
RE PCMERFUL ERROR-CORRECT ION

 SCHEME FOR THE BROADCAST

TELIDON SYSTEM

' Brian Mortimer '

Michael Moore

eg 	I
d
1

LKC
QA
268
.1167
1983

moRE

0 APPI

IC

0.ntitruuvrn:c

Carleton University
Ottawa, Canada

LibrarY Queen
Incrtistr7irs,ar"—"-

Z=F7 2 8 1998
Industrie Canada

Bibliothèque
Queen

-et

Department of
Matifernatics and Statistics

FINAL REPORT

prepared for the Department of

Communications, Ottawa under

DSS Contract No. 0SU82-00164

MORE POWERFUL ERROR-CORRECTION

SCHEME FOR THE BROADCAST

TELIDON SYSTEM

Brian Mortimer

Michael Moore

ze

Principal Investigator: Dr. B.C. Mortimer, Carleton University

Scientific Authority: 	Dr. M. Sablatash, Communications
Research Centre, Dept. of Communications

March, 1983

•

TABLE OF CONTENTS

ti

"T

V

ACKNOWLEDGEMENTS

STATEMENT OF PRINCIPAL RESULTS

CHAPTER I INTRODUCTION

1.1 Error Correcting Codes in Broadcast Teletext

Sys tems

1.2 Performance of the Coding System with

Independent Errors

1.3 Options and Recommendations

I

2

4

4

13

CHAPTER 2- THE CODES 21

2.1 The Hamming and Product Codes 21

2.2 The Code C 23

2.3 Encoding 26

2.4 Decoding Code C (in theory) 27

2.5 Bundle Codes 28

2.6 Encoding and Decoding Bundle Codes 30

CHAPTER 3 PERFORMANCE OF THE BUNDLE CODE SYSTEM 32

3.1 System Performance with Independent Errors 32

3.2 The Probability of Correct Decoding for a 34

t-Error Correcting Code

3.3 The Vertical and Horizontal Codewords and 35

Pernicious Error Patterns

3.4 Putting the Pieces Together 50

3.5 Bundle Length Effects 52

3.6 Burst Errors
53

CHAPTER 4 OTHER DECODING STRATEGIES 	 56

4.1 Introduction 	 56

4.2 No Bundle Coding 	 56

4.3 Erasure Correction of One Data Block 	 58

4.4 Single-Byte-Correction of the Vertical 	 70

Codewords

4.5 Full Decoding - the other cases 	 62

CHAPTER 5 TWO-BYTE EXTENSIONS OF THE PRODUCT CODE 	 63

5.1 Extensions in General

5.2 Some Extension Ideas that Don't Work 	 64

APPENDIX A Special Weight 6 Codewords 	 67

APPENDIX B Extensions of the Product Code: Weight Six 	 70

Codewords

APPENDIX C Program Listings

REFERENCES 	 73

• 1

ACKNOWLEDGEMENTS

We are happy to express our thanks for the assistance of a

number of students we have helped out on various parts of the

project: James Currie, Paula Gray, Lee Oattes and Brian Leroux.

We are also appreciative of the quality and efficiency of the work

of our typist Susan Jameson.

Brian Mortimer

NSERC University Research Fellow,

Department of Mathematics and Statistics,

Carleton University,Ottawa,K1S 5B6.

Michael Moore

Assistant Professor,

Department of Mathematics and Statistics,

Carleton University,Ottawa,K1S 5B6.

More Powerful Error-Correction Schemes for the Broadcast Telidon

System

DSS Contract No. 0SU82-00164

Statement of Principal Results

1. A particular Reed-Solomon code based on symbols of 8 bits was

defined, analyzed and proposed as a "two-byte" data block code

for the broadcast Telidon System. This is a code of variable length

which uses two check symbols per codeword.

2. A proposal was made to encode collections (tentatively called bundles)

of data packets by interleaving a single-byte correcting code

across the data blocks. The Reed-Solomon code of Item 1 aboVe was

proposed as a suitable code to implement this bundle code.

3. It was shown that in the case of independent errors and a proper

decoding procedure there is a significant improvement in using

bundle coding over using single or double bit error correction on

the data blocks alone. It was further shown that ipundle coding

without any error correcting on the data blocks gives better

performance than double bit error correction of the data blocks

without bundle coding.

4. It was shown that the Reed-Solomon code of Item 1 could be

efficiently decoded by a microprocessor based decoder.

Reports Delivered Under the Terms of the Contract

"Two-Byte Data Block and Bundle Codes for the Broadcast Telidon

System", Progress Report, November, 1982.

"More Powerful Error-Correction Schemes for the Broadcast Telidon

Fe

System", Final Report, March, 1983.

March 31, 1983

17.77.

Brian Mortimer, Ph.D.

NSERC University Research Fellow

Carleton University

Principal Investigator

4

INTRODUCTION

1.1 Error Correcting Codes in Broadcast Teletext System

Broadcast teletext systems are designed to be used in a wide

variety of situations. They must meet the needs of a spectrum of

users and tolerate a range of communication channels. Error correcting

codes can be used effectively in broadcast teletext systems to enhan,„.:

the performance observed by the end user. This report describes

certain aspects of this application of error-correcting codes.

The model on which the work described in this report is based

is the Canadian Broadcast Telidon System as outlined in the Broadcast

Specification No. 14 (Provisional, June 1982)
[1]

. The data stream in

this system is broken up into data lines. Each data line begins with

some synchronization information. This is followed by the 33 bytes

of a data packet; a five byte prefix is followed by a 28-byte data

block.

The prefix bytes consist of three address bytes which identify

the source of the data packet, then a single continuity count byte

which counts, in cycles of 16, the data packets of a given address

as in the order in which they were sent down the channel and finally

•

•

5

a Packet Structure byte which contains information about the format

of the data block. All of these bytes are encoded as Hamming [8,41-

codewords (with odd parity). This means that single errors are cor-

rected and all double errors are detected if they corrupt one of

these bytes.

The data block may contain information about the organization

of the data in the channel or it may consist of the actual data

(PIŒ's) that the system is designed to transmit from source to use

In the former case the bytes are encoded as Hamming [8,4] codewords

as in the prefix. We will ignore these data blocks on the hypothesis

that they represent a very minor fraction of all data blocks trans-

mitted. If the data block contains data then a certain number,

say s, of its 28 bytes are committed to providing the redundant

information that allows an error correcting code to correct errors

in the data block. The value of s is signalled by two of the bits

in the Packet Structure Byte of the prefix. Thus s is limited to

4 values and we will assume that three of them are s = 0, 1 or 2.

The data bytes all have odd parity so the value s = 0 repre-

sents an error detecting code. This code detects all error patterns

which have an odd number of errors in at least one byte of the data

block. No correction is possible so the receiver must await re-

transmission when an error is detected.

6

If s > 0 then an error correcting code is being used to repair

damage caused by noise in the channel. The choice of error correcting

code has been the subject of much work and discussion.[2]-[8], and

we will make further proposals in this report. The codes used in

the data blocks are called data block (and later horizontal) codes.

We are proposing in this report that a third level of coding

(after prefix and data block) be available to improve the performance

of the system as a whole. The idea is to gather together bundles

of data blocks (from the same teletext page) and encode them together.

The new codewords are vertical. This means that these codewords

consist"of two bytes from each data block of the bundle. For example

one, codeword would consist of the first and fourteenth bytes of

each data block. The last data block of the bundle consists entirely

of check bytes for the vertical codewords, see Figure I.I. In order.

for the vertical code to be useful it must use at least two check

bytes in each codeword. This iswhy we have specified two bytes

from each data block. (If we increase the redundancy by using two

data blocks of vertical checks then we can correct more errors and

in particular we-can get away with having only one byte-from each

data block in each vertical codeword.)

0

•

1

Ei7

F.— Prefix —4,- 	 Pa.t.t. 13 lee k

•

1.

re e
4 	

p ell 	0
4 •

g

a 	 Ill III 	a owl I oi - 	
1 isu

 VI 	oi • on 	II 	ill 	ro 111 	1
311 	111113 	I II 	I II

' 	1 li +I, Veeticc. I 	coateworci.
• • 	•

	 3 r-oi 	tier-heal 	coole word

±,st pote ket

g no(patc k et

rd kel-

trc hec k 	te'S
of verti ca I

1. Cook Wee rols

• 7

tt.4:
1st vrti.l code-woe-J.

Fitre 1, 	A rre”e 	 tke 141 	 Codewords 	ti-he 	coc.ie

•

8

1.2 Performance of the Coding System with Independent Errors

Whén we refer to "the coding system", we are referring to all

of the levels of coding acting together. We will use as measures

of performance the expected number of bundles before an incorrectly

decoded bundle occurs and the expected number of information bits

before such an event. The point is that longer bundles contain a

larger fraction of information bits but do not protect it as well.

The coding of a bundle comes in 3 layers. The first is the

prefix code which consists of 5 bytes each encoded with the Hamming

(8,4) code. Due to the continuity count byte (the 4th byte) and the

interpretation of the packet structure byte (the 5th byte) it will

•be a rare event that a decoding error in the prefix actually goes

unnoticed by the system. The most common error effect is that a

packet is lost or appears to be lost from the broadcast stream. This

might also occur if there are synchronization problems when the

line arrives.

The second layer is the data block code. We consider three

options:

Byte-Parity (Parity)

The only coding is the parity bit in each data byte.

•

9

Single Bit Error Correction (SEC)

The 28th byte of the block is a check byte which allows

the correction of a single bit error. With only one

check byte it is not possible to correct all double errors.

Double Bit Error Correction (DEC)

The 27th and 28th bytes of the block are check bytes. Any

double bit error can be corrected.

The third layer of coding covers all of the data blocks toget,er

(but excludes the prefix bytes). We consider four options. The

first is to add no further coding. The other three are simply alter-

native decoding strategies for the same encoding. For these we

interleave a number of vertical byte-correcting codes across the

set of h data blocks adding 28 check bytes as the h-th data

block (the layout of the interleaVing is given in Figure1.1). We

assume that the basic code which is then interleaved is capable of

correcting any error pattern confined to a single byte or any two

byte-errors when the bytes are known (erasure decoding). We will

propose such a code below (Chapter 2). We summarize the four

strategies for coding the bundle as follows.

Nocode:

The (h-l) data blocks are sent as they are with no further

protection.

10

Erasure correction:

The bundle code is used to replace a lost data block by

erasure correction. One data block can be retrieved and

no other corrections are attempted on the bundle. This

technique can overcome a failure in a single prefix or a

single synchronization error.

