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Foreword  

The task of forming the multiples and the submultiples 

of a unit of mass is one of the fundamental problems of the scien- 

tific and the legal metrology. It is in the solution of the systems 

of equations related to the scaling of mass that the method of least 

squares has found one of its most striking and elegant applications. 

Each metrological laboratory of the industrialized world 

has established its own patterns based on this method, for perfor-

ming intercomparisons and solving the resulting linear equations. 

From this standpoint, those countries where the metric (i.e. decimal) 

system had been adopted from the start, had an easier and simpler 

task than those which like Canada, continued to use simultaneously 

various different systems. 

Several men have played a prominent role in Canada's mass 

metrology. The first to mention is R.H. Field from the National 

Research Council who, in the years that precede and follow the second 

world war, contributed so strongly to the formation of the mass la-

boratory of the Standards Branch. A special recognition is due to 

the late Richard Reynolds, a metrologist totally dedicated to his 

activity, whose procedures, algorithms and forms constituted the 

foundation of the laboratory's work for several decades. W.J.S. 

Fraser, chief of the Standards Laboratory reworked and improved a 

large part of Reynolds' work and contributed seriously to establish 

the reliability of the operations. 

At the time when this country started to move deliberately 

towards the total "metrication", a global and deep revision of the 

present status of the mass metrology in Canada seemed to be a perfectly 

justifiable undertaking. This memorandum treats only the SI unit of 

mass, i.e. the kilogram and its multiples and submultiples. 



All calculations described in this work have been entirely 

redone starting from the basic principles of statistics and have 

been brought to their logical conclusion i.e. to the expressions of 

the standard deviations on all multiples and submultiples of the 

kilogram. 

The authors hope that their work will be on the line of an 

already long "tradition" in the domain of mass calibration in Canada. 

They are conscious of what they owe to their predecessors and expect 

that this memorandum will play, in the years to come, the role of a 

centre about which will revolve all the activity of the Mass Labora-

tory. They also hope that it will contribute to the advancement of 

the Metric System in general. 

The present memorandum is the final form of the provisional 

version (1971) which had been reproduced only in a very restricted 

number of copies and in the forew(rd of which Mr. G. Jones, P. Eng 

(then Senior Engineer-Mass Calibration) has underlined the necessity 

to review from time to time the procedures of mass scaling in order 

to conform to the increased accuracies demanded in the field of modern 

metrology. 

Since  1 97 1 , the provisional memorandum had been in use in the 

Mass Laboratory and has also been examined by other metrologists. 

The present version takes into account a// comments that have been 

communicated to the authors and the conclusions the staff of the Mass 

Laboratory has reached by perusing the memorandum in the course of 

the last six years. 

Note  



Intercomparison and Scaling of Masses 

1. Introduction  

In conformity with a resolution of the First General Conference 

of Weights and Measures held in Paris in 1889, the unit of mass in the 

metric system is defined by the mass of a certain platinum-iridium 

cylindrical weight named "International Kilogram" (IK). The mass of 

the IK is therefore, by definition, equal to 1 kg. This standard is 

in the custody of the International Bureau of Weights and Measures at 

Sèvres (France). The unit "kg" is now an integral part of the inter-

national system of units designated by the symbol SI. 

It is obvious that the definition of an important unit by a unique 

material object presents some very weak points. For this reason, the 

International Kilogram is incorporated into a group of weights (of the 

same type and quality) and the above definition is considered as valid 

as long as the intercomparisons between the members of the group con-

firm the constancy of the mass of the International Kilogram. 

The International Kilogram is used only in exceptionally impor-

tant metrological operations; for instance, since 1889, it had been 

left untouched until after the end of the Second World War. Its cons-

tancy and, in general, the constancy of all platinum-iridium standards 

has always been found highly satisfactory. 

Most of the older countries of the world possess a national pla-

tinum-iridium eopy of IK. The equations of the copies are periodically 

verified at the International Bureau in terms of the International 

Kilogram and its witnesses. The Canadian national standard is in the 

custody of the National Research Council, Division of Physics. All 

other legal units in Canada are defined in terms of the International 

Kilogram. 
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There always was a strong and legitimate desire amongst the majo-

rity of physicists and metrologists to replace material prototypes by 

so-called "natural standards". While their efforts have been success-

ful in the domain of the unit of length (metre), no method had yet been 

suggested for constituting a reliable "natural" unit of mass. The 

present International Kilogram is thus very likely to play its fundamen-

tal role for many years to come. 

The object of this memorandum is the comparison of nominally equal 

masses; it serves as an introduction to methods for constituting stan-

dards of masses other than one kg. The described methods are generally 

performed with equal arm balances of the highest quality and sensitivity. 

Although the idea that the comparison of masses (particularly with 

the purpose of "scaling") can be done only with the help of statistical 

methods is not absolutely justified, it must be acknowledged that the 

use of the method of least squares is so convenient that no mass me-

trology is presently conceivable without it. It provides valuable 

checks, increases the precision and permits to assess the overall ac-

curacy of the obtained results. Its important feature is that it also 

eliminates all possibility of arbitrary operations so that it suffices 

to mention that an operation had been conducted in conformity with the 

method of least squares to be sure that any ambiguity (experimental and 

computational) is totally excluded. 

So let us consider the fundamental problem of the comparison of 

masses from the standpoint of a metrologist who possesses in his labo-

ratory a representative of the International Kilogram and who must 

establish the methods for constituting 

a) other weights nominally equal to 1 kg, 

b) weights of multiple values of 1 kg, 

c) weights of submultiple values of 1 kg. 
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The three cases will be treated successively and it will be shown 

how the method of least squares helps the metrologist to reach the 

highest accuracy. In the following sections the standard that is the 

representative of the IK will be designated by the symbol RK and its 

mass by the symbol S. 

2. 	Standardization of nominally equal masses  

Although it is practically impossible to manufacture a standard 

which would be exactly equal to another standard, it is possible to 

make standards which are so close to each other that all intercompa-

risons could be carried out, even on the most sensitive balance, with-

out the help of any additional mass. The only auxiliary mass that is 

required and without which no weighing is possible, is an appropriate 

"sensitivity mass" for instance of 1 or 1/2 milligram. 

The simplest operation is to build and adjust one single weight 

and to compare it to RK. By repeating the comparison several times, 

we shall obtain some information concerning the precision of the ope-

rations, particularly if the weighings are made in somewhat different 

conditions of temperature, humidity etc. With three weights, (i.e. 

the RK and two copies), we can constitute one redundant relation, 

namely that obtained by intercomparing the two copies. This redundant 

equation can either be treated only as a check but not taken into ac-

count, or it can be incorporated into the calculation of the unknowns 

by the method of least squares. 

