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1. 

INTRODUCTION  

Comparisons in the performance of countries, sectors 

or firms within a sector are a common occurence. The problem 

with most comparisons is that the framework within which such 

comparisons are meaningful is not properly specified. A recent 

example would be the conflicting claims made by the IREST in a 

1978 bulletin and by Bell Canada in a recent newsletter to their 

customers. The IREST quoted a German source which ranked 

Canada eighth among ten Western nations in terms of cost of 

telephone services to the customers. Bell Canada used a 

United Nations (1978) source to indicate that Montreal was 

the cheapest of a whole list of major cities of the Western 

World. 

Comparisons are particularly tempting when one is 

looking at productivity performance, however there,as much as 

anywhere else, one can find the temptation to make superficial 

comparisons. A recent example would be Caves, Christensen, and 

Swanson (1980)'s attempt to associate the observed productivity 

difference between U.S. and Canadian railroads with the 

regulatory process without either modelling or quantifying it. 

It is the object of this paper to present a formal 

framework to analyse the difference in total factor productivity 

between two firms. The paper starts from the model developed 

by Jorgenson  and Nishimizu (1978) and from the TFP analysis 

developed in Denny, Fuss and Everson (1979). It draws heavily 

from the first synthesis of those two approaches presented in Denny, 
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Fontenay and Werner (1980). It utilizes Fuss and 

Waverman (1978) together with recent research done for the 

Department of Communications by Corbo et al (1978), Corbo 

et al (1979), Corbo and Smith (1979), Corbo, Breslaw and _ 

Smith (1979), BreslaW and Smith (1980) and finally by 

Breslaw (1980). 

In the second chapter, total factor productivity is 

introduced and the underlying assumptions are analysed. In 

the next chapter, the Denny, Fuss and Everson TFP decomposition 

analysis is presented and expended to cover the short run 

problem. The striking feature of this approach is that it 

makes it possible, in principle, to decompose an observed 

productivity growth in terms of the contributions of scale 

effects, non-marginal pricing effects, rate of return regula-

tion constraints and short run constraints. As noted by 

Gollop (1980), this analysis goes a long way toward bridging 

the gap between the Kendrick-Denison approach and the 

Jorgenson-Griliches (1967) one. Jorgenson and Nishimizu 

(1978) expanded the total factor productivity analysis to the 

comparative analysis of productivity and Denny, Fontenay and 

Werner (1980) generalized the approach by removing such constraints 

as  constant  return to cale (CRS),... The last chapter 

presents and develops these results and shows how the observed 

difference in productivity can also be decomposed in scale 

effects,... This analysis requires the use of econometrics to 

disentangle the various elements in productivity differences. 

Even though Fontenay (1980) indicates that index number methods 



may be properly applicable to processes which are not CRS, they 

cannot be used for TFP decomposition. This is a major problem 

in telecommunications since few adequate historical series are 

available to do . any econometrics. 

Last of all, it should be noted that we start from the 

assumption that the data have already been reconciled between 

the firms to be compared. Even though data reconciliation is 

not the object of this paper, it must be emphasized that a poor 

reconciliation would destroy the validity of the proposed 

approach and that the task of data reconciliation is certainly 

more formidable tha4 the proposed analysis. 

We do not address the problem raised by the comparison 

of more tban two firms. 
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4. 

TOTAL FACTOR  PRODUCTIVITY 

Introduction  

Total factor productivity. (TFP) is the ratio of total 

output to total input, i.e ,  if total output is denoted by Y 

and total input by X, then 

TFP = Y 

The relationship between TFP, the output Y and the 

input X can be illustrated by a simple example. Let's assume 

that the only input is labour, i.e. X = x where x is a quantity 

of labour service, and that there is only one output, i.e. 

Y = y where y is the quantity of that output. Then to any 

level of input x will correspond a maximum level of output y 

beyond which one cannot produce on a continuous basis and, 

equivalently, to any level of output y will correspond a minimum 

quantity of labour x needed to produce it. The relationship 

between the output and the input is the production function: 

y = f(x) 

which is illustrated in Fig. 1, on the assumption of CRS. 

Figure 1: Total Factor Productivity of a CRS Process 
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It should be noted that, as TFP corresponds to the 

slope of the production function in the example, it is constant 

and independent of the level of production. Furthermore, by 

a simple rescaling of either the output, or the input, or 

both, the TFP measure can be made to take any value. To 

avoid this problem, it is convenient to measure the inputs and 

outputs as index numbers. In addition; it is convenient to 

scale the input and the output to be equal in the base year. 

In practice, we expect to have a production process 

which shifts through time due to the impact of technological 

change, i.e., we expect the relationship between Y and X not 

to be time-invariant, but dependent upon some technological 

variable t which could simply be time or, alternatively, some 

measure of technological development such as, say, DDD (direct. 

distance dialing). Let's * assume the production process is 

described by 

Y = T(t)f(X) 

where T(t) is some monotonic function of t, then, if the 

function exhibits CRS as in Figure 1, 

TFP = k.T(t) 

i.e., the TFP measure is proportional to the contribution of 

the technology. 

In practice, more than one input will be needed to pro-

duce more than one output, and the first problem which arises 

is that of the aggregation of each of the inputs and of the 

outputs respectively to obtain X and Y. In fact, we shall see 
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that there might not exist an aggregation which can be 

analysed in the economic context of the production function. 

Hypotheses  

In this section, we shall expand on the preceding 

introduction to investigate the assumptions which must be made 

to analyse within the context of production theory TFP measures. 

We shall, nevertheless, ignore for the time being, the fact 

that more than one output is being produced. 

(i) The output y is produced at some time t from a 

setofinputs(. xi , j= 1,2...,m). By this it is assumed .both 

that given the set 	(x ) of inputs, no more than y can be 

produced by the given firm at that given • ime, and that given 

y and given any input Z., 	and the subset of input 

quantities  (xi ; j = 	 j 	JO, at present x
9, of input 

is necessary. 