14 X 1-Byte-error correction:

A single byte error in each of the 14 interleaved codewords

is corrected. If there are two faulty bytes in any one

codeword then the errors are not correctable.

Full Decoding:

In each of the interleaved codewords we correct either a

single erroneous byte or two bytes with parity failures

or two bytes which are absent entirely. In this scheme a•

single missing data block is replaced if there are no

other errors. If all the data blocks are present we cor-

rect either one byte error or two byte erasures in each

of the 14 vertical codewords.

In order to calculate the mean number of pages before a decoding

fault (not a correct decoding) we must first choose a coding strategy

for the second and third levels and then make an assumption about

the patterns and frequency of the errors. As to the latter we will

assume at this stage that the errors arise independently and defer

11 •
the question of burst errors to later consideration. We are then

able to present (Figure 1.1) for each combination of coding strategies

and a range of bit error rates the expected number of bundles until

an incorrect decoding, for a bundle length h > 9.

The data of Figure 1.1 show clearly that performance can be

greatly improved if a bundle code is used, at least, to correct

erased data blocks and then to correct more if it can. This is

especially true if a double bit error correcting code is used on

the packets first. The importance of the double bit error corrections

is made clear by calculating the expected number of bit errors in the

bundle. We have included these numbers in Figure 1.1 as well. At a

bit error rate of 10
-3

we expect slightly more than 2 errors.

The probability that two bit errors are in the same block is just 1/9.

Thus a single bit error correcting code has a lot of trouble. Also

without erasure decoding we cannot escape the failures from the pre-

fix so these act as a limiting factor. We can easily calculate for

example that the expected number of bundles until at least one prefix

fails is 800 at a BER of 10
-3

but we expect 1.4E6 bundles

before at least two prefixes fail at the same BER.

We now take a look at Full Decoding in more detail. We have

two parameters that we can vary: the bit error rate and the bundle

111111, •

Bundle

TABLE 1.1 Expected Number of Bundles Of Length 9 Until Decoding Fault

Coding Stategy 	 Bit Error Rate

-4 Data Block 	10 -3 8x10 	6x10 -4 4x10 -4 2x10 -4 10 	10-5-4

No code
Parity 	1.2 	1.3 	1.5 	2.0 	3.3 	6.1 	56
SEC 	 6.2 	9.2 	16 	33 	129 	505 	4.9E4
DEC 	 74 	137 	304 	940 	6280 	3.9E4 	1.6E6

Erasure cor- Parity 	 1.2 	1.3 	1.4 	1.8 	 3.0 	5.9 	50
ection of 1 	SEC 	 65 	145 	421 	1969 	2.9E4 	4.5E5 	4.4E9
data block 	DEC 	 9615 	3.3E4 	1.6E5 	1.6E6 	7.0E7 	2.7E9 	1.3E14

Single byte 	Parity 	 8.4 	13 	22 	 47 	185 	730 	7.2E4
correction 	SEC 	 71 	127 	252 	621 	2630 	1.0E4 	1.0E6 ,_.,
in 14 v.c. 	DEC 	 352 	615 	1241 	3247 	1.6E4 	7.0E4 	7.9E6

1-byte error Parity 	140 	263 	596 	1920 	1.5E4 	1.1E5 	2.8E7
2-byte erase. SEC
in 14 v.c. 	DEC 	 1.3E4 	2.8E4 	7.4E4 	2.7E5 	2.3E6 	1.9E7 	1.7E10

Expected number of
bit errors in the
data blocks

2.02 1.61 	1.21 0.81 	0.40 0.20 	0.02

Notes: 1)A Bundle contains eight data blocks and except for the case
of 'No code' above there is a ninth data block consisting
of check bytes.Thus the bundle length is h=9.

2)The abbreviation v.c. above stands for vertical co. 'ord.
3)The entrys marked * have not been calculated at time of printing.

13

length. The expected number of bundles and of information bits

before an uncorrectable bundle for various choices of bit error

rate and bundle lengths are presented in Tables 1.2 and 1.3.

1.3 Options and Recommendations

As far as the error correction scheme is concerned there are

two sets of options which have to be considered - the encoding op:

and the decoding options. The encoding options are the various pos-

sible ways in which the transmitting agency can encode the data for

error protection. The decoding options are the range of procedures

which teletext decoder manufacturers can build into their receivers

to make use of the redundancy for error correction. The performance

of the system depends on the encoding scheme, the decoding procedure

and the patterns of the errors in the channel (e.g. independent,

short dense bursts, etc.).

The encoding options all use the Hamming code on the prefix

byte. There is then a choice of data block code and a choice of

bundle code format. The data block code might be simply the byte

parity checks. It might use one byte of redundancy to obtain a single

bit error correcting code or a two-byte code to obtain double bit

error correction. We recommend Product code for the one-byte code

and code C 	 byt4e-.-___i.

14

TABLE 1.2 Expected number of information bits until

incorrect decoding

BIT ERROR RATE: 	.002 	.001 	.0008 	.0006 	.0004

BUNDLE LENGTH

1.66E6 2.21E7 4.66E7 1.17E8 4.26E8

6 	 1.57E6 2.19E7 4.70E7 1.19E8 4.33E8

7 	 1.50E6 2.16E7 4.68E7 1.21E8 4.38E8

8 	 1.43E6 2.11E7 4.65E7 1.21E8 4.40E8

9 	 1.38E6 2.07E7 4.58E7 1.20E8 4.41E8

10 	 1.34E6 2.02E7 4.52E7 1.20E8 4.41E8

11 	 1.31E6 1.97E7 4.44E7 1.18E8 4.40E8

12 	 1.30E6 1.92E7 4.37E7 1.17E8 4.39E8

13 	 1.29E6 1.87E7 4.29E7 1.16E8 4.38E8

14 	 1.29E6 1.82E7 4.21E7 1.15E8 4.36E8

15 	 1.29E6 1.78E7 4.13E7 1.14E8 4.34E8

15

TABLE 1.3 Expected number of 504 byte pages until an

incorrect decoding

1,1.11

BIT ERROR RATE: 	.002 	.001 	.0008 	.0006 	.0004

BUNDLE LENGTH

5 	 4.13E2 5.48E3 1.15E4 2.92E4 1.05E5

6 	 3.19E2 5.44E3 1.16E4 2.95E4 1.07E5

7 	 3.72E2 5.37E3 1.16E4 3.02E4 1.08E5

8 	 3.56E2 5.25E3 1.15E4 3.00E4 1.09E5

9 	 3.43E2 5.13E3 1.13E4 2.98E4 1.09E5

10 	 3.33E2 5.01E3 1.12E4 2.97E4 1.09E5

11 	 3.27E2 4.88E3 1.10E4 2.94E4 1.09E5

12 	 3.22E2 4.76E3 1.08E4 2.91E4 1.09E5

13 	 3.20E2 4.64E3 1.06E4 2.89E4 1.08E5

14 	 3.20E2 4.53E3 1.04E4 2.85E4 1.08E5

15 	 3.21E2 4.42E3 1.02E4 2.83E4 1.07E5

te,

r t

16

TABLE 1.4 Expected number of bundles of length h until

incorrect decoding

BIT ERROR RATE: 	.002 	.001 	.0008 	.0006 	.0004

BUNDLE LENGTH

5 	 2.01E3 2.67E4 5.63E4 1.42E5 5.14E5

6 	 1.53E3 2.13E4 4.56E4 1.15E5 4.21E5

7 	 1.21E3 1.75E4 3.80E4 9.88E5 3.55E5

8 	 1.00E3 1.47E4 3.24E4 8.45E5 3.07E5

9 	 8.46E2 1.26E4 2.80E4 7.35E5 2.69E5

10 	 7.32E2 1.09E4 2.46E4 6.53E5 2.40E5

11 	 6.46E2 9.66E3 2.17E4 5.81E5 2.16E5

12 	 5.80E2 8.57E3 1.95E4 5.24E5 1.96E5

13 	 5.28E2 7.66E3 1.75E4 4.77E5 1.79E5

14 	 4.88E2 6.90E3 1.59E4 4.35E5 1.65E5

15 	 4.54E2 6.26E3 1.45E4 4.01E4 1.52E5

• 17

We then come to the bundle coding options. These are somewhat

more involved. We may decide on not using bundle coding and that is

the first option. We have described earlier in this Section an option

using 14 vertical codewords and one data block of check bytes to

form a bundle code of length h data blocks where h can range from

2 to 63. This second C bundle code is susceptible to a variety of

decoding options as we have already described. It is clarified in

Chapter 2 that by using only 13 instead of 14 vertical codewords

this system can be made completely compatible with the two byte data

block code. We have shown that, if the Full Decoding method is used,

then this sort of encoding option - code C on the data blocks and

code C in the vertical codewords - will give a great improvement in

the expected interval between incorrect decodings when the errors are

independent. We have also indicated that the bundle length is not

especially important in this context but that long bursts may cause

trouble particularly if the burst runs from one data packet into the

next from the same page.

What could a decoder designed to deal with Product code do with

this bundle code? It can still perform single error corrections on

the data blocks since code C extends Product code. But now, although

it can decode the vertical codewords as if they were from Product

code, it can't perform the erasure corrections of two bytes on which

18

the power of the bundle code depends. One option is to allow a bundle

code which has 38 vertical codewords, each from Product code. This

bundle code will perform as the SEC-data block /Erasure -only decoding

option of Table 1.1 (or actually a bit better). It can correct one

erased data block and uses one data block of checks. We have not

analyzed the performance in great detail.

We can infact put all of this together into a new bundle encoding

Option. The bundle in this new case will use one or two data blu ,s

of check bytes and always has 28-s vertical codewords where s is

the number of check bytes in the data block code. The vertical code-

words cover only the data bytes and the check blocks are encoded with

the data block code. The vertical code is just whichever code is used

on the data blocks be it Product or c . This would allow either a

Product decoder or a C-code decoder to decode the bundle. The Product

decoder acting on the vertical codewords could replace an erased block

and perhaps correct a few random bit errors not corrected by the

horizontal codewords. The real benefit comes when code C is used

on the 26 columns of bytes and two check bytes are added, one in each

of the two check blocks. This would allow one error correction or

two erasure corrections (of bytes) in each column. This permits two

missing data packets to be replaced. More importantly we have noted •

19

Check bytes of the
vertical codewords

mre

erg

151-1à.

at the end of Chapter 3 that a burst of errors which runs over from

the end of one data block into the prefix of the next data packet

cannot be corrected by the bundle arrangement studied throughout

the rest of this report. Such a burst would however, be correctable

by this ne w bundle scheme.

