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ABSTRACT

Bandwidth efficient digital angle modulations having input

symbol memory can be demodulated using maximum likelihood

sequence estimation(or Viterbi decoding). Unfortunately,

the more bandwidth efficient of these tend to have many

states in their Markov process description, and MLSE can

be computationally complex. Lower complexity decoding

approaches are presented for these modulations.

These decoders use a structured processing order and a

general number of survivor signals, S, at every time NT.

Processing is performed on the signal sequences using

metrics (likelihoods) obtained by a matched filter bank

similar to that needed for MLSE. The decoders can achieve

asymptotic optimality of error rate while being

computationally faster than MLSE for many modulations. In

addition, error rate performance can be traded for

complexity reduction.

Computational reduction is by a factor of Sv/S where Sv is

the number of Viterbi states and S is the number of

survivors retained by the new decoders. The lower the

modulation index, h, the greater the savings. For

example, computational reduction is by a factor of n for

indices h=l/n. Simulations are performed for

representative modulations: partial response FM with

polynominals (1+D)/2, (1+2D+D2)/4, and (1+D+D2)/3 over a

range of modulation indices less than unity.



(iii) 

Certain modulation indices (h#1/n) can lead to a "false 

lock" condition and error events of substantial lengths 

(tens to thousands of bits). Expanded decoding rules are 

developed to deal with this problem and are shown by 

simulation to greatly reduce the length of long error 
events. Results suggest that any decoder that does not 

maintain a survivor for every Markov state at every time 

NT can encounter these long error events. 

Indexing terms: Low complexity decoders, sequence 
estimation, bandwidth efficient, angle modulations. 
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CHAPTER 1 

INTRODUCTION 

Bandwidth efficient modulation schemes have received 

considerable attention in recent years. Development of these 

modulations has come as part of the search for ways of 

meeting increased data communications demands while 

minimizing the use of valuable spectral resources. Constant 

envelope signalling has been of particular interest because 

of its special immunities to fading, non-linear distortion, 

and AM-PM conversion. 

These constant envelope signals are generated by encoding 

data symbols and modulating the phase of a constant amplitude 

carrier. Such a signal may be written in general form 

(assuming zero initial phase) as 

y(t) = A cos(2ef c t + 	akg(t-kT)) 	 (1) 

k=0 

In this equation, A is the carrier amplitude and f c  its 

frequency. The data digits a k  are assumed chosen at random 

from a finite input alphabet {a i } , one every T seconds. The 

input alphabet is of size M with elements {±1, ±3, 	±(M- 

1) 1. 

The information is contained in the phase function, 

OD 

a kg(t-kT). 

k=0 



This summation represents the superposition of the phase 

responses due to the input digits. The modulation index h is 

defined such that the maximum phase change (relative to 

the carrier) over any symbol interval is (M-1)hn radians. 

The modulation index therefore depends on the magnitude and 

shape of g(t). 

The function g(t) may be expressed as 

g(t) = f h(T)dT 
o 

where h(t) is the instantaneous frequency pulse. The 

duration of h(t) determines the degree of signal dependence 

on past digits, i.e. the memory in the system. 

The spectral occupancy of many of these modulations has 

been studied, as well as the minimum distance properties of 

the effective code created by the modulation [1 - 9]. The 

benchmark constant envelope modulation, against which most 

comparisons are made, is minimum shift keying (MSK) [1]. 

The new modulations have shown substantial reductions in 

bandwidth over MSK, usually with corresponding degradations 

in coding distance. In addition it is also possible to aim 

for coding distance gains, usually at the expense of 

bandwidth [6-10]. 

In general, the smoother the resultant phase path of the 

signal for a given modulation index, the lower the signal 

bandwidth. Here bandwidth refers to the frequency band 

which contains a specified fraction of the total signal 

power (e.g. 99%, 99.9%). 

(2) 



3

These modulations are non-linear in nature, MSK being an

exception [11], and standard receiver techniques to deal

with memory in linear signalling (equalizers, decision

feedback) do not apply. However, the modulations can

generally be represented by finite state, first order

Markov processes, and maximum likelihood sequence

estimation (MLSE or Viterbi detection [12]) has been

proposed as a decoding method [13 - 16].

Introduction of longer pulses h(t) has an important

beneficial effect; the overall phase path is smoother

resulting in lower bandwidth for a given modulation index.

Unfortunately, this increased memory greatly increases the

number of states in the Markov description. In addition,

the number of states depends on the modulation index (see

Section 1.3.3), an extra factor contributing to complexity

not found in linear modulations. The combined effect of

long memory and certain modulation indices (especially low

ones) can make Viterbi decoding very complex.

A simple quadrature component receiver has been

demonstrated for one particular angle modulation called

tamed FM [17]. This receiver incurrs a loss of over 2 dB

in effective signal,power compared to optimum reception.

Such simple receivers do not seem to be generally

applicable to the broad class of constant envelope

modulations without substantial suboptimality compared to

MLSE. Sub-optimum decoding schemes which are

computationally faster than the Viterbi algorithm, but

which exhibit little degradation in error-rate performance,

are therefore desirable.

This study concentrates on the description and development

of lower complexity decoders and their application to
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one particular type of modulation, partial response FM.

The basis for adopting these schemes is completely general

in nature. This specific application clearly demonstrates

the salient features and logical extensions to other

modulations can be readily made.

The starting point for the development of the techniques

described here is a basic approach proposed by Vermuellen

[18] for reducing receiver complexity with PAM signalling

over channels producing intersymbol interference. The

basis for complexity reduction lies in maintaining a list

of "survivor" signals (and corresponding input sequences)

at every time kT reduced in size from that kept in Viterbi

decoding. This reduction is effected by a sequentiall rule

that identifies those signal paths with likelihoods small

enough to be dropped from further contention, while

attaining some specific overall error exponent.

New rules are developed for application to the modulations

of interest by a series of modifications to a rule based on

the notion of signal space projections. The resulting

rules incorporate these modifications along with an ordered

processing approach, without which computational savings

over MLSE are impossible.

To the author's knowledge, this is the first time such new

reduced complexity rules based on signal space

considerations have been applied to the kinds of

modulations of interest here. The non-linear nature of

these modulations leads to unexpected and interesting

behaviour in some cases, requiring development of expanded

processing decoders.

It should be pointed out that 'sequential' is used here to
describe any decoder that operates on sequences. The rules
developed here allow no "backtràcking" and bear little
resemblance to the so called sequential decoder first
proposed by Fano [19].



For the purposes of this study, the channel is assumed 

ideal (distortion-free), the noise Gaussian and white, and 

the receiver perfectly synchronous. The decoders presented 

here can achieve optimality in the sense that 

lim 	P(e)  ) - 1 SNR.)-0, ( KP 	(e) OPT 

where SNR is the signal to noise ratio, K a constant, P(e) 

the probability of decoder symbol error, and PopT (e) the 

optimum probability of symbol error for MLSE. The 

equivalent statement for the probability of event error  is 

proven; the finite length of error events required for the 

previous assertion is demonstrated by simulation. 

The general decoding problem will now be presented from a 

signal space point of view. This will serve to introduce 

concepts and notation for later use. This will be followed 

by a more detailed description of constant envelope 

modulation and partial response FM. Viterbi decoding will 

be presented. Chapter 2 will present approaches to 

reducing receiver complexity and Chapter 3 will show the 

application of these schemes to partial response FM. 

Chapter 4 provides a summary of the findings. 

1.1 	Signal Space Description of The Problem 

Consider a general encoder/modulator which transforms 

information digits into a suitable set of signals for 

transmission over a channel. In many cases, the modulator 
output depends not only on the present input digit but also 

on previous digits. This is the case with convolutional 

encoders. If such an encoder is modelled as a Markov 
process, the modulator output is completely determined by 



the state at the end of the previous interval along with 

the present input digit. A state transition is produced by 

each new information digit every T seconds. A unique 

output signal of duration T is associated with each of the 

state transitions. Every input digit sequence therefore 

has a one-to-one correspondence with an output signal 

sequence. 

Suppose one of a set of equally likely signals ly i l 

corresponding to the information digit sequences {a i }  is to 

be transmitted over an ideal channel corrupted by Gaussian 

white noise. We are to determine which sequence is a-

posteriori most probable by observing the channel output. 

This is equivalent to finding the corresponding signal with 

highest likelihood. If y i (t) was transmitted, and the 

received signal is r(t), the noise process must have 

assumedtheformn i (t)=r(t)-y.(t). The equivalent 

problem becomes to decide which sample function n i (t) of 

the noise process has greatest likelihood. It is well 

known that this problem can be cast in a vector space 

format. 

Each signal is represented as a weighted sum of orthonormal 

(orthogonal with unit energy) functions. Each distinct 

signal is constructed from the same set of functions but 

with different weightings. Each orthonormal function 

represents one direction in the signal vector space, and 

the weighting coefficients represent the coordinates of the 

vectors describing these signals. Define the Vector v i  as 
the vector of these weighting coefficients for signal y i (t). 

The square of the distance between any pair of vectors 

is related to the time signalsby 

d2 	f ( 1, 1 ( t ) _ 	(t)) 2  dt 	 (3) ij 



This is the integral of the squared difference between the

corresponding time signals over the interval (I) of

interest.

The relevant portion of the noise process may be described

by a noise vector formulated identically to the signal

vectors. Given that the noise is white, this noise vector

will have independent components. For Gaussian white noise

of double-sided power spectral density No/2 watts/Hz, these

components are also of zero mean and equal variance

Q2=N/2.

The received signal vector is simply the transmitted signal

vector plus the relevant noise vector. The distance

between the received vector r and any signal vector ÿi is

then the magnitude that the noise vector must have assumed

for ÿi to have been the signal actually transmitted. A

conditional noise vector may then be identified for each

signal.

The probability density function for a vector of

independent Gaussian random variables of equal variance is

exponentally decreasing with the squared vector magnitude.

The most likely of the conditional noise vectors is

therefore the shortest one. The most likely signal (given

that all are a priori equally probable) is then the one

closest to the received signal in terms of Euclidian

distance. The likelihood of any signal yi refers to the

value of the probability density function evaluated at the

length of the noise vector, conditioned on yi having been

transmitted. The logarithm of this likelihood is (less a

common constant) proportional to the square of the distance

separating received signal r and signal ÿi.



The decision regions are bounded by hyperplanes in the n-

space which bisect the lines joining the tips of the signal 

vectors.Todecidewhichoftwosignals,y.or y,, is more 

probable, the process is equivalent to projecting the 
_ 	_  vectors(r-y.)and(r-,)onto the subspace/S. =(y.-y.) Yj   

. and choosing the signal with the shorter projection. 

Any signal y. may be expressed as a sum of sections over 

distinct time intervals, specifically, choosing these 

intervals to align with the information digit intervals, 

i N 	 1 2 	 i k 	 i N 
[ Yi 1 0 = [17 i 1 0 	[ Y1-1 1 	'" 	[ Yiik-1 /- *** 1-  hr iJN-1 

where [y];11.1  represents the segment of y over interval 

[mT,nT]. In terms of signal space, because the signal 

sections are disjoint in time, their vector representations 

are orthogonal. With this expansion, the overall signal 

space spanning the long signals can be decomposed into 

orthogonal subspaces, one per digit interval. 

r iN 
The vectors representing irj o  and any signal [y i ] o  may then 

be expressed as the sum of orthogonal vectors defined for 

the segments of these signals over each digit interval. 

The relevant noise vector is also a sum of orthogonal 

vectors, but because the noise.is  Gaussian and white, these 

vectors are independent from one another. The probability 

density of the overall noise vector is therefore the 

product of the probability densities for each of these 

independent noise vectors. We can then identify the likel-

hood of any signal y(t) as the product of the likelihoods 

of the noise vectors conditioned on the segments of y(t) 

given the received signal r(t) over each interval. The log 

likelihood will then be the sum of the likelihoods due to 

each interval. If [p i ] 	is the likelihood for signal 
ik segment 	then k-1' 



(4) 

(5)  

P.]
N r 	

= 	[P.
lk 

L 1 0 	 1 1 k-1 
k=1 

and 

r 
i 	

r 	k £n Lp.j
0  = 
	£nip iik-1 
k=1 

For each interval, 

2  
[P ilk-1 = K1 exp(-K2. 	

k 
11[-i-7i]k-111  ) 

where K 1 and K 2 are constants depending on the noise power, - k [ -i-  - i.] k 	is the vector from signal vector [ Y 1
] k-1 t°  i k-1 

riT i k 	and 11.11 denotes magnitude or norm which is the 
Euclidean distance from the vector to the zero element. 

