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ABSTRACT 

A siudy of the reception of frequency dehopped noncoherent 

M-ary FSK is carried out. 	First, expressions for the signal 

spectrum are presented. 	Then the performance of a receiver con- 

sisting of a bank of energy detectors is studied. 	With the trend 

to hopped satellite systens at higher and higher frequency, and 

with ever increasing hopping rates, error in signal frequencies or 

frequency offsets may be present in the system, and in addition, 

instability or phase variation in the oscillators potentially may 

cause system performance degradation. Possible frequency offset 

and phase jitter are included in the theoretical development, in 

addition to the usual additive white Gaussian noise. Calculations 

of error performance degradation due to frequency offsets and 

thermal noise for both single user and multi-user environments, 

are presented. For multi-users, the circumstances under which 

windowed receivers provide improved error performance, are indic-

ated. Detailed error rate calculations remain to be carried out 

for the phase noise theory that has been developed. 
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1. INTRODUCTION 

Under the Space Sector military program, the Communications 

Research Centre has from the Department of National Defence the 

task of the development of spread spectrum modulation. The goal 

is to provide an electronic counter-countermeasures capability to 

military satellite communications. Recently, the trend in MIL-

SATCOM has been to communications at EHF and the use of fast 

frequency-hopped, M-ary FSK spread spectrum signal structures. 

This report is on these signals and their reception. 

In work under previous contracts with the Space Systems 

Section of the Department of Communications, encoding [1], and 

signal-shaping techniques [2], for phase-continuous FSK were 

developed which gave improved spectral occupancy and error 

performance. Also new, less complicated receiver structures were 

obtained [3-5]. However, as frequency hopping is carried out over 

large bands and at rates that are as high as possible, 

phase continuous modulation and coherent detection becomes beyond 

current technology. 

Band occupancy remains an important issue from the point of 

view of minimizing the interference between adjacent users whose 

signalling power may differ dramatically. Thus, an expression for 

the spectrum of noncoherently frequency-hopped M-ary FSK is 

presented in section 2. Windowing in the receiver [6], which can 

be viewed as mismatching the receiver and signal, offers an 

increased rejection of adjacent channel interference at some 
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sacrifice '?n signal-to-noise performance. The optimum window

remains an opq question and there is the possibilty of signal
Jt.''ctl;

shaping and coding not only to reduce adjacent channel effects but

also to increase jam resistance. However it was felt that signal

or receiver design must be carried out in the light of overall

error performance, and so in section 3 of this research report we

present an analysis of the basic energy detector used in

noncoherent reception of M-ary FSK. The work is directed toward

the evaluation of error performance in M-ary FSK where there is

not only additive noise in the channel, but in addition there may

be a frequency offset due to imperfections or inaccuracies in the

hopping-dehopping. As well, there may be a phase jitter on the

tones themselves. In the latter part of the report some

computations on the error rate for multi-user M-ary FSK

environments are presented.

2. THE SPECTRUM OF NONCOHERENTLY HOPPED M-ARY FSK

In this section of the report we will derive an expression

for the spectrum of noncoherently hopped M-ary FSK. As expected,

the spectrum appears as a superposition of the spectra of the

individual component pulses each centred at the M possible frequ-

encies.

The modulated signal of interest is of the form
Go

s(t) = ^ g(t-nT) h(a n ,t-nT),

n=--

where g(t) is any amplitude shaping of the pulse that may have
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occurred and the angle of the pulse is given by 

h(a
n
,t-nT) = cos[w

c
t + a

n
Aw(t-nT) + p(t-nT) +

n
] 

For M-ary transmission an  can take on the values ±1,±3,..±(M-1), 

which correspond to the frequencies wc+(2i-1)Aw, i=±1,..±M/2. Any 

shaping of the instantaneous frequency is described by p(t) and 

the incoherent hopping results in statistically independent random 

initial phases On , that are assumed to be uniformly distributed 

over (0,210. 