The price which we are (apparently) paying for this added power

is increased redundancy Which some may find a hard pill to swallow.

But we have already shown that the bundle length does not affect ,

expected number of information bits between incorrect decodings very

significantly when the errors are independent. So if we just double

the bundle length and use two check blocks the information rate is

the same but a potentially dangerous class of burst error patterns

is now correctable.

Prefix 	26 vertical codewords Check bytes of the
Bytes 	 data block codewords

Figure 1.2 A New Bundle Scheme

20

This covers the encoding options both the ones analyzed to date

and the new bundle coding scheme which is as yet unanalyzed. Several

decoding options have been mentioned earlier and they are quite

numerous. For example code C can be decoded either bitwise or

bytewise (which is quicker). We have discussed in Section 1.3 several

decoding options for the bundle code and showed that "Full Decoding"

is the most effective of these when errors are independent. Actually

after the bulk of the current study was complete it occurred to us

that even more performance can be squeezed out of the bundle code.

We could count the decoding failures in the horizontal codewords.

If there is one decoding failure and (h-1) correct decodings then

we replace the one data block with the decoding failure by erasure

decoding. We have not analyzed this decoding strategy but note in

passing that most of the error patterns declared "uncorrectable" in

Chapter 3 would actually be corrected by this procedure.

The problem of estimating how well a given encoding scheme and

matched decoding procedure will work requires for its solution a

description of the patterns of errors which occur in the channel.

We have assumed in most of this report that the error's are independent

but we do not have any reason to suppose that this captures the

essence of most or even many broadcast teletext channels. Until

field data is available there is not much we can do about this problem.

21

CHAPTER 2

THE CODES

2.1 The Hamming and Product Codes

The five prefix bytes of each data packet are encoded using a

Hamming [8,4]-code. The Hamming codes are a very large general

class of codes. If we allow shortening of the codes then every

single error correcting code is a (shortened) Hamming code. (In

this context we note that the Carleton code which was described in

[7] is an example of a Hamming code.) There is only one Hamming

code of length 8 although we have to be specific about the order of

the digits. The code consists of all of the weight 4 bytes, the

weight 8 byte and zero. Each codeword contains four information

bits and four check bits. Thus it is a rate -1-2- code. This code

corrects all single bit errors and detects all double and all odd

weight errors. It falsely corrects all error patterns of 4, 6 or

8 errors.

The particular version of the Hamming [8,4]-code used in BS-14 [1]

is an "odd parity" implementation. If the byte is (lb
8
,b

7
,...,b

2
,b

1
)

then b8 , b 6 , b 4 , b 2 are information bits and the odd bits are the

checks. The checks are defined by,

22

b
7

= b
8
+ b

6
+ b

4

b
5

= b
6
+ b

4
+ b

2

b
3

= b
4
+.b

2
+ b

8

= b
2
+ b

8
+ b

6
.

The notation b
2

denotes the complement; «-d = 1 and 1 = 0 . These

complements are used to give the code bytes an odd overall parity,

see [1], Appendix B.

The data block consists of odd parity bytes. The first error

correction option is to specify (via the Packet Structure Byte)

that a single byte of redundant bits is in use. There have been a

number of suggestions for the particular one-byte data block code to

choose. The first (and enduring) code to be proposed was the

Product code [2]. This ia a simple code with many good features

which has often been discussed under various names (row-column

code, two-way parity check etc.). The code is defined by the con-

dition that if all 28 bytes of the data block are added mod 2

(exclusive-or) then the result is (1, 1, 1, 1, 1, 1, 1, 1) . 	To

encode, the first 27 bytes are (exclusive-or) ed together to obtain

a byte U . Then the 28th byte is fj- , the complement of U with

0 replaced be 1 and vice versa. Since there are 8 columns and

l'f• 4

• 23

an odd number of ones in each column there is an even number of

ones in the whole codeword. The first 27 (odd parity) bytes contain

an odd number of ones, so the last byte has odd parity automatically.

There have been a number of suggestions of codes to replace

this Product code as the one-byte data block code [3], [4], [6], [7] .

However, we have assumed throughout the current work that the one

byte code is the Product code. In looking at two byte codes we have

always assumed that one of the check bytes used is the Product coa

check. The second byte supplements this byte in an advantageous

way. The best way to add this second byte discovered so far is de-

scribed below in Section 2.2. It is a Reed-Solomon code we call

simply code C. Other less fruitful possibilities are discussed in

Chapter 6.

71,

2.2 The Code C

The code C which is proposed for error protections of each

line (data block) of 28 bytes is a Reed-Solomon code using the last

2 bytes of the line as check symbols. This code can also be used

to form an interleaved code to protect bundles of lines. The ad-

vantages of the code C include the following:

24

it extends the product code

it extends the Carleton code

it corrects all double bit errors

it corrects any error patterns confined to one byte

it has a straightforward algebraic definition.

The code C is a Reed-Solomon code with symbols taken from .:<«

field
F128

consisting of 128 elements. We take a primitive elem•,t

in
F128

so that the powers ^
0

,
. 1 2 4 126
s , s,. ••, are the 127

non-zero elements of
F128

and
p127 = 1.

Each codeword of (', is

regarded as a polynomial C(X) in a single variable with coefficients

in F In order to be a codeword, the polynomial must satisfy two

conditions

(i) degree C(x) < n (where n is fixed)

(ii) C (^ 0) = C(s') = 0 .

For a data block , n will be 28, and for interleaved codes on

bundles of data blocks, when 14 codes are interleaved to protect

a bundle of h lines, then u will be 2h. In particular n is

the length of the code (in symbols) and can be at most 127:

The bytes in the data block must now be related to the symbols

from the field F. In order to do this we let « be a primitive

e

• 25

element of F and take a to be a root of the polynomial

so that

7 	3
a' + 	+1 = 0.

We further require that no polynomial of lower degree, with coefficients

in F
2 	

(0,1) has a as a root. Then the first 7 powers of a ,

namely 1, a, a
2

,
6

are linearly independent over F .
2

Each field element y of F can be uniquely represented by a

7-tuple of bits by y -4 (b o , b 1 , 	b 6) when y = b
0

b
1 	6

a
6

.

For example a
8

E F and, since a
7

= 1+a
3

, we get a
8

= (1 + a
3

) =

= a+a
4
 so a

8
-› (0,1,0,0,1,0,0) . To correspond to bytes we need

8-tuples of bits and we observe that every field element of F has

exactly two representations in terms of the first 8 powers of a,

 where we can change from one representation to the other by adding

3 	7 0 = 1+a +a, • Thus

8 4 	 3 	4 7
a= a+a = 1 -F- u+a +a, +a .

Since adding 1+a,3 +a
7

is the same as performing an "exclusive-or"

operation with the byte (1,0,0,1,0,0,0,1) 	1+a
,3

+a
,7

one repre-

sentation has odd parity, the other has even parity.

By fixing the parity (to be odd say) we have exactly one byte

for each field element.

26

such that

2.3 Encoding

Each of the bytes B
O

, B
1

, 	B
n-3

in a data-block represent

field elements and we require B
n-2

and B
n-1

C(l) = B
O
+ B

1
+ 	4- B

n-1 	
= 0

-1
C (S) = B

O
+ B

1
p + 	+ B

n-1
n = 0

Since we are working in a field of characteristic 2, C(l)

simply the exclusive-or of the corresponding bytes. Thus a codewo

of C is also a codeword of the product code (if odd parity is

desired for transmission, then B
n-1

must be replaced by U)

If we now choose 5 = cy
8

and write BB 	B
n-1

as a
0' 	l' •

1 8 	15
bit string b

0 1 	8n-1 	0 	0 	1 	1
b 	b 	, then B = b + 	+b 	, B 5 = b

8
u + ...+b

15ce
,..•

and

8n-1
C()= E 	b.ce

i
=0

i=0 I

since B0 +B 1 + 	= (b
0
+ b + 	+ b

7
a
7
) + (b

8
+ b

9
cy+ 	+ b

15
a,7)ce

8
+ 	.

This means that every codeword of C is also a codeword of the

Carleton code as defined in [Fig. 1.1].

To determine B
n-2

and B
n-1

we set S and T to be zero bytes

-1
+B. for

= 0,1,2,...,n-3 . Then the end values are

n-3 	 1 	n-3 	i
S = E B. , 	T = 	E Bip .

1
i=0 	

n-3
i=0

S + B
n-2

+B 	=0
n-1

n-3 	n-2 	n-1
= 0 T5 +B 	+B

n-Ê

n-2
+B 	=S

n-1

-1
+B B T.

n-2 	n-1

i.e.

27 •
We require

The solution of these two equations gives us

-1
B

n-2 	
(S5 + T5

-1
)(1+)

B
n-1

= (S+T5) (1+5) 	.

We note that, in terms of a ,
-1

= +OE
5

+0,6 , (1+5)
-1

= OE
6

.

2.4 Decoding Code C (in theorY)

The condition that a codeword of C must satisfy the relations

C (5) = C(l) = 0 allows the code to correct errors. Suppose a code -

word C (X) is sent and a single symbol (byte) is received in error.

Thus for some e
j

the message (B B 	, B) was sent and
0' 1 	n-1

(B
o' 	

, B + e , 	, B
n-1

) arrived. Writing this as polynomials

R (X) = C (X) + E (X) is received where E (X) = e .Xi . Now we evaluate

0 	 1
R (X) at 5 = 1 and (3

1
noting that C(

0
5) = C () = 0 . We

obtain,

00
R(p) = c(

o
) + E ()

E (5
o

O. j
=e 	= e. •

28

which is the error value, and

R(f3) = c(e) + E(p)

= E(e)

=
3

Thus we write R(e) /R(1) as a power to obtain f3 of

index of the faulty byte. Then R(1) is the quantity to be sub-

tracted to correct the error. This proves that C is single symbol

correcting.

Now suppose that the error polynomial has the form E(X)
=

e
j
Xi +e

k
X
k

so that errors occurred in the j-th and k-th symbols. Suppose that

the integers j and k are known. This is the erasure situation.

0 	 1
Again we evaluate at e = 1 and e = e . Then

e
j
+ e

k
= R(1)

R(p)
3 5

are known as are the coefficients 5
j

and $
k

. Thus we can solve

for e
j

and e
k

(since j 	k) and correct the errors. Therefore,

two symbols whose locations are known can be corrected.