We have 

ik - -K 2 .11[Î-iii ] k_ i ll 2 _  
+ K 3 

and 

r 	iN 	 k 	2 £nip i j o  = -K2. 	 K3 
k=1 

= -K 2 -11[--17i 1U11 2  + K3 (6) 

where the K. are constants. 



The overall log likelihood of a signal 	is proportional 

to the distance from received signal i to signal ii  as 

expected. 

In order to choose the most probable signal, we must 

observe the received signal for the duration of the 

transmitted signal. Since these signals correspond to 

sequences of information digits, they  cari  be of very long 

duration and there could be very long decoding delays. 

Also, since the source is providing a new information digit 

every T seconds, there will be an exponential increase with 

time in the number of possible signals, making decision 

after complete observation formidable. It is clear that 

some sort of sequential decision process is needed. The 

Viterbi algorithm exploits the highly structured Markov 

process description of the modulation to effect such a 

decoding [12]. 

It is well-known that for practical modulations, such 

maximum likelihood sequence estimation will work well in 

terms of symbol error probability. For reasonably high 

signal-to-noise ratio the maximum likelihood (ML) signal 

must with high probability be close to the transmitted 

signal in signal space. For the usual effective encoding 

schemes, signals that are close to one another differ in 

only a few digits in their corresponding input sequences. 

Therefore, for reasonably high SNR, the ML input digit 

sequence will differ in only a small fraction of places 

from the transmitted digit sequence. 

For longer and longer sequences, it becomes more likely 

that a signal further away from the transmitted signal will 

be maximum likelihood. The total number of digit errors 



should tend to increase with the length of the transmitted . 

sequence. The notion of error events may be used to verify 

this expectation and to develop a bound on the symbol error 

probability. 

1.2 	Viterbi Decoding (MLSE)  

While it is true that an infinite delay is involved in 

finding the most likely of a set of infinite length 

signals, it is known that with probability one, only a 

finite delay is required to decide on the most likely 

sequence of digits transmitted up to time KT. 

We know that any signal corresponds to an input digit 

sequence and a path of state transitions. We can say that 

signal y i  "passes through" state s n  at time KT if s n  is the 
state at time KT of the state sequence that uniquely 

corresponds to signal y.. 1 

Consider the ensemble of signals Li 	
= r‘ ,1:1 1 K+r _n 

j 	Li 3 J 0  
that pass through state s n  at time KT, and that share the 

r n iN future segment yin j K that has maximum likelihood of all 
signals emerging from state sn . Any signal path that can 

reach state s n at KT is capable of spawning [y n  I N  mft K 
regardless of the actual [yrin ] e  From the discussion of 

Section 1.1, the overall log likelihood of any of these 

signals may be broken into the sum of two log likelihoods, 

that portion before KT,and that portion after KT; 

rri-.11N = rrn ix 	rrn iN 
L13 JO 	j J O 	L  m2,JK 

where 

, i n = tn r p.  in 
L 1.1m 

(7) 
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Clearly, the signal in this ensemble that has maximum

overall likelihood, [ym.,]^, must be the one with initial

segment [ymt]^ whose likelihood [rmX ]^ is maximum over all

the segments reaching sn at time KT,

[r m^ ]p = ma x [ I'^ ]Ô
Vj

Now if the overall maximum likelihood signal does in fact

pass through state s at time KT, it must be signal [yn ]N^
n mXO

and therefore have initial segment [ymk]O' The same may be

argued for every other possible state at KT. The ML signal

must pass through one of the S possible states at every

time KT. If we keep only those signals (and corresponding

sequences) having maximum likelihood to each state at every

time KT, we are assured that one of them is the initial

segment of the overall ML signal. The problem is then

reduced from working with an exponentially increasing

number of signals, to a finite list of S survivor sequences

and likelihoods [12].

Each of the S survivor segments will spawn M descendants at

time (K+1)T for an M-ary input alphabet. At time (K+1)T,

M•S signals will terminate in S states. The algorithm then

keeps the segment with largest log likelihood to that time

for each state, reducing the list back to S survivors.

Decoding of the ML sequence relies on these S survivors

sharing a common history in the not too distant past.

First we note that no two of these survivors can share a

common state at any time LT and still be distinct up-to

time LT. Secondly, we can always get from one state to any



other within a finite number of (usually few) digit 

intervals. All survivors will diverge from a common state 

to reach each of the S possible states. 

r If the survivor Lysj0 for the state s
n 

is distinct from the 

ML signal for a long time, it will in general be widely 

separated from it in signal space (distance is 

monotonically non-decreasing with separation time). We 

might expect with high probability to be able to find an 

alternate signal W2f(K)  to state s n  that shares a longer 

common history with the ML signal. Such an alternate 

signal would be closer to the ML signal and almost 

certainly have greater likelihood. It should then displace 

[y] as the survivor to state s n at KT. This argument s 0 
implies that all survivors to time KT must be reasonably 

close together and with high probability share a common 

history a few intervals before KT. 

Once this merge has occurred, the common history portion 

can be unambiguously declared as the initial segment of ML 

signal. This provides a finite decoding delay for the 
input digits. There is a finite probability that this 

merge will not have occurred within the constrained memory 

length of the receiver. In such an instance, overflow is 

said to occur. If the receiver memory is chosen long 

enough, this phenomenon should have negligible effect on 

the probability of error. 

The fact that the log likelihoods of the signals can be 

broken into the sum of log likelihoods due to each segment 

also allows these likelihoods to be calculated recursively 



= Tt.Y (8) 

by the receiver. The 

likelihoods is formed 

signal. To see this, 

Then from Equation 6 

relevant portion of these log 

by matched filtering of the received 

denote [-F]kk-1  by 	and [i1]kk-1  by 7. 

= K3  - K2.11k  -li
2 

= K 3  - K 2 .(111i112 + ily112 _ 27§. .y) 

where K 1 and K 2 are constants common to all signals. The 

quantity 1111 2  is common to all signals, and because they 

are equi-energy, so is 1111 2 . Since we are interested 

only in relative likelihoods, all common quantities may be 

dropped giving the relevant likelihood, 

This dot product is expressed in the time domain by the 

correlation 

kT 
= 	f 	r(t)•y 1 (t) dt 
(k-1)T 

This is simply the output of a filter matched to the 

segment of  y(t)  over the interval [(k-1)T,kT]. The total 

relevant likelihood or path metric of signal y i  is the sum 

of the sectional likelihoods, 

kT 
[L i l o  = 	f 	r(t).y i (t)dt 

k=1 (k-1)T 

NT 

= f r(t).y i (t) dt 
0 

(9) 

(10)  



or 

L.(w+i) := 	+ C.(N,N+1) 

where 

(N+1)T 

C i (N,N+1) = 	f 	r(t).y i (t) dt 

This is the recursive formulation of the path metric. The 

receiver obtains the relevant quantity C i (N, N+1) as the 

output of the appropriate matched filter and adds it to 

the accumulated likelihood (likelihood will be used to 

mean the relevant portion of the log likelihood, or path 

metric). Since there are a finite number of states, there 

are a finite number of state transitions, and therefore a 

finite number of signal sections of duration T seconds to 

which filters must be matched. 

An error in decoding occurs when the ML sequence deviates 

from the transmitted sequence. This occurs when a sequence 

merging with the state of the true sequence at time KT has 

greater likelihood. This will occur when a component of 

the noise vector exceeds half the distance d between the 

transmitted signal and the ML signal. For white noise, the 

noise vector components have equal variance in all 

directions. The probability of such an error event is then 

simply Q(d/2a) where 

00 

1 	,2/2 
Q(x) - f e ' d a 

ir-rr 

(1 1) 

and a 2  = N
o
/2. 



For high SNR, the most errors will tend to occur when noise 

exceeds half the smallest distance between distinct 

signals, dmin , and the signal is decoded into its nearest 

neighbour. The length of these error events will depend on 

the particular modulation. 

1.3 	Constant Envelope Modulation 

As already presented, the general form of a constant 

envelope signal may be written as (Equation 1) 

CO 

y(t) = A cos(2nf ct + 	akg(t-kT)) 

k=0 

The phase response g(t) determines the ultimate bandwidth 

and distance structure for a particular input alphabet 

The various modulations really only differ in the 

shape and method of realizing this phase response. Some 

even allow g(t) to be cyclically altered for different 

digit intervals [9 - 10]. 

It is very helpful to think of the signal in terms of its 

phase relative to the carrier and of the resultant phase 

path it follows as a function of time. This phase time 

function, 

a kg(t-kT), 

k=0 

consists of the superposition of the phase responses due to 

the input digits, ak . The phase response function is the 

integral of the frequency pulse h(t), 



g(t) = f h(T) dr 

0 

The duration of the basic frequency pulse h(t) determines 

the memory in the system. If h(t) is everywhere bounded, 

there will be no discontinuities in g(t), resulting in a 

continuous phase signal. For many modulations, and the 

ones of interest here, the area under h(t) is non-zero. In 

these cases g(t) is of infinite duration and there is a 

kind of infinite intersymbol interference. Usually h(t) is 

everywhere positive and limited to a duration LT, giving 

g(t)=0 for t<0 and g(t)=g(LT) for t›LT. The maximum phase 

change over any digit interval is equal to (M-1).g(LT), 

giving a modulation index h=g(LT)/w. 

It is best to think of the memory in terms of the duration 

of h(t). When h(t) is of duration T, the phase path during 

any interval depends only on the phase at the end of the 

previous interval and the present input. If h(t) is of 

duration greater than T, the phase path depends on the 

accumulated past phase, the present digit, and one or more 

past input digits. 

A very useful tool for understanding these phase 

modulations is the phase tree. The tree is the ensemble of 

phase trajectories for all possible sequences with a common 

history at the tree's root node. Since all phases are 

modulo 2w, this tree actually wraps around a phase cylinder 

[10] of circumference 2w. For rational values of h, the 

tree collapses into a trellis with a finite number of 

phases at every time KT. At every time KT, one of M 

possible new digits is introduced allowing the phase path 

to branch in M new directions. 



K.h b  (t-iT) 

i=0 

h(t) (12) 

1.3.1 Partial Response FM 

Partial response (or correlative encoded) FM is one 

technique for generating the phase response function g(t). 

This method produces a correlated digit stream I...bk ...1 

from a sequence of independent digits I...ak ...1 applied to 

a tapped delay line. The delay line is characterized by 

the polynomial P(D) = (K 0 +K 1D+K 2D2 +...+KmDm )/C where the 
delay operator D denotes a delay of T seconds and 

Tn  

C = 	IK I 

2,=0 

normalizes the polynomial. This correlated digit stream 

is applied to a constant envelope modulator with basic 

frequency pulse h b (t). The structure is shown in Figure 1. 

An equivalent modulator exists which maintains the original 
independent digit stream I...a k ...I as input. 

The effect of the correlative encoding is to create a new 
equivalent frequency pulse h(t) [4]. This pulse is given 

by 

The partial response modulations considered in this work 
have polynomials (1+D)/2, (1+2D+D2 )/4, and (1+D+D 2 )/3, 
with basic frequency pulse h b (t) rectangular and of 

duration T. 
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FIGURE 1 Diagram of conceptual partial response FM modulator.



These modulations will be referred to in the format 

[polynominal, h=mod. index]. The equivalent frequency 

pulses h(t) and phase responses g(t) for these modulations 

for arbitrary modulation index h are shown in Figure 2. 

The resultant phase trees for given bit histories are shown 

in Figures 3(a), (b), (c). Bit history refers to the time 

sequence of previous bits. 