The signal can be written in terms of a complex baseband 

equivalent 

s(t) = Re{p(t)exp[jw t]l 

where 

P(t) = ï g(t-nT)exp{j[antaa(t-nT) + p(t-nT) + 
n=-(0 

Here Re denotes the real part, and * as a superscript denotes the 

complex conjugate. 

The autocorrelation function will be used to find the signal 

spectrum. There follows 

R(t,t+T) = (1/4)[Elp(t)p(t+T)}expjwn (2t+T) + E{p(t)p * (t+T)lexp-jtun T 

* 	* 
+ E{p (t)p(t+T)}expjwcT + E{p (t)p (t+T)}exp-jwn (2t+T)]. 

Due to 	the assumption 	of 	uniformly 	distributed 	On , 

E{p(t)p(t+T)}=0, and the first and last terms in the expression 

for R(t,t+T) vanish. Thus, 

œ 

E{p(t)p (t+T)} = 	ï 	g(t-nT)g(t+T-mT) 

where 

= Efexpj[anAw(t-nT)- anlAw(t+T-mT)+ p(t-nT)- p(t+T-mT)+ On-emn 
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= Elexp-janAwTI.exp-j[p(t+T-nT) - p(t-nT)].dm,n  

Now 
M/2 

E{exp-jaàwT} = (2/M) î cos(2i-1)AwT 
n 

	, 
i=1 

and finally, 
M/2 

E{p(t)p (t+T)} = 	g(t+T-nT)g(t-nT).(2/Mn cos(2i-1)AwT. 
n=-0, 	 i=1 

.exp-i[P(t+T-nT) - p(t-nT)] 

The autocorrelation function 

R(t,t+T) = (1/2)Re{E{p(t)p
*
(t+T)lexp-jweT} 

is a function of t. 	In other words the signal s(t) is not 

wide-sense stationary but is in fact cyclostationary (see [141), 

that is, R(t+T,t+T+T) = R(t,t+T). 	This can be dealt with as 

follows. 	Since in practice we do not have a precise time origin, 

we can assume that the origin is uniformly distributed over (0,T) 

f
t
(n) = ( lJT) 

0 

The average autocorrelation function is 

R(T) = E t {R(t,t+T)}. 

After simplification this reduces to 

M/2 -1 	- 
R(T) = (2MT) 	1 cos[(2i-1)AwT].[exp[-jwcT]lz(T)*z

*
(- -01 + 

i=1 

+ 

where * denotes the convolution, and z(t) = g(t)exp-jp(t). The 

autocorrelation consists of the sum of two terms. 	One cor- 

responding to the spectrum centred at we , and the other the mirror 

0<ruCT 

elsewhere. 
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image at -wc . The part about we  is given by 

M/2 
S(w) = (4MT)

-1 î S z (w -(2i-1)Aw) 
i=-M/2 c  
i$0 

where 

S(u) = FTIz(T)*z * (-1. )} = IZ(w)1
2

, 

Z(w) = FT{z(T)} 

and 

FTIzI denotes the Fourier transform of z. 

3 ERROR PERFORMANCE OF NONCOHERENT M-ARY FSK IN THE PRESENCE OF 

FREQUENCY OFFSET, PHASE JITTER AND ADDITIVE NOISE 

In the system under consideration, ideally one of M frequen- 

cies f 	i=1,2,..M, with orthogonal frequency spacing is trans- 

mitted in the time interval (-T/2,T/2). 	Due to imperfections in 

the transmission system the detected tone is not at the precise 

frequency f i , but there is a frequency offset or error of Af Hz. 

Also, the phase of the sinusoid available for processing has a 

random component  • t), which varies over the observation interval, 

and it is assumed that there is additive noise in the channel. 

Thus the received signal is given by 

s(t)=A cos(w
i
t + Awt + et) + (1)0) + n(t), 	i=1,2,...M 

The detection will be carried out by noncoherent energy detectors 

and so without restriction we can for convenience take .0=0. 