2.5 Bundle Codes

In order to protect bundles of data blocks we use an additional

lb block for error control. A bundle consists of h data blocks and

29

•

Data

Blocks

block number h is used for the check bytes on the previous h-1

blocks. Each data block contains two bytes of redundancy and these

two bytes per block are not encoded by the bundle code.

There are then 26 bytes in each block to be encoded and we use

13 interleaved, singel (byte) error correcting Reed-Solomon codes to

protect them. We again use the code C and this time it has a length

of 2h symbols. Each of the 13 interleaved codes contains two

bytes from each data block. The first code covers bytes 0 and 12

from each data block and the check bytes are bytes 0 and 13 of

S
block number h. Then successively we use bytes 1 & 14, 2 & 15,...,l2&2

for the second, third, ..., 13th codes respectively.

In block h we now have bytes 0, 1, 2,..., 25 determined and

these are now encoded to make the whole block a codeword of C of

length n = 28 symbols by adding the two extra check bytes required.

Bytes

0 1 12 13 14 25 26 27

!
B lock

<-Bundle^

Protecti n

Protection

Bund

30

The discussion above uses 13 vertical codewords whereas the

description in Chapter 1 and the calculations of Chapter 3 assume 14

vertical codewords. The difference is in the matter of whether the

check block is encoded with a data block code or not. It is best

in fact to use the 13 vertical codewords since there is no advantage

in correcting errors in the check bytes of the data blocks. Using

14 vertical codewords gives slightly worse performance and so our

performance estimates are, if anything, conservative.

We emphasize that in the arrangement we have specified the code

used for the vertical and horizontal codewords is the same (though

of different lengths). Thus only one decoder is necessary and using

the bundle code involves adding a portion of overhead to the decoding

program but not a new error correction procedure. Also we have de-

scribed in Chapter 1 other arrangements for bundle coding which are

based on single byte codes and double check blocks.

•

2.6 Encoding and Decoding the Bundle Code

We have discussed above the theoretical decoding procedures that

demonstrate the capabilities of the code C. 	Since this is a Reed-

Solomon code it is susceptable to any of the decoding algorithms

which have been proposed for this class of codes. It is, however,

31

a particularly simple example of such a code and it is quite feasible

to implement the procedures indicated in Sections 2.3 and 2.4. In

this regard the paper [14] may be of interest.

We have implemented a decoder for code C which decodes a

single codeword in less than a millisecond using a Motorolla 6809

microprocessor running at a clock speed of 1.29 Mhz.

If code C is also used for the vertical code in the bundle

then each of these codewords would also be decoded in less than a

millisecond. A bundle decoder would have a code C decoder as a

subroutine. It would have to decide for each bundle whether it was

going to simply decode the vertical codewords or attempt to replace

a missing data block. In the latter case the index of the missing

data block would have to be passed to the code C decoder along

with an indication that these are the relevant bytes to correct.

32

CHAPTER 3

PERFORMANCE OF THE BUNDLE CODE SYSTEM

3.1 System Performance with Independent Errors

This chapter is devoted to the calculation of the expected

performance of the complete Bundle Code System. 	The performance is

measured by calculating the expected number of bundles processed

before a bundle is not correctly decoded (either through a decoding

failure or decoding error). In all sections except the last we

assume that the errors are independent events while in the final

section we look at errors clustered in bursts.

The performance of a particular code depends very much on the

decoding strategy used. The Bundle Code is actually a complex com-

bination of many codewords from several codes. This means that a

number of decoding strategies are possible. We will concentrate on

one particular decoding procedure throughout most of this chapter;

we will call it Full Decoding.

The Full Decoding procedure decodes each prefix and then each

data block as it arrives. Then the vertical codewords are decoded.

If two or more prefixes have uncorrectable (but detected) errors then

we declare a decoding failure. If exactly one prefix has a decoding

• 33

failure, then when the vertical codewords are decoded, this

decoding is an errasure decoding which attempts to replace the

bytes in the data block of the defective prefix. If all prefixes

are correctable then the vertical codewords are decoded bytewise:

either one-byte-error or two-byte-erasure whichever is indicated

by the byte-parity failures.

The Full Decoding procedure correctly decodes a bundle if

either the prefixes are all correctable and the horizontal and

vertical codes can correct the errors in the data blocks or there is

exactly one of the h prefixes with an uncorrectable error and all

the errors in the other (h-1) data blocks are corrected by the

horizontal code (thereby leaving the vertical codewords free to re-

place the missing data block). We therefore have four probabilities

to calculate:

= probability that a single prefix is correctly decoded,
PCD

liVCD =
probability that the for. & Vert. codewords are correctly P

decoded given that all prefixes are correctly decoded,

P
HCD

= probability that a single horizontal codeword is cor-

rectly decoded

P
CD

= probability that a bundle of h data packets is correctly

decoded.

34

Then for a bundle of 4 data packets (i.e. a bundle of length 'It)

we easily have a formula;

P
CD

=)
h
(P) + h (1-P) (P)

h -1
(P
HCD

)
h -1

PCD 	HVCD 	PCD PCD

The first term comes from the case in which all prefixes are correctly

decoded and the second from that in which exactly one of the prefixes

fails. We vill show ho w to calculate P
CD
 in section 3.3

HV

and the next section treats the other probabilities.

3.2 The Probability of Correct Decoding for a t-Error Correcting Code

If we have independent errors which occur with probability p

and use a length n code which corrects t bit errors then there

is a simple formula for the probability of a correct decoding. For i

•
lessthanorequaltotthereare () .patterns of i errors and 1

each of them occurs with probability pq where q 	1-p is the

probability of a correct bit. Then the probability of a correct de-

coding is the probability that one of these patterns occurs which is

n i n-i
(.)

i=0

In the particular case of an [8,4]-Hamming code this is

q
8
+ 8pq

7

since the code is single error correcting. For a double error cor-

recting data block code this is

35

q224 y 224pq223 + 24976p2q222

since
224

(2)= 24976. (For a single error correcting data block code

only the first two terms are used). We can then write

PPCD -
(q8 + 8pq7)5

since a correct prefix has 5 correct [8,4]-Hamming codewords and

P HCD = q224 + 224pq223 + 24976p2q222 •

We note in passing that if the code acted bytewise then q8 is

•
the probability that a byte is correctly received. Hence the

probability that a length b bytes, single-byte error correcting code

decodes correctly is

(q8)b + b(1-q8) (q8)b-1

If we let n = 8b be the length in bits this is

qn + ($)(l-q8)qn-8

This is used in analysis of some of the decoding strategâes.

3.3 The Vertical and Horizontal Codewords and Pernicious Error Patterns

The only probability left to calculate is the probability that a

bundle of horizontal and vertical codewords decodes correctly; that is,

P HVCD '
We continue to assume that errors are independent. In this

36

case we will calculate the probability P 	by estimating 1 -P HVCD 	 HVCD

the probability of an incorrect decoding.

Suppose t errors occur. This event arises with probability

t n-t
P q 	where q =1 -p and n =224h is the number of bits in the

(data:blocks of the) bundle. We must then count the number N
t

of

patterns of t errors which are not correctable. The sum ENp
t

q
n-t

t

then gives the probability of an incorrect decoding. The major problem

of this section is the estimation of the numbers

(t < 11). We find,

N
0
 = N

1
 = N

2
 = 0 ,

N
3

= h 6272,

for small t

N = (
h
)2.8099E6 +h1.3215E6,

4 	2
h

N
5

= (
3
)9.4411E8 + (

h
)9.0536E8 +h 1.3737E8,

2

N
6
 . (1E)2.8197E11 + (

h
3)4.0947E11 + (

h
)3.8654E11 +h 9.5185E9,

 4 	 2
h 	 h

N
7

t--'' (
5
)7.8953E13 + (14)1.5373E14 + (h)2.5081E14 + (

2
)4.6303E13,

4 	 3
h 	 h

N
8
 Pe (1')2.1223E16 + (5)5.1849E16 + (4)1.1454E17 + (h)5.3579E16,
 6 	 3

h 	 h N
9
 -,-; ()5.5462E18+ (11)1.6303E19 + (5)4.4148E19+ (

4
)3.3981E19,

 7 	 6

N10 ^,:',(h)1.4198E21 + (14)4.8788E21 + (l)1.5377E22 + el)1.0755t2z,
 8 	 7 	 6 	 5

N11. '^ (h)3.5780E23 + (h)1.4073E24 + (h)5.0049E24 + (11)4.3280E24.
 9 	 8 	 7 	 6

The t-errors are first attacked by the horizontal code. This

code is decoded so as to correct all patterns of one or two errors in

37

any one data block. If more than two errors occur then they will

survive to confront the vertical code. Now there is an important

observation. As with any code there will be patterns of four or

more errors which cause a decoding error;that is they may fool the

horizontal decoder into making a false correction or ignoring them.

Therefore the horizontal decoder may add errors to those already

present. We will assume that this does not happen for the moment.

We will take up this problem again once we have counted the most

significant error patterns. We are considering the case of 14 vertical

codewords each of which contains 2 bytes from each horizontal codeword.

Suppose that t errors occur. If' t = 0,1 or 2 then the

horizontal codewords correct the errors and a correct decoding results.

If t = 3 then the only uncorrectable pattern is to have all three

errors in the same horizontal codeword and the same vertical codeword.

To see this, simply observe that if the errors corrupt at least 2

horizontal codewords then the horizontal code corrects them since there

are at most 2 errors in each. Similarly the three errors must be in

one vertical codeword. Since the intersection of a vertical and

horizontal codeword is two bytes, there are two possibilities for the

errors, namely,

3(1) two in one byte and one in another 	
2i 4 1

3

3 3(ii) all three in one byte

38

The diagrams contain one line for each horizontal codeword containing

an error and two lines for each erroneous vertical codeword. An

intersection represents a byte shared by a horizontal and vertical

codeword and the number beside it indicates the number of errors in

this byte (zeros are generally suppressed). The number at the end of

each horizontal codeword is the number of errors in this codeword.

The type 3(ii) errors are correctable so only the type 3(1)

errors contribute to N
3

, the number of uncorrectable triple error

patterns. Let h be the number of horizontal codewords (thus h is

the bundle length) and let v = 14 be the number of vertical codewords.

It is convenient in the calculations that follow, to treat v as a

parameter (with only value).

We now count the number of triple error patterns of type 3(1).