1.1.2 Distance Structure 

The squared distance between any two signals y i (t), y i (t), 

over any interval of interest I is expressed as (Equation 

3) 

dl j  = f [Yi(t) - y i (t)]? dt 

If the corresponding phase paths are denoted by 0 1 (t) and 

then from Equation 1 

d?. = f A?[cos(27rf t+0.(t))-cos(27rf t+0.(t))1 2  dt 13 	 c 	 c 	3 

f A2 lcos 2 (27rf t+e.(t))+cos 2 (27rft+e(t)) c 	1 

-2cos(2irf ct+O i Lt) )cos(21rf ct+O i  ( t) )} dt 

We will make assumptions usually made in modulation 

considerations: 

(a) Thephasevariationsdueto0.(t), 0,(t) are very 

slow compared to those due to the carrier at f c , and 

(b) fcTI
>>1 where TI is the minimum length of any 

interval of interest. 
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FIGURE 2 Frequency and phase responses for PRS modulations 
with modulation index h. 
Basic frequency pulse hb (t) is rectangular, with 
duration T seconds. 
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FIGURE 3(a) Phase tree for modulation [(1+D)/2,b], binary input. 
Bit history is (+1). Minimum distance phase path 
pair is shaded. 
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Bit history is (-1, +1). Minimum distance phase 
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The above expression then reduces (with double frequency 

terms disappearing) to 

dl i  = f A2 [1-cos(e i (t) - O j (t))] dt 

Under the same assumptions, the signal energy over any 

interval of length T is simply E=A 2 T/2. Normalizing and 

writing 0 1 (t) - j (t) = AO 	(t) gives ij 

d 2  
- 1  f [1-cos 1  A0..(t)] dt 2E 	T 	 3 

From this expression, the distances between signals may be 

easily found by inspection of their paths through the phase 

tree. 

The minimum distance between any two distinct signals is 

called d min 

d 	=min 	d.. min 	 13 V( 1,3) 

where 

NT 

d ij  = f [y(t) - y.(t)J 2  dt 

0 

The minimum distance phase path pair is depicted by shading 

for the PRS modulations shown in Figures 3 (a), (b), (c). 

The usual basis against which to compare minimum distances 

is MSK. For MSK, d 2 min/2E = 2. 

(13) 

(14) 
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Me ensemble of possible phase paths (or any subset)

defines a signal space with distances between signal points

given by Equation 13. The non-linear modulations of

interest here have a peculiar property. The distance

between any signal yi and the nearest signal whose phase

path diverges from and remerges with yi depends on the

actual path of yi. It is not always possible to find a

signal path dmin in distance from any given path. In

general, if a signal shows maximum phase change over

consecutive intervals, it will not have a dmin closest

neighbour, and if it shows minimum phase change, it will

always have a dmin neighbour.

1.3.3 State structure

As previously mentioned, it is possible to model constant

envelope modulations as first order Markov processes.

The expression for information carrying phase was

W

O(t) = I akg(t-kT)

k=0

Here it is assumed that g(t) = 0 for t40 and g(t)=g(LT) for

t>LT. Following Aulin et al. [14], the phase during digit

interval n can be written as

n -L n

9(t) = Î akg(LT) + 1 akg(t-kT) (15)

k=0 k=n-L+l

nT<t<(n+l)T



n-L 
= [ 	akg(LT)] 

k=0 mod 21T 
cl) (16) 

The first term represents the underlying phase due to past 

inputs, which can be called the phase state, 

The second term r.?presents the contribution of inputs 
actively affecting the shape of the phase path during 

A interval n. A correlative state vector is defined as An = 
(an_ 1 , an_ 2 ,...,an_ L+1 ). The phase state, correlative 

state, and present input an  completely determine the signal 

during interval n. A combined state Sn A (4) n' An ) can be 

defined for use in the Markov description. The total 
number of correlative states equals M(L-1).  If the total 
number of underlying phases is equal to p, the total number 

of states equal p-M (L-1) . By definition, 

n-L 
n  = [g(LT) 	î a.] k mod 2.ff 

k=0 

The sum 

n-L 

î ak 
k=0 

can take on many integer values so that if g(LT) = 
for least integers 54 and p, where it and p are relatively 

(I) 



prime, there are a total of p possible distinct phase 

states, (0, 2w/p, 4n/p, 	2n(p-1)/p). 

This does not necessarily mean there are p possible phase 

states at any given time nT. We notice that 

n+2 - 4) 11  = g(LT)• 4> 	 (an+2-L 	an+l-L )  

Since a. can assume values (±1, ±3,..., ±(M-1)), then 

(p n )c{-2(M-1)g(LT),...,-2g(LT),...,2(M-1)g(LT)1 

(17) 

We now wish to express g(LT) in the form g(LT) = nn/k for 

least integers n, k. From Equation 17, given the initial 

phase state at time zero, there can be only k phase states 

possible at the "even" times (n=2, 4, 6,...) and k possible 

states at the "odd" times (n=1, 3, 5, ...). But 

g(LT)=2nt/p implies p total phase states. If p is even 

therefore, there will be only p/2 of the states possible at 

the even times, and the other p/2 states at the odd times. 

On the other hand, if p is odd, there will be all p states 

possible at every  time nT. To relate the number of phase 

states to modulation index h, recall that g(LT) = hn. 

For example, consider h = 1, g(LT) = w/2. There are a 

total of four possible phase states, (0, ±w/2, n) but the 

possible phase states alternate as below 

n/2 	0 	n/2 	0 

••• -n/2 	w 	-w/2 	w 

nT 	(n+1)T (n+2)T 	(n+3)T 

• • • 
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This means that for h = n/k, for least integers n, k, there 

are k.r4 (L-1)  states per interval in the Markov description. 

1.3.4 Viterbi Receiver 

Implementation of MLSE using the Viterbi algorithm was 

discussed earlier. The relevant likelihoods of the signal 

in contention are calculated recursively using matched 

filter outputs. The receiver must be able to provide the 

correlation of the received signal with every possible 

duration-T signal segment. The correlation over interval 

[nT, (n+1)T] required for signal y i is 

(n+1)T 

f 	r(t)-y i (t) dt. 

nT 

If 

A i (t) = 	a ikg(t-kT) 

k=0 

is the phase of y i , then from Equation 1 

(n+1)T 	 (n+1)T 

	

f 	r(t)-y i (t)dt = 	f 	r(t).[Acos(2wf t+8.(t))]dt c 

	

nT 	 nT 

(n+1)T 	 (n+1)T 

	

=A f 	r(t)cos(211f ct)cose 1 (t)dt-A f 	r(t)sin(2nf ct)sine i (t) dt 

	

nT 	 nT 

(n+1)T 	 (n+1)T 

	

.Afrc uocose.(t) dt - A f 	r5 (t) sine.(t) dt 

nT 	 nT 

(18) 



where  r(t) = r(t) cos2nf
ct and r s (t)=r(t)sin2nf ct. These 

are obtained by multiplying the received signal by cos2nf c t 

and sin2nf ct to form quadrature channels. It is then 

necessary to provide a baseband matched filter bank which 
provides the correlation with the cosine and sine of all 
possible phase paths  O(t) over each interval. Again, 

following Aulin et al. [14], during interval n, 

cos0.(t)=cos[ i  4). 	 g + 	1 	a 	(t-kT)] n 	ik 
k=n-L+1 

=cos(p incos( 1 	a ikg (t-kT)) 

k=n-L+1 

-sincp insin( 	a ikg(t-kT)) 

k=n-L+1 

nt(t<(n+1)T 	(19) 

Similarly, 

n 

sine 1 (0=sin4. cos( / 	a. g(t-kT))  in 	 ik 
k=n-L+1 

+ coscp insin( 1 	a ikg(t-kT)) 

k=n -L+1 
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There are p possible values of (1). , and sin(p. and cos(. in 	 in 	L  in 
are interpreted as scaling multipliers. There are M 

possible phase paths 

a g  (t-kT), ik 
k=n -L+1 

but not all are necessarily distinct. There are therefore 

at most 2.ML matched filters required per quadrature 

channel with impulse responses [14]: 

o 
cos(  

-L+1 
0<t‹T 

h .(t)= c3 

0 elsewhere 

0 

sin( 	aitg[(1-0(T-t)]) 

2,=-L+1 
O<t<T 

h .(t) = 
s3 

0 elsewhere 

As Aulin et al. [14] note, this number can be reduced by a 

factor of two by noticing that every digit sequence has one 

with opposite sign. Therefore at most 2-ML  baseband 

matched filters are needed in all. 



The matched filter outputs are sampled at every time nT to 

provide the correlation for interval [(n-1)T,nT]. A block 

diagram of an MLSE receiver is shown in Figure 4. The 

Viterbi algorithm works with Sv  states per interval and 

performs M.S v additions and (M-1)S v binary comparisons per 

digit interval. 

The number of states, S v , and the number of matched filters 

for the partial response modulations of interest are given 

in Table 1 (page 70) along with other relevant quantities. 

Schonhoff et al. [13] simulated Viterbi detection for 

CPFSK. In their analysis they assume passband matched 

filters which result in a fewer number of required filters. 

Aulin [15] provides an analysis of symbol error probability 

bounds for Viterbi detection of continuous phase modulated 
signals. The major point is that at high SNR, as expected, 

the error probabiltiy is dominated by a term of the form 

KQ(dmin/2a) due to minimum distance error events. Aulin 

notes that a minimum distance error event is not 

necessarily possible with all transmitted sequences. 

At high SNR, the error event probability may then be less 

than Q(dmin/2a). 
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CHAPTER 2 

ALTERNATIVE DECODING APPROACH 

The MLSE algorithm by definition identifies the signal (and 

corresponding sequence) most likely to have been the one 

transmitted. It does this by picking the signal for which, 

given the observed received signal, the noise looks the 

smallest. It forces decisions between distinct signals that 

share a common state. To correctly choose the transmitted 

signal over some alternate signal d a  away, it is necessary 

that the component of the noise in the direction of the 

alternate be less than d
a
/2. In order that the transmitted 

signal is correctly chosen most of the time, the variance 

of the noise component in the direction of the closest 

alternates must be small compared to these closest 

separation distances. The smallest of these separation 

distances is lmin.  Since the noise is white, it has equal 

variance in all directions in the signal space. If yt  is 

the transmitted signal, then the projection of [ ,i----ît ]g in 
any given direction from y t  in the signal space should be 

less than dmin/2  most of the time. Here r represents the 

received signal vector as usual. 

The MLSE algorithm is constrained to maintaining S v  

survivors (one per state) at every time NT in order that the 

ML signal never be rejected. Consider the case when many of 

these survivor separation distances are necessarily large 

compared to dmin • Many of the survivor signals must be far 

from the received signal and have low likelihoods of being 

the transmitted signal. We should expect to be able to 

discard these survivors without seriously affecting the 
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overall probability of rejecting the transmitted signal. 

We might test to see if one such survivor y i  is unlikely by 

examining the projection of 	- 	in several directions. 

It makes sense to test the projections in the directions of 

other signals y.; 	- -17.1 NN defines the projection of 

0 	
.N. onto the subspaceÀ 	A r 	1 -I 

i 	 ij 	ix 3  /4) 

Note that these projections are signed scalar quantities. 

If these projections appreciably exceed dmin/2, y i  can be 

branded as unlikely. A general test for identifying those 

signals unlikely to be the transmitted signal is then, for 

each signal y i : 

I[i.--Sr- i ] NN  1>R for any other 	? 

where R should be around d . /2 to achieve close to the min 
same probability of rejecting the transmitted signal as 

MLSE. Here I-I denotes absolute value. 

A sequentiall rule could be structured around this test. 

Such a rule has been presented by Vermuellen for dealing 

with intersymbol interference with PAM signalling [18]. 

The degree to which such a rule correctly identifies a 

signal as still likely to have been the transmitted one 

depends on the size of parameter R. By testing the 

projections in the directions of other signals, the rule 

forces survivors of the testing to be all pairwise less 

than 2R in separation. When many survivors of MUSE are 

/ 	the min 
mechanism for reduction of the survivor list becomes clear. 

lit should be pointed out that 'sequential' is used here to 
describe any decoder that operates on sequences.  The rules 
developed here allow no "backtracking" and bear little 
resemblance to the so called sequential decoder first 
proposed by Fano [19]. 



The rule development in this chapter is based on this 

hyperplane approach. A simple union bound on the 

probability of rejecting the transmitted signal is 

derived. 

2.1 	The Sequential Rule  

To state Vermuellen's hyperplane approach: 

If for any j, 	 I>R 

Then reject y i  at time NT 

where the. are all contenders at time NT. y3  

Extend all survivors of this test into all 

possible descendants at time (N+1)T for retesting. 

This rule will be modified for our purposes. Instead of 

only considering the magnitude of the projection, its sign 

will be used as well (see Figure 5). If point P lies in 

thedirectionof,from y., projection p i will be Y j  

positive; otherwise p i  will be negative. This modified 

rule will be adopted as basic sequential rule Rl. 

Rule R1: 

If for any j, >R 
1ÂN 
''ij 

then REJECT y i  at time NT 

where the y, are all contenders at time NT. 

Extend the survivors into all descendants 

as contenders to be tested at time (N+1)T. 
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FIGURE 5 Projection operation geometry. 