The receiver consists of M energy detectors of the form shown 

in Figs.1 and 2 and the decision is made that the frequency 



ts=kT

t
w(T)( )dT

w ( t ) = WINOOW FUNCTION

ts=kT

h

Fig. 1: An energy detector with a weighted integrator

for incoherent, FSK detection.
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Fig. 2: A bank of energy detectors for multi-user, MFSK detection. 
The input signal to the receiver is first dehopped using 
code used for group frequency hopping in the transmitter. 
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corresponding to that of the detector with the largest output, was 

in fact sent. We will deal with the probability of error given s l  

sent, which from the symmetry of the problem is the overall 

probability of error. Suppose the magnitude of the output of the 

i
th 

detector is R 	i=1,2,...M. An error occurs when R>Rl' 
for 

some i=2,3,...M. Thus the probability of error is given by 

R i 	RI  
Pe= 1 -ordR1  of :.. of f(11 1 ,R2 ,...Rm)dR2 ,..dRm  

For convenience we can write the output of the i
th 

detector in 

complex notation z i
= xi+ jyi

. Then R=lz i I ' 

z i = 	fexpij(Awt+S(0)}dt + fn(t)e -ibi l t  dt 

Note, where the limits of integration are not indicated explicity, 

they are (-T/2,T/2). 

If the phase noise • (0 is fairly small over (-T/2,T/2), 

the first term in the expression for z i  is well-approximated by 

je 	(1 + jet))dt = 
2 

(A/2)[T(e i"T/2- e-J"T/2 )/jAwT + jfigt)e ienndt] 

z 1 = (AT/2)[sinc(AwT/2) + jT-I fet)ei"edt] + In(t)el t  dt 

The common notation sinc x = sin x/x has been used. 

Thus 

The inaccuracy in the above approximation appears very small 
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for usual levels of phase noise. For example for a jitter of 300 , 

which for most reasonable oscillators would be considered a large 

jitter, the error in the linear approximation is 2.4 %. 

For orthogonal signalling (wi- w 1 )T/2 = kir, 	k=±1,±2,.. 

Thus 	z=  (A/2)fexplj[w
1+Aw-w )t + e(t)]}dt + fn(t)expf-jw itl dt 

= (A/2)fexp{j[(Aw-2kw/T)t + e(t)Hdt + fn(t)exp{-jwit}dt 

Again we will make the assumption that e(t) is not too large over 

(-T/2,T/2) and approximate exp[je(t)] by 1+je(t). After some 

simplification we obtain 

z i  = CiP + j(A/2)fe(t)exp{j[Aw-2kw/T]t}dt +fn(t)exp{-jw it}dt 

i=2,3,..M 

z 1= P + j(A/2)fe(t) exp{j6wt}dt + fn(t)exp{-jw i t}dt 

where P = (AT/2)sinc(AwT/2) and C = (-1)k+1 /(1-2kw/(àwT)), and k 

is the integer corresponding to the particular orthogonal spacing 

of f1 .  

If we assume that e(t) and n(t) are Gaussian processes, 

then the random variables xi and y i are Gaussian. It is usual to 

assume that the additive noise is Gaussian. 	Also the assumption 

of Gaussian phase noise is common. 	It can be shown [7], that for 

a first order phase-locked loop the phase is asymptotically 
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Gaussian and well-approximated by the Gaussian distribution even 

at quite moderate signal-to-noise ratios. As well, in another 

application, one of the authors measured phase noise to be 

Gaussian with a high degree of accuracy. 

The means of the Gaussian variables are 

E{z 1 }=E{x1 }=P, 	
Etzi 1=Efxi 1=CkP 

for 

E{yi l=0 

We have derived expressions for the various joint moments E{xiy i } 

under the assumption that the additive noise is white. Un-

fortunatley in the most general case there is correlation between 

all the components and the analysis does not simplify. 