The number of redundant equations, when nominally equal weights 

are intercompared (two by two), increases fast with n. If we have 

(n - 1) weights to calibrate against the RK we need n - 1 equations; 

on the other hand, the number of possible intercomparisons is equal 

to N = n (n - 1) 12. For instance, with 5 weights we can make 10 

intercomparisons, of which 6 are redundant; with 6 weights we would 

have N = 15, with 10 redundant. 
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The method of least squares will now be applied to the case where 

the number of weights is equal to five; the system of equations is then 

relatively small but the general features of its internal structure can 

be easily perceived. Let the symbols U, V, X, Y, Z represent the masses 

of the weights, Z being, by definition, the mass of the RK. The result 

of an intercomparison of, say, V and Y can be represented by a general 

linear relation of the form 

V - Y .• m. (1) 

It corresponds to i = 6 in table (2) which contains all possible com-

binations of five weights taken two at a time. The subscript i takes 

on all the values ranging from 1 to 10. 

Equations of condition  

U - V 	 m  
1 

• -x 	 = m  
2 

-Y 	= m3 
 

	

-Z 	= m  
4 

✓ - X 	 = 
m5 	 (2) 

✓ -Y 	= m6  
✓ Z 	= m  7 

X - Y 	 = m  
8 

X 	-Z 	= m  9 

	

Y - Z 	= m10  

This system has no solution in a strict mathematical sense because 

oftheacc idental errors tila t alf ecttheobserved valuesm. .Any  sub- 
]. 

system of four equations drawn from (2) has a well defined solution 

provided it is completed by an equation of definition (which plays the 

role of the fifth equation of the subsystem). This equation of defini-

tion is here 

Z 	S 	 (3) 
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The simplest subsystem is, of course: 

U = Z + m
4 

= S + m
4' 

V = Z f m
7 

= S + m
7' 

X = Z + m
9 

= S + m
9' 

Y = Z + m
10 

S +  m10 . 
 

These values are not influenced by the results of all other intercom-

parisons (m
1 , m2' 

m
3' 

m
5' 

m
6' 

m
8
). 

To solve the system (2) by the method of least squares it is pre-

ferable to disregard the fact that Z  lias a special meaning; thus the 

form of the equation of definition is not specified beforehand and all 

quantities, U, V, X, Y, Z are first treated in the same way; the cal-

culation is conducted in a "symmetrical" manner and the fact that Z = S 

is taken into account only at the end of the calculation. 

The normal equations of the equations of condition (2) form the 

system (4). 

Normal equations (general form)  

(AA)U + (AB)V + (AC)X + (AD)Y + (AE)Z = (Am) 

(BA)U + (BB)V + (BC)X + (BD)Y + (BE)Z = (Bm) 

(CA)U + (CB)V + (CC)X + (CD)Y + (CE)Z = (Cm) 

(DA)U + (DB)V + (DC)X + (DD)Y + (DE)Z = (Dm) 

(EA)U + (EB)V + (EC)X + (ED)Y + (EE)Z = (Em). 

where 	(AA) = A2 
+ A2 

+ A
2 	 

+ A2 
1 	2 	3 	 10' 

(AB) = A1 B
1 + A2

B
2 + A3

B
3 

- 	+ 
A10B10,  etc. 

The first equation is the normal equation in U, the second equation 

is the normal equation in V etc. According to a classical rule, the 

normal equation in a certain variable, say U, is formed by summing all 
equations of condition after having multiplied each of them by its own 

coefficient of U. The system (2) will yield: 

(4) 
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(7) 

(8) 

Normal equations 

4U- V- X- Y- Z= ml 
+ m

2 
+ m

3 
+ m

4 
 =N1 

 
-U + 4V -  X- Y-  Z = -mi  + m5  + m6  + m7  = N2  

-U-  V + 4X -  Y-  Z = -m2  - m5  t m8  + m9  = N3 	(5) 

-U -  V-  X + 4Y - Z = -m 3  - m6  - 
m8 m10 N4 

-U - V - X - Y + 4Z = -m4  - m_ - 
/ 	m9 - m10 N5. 

The reader can easily check that the determinant of (5) is equal 

to zero: 

4 -1 -1 -1 -1 

-1 4 -1 -1 -1 

-1 -1 4 -1 -1 = 0 

-1 -1 -1  4-1  

-1 -1 -1 -1 4 

This confirms that the system (5) has no unique solution, unless an 

appropriate equation of definition is added to it, for instance a 

relation such as (3). 

System (5) is easily solved and its solution may be put under 

a form which is very convenient for numerical calculations; this is 

obtained by the introduction of the auxiliary quantity 

M = 1/5 (U +V+X+Y+ Z). 	 (6) 

The final results are 

5U = 5M + N
1-  . 
	U = M + N1 

 /5. 
- 

5V = 5M + N2' 	
V = M + N2 /5 ' 

5X = 5M + N
3' 	

X = M + N
3 
 /5 

5Y = 5M + N4' 	Y = M + N 4 /5 ' 
5Z = 5M + N 5' 	

Z = M + N
5
/5. 

If the equation of definition (3) is taken into account, we have 

M = S - N
5
/5 
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and, therefore 

U = S + (N
1 

- N
5
)/5, 

V = S + (N
2 

- N
5
)/5

' 
X = S + (N

3 - N5 )/5 ' 	 (9) 
Y = S + (N

4 - N5
)/5

' 
Z = S + (N

5 
- N

5
)/5 = S. 

The computation of the right-hand terms of the normal equation (5) is 

generally made by means of the following table: 

U 	V 	 X 	 Y 	 Z  

- U 	0 	-ml 
	-m2 	

-m3 	
-m4 

 

- V 	
ml 	

0 	 -m5 	
-m6 	

-m7 

-x 1112 m2 	
m5 	 -m8 	-m9  

- Y 0 	-m m3 	
m6 	m8 	 10  

- Z 	m4 	m7 	m9 	m10 	0 

Sums 	 N
1 	

N2 	N
3 	

N
4 	

N
5 

N /5 1 	N2/5 	N3/5   N4/5 	N5/5  

The calculated values m of the observed quantities mi are compu-i 
ted from the bottom line of (10). 

ml = (N1-N2 )/5 	m' = (N2-N4)/5 6 

m; = (N1-N3 )/5, 	m; = (N 2-N5 )/5, 

m' = (N
1-N4 )/5 	m' = (N3-N4

)/5, 	 (11) 3 	 8 

m' = (N1-N5 )/5 	m' = (N
3
-N

5
)/5 4 	 9 

m' = (N
2 -N3 )/5, 	mio= (N4-N5 )/5. 5 

These values have to be introduced into the appropriate cases of table 

(10). The difference (observed - theoretical) in each case is termed 

residual deviation or, simply "residual". The sums of residuals in 

each column and each row of (10) should be equal to zero. 