The decision regions are shown in Figure 6. Under this 

rule the transmitted signal cannot be rejected unless a 

noise component exceeds R in the direction of any of the 

other contenders. If a bound can be placed on the number 

of contenders, an upper bound on the probability of 

rejecting the transmitted signal can be produced. If R is 

chosenasd
min
./2, then this bound is of the form 

KQ(d 

min

/20), the same as the dominant term for MLSE at high 

SNR.  

The other factor contributing to overall error rate is the 

length of error events under the rule. With MLSE, 

descendants of all possible states are in contention at 

every time NT. The transmitted signal path can only be 

rejected in favour of one that shares the same state. In 

effect, once a divergence from the transmitted path has 

occurred future sections of the actual transmitted path 
are immediately back in contention. This is not the case 

with the proposed alternate rule. The mechanism by which 

the decoded signal path (or state sequence) links back up 

with the transmitted signal path (or state sequence), once 
a divergence from the true path has occurred, is not 

immediately clear. 

2.1.1 General Observations and Merging Property 

In order to effect an unambiguous decoding using rule R1, 

we require that all survivors share a common history 

(merge) within a finite time before NT. As mentioned, all 
survivors must be pairwise less than 2R in separation. 
Define the distance developed between signals that have 

diverged from a common history for k time units as IS k , and ij 
the minimum of all these distances as 

c(k) = min(dk ) ij 
V(Y.,17  ) j 
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FIGURE 6 Decision regions for hyperplane rule Rl.



Denote by k 2R , the maximum k such that c(k)2R. We can 

then say that all survivors must have shared a common 

history no earlier than k 2RT seconds prior to NT. A 

problem then arises for unbounded k 2R . Specifically, for 

Rad min  . /2' k 2R  is unbounded and it is possible to retain 

as separate survivors two signals whose state sequences 

become identical again after NT. To handle this event, 

extra measures would have to be introduced to force an 

optimal decision between such a pair. 

Given high enough R, we expect the transmitted signal to 

survive the rule's testing most of the time. Eventually 

however, with probability one, the transmitted signal will 

be rejected. We note that: 

(a) For every survivor given this rejection, we can find 

descendants that merge into the transmitted state 

sequence within a finite number of (usually few) 

intervals. 

(b) For each subsequent pairwise test of the survivor 

descendants, when both do not survive, the one that 

does survive must be closer to the received signal 

to that time, i.e. it has the greater likelihood. 

(c) Those survivor descendants that are "headed back" 

towards the transmitted signal path (in terms of 

state sequence), or are "paralleling" it, will 

generally be closer to the transmitted signal than 

those that are "headed away". Given reasonably high 

SNR, these descendants will almost surely have 

greater likelihood than those that are "headed 

away", and should be the survivors of the future 

tests. 



These three points suggest that the signals retained by the 

rule would tend to link back up with the transmitted signal 

after only a few intervals. At lower SNR, once an error 

event has started, the rule is less likely to quickly zero 

back in on the transmitted signal path due to local noise 

fluctuations. In this case, the expected length of error 

events is greater. 

Vermuellen [14] notes that there is a finite probability 

that all signals will be rejected under a hyperplane 

approach. In this situation, the practical modification is 

to choose the signal with greatest likelihood as sole 

survivor to time NT. 

2.1.2 Bound On Probability Of Transmitted Signal 

Rejection 

A simple argument may be used to bound the probability of 

rejecting the transmitted signal ya  before time LT under 

rule R1: 

If for any j, 	[ iT-i.]À N  N  >It i 	. 
-"-- 13 

then reject y i  at time NT 

where the y, are all contenders at time NT 
.1 

The number of contenders (other than y a ) at time NT is 

denoted by n. The actual signal is assumed to be in 

contention at t=0. We need to define several events: 

N 

N 	 a Â N 	 3 
."--" aj 

E
N 

.e-1  (s 1  U c l2  U q U...0 e lNI ); i.e. the event for which N 

a 0  would fail at least one of the tests { Y ] N  

C  U e U e U . . . U e 
1 	2 	3 	L 

e 
p=  



LetR be the event that ya  is rejected on or before time 

LT. Let us denote event probability by P(.), 

P(E N ) = P(eà U eâ U...0 

A union bound on P(e N ) gives 

P(e N ) < P(c) + P(s) + 	+ P( ) 	 (20) 

These basic event probabilities are identical, and given by 

P(c) = 
P([--17a 

>12) = Q(R/a) 

ak 

where a 2  = N0/2 is the variance of the independent noise 

vector components. The union bound gives P(eN )(nO(R/a). 

If the number of contenders at any time is bounded by y, 

then independent of the actual time NT, 

P(E n ) ( yQ(R/o) 

Event R is completely contained in event p, so P(8J<P(p). 

PfiR) < P(e iti e 2U....0 E L ) 	 (21) 

Using another union bound, 

P(R) < P(e l ) + P(e 2 ) + 	+ P(E L ) 

But P(e ) < yQ(R/a) so that 

P(A) < L.y.Q(R/a) = KQ(R/a) 	 (22) 



The bound on the probability of first rejecting the 

transmitted signal per unit time, P(e), is then yQ(R/a), 

where y bounds the number of contenders. 

2.1.3 Expected Symbol Error Performance 

As long as R‹d min/2, no extra measures would be needed to 

force decisions between unmerged survivors (see Section 
2.1.1). In this case the bound of Section 2.1.2 is a bound 

on the probability of an error event starting at any time, 

given that the transmitted signal is initially in 

contention. Once rejection occurs, we expect the survivor 
descendants to link back up with the transmitted signal 

path after a short time. Once this merge of survivors has 

occurred, the noise during the common history portion of 
the contenders is irrelevant to the new projections tested 
under the rule. We can then apply the bound to the 

probability of starting another error event. As long as 

the total fraction of error event time is small, the bound 
of yQ(R/a) is still accurate. 

To get the average probability of symbol error, we need to 
multiply yQ(R/a) by the expected number of errors per error 
event,  K. This gives 

P(e) < K E yQ(R/a)= KQ(R/a) 

If R>dmin/2, P(e) will be dominated by KQ(dmin/2a) at high 

SNR, i.e. the probability of error in a forced decision 
between unmerged survivors of smallest separation. 

Little may be said analytically about the length of error 
events, but we still expect their average length to be only 
a few digit intervals at reasonably high SNR. Simulation 
was used to verify this conjecture and the results are 
presented in Chapter 3. 



2.1.4 Bound on The Maximum Number of Survivors - Choice of 

Parameter R 

All survivors under rule R1 must be pairwise less then 2R 

in separation. 	This fact may be used to bound the maximum 

number of survivors at any time. The distance S k between ij 
any two signals distinct for k intervals depends on the 

particular modulation. For the constant envelope 

modulations of interest, the distance depends on the 

difference in phase paths as discussed in Section 1.3.2. 

Using Equation 13, a bound or the number of signals all 

pairwise less than 2R in separation may be found by 

inspection of the phase tree. 

For example, with binary input and modulation [(1+D)/2, 

h=1/2] (Figure 2(a)), the maximum number of survivors for 

R=d . / 2 is two. The maximum number of survivors will be a min 
step-like function in the parameter R, rapidly increasing 

forRinexcessofd.2. min/  

The greater R is chosen, the less the probability of 

rejection of the transmitted signal. As mentioned, if R 

exceeds dmin/21  extra measures will be needed to force 

decisions between signals whose state sequences have 

remerged. In the limit as  R+œ, all signals would survive 

the rule's testing and these extra measures would be 

equivalent to the Viterbi algorithm. Higher R will also 

generally mean a higher number of survivors and increased 

complexity. Choosing R in excess of d
min/2  does have an 

advantage. If R is much in excess of dmin/2, at higher SNR 

most of the rejections of the transmitted signal will be 

caused by forced decisions between d min  neighbours. In 

this case, most of the error events will be the same as 

those occurring in MLSE and the performance will be closer 
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to MLSE. Choosing lower R will lead to more rejections of

the transmitted signal for which the error event lengths

could be longer.

If R is chosen less than dmin/2' the error exponent is

adversely affected, although the complexity may be reduced.

In addition fewer survivors should cause the link-up

mechanism to be less efficient leading to longer error

events. The choice of R is therefore a trade off between

complexity and performance. The choice R = dmin/2 is of

special interest as this defines the minimum complexity for

which asymptotic optimality can be achieved.

2.2 Implementation and Complexity

The rule requires finding the lengths of projections of

relevant vectors on the subspaces defined by every pair of

contenders. Consider the three vectors involved in any

pairwise test, the receiNed vectorN[r]N and the two

contenders vectors, [yi ]0 and [pj ]0. These three points

are contained in a single plane as shown in Figure 5. The

projection operation is equivalent to dropping a

perpendicular from [r]Ô to the liNe passing through [Yi]0

and [ÿj ]D This line is simply^2 ij. The point of

projection is called P.

If yi is under test, pi= [r-ÿi ]NN is of interest and,
/2 i j

similarly, pj is of interest for yj. Simple geometry gives

pl = a22D2+D2
(23)

and

_ b2-a2+D2
Pj 2D



where 

a2  = 11DH.17i]0112' b 2=11[Î-Î7- j ]l1 2 , and D=dNii  

It can be shown that these relations hold regardless of the 

relative positions of the three vectors as long as the 

projectionsp.,p, are allowed to have sign as well as 
magnitude. As mentioned earlier, if point P lies in 
thedirectionof7frort 	then 	is considered 
positive, otherwise it is negative. 

The testing of the projections is p i >R?, p.>12?. These 

become for y , (a 2-b 2 ))2DR-D 2 ?, and for y„ (b 2 -a 2 )>2DR-D 2 ? 
3 

Vermuellen [14] provides the equivalent relationships in 
terms of the squares of these quantities. Dropping the 

qualifiers [.]N for convenience, 0 

a 2= (- ) • 	) 

= I li. 11 2+ 117i1 1 2  - 27.îi 

Similarily, 

b2= 11 -fli 2+ 11 17 j11 2 	2-1 j 

(24) 

so that 

a 2  - b 2  = 	- 

 Now L i (N) = is simply the correlation of the received 

signal and signal yi  to time NT. Recall Eq. 11, 



N XT 

L i (N) = 	f 	r(t)-y(t) dt 

12,=1 (R.-1)T 

This is simply the sum of the appropriate matched filter 

outputs obtained in exactly the same way as described for 

MLSE in Chapter 1. In any given comparison we need only 

subtract the accumulated likelihood (correlation) and 

compare to a pre-computed quantity, (2DR-D 2 )/2. The flow 

chart for implementation of this rule is given in Figure 7. 

Define SR as the bound on the maximum number of survivors. 
With SR survivors,there can be up to CR=M•SR contenders. If all 

tests are performed, this means up to ( CR)=C R.(CR-1)/2 tests. 2 
Each test involves one subtraction, one complementation, 

and two binary comparisons (1A, 1C, 2B.C.). In addition there 
are C R additions needed to find the metrics (likelihoods). 

Even with a low number of survivors, say four, with binary 
8 input there are eight contenders, and ( 2 ) = 28 pairwise 

tests. Total calculation per cycle is then (36A, 28C, 56 

B.C). This far exceeds the complexity of full Viterbi 

decoding for the modulation [(1+2D+D 2 )/4, h=1]. This 

modulation has a maximum of four survivors with R=d min/2. 

Although the survivor list has been reduced from Viterbi 

decoding, the number of operations has actually increased. 

In addition if R>dmin/2  extra complexity is introduced by 

choosing between any unmerged survivors. (see Section 
2.1.1). 

Even considering the computations needed for the average 
number of survivors, there is no gain over the Viterbi 
algorithm. In addition, accomodating a flexible number of 

survivors must introduce extra overhead in the final 

programming code. Clearly, simpler algorithms are needed. 
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DO j=i+1, C N  

Po i= 

INITIALIZE SURVIVORS 

EXTEND the S
N-1 

survivors 

into all C
N=M•SN-1 

contenders 

IF S
N 

= 0 

REINSTATE y k  

with maximum L
k, 

SET S__=1 

IDENTIFY survivors 
y , i=1 to SN 

I DECODE â N-B of survivor #1 

N = N+1 

S N = number of 
survivors at 
time NT 

B = buffer lengtb 

Figure 7 Rule R1 implementation flow chart 



2.3 	Rule Modifications  

(25) 

The following series of changes to the basic rule R1 lead 

to an ultimate rule that is much simpler. 