There are h choices for the horizontal codeword and v choices for

the vertical codeword. Once these choices are made there are 2 choices

for the byte with one error, 8 bits in which that one error can occur

and, independently, 28 = (
8
) ways for two errors to corrupt the 2

other byte. We find then that hv(8)(28) patterns of three errors

result in either a decoding error or a decoding failure. Thus •

N
3

= h(6272)

Now suppose t = 4. There are two possibilities - either the

errors are all in one horizontal codeword or they are in two. If they •

211
3

4(i)
1

4 4(ii)

39

are in more than this, they will be corrected (since no codeword

contains more than two errors). In addition, if the four errors are

in two horizontal codewords then there must be three of them in one

and one in the other. In fact, the single error will be corrected by

. the horizontal codeword leaving only three errors to confront the

vertical codewords. This leaves us two types of patterns for four

errors which are not correctable:

The type 4(i) error patterns are counted as follows. There are

h
(
2

) choices for the horizontal codewords, then 2 choices for the one

have a single error. Then there are v choices for the vertical

codeword. As before, there are (2)(28)(8) patterns for the three

errors in the horizontal codeword with three errors and 224 places

for the single error in the other horizontal codeword since it can be

any of the 224 bits of this codeword.

The type 4(ii) error patterns can corrupt any of h horizontal

codewords and any of v vertical codewords. Unless the four errors

occur as 2 in each of the 2 intersection bytes the errors are cor-

88
rectable. There are hv(

2
)(

2
) patterns of type 4(ii) .

40

Therefore four errors produce a decoding error or failure in

h
(
h
)v(2)(2)(28)(8)(224)+h.v(28)(28)ways. Thus N

4
= (

2
)(2809856)+h(10976).

2

As the number of errors increases this counting process becomes

extremely complicated. The number of cases to be considered is large.

We can simplify our calculations considerably by noting that many

error patterns of t errors are actually a pattern of (t-1)-errors,

which is uncorrectable, plus an additional error in a new horizontal

codeword. For example there are (h)4v 2 (8)8(224)
3

uncorrectable
4 	2

error patterns of 6 errors distriblited across four horizontal code-

words as 3-1-1-1. If 7 errors are distributed across five

horizontal codewords as 3-1-1-1-1 then they can occur in

h
(
5
) 5 v 2 (

8
)8 (224)

4
ways . In other words , we multip ly the first

2
5

number by — (224) to obtain the second. A similar method applies
4

when (t-2)-uncorrectable errors are augmented by a double error in •a

new horizontal codeword. For example, there are h(1.3737E8) patterns

of 5 errors in a single line which are uncorrectable. These can be

increased to 7 uncorrectable errors distributed 5-2 in two

h
horizontal codewords ia (2)2 (1.3737E8)(

224
) ways.

2

In fact, these techniques leave us with only the error patterns

with at least 3 errors in every horizontal data block. Denote by

a
1
-a

2
- 	a

m
the distribution of t = a

l
+ a

2
+ ... +a

m
errors

into m horizontal codewords with a
i

errors in the i
th

, codeword.

41

Then the cases we must calculate individually are 3, 4, 5, 3-3, 6,

4-3, 7, 4-4, 5-3, 8, We can in fact obtain the required

precision by using only 3, 4, 5, 3-3, 6 and 4-3 (indeed 6 is not

particularly significant). The first two cases have been considered

and we deal with the other four below.

For five errors in a single horizontal codeword we count the

number of uncorrectable patterns as follows.

5 h. v. 2(4)8 = h. v(1120)

5 h.v.2(3)(2) = h.v(3136)

2 12 1
5 h.v. (

2 2
) 208 - h.v(163072)

21+ 2 5 h. v. 2(2) 8 (228)= h. v(9644544)

The total is h(l.3737E8).

For six errors in a single horizontal codeword we obtain the

following.

4 2
6 h.v.2(4)(8) = h.v(3920)

4 1 + 1
6 h.v.2 (4)8 (208) = h.v(232960)

3 1 12 + 1
6 h. v.2 (3) (z)(208)= h. v (652288)

42

6 	h.v(
8

2)

2

2
(
208

) = h.v(16877952)
+2

21 8
6 	h.v.2(

2
)8(208

3 (v2) (2 (28)8)2

+3

= h. v (660432136) .

The first term in the last formula counts the ways of placing the

three additional errors anywhere in the data block not in the 16 bits

of the chosen vertical codeword. This counts the error patterns

2H1
	2111

form are subtracted.

We corne then to six errors distributed 3-3 in two . horizontal

twice each. Hence the number of pattern& of this

codewords. The symbol a on a diagram indicates the intersection of

some pair ôf horizontal and vertical codewords. First two horizontal

codewords are picked. Consider the way the three errors in the first

of these fall into vertical codewords. They can corrupt 3,2 or 1

vertical codeword. For each possibility we count the ways in which

the three errors in the second horizontal codeword can make the set

of six errors uncorrectable.

16 	8 	h
(
h
)(
v
) (16)

3
3(

16
)(208)+3((

3
)-2(

3
)) = (

2
)(1.136457E11)

2 3 	 2 • 8, 3 	
(
h
)(

3 	
2

v
)2(8)

3
2 2(

2
)200+16(

208
)+(

16
)208+ (

16

3
) ;

2 	 2 	2

# of errors in ce= 0 	 1 	2 	3

= (1)(7.103752E10)

eu

(2 (v
) (2 (2))

2
 4 (8) (

223
) = (

2
) (4.520904E11)

2
4 	h 	8 	 h

3

43

,
(
h

) (
v

)2 (2) (
8

)16 (12 (
8

)200 + 16 (
208

) + (
16

)208 + (
316

) I
2 2 	2 	2 	 2 	2

# of errors in a" = 	0 	1 	2 	3

= (
h

) (6.270053E10)
2

2 1,1 	h h
3 	(

2
)v 2 (

8
)8 (

224
) = (

2
) (1.159206E10)

	 3 	
2 	3

31. IV)
3 h 	8 	8

(
2

)v 2 (
3

)2 (
2

)216 = (h) (1. 896653E7)
	 3

2

h
The total is (

2
) (2.5899479E11).

We then proceed to the case of seven errors distributed as four

in one horizontal codeword and three in another. The technique is

the same.

h v 	4 	16 	16 	8 	h
(
2

)2 (
4

)(16) 	4(
2

)208 + 4 ((
3

) -2 (
3
)) = (

2
) (1.333443E

h
(2) 2 (3)3 (8) (4(2

)200 + 16 (223)1 = (
2

) (3. 743295E12)
2

# of errors in a= 0 	>1

h8 	 h
(

2 2
)2 v2 (

8
) (

208
) 4 (

2
)200 + 16 (

223
) = (

2
) (1.412509E13

2 	 2

44

2 1 01

3

3

3

3 11
4

3
1 +2

1 1 11 1
4 	h 	v 	4

(2) 2 (2)(8) 4(8)(
223

) 	= (
h

)(5.904854E11) 2 	2
3

4 	
(h)2(v)2(2)(
2 	2 	2

h
(32)(

223
) = (

2)(1.033349E12) 2

h (h)2 v 2 (
8

)8 (208) (
224

) = (
2

)(4.822297E12) 2 	2 	3

8
 (h)2 v 2 (

8
)208 (2 (

2
)200 + 2 (

8
) + (

16
)(208, [(

16
)-2(

8

# of errors in Œ= 0 	1 	2

h
= (

2
)(2.391549E10)

4 	h
 + 2 	

h ()2v2()16(2 3) 	= (
2

)(1.552508E9) 1 	 4 	2
3

h
2 (

8
)8(16)(

223
) = (

2
)(9.936052E9) 3 	2

2 2
4

3

8 2 224 	 h
v (2) (3) 	= (

2
) (4.057221E10)

h
The total is (

2
)(3.817701514E13).

We have now counted the number of pernicious error patterns of

the forms 3, 4, 5, 3-3, 6, 4-3 and indicated how to obtain the

number of non-correctable error patterns obtained by adding single

and double errors in new data blocks of the bundle. There is one

45 •

•17

additional factor to be added, namely the decoding errors in the

horizontal codewords.

The errors which the vertical codewords confront include both

the ones left uncorrected by the horizontal code and those added as

decoding errors by this code. In fact, the decoding errors cannot

make an uncorrectable error correctable, unfortunately, however,

the reverse can happen. It is possible that the horizontal code may

corrupt a correctable pattern into an uncorrectable one. So far

we have not counted these.

The simplest situation occurs when we have a codeword of

weight 6 (the smallest non-zero weight) for the horizontal code of

a special sort. Every weight 6 codeword of the horizontal code

(code C) has two ones in each of three bytes and every pair of bytes

has a one in exactly one common position. For example the bytes

might be (0100100), (0100001) and (0000101). If two of these

bytes are separated by 14 bytes they will both fall in the same

vertical codeword and if the ones mark the location of six errors

the total pattern is not correctable. Now if errors occur in exactly

four of the positions indicated by the ones then the horizontal code

will add the other two and leave six errors (a decoding error event).

If the four errors occur in 2 of the positions in the same vertical

codeword and then the other 2 (thus in 6 ways) the original error

distributions with the terms (
h
m

) suppressed. (Entries marked Iter 11

46

error pattern was correctable but the added errors yield an un-

correctable error pattern. Let A
6

be the number of codewords of

weight 6 of the horizontal code with ones in two bytes of some

vertical codeword (i.e. 14 bytes apart). Then there are h6A .'
6

patterns of four errors that are included in N
4 which we have

not counted yet. We find that A* is 1063. See Appendix A for
6

the method of calculation.

A decoding error from five errors can't turn a correctable

pattern into an uncorrectable pattern. This follows since taking

one error away from a set of six in the positions of a codeword of

weight 6 cannot give an uncorrectable pattern.

We have not proceeded any further with these calculations.

The terms involving six or more errors in a single data block are

not very significant in our calculations, and this added adjustment

would not be noticed.

Using the counts for 3, 4, 3-3, 6 and 4-3, the method of

extending by adding single and double errors and the extra patterns

from decoding errors on quadruple errors we come finally to the

Table 3.1 which records the number of error patterns of the various

have not been calculated. We stop at eleven errors.) An entry

labelled a1-a2-a3 ... -a
m

will have a coefficient (11)

t 	u 1 ge4 •
3-1-1 	9.4411E8 	3-1-1-1 	2.8197E11

4-1 	5.9206E8 	4-1-1 	1.9893E11

3-2 	3.1330E8 	3-2-1 	2.1054E11

5 	1.3737E8 	5-1 	6.1540E10

4-2 	6.6013E10

3-3 	2.5899E11

6 	9.5185E9

3-1-1-1-1

4-1-1-1

3-2-1-1

5-1-1

4-2-1

3-3-1

3-2-2

6-1

5-2

4-3

7

7.8953E13

5.9413E13

9.4321E13

2.0677E13

4.4361E13

1.7404E14

1.1737E13

1.2643E12

6.8617E12

3.8177E13

*

3-1 	2.8099E6

4 	1.3215E6

6272

Table 3.1 The Number of Error Patterns

Which are Uncorrectable Arranged

by Distribution in

Horizontal Codewords

Note: A distribution a
1
-a

2
-.. -a

m
on m horizontal codewords requires a coefficient (

h
rn).