(10) 
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The computation of standard deviations is now done as follows. 

Calling v
i 

the residual 

v
i 
 = m

i  - m 	i = 1, 2, --- 10. 	 (12) i 
we obtain 

2 

	

(vv) = Z_NT , 	 (13) 

2 	(vv) 	(vv)  and 	 s
m 

	

10-4 	6 

s 	(vv) 	
(14) m 	6 

10 = number of intercomparisons, 4 = number of unknown quantities: 

U, V, X, Y. 

s
m 

is termed "group standard deviation". According to theory of 

probability, there is a 68% chance that the residual of a single inter-

comparison of any two masses taken from the set U, V, X, Y, Z, will be 

located inside the limits ± sm . 

The standard deviations on individual masses are computed from e-

quations (9), for instance, 

U = S + 1/5 (m
1 

+ m
2 

+ m
3 
+ m

4 
+ m

4 
+ m

7 
+ m

9 
+ m

10
). 

According to theory of progression of variance 

2 	2 

	

22  _ 2 	2 
s = s + (1/5)  8m  - s + 8/25.sm. 	 (15) 

If S had been determined in terms of the IK in another laboratory, its 

certificate should mention the standard deviation s
. If the latter is 

S 
much smaller than sm on the measured quantities 

m
i' 

it may be ignored. 

Then 
2 _ 
s - 8/25.s

2
m 

s = 0.56s
m 

. 	 (16) 

If the order of magnitude of s s  is similar to that of sm , the complete 

formula (15) must be applied. 

The formulas above apply to all intercompared masses 

s = s = 	
• 

s = s 	 _ 	(17) V 	X 	Y  
These operations are illustrated in Appendix 1. 
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One of the most frequently found cases is that of three nominally 

equal masses, X, Y, Z. 

We have now: 

X 	Y 	 Z 

-ml 
-x 	0 -m

2  

-Y 	m 	0 
1 	

-m3 

- Z 0 m2 	m3 

N
1 	

N
2 	

N
3 

N
1
/3 	N2/3 	N3/3 

Equations of condition  

m1 

 = 
m2 

= m 

Normal equations  

2X- Y- Z = m
l 
+ m

2 
= N

1 
-X + 2Y - Z = m

l + m3 = N2 
-X- Y + 2Z = m

2 
- m

3 
N
3 

If 

M = 1/3.(X + Y + Z) 

then,(as in (7)), 

X = S + N
1
/3 

' 

Y = S + N2 /3 ' 

Z = S + N
3
/3 

' 

and, if Z represents the reference standard (Z = S). 

M = S - N
3
/3 

' 

and therefore 

X = S + (N
1 - N3

)/3 , 

Y = S + (N
2 - N3)/3 . 

X - Y 

X 	-Z 

Y - Z 
3 
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As 

then 

The computed values of the observed quantities are: 

m! = (N
1 

- N
2)/3 , 

m e  = (N
1 
- N3)/3 , 2 

m' = (N
2 

-  
3 

and the standard deviation sm is 

2 	2 	2 
+v3 vl + v

2  s
2 

- 	 - 	- m') 2  + 	- m')
2 

+ 	- m')
2 

3 - 2 	 1 
 m1) 
	2 	3 

 m3) 
 

x=  s + (mi  + m2  + m2  + m3)/3 , 

2 
 s
x 
=s 

2 
+ 4/9.s

2  
m . 

If s
2 

is negligible, then, approximately s
x 

= 2/3.s 

By constructing ten weights (one of which may be the RK) we can by 

the process described here constitute step by step the complete decimal 

scale of the multiples of the kilogram. By constructing ten nominally 

equal masses of one-tenth of a kilogram each and by comparing their sum 

to the RK, it is also possible to constitute the submultiples, i.e. 100, 

200... 900 g. These procedures are not used in metrology because they 

require too many individual weights which cannot be easily placed on 

pans and safely handled during comparisons. The actually adopted me-

thods are outlined in the following section. 

3. 	Standardization of submultiples and multiples of the Unit of Mass  

One of the series of weights that are the most commonly used for 

constituting a) multiples and b) submultiples of the kilogram, is based 

on the sequence 5, 2, 2, 1, 1. The set of intercomparisons to which 

this series actually leads is exactly the same in a) and in b) and is 

given in (22). 

The true values of the weights will be designated by the numerals 

between brackets, e.g. (5) may designate the true value of a weight the 

-10- 



(20) 

(21) 

nominal value of which is 5 kg. We shall thus have* 

a) 	(5), (2), ( 2 '), (1), (1'), 	  in kilograms 

h) 	(500), (200), (200'), (100), (100'), 	 in grams 

The influence of the equation of definition,which is not the same in 

a) and b), will be considered later. The five unknowns being 

U = (5), V = (2), X = (2'), Y = (1), Z = (1'), 	(18) 

the general form of a linear equation of condition will be: 

AU + BV + CX + DY + EZ = m.; 	 (19) 

for instance, if U = (5) is compared against the sum 

V + X + Y = (2) + (2') + (1), 

then 

A
1 
= 1 B

1 
= -1 C 1 

= -1, D
1 
= -1, E

1 
 = 0. 

i.e. we have 

(5) - (2) - (2') - (1) = m (measured). 

With the unknowns U, V, X, Y, Z, it is possible to perform the 

eight following comparisons: 

(5) 	against (2) + (2') + (1) 

(5) 	 " 	(2) + (2') + (1') 

(2) - (1) 	" 	(2') + (1') 

(2) - (1') 	" 	(2') + (1) 

(2) against (2') 

(2) 	" 	(1) + (1') 

(2') 	" 	(1) + (1') 

(1) 	" 	(1') 

* Other commonly used sequences are 5, 2, 1, 1, 1 and 5, 3, 2, 1, 1. 