3.1 General Method of Analysis  

To find the distribution of the envelopes R R 2' ...RM' we  

will use the technique originally used by Rice [8], to obtain 

envelope distributions for Gaussian noise. Let us write our 

observed variables as a Gaussian vector 

X 

with mean 

MX = [P,O,C 2P,O,....0M
P,0] 

and covariance matrix p with general element pir Let A  with 

elements ij be the inverse of p and let ipl denote the determin- 

ant of p. Then since X is gaussian, its density function is given 

by 
_44 	_1/2 

f(x 1 ,y 1 ,x2 ,..ym)=(2 .10 Ipl ' exp{-1/2(X-Mx)X(X411A )
t 1 

Here t denotes the matrix transpose. 

The joint distribution of RI ,R2 ,...Rm  is obtained in two 
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steps. First carry out the change of variables 

x = R cose. i 	i 	1 

	

yi = R1s1n8 	i=1,..M, 

for which the Jacobian of the transformation is R1 R2 ...Rm . 	Thus 

f(11 1 ,8 1 ,R2 ,... .Rm ,8m)=fx(x icos8 1 ,...xmsinem).R 1 ..Rm . The density 

function of RI ,R2) . ..Rm  is obtained by integrating over the 

extraneous 8 variables. 	This may be difficult or at least messy 

in practice. 	In particular cases this has been possible using 

modified Bessel function generating functions 
00 

exp{zcos8}=I0(z) +IIk(z)cos(k8) Ic l   

expizsin81=I0 (z) + 21 (-1)kI 2k1.1 (z)sin[(2k+1)8] 
k=0 

00 

+ 21 (-1) kI21,(z)cos(2k8) 
k=1 

This procedure yields a density function in terms of series of 

Bessel functions. An example will be given in the next section of 

this report. 

3.2 Distribution of the Output of an Individual Energy Detector  

As a first fairly simple case let us find the probability 

density function of the sampled output of an individual energy 

detector. The density function of the components is 

f(x 1 ,y 1 )=(210-1 1p I -1 /2 expt 

where the exponent t = (-1/2)r 	 2  + 9% f 	D\ 

—1 11 -x 1 -13/  "22Y 1 	'.n12\X].."1/Yije 
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Here 

2 
I P I = (P 11 P 22 -P 12 )  

and 

-1=1  h2 -P 12 
-P12  Pli  

After the change of variables x1=Rcose, y 1=Rsine, and simplifica-

tion we obtain for the exponent 

(N 	Nu 	 1/ -2/2 + (R
2
/2){( / lif À 22 2) 	4/2 
	2
d 

= (-1/2)[X
11P2 ' " 11 ' n 22 /  

.cos(2O-2)  - 2PR(X 2 
1 
 + X

2 
)
1/2cos(0-0] 

1 	12 

where 

= (1/2)tan-1 [2X
12

/(X
11

- 
X12) ],  and 11, = tan

-1 [X
12

/X
11

]. 

If we make the change of variable 8 1=0-. and as suggested above 

use the Bessel function expansion 

exp{zcose
1 
 } = Io (z) + 2î Iu (z)coske 1 

k=1 

we obtain the expression for the density function of the detector 

output 

2 -1/2 f(R) = R(p 11 P 22 p 12 ) 	expl(-1/2)[X1 1P
2+ (X11+  X22)R

2
/2]. 

op 

.[I(k)I(k) + 2cos(*-4) o 1 o 2 	Ik(ki)I2k(k2)] k=1 

where 

	

2 	2 1/2 

	

1( 1  = (-R2/441m(P
22-P 11 ) 	PI2 ]  

and 
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1„  
k2 = (RP/iPplP 22 + P 11 J

1/2 
 • 

3.3 Binary FSK with Frequency Error  

Let us consider the error performance of a noncoherent de-

tection system for binary FSK, when there is frequency error and 

additive channel noise, but no phase jitter. This is the easiest 

of the cases currently under consideration. Then 

x1 = fn(t)cosw 1t dt + 
P 

y l  = -1n(t)sinw 1t dt 

x2 = k2P + fn(t)cosw2
t dt 

y 2 = -fn(t) sinw2t dt 

E{z1}= 1 1 = P 

E{z2}= E{x2 } = C 2P 

We will assume that the additive noise is white with two-

sided spectral density N0/2 watts/Hz. Then 

= NoT/4 
P ll = P 22 = P 33 = P 44 

p ij = 0 for i 	j. 