The coefficients (

h

111) have been suppressed.

_
8 errors 	 9 errors 	 10 errors 	 11 errors

3-1-1-1-1-1 	2.1223E16 	3-1-1-1-1-1-1 	5.5462E18 	3-1-1-1-1-1-1-1 	1.4198E21 	3-1-1-1-1-1-1-1-1 	3.5780E23

4-1-1-1-1 	1.6636E16 	4-1-1-1-1-1 	4.4717E18 	4-1-1-1-1-1-1 	1.1686E21 	4-1-1-1-1-1-1-1 	2.9916E23

3-2-1-1-1 	3.5213E16 	3 2-1-1-1 	1.1831E19 	3-2-1-1-1-1-1 	3.7102E21 	3-2-1-1-1-1-1-1 	1.1081E24

5-1-1-1 	6.1757E15 	5-1-1-1-1 	1.7292E18 	5-1-1-1-1-1 	4.6481E20 	5-1-1-1-1-1-1 	1.2147E23

4-2-1-1 	1.9874E16 	4-2-1-1-1 	7.4195E18 	4-2-1-1-1-1 	2.4930E21 	4-2-1-1-1-1-1 	7.8179E23

3-3-1-1 	7.7972E16 	3-3-1-1-1 	2.9110E19 	3-3-1-1-1-1 	9.7810E21 	3-3-1-1-1-1-1 	3.0673E24

3-2-2-1 	1.0517E16 	3-2-2-1-1 	5.8894E18 	3-2-2-1-1-1 	2.6385E21 	3-2-2-1-1-1-1 	1.0343E24

6-1-1 	1.4328E15 	6-1-1-1 	4.2793E17 	6-1-1-1-1 	1.1982E20 	6-1-1-1-1-1 	3.2208E22

5-2-1 	4.6111E15 	5-2-1-1 	2.0658E18 	5-2-1-1-1 	7.7123E20 	5-2-1-1-1-1 	2.5913E23

4-3-1 	2.5656E16 	4-3-1-1 	1.1493E19 	4-3-1-1-1 	4.2907E21 	4-3-1-1-1-1 	1.4417E24

4-2-2 	2.4731E15 	4-2-2-1 	2.2159E18 	4-2-2-1-1 	1.2409E21 	4-2-2-1-1-1 	5.5592E23

3-3-2 	1.9406E16 	3-3-2-1 	1.7388E19 	3-3-2-1-1 	3.8949E21 	3-3-2-1-1-1 	1.7449E24

7-1 	 3-2-2-2 	3.9087E17 	3-2-2-2-1 	4.3777E20 	3-2-2-2-1-1 	2.9418E23

6-2 	 4.7547E14 	6-2-1 	 3.1951E17 	6-2-1-1 	 1.4314E20 	6-2-1-1-1 	 5.3439E22

5-3 	 * 	5-2-2 	 2.5707E17 	5-2-2-1 	 2.3033E20 	5-2-2-1-1 	 1.2899E23

4-4 	 * 	4-3-2 	 2.8605E18 	4-3-2-1 	 2.5630E21 	4-3-2-1-1 	 1.4353E24

8 	 * 	and others 	 4-2-2-2 	 8.2357E19 	4-2-2-2-1 	 9.2240E22

3-3-2-2 	 9.6937E20 	3-3-2-2-1 	 1.0857E24

6-2-2 	 3.1952E17 	3-2-2-2-2 	 1.2203E22

and others 	 6-2-2-1 	 2.8629E20

5-2-2-2 	 8.5608E21

and others
------_ 	- 	.,,....,-,...., .-,-.--...-. 	_ 	. _ ,..... _......-._ 	_ _ . 	.._ 	__ 	_ 	_

• Table 3 .1

Illb

 ontinued)

49

In this Section we are trying to calculate the probability,

PHVCD ,
that the decoding of horizontal then vertical codewords

results In a correct decoding. We have

n
1- PHVCD = qn E Nt xt

t=0

where x = p/q and Nt is the number patterns of t errors which

are not correctable. The parameter n = 224h is the bundle length

in bits. We have calculated or approximated Nt for t<. 11

The formulas were given at the beginning of this Section. Note

that the dependence on h is non-linear and that (h) = 0 if h < m
m

We are now in a position to calculate PHVCD . The question is

now; how accurate is our calculation? The convergence of the series

E Nt xt depends crucially on both the bundle length h and the

bit error rate p (reflected in x = p/(1-p)). We look at the

case h = 10 and p = 10-3. We find

t

t Nt Nt x

3 6.272E4 6.6889E-6

4 1.3966E8 1.4909E-5

5 1.5541E11 1.6607E-5

6 1.2584E14 1.3461E-5

7 8.4460E16 9.0435E-6

8 4.9897E19 5.3480E-6

9 2.4603E22 2.6397E-6

10 1.0300E25 1.1061E-6

il 5.5407E28 5.9564E-7

• 	-.
decoded-Phen errors are independent at a bit error rate

have seen in Section 3.1 that

. We

50

The series converges slowly but the terms beyond t = 7 decrease

by more than 	We are confident then that 2 significant digits

in our results are correct. Note that the largest term is N
5

not

N3 «
If h is too small then the largest terms are the ones we

have ignored so these calculations do not yield anything of value.

The code ;works better if h is small but the method of calculation

falls apart.

The tremenduous amount of work in calculating this one number
-

P
HVCD

has to be repeated for each new decoding scheme. In fact,

this is one of the worst decoders to analyze so if you have mastered

1
the calculation for Full Decoding then the other situations will

A
not require any new ideas.

3.4 Putting the Pieces Together

' 1

We are after P
CD

the probability that a bundle is correctly

h
=) (P -) + h(1-P)P

h-1
P
h-1

.
rcp 	HVCD 	PCD PCD. HCD

We showed how to calculate P 	and p
HeD

n Section 3.2 and how
PCD

to obtain
PHVCD

in Section 3.3. We can now calculate P 	•
CD

The onlY remaining problem is round off error - the demon that is

always with us.

51

It is instructive to look at the relative sizes of the two

terms in the formula for P
CD

. Some sample values are given in

Table 3.2 . We see that the first term is by far the largest in-

dicating that it is most common for all the prefixes to be correctly

decoded. The bundle code works well because the second term covers

most of the remaining cases.

Table 3.2 Some Sample Probabilities

h

PCD

HCD

P HVCD

h
P 	P

PCD HVCD

= 10

= .001

• .999859

• .998421

. .9999296

• .998519

h(1 -P)P
h-1

P
h-1

 =
PCD PCD HCD

.00138974

The Table 3.3 presents the expected number of bundles until a

non-correct decoding for various values of p and h. This expected

number is taken as /(1 - P CD
)•

-

52

3.5 Bundle Length Effects

We can now calculate the expected number of bundles before an

incorrect decoding at various bundle lengths h and bit error

rates p. We postpose short bundles till later. 	We should really

look at something else though. We are interested in communicating

information. Of the 224 data block bits and 40 prefix bits

(7x26)+ (4x5) = 202 bits are information and 64 bits are che

In the last data packet of a bundle only 20 bits (from the prefix)

are information; the rest are checks. Thus of the 266h bits in

the bundle only 20h+ 182(h-1) = 202h-182 bits are information.

So we can consider the expected number of information bits before

an uncorrectable bundle arrives as.m function of h for fixed values

•
of bit error rate. We have shown some results in Table 3.4. (BER= 10

-3
).

Table 3.4 Expected Nuffiber of Information Bits Before

an Incorrect Decoding

Bundle Length 	Number of Information Bits

5 	 2.21E7

6 	 2.19E7

7 	 2.17E7

8 	 2.07E7

9 	 2.02E7

10 	 2.02E7

11 	 1.97E7

12 	 1.92E7

13 	 1.87E7

14 	 1.82E7

lç 	 1 7Pv7

53

We observe that two countervailing forces nearly balance.

Longer bundle codes are more susceptible to error but carry a

relatively larger amount of information. Our calculations show that

in fact the amount of information expected to arrive before the

first incorrect decoding is roughly constant and decreases slightly

as the bundles get longer. This trend, in the reverse direction,

is not necessarily correct for shorter bundles. In fact, there is

likely to be an optimal bundle length (of perhaps 5 data packets?).

We emphasize that this bundle length would only be "optimal" for

independent errors at a particular bit error rate. At other rates

and with bursts of errors the situation will be difficult. Our

conclusion should be that if we avoid short bundles (say h<C5)

then we can be quite flexible about the bundle length. This is not

to say that short bundles give bad performance. On the contrary,

they give excellent performance at a depressed information rate.

If the application dictates a bundle of length 2 or 3, then the

code will work very well indeed.

3.6 Burst Errors

So far we have assumed that the errors are independent events.

This is a convenient assumption since it characterizes the channel

in terms of only one parameter, the bit error rate, and makes

54

calculations of performance parameters possible. We have no reason

to suppose that the errors encountered in a teletext channel will be

independent. We must sooner or later address the problem,of burst

errors.

To predict performance of a coding system in a burst error

environment is a difficult or impossible task. We have to be quite

specific about the sort of burstiness the code is confronting before

we can conclude anything. In the absence of field data we are re-

duced to general, qualitative remarks.

We can describe the bursts which are correctable. The most

important class consists of those bursts which are confined to a

single data packet. These will be detected with high probability

either since they render the prefix unrecognizable or because they

are detected by the horizontal code. In either case erasure decoding

of the vertical codewords will replace the whole data block of the

corrupted packet and the burst is corrected. Even if the burst is

undetected, if it is less than 106 bits (106 = 2+8(14-1)) it will be

corrected by the vertical code by , error correction. In each case

all errors outside the burst must be removed by the horizontal

codewords first. There is also the possibility that a collection

of several short bursts will corrupt at most one byte from each

vertical codeword and hence will be correctable.

• 55

The problem comes when the data packets are broadcast consecutively

in the channel. In this mode a burst which starts in one data packet

is likely to end in the next. The second one will probably be lost.