During any interval of testing, there will generally be 

signals separated by more than 2R. In a test involving 

such a pair, at least one must be rejected. Suppose that 

instead of parameter R, for such a test we use a revised 

parameter R*=dN 	 dij  /2, where 	is simply the distance ij  
separating the signals. 

MODIFICATION #1: 

In any pairwise test involving signals y i , y j  

with d.. 	 ] 1 
>2R, replace R by R*=d../2. ij  

Now one signal must still be rejected, but there is no 

longer the possibility of losing both. This should enhance 

the reliability of the rule. When the transmitted signal is 
involved in such a test, the larger effective R should 

decrease the probability of rejection. This modification 

does not increase the maximum number of survivors as other 
tests will still use parameter R when the signal pair 

separation is less than 2R. 

This simple change actually decreases the complexity of 

many of the tests. The test value against which the 

likelihood difference is compared, (2d..R-(d
N 

)
2
)/2, 

N 
becomes L2d j. .(d../2)-(d

N
ij  )

2
)=0 when d..>2R. The tests i 	ij 	 ij 

become for y i  

L j (N) - L i (N) > 0 ? 

and for y, 

Liffl-L.(N) 	0 ? 
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This is simply selecting the signal segment with greater 

likelihood to that time. 

MODIFICATION #2 

1N As soon as [y k i o  fails any pairwise test, drop 

[yk ]g from any subsequent tests of remaining 
signals. 

Now the survivors at the end of testing may depend on the 
order in which the testing is done. However, the modified 

rule must still retain all those survivors kept by rule R1 

(it can't possibly reject any signals that R1 doesn't 

reject). In addition, it is no longer possible to reject 
all signals, and any extra provisons for such an event are 

unnecessary. Although this should reduce the number of 
tests on any contender group, the number of survivors with 

this change may be greater than that for rule R1, and the 
savings in computation is not immediately clear. Given 
that this modification is adopted, further steps can be 
taken to reduce the number of computations. 

In any test involving signals separated by more than 2R, 

only one can possibly survive. If we arrange to perform 

these tests first, given modification #2 a more rapid 
reduction in the contender list size should be possible. A 
core of no more than S R contenders, with pairwise 

separations all less than 2R, would rapidly be reached. 
Subsequent tests on this core could identify the survivors. 

Alternatively, it seems easier to accept all of these 

contenders as survivors. There would be at most S R 
survivors and M•SR contenders every interval, but the 

actual numbers would still depend on the actual noise and 

transmitted signal path. 
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Suppose instead of processing until all remaining signals

are less than 2R apart, that we test only until they are SR

signals remaining, and accept all as survivors. Clearly,

the rule's performance cannot be hurt by stopping the

rejection process early.

MODIFICATION #3

Process those signal pairs with separations

greater than 2R until there are SR remaining.

Accept all SR as survivors.

Now all the pairwise tests simply reject the signal with

lower likelihood. There will be a fixed number of

survivors, SR, and a fixed number of contenders, M•SR,

every interval. The fixed structure provided by this

approach is a great advantage. Still, unless a

consistently ordered approach is possible, the extra

manipulations involved in selecting the pairs with

separation greater than 2R may offset any gains.

Fortunately, for the bandwidth efficient modulations of

interest, a consistently ordered approach is possible.

This ordering allows a reduction to S survivors, where S>SR.

2.4 Rules With Structured Processing Order

2.4.1 Ordering Approach and Implementation

The modifications of Section 2.3 are best incorporated by

ordering the contender signals according to their input

digit sequences. The input sequences are ordered in the

following way. If we add (M-1) to each digit and divide

the result by two, the input digits are mapped into a

shifted set (ascending from zero). For example {-1,1} maps



52 

into 10,11. Now this digit sequence is interpreted "base 

M" with the most recent digit being the least significant 

digit. The contenders are then ordered sequentially in 

terms of their "base-M" sequence numbers. It should be 

pointed out that this ordering is actually very simple and 

achieved almost implicitly in practice. The modulation 

must have the following property for this ordering to be 

exploited: 

All signals with sequence numbers separated 

by S or more, have distance separations of 

2R or more. 

This condition is readily met by many of the modulations of 

interest for R‹dmin/2.  Given this property, pairwise 

testing proceeds from the outside-in on the contender list. 

The contenders separated by S or more positions in the list 

will have distance separations greater than 2R. This 

arrangement can be thought of as a stack with pointers for 

the top and bottom which identify the pair for likelihood 

comparison. The top and bottom signals are compared, the 

signal with the lower likelihood is rejected, and the 

pointer aligned with it is shifted one position inward on 

the list to identify a new test pair. This is repeated 

until there are S survivors. 

spec ifi cally ,thecase rz.d.
/
2is  of interest. For many min 

modulations, a convenient relationship exists between the 

length of the frequency pulse h(t) and a minimum value of S 

for R=dmin/2•  These modulations have the following 

properties, where L is the duration of h(t): 

(1) 	The minimum distance, dmin,  is developed between 

signals that diverge from a common state and 

converge again over the shortest possible route, and 

over an interval of length (L+1)T. 



(2) Where these signals converge their sequence numbers 

are separated by 
 

(3) All signals with sequence numbers separated by more 

than M ( 1 '-1)  are separated by more than dmi in n  

distance 

For these modulations, we choose the number of survivors as 

SL = M
(L-1) 

• 

The most general form of this type of rule follows the same 

ordered processing and keeps some general number of 

survivors S. This will be called rule R2. 

Rule R2: 

Order contending signals according to their input 

digit sequence numbers. Always comparing the 

outside pair, reject the signal with lower 

likelihood until S survivors remain at time NT. 

Extend the S survivors into all M.S contenders for 

retesting at time (N+1)T. 

A flow chart for implementation of rule R2 is shown in 

Figure 8. The following provides an explanation of the 

terms used in the flow chart: 

indicates the position in the contender or 

survivor list 

LKCONT(I) = likelihood of contender I 

LKSURV(I) = likelihood of survivor I 

CORRLN
(I) = correlation of signal for contender I with 

received signal for interval N 

(I) 



54 

INITIALIZE S SURVIVORS 

N=N+1 

DO I = 1,S 

DO J = 1,M 

INDEX = I*M - (J-1) 

[CONT(INDEX)]=[SURV(I), SYMB(J)] 

LKCONT ( INDEX )=LKSURV ( I ) +CORRLN
N

(INDEX) 

NCONT =  MS  
TOP = 1 
BOTTOM = NCONT 

DO k=1, NCONT-S 

IF (LKCONT(TOP).GT.LKCONT(BOTTOM)) 

THEN BOTTOM = BOTTOM-1 

ELSE TOP = TOP + 1 

DO L = 1,S 

[SURV(L)] = [CONT(TOP+L-1)] 

LKSURV(L) = LKCONT(TOP + L-1) 

DECODE
N-B 

OF [SURV(1)] 

FIGURE 8 Rule R2 implementation flow chart 

See text, Section 2 for explanation 

of symbols 



[CONT(I)] 	= input digit sequence of contender I 

[SURV(I)] 	= input digit sequence of survivor I 

[SURV(I),SYMB(J)] = input digit sequence of survivor I 

appended with the irth digit of the input 

alphabet. Digit -(M-1) is the first digit 

and +(M-1) is the M'th digit 

A typical progression of the rule for S=2 and modulation 

[(1+D)/2, h=1], which illustrates the implicit ordering, is 

shown in Figure 9. 

The likelihoods are derived recursively as before from the 

outputs of filters matched to the appropriate signal 

sections. Rule R2 requires M.S additions to update these 

likelihoods and (M-1).S binary comparisons to reduce the 

contenders back to S survivors. Since Viterbi decoding 

with Sv states requires M•Sv additions for likelihoods and 

(M-1)S binary comparisons, the complexity reduction for v 
rule R2 is by a factor of S

v
/S. For S=S

L
=M 	the 

complexity reduction factor is k where the modulation index 

is h=n/k; n and k are smallest integers (see Section 

1.3.3). 

2.4.2 	Performance 

The most general form of the rules developed, R2, keeps S 

survivors at every time NT. If, following the ordered 

processing, all comparisons involve signals separated by 2R 
or more, performance should be as good as rule R1 with 

parameter R. Error event probability should still be 

overbounded by KQ(R/a) for R4dmin/2, and by KQ(dmin/2a) for 
Rx1. / 2. In fact due to the higher R* parameter used min 
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in comparisons of signals separated by more than 2R, we 

expect performance to be even better than rule  Ri. In 

addition the larger number of survivors should lead to 

shorter error events. 

Asymptotic performance is governed by the smallest 

separation between any signals which could come into a 

likelihood comparison under the rule's ordered processing. 

The performance at lower SNR and moderate error rates is 
more complicated. It depends not only on the separation 

distances involved in the signal comparisons, but also on 

the corresponding probabilities of these comparisons. 
suppose we choose S L=M (L-1) 

and apply this rule to a 
modulation for which not all signal pairs which come into 

comparisons are separated by d min  or more. Clearly 
asymptotic optimality is not possible. Consider however the 
case when the probability of the transmitted signal coming 
into comparison with a signal somewhat less than dm.in away 
is small. The overall effect of such a comparison on the 
error rate can then be very small at moderate error rates. 
This is exactly the case for modulation [(1+D+D 2 )/3, h=i]. 
Here M=2, and SL  = 2 (3-1) =4. Signals with the sequence 

pair (XXX1-1-111,xxx-111-1-1) or equivalently (xxx10011, 
xxx01100), have base -2 sequence numbers (since their 
common history xxx) of 19 and 12 respectively, and can come 
into a comparison. Their separation distance is -.6 dB 
from dmin' however the probability of the transmitted 
signal taking one of these paths is only 1/16. The overall 
effect of this one suboptimal pair should be small at error 
rates around 10-3 . This is verified in Chapter 3. This 
observation means that at moderate error rates, in some 
cases we can choose S less than that strictly required for 
asymptotic performance and save on complexity. 



Under rule R2, not all survivors are guaranteed to be less 

than 2R in separation, and the merging mechanism is not 

obvious. Still, we expect that it would be very improbable 

that two signals that have been distinct for some time, and 

therefore have a large separation distance, would be both 

maintained as survivors under the rule. Inspection of the 

typical rule progression reveals that for this to occur, 

the noise would have to assume a large value, placing the 

received signal about mid way between such signals. This 

is then a very unlikely event. There is still the question 

of what happens to signals that have diverged and converged 

again to share the same state sequence. As previously 

mentioned such a pair is a problem with rule Rl. With rule 

R2 however, the sequence number separation of such a pair 

must necessarily increase with time, even though their 

separation distance may not. Eventually a decision will be 

forced between these signals and merging is guaranteed in 

this case. All in all, we should then expect no problem 

with merging as long as a reasonable buffer length is 

allowed in the decoder. 

The performance of R2 compared to MLSE is of special 

interest. In this case the number of survivors S may be 

chosen to meet (or approximate) the performance of R1 with 

R=dmin/2. Tracking 
of the MLSE signal should be superior 

to that of rule  Ri. This is due to the higher effective R* 

parameter implied in comparing likelihoods of signals 

separated by more than dmin • If all such comparisons 

involvesignalseparationsmuchinexcessofdmin ,then at 

high SNR the tracking of the MLSE signal should be almost 

perfect. This distance structure is typical of the 

modulations with lower modulation indices. 



2.5 	Best S Signals Approach  

The previous rules have relied on the special relationship 

between signal separation distances and corresponding input 

digit sequence number separations. For some modulations, 

especially at higher modulation indices, this relationship 

breaks down. In such cases another approach is possible: 

Keep the S signals with highest likelihoods 

to time NT 

With a little thought, it is clear that with S>S R  this 

approach will keep as survivors all those signals that 

would be retained by rule R1 as survivors with parameter R. 

The performance must therefore be at least as good. Again 

the problem of unambiguous decoding arises with this 

approach. Not all survivors will automatically merge and 

extra provisions would be needed to force optimal decisions 

between such signals. This rule generally will have much 

greater complexity than rule R2, so it has not been 

simulated. 