They are treated in a separate memorandum (no. 11), in connection 

with other systems of weights. 
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ml 

= m2 
= m3  

= m4 
= m5  

= m6 
= m7  

= m8' 

(22) 

They lead to the system: 

Equations of condition  

(5) 	-(2) 	-(2') 	-(1) 

(5) 	-(2) 	-(2') 	-(1') 

	

(2) 	-(2') 	+(1) 	-(1') 

	

(2) 	-(2') 	-(1) 	-11-(1') 

	

(2) 	-(2') 

	

(2) 	 -(1) 	-(1') 

	

(2') 	-(1) 	-(1') 

(1) 	-(1') 

and to 

Normal equations  

	

2(5) 	-2(2) 	-2(2') 	- (1) 	- (1') 	= N1  

-2(5) 	+6(2) 	-2(2') 	 = N2 
-2(5) 	- (2) 	+6(2') 	 = N

3 	
(23) 

- (5) 	 +6(1) 	- (1') 	= N4 
- (5) 	 - (1) 	+6(1') 	= N

5 

with N
1
- m

1 
m
2' 

Nr2,  = - m
l 
- m

2 +  m
3  -f- 	+  m5 +  m6' 

N
3 
= - m

l 
- m2 - m3 

- m
4 

- m
5 m7 , 	 (24) +  

N
4 
= - m

1 
	+m3 -m4  - 	- m

6 
- m

7 
+ m

8' 
N5 = 	

- m
2 

- m
3 
+ m

4  m6 m7 m.8 

This system, as the system (5), has no single solution because one 

of the equations is redundant, i.e. is a linear combination of the other 

four equations. It is easy to check that the determinant of (23) is 

equal to zero and that there is the following linear relationship 

5N1 + 2N2 	2N3
+ N

4
+ N

5 
= 0. 	 (25) 

It is recommended, as an exercise, to perform all the calculations by 

substituting into (25) the left-hand and the right-hand terms of (23) and 

(24). 

-12- 



The algebraic treatment of the system (23) will strongly depend 

on which of the two following equations is adopted as the additional 

equation: 

A) (5) + (2) + (2') + (1) = M. 	 (26) 

B) (1') = M. 

M being nominally equal to one kilogram it is not necessary to perform 

two distinct algebraic operations: one system of solutions can be 

transformed into any other similar system. (See Note at the end of 

Appendix 3). 

A. Standardization of submultiples  

This operation is based on the equations (22), (23), (24), combi-

ned with the equation of definition A. It can be put under the form of 

a simple algorithm leading directly to the solutions that are given in 

(28). The algorithm and an example are presented in Appendix 2. 

The system which has to be solved is therefore 

2(5) - 2(2) - 2(2') - (1) - (1') = N 1  

- 2(5) ÷ 6(2) - (2') 	 = N
2 

- 2(5) - (2) + 6(2') 	 = N
3 

- (5) 	 +6(1) - (1') = N4 	 (27) 

- (5) 	 - (1) + 6(1') =  N5 
 

(5) + (2) + (2') + (1) 	= m 

in which the quantities N
1 , N2' 

N
3' 

N
4' 

N
5 

are interconnected by the 

equation (25). The determinant of the system of five equations, the 

second terms of which are N
1
, N

2
, N

3' 
N
4' 

M (the fifth equation being 

omitted) is not equal to zero: this system has therefore a well defined 

solution. 

The elimination method applied to (27) presents no difficulty pro-

vided the calculations are conducted in an orderly manner. They lead 

to the solutions: 
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(5) = M/2 + 1/28 (7N
1 

- 	N
4 

+ 	N
5
) = M/2 + 1/28.S , 

1 
(2) = M/5 + 1/35 ( N

1 
 + 5N2 - 	N4

) 	M/5 + 1/35.S 2' 
(2) = M/5 + 1/35 ( N

1 
 + 5N

3 
- 	N

4
) - M/5 4 1/35.S 3 , 	(28) 

(1) = M/10 + 1/140 (7N 1  + 23N4  + 5N5 ) 	M/10 + 1/140.S 4 , 

(1')= M/10 + 1/140 (7N 1  + 3N4  + 25N5 ) = M/10 + 1/140.S 5 , 

in which S
1 , S 2' 

S
3' 

S
4' S 5 are 

expressed directly in terms of the ob-

served values m.: 

S 1  = + 8m1  + 6m2  - 2m3  + 2m4 	 - 2m
8, 

S2  = - 3m1  - 4m2  + 4m3  + 6m4  + 5m5  + 6m6  + m7  - m8 , 

S 3  = - 3m1  - 4m2  - 6m3  - 4m4  - 5m5  + m6  + 6m7  - m8 , (29) 

4 
- 16m

1 
 + 2m

2 
 + 18m

3 
 - 18m

4 	
- 28m

6 
- 28m

7 
+ 18m

8' 
S
5 
= + 4m

1 
 - 18m

2 
- 22m

3 
+ 22m

4 	
- 28m6  - 28m7  - 22m8 . 

For the determination of submultiples, the symbols (5), (2), (1) 

etc. designate the masses actually equal 0.5, 0.2, 0.1 kg or (500), 

(200), (100) in grams. The algorithm and an example are given in Ap-

pendix 2. The "additional" weight (100') generally plays an important 

role in the subsequent operations; for this purpose it is composed of 

the following weights: 50 g, 20 g, 20' g, 10 g, the sum of which is 

equal to 100 g. 

Thence 

E(100) = (50) + (20) + (20') + (10), 

and we can write down 

I:(100) = m' (30) 

and consider this relation as the equation of definition that is neces-

sary for the further downward calibration. The latter will, of course, 

require an additional weight (10') which, in its turn will be considered 

as yielding the third equation of definition of the type 

1:(10) = M". 	 (31) 

To cover the whole range of submultiples, the sets of weights 

which are necessary are listed in the following table. From an_experi- 
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mental standpoint the whole operation requires four types of balances. 

Table  

I. Above 1 gram  

E(1000) = M, 

(500), (200), (200'), (100), (100') 

where 

(100') = 	i:(100) = M'. 

(50), (20), (20'), (10), (10') 

where 

(10') = Z(10) = M". 

(5), (2), (2'), (1), (1') 

where 

(1') = E (1 ) = m'". 

IL Below 1 gram  

1:(1000) = M"'. 

(500), (200), (200'), (100), (100') 

where 

(100') = E(100) = Miv . 

(50), (20), (20'), (10), (10') 

where 

(10') =  E (10) = Mv . 

(5), (2), (2'), (1), (1'). 

A weight of 1 mg cannot be subdivided into smaller invididual weights: 

(1') is a single piece weight. 

The observer should always check that the (numerical) values (28) 

satisfy with high accuracy the normal equations (27). These values 

will not satisfy the equations of condition, at least not rigorously. 