The procedure outlined above carries out easily. In effect R I  and 

R2 are independent Rician random variables [8] with density func-

tion 

f(R ) = (Ri  /a
2 ) exp{-(a 2+ R2 )/202 } I

O  (a Ri  /0
2
) ii 

2 	2 
Here a l  = P, a2  = k2P, and 0 1  = 0 2  = N0T/4 

The probability that one Rician variable exceeds another 

independent Rician variable can be expressed in terms of Marcum's 
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Q function [9,p.587 ] . Thus the probability of error is given by 

pe  = Q(17,1-17) - [v
21(1+v 2

)] exp{-(a+b)/2} 	 (1) 

where the Marcum's Q function is given by 

Q(a,b) 	r vexPI -(a +x )/2I Io (ax) x dx 

2 
 a = 2C

2
P2 /N

0
T

' 	
b = 2P2 /N T 0 

v = 1. 

Setting C 2  = 0, should yield the previously known result for 

the noncoherent detection of binary FSK 

P
e 

= Q(0,i1.7) - (1/2)exp{-b/2} 

= (1/2)expl-P 2 /N0TI. 

The last step follows since Q(0,117)) = exp{-b/2} and 10 (0) = 1. 

We wish to use McGee's recursive method for computing Marc-

um's Q-function [10]. Accordingly, we may apply the tranformation 

in (A-3-1), p.586, of [9] to write (1) in the form 

Pe = 1 - Q(/,/)  + (1/2)exp [ -(a+b)/2] Io 	 (2) 

McGee's algorithm computes 1 - Q(/17,ii) using a simple recursive 

procedure. 

We have used the formula in (2) to compute estimates to Pe 
in 

the following two cases: 

(0 The symbol error probability for M-ary FSK modulation 

in a single user environment with frequency errors in 

the input signal. 
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(ii) The symbol error probability for binary FSK 

modulation in a multi-user environment with frequency 

errors in the input, multi-user tones. 

Our ultimate goal is to obtain good estimates of Pe  for up to 

M = 8 for a multi-user environment with frequency errors in the 

input tones. We can also handle frequency errors in the correl-

lator sinusoids using Stein's general formula (equation (8-2-12) 

of [9]). However, the computations are left for further study. 

3.4 M-ary FSK with no Frequency Error  

First, we consider M-ary FSK modulation when the transmitted 

signals are orthogonal and are identical in format to the signals 

used in the energy detectors in the receiver. Then, as shown in 

problem 7.9 of [11], the symbol error probability is given by 

M-1 
Fe 	= 	ï (-1) 1(.41(k+1)(14-1) exp[-kE/(k+1)No ] 

k=1 

where E is the signal energy, 

n 	n!  
Ik 

and No/2 is the spectral height of the white Gaussian noise which 

is the only assumed form of disturbance in the present case. 	An 

upper bound to Pe  can easily be obtained by using the union 

bound. This bound on Pe is 

Pe  < [(M-1) 12] exp[-E/2No ] 	 (4) 

(3) 
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and the bound is the exact error probability when M=2. 

In Fig. 3 we plot Pe  versus E/No  for various M. 	Note that 

performance degrades gracefully for increasing M. In fact, if the 

abscissae was replaced by the energy per bit-to-noise ratio 

Eb/No 
= E/Nolog 2

M 

performance would get better for increasing M. However, this is at 

the expense of an increase in required channel bandwidth as the 

minimal tone separation is 1/T Hz for signal orthogonality. 