2.6 	Summary 

This chapter has described decoding approaches which can 

maintain a survivor signal list at every time NT reduced in 

size from that of Viterbi decoding. The final rule R2, 

developed from the basic hyperplane approach, is the 

simplest in terms of computational complexity. A fixed 
order processing approach was required to reduce the 

computations below those required for Viterbi decoding. 
Under rule R2, the complexity reduction is by a factor of 
Sv/S where S v is the number of states in the Viterbi 

implementation, and S is the number of survivors with rule 
R2. 
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As developed all the alternate rules have the same 

sequential nature as MLSE. The minimum weight and length 

of error events is therefore identical to that for MLSE 

decoding. The signal likelihoods are derived identically 

to Viterbi decoding. The receiver structure differs only 

in the processing algorithm. The same quadrature 

demultiplexing and the same matched filters are required. 

Rule R2 with S=S L=M
( L-1) is of special interest since 

asymptotic optimality should be achievable with minimum 

complexity. Simulations are carried out in Chapter 3 to 

verify expected performance with S=SL. 



CHAPTER 3 

SIMULATION OF DECODING RULES 

APPLIED TO PARTIAL RESPONSE FM 

In this chapter simulations of basic rule R1 and modified 

rule R2 applied to partial re4)nse FM are presented. Error 

rate performance was obtained by Monte Carlo simulation 

over a range of signal to noise ratios (SNR). To achieve 

reasonable statistical accuracy, run lengths were chosen to 

yield at least 25 error events, 15 events at the very 

highest SNR values. 

The object was to verify the expected error event rates 

and to assess the lengths of typical error events under 

these rules. Overall symbol error rates are compared to 

the basis curve Q(SNR 2 ). For the purposes of the 

simulation, signal to noise ratio is defined by SNR A 
d 2  /2N where d

min 
is the minimum distance for the min 	o' 

modulation of interest, and N0/2 is the double sided 

power spectral density of the Gaussian white noise. This 

choice performs a normalization so that a rule's 

performance on all modulations may be readily compared to 

MLSE. A perfectly coherent receiver is assumed. 

The modulations considered have a basic rectangular 

frequency pulse of duration T, and polynomials (1+D)/2, 

(1+2D+D2 )/4 and (1+D+D2 )/3 over a range of modulation 

indices less than unity. To simplify things, only a binary 

input alphabet is considered. 

The occurrence of long error events for certain modulation 

indices is explained and revised approaches developed to 

deal with these cases. 



To summarize the rules: 

1 ,2 

-time NT where the y, are all contenders at NT, 

that is all extensions of the survivors from . (N-

1)T. If all signals fail the tests, keep the one 

with greatest likelihood as sole survivor to NT. 

RULE R2: At NT, all contenders are ordered in a list 

according to their input digit sequences. Always 

comparing the outside signal pair, reject the 

contender with lower likelihood until S remain. 

Accepts all S as survivors at NT. Extend the 

survivors into all possible contenders for 

retesting at (N+1)T. 

Only the cases R=d min/2 for rule R1 and S=S L  for rule R2 

were considered. For (1+D)/2, S L=2 and for the second 

order polynomials, S L=4. 

3.1 	Simulation Method  

A random input digit sequence was generated to simulate the 

usual information source. In order to determine the 

signals corresponding to the digit sequences, "pseudo-

states" were derived. These pseudo states are formed by 

combining the 2(L-1) bit histories with all possible phases 

which may be reached at any time kT. The true phase states 

are a subset  of these phases (see Section 1.3.3). 

Similarily, the Markov states are a subset of the pseudo-

states. 
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The advantage of using these pseudo-states is that, for

checking the simulations, the phase of the signal may be

quickly related to the pseudo-state. In addition, the

pseudo-states encompass all possible Markov states

regardless of the initial state of the transmitted signal.

Of course, only the Markov subset of the pseudo-states will

actually occur for any given simulation.

Signals of duration T are uniquely associated with each

state transision. Using the signal space ideas, all

possible duration-T signals are represented as vectors in

signal space. The vector coordinates were calculated using

all the pairwise separation distances of the duration-T

signal sections. Any signal over an interval of many

digit intervals, NT, is simply the sum of the appropriate

section vectors. Additive Gaussian white noise is

simulated by adding a noise vector to the vector

representing the transmitted signal section for each

interval. As the noise is white, these noise vectors

should be independent from interval to interval as well as

have independent components during each interval. The

noise vector components were derived by forming independent

samples of an approximately Gaussian random variable by a

mathematical relation described in Section 3.1.3.

The relevant likelihoods are formed recursively as the sum

of likelihoods due to each interval. The interval

likelihood is simply the inner (dot) product of the signal

segment vector and the received signal segment vector.

These likelihoods are used to arrive at the survivor

signals for each interval according to the specific

decoding rule simulated.



3.1.1 Vector Formulations: 

The number of dimensions needed to completely describe all 

possible duration-T signals depends on the particular 

modulation. These signals are not all linearly 

independent. The general form of such a signal emerging 
from phase An  is s i =A cos(0 11+(p i (t)), where fi. (t) depends on 
the bit history and current input bit. Expanding 

cos On  cos(1).(t)-A sine nsin(p.(t) 

=  A  cosen  coscp.(t) -A sinencos(4).(t) -n/2) 	(26) 

All signals can be represented as linear combinations of 
the basis signals A cos(pi (t) and A cos(cp i (t)-n/2). If 

there are v distinct paths  4, i (t), then 2v basis signals are 
needed 

For example, modulation [(1+2D+D 2 )/4, h=1] has only five 
distinct polynominal sums, and therefore only five distinct 
phase paths (p i (t); v=5. Ten basis signals are needed. 

The vector coordinates for these basis signals can be 

calculated using all the pairwise separations. To 

perfectly represent the 2v basis signals, up to 2v 
dimensions may be needed (a Gram - Schmidt 

orthogonalization could be done). However, sufficiently 

accurate representation is usually possible with a lower 
number of dimensions. A program was written to calculate 

vector coordinates for the basis signal vectors with a 

minimum number of dimensions to achieve a maximum component 

"residual" of 1% of the length of the vector. The vector 
length is 1/E, where E is the energy per bit. This was done 

as follows. 



The energy per bit E is normalized to unity. One signal is 

chosen and placed a distance of unity away from the origin 

along the first coordinate axis. Each remaining signal is 

tentatively constrained to dimension two, and the tentative 

component in this new dimension is calculated. The signal 

with the largest component is selected to be constrained to 

this dimension and keep this representation. The process 

repeats, adding one more dimension each iteration until the 

largest tentative component in the new dimension is less 

than .01 for all signals not completely represented in the 

current dimensionality. All signals then retain their 

present representations in the current dimensionality. The 

pairwise separations were re-calculated using the vector 

coordinates for this reduced-dimension representation to 

verify the accuracy. 

The distances between the duration-T signal segments s i , 

s, are calculated according to equation 13, 

d. 
	

T
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,-,-, 	 f  [1-cos. 	dt 
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0 

where E is the energy per bit and 4..(t) is the difference 
13 

in phase over the interval. For the modulations of 

interest, this difference phase is a linear function of 

time, and the distances are readily calculated in terms of 

the initial and final phases. If àe ii  is the initial phase 

differencebetweens.and s., and B.. is the net phase 13 
change between them over the interval, 
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A program was written to calculate these distances. 



3.1.2 Approach Used For Rule R1 

To simulate this basic rule, the quantity 2d R-(d
N 

)
2 

is 

needed for every possible test pair (i,j). Since all 

survivors under this rule share a common history within a 

few intervals before the tests, their base-2 input 

sequences can be used to index a memory location where this 

quantity can be found. For [(1+D)/2, h=1], a three bit 

history is needed and for [(1+2D+D2 )/4, h=4], a four bit 

history is needed. The distances between all possible 

contender signal pairs were calculated by a special 

program. 

3.1.3 Simulation Program Details 

A flow chart showing the program used is given in Figure 

10. The transmitted, contender and survivor bit sequences 

were stored in 36 bit words. Random input bits were 

selected from a random generator of period 2 18 -1. The 

noise vector components were calculated by summing twelve 

samples from a uniform distribution to simulate a Gaussian 

random variable, and scaling to achieve the required 

variance. The uniform samples were provided by a standard 

recursive relation. 

The relation yields an 18 bit word between zero and unity. 

The samples are effectively independent due to the low 

correlation between them. To achieve an SNR of X dB, where 

SNR = d2 . /2N
o 

 , the noise component variance (0 2 =N
o
/2) must 

min  
be given by 

d 2 . 
(12 - 	min  

4-10
(X/10) 
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FIGURE 10 Simulation program flad chart 
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Since the sum of the twelve uniform samples yields a 

variance of unity, this sum must be multiplied by a scale 

of factor SF, 

d.  min  SF - 
2.10

(X/20)  

Decoding with buffer length B was achieved by extracting 

bit .B of the word containing the digit sequence for 

survivor number "one" (an arbitrary choice that does not 

affect the decoding). The decoded bit sequence was 

compared with the transmitted bit sequence to identify 

error events as well as bit errors. Printouts showed a 

number of specific error events and provided statistics for 

the error events for the entire run. These statistics 

included maximum and average length and bit errors as well 

as total number of error events and mean time to error 

event. 

As the signal likelihoods continue to grow with time, it is 

necessary to set them back to lower values occasionally. 

This was done by subtracting the lowest likelihood from all 

the survivor likelihoods every one hundred bits. 

3.2 	Results And Discussion 

Error event rates and symbol (bit) error rates are 

presented in this section. Where relevant, both rates will 

be shown. In general, error event rates are more 

indicative of the basic performance. True behaviour can be 

masked by only considering overall bit error rates. At low 

SNR where there are many error events, and where these 

events are long, a "bias" is introduced into the overall 

rates. Clearly, an error event cannot start where one is 

(28) 



already in progress. The overall error event rate will tend 

to look lower than what would be expected from the value 

Q(d/a). 

To partly remove the effect of the "bias" error event rates 

are defined as the reciprocal of the mean time to error 

event (MTTEE). This measure is an average of the time from 

the end of one event to the start of the next. 

As a basis for comparison, the curve Q(SNR 2 )EQ(d min/2a) is 

shown along with the data points. It should be recalled 

that MLSE error event rates can be asymptotically equal to 

4Q(dmin/20) in some cases. 

Table 1 contains quantities relevant to the simulations. 

Buffer lengths were chosen so that overflows had a 

negligible effect on the results. 

3.2.1 	Basic Hyperplane Rule R1 

Only the case R=dmin/2 was considered when verifying the 

expected asymptotic optimality of this rule. Only 

modulations [(1+D)/2,h=4] and [(1+2D+D 2 )/4, h=-1] were 

simulated. The results are shown in Figure 11. 

The maximum number of survivors S*ax was found to be equal m 
to the theoretica l va l ue ,s iv R= c1./2. Merging within mln 
the expected number of bit intervals was verified. No 

overflows occurred with buffer lengths of three and four 

bits. 

Modulation S
R
,R=d

min
/2 S* 

max Ruffer P ( e ) maxn ( dmin/2 " 

(1+D)/2,11 -4 

( 1 +2 D+D 2 )/4 , h= 1 

2 2 3 3 

4 4 4 7 

P(e)max = 
bound on error event probability 
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Table 1

Quantities relevant to MLSE or alternate

decoding of partial response modulations of interest.

P = number of phase states, Sv = number of Viterbi states,

F = number of matched filters, t min = minimum error event
length,

emin - number of errors in minimum length event.

Modulation P Sv F
d2min/2E Qmin emin

h=1/2 4 4 1.73

1/4 8 8 0.49

(1+D)/2 1/6 12 12 8 0.22 3 2

4/7 7 14 2.14

3/8 16 16 1.05

h=1/2 4 8 1.45

1/4 8 16 0.40

(1+2D+D2)/4 3/5 10 20 12 1.98 4 2

4/7 7 28 1.83

3/8 16 32 0.86

h=1/2 4 8 1.34

(l+D+D2)/3 1/4 8 16 8 0.36 4 2

3/5 10 20 1.87

^
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FIGURE 11 Error rates for rule  Ri.  



In all cases, the bound on the error event probability, 

yQ(dmin/2a), was found to hold. The average length of 

error events increased slowly with decreasing SNR as 

expected, but was always less than 1.5 times the minimum 

event length, 
9,min. 

 Even at high SNR, long error events 

occurred, three to five timesmin.  With a low number of 

survivors, long link-up times can occur. 

3.2.2 	Rule R2, Modulation Index h=1/n, S=S L  

Simulations were run on all three PRS polynomials at h=1/2 

and h=1/4, and on (1+D)/2 at h=1/6. The number of survivors 

was taken as SL=2
(L-1)

, i.e. two survivors for (1+D)/2 and 

four survivors for the second order polynomials. A digit 

sequence buffer length of eight bits was used for (1+D)/2 

and twelve bits for the second order polynomials. The 

results from these simulations should be indicative of 

performance at h=1/n for n any integer. The results are 

shown in Figures 12(a), (b). 