(ii) The relationship between the maximum output which 

can be produced, y, and the minimum quantity of inputs needed 

to produce it (x ) is dependent upon a "technological" variable 

t which could be time or some other measure of technology such 

as DDD (direct distance dialing),...(Breslaw and Corbo, 1979). 

(iii) The relationship between y, (x ) and t is the 

production function: 

F(y,x„x2  ,...,xm,t) = 0 1  

(iv) The production process is positive linear homo-

geneous (PLH) with respect to the inputs, i.e. given t = t o  



any level of technology, X any positive constant, y X the level 

of output which results from an increase by a factor X of all 

inputs, such that 

F(y x ,Xx1 ,Xx2 ,...,Xxm,t 0 ) = o 

then 

YÀ = XY 

i.e. the output increases in the same proportion X as all the 

inputs. In other words, there is CRS. 

(v) The production process is separable, i.e. that, as 

technological change occurs, there is an aggregate level of 

input X which is independent of the level of technology such 

that 

y = 11(t)X(xj , j =1,2,...,m) 

(vi) Producers are profit maximizers. 

(vii) There is perfect competition. 

It should be noted that, in the absence of institutional 

barriers to competition, the last hypothesis can be derived 

from the others since independently of the number of producers, 

given the optimizing behaviour as specified in (vi), PLH:ensures 

that an entry is always possible, regardless of the size. 

Now the function X is an aggregator function of the 

inputs, x and it is a natural choice for the aggregate input. 

Since its scaling is arbitrary, in terms of the comments made 

in the previous section, it is natural to set  T(t 0 ) = 1, and 

X 0  = 0 Then ' 

TFP = Yt/Y 0 
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Now, by PLH and Euler's theorem, 
m 

X( 	 = E X.x xj, 	
j=1 	j 

where X. = 

Then, as a result of profit maximization and perfect 

competition, 

T(t)X = w./p 

where p is the price of the output y 

w. that of the jth input. 

Assuming that pt  = p o , since, then, w 	= T(t)wi, o, 

PoY t /PoY 

E wi Oxj t / 	w 	x j=1 	j=1 j,0 j,0 

i.e. the TFP measure is obtained as a Laspeyres index of output 

divided by the Laspeyres index of inputs. 

It is easy to see that the TFP measure thus introduced 

will not fluctuate very much with fluctuation in the production 

process. To emphasize the fluctuations, one usually looks at 

the total factor productivity growth. 

If the rate of change in a variable z through time is 

denoted by 	then 

TFP = Y - X 

and, if we return to the production function, totally differen-

tiating it, we .obtain 

Sr t  = T(t) 	E s. 
j=1 	J,- 

TFP t 7 
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where s 	is the share of the expenditures spent on factor 
j et 

x 	i.e. 

s 	= (s 	x. 	)/ E (s 	x. 	) jet 	jet Jet j=1 jet Jet 

In other words, a natural aggregator for the growth 

rate in the input, 5c 	given the earlier hypotheses, is'the 
jet' 

Divisia index of inputs: 

X =EsA 
j t 	

j=1 et jet 

Moreover, under the above set of hypotheses, the techno-

logical contribution T(t) and the TFP measure are one and the 

same. In most of the modern literature on total factor produc-

tivity, because of the possibility that the production function 

may be non-separable, hence that there does not exist an 

aggregate input and an aggregate output which are, in terms of 

production analysis, independent of one another, the attention 

has centered on the contribution of the technological variable 

t rather than on the ratio of output to input. 

Multiple Output Processes  

While,in the introduction, we talked of output and 

input aggregator functions respectively, in the preceding section, 

we considered only the single output production function. We 

may now generalize the approach to the multiple output production 

function. 

Let (y.. i=1,2,...,n) be the set of outputs produced from 

the set of inputs (x i ; • j=1,2,...,m) such that, given any 9,, 

14n, (y i ,  1=1,2,...,n, 1.09„) and (x j ), y 	the maximum 
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quantity of the output 9, which can be produced under the 

existing technology, and, given any k, Lekm, (yi ) and 

(x 	j=1,2,...,m, 	xk  is the minimum quantity of the kth 

input necessary for the associated production process under 

the existing technology. The production process can be rep-

resented by a production function: 

F(y i ,xj ,t; i=1,2,...,n, j=1,2,...,m) = 0 

The separability hypothesis implies that there exist 

functions Y, T, and X such that 

Y(y i ; i=1,2,...,n) = T(t)X(x j ; j=1,2,...,m) 

Scaling T(t) such that  T(t 0 ) = 1, it is natural to take 

Y and X as outputs and inputs aggregator functions, hence to 

define total factor productivity as 

TFPt = Yt /Y 0  
Xt /X0 

CRSimpliesthatX(Àx•
' 
 j=1,2,. ..,m) = ÀX = ÀY and that 

"i 
ÀY = Y(Xy i ; i=1,2,...,n) for all positive scalar X. By Euler's 

theorem, then, 

Y(y • i=1,2,...,n) = 	E Y.y.  
i=1 1  1 

wh.ere  Y z: 

Perfect competition and profit maximization, in this 



context, imply 

11. 

Pi 	(Y i /Y 1 )  

r. E T(t)X.Y1 

i =  

j = 1,2,...,m 

The rate of change in TFP is given by 

TFP = Y - X 

where Y and X are derived by totally differentiating the 

aggregator functions Y and X so that 

Y  
1=1 t ' t  

where s. 	is the share of the revenues received from the ith 1,t 

output. 
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DECOMPOSITION OF THE TFP MEASURE  

Introduction  

The theory of TFP measurement presented in the preceding 

section is not without serious problems when applied to most 

sectors, and certainly to the Canadian telecommunications 

'sector. 