In Fig.4 we compare Pe  in (3) with its upper bound in (4) for 

various M. The upper bound is quite close to the error probabil-

ity in terms of the spread in E/No . We will also find that the 

union bound gives quite accurate results even in the presence of 

frequency errors in the input tones to the energy detectors. 

However, in this case, exact results appear difficult to get. 

Instead we use a lower bound to go along with the upper bound 

based on the union bound. 

3.5 M-ary FSK with Frequency Error: Single User Case  

Our expression above for the system error probability depends 

strongly on the following two facts: 

(i) The only energy detector output with a non-zero 

mean value is the one corresponding to the input 

frequency of the signal component of the 

received waveform 

1 
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E/Noin dB

Fig. 3: Error performance of M-Ary FSK for an AWGN channel.
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INCOHERENT DETECTION 

M — ARY FSK 
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AWGN CHANNEL 

1 	I 	I 	1 	1  
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E /No IN dB 
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(UPPER) — 
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13 14 

Fig. 4: Error performance and its upper bound based on the union bound 
for an AWGN channel. 
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and 

(ii) the noise outputs of all energy detectors are 

independent. 

In the analysis to follow we assume that the correlation 

waveforms in the energy detector are orthogonal. That is, unlike 

the input waveforms, they are not subjected to frequency errors. 

Thus the item noted as (ii) above carries over into our analysis. 

However, as just mentioned, we allow the tone inputs to the 

receiver to undergo frequency errors. 	This gives a non-zero mean 

value to each energy detector and leads to much complication in 

the error analysis. 

Let us first consider the case of binary FSK with a common 

frequency error in both tones of àf Hz. We introduce a change in 

mathematical detail which does not alter the final results, in 

particular, the calculations were carried out with the integrators 

in Fig. 1 operating over [0,T] rather than [-T/2, T/2]. Then the 

formula for a and b in (1) is 

b = 	(sinc 22wAfT + cinc 2 2ilifT) No 

-- [sine
2
2w(AfT+m) + cinc 2

211. (AfT+m)] N
o 

where sine x = sin x/x, cinc x = (1-cosx)/x and m is the spacing 

between mark and space tones in multiples of T-1 . 

For given AfT and m we can now evaluate the formula in (2) 

for a range of E/N
o . Our computational results are given in Fig. 

5 for m = 1 and the worst case c = UT. A frequency error of 10% 

(5) 
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INCOHERENT DETECTION 

BINARY FSK 
(Nel 2 ) 
E = AfT 

AWGN CHANNEL 

15 16 10 	11 	12 	13 
1 	1  

14 
E/No IN dB 

Fig. 5: Error performance of Binary FSK with frequency errors in the 
modulation tones for an AWGN channel. 



of the baud interval results in a loss in E/N of .3 dB while a
o

20% error gives a loss of 2dB at practical error rates. Clearly

the maximum, tolerable frequency error is between 10% and 20% of

the reciprocal of the baud interval, T-1.

We now consider the case of M = 4, again with a common

frequency error in the input tones. We will use error bounds to

estimate Pe in this case as a computable formula appears difficult

to get. First consider an upper bound based on the union bound.

From a computation with equations (2) and (5) above it is seen

that Pe for the binary case is a function of m and Af where m is a

multiple of 1/T. For quaternary modulation, worst case results

are obtained when Pe is computed for either tone 2 or 3 (the

intermediate tones) in the set of 4 modulation tones. The union

bound is obtained by computing the error probability for all

pairwise tone detections. Thus for the worst case

Pe < 2 Pe (Af,1) + Pe (ef,2) (6)

where Pe(Af,m) is computed from (2) and (5). Our upper bounds are

shown in Fig. 6 for a range of E/No.