Although the effect of buffer length was not specifically 

investigated, it was found that overflow occurred only very 

rarely and had negligible effect. Even an eight bit buffer 

worked very well for the second order polynomials. 

The bit error rates seem to be asymptotically equal to a 

constant (1 or 2) times Q(dmin/2a). This is achieved even 

at low SNR. Even though there are two bit errors per 

event, for the second order polynomials a minimum distance 

alternate is only in contention about half the time. This 

leads to an overall bit error rate around Q(d
min

/20) at 

high SNR. 
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The average event length was found to increase slowly wit4 

decreasing SNR, but was always less than 1,,2 times 2 min . 

At high SNR, the average event length is virtually equal to 

2
' min' 

 although not all events are necessarily of weight 

d
min

. The maximum event length was  less than two times 

2. min 

As expected, many of the rejections of the transmitted 

signal were in favour of a direct dmin  alternate. These 

optimal decisions indicate the rule is tracking the ML 

signal through d
min 

error events. For (1+D)/2 at h=1/4 and 

h=1/6, and for the second order polynomials, especially at 

lower h, tracking of the ML signal was especially good. In 

these cases virtually all error events were due to optimal 

decisions between minimum distance alternates. The 

performance in this case is essentially equivalent to MLSE. 

This behaviour is readily explained in terms of the 

distances between signals involved in likelihood 

comparisons. Those signals that are not cl mindirect 

alternates are separated by distances much in excess of 

d
min • At high SNR, the probability of rejecting the 

transmitted signal for anything other than a direct dmin  

alternate is very small. 

Although there is a sequence pair (XXX10011, XXX01100) that 

has signal separation .6 dB less than dmin  for modulation 

[(1+D+D2 )/3, h=1], this had negligible effect on the 

overall error rate at the rates tested. This is due to the 

relatively low probability (1/16) of the transmitted signal 

taking such a path. (see Section 2.4.2). 

Those error events that were not of minimum weight could be 

grouped into two types. The first type showed a decision 

path that diverged from the true path and then reconverged 

with a net phase traversal of zero radians. The other 



type showed a net phase deviation of 2n. These types are 

indicated in Figure 13 for modulation [(1+D)/2, h=1]. The 

type of error event depends not only on the noise, but on 

the transmitted signal path at the time of rejection. The 

probability of rejection itself depends on the actual 

transmitted signal path (effective R parameter, see Section 

2.4.2). 

If the transmitted signal is rejected when it is showing 

maximum phase change over consecutive intervals, there will 

be no dmin weight path for the rule to take to link up 

again. In this case, the decision path may parallel the 

actual signal or diverge 2n to achieve linkup. In both 

instances, the ability to link up depends on the 

transmitted signal path after rejection. This provides a 

mechanism for the longer error events. Whether the 

decision path diverges 2n or parallels the true signal 

depends on the relative distances separating the 

"diverging" or "paralleling" survivor descendants from the 

transmitted signal path. Given moderately high SNR, the 

survivor descendants that are closer to the transmitted 

signal path are more likely to be retained by the rule. 

3.2.3 	Rule R2, Modulation Index h=m/p, S=S L  

Simulations were done for various combinations of 

polynomials and modulation indices. For (1+D)/2 with h)1/2, 

S L=2 
is suboptimum as the signals that "wrap around the 

back of the phase cylinder" are somewhat closer than dmin . 

In these cases S=8 would be necessary for optimality. Only 

a small loss should be incurred by keeping only two 

survivors. Buffer lengths were the same as for R2, h=1/n. 

The simulation results are shown in Figure 14. Table 2 

summarizes the error event length statistics. 
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Table 2 

Error Events For Rule R2, h=m/p 

Simulation Observations 

Modulation 	 Error Event Lengths in Bits 	% long a 

at High SNR (9 dB) 

Max 	Avg. 	Avg. long event a 	events 

	

h=4/7 	170 	22 	 45 	 44 

(1+D)/2 

	

h=3/8 3000 	165 	1750 	 5 

	

h=3/5 	190 	15 	 50 	 24 

	

(1+2D+D 2 )/4 h=4/7 	370 	34 	 120 	 27 

	

h=3/8 	6 	4.1 	 * 	 * 

(1+D±D 2 )/3 	h=3/5 	220 	39 	 110 	 30 

a long events are defined to be longer than 10 bits 

*none observed after 35 events 



n-L 

[ 	àakg(LT)] 	= 0 
mod2n k=d 

4'n - e n (29) 

Although the error event rate seems to asymptotically equal 

to a constant times Q(d min/2a) for the optimal S L  cases, the 

symbol error probability is very high. This is due to the 

occurrence of very long error events (some up to thousands 

of bits!). Given the success of the rule for h=1/n, this 

seems puzzling until the error event mechanism is 

investigated. The events that were to blame were those in 

which the rule's decision path diverged from the 

transmitted path and achieved a false "lock" with the 2n-

shifted version of the transmitted signal. A typical event 

of this nature is shown in Figure 15 for modulation 

[(1+D)/2,h=4/7]. 

This inability to diverge from the transmitted signal path 

and achieve link up 2n radians away is a function of the 

modulation index. If link up is to occur, the state 

sequence of the rule's decision path must merge with the 

state sequence of the transmitted signal path at the time 

of link-up; the phase states must therefore be identical. 

Te the phase state of the transmitted signal at time nT is 

(p n , and that of the rule's decision path is O n , then for 

linkup at nT: 

Here àa k represents the difference between the input digits 

of the transmitted and decision path at time kT, à ak =atk - 
adk' and dT is the time at which the two paths diverge. 

The set 1-2(M-1),...,-2, 0, 2, ..., 2(M-l)}  contains all 

possible values for each àak . This means that 

n-L 

àa g(LT) = 2m.g(LT) 

k=d 
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where m is an integer. The link-up condition then becomes 

[2m-g(LT)1 Jrnod2 w = ° 

or equivalently, 

2m-g(LT) = 2w£ 	 (30) 

for both 12, and m integers. Linkup with a net phase 

deviation of only 2w is indicated by st=1, 

2m.g(LT) = 2n 

g(LT) = w/m 	 (31) 

Since g(LT) = hw, this condition becomes h=1/n. If the 

modulation index h does not equal l/n for n any integer, 

link-up with 2w deviation is impossible. For example, with 

h=4/7, g(LT) = 4w/7, and the linkup condition is 

2m.4w/7 = 2wt 

Clearly, the minimum values of m and 2. are seven and four 

respectively, implying that linkup can only occur after a 

deviation of at least 8w. Of course the linkup is still 

possible with zero net phase deviation (m= 2=0). 

The mechanism for a long error event becomes clear after 

studying Figure 15. A large noise event can cause 

rejection of the transmitted signal and "bump" the rule's 

survivors in a divergent direction. The survivor 

descendants that wrap around the back of the phase cylinder 

can then be closer to the transmitted signal than those 

that could head back for linkup with zero net phase 

traversal. The signals that are more likely (given high 

SNR) to be retained by the rule are those that are closer 
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to the transmitted signal. The diverged survivor

descendants are then more likely to be retained by the rule

leading to a false lock. These signals are unable to

achieve linkup with 2w deviation and so the decision path

wanders about the transmitted signal path leading to many

errors. Once such an event occurs, it then takes another

relatively large noise event to "bump" the decision path

back toward linkup with the transmitted signal. This

explains the great length of many of the error events

observed in the simulation. Higher SNR would lead to even

longer events and this was in fact observed.

The type of error event described usually occurred when

the transmitted signal was exhibiting maximum phase change

over consecutive intervals at the time of rejection. The

probability of such a long error event depends on the

probability of rejecting the transmitted signal when it

shows this behaviour. This probability depends on the

closest signal which can be involved in a likelihood

comparison with the transmitted signal. At lower h and

especially for the second order polynominal modulations,

this closest signal separation is more in excess of dmin

The event probability also depends on the probability that

given transmitted signal rejection, those survivor

descendants that diverge from the true path are more likely

to be retained by the rule over those that parallel the

true path or head back toward it. This in turn depends on

the distances involved. At lower h and for the second

order polynominal modulations, both factors should

contribute to lowering the overall probability of long

error events. This explains the reduced rate of occurrence

of long events observed for these modulations. On the

other hand, once such an event had started, it was much

longer on average for these modulations. This was due to

the larger distance that must be spanned to achieve linkup

given that the rule is falsely locked.



Even though error event rates seem to be asymptotically 

optimal, the occurrence of long error events can lead to 

poor overall symbol error probability. There is no 

mechanism to limit the length of these events (other than 

high noise itself). Ways of trying to deal with this 

problem are covered in the next section. 

3.3 	Expanded Algorthms for h=m/p 

There are two general approaches which may be identified to 

deal with the long error event problem: 

(1) Monitor progress and take corrective action when it 

is determined that a long error event is likely in 

progress (false lock). 

(2) Provide expanded processing that operates 

continuously and tends to limit the length of error 

events. 

It was found that it was possible to identify the 

occurrence of long error events with reasonably high 

probability. This can be done by monitoring the trend of 

the decision path likelihood. When the rule is off track, 

the decision path shows lower correlation with the 

transmitted signal. If the change in decision path 

likelihood is observed over a long enough interval, a 

fairly reliable indication of false lock can be provided. 

When detected, expanded processing could be used to try to 

bring the decision path back on track. 

Instead of following this monitoring approach, the fixed 

approach which includes expanded processing at all times 

was investigated. The same expanded processing could be 

introduced when required by the monitored approach. 
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Initial attempts were made at using an increased number of 

survivors for rule R2 while still maintaining a complexity 

reduction over the Viterbi algorithm 	Although this could 

reduce the probability of these long events occurring 

(higher effective R parameter), it was found that the 

length of the error events was not significantly reduced. 

Other attempts were made at deliberately introducing extra 

contenders that diverged from the current decision path in 

hope that these might achieve linkup should a false lock be 

in progress. Neither method was effective as they both 

faced the same problem: once the rule gets bumped off 

track, those survivor descendants that are headed back for 

linkup are further from the transmitted signal path, will 

tend to have lower likelihoods, and will be discarded by 

the rule. 

3.3.1 	Expanded Processing Using Shifted Survivors 

mhe approach finally settled on was arrived at after 

inspection of the false lock phenomenon shown on the phase 

tree (or flattened phase cylinder). Once false lock 

occurs, if the survivors could only be shifted in phase in 

the appropriate direction (up or down), a linkup could be 

achieved. This linkup would be effected by essentially 

violating the modulation structure during the error event. 

The necessary phase shift is simply k.(2n/p) where p is the 

number of phase states and k an integer. For example, for 

h=4n/7, a shift of ±k.(21T/7) is required. The integer k 

depends on how far the decision path has diverged from the 

transmitted signal. The most likely false lock occurs 

after a divergence around 21T and the necessary shift is 

±21./p. Even if higher shifts are required, successive 

shifts of ±2.11./p should eventually lead to linkup. 



This shifting idea is fine once we know that an error event 

is in progress. Obviously, this is never known with 

certainty. In addition, the required direction of shift is 

not known. It becomes necessary to choose between the 

shifted and unshifted survivor signals. This choice must 

be made in a manner that does not seriously affect the 

overall probability of error events. The basic approach is 

this: 

(1) Shift the rule R2 survivors by ±2n/p to form an 

expanded signal set. Assign bit histories and 

likelihoods to these shifted survivors identical to 

those of the unshifted survivors. 

(2) Process the shifted and unshifted survivor 

descendants in separate groups using rule R2. Each 

group will generate a decision path where the 

survivors have merged. This expanded processing 

should continue until "sufficient" distance has been 

developed between the two separate decision paths. 

Decide on which decision path is more likely to be 

on the track of the transmitted path and keep the 

survivors corresponding to this decision path. 

Reject the other group. 

(4) 	Repeat this shifting on the new survivor group and 

continue the expanded processing in a cyclic manner. 

The idea is that if a false lock is in progress, and the 

proper shift is made, the shifted survivors will spawn 

descendants that should quickly link up with the 

transmitted signal path. The decision path of this shifted 

(3) 
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group should, after a long enough interval, achieve much 

higher correlation with the transmitted signal (higher 

likelihood) than the decision path of the unshifted 

survivors descendants. Picking the path with higher 

likelihood should set the rule back on track. 