Accumulated evidences force us to question and even 

reject assumptions of separability, of P.L.H., of perfect 

competition in the factors market,... Furthermore, most 

carriers, and, at least all federally regulated carriers are 

in principle regulated in terms of an allowed rate of return, 

even though it is not yet clear whether the rate of return (ROR) 

regulation is an effective and binding constraint (Breslaw, 

Corbo and Snith, 1979). Either in place or in addition to an 

ROR regulation, one can observe quasi-universally at least 

some price regulation; thus it seems reasonable to propose that 

the carrier sets its basic local rates so as to maximize profits. 

Rather one can propose that basic local rates are set by the 

regulators (Corbo et al, 1979). Finally, it is known that 

telecommunications carriers work in terms of construction plans 

defined over many years and that unless drastic changes 

appear - as the increase in the price of fuel for electric public 

utilities -the carriers have much less flexibility to modify 

their production process in the short run than in the long run. 

.Even when we accept the neo-classical theory of production 

as a tool to analyse TFP measures, all of the above factors 
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contribute to the observed TFP measures. In other words, 	• 

those measures are more than a residual since they include 

elements which can be explained and quantified in terms of 

specific factors which have nothing to do with the efficiency 

by which the firm is using its resources or with the techno-

logical contribution of recent innovations. Thus, other 

things being equal, if the quantity demanded increases over , 

time, say simply through population growth, and if at the same 

time, there is a scale effect in the production process, a, 

TFP growth will be observed which, in fact, results solely from 

the fact that a growth in output can be generated through a 

less than proportional growth in input. 

In themselves, those factors do not invalidate the TFP 

measures, however, as the measure is typically developed for 

some well-defined purpose, a proper quantification of those 

factors will generally be essential. Hence, it will matter 

to the regulator whether, say, the observed higher productivity 

of a carrier is solely due to its scale. 

In this chapter, various factors which can contribute 

to generating growth in TFP will be analysed and an efficiency 

measure which abstracts from these various factors to associate 

productivity growth to technologica) change will be developed. 

Scale  

In a previous section, Figure I had been introduced to 

present the concept of TFP. It can be reintroduced in a modi-

fied form here to illustrate the impact of economies and 
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diseconomies of scale, i.e. that of the absence of PLH. In 

Figures 2 and 3, production functions are introduced which are 

similar to the one introduced in the section "Hypotheses", 

but for the presence of economies and diseconomies of scale 

respectively. They could be represented by functions such as 

' Y 1 = T1 (t)X
2 
1 
1 

and 	Y 2 = T 2 (t)X 2  2 

The TFP measure had been associated with the slope of 

the production function, however it is more properly associated 

with its average, i.e. with the slope of the line which goes 

from the origin to a given point on the production function. 

Once the PLH assumption is removed, it is easy to see that the 

TFP measure is a Éunction of the input level (hence of the 

output level). In Figure 3, for instance, we may consider two 

dictinct points on the production function, (Ya Xa ) and (Yb ,Xb ) 

such that Xb >Xa . Then it is easy to see that the TFP measure 

corresponding to (Ya  Xa  ) TFP a' will be greater than that which ' 	' 

corresponds to (Yb ,Xb ), namely TFPb . 

In fact 

TFP 2 

and, by substitution, 
1 

TFP 2 = T 2 (t)X-2 2  

It is observed that the TFP level in Figure 3, TFP 2 , is 

inversely related to the input level X2 . 

Figure 4 provides a simple illustration of the importance 

of disentangling, within a TFP measure, the scale contribution 
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Figure 3: TFP and Decreasing Return to Scale 

Figure 4: TFP, CRS and Increasing Return to Scale 
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associated with a movement along the production surface from 

the standard increase in efficiency associated with technological 

progress, hence with a shift in the production surface. In 

Figure 4, we consider a given level of technology t l , two 

distinct production functions, one with PLH and one with 

economies of scale, and two distinct points on that last 

equation, (Ya Xa ) and(Yb  ,Xb  ) such that Xb>Xa' and such that .  

(Ya' Xa ) is a point on the production function with PLH. It 

follows immediately that only with an increase in the technology 

from t a to t b would the PLH production function shift upwards 

and pass through (Yb ,Xb ). Now the naive TFP measures associated 

with both points will be TFPa  and TFPb  respectively. However, 

while, if the process exhibits scale economies, the increase 

from TFPa to TFPb is not associated with any structural change 

but only the result of a higher output level, the passing - from 

TFP a to TFPb is solely the result of a structural change in 

terms of technical progress which has increased the efficiency 

of the process, when that process is PLH. 

Most recent results tend to confirm the presence of 

scale effects in the Canadian telecommunications sector. Thus 

Corbo and Smith (1979), Denny, Fuss and Everson (1979), Breslaw 

and Smith (1980), all find some increasing return to scale 

for Bell Canada while Bernstein (1980) obtains relatively 

similar results for British Columbia Telephone. 

The relationship between the growth in TFP and the 

growth in technical development has been established by Denny, 

Fuss and Everson (1979) as 
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TFP = T(t) - (1 - c)X 

where X is the Divisia index of the inputs, i.e. 

X = E s.A, 
j=1 

s, 	w.x / E w.x 
J  J 	 J j=1 

w, is the price of the jth factor 

E is the scale elasticity which is none other 'than  the 

inverse of the output elasticity of cost. 

Given the production function in Figure 2, 

TFP = T1 (t) 	X1  

Multiple Outputs and Scale  

• In our analysis of scale effects, we had restricted 

ourselves 	to one output-one input processes. However, most 

if not all processes do utilize more than one input and produce 

more than one output; thus, the analysis will standardly 

differentiate between at least labour, capital and material. 