Our lower bound is quite simple and is based on a method

Forney used to bound the performance of maximum likelihood sequ-

ence receivers [12]. Suppose we ask the receiver for Quaternary

FSK to distinguish only between any two tones. It does so with

Pe = Pe(Af,m). At best, the performance of the Quaternary FSK

receiver can be no better than Pe(Af,l). Thus Pe > Pe (Af,l) and

this lower bound is shown in Fig. 6. The spread in the bounds is
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Fig. 6: Upper and lower bounds to the error probability for Quaternary 
FSK with frequency errors and an AWGN channel. 
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less than .5dB in E/N
o 	

To get our estimate of Pe 
draw a line 

midway between the bounds. This estimate is accurate to 0.25dB in 

E/No . 

In Fig. 	7 we present our upper and lower bounds for the 

Octonary (M=8) FSK case. Again the bounds are quite tight on the 

basis of a spread in E/No  in dB. The upper bound here is 

Pe 	2 Pe (àf,l) + 2 Pe (àf,2) + 2 Pe (àf,3) + Pe (àf,4) 	(7) 

Note that Quaternary and Octonary FSK are less sensitive to 

orthogonality perturbation than binary FSK. 	This is because the 

primary source of interference comes from adjacent tones. 	The 

interference is thus most critical in a binary FSK system where 

decisions must always be made relative to an adjacent tone 

frequency. This fact has aided our bounding procedure of Pe . We 

have used the lower bound to be an exact result from the binary 

FSK case. It is usually quite close in E/No to the upper bound 

based on the union bound for M=4 and M=8. 

3.6 Binary FSK with Frequency Error: Multi-User Case  

Let the number of potential users of a FDMA/BFSK system be N. 

There are 2 assigned frequencies per user and thus L = 2N 

potential frequencies 	for detection. 	Thus 	the receiver 

represented in Figs. 1 and 2 is a bank of L energy detectors. 

However as pointed out in [13], these detectors likely 

would be realized using a single Fourier transform. 

Let K of the N users be "on the air". The performance of the 
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Fig. 7: Upper and lower bounds to the error probability for Octonary 
FSK with frequency errors and a AWGN channel. 
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system could be determined by assigning K-1 interfering frequen-

cies to N-2 frequency slots and assigning each tone a random phase

and frequency error. The a and b parameters for Stein's formula

could then be found and these would depend on the K-1 random

phases and frequency errors. The error probability would be

determined using Monte Carlo techniques which would average the

error probability over each tone setting, tone random phase and

tone frequency error.

We are primarily interested in receivers with weighted in-

tegrators: the so-called windowed receiver. The a and b para-

meters are hard to determine for many popular window functions.

Accordingly we decided to evaluate the a and b parameters for

Stein's formula using the FFT algorithm. Again the K-1 out of N-2

frequency slots were chosen with the two tones for detection

placed at mid-frequency band. This will give the worst-case

interference and hence worst-case error probability. If we use an

FFT algorithm which calculates all harmonics and if the tone

spacing between user frequencies is 2T-1, the number of FFT

frequencies will be 8N. This 2T-1 tone spacing is required due to

the loss in frequency resolution in windowed receivers. That is,

if an input tone has frequency k/T, significant energy in the

windowed receiver appears at tone frequencies adjacent to the

input frequency. Thus, a windowed receiver requires double the

bandwidth of a system with a standard, rectangular window.

However, with frequency error the rectangular window may not have

high enough rejection of adjacent tones. Thus, tone spacing must
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be increased and this leads to a greater system bandwidth than for 

the windowed receiver [6]. 

For the mark tone which we assume is the tone to be 

detected, we have 

XE 
b =- 	ym  I 

and for the space tone 

XE 
a=- I v 1 2 	 (7h) 

No 	s 

Now a and b, through the FFT outputs vm and vs , depend on the 

frequency assignment, the random phases and the random frequency 

errors for the K-I interferers. 

Ni

o  

The parameter X is given by 

( ): 	w4)
2 

i=1 
NI w  2 

NI 
i=1 	

i 

where N
I is smallest power of 2 greater than or equal to 8N, wi 

are the window samples and 101og 10 X represents the loss in 

signal-to-thermal noise ratio due to the receiver window function. 