This leads to the calculation of "residuals" in conformity with the 

definitions (36). 
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(34)  

(35) 

B. Standardization of multiples  

We shall now pass to the calibration of multiples; the first step 

is to make weights with masses nominally equal to 2 kg and 5 kg and to 

form the following set: 

(5), (2), (2'), (1), (1'), 	 in kilograms. 

The system of equations of condition is identical to (22) and the system 

of normal equations is identical to (23). The equation of definition 

however, is not (26)A but (26)B, i.e. 

(1') = M 	 (32) 

This M must be introduced into the system of normal equations (23) and, 

as the equations of the latter are interconnected by the relation (25), 

one of the equations of (23) may be replaced by (30). The system, the 

principal determinant of which is not equal to zero and which will lead 

to concrete values of individual unknowns in terms of M is, for instance: 

2(5) - 2(2) - 2(2') - (1) = N 1  + M 

- 2(5) + 6(2) - (2') 	= N2 
- 2(5) - (2) + 6(2') 	= N

3 
- (5) 	 + 6(1) = N

4 
+ M. 	 (33) 

The solutions are 

(5) = 5M + S
1
/7

' 
(2) = 2M + S

2 /7 ' 
(2') = 2M + S

3
/7

' 
(1) = M + S

4
/7. 

with 

S
1 
= + m

1 
+ 6m

2 
+ 5m3  - 5m4 	+ 7m6 

+ 7m
7 
+ 5m

8' 
S2 = - m1 + m2 + 3m3 

- m
4 
+ m

5 
+ 4m

6 
+ 3m

7 
+ 2m

8' 
S
3 
= - m

1 
 + m

2 
+ m

3 
- 3m

4 
- m

5 
+ 3m

6 
+ 4m

7 
+ 2m

8' 
S 4 = - m1 + m2 + 2m3 

- 2m
4 	

+ 2m
8' 

The algorithm and a numerical example are given in Appendix 3. 
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Considering the mass of the sum (5) + (2) + (2') + (1) as the de-

finition of the mass (10'), the reader should have no difficulty to ac-

complish the second step upwards, i.e. to calibrate the masses of the 

set 

(50), (20), (20'), (10), (10'), in kilograms. 

C. Calculation of Standard Deviations  

The calculation of the so-called "group. standard deviation" s
m 

(as 

defined in the preceding section) is the same in the case of submultiples 

as in the case of multiples. If, for instance, we consider the solutions 

(28), we know that they satisfy rigorously the normal equations (27) 

but do not satisfy rigorously the equations of condition (22). If for 

instance, the expression 

(5) - (2) - (2') - (1) 

is formed by means of the values given by (28) the result will not be 

exactly equal to ml  (first equation of (22)) but to a slightly different 

value m'. The difference m
1 

- m' is called the residual v
1 

of the first 
1 

operation: 

v
1 

= m
1 

- m'. 
1 

As above, a residual always designates the difference: 

"residual" = observed value - computed value 

The equations (22) yield eight residuals v
1
, v

2 
... v

8
, which are treated 

in the same manner as those of Section 2. We first compute the sum of 

their squares 

(vv)= Ev  

and the group standard deviation s
m , by 

sm 
= 	- 	. 

8-4 	4 

It is to be noted that the denominator (8 - 4) corresponds to the dif-

ference: number of equations of condition - number of independent nor-

mal equations. The reader must always remember the presence of the 
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term "independent". Thus one of the normal equations is not included 

in the counting. The number of independent normal equations is equal 

to the number of independent unknowns; the latter is equal to 4 because 

either 

a) (1') is directly given in terms of the RK or, 

b) the relation (26) A), expresses one of the unknowns in terms 

of the other three and the RK. 

To calculate the standard deviations on individual weights, we 

have to make use of equations (28) and (29) for submultiples and equa-

tion (34) for the multiples. 

In conformity with the theorem of propagation of variance, the 

calculation of the standard deviations is done as follows: 

A. Call s
1 , s 2'  5 3' 

s
4' 

s
5 

the standard deviations on S
1 , S 2' 

S
3' 

S
4 
and S

5' 
respectively; for instance, by (29) first line, 

s
2 

= (8
2 
+ 6

2 
+ 2

2 
+ 2

2 
+ 2

2
)s

2
, 

1 
2 s 2 = 112s
m

; 
1 

so that 
2 	 2 	2 	 _ 

	

= (1/2) 	sm + (1/28)
2
112 sm

2  - 0.25 s2 + 0.14 	s2 S(5) 	 M 	3 	m' 
2 	 2 	 s2 ,  

	

= (1/5) 	
2 

sm + (1/35)
2140 s 2 = 0.04 s

2 
+ 0.114 sm s (2) 	 m 	M 

2 	 2 	2 	 2 _ 	2 	 2 
s (2') = (1/5) 	sm + (1/35)

2
140 sm - 0.04 sm + 0.114 sm' (36) 

2 	 2 2 	 _ 	2 	 2 
= (1/10) sm + (1/10)

2 2836 sm
2  - 0.01 sm + 0.14 	sm , 

s (1) 
2 	 2 	 _ 	2 

s (1 , )  = (1/10)
2  sm + (1/10)

2
3360 sm

2  - 0.01 s
m 

+ 0.17 	s2 . 
m 

s is the standard deviation on the determination of M in terms of 

the IK. In the first step down from the kilogram, i.e. when M = 1000 g, 

the value of s is deduced from the operations by means of which the 

value of M had been established. Such is the case if M had been included 

In an intercomparison of kilograms (Section 2). In further steps down- 

-18- 



ward, e.g. if M is nominally equal to 100 g, M represents (100') and 

therefore s
M 
 = s (1') - s (100') .  

B. From (34) and (35) we obtain: 

2 	 2  
s(5) 	

2 
= 25 sm + 210/49.s2 m 

= 25 s
m 

+ 4.286 s 2 
m' 

2  
s(2) 	

2 

	

= 4 s
2 
+ 42/49.s2 

m 
= 4 s

m 
+ 0.857  2

, 
	

(37) 
M 	 m 

2 
 s(2 , )  - 4 s

2 
+ 42/49.s

2
m = 4 s

2 
+ 0.857 s

2 
M 	 M 	m' 

2 	 2  
s(1) 	

2 
= 	sm 

+ 14/49.s2 
m 

= 	s
m 

+ 0.286 
 5m

2
. 
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Appendix 1  

Intercomparison of equal masses  

An intercomparison of five one kilogram masses gave the following 

equations of condition (2). 