This feature has a crucial impact on the analysis of scale 

since, through time, those factors have not generally increased 

in the same proportion. This is in fact expected since, 

through time, such elements as the scale of production, the 

relative prices of the factors, the nature of technical change,... 

are likely to create an incentive for management to modify 

the mixture used  in  production. The net effect of these 

elements is that there will normally not exist a well defined 

input expansion path, a problem which did not exist when only 
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•  

one input was considered. The most standard approach consists 

in defining an arbitrary expansion path, and the simplest one 

consists in expanding all inputs in the same proportion. This 

was the aqbproach considered in the preceding chapter. This 

approach also implies that the cost of production will increase 

by exactly the same proportion, as long as there is perfect 

competition in the factors market. Then we may measure the 

àcale  elasticity as the inverse of the output elasticity of 

cost. This definition, however, is more general since a propor-

tional change in the total cost need not imply a corresponding 

proportional change in all inputs. In fact, if, given the 

production function 

y = F(x.,t; j=1,2,. ..,n) 

one àtarts from the cost function 

C = g(y,w.,t; j=1,2,...,n) 

which is defined as 

g(y w ,t; j=1,2,.. .,n) = min{w.x.; P( 	,t; 

This alternative approach to scale implies that the optimal path 

in terms of the input prices, w rather than the proportional 

path in the input space will be selected. This alternative 

approach is evidently more attractive for most applications since 

it is also the path which would be selected by the optimizing 

producer. 

For many years now, researchers have considered multiple 

output production processes to analyse Canadian telecommunications 

(Corbo et al, 1978; Fuss and Waverman, 1978). In general, 

n 

x. 	J J 	J 
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the production function will be of the form 

 1=1,2,...,n, j=1,2,...,m) = 0 j 

Now to approach the scale problem, not only - is it 

necessary to define the path in the input space in terms 

of which scale will be considered, but we must also define the 

path in the output space. One logical extension of the 

approach standardly adopted in the one output-many inputs case, 

and the one considered earlier, consists in defining paths in 

both the input and output spaces corresponding to proportional 

increases of all inputs and proportional increases of all 

outputs. Then the scale effect is simply measured as the ratio of 

the proportional increase in outputs with the proportional 

increase in inputs. 

Evidently this approach to the scale problem suffers from 

the deficiency of the corresponding definition in the one out-

put situation. However, we may observe that the scale measure 

in terms of the cost function can also be generalized. Let the 

cost function be 

C = g(w y ,t; i=1,2,...,n, j=1,2,...,m) 

and let us consider a proportional increase in all outputs for 

a given set of factor prices, then we may define the scale 

elasticity as the inverse of the sum of the output elasticity 

of cost, i.e. as 

dC = E ag .dy i 
 • i=1Dyi  

= 	E 	4 c1.9,ny. 
1=1 c-L  



and as, by assumption, we have selected the output expansion 

path such that, given any two outputs, yi  and y 2, , 

dey i  = d2,ny 2,  = dftny 

d2nC  = E e . . 	C dlny 	i=1 ' 

An alternative approach, assuming a competitive output 

market would have been to start from the revenue function, 

R = h(p 	j , x ,t; i=1,2,...,n, j=1,2,.. .,m) 

Then the scale elasticity could be defined as 

the input elasticity of revenue, i.e. as (dLnx/dZnR) where 

dlaR = E E re 4  
dftnx 	'j=1 "'d 

dinx..=dtax  

This consists in selecting as a path in the input space, a 

proportional increase in all inputs. The path in the output 

space will be the one the revenue maximizer would select. 

Logically, the next step would consist in going to the 

profit function. However the profit function implies profit 

maximization under perfect competition in both the output and 

the input markets, hence either a non-identified solution, 

given PLH, or a given optimal level of production. In either 

case it does not enable us to define an expansion path since 

at best only one point is defined under the technology t. 

To return to the interdependence of scale and TFP in 

the context of the cost function, assuming that 

C = g(w y t; j=1,2,...,m) 

Denny, Fuss and Everson (1979) have shown that, given perfect 

20. 
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competition and profit maximization 

T(t) = -E 	0(0 c,y 

where 0(t) = (Dgat)/C 

and that 

TFP = -e(t) + (1  c,y 

Given the multiple outputs situation they have shown 

that 

TFP = -0(t) + {(1 - E E  2)Y1 
i=1 c " -L  

In terms of the revenue function, the equivalent results 

are 

TFP = r(t) - {(1 - E E l°  .)1X 
j=1 

where R = h(p. x.,t; i=1,2,...,n, j=1,2,...,m) j 

r(t) = (ahat)/R 

The coefficients (1 - E E, 2 ) and (1 - E e 	) will be 
1=1 " -L 	 j=1 R ' j 

zero whenever there is CRS. If, however, there are increasing 

(or decreasing) returns to scale, then TFP will include a 

component which is fully explained by the scale of production. 

Marginal Cost Pricing  

The results obtained in the previous section depend 

crucially upon the assumption of marginal cost pricing in either 

the input or the output market. Thus the relationship which was 
• • 

established between TFP and -0(0 was based on the equality 

= Y 

where Y* = E (E 	/ E 	). 
i=1  C,i i=1  C,i 
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i.e. on the equality, given i=1,2,...,n, 

PiY i  = 	 

iE=1piyi 	i=1
E0  

Since E 0,1  = DC . y i we must have for some constant y, 
Dy C 

p. = y(DC ) 
Dyi  

i.e. the price of every output must be proportional to the 

marginal cost of that output. As long as the producer faces 

no constraint while maximizing revenues, he will automatically 

fulfill this condition. However, available evidence would 

suggest that this is not the case in Canadian telecommunications, 

thus Corbo et al (1979), Breslaw and Smith (1980) and others 

have consistently confirmed a contention made by Bell Canada 

that the price elasticity of demand for local service is very 

low and that it is much lower than the marginal cost of that 

service, while the price of message toll is not very different 

from its marginal cost. It follows that, as far as many 

Canadian telecommunications carriers are concerned, the proper 

relationship betwee (t) and TFP would be 

TFP = 	- {(1 	E  E m  ,)Y * / 	(Y - Y*) 
i=1 



i=1,2,...,m 

j=1,2,...,n 

23. 