In our input to the FFT the tones are complex exponential func-

tions so as to model an in-phase and quadrature processor. 

For a fixed frequency assignment and set of random phases and 

frequency errors, the error probability is given by (2) and (7). 

The average error probability is found by averaging over all 

2 (7a) 

X ( 8) 
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frequency assignments, random phases and random frequency errors 

using Monte Carlo methods. 	In our model, interfering tones are 

allowed to be more powerful than the data tones of the user. 	In 

one case these tones were OdB, 3dB and 10dB higher than the data 

tone on an equally probable basis. 	The advantage of a windowed 

receiver in this case, was found to be clear. 	The results were 

obtained by averaging over many sets of frequency errors, random 

phases and random amplitudes for the interfering tones. 

A typical set of calculations for our model are presented in 

Figs. 8 and 9. For the data in Fig. 8 we have 25 potential users 

each with a uniform random frequency error over [-.2/T,.2/T]. For 

Fig. 8 all users are assumed to be at equal power levels. The 

parameter used to set the Kaiser window function [6] was 0=1.81.  

and from (8) it follows that the loss in signal-to-thermal noise 

ratio is 1.6dB. We see from Fig. 8 that due to this loss the 

windowed receiver gives a very marginal improvement in performance 

only at very low error rates and thus the window is not required 

for the equal power case. In all our calculations data tones have 

been taken to be at adjacent frequencies. The a marked on our 

curves is the maximum standard deviation of the sample error 

probability relative to the average result that is plotted. 

In the calculations for Fig. 9 we have not placed all the 

interference at the same power levels as the data tone to be 

detected. In the worst case the interference is either equal, 3dB 

higher or 10dB higher than the data tone and all occur with equal 



-  30 - 

probability. 	Here, as we see from Figure 9, the window is essen- 

tial for acceptable error probability. 	In the other case con- 

sidered, the 3dB and 10dB interferences each occur with probabil-

ity 1/8 whereas the OdB interference level occurs otherwise. 

Again the window is needed to achieve reasonable error rates, even 

if the system is lightly loaded. 

This performance is expected as the window produces low 

sidelobes which attenuate interfering, non-orthogonal, tones, but 

at the cost of a loss in signal-to-thermal noise ratio. For the 

window to be effective the loss in signal-to-thermal noise due to 

multi-user interference must be greater than the loss due to the 

window. In all cases our computed results have been average over 

300 random samples of frequency assignment, random phase and 

frequency error. To compute one point on our error probability 

curves took approximately .5 hours of CPU time on a VAX 11/750. 

Most of the time is spent in computing FFT's and this will be 

speeded up considerably with the installation of our array 

processor. 

4. Conclusions  

The performance of a Binary FSK receiver  cari  be analyzed in 

the presence of phase noise, frequency errors and thermal noise. 

Calculations in the general case remain to be carried out. 

The performance of MFSK for single user environments and 

frequency errors  cari  be effectively estimated with upper and lower 
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-  33  - 

bounds. 

Based on Monte Carlo simulations for a 25 user environment it 

appears that receiver windowing is not required if all users are 

at the same power level. If a significant variation from equal 

power occurs then receiver windowing is required. 

A random model for computing Binary FSK performance 

degradation due to frequency errors and a multi-user environment 

has been presented. We expect this model can be used to handle 

various jamming scenarios such as partial-band and multi-tone 

jamming, both in the presence of a loss in system orthogonality in 

the input signal set. 

In the receivers considered, the nominal or unperturbed mark 

and space frequencies of each user were assumed known at the 

receiver. We have analyzed receivers in which this is not the 

case; for instance, a threshold based receiver for declaring tones 

present or absent. Calculations for such receivers, which are 

less complex than the ones we have analyzed here, will be avail-

able in the coming months. Such a receiver may more closely model 

the particular receiver implementation described in [13]. 
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