U - V 	 = -69.52 x 10
-6 

kg 

• -x  

	

-Y 	=-63.60  

- Z = -69.68 

✓ - X 	= -I- 0.64 

✓ -Y 	= 	5.80 

✓ - Z = - 0.48 

	

X - Y 	= 	4.68 

	

X 	- Z = - 1.28 

Y - Z = - 6.44 

Diagram of intercomparisons of five 
weights in all possible combinations. 

11 

11 

11 
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These equations are solved according to Table 10. The first num-

ber in each case is the observed value, the second (in brackets) is 

the computed value m' (11) and the third is the residual (12). The 

unit is 10-6 kg (milligram). 

U 	 V 	 X 	 Y 	 Z 

0 	+69.52 	+68.88 	+63.60 	+69.68 

	

(+69.43) 	(+68.67) 	(+63.68) 	(+69.92) 

	

+ 0.09 	+ 0.21 	- 0.08 	- 0.24 
-U 

	

-69.52 	0 	- 0.64 	- 5.80 	+ 0.84 

	

(-69.43) 	 (- 0.76) 	(- 5.75) 	(+ 0.49) 

	

- 0.09 	 + 0.12 	- 0.05 	- 0.01 
-V 

	

-68.88 	+ 0.64 	0 	- 4.68 	+ 1.28 

	

(-68.67) 	(+ 0.76) 	 (- 4.99) 	(4- 1.25) 

	

- 0.21 	- 0.12 	 + 0.31 	+ 0.03 
-X 

	

-63.60 	+ 5.80 	+ 4.68 	 0 	+ 6.44 

	

(-63.68) 	(+ 5.75) 	(+ 4.99) 	 (+ 6.24) 

	

+ 0.08 	+ 0.05 	- 0.31 	 + 0.20 
-Y 

	

-69.98 	- 0.48 	- 1.28 	- 6.44 	 0 

	

(-69.92) 	(- 0.49) 	(- 1.25) 	(- 6.24) 

	

f 0.24 	+ 0.01 	- 0.03 	- 0.20 
-Z 

N 	- 	-271.68 	+75.48 	+71.64 	+46.68 	477.88 

N/5 - 	- 54.34 	+15.09 	+14.33 	+ 9.34 	+15.58 

N
1 	

- 271.62, 	N1 /5  = - 54.34, 	U = M - 54.34, 

N2  = + 75.48, 	N2/5 = + 15.09, 	V = m + 15.09, 

N
3 
= + 71.64, 	N

3
/5 = + 14.33, 	X = M + 14.33, 

N
4 
= + 46.68, 	N

4
/5 = + 9.34, 	Y = M + 9.34, 

N
5 
= + 77.88, 	N

5
/5 = + 15.58, 	Z = m + 15.58. 
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The sum of squares of residuals is computed as follows: 

(v
1

)
2 

= (-0.09)
2 
= 0.0081 

(v
2

)
2 

= (-0.21)
2 
= 0.0441 

(v
3

)
2 

= (+0.08)
2 
= 0.0064 

(v
4

)
2 

= (+0.24)
2 
= 0.0576 

(v
5
) = (-0.12)

2 
= 0.0144 

(v
6

)
2 

= (+0.05)
2 
= 0.0025 

(v
7

)
2 

= (+0.01)
2 
= 0.0001 

(v
8

)
2 

= (-0.31)
2 
= 0.0961 

(v
9

)
2 

= (-0.03)
2 

= 0.0009 

(v
10

)
2 

= (-0.20)
2 

= 0.0040  

(vv) = 0.2342; 

so that 
2 	(vv)  _ 0.2342  
s = 	 = 0.0390, 
m 	10-4 	 6 

s
m 
 = 0.2. 

By means of equations (7) the values of the unknowns U, V, X, Y, 

Z can be tied to any equation of definition. If, for instance, it is 

known that 

then 

and 

Z = (1 + 0.50 x 10
-6

) kg, 

M = (1 - 15.08 x 10
-6

) kg, 

U = M + N
1
/5 	= (1 - 69.42 x 10

-6
) kg, 

V = M + N
2
/5 	- (1 .4- 0.01 x 10

-6
) kg, 

X = M + N
3
/5 	= (1 + 0.75 x 10

-6
) kg, 

Y = M + N
4
/5 	= (1 - 5.74 x 10

-6
) kg. 

-22- 



APPENDIX 2 

Determination of submultiples  

The algorithm that embodies the contents of (23), (24), (27), 

(28) is presented as follows:* 

Solution  

• ml m l m l m l 

• m2 - m• 2 - m

• 2 

	
- m2  

+ m
3 
 -m

3 
 +m

3 
 - m, 

m• 4 - m• 4 - m4 m• 4 
+ m

5 
- m

5 

m

• 6 

	- m6 - m• 6 

m7 - m7 - m 7 

N
1 	N2 	N3 	N4 	

N
5 

+ 7N1  + N f N 1  + 7N1  + 7N 1 
+ 5N 2 

+ 5N
3 

- N4 - N4 - N4 + 23N4 
+ 3N4 

+ N5 	 + 5N 5 
+ 25N

5 

1 	
S 2 	S 3 	

S
4 	

S
5 

S 1 /28 	S2 /35 	S 3/35 	S4/140 	S 5/140 

M/2 	M/5 	M/5 	M/10 	M/10 

(5) 	(2) 	(2') 	(1) 	(1') 

It is to be noted that quantities  m, N1 , N 	N 	N 	N,S,S, 1 , 	2' 	3' 	4' 	5 	1 	2 
S
3
, S

4
, S

5 are "differences" (i.e. small quantities); the quantities 

M/2.. .M/10 represent the masses themselves and are of totally different 

order of magnitude. 

* The most convenient way to fill the algorithm is to write it line per 

line rather than column per column. 
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In a calibration of submultiples of a kilogram the following re-

sults have been obtained. The symbols (5), (2), (2'), (1), (1') de-

signate masses equal to 0.5, 0.2, 0.1, 0.1 kg respectively. They can 

also be replaced by the symbols (500), (200), (200'), (100), (100') 

if the masses are expressed in grams. 

Equations of condition  

+ (5) - (2) - (2') - (1) 	= m
1 
 = -1.4 mg 

+ (5) - (2) - (2') 	- (1') = m2  = -0.6 " 

+ (2) - (2') + (1) - (1') = m 3  = +4.4 " 

+ (2) - (2') - (1) + (1') = m4  = +2.2 " 

+ (2) - (2') 	 = m5  = +3.4 " 

+ (2) 	- (1) - (1') = m
6 
= +3.2 " 

+ (2') - (1) - (1') = m 7  = 0.0 " 

+ (1) - (1') = m8  = +1.4 " 

The calculation is made according to the algorithm given above, 

the equation of definition being 

M = (1 - 6.33 x 10-6 ) kg 

It is considered as consisting of two parts: 10 ) the nominal value 

which is equal to 1 kg and 2° ) the "excess"lÀ. 

