10 4 1.49
-10 4 0.84 +11 1 0.49

-9 9 2.45 +12 2 0.14

11 3.62 : | 14 6.19

Thus the number of classes is reduced from 25 to 19 (¢ = 18). The result is

2

X° = 54.

This is a very high value for x? and P is very small. This totally rejects the hypothesis
that the sample is drawn from a normal population: the probability P of exceeding 54

in repeated sampling is much smaller than 1 percent.
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Exercise 24. Another derivation of the Recurrence

Relation for », Momentas.

The recurrence relation for y, moments has been established using the expressions

in which p, is formulated in terms of the int

now this relation using the expressions based on Gamma functions

* %k & & % k k % %k %

In the formula

we replace n by (n +2)

and form the ratio

. TFhe recurrence formula is ¢

Va2 = vy(n+1)at.

It can, of course, take the form (45):

Yn = Pa-a(n—1)a?,

integrals J, (Chapter II, Section 3). Establish




- 189 -

Bibliography

The number of books on statistics published in the last two or three decades is
surprisingly large. This can be partially explained by the fact that this branch of
mathematics has become an integral part of many scientific domains (e.g. biology,
psychology, chemistry, etc.) and is also extensively used in various activities of technical
and economic nature. One consequence of this is the proliferation of courses in statistics

(on various levels) in the schools and universities.

It is also surprising that among all these books only a very few devote a significant
part of the text to the problems found in metrology and this in spite of the fact that

the importance of the latter is constantly growing.

Some of the most classical of the metrologically oriented books are given below and
can be used by all those who have a reasonable training in the calculus. It is obvious
that the study of any classical book on higher statistics will be extremely beneficial to a
metrologist. However, those quoted here, contain examples which are more directly

helpful to those who start worrying about the "errors" in the "observations" they per-

form.
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Tables of modulated functions

I Tables for ordinates

These tables are analogous to the table of ®(v), page 16. The expressions for
¢d(a, 7, \) are obtained by attributing to the modulator the numerical values
¢ = 0, 0.25, 0.50, 1.00.

The tables have been calculated, first in 1965, by F. Farrell (Computation Centre,
National Research Council) using humerical integration methods. The calcula.tion has

been repeated and completed later by J. Halpenny (Earth Physics Branch) using the
expressions quoted in [3].

II Tables for areas
The function ®(\) in these tables is defined by the integral -
A

®(A) = [d(N)dN,

(1]

$(A) being the expression (VIL9), p. 121. It represents therefore the so-called "area

under the curve" ¢(a,\) contained between the ordinates at A = 0 and A = A.

These tables are particularly necessary in those cases where the interval of

classification AM is not constant.

Aticles on Onthogonal Systems

M. GRABE, "Note on the Application of the Method of Least Squares”,
Metrologia 14; p. 143-6. (1978)

M. ZUKER, and al. "Systematic Search for Onthogonal Systems in the
Calibration of Submultiples and Multiples of the Unit of Mass",
Metrnologia 16, p. 51-54. (1980)

M. ROMANOWSKI and G, MIHAILOV, "New Developments in the Metrofogy of
Mass Standands”, Legal Metrology Branch, Holland Avenue,
Ottawa, Ontario, Canada KIA 0C9

G.D. CHAPMAN, "Calibration of Kikogram Submultipfes", NRCC 25819 (1987)
National Research Council, Division of Physics, Ottawa,
Ontario, Canada KIA 0R6
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