Rate of Return Regulation 

Again it is Denny, Fuss and Everson (1979) who have 

introduced the impact of the rate of return regulation in the 

TFP analysis. It can be modelled in terms of the Averch- 

Johnson model (1962) by defining the Lagraagian: 
n • 	m7-1 	 m-1 

L = E p.y. 	E w.x. - rK - X{ E p.y. - E w.x. - sK} 1=1 	j=1 	 .jj i=1 	j=1 

y{F(y i ,xj ,t; i=1,2,...,n, j=1,2,...,m)} 

where K = xm 

Profit maximization yields the pseudo-prices 

= (1-X)  pi  = Fi  
Y 

 

= (1-X)  W. - *F. 
Y 

r* = r-Xs 	= FK 

• 	Fuss and Waverman (1978) have defined a cost function 

g* in terms of those input pseudo-prices and the corresponding 

optimal output levels, yl: 

C* = g*,r*,y*,t) 

The scaling of the production function is arbitrary and 

it can be selected such that y = 1. Then, using . the regulatory 

constraint, 

C* =C-XEpiy. 
i=1 	1  

C is the total cost in terms of the observed variable, 

and to C corresponds a new cost function in terms of observed 

variables: 



. 	g. = (1-À) x. 
J 	77—  J j =1,2,...,m-1 

gr = K  

gs = -XK  

24. 

C = g(wi ,r,s,yi ,t; i=1,2,...,n, j=1,2,...,m-1) 

The cost function can be estimated directly, and Fuss 

and Waverman show that the following pseudo quantities are thus 

defined: 

Defining the technological contraction of the cost 

function as e(t), then 
m-1 

-0(t) = {  E E 	- x} - xl E S.*. 	1'11%1 
i=1  C i 1 1 	 j=1 

. 	. 	 n 	 • 	• . 
TFP = -O(t) 	(1 - E e AY* + (Y-Y*) 

1=1 C ' i  

m-1 
.... x { z  .s.*.  + &Kw 

j=1 J  i 	c 

Short Run TFP Analysis  

Telecommunications carriers, like most public utilities, 

have construction programs which cover' many years, and, unless 

some drastic shift in relative input prices occur as in the 

case of the oil crisis, they will not be able to adjust rapidly 

to changes in prices. It is reasonable to assume, therefore, 

that in the short run certain factors such as capital should 

be considered as fixed. To describe the short run behavior of 

the ,carriers, one should adopt the variable cost function, 

V = 	j=1,2,...,m-1, i=1,2,...,n) j' I 
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where V is the variable cost, i.e. 

m-1 
V=  E w.x 4 

 j=1 	4  

If this cost function is defined in terms of the pseudo-

prices, as in the preceding section with the rate of return 

regulation, then it can be denoted by 

V* = k*(w,y.e,K,t; j=1,2,...,m-1, i=1,2,...,n) j 

To it will correspond a cost function in terms of the observed 

prices 

V = k(w.,y.,K,t; j=1,2,...,m-1, i=1,2,...,n) 
J 1  

with V* = (1-À)V 

The technological contraction is now.solely in terms of 

variable factors. It will be denoted by 0(t). 0(t) cannot be 

meaningfully related to the total cost furiction even though it 

can be trivially related to the total cost itself since the 

contribution of the fixed factors is independent of time: 

DV = DC 
Dt 	Dt• 

and 

e(t) = 1 DV 
Vt 

= (c)Dc 
-5-75 

In any case, if some factors are in fixed quantities, 

then we must distinguish between the short run and the long 

run TFP measures: 

	

TFPL = E s. 	E s.* 

	

i=1 1 	j=1 	j 
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m-1.  
TFP =  Z à 	-  S 	ii 	j j1 1=1 	=1 • 

where g are the variable cost shares. 

Since s = (V)à 
U j  

then 
• m-1 

TFP = TFP + (V-C)  L 	--C-- j=1  • j 

The same general relationship will hold for 0(t) as 
• 

for 0(t) and between TFP and 0(t) in the short run as between 

TFP and 0(t) in the long run, namely 

-0(t) = E - (1-À)Xs 
 1=1 v ' l 1  

. 	. 	m-1 
where Xx  X . = 	E g.k. j=1 J j 

n ° 	• 	' . 	 + 
TFPs = -0(t) + (1- 	 E e 	)Y+  + (Y-Y ) + XXs , 1=1 Vf  

where eV,1  is the ith output elasticity of the variable cost 

i.e. 

EV i = UnV  , 
Uny i- 

n • "+ Y = E ( 	/ s cv i )Sr. 
1=1 eV' 1=1' 
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COMPARATIVE ANALYSIS  

Introduction  

In the previous chapter, following the approach of 

Denny, Fuss and Everson (1979), the TFP measure was analysed 

and decomposed in terms of elements which could help explain 

it. The major element is evidently the scale effect; other 

elements are the impact of the price and/or the rate of 

return regulatory constraint and finally whether the analysis 

is a short run or a long run TFP analysis. 

In this chapter, we will be concerned with the compara-

tive analysis of productivitY between two carriers. 

Immediately it becomes clear that the previous analysis is 

crucial. In the traditional productivity analysis of 

Kendrick and Denison, the emphasis was on the diversity of 

forces which contribute to the observed productivity growth; 

the limitation of the analysis is that the productivity 

measures developed are of limited use since very little can 

be said with respect to quantifying and explaining observed 

• differences. In the modern analysis pioneered by Jorgenson 

and Griliches (1967) total factor productivity is associated 

with technical change in a production function context. The 

shortcoming of such an analysis follows from the kind of 

assumptions which are required. As we saw in the second chapter, 

two of these assumptions are perfect competition and positive 

linear homogeneity. The more recent trend has led to some 

sort of synthesis of those two approaches. While the production-

cost function framework is maintained, hypotheses regarding 
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scale effects, competition,...are tested in terms of a more 

general model and the observed TFP is explained in terms of a 

variety of factors in addition to technical change. This 

recent step has extremely important consequences for ah inter-

firm comparison since observed differences in measured TFP 

can be associated to factors other than the rate of technical 

change. 