Thus the vertical codewords have to replace the whole lost packet

and can not be used to correct the beginning of the burst. So if the

data packets for a single picture are transmitted consecutively they

are quite susceptible to burst errors. We can not quantify this

without quantifying the channel though.

We note that the problem is in the prefix. Since the prefix is

used to select the relevant data blocks, it can not be held for off-

line decoding very easily. Thus we are stuck with the Hamming code

on these bytes. The best protection in the case of consecutive

transmission would be to ignore the prefixes after the first. This

requires that the decoder know that the data packets are consecutive

and also the length of the page. On the other hand, it no longer

matters if the bursts run from packet to packet.

56

CHAPTER 4

OTHER DECODING STRATEGIES

4.1 Introduction

Throughout Chapter 3 we have been considering the performance

of a bundle code (14 vertical codewords) decoded by what we have

labelled "Full Decoding". Recall that this means that the vertical

codewords are either used to replace a:nissing data block (due to

decoding failure in one prefix code) or they are decoded by correcting

two bytes if there are exactly two bytes in the vertical codeword

with a parity failure or by correcting one byte if there are zero or

one parity failures. The Table 1.1 compares this decoding strat-egy

with a number of others. This Chapter will outline the methods used

to calculate the numbers in Table 1.1 . We are assuming throughout

that errors occur independently.

4.2 No Bundle Coding

If no bundle code is used then the only error correction is

carried out by the prefix code and the data block code. Assuming

independent errors with frequency p(= BER) we can easily write

Figure 4.1 Probability of Correct Decoding

Hamming [8,4]

Prefix Code

Parity Data Block

Single E.C. Data Block

Double E.C. Data Block

8 	7
+ 8pq q

8 	75
+ 8pq) (q

n 	n-1
+ npq q

n n-1 	n 2n-2
q+ npq 	+(

2
)p q

•
err,

Lt.

Figure 4.2 Probability of Correcting Decoding - No Bundle Code

No Bundle/Parity 	[(q
8
+8pq

7
)
5
q
nh-1

No Bundle/SEC 	[(q
8
+8pq

7
)
5
(q

n
+npq

n-1
)]
h-1

No Bundle(DEC
8

[(q + 8pq
75 n 	n-1 	n 2n-2 h-1
) (q + npq 	+ (

2
)p q)]

• 57

:717'

down formulas for the probability of correct decoding for the prefix

code (5 Hamming [8,4] bytes) and either Parity, Single Error Correction

or Double Error Correction on the data block. We set n = 224 and

q = 1 -p .

For comparison with bundle coding we can consider h such data

packets transmitted together. Actually for Table 1.1 we considered

h-1 such data packets as equivalent to a bundle of length h, i.e.

we compared units with the same number of "information" blocks.

Thus the formulas used for Table 1.1 are as follows in Figure 4.2.

o

58

To translate this into numbers of "bundles" expected before

an incorrect decoding we use the estimate 11(1
CD

-P) where P
CD

is

the probability of correct decoding for whatever case we are dealing

with.

It is better to calculate the expected number of information

bits before an incorrect decoding of a data packet. This removes

the need to bunch up a "bundle equivalent" of unbundlecoded data

blocks for comparisons sake when that is not how they would be sent

don the channel. 	There are 20 information bits in the prefix and

(28-s)7 in the data block where s = 0, 1 or 2 for Parity, SEC

or DEC respectively. So we use the formulas of Figure 4.2 with

h = 2 (i.e. units of h-1 = 1 data packet) and calculate P
CD

.

Then we use as our estimate of the expected number of information

bits until an incorrect decoding the formulas:

Parity 	 216/(1-P)
CD

SEC 	 209/(1 -P
CD

)

DEC 	 202/(1
CD

4.3 Erasure Correction of One Data Block

One of the weaker procedures for bundle decoding is to use the

vertical codewords to replace the data block following a prefix with

a detected but uncorrectable error. This is only possible if there

59

are no other failed prefixes and the data block codes clean out all

the other errors from the data blocks. We have mentioned that if

this is the type of decoding that is really wanted then the two-byte

Reed-Solomon code is not required. It is enough to use a product

type check. Of course this sort of decoding will not be as effective

against bursts, but if there is a channel in which the error events

are dominated by synchronization problems then this might be a sensible

àtrategy. We note though that it is only faster to decode this way

if a product-type check block is used. With the code C vertical

codewords, there is only a trivial simplification over Full Decoding.

Our analysis serves to show that the extra corrections performed in

Full Decoding are important (in the case of independent errors).

Given a bundle length h the formulas in Figure 4.2 with the

(h-1)'s replaced by h's give the formulas for correct decoding

without using the vertical codewords. The probability that a single

prefix code fails is h(1-P)P
h-1

where P 	= (q
8
+ 8pq

7
)
5

is

	

PCD PCD 	 PCD

the probability that a prefix codeword is correctly decoded.

.1

•

60

h 	h
SEC - 	P

PCD
P
1
+ h(1-P)P

h-1
P
h-1

PCD PCD 1

Erasure Correction
of One Data Block

Figure 4.3 Formulas for Probability of Correct Decoding

- Erasure Only

h 	h 	 h-1 h-1
(Parity - P 	P

PCD 	
+ h (1 -P)P 	P

PCD PCD 0

L. DEC - 	P
PCD

P
h 	h

2
+ h(1 -P)1?

 h-1
P
h-1

PCD PCD 2

where 8 	75 P PCD = 	+ 8pq)
	and P

s
is the probability

of correct decoding for a data block with s check bytes

i.e. Parity for s = 0, SEC for s = 1 and DEC for

s . 2. Figure 4.1 gives the formulas for P
s

.

The expected number of bundles and of information bits is then

calculated as in the case of Full Decoding.

4.4 Single-Byte-Correction of the Vertical Codewords

The vertical codewords of the bundle code could be decoded as

single symbol (byte) correcting Reed-Solomon codes while ignoring

' their erasure correcting capacity and their ability to replace a

missing data block if a single prefix is uncorrectable or is miss-

synchronized. Once again this is essentially an academic exercise

since there is only a trivial reduction in decoder complexity compared

to the much more effective Full Decoding.
•

•

the same method as we used in Chapter 3 for Full Decoding. We have

The calculation of the probability of correct decoding follows

c

PPCD the probability that one prefix is correctly decoded and PHV

the probability that the horizontal codes and vertical codes are

correctly decoded. We have to calculate PHV by estimating 1-PHV

61

which once again is done by counting the uncorrectable error patterns.

This time there are many more uncorrectable error patterns. We hr••

decided to omit the details of the counting process since it is similar

to Chapter 3 and the results are of relatively minor importance.

(In fact we might not have even done it at all if we had thought of

Full Decoding first:)

Figure 4.4 Formulas for the Probability of Correct Decoding -

Single-Byte Correction Only

Single byte cor-

rection of each

vertical code-

word

PPCD
h 14

h

PCD HV,1

,h

PPCD PHV,2

where B = q8 is the probability that one byte is correctly

received and PHV,l and PHV 2 are the probabilities
,

4^r

is

that the Horizontal and Vertical codes are correcting

decoded with respectively SEC and DEC on the data blocks.

62

4.5 Full Decoding - the other cases

We have analyzed Full Decoding at great length in its most

natural context of double error correction on the data blocks. We

might consider the situations of 0 and 1 byte codes on the data

blocks as well. The analysis of Full Decoding following single

error correction would be quite similar to the work of Chapter 3.

but with many more uncorrectable patterns. We have not carried c)

the requisite counting arguments and hence the asterixes in Table 1.1.

If we were to use Full Decoding after only checking parities

IIIIin the data blocks then we can write down a formula for the probability

of correct decoding. 	The probability that a byte is received cor-

rectly is B = q
8

and the probability that the byte has a parity

failure is B
F

= (8pq
8
+ (3

8
)p

3
q
5
+ (5

8
)
p5

q
3
+ 8p

7
q). Then the

probability of correct decoding is

P
h

[B
2h

+ 2h(1-B
)B2h-1

+ (
2h

)B
2
B
2h-2

]
14

+ h(1-P)P
h-1

q
224(h-1)

PCD C 	C c 	2 F C 	 PCD PCD

• 63

CHAPTER 5

TWO-BYTE EXTENSIONS OF THE PRODUCT CODE

5.1 Extensions in General

We are interested in codes of length 28 bytes which have two

check bytes one of which is the mod 2 sum of the other 27 bytes

(the Product check) and in which all bytes have known parity (say

even). What is left is to specify the seven remaining independent

bits of the other check byte. The code C is an example of such a

code. In fact C is a double bit-error correcting code. Are there

any triple error correcting two-byte extensions of the Product code?

The next theorem due to James Currie provides a negative answer.

:LON

Theorem 5.1. Let H be a two byte double error correcting code

which extends the Product code and is 28 bytes long. Then H has

at least one codeword of weight six and hence cannot correct all

triple error patterns.

Proof. Suppose that four errors occur in a pattern we call P ;
jk

one error in each of bit 1 of byte 1, bit k of byte 1, bit k of

byte j and bit 8 of byte j . Thus we assume that 1 < j < 28

and 1 < k < 8. The error pattern P
jk
 produces the same Product

64

syndrome whatever values of j and k are used, namely, (10000001).

We now look at the syndromes produced by the 7 additional checks.

There are 162 patterns P 	since 162= 6x27. There are 128 pos-

sible 7 bit syndromes. Therefore two of the patterns P
jk

have the

same syndrome. Then the sum of the two patterns must have zero

Product syndrome and zero syndrome for the additional checks. Thus H

has a codeword which is P .
 +

 P.,,
	•

there are four bits which coincide and the codeword has weight four

contrary to H being double error correcting. Thus j 	j' and

k k' and the resulting codeword has weight six.

The proof actually shows that we can find a weight six codeword

with ones in a predetermined byte (in our case byte 1) and in a pre-

determined column (in our case colunn 8) and not in a predetermined

column (in our case column 1). Therefore the argument actually shows

that there must be a number of weight six codewords. See Appendix B

for more calculations.

5.2 Some Extension Ideas that Don't Work

The Product code is a simple code to define and decode. It

would be nice if a good extension code could be found which defines

its 7 new checks in a similar combinatorial (i.e. non-algebraic)

If j = j' or k = k' th n

• 65

way. One idea would be to use 8 "diagonal checks". Thus having

summed over the rows (bytes) and tolumns to obtain the Product checks

we might now sum over the diagonals. Lets describe the codewords as

(b 0,0 , b 0,1 , 	, b27,7) where b ij is the j-th bit in the

i-th byte and 0 < i < 27 , 0 < j < 7. The diagonal checks are

b.. = 0 for m = 0,1,...,7
(i-j)=m(Impd8) 	13

	.