/44 = -6.33 x 10-6 kg = -6.33 mg. 

The last line represents the excesses of the weights over their nominal 

values. 

Solution (Unit = 1 mg)  

- 1.4 t 1.4 + 1.4 + 1.4 

- 0.6 + 0.6 + 0.6 	+ 0.6 

• 4.4 - 4.4 + 4.4 - 4.4 

+ 2.2 - 2.2 - 2.2 + 2.2 

+ 3.4 - 3.4 

+ 3.2 - 	- 3.2 - 3.2 

	

0.0 	0.0 	0.0 

f 1.4 - 1.4 

- 2.0 + 15.2 - 8.0 + 1.8 - 6.2 
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+7x - 2.0 	lx - 2.0 	+lx - 2.0 	7x - 2.0 	7x - 2.0 

	

-lx f 1.8 	5x f 15.2 	+5x - 8.0 	23x f 1.8 	3x f 1.8 

	

+lx - 6.2 	-lx + 1.8 	-lx + 1.8 	5x - 6.2 4-25x - 6.2 

- 14.0 	- 2.0 	- 2.0 	- 14.0 	- 14.0 

- 1.8 	+ 75.0 	- 40.0 	f 41.4 	+ 5.4 

- 6.2 	- 1.8 	- 1.8 	- 31.0 	-155.0 

S-  - 22.0 	S
2
= + 72.2 	S

3
= - 43.8 	S

4
= - 3.6 	S

5
- -163.6 

1 
- 0.786 	+ 2.063 	- 1.251 	- 0.026 	-1.169 

- 3.165 	- 1.266 	- 1.266 	- 0.633 	-0.633 

- 3.951 	t 0.797 	- 2.517 	- 0.659 	-1.802 

The values of the compared masses are therefore equal to: 

(5) = (0.5 - 3.951 x 10 -6 ) kg, 

(2) = (0.2 + 0.797 x 10 -6 ) kg, 

(2') = (0.2 - 2.517 x 10 -6 ) kg, 

(1) - (0.1 - 0.659 x 10 -6 ) kg, 

(1') = (0.1 - 1.802 x 10 -6 ) kg. 

The resulting compensated values of the measured quantities mi , 

the residuals and their squares are the following (in mg): 

m' - - 1.6 mg v
2 
= 0.04 1 	 v

1 
 = + 0.2 	

1 

in; = - 0.4 	v2  = - 0.2 	v
2 
= 0.04 

2 

m; = + 4.5 	v3  = - 0.1 	v
2 

- 0.01 
3 
2 ffi' = + 2.2 	v 	0.0 	v
4 

= 0.00 
4 

111'.5  = + 3.3 	v5  = + 0.1 	v2 = 0.01 
5 

mi = f 3.3 	v
6 

= - 0.1 	v
2 
= 0.01 

6 

m; = - 0.1 	v7  = + 0.1 	v2 = 0.01 
7 

mà = + 1.1. 	v8  = f 0.3. 	v
2 

= 0.09. 
8 

(vv) = 0.21 

s
2 
= (vv)/4 = 0.21/4 = 0.05. 
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The standard deviations on individual weights are computed by the 

formulae (36). If s (as given by the laboratory in which M has been 

calibrated against IK) is equal to s 	8 x 10
-3
mg, these formulae lead 

tO 

2 
5 (5) 	9.15 x 10

-3 
mg

2
,  5

(5) 
= 0.10 mg 

2 
= 6.02 x 10-3 	, s

(2) 
= 0.08 " S (2) 

 
2 

= 6.02 x 10-3 	, s
(2

,
) 
= 0.08 " 

s (2') 
2 

= 7.23 x 10-3 	, s
(1) 

= 0.08 " S (1) 
 

2 
= 8.63 x 10-3 	, s

(1
,
) 
= 0.09 " S (1t) 
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APPENDIX 3 

Determination of multiples  

The equations of condition are of the same form as in Appendix 2. 

The symbols (5), (2), (2'), (1), (1') designate now masses nominally 

equal to 5 kg, 2 kg, 2 kg, 1 kg, 1 kg, respectively 

Equations of condition  

+ (5) - (2) - (2') - (1) 

+ (5) - (2) - (2') 

= m
1 
= -25.0 mg 

- (1') = m2  = -35.0 " 

+ (2) - (2') + (1) - (1') = m3  = - 5.8 " 

+ (2) - (2') - (1) + (1') = m 4  = - 6.1 " 

+ (2) - (2') 	 = m5  = - 0.3 " 

+ (2) 

	

	- (1) - (1') = m 6  = - 0.9 " 

+ (2') - (1) - (1') = m 7  = - 0.8 " 

+ (1) - (1') = m8  = - 5.6 " 

M = (1') = (1 t 0.05 x 10
-6 ) kg = 1 kg fiA 

14  = .1- 0.05 mg. 

The algorithm is similar to the one given in Appendix 2. 

Solution  

• ml 	ml 	 - m1 	-m
1 

t m2 	- m2 
	-m2 	 -m

2 
+ m3 	- m3 	-m3 	-m3  

	

t  m4 	
-m4 	-m4 	-m4 

 
+ m5 	-m5  

t m6 
	 -m6 	-m6 

 
+ M7 	-m7 	-m7  

"8 - M8 
N
1 	N2 	

N
3 	

N
4 	

N
5 

The equation of definition is The equation of definition is 
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12N 	12N 

	

1 	1 

	

6N
2 	

5N
2 

	

5N
3 	

6N
3 

- N4 
	

2N
4 	

2N
4 
	4-N

4 
-6N

5 	
- N

5 

S
1 	

S2 	S3 	S
4 

S 1 /7 	S2 /7 	S3/7 	S4
/7 

5M 	2M 	2M 	M 	M 

(5) 	(2) 	(2') 	(1) 	(1') 

With the values m
1 
	m

8 
as given in the equations of condition 

we find: 

Solution (Unit m 1 mg)  

- 25.0 	+ 25.0 	+ 25.0 	+ 25.0 

- 35.0 	+ 35.0 	+ 35.0 	 + 35.0 

- 5.8 	+ 5.8 	- 5.8 	+ 5.8 

+ 6.1 	- 6.1 	- 6.1 	+ 6.1 

- 0.3 	+ 0.3 

- 0.9 	 + 0.9 	+ 0.9 

- 0.8 	+ 0.8 	+ 0.8 

- 5.6 	+ 5.6 

- 60.0 	+ 59.1 	+ 59.2 	+ 9.2 	+ 54.2 

-720.0 	-720.0 	+ 9.2 

+364.6 	+305.0 	- 54.2 

+296.0 	+355.2 

- 9.2 	+ 18.4 	+ 18.4 

-325.2 

 -334.4 	- 51.0 	- 50.9 	- 45.0 

- 47.71 	- 7.29 	- 7.27 	- 6.43 

+ 0.25 	+ 0.10 	+ 0.10 	+ 0.05 	+ 0.05  - 

- 47.52 	- 7.19 	- 7.17 	- 6.38 	+ 0.05. 