In this chapter, we shall present the Jordenson-Nishimizu 

(1978) model and expand it along the approach adopted by Denny, 

Fontenay and Werner (1980) to show how one could quantify the 

impact of various factors on the observed TFP of various firms. 

In practice, the TFP measure as such is not used since it 

implies a comparison of one given firm's performance between 

two periods of time, and in its place a DFP measure is intro-

duced. The DFP measure is there to quantify the difference 

between two firms' performance at one given time period. 

Evidently, it is possible to express the change through time 

in the DFP measure in terms of the difference between the two 

firm's TFP growth: 

	

.2 	.1  
DFP t - DFP t-1 = TFPt - TFPt + IZ 

2 	1 	m  where DFP 	(2.nyt  - £ny 	 1 t ) - 	E (s. t  + s i,t )(Znx 2  i,t  -£nx1  ) 
j=1 

as introduced in this chapter. 

The superscript indicates the firm 

s h

j  
denotes, the cost share of input j in the hth firm 't 

in period t. 

Z is a residual such that 
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m 
Z E E 	(s1 	2, 	2 

,_ 1 	-1 - 
J- 	

) an  si,t ,, .. xt_ 1  7 tn.x) 1 
 t 

2 	 2 
+ (s t-1 - s1 j,t )(£nxt  - £nxt-11 ) 

. 	.  

however the residual Z does not appear to have any intuitive 

meaning. 

The Difference in Total Factor Productivity (DFP)  

It seems too restrictive to assume that various firms, 

even in a given sector, will follow the same technology. Hence, 

in Canada, while B.C. Telephone decided to bypass the cross-bar 

technology to go directly from step-by-step equipment to 

electronic equipment, Bell Canada has invested significantly 

in the ciloss-bar type of central offices. On the other hand, 

it seems unlikely that two firms which are in the same sector 

would not have a great degree of commonality in their tech- , 

nology. 

It is convenient to approximate the true process of 

production of a carrier by a flexible functional form, which 

will be assumed, with little loss of generality, to be a trans 

log production function. Denoting the output of the carrier h 

by yh , we have 

h 	 h 2 
0 

= 	a .9,n 	E a. 
i=1

(nx.)  
i=1 1 

xi 

n n 	h h + E 	E a. j  Dix.tax. + Œ t t
h 

+ lutt,t t 2 
i 	j i=1 j=1 

h + E  c. th  £nx. 
1=1'

t 
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The other carriers can be assumed to have processes which can 

also  be  approximated by translog functions. In the most 

general situation, it could be that the coefficients a k,9„  and 

. are dependent upon the firm, i.e. that al  

	

h h 	h 	h  £nyh =ah + E 	+ 1/2
E 	

2 

=1 	 i=1 0 	 2. i 

n n h 	hhhh 	hh2 + E 	E a. .9,nx.2,nx. + att +  
1=1 j=1 	1 	j 	

2 t , t 

i0j 

h 	h + E aiitt
h  £rix. 

i=1 

However those translog functional forms are second order 

approximations to the true form, and it seems reasonable to 

assume that the difference betWeen firms will show up only in 

its main component, i.e. in the first order approximation 

n a + E a.9,nx. +a t". Then we would write 0 i=1 	t 

h 	h 	n hh 	hh 	n n h 2..ny- = (a o  + E aiZnxi  + att ) + E 	E a, .Xnx.£nxh  . 
1=1 	 1=1 j.=1 1 ' 3 	1 	° 

iej 

h h + 1/2 Ea.(2,nxi?') 2 +EatiLnx. + 1/2a 	(th ) 
i=1 	1 	i=1 	t,t 

Evidently, to the extent that there are series suffi-

ciently long and to the extent that processes are sufficiently 

well behaved, it would seem to be possible in principle  to 

 start from the most general form to test whether the firms 

differ solely in terms of the first order approximation. If 

the hypothesis were to be accepted, there appears to be no 
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further problem. However, it is not clear that a rejection 

of the hypothesis by such a test would represent a valid test, 

especially if the two firms, as is generally the case, are in 

different regions of the production space. The inapplicability 

of such a test follows from the fact that (i) the forms are 

assumed to be local second order approximations of the unknown 

true forms and, if any statement is to be made with respect 

to both production processes at the same time, that (ii) the 

approximation must be made over a reeon which covers at least 

the firms being compared. In other and simpler words, if the 

various firms' production processes,differ in all of their 

coefficients, as in the second example above, there is no 

regularity between them and hence comparisons are not 

meaningful. 

To test the approximation which allows differing first 

order components, it is necessary to assume that at least one 

coefficient is independent of firms considered. That could be 

a cp a t ,att oranyofthena.,then(n-l)a.oriand the 1 2 	1,j' 

nai,t* The choice is arbitrary. 

Hence, in the rest of our analysis, it will be assumed 

that the second-order part of the approximation is common to 

all carriers which are being compared, i.e. that the third 

form applies. 

Without loss of generality, we can assume that there are 

only two carriers, i.e. h=1,2. Then, we may rewrite the 

coefficients a as 



1 a2 = a + Œ= o 
	 0 	0 

1 	 2 a. = a. 	 a. = a. 

1 	 2 
= a + f3 t (1 t  = 	 t•t 

or still that 

Œh = c +D 

32. 

j=1,2,...,m 

h=1,2 

where D is a dummy variable taking the value zero with h=1 and 

one with h=2. 