For example b
00
 + b

11
+ 	+ b

77
+ b80 + b

91
+ 	= 0. This

unfortunately does not work. If we set b
00
 = b

80
= b

01
= b

81
= 1

we get a codeword of weight 4 so the resulting code is not double

error correcting.

In a series of four confusing papers [9], [10], [11], [12]

Demetre Voukalis explored a similar but much more powerful code.

He uses many more checks and does not wrap the sum around. Thus

he uses 	r 	b.. = 0 for m = -7, -6 , ...,28. His codes are
i-j=m 13

therefore not use7.7111 to us.

The next idea to look at is the possibility of using some

"mosaic" pattern other than diagonals to define the new checks.

The point is that what we mean by a simple code is one in which the

syndromes can be calculated by a few microprocessor operations on

each message byte. The diagonal checks can be calculated by cycling

the syndrome accumulate once before each exclusive-or. Unfortunately

66

there are not any double error correcting mosaic codes that we have

been able to find. We tried a great variety of shifts etc. and

› there is always a weight four codeword.

We are interested in byte correcting codes for the bundle coding

application. In fact, you can not correct single bytes with fewer

than two bytes of checks. A length 8 burst correcting Fire code for

example would use 24 check bits (and would actually correct more

than single byte errors. Other codes have been described that correct

one byte at a time. Kaneda and Fujiwara [13] have outlined a con-

struction for a class of single-byte-error correcting double-byte-error 11,

detecting codes. Their impetus is high speed encoding and decoding

for application in main memory systems. Their codes use more than

two check bytes.

67

.

W

•

Appendix A. Special Weight 6 Codewords

If c= (co) cl, ... , c223) is a codeword of code C then we

must have

223
E c . (Y = 0

i
i=0

27
r c =0

k=0

7
E c^k = 0 k = 0,...,27 •

j=0
j

So a codeword of weight six has two ones in each of three bytes,

say bytes bl, b2, b3 and these ones are in bits i and j of b1

and j and k of b2 and i and k of b3 for some i,j,k E i0,1,...,71.

The particular codewords of weight 6 required in Chapter 3 were those

with two of these bytes separated by 14 bytes so that these two

bytes are in the same vertical codeword.

Let us suppose that b1, b2 are the bytes separated at a

distance of 14 bytes. Then b3 might precede, separate or follow

this pair. In the second two cases we may suppose that b1 is

the first byte and b2 the 14th byte. We then have to count the

patterns found as many times as it is possible to slide the three

bytes down the codeword. If b3 is between b1 and b2 then

68

it is b
2

that will hit the last byte first. Thus every pattern

of six ones making a codeword with ones in bytes b b b with
1 , 2' 3

b
1 	

0
'
 b = 11 and b

1
 < b

3
 < b 	gives rise to 14 codewords.

2 	2

If b
1
= 0, b

2
. 14 and b

3
> b

2 then we can produce only 28-b
3

codewords from this pattern.

Finally, we count the patterns with b3 preceding b l and b2

by assuming that b l = 0, b2 = 14 and that b3 is -1,-2,...,-13

(this makes sense in the computation as we will see below). Such

a pattern will have to be shifted over by 1b3 1 bytes to get all

the bytes in the range 0 to 27 . This puts the highest numbered

byte at b
2
-b

3
and then there are 28 -(b

2
-b

3
) = 14+b

3
codewords

• coming from the pattern in b , b , b .
1 2 	3

So we take choices for the bit positions as i,j,k where

0 < j < j < 7 and 0 < k < 7 with k i,j . For each such choice

of bit positions there are in fact two arrangements. Letting b

be the number of the third byte we are looking then for solutions

to

i 	j 	(14)(8) i 	k 	8b j 	k
CY + a + a 	 +) + a, (a, +o') =

and to

j 	(14)(8) j 	k 	8b i 	k +o' + 	(a +a,) + 	(cy) = 0

•

• where 0 < i,j,k < 7, i < j and k i,j and a is a primitive

• 69

element of the field with 128 elements. (Thus Q, can be taken as

a root of X
7

+X
3

+ 1 for example). Then we allow -13 < b < 27

with b 0,14 and count 14+b codewords if b < 0 , or 14

codewords if 0 < b < 14 or 28-b codewords if b > 14.

We find a total of 1063 of these special weight 6 codewords

if 0,, is a root of X
7

+X
3

+ 1 . 	(If we take a as a root of

7 	6 	5 	2
X +X +X +X +1 there are 987 . The difference does not influence

the calculations.)

•

70

APPENDIX B

Extensions of the Product Code: Weight Six Codewords

We have already shown that any 28 byte code H which extends

the product code by adding an additional byte of parity checks must

have weight six codewords. In this Appendix we will show that there

must be a large number of weight 6 codewords. We assume that il is

at least double error correcting and that all bytes have known parity.

Thus there are no weight four codewords and only seven independent

check bits are introduced by the second check byte. Thus any pattern

oferrorsTemproduceoneoflupossiblesyndromesa.on
these

seven bits.

Suppose p
br

is a pattern of three ones (or errors if you prefer)

with ones in bit j of byte b and in bits r and i of byte

for some j and c . We must have b c and r j so there are

(27)(7) patterns of the type P
br

. If two patterns of the same

type p
br 	 •

havethesamesyndromes.then we add the patterns

(i.e. wé write all six ones but cancel out any overlaps) the result

has zero syndrome and hence is a codeword.

itt

• 71

bit j bit j' 	bit a

byte b 	1

byte c 	1 	 1

byte c'

1 = one from pattern P
1

* = one from pattern P
2

.

If the two patterns overlap then the sum has weight 4 contrary to

our assumptions about H. Thus combining two patterns of type

pbr with some syndrome gives a weight 6 codeword.

Conversely, consider a weight six codeword. It has ones in

bytes b
1 , b2'

and b
3

say and ones in bits i and j of byte b
1

and i and k of b
2

and j and k of b
3

:

4

bit i bit j bit k

byte 1) 1

byte b
2

byte b
3

No w we cari obtain this codeword by combining two patterns of weight

threeerrorswiththesamesyndromes.and of the same pattern

,
P
br 	 bk 	b2j

. This pattern could be P 	or P 	or P
b3i

. Thus each

weight six codeword is constructed exactly three times by this method.

72

Now let Kir be the number of patterns Pbr with syndrome si.

Then there are (128)(27)(7) = 24192 parameters

the total number of patterns of three ones

a rectangle. We therefore have,

^ Kb =
4 (28)(8)

= 42336

br

E (Kl) = 3A6
b,r,i 2

K. and their sum is
i

forming three vertices of

where A6 is the number of codewords of H of weight 6. Hence

1 2
A6 = 6 (E (Kbr) _ Z K.) .

b,r,i b,r,i
I

Now given that EKbr = 42336 we will minimize the sum of squares

by taking Kbr = 42336 /24192 = 1.75 . The Kbr, are integers though
i, i

so the minimum comes from taking some to be ones and some to be two.'

a

la

If there are u ones and v twos then u + v= 24192 and u + 2v = 42336.

Thus v= 18144. But (2) = 0

3A6 =

br
(Ki
Z) > 18144

Therefore A6 > 6048.

and
(2)

= 1 so we have

This proof is due to Brian Leroux. We note that code C has

A6 = 8600 .

73

rr

REFERENCES

1. "Television Broadcast Videotex", Broadcast Specification No. 14,

Issue 1, Provisional, Telecommunication Regulatory Service,

Department of Communications, Canada, June 19, 1981.

2. P. Allard, V.K. Bhargava and G.E. Seguin, "Realization, Economic

and Performance Analysis of Error-correcting Codes and ARQ Systu-s

for Broadcast Telidon and other Videotex Transmission", Department

of Communications, Ottawa, DSS Contract No. OSU80-00133, Final

Report, June, 1981.

3. G.E. Seguin, P. Allard and V.K. Bhargava, "A Class of High Rate Codes

for Byte-oriented Information Systems", I.E.E.E. Trans. Comm. COM-31

(1983).

4. M. Sablatash and J.R. Storey, "Determination of Through puts,

Efficiencies and Optimal Block Lengths for an Error Correcting

Scheme for the Canadian Broadcast Telidon System", Can. Elec. Eng. J.

5 (1979), 25-39.

5. B.C. Mortimer, "A Correction to a Recent Analysis of a Product Code",

Can. Elec. Eng. J., 7 (1982) 40.

74

6. B. Leroux, M. Moore, B.C. Mortimer, L. Oattes and T. Ritchford,

"A Study of the Use of Error Correcting Codes in the Canadian

Broadcast Telidon System", Department of Communications, Ottawa,

Progress Report, DSS Contract No. OSU81-00095, August, 1981.

7. Brian Mortimer, "Error-correcting Codes for the Canadian Broadcast

Telidon System", Department of Communications, Ottawa, Final Report,

DSS Contract No. 0SU81-00095, February, 1982.

8. B.C. Mortimer and M.J. Moore,. "Two Byte Data Block and Bundle Codes
,

for the Broadcast Telidon System", Department of Communications,

Ill,Ottawa, Progress Report, DSS Contract No. OSU82-00165, November, 1982.

9. D.C. Voukalis, "Generalization of the Column and Diagônal Matrix

Burst Correcting Codes", Int. J. Electronics 47 (1979), 193-200.

10. D.C. Voukalis, "A New Concatenated Matrix Code with Cluster, Burst

and Random Error Correcting Abilities", Int. J. Electronics 49 (1980),

345-357.

11. D.C. Voukalis, "Error Statistics and Protocol Construction Using

General Column and Diagonal Matrix Burst Correcting Codes",

Int. J. Electronics 48 (1980), 337-340.

12. D.C. Voukalis, "A Comparison Between Burst Error Correcting Codes", • Int. J. Electronics 49 (1980), 319-325.

• 75

- 1

13. S. Kaneda and E. FUjiwara, "Single Byte Error CorreCt.ing - Double .

Byte Error Detecting Codes for Memory Systems", IEEE Int. Sym.

• Fault Tolerant Computing,- Kyoto, 1980, 41-46.

14. E.R. Berlekamp, "Bit-Serial Reed-Solomon Encoders", IEEE Trans.

Info. IT-28 (1982), 869-874.

0 kt '
t.4

it

à ;

•