* See foot note next page. 
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The values of the compared weights are 

(5) = 5 kg - 47.52 mg 

(2) = 2 kg - 17.19 " 

(2') = 2 kg - 17.17 " 

(1) = 1 kg - 6.38 " 

(1') = 1 kg - 0.05 " 

The resulting residuals and their squares are (in mg): 

vl  = -25.0 +26.8 = +1.8, 	v 	3.24 
1 
2 

v2  = -35.0 +33.2 = -1.8, 	v
2 

= 3.24 

2 
v 3  = - 5.8 + 6.4 = +0.6, 	v 	0.36 

2 
v
4 
= + 6.1 - 6.4 = -0.3, 	v 	0.09 

2 
v
5 
= 0.09 

v
6 
- 0.00 

2 
v 	0.00 

v
2 
- 0.64 

8 

v
5 
= - 0.3 + 0.0 = -0.3, 

v
6 
= - 0.9 + 0.9 = -0.0, 

v
7 
= - 0.8 + 0.8 = -0.0, 

v
8 
= - 5.6 + 6.4 = +0.8 

Hence 

(vv) = 7.66, 

	

2 	(vv) _ 7.66 

	

s
m 	8-4 	

= 1.92 (mg)
2

. 
4 

	

2 	 2 	2 
Assuming that s

m 
= 0.008 (mg) , 5

(5) 
becomes equal to 

S 5)  = 25 x 0.008 f 4.28
6 

x 1.92 = 8.43 (mg)
2 
 , 

( 
and the final results are: 

117,77 mg = 2.90 mg 
5 (5) 
S (2)  = Vr.Fg mg = 1.30 mg 

= Ve67.7 mg = 0.75 mg. S(1)
 

* The successive entries in this line are equal to 5 , 2 , 2 , 1 , 

respectively. 

S(2)= VT7-67 mg = 1.30 mg 
' 
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Note: 

The system of equations treated here may also be solved by fol-

lowing the algorithm given in Appendix 2. The masses (5), (2), (2'), 

(1), (1') would then be first expressed in terms of a provisional re-

ference mass M* of nominal value equal to 10 kg: 

M* ■ (5) + (2) + (2') + (1). 

This, according to (28), would lead to the equations 

(5) = M*/2 + 1/28.S *1  

(2) = M*/5 + 1/35.S
2 

(2') = M*/5 + 1/35.S .  3 

(1) = M*/10 + 1/140.S
4 

(1') = M*/10 + 1/140. 8
5 

* 	* 	* 	* 	* 
in which S

1 , S 2' 
S
3' 

S
4' 

S
5 

are computed in terms of the observed quan-

tities m m
2' 

--- m
8 

and expressed by equations (29). 

The last of the equations above constitutes the link between the 

provisional reference mass M and the mass used in the equation of 

definition 

M = (1'). 

By solving, (for M ) the equation 

M = M /10 + 1/140.S
5' 

we obtain M in terms of M, i.e. 

M = 10 M - 1/14.S
5. 

This is to be substituted in the expressions of (5), (2), (2'), (1). 

For instance, the substitution leads to the following expression 

of (5): 

(5) = 5M - 1/28.S5 
+  1/28.S, 

 

(5) = 5M - 1/28.(S *5  - S 91`). 

By (29), 
* 	* 

S
5 

- S
1 
= -4m

1 
-24m

2 
- 20m3 + 20m4 -28m6 

-28m
7 
 -20m8, 

 _ 
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and, therefore, 

(5) 	5M - 1/7.(m
1 

+  6m,  +5m
3 
-5m

4 
+7m

6 
 +7m

7 
 -5m8 ).  

This is identical to the first line of (34) so that the resulting  ex-

pression for the variance 5
(5) 

will be identical to that of the first 

line of (37). The end results as presented in (37) are thus independent 

of the method of calculation. The reader must always remember that the 

symbols marked with an asterisk (*) refer to the provisional reference 

value 

M = (5) + (2) 	(2') + (1), 

while M (without asterisk)refers to that weight, the mass of which is 

either postulated or is determined by an independent operation. 

Final Remarks  

The statistical methods described in this memorandum (this includes 

also the Appendices) are completely familiar to the staffs of all 

standardizing institutions of the world. Several other patterns of 

intercomparison are also used in the mass laboratory which are due to 

the legal existence in Canada of the non-metric systems of units of mass. 

The reader who may be interested in these patterns is invited to enter 

in contact with the laboratory's staff. 

The purpose of the present memorandum, the study which should be 

preceded by that of the memorandum No. 6, is to make it more widely 

known how in spite of its simple appearance, the comparison of masses 

on a metrological level of precision is a complex operation. A reader, 

after having perused both memoranda will have a better appreciation of 

the effort the staff of a mass laboratory constantly puts into the 

problem of maintaining all reference and working sets of weights in 

metrologically satisfactory conditions. 

These memoranda should also play the role of incentive for the 

users of high quality mass standards to perform themselves a) the 

-31- 



operations of intercomparison of nominally equal masses (of various 

magnitudes) and b) the operations of standardization, following the 

pattern (5, 2, 2, 1, 1) or similar patterns, the most commonly used of 

which are analyzed in the memorandum No. 11. Other patterns may be found 

in literature or established by the metrologists themselves according 

to the balances and the weights which are available and the conditions 

in which the weighings are performed. 

The authors express the wish that this memorandum will make all 

observers familiar with the calculation of standard errors. This cal-

culation is the best method for making an observer fully aware of the 

accuracy he actually obtains in the comparisons of masses. It will also 

make him aware of the importance of limits of accuracy quoted in the 

certificates delivered by the standardizing laboratories and thus to 

appreciate correctly the accuracies of the operations based on these 

values. 
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