Then the translog can be rewritten as 	. 
m 	 « m h 	h 	 h 2 tftyh = (a 	+ 	E a.9,nx. + a t t .+ 	(:) 1)) + 1/2.  E a. .(921.xj ). 0 	j 	j 	 j=1 J  ' 3  

n n 	 n 

	

h h 	 h  + E 	E a. .221x.211.x + E a 	t 921.xh  + ½a(th ) 2 
i=1 j 	 j 	j=1 j=1 2" 	 ,t 	j 	t,t 

iOj 

h E 
i=1 

which corresponds to the second order approximation of the 

production function 

yh = x f( h ,t h ,D; j=1,2,...,m) j  

with the constraint that f3 	= O. 0,0 

This is the form hypothesized by Jorgenson and Nishimizu 

(1978) and by Derhy,Fontenay and Werner.(1980). 

In the Jorgenson-Nishimizu method, the difference in 

efficiency between any two carriers is estimated through index 

numbers, and it is shown that, if that difference is denoted 

by DFP, 

1 2 	2 	1 DFP = (211.y 2 - 	Ly1 ) - 	(s. -1- s i )(2nx. - 9.11.x.) 
j=1 
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where • 
	

i s. s the cost share of the jth input in the £th firm, 
 J 

St=1,2. 

It is shown that 

DFP = Edlny 2 + Urn?
.1\  

dD 	dD 

(Unyh ) measures the change in output, given production in 
dD 

firm h, when one marginally converts the production process to 

that of the other firm, the input level being held constant. 

The interpretation of DFP, however, raises serious 

problems. First of all, there have been various approaches 

to the treatment of technology in the modern literature, the 

two main trends consisting of either taking the technical 

change to be a residual modelled in terms- of a time trend or 

in attempting to model specific characteristics of the network 

as being that technical contribution. In -telecommunications, 

the latter approach appears to be dominating (Corbo and Smith, 

1979), whereas in most of the other domain, the time trend is 

the most common indicator of technology. It should be noted 

that, in fact, there is no conflict in using both simultaneously 

since even though variables such as DDD are likely to have had 

significant impact on the technological development of the 

telecommunications sector, a lot of other factors have also had 

their impact. The practical problem, in econometrics, is the 

constraint in terms of available degrees of freedom imposed by 

the number of available observations. 

If t is a time trend, then, since one would normally 

compare the two firms at the same period, it would not show 
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up in the comparison. However, if t stands for some other 

variable, such as DDD, it is unlikely that t 2--mt 1 and it can 

be shown that DFP will also include the factor 

wdey 2 	dIftyl )(t 2-t 1 )}. The original model implies that, 

dt 1  dt 2 

in general, even if the two firms have available to them the 

same level of technical development, i.e. t 2=t 1 , they still 

are not on the same production hyperplane. This could be 

associated with such features as regional terrain,... Hence, 

even if various services were demanded in the same proportion 

in B.C. Telephone's territory, as in Bell's territory, the 

presence of the mountains in B.C. may imply that given today's 

technology, a different process is selected. On the other 

hand, if t is taken as an unspecified residual, since its 

scale is arbitrary, it can always be defined to take the value 

zero in one firm and one in the other. Then DFP becomes the 

simple measure of TFP growth . when passing from the technology of 

firm 1 to that of firm 2. This approach, implicit to the 

Jorgenson-Nishimizu method, does not enable us to study the 

possibility that the technology available to one firm is not 

available to the other, since the two contributions cannot be 

disentangled. 

The problem of measuring the efficiency levels can be 

approached from the dual side using the cost function, (Denny, de 

Fontenay and Werner). Under certain regularity conditions, given 

a cost minimizing firm, to the production y = f( x ,D,t; j=1,2,...,m) i 
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corresponds a cost function .  g where  

C = g(w.,y,D,t; j=1,2,...,m) 

Supposing that g is approximated by a translog cost 

function, a theorem proved by Diewert (1976) will yield: 

bi.C 2 -£riC 1  = 1/2 11E1  (el-s30(9,nw- 	 n22.11y 1 )  
j=1 	 J / 	'2`e-C 	

\( ny  _ 
,y 

k(D2-1C2  +UnC1)  (t 2- •t  ls ) + k(UnC2+D9,nCi )(D2_D1) 
at 	at 1 e2 DD 

A logical measure of the differerœ in efficiency would 

be (-H) where 

H = i(2,nC 2  + UnC1 ) 

D DID 2 	DI  

Then it can be seen that whenever the two firms face the same 

2 	1 prices on the factor markets, then (Qnw =2,nw ) and the first 

set of RHS terms disappear. Similarly, if the two firms use 

the same technology, t 2-t 1 ,and the third set of RHS terms also 

disappear. Then 

(-11• ) = 	 - (2,11c 2 	tnC1 ) 

If, to be able to use the index number approach, we 

assume PL , then 

• 
(-H) = (£ny 2-£ny 1 ) -  (C2-ZnC 1 ) 

Hence, by following the cost function approach, i.e. by 

using the hypothesis of cost minimization, we are able to ' 

isolate in our new measure of the difference in technical 

efficiency, that part which is due to the differenin the 

factor prices: 

E 
j=1 
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from that part which is due to the difference in technology: 

i(D2n.C 2  +nC1 )(t 2- t 1 ) 
Dt 

from the difference in the ability or capacity to use the 

known technology: 

(hly 2_211y 1 ) _ 

It is now necessary to relate the new measure of produc-
. 

tivity difference (-H), to Jorgenson and Nishimizu's DFP. The 

original model was 

y = F(x ,D,t; j=1,2,...,n) 

If, for instance, we take D to be a technical level variable 

scaled so as to take the values 1 with firm 2 and 0 with firm 

1, then 

m  dx dy = E F.  j  + FD  + Ft dt 
dD j=1 dD 	 dD 

whef.e FD = DFaD 

Following the approach of Denny, Fuss and Everson, we 

may define 

E FD /y 

-1 - 
then E = 	E- 	X 

m 
where X = E s.X 

j-1 	k  
= (dy/dD)/y 

= (dx/dD)/x. 