Conversely, if the shift occurs when an error event is not 

in progress, the unshifted (correct) survivor decision path 

should develop the higher likelihood and would still be 

likely to be retained by this approach. The probability of 

rejecting the proper survivor group and causing an error 

event sets the criterion for choosing the length of the 

expansion interval. This probability depends on the 

distance developed between the two decision paths. If we 

want this probability to be roughly the same as the error 

event probability for rule R2 alone, this distance must be 

sufficiently large. 

3.3.2 	Performance And Implementation Considerations 

The following assumes that rule R2 is achieving 

asymptotically optimal error event rates. Extensions to 

the case when a deliberately sub-optimal number of 

survivors is chosen are clear. 

The smallest distance between any two possible decision 

paths over the expansion interval is the quantity of 

interest for high SNR performance. This distance d c  

depends on the modulation and the particular transmitted 

signal path. Suppose we are using enough survivors for 

rule R2 to achieve the optimal error event rate at high 

SNR. If the expansion interval is chosen long enough that 
thisdistanced c exceededmin,the probability of rejecting 

the correct decision path should be no greater than 

Q(d min/ 2a), and the overall error event performance of the 

approach should still be "optimal" at high SNR. 



At practical, moderate values of SNR, a compromise on the 

expansion interval length is possible. Guaranteeing a 

certain distance between any two possible decision paths 

from shifted survivors may require a long expansion time. 

There will be worst case paths that remain close that would 

force a long expansion time. However, if these worse case 

paths have only very low probabilities of occurring, a 

shorter expansion interval should only slightly affect the 

overall probability of error events at moderate SNR. For 

example, if 95% of all possible decision path pairs develop 

at least dmin separation after E intervals of expansion, 

even if some were considerably closer than dmin , the 

overall error event probabiltiy can still be around 

Q(dmin/2a) at moderate SNR. To be more exact. each 

separation distance has a probability of decision error 

that should be weighted by the probability of that distance 

occurring in a choice between decision paths. The simplest 

way of determining the minimum expansion interval to 

maintain a desired error event rate may be to resort to 

simulation. 

If the expansion interval is not too long, shifting can 

occur fairly often, and a long error event should be 

interrupted fairly early. The overall effect should be to 

reduce the length of error events from rule R2. Since the 

required shift direction is unknown, one strategy is to 

alternate the shifts at every expansion time. This 

approach will be called rule R3. Alternatively, shifts in 

both directions ±2n/p can be made at every expansion time 

and three separate groups processed. This approach will be 

called rule R4. Rule R4 should tend to catch error events 

earlier than rule R3. Both rules were simulated. Their 

implementation flow charts are shown in Figure 16. 
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E
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(1) See Figure 8 for
Rule R2 processing

(2) E = expansion time
in digit intervals

(3) SI and S2 alternate

for rule R3 and both
close for rule R4

FIGURE 16 Rules R3 and R4 implementation flow chart



There are other considerations in implementing this 

shifting approach. To decide between the decision paths 

from the separate survivor groups, the likelihoods of the 

paths at the end of the expansion interval should be 

compared. These merged path likelihoods are not readily 

available. If the expansion interval is long enough, the 

likelihood of the maximum likelihood survivor from each 

group should work just as well. For the simulations, a 

simpler approach was used; the likelihoods of the first and 

last survivors from each group were averaged and taken to 

represent the decision path likelihoods. Another 

consideration is that a longer buffer length is needed due 

to the holding of distinct survivors over the expansion 

interval. 

There is what may be a major drawback to using these 

shifted survivor approaches. The major requirement is that 

a sufficient distance be developed between any transmitted 

signal path and the decision path growing out of survivors 

shifted from the transmitted path. The shifted survivor 

decision path will invariably be quite close in phase to 

any transmitted signal path for the duration of the 

expansion interval. If the phase of the carrier is not 

known with high accuracy, the development of separation 

distance over the expansion time may be illusory. In this 

situation, the decision between the paths cannot be made 

accurately, and this shifted survivor approach may cause a 

catastrophic deterioration in error event probability. The 

approach that only takes action when a long error event is 

likely to be in progress may have a considerable advantage 

in practical use. 

In any event, it is still useful to examine these shifted 

survivor approaches as they demonstrate that, at least in 

theory, a receiver that occasionally violates the 

modulation structure can still perform well. 



The complexities of rules R3 and R4 are, respectively, at 

least two and three times that of rule R2. This assumes 

that the shifted survivor groups use the same number of 

survivors as rule R2. In addition there are extra 

operations required in deciding between the groups at the 

end of the expansion interval, and in initializing the 

shifted survivors at the beginning of the expansion 

interval. 

3.3.3 	Simulation Results For Rule R3 And R4, h=m/p 

To compare the performance of the new rules with that of 

rule R2, simulations were carried out on the same 

modulations for an identical transmitted sequence and 

identical noise values. This was done by starting the 

random number routines at the same point. Buffer lengths 

were 32 bits. Along with Figure 17, Table 3 summarizes the 

relevant results. 

Both rules tended to limit the length of the error events 

found for rule R2 while essentially achieving the same 

asymptotic error event rate. The error event rates for 

rules R3 and R4 were found to be almost identical for the 

expansion time used. Rule R4 provided only a slight 

improvement in limiting the error event lengths. 

The most probable length of the long error events seems to 

be close to the length of the expansion interval chosen. 

In addition, there were longer events about two, three and 

four times this length, but these occurred mostly at lower 

SNR. 
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( I ) BIT ERROR RATE SYMBOLS: 
X 	(1-1-1D)/2, h = 4/7 

(I+2D+D 2 )/4,  h3/5  
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FIGURE 17 Error rates for rules R3, R4, S=SL 



Table 3 

Error Events For Rules R3, R4; h=m/p. 

Simulation Observations. E=expansion interval 

Error Event Lengths in Bits 	% long a  

at High SNR (9 dB) 

	

Max 	Avg. 	Avg. long event a 	events 

Modulation 	E R3 R4 	R3 	R4 	R3 	R4 	R3 	R4 

	

h=4/7 10 29 22 	5.7 	4.8 	25 	20 	14 

(1+D)/2 

h=3/8 	15 30 13 	5.1 	4.2 	19 	12 	12 	10 

	

h=4/7 15 25 -- 	7.4 	15 	-- 	32 	-- 

	

(1+2D+D 2 )/4 h=3/5 15 40 -- 	8.0 	27 	-- 	20 

	

h=3/8 30 27 -- 	4.4 	17 	-- 

	_ 

(1+D+D 2 )/3 	h=3/5 15 33 	7.6 	24 	-- 	22 	-- 

a long events are defined to be longer than 10 bits 
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CHAPTER 4

CONCLUSIONS

Decoding approaches that are less complex than MLSE can be

applied to bandwidth efficient constant envelope

modulations. These approaches can achieve asymptotic (high

SNR) performance almost identical toi4MLSE or can trade off

performance for greater complexity reduction. These

approaches maintain a list of survivor signals at every

time that is reduced in size from thatI kept for Viterbi

decoding. When some of the Viterbi survivor separation

distances necessarily exceed dmin' a list reduction is

possible while still maintaining asymptotic optimality.

The degree to which reduction is possible depends on the

modulation index.

The sequence decoders extend survivors into all possible

descendants at each digit interval to form a set of

contenders. These contenders are proc*.sed to reduce their

number to a few survivors. Decisions are forced between

contenders signals on the basis of toeir likelihoods.

Asymptotic performance (as well as coputational

complexity) is governed by the decision rule's effective

parameter R. For asymptotic optimalitX R>dmin/2' The

lower R is chosen, the lower the complexity. As long as

all decisions are between signals separated by dmin or

more, asymptotic optimality of error event probability is

possible. Complexity reduction over Viterbi decoding only

seems possible by exploiting a fixed processing order. For

many modulations an almost implicit ordering based on input

digit sequences can be used to select appropriate signal

pairs for likelihood comparisons. The rule developed with

this approach was called rule R2. A general number of

► q
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survivors, S, can be kept with this rule. The implicit 

ordering can only be exploited for low enough modulation 

indices (<1). The choice of S depends on desired 

performance and complexity. Merging seems fast and 

overflow was not a problem with reasonable decoder buffer 

lengths. 

A complexity reduction by a factor of S v/S can be achieved 

with rule R2, where S is the number of survivors chosen and 

S v is the number of states per interval in the Viterbi 

decoder. 

For modulation indices h=1/n, a complexity reduction by a 

factor of n is possible. This reduction was demonstrated 

for the modulations considered for n=2, 4, 6 with high SNR 

performance almost identical to that expected for MLSE. As 

described in Section 2.4.2 modulation [(1+D+D 2 )/3, h=1/n] 

cannot achieve asymptotic optimality with only S L=4 

survivors but it still performed very well at the lowest 

error rates considered (10-3 ). 

The ability of the rule to link back up with the 

transmitted signal once it gets off track depends on the 

particular transmitted signal path. Error events of 

lengths two or more times the minimum event length are then 

possible even at high SNR, although the longer the event, 

the more improbable. 

For modulation indices h*l/n, the reduced survivor approach 

can lead to a false lock phenomenon and very long error 

events. Although the event probability can be 

asymptotically optimal, overall performance can be poor due 

to the long error events. If h=n/k, n and k least 

integers, the complexity reduction can be by a factor of k. 

The percentage of these long error events can be very small 

for higher SNR and lower modulation indices. In addition, 



a larger number of survivors can reduce the probability of 

these long error events. At high SNR and low h, these 

events can be extremely long implying a near catastrophic 

decoder failure when such an event occurs. 

Expanded algorithms based on rule R2 can limit the length 

of these long events while maintaining error event rates 

nearly identical to rule R2. Although the maximum error 

event lengths are greatly reduced, "longer" error events 

are still possible. These expanded algorithms require 

roughly two to three times the operations required for rule 

R2. The complexity reduction for h=n/k is then roughly by 

a factor of k/2 to k/3. 

The results of the investigations may be used to make 

careful generalizations about the applicability of reduced 

complexity approaches to modulations other than those 

simulated. The complexity reduction by factor n for h=1/n 

should hold for the case M=4 given that the same general 

modulation properties described in Section 2.4.1 hold. For 

example, modulation [(1+2D+D2 )/4, h=1/n] appears to be a 

good candidate. The modulations studied seem fairly 

representative of schemes with frequency pulse lengths of 

two and three digit intervals. Other modulations may have 

close to the same pulse shapes but with more smoothing. 

The decoding approaches studied would then seem to be 

applicable to a broader class of constant envelope phase 

modulations [14]. The 3RC modulation is just a smoothed 

version of [(1+2D+D2 )/4]. The decoding approaches should 

carry over nicely to this modulation. 

The phenomenon of false lock and long error events for 

h*l/n seems to be only a property of not considering all 

the possible states which MLSE does. Any reduced survivor 

approach should almost certainly encounter the same problem 

for these modulation indices. 



There is one aspect of implementation complexity that has 

not been addressed. This is the acquisition of the matched 

filter outputs. The Viterbi algorithm knows ahead of time 

which filter outputs it will need for any given interval. 

Buffers may be used to store outputs from the filters for 

delayed processing. 

The reduced computation approaches do not know ahead of 

time which filter outputs will be needed. These depend on 

the actual decision path taken. It may therefore be 

necessary to read in and store more filter outputs than are 

actually used in the computation in order to allow the same 

delayed processing. Waiting for A/D conversions is clearly 

not a viable option. The ultimate speed increase of the 

reduced computation approaches strongly depends on the 

acquisition-time of the necessary filter outputs. If 

direct memory access techniques (DIA) are used, acquisition 

time may not pose any speed constraints. In this case, the 

overall speed increase may be directly proportional to the 

computational reduction factor. 

For those modulations where the fixed order processing is 

not viable, the 'best-S' approach can still be used. If 

there are more than just a few survivors necessary however, 

this approach may have no gain over full Viterbi decoding. 

The 'best-S' decoder will still suffer from the problem of 

long error events for modulations indices  hl/n. It may be 

possible to find efficient ways of ordering the processing 

so that rule R2 can be used on these modulations. 

Further research could focus on an efficient microprocessor 

implementation of the decoders presented here. The 

sensitivity of the decoders to phase jitter, timing errors 
and the other usual impairments could be studied. Further 

investigation is needed into ways of coping with the false 

lock problem for modulation indices h*l/n. 
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It is very possible that the ordered processing of the

decoders presented here could be utilized in reduced

complexity decoders for linear modulations and codes.
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