and where we have assumed (dt/dD)=0. 
- 

Defining DFP such that DFP is its local approximation, 

i.e. DFP 

it follows that 

j=1,2,...,m 

1 

• 
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- 	- DFP = E + (1-E 1  )X C,y 

If now we start from 

C = g(w.,y,D,t; j=1,2,...,m) 
J 	. 

we canderive by the same procedure 

m 	dw. dC = 	g. ,7  + 	+ gD + gt dt dD j=lJ  dD 	ay dD 	 dD 

Since 
ni 	m  

1.dC = E s.X. + E s.W. 
dD 	j=1 	j=1 	J 

if we define (-H) such that 

H = (Dg/DD)/C 

then 

( -H ) = 	- X C,y 

(-H) = e' ,y  E C 

i.e. that the (-H) derived from the cost function can be (i) 

estimated by index numbers just as E 

(-H) = (Zny 2-2,ny 1 ) + (nC 2-2nC 1 ) - 1/2 E 
j=1 ‘ 	j"  

(ii) compared to E since 

(-H) = e C,yE 

while (iii) providing a further decomposition through its use 

of the cost minimization hypothesis. 

Finally in a scenario where the firms not only face 

different technologies (dt/di>0) but where they also face a 

different physical environment (3F/aD00), following the Denny; 

Fuss and Everson approach, we can define 

(-0) = -(Dg / at ) ( dt/dD)/C 
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- 11. . 

to obtain 

= DFP - (1-s 	- (-0) C,y 

Given a scenario where the two firms operate on the sanie  
I/ production hyperplane (F/e=0) while facing different factor 

market prices due to their different geographical locations 

(-H) = DFP - (1-e 	- (-0) C,y 

i.e. 

DFP = (1-s C,y 	(-0) 

If indeed there is PLH, then we would expect 

DFP = -0 	 1/ 
- 

Finally, whenever the two firms face the same technology 

(dt/dD-0) but a different physical environment (âF/E)0), the 
- 

last term (-8) disappears and 
- 

(-H) = DFP - (1-s 	) -3-i C,y 

11 

Marginal Cost Pricing, Rate of Return Regulation and Short Run  
Analysis  

It is an easy matter to expand the result of the previous 

chapter on the decomposition of TFP to the comparative analysis 

since D can be seen as a technological variable properly 

scaled. In fact, all the previous results can be transposed to 

this new problem. 

First of all, the multiple output situation is a straight-

forward generalization, and, given 

C = g(w. 	1,y.,t,D; i=1,2,. ..,n, j=1,2,...,m) 
j
m   

(-H) 	E c 	- X - (-0) 
j=1 C ' j j I 
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If we define Y* as { E (e c  ,/ E e c  M i l, then 
j =1 

(-H) = DFP 	(Y-Y*) + {(1+e, )Y* } - ( - 0) 
j=1 ''Y 

The analysis of the previous section still holds if there 

is marginal cost pricing, (Y-Y*)-0, and if there is constant 

return to ray scale, (1- E e 
j=1 C ' j 	• 

Similarly the rate of return regulation is also a 

straightforward generalization with D being an argument of F 

in the Lagrangian, of g* and of g. 

Following the same approach as presented in the last 

chapter, one obtains 

DFP = (-H) + (Y-Y*) + {(1- E 	4 )Y*1 + ( - 0) 
j=1 C " 

m-1 
+ X{ E  s. 	-(smK/C)g} 

j=1 

where X is the Lagrange multiplier of the rate of return 

constraint, 

s is the cost share of the jth factor 

j 	(w./DD)/w. 

g = (s/âD)Ys 

Finally, fiven that in the short run, capital is a fixed 

factor, the variable cost functions k* and k will have D as an 

argument. We can define 

H = 1.V s — 

0 = 1.V.dt 
V 	dD 
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II 
. 	

- 
. 

Then it can be shown that 

DF 
- 	- 	- - 	n 
Ps = (- 	, Hs ) + Y- +Y ) + {(1- E EIT 4 )Y } 'I' (-6) + XXs 	II 

i=1 v3-L  
- 	- 	- 

where DFP s = Y - Xs• II • 
m-1 

Xs = E 	being the variable cost shares, j=1 J i' 	j 
11 

n -+ 	 n  
Y  = il-1 (e 	/ t EV,i ) i V,i 

II i=1 

EV i is the variable cost elasticity of the ith output. , 
II 

Through the last two expressions, it only remains to 

analyse and quantify the impact of a set of specific factors II 
which contribute to the observed difference in total factor 

productivity. Those factors are (i) difference in non-marginal 	11 
- _ 

cost pricing i.e. (Y-Y*)00 and (Y-Y+ )00, (ii) short and/or 
II n 	 n 

long run scale economies, i.e. ( E e .01) or ( E01), (iii) 
i=1 

C 3 1 i=1
EV

'
i  

- 
11 difference in the use of the available technology, i.e. (-0)00 

and/or (--0)00,  and (iv) the rate of return regulatory constraint, 

X00. 
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CONCLUSION 

In this paper we have integrated the Denny, Fuss and 

Everson TFP decomposition . analysis with the Jorgenson-Nishimizu 

method for interfirm comparisons of total factor productivity. 

That way, we have been able to show that the conventionally 

measured Jorgenson-Nishimizu measure of difference in total ' 

factor productivity can be decomposed and explained, either in 

a short run or in a long run context, in terms of (i) departure 

from marginal cost pricing, (ii) non-CRS, (iii) effective rate 

of return regulation and (iv) differing level of technical 

knowhow in addition to (v) the difference in the capacity and 

ability to use the existing technology because of the physical 

environment in which the firms operate. -- 

It was also shown that the Jorge) son-Nishimizu measure 

need not to be solely one of different /capacity and ability , 

but that it could also be related to the fact that the firms 

do not face the same factor prices, even under perfect 

competition. Again, this could be due to geographical 

constraints. 
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