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O. INTRODUCTION 

This report describes some of the results obtained by 

our research group in our work on error correcting codes for 

the Broadcast Telidon System_ We begin by describing a 

particular code which could be used as a two-byte data block 

code. This code extends the product code and corrects all 

double errors and any error confined to a single byte. It 

is in fact a single symbol correcting Reed-Solomon code and 

is easily decoded. 

The second topic considered is the idea of collecting a 

number of data blocks together and encoding them as a unit. 

At the receiving end, the decoding would be done off line 

after all the packets from that unit have arrived. We show 

that this approach can give very good performance with 

negligible delays to the user. 

We have actually pursued many other avenues of inquiry 

in our research and some of these will be outlined in our 

Final Report. The topics covered here though are perhaps 

the most important. 

1.  A Particular Two-Byte Code 

1.1 The Code  

We will present in this section a particular error 

correcting code. 	We will call it e . 	This code is an 

instance of a Reed-Solomon code. 	We consider it in the 

context of a teletext system taking as its symbols bytes of 
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8 bits. The code 	uses two bytes of redundancy and can be 

extended in a natural way to cover 127 bytes in total. 

This code is capable of two types of correction: error 

correcting and erasure correction. An 'error' in this 

context means an erroneous symbol whose location is unknown 

while an 'erasure' denotes an erroneous symbol whose 

location is known. The distinction is unimportant if the 

symbols are binary since to know the location of a binary 

symbol is to know how to correct it. In our case there are 

256 possible errors in each symbol so locating a faulty byte 

is only half the problem. 

The code 	can correct any single byte-error or any 

double byte-erasure. Thus if any error corrupts a single 

byte it can be corrected. In addition, if an error corrupts 

two bytes in a way that makes the bytes locatable, say by 

leaving them with the wrong parity, this error can also be 

corrected. In any one codeword we do one type of correction 

or the other but not both. Clearly, this code will correct 

any single bit error. If two bit errors occur  • then they 

either fall in the same byte or fall in two bytes and change 

the parity of each. Thus double bit errors are always 

correctable. If three bit errors fall two in one byte and 

one in a second or in three different bytes then these 

errors are not correctable. (In fact a two byte code cannot 

possibly correct all triple errors). • 



o In the  context of a teletext system uàing known parity 

data bytes the decoding can procede as follows: 

• Count the number N of -  bytes with à parity faiiure, 

• If N=0 -  or 1 • hen attempt a single byte (error) 
correction, 

• If N=2 then attempt a double byte (erasure) 
correction, 

• If N > 2 then declare a failure. 

• 

1.2 Relationship to the Product One-Byte Code  

The code e uses two bytes of check symbols. It is 

defined in such a way that the exclusive-or sum of all the 

bytes is zero. Thus each codeword of e is also a codeword 

the Product code specified in the provisional version of 

ES-14 [1]. 	Either of the two bytes can be used as the 

Product code check byte. 	When interpreted as a Product 

codeword we just have to remember that the penultimate byte 

is not data and should not be passed to the picture 

generating unit. 

1.3 Decoding  the Code 

The code e can be quickly decoding using a software 

decoder based on look-up tables. We have an implementation 

which uses a Motorolla 6809 processor running at 1.29 MHz. 

The decoder takes about a millisecond to decode one 



• codeword using 512 bytes of look-up tables and a program 181

•

bytes long.

Hardware decoding would certainly be feasible. It would

be a straightforward exercise in implementing algebraic

equations in logic circuits. Some commercial enterprises,

such as Berlekamp and Golomb's Cycotomics Ltd., are currently

marketing hardware Reed-Solomon decoders of much greater

complexcity than would be required for our code.

1.4 Code Dependent and Independent Factors

The code ^ has many vïrtues:

. it extends the Product code,

. it corrects all double bit errors,

. it has a straightforward algebraic definition,

it can be used both as a data block code and to form

an interleaved code on a collection of data blocks

(see § 2 below).

We must deal though with the question of optimality. Is

there a better code? The criterion to be optimized is

performance; that is, the number of errors allowed to reach

the user of the teletext system. We take decoding

complexity as a secondary factor to be considered and this

acts as a constraint on the optimization process.

The decoding of a received message may have one of two

outcomes: a correct decoding or an incorrect decoding. We

0



thus .can calculate (at least in principle) for a given 

channel error •  model the probability 	PCof. a correct 

decoding and hence the probability 	P I = 	of an 

incorrect decoding. 	This depends only on the patterns of 

errors which are corrected '(single bit-error, double 

bit-error, single byte-error etc.). So if we are correcting 

double bit-errors then every double-bit-error-correcting code 

which is decoded as such has the same P and PI ' 

The code itself becomes important when we look in more 

detail at 	P I' There are two forms of 	'incorrect 

decoding' which can occur. 	The  decoder may notice an 

uncorrectable error and set a flag even though it can't 

correct the fault. This is a decoding failure and occurs 

gl, 	
with probability PF • 	The other possibility is that the 

errors are uncorrectable but fool the decoder into believing 

that they can be corrected. 	This outcome is called a 

decoding error and occurs with probability. 	The E 

result of a decoding failure is that the system must wait 

for a rebroadcast; the effect of decoding error is to pass 

rubbish on to the user as genuine data. It also follows 

that 	P I = 	+ PE' 	In general decoding errors are P F  

rare compared to decoding failures. 

The optimization problem then splits into two parts: 

• maximize P 	by choosing the right decoding 
strategy for your error patterns and system, 

• 



• minimize PE , given the decoding strategy, by 
choosing a code which has few codewords which re-
semble the'commonest error types. 

• 

These remarks apply equally to the data block codes and 

to the bundle codes oùtlined in§ 2 below. We have attempted 

to use the bundle code to make  PC large. Thus the 

expected number of bundles until a decoding error or failure 

is made large enough that the importance of minimizing Pu  

is greatly reduced. Moreover we have tried to use the same 

two-byte code for both the data block and bundle codes to 

eliminate the need  •for a second decoder. 

Given these assumptions and constraints we are left 

only with the possibility of finding another code with 

smaller PE which fits our conditions. This code would 

then give better service in the case of either decoders 

which do not deal with bundle codes or databases which are 

not bundle coded. This is a hard problem. We will give 

some results in 1.6 on the situation when errors arise 

independently. 

• 

1.5 The Code 	Defined  

The code e  is a one-symbol-error-correcting Reed 

Solomon code with symbols taken from the field F128  of 

123 elements [3], [4]. We define using a primitive 

element 	of the field. 	Thus the 127 powers p 0 
 ,

1
, 

126 ..., 	 are distinct and are a list of the non-zero 

field elements. 	The codewords are polynomials in one 

variable with coefficients in F128. These polynomials 



• C(X) 	must satisfy two conditions to belong' to 	(for a 

constant 11 < 128): 

(i) deg (C(X)). < n 	 • 

(ii) C(p ° ) = C(i31 ) = 0 . 

The first condition implies that each code polynomial 

represents a unique vector of length n over F128 : 

• 

• 

C(X) = C o + C1 	 (C 	C1 , 	.' X + 	Cn-1X
n-1 	 C 	) . -- 	0' 	 n-1 

This constant n is the code length (in symbols) and must 

be less than 128. 

The second condition allows us to perform corrections. 

Suppose that a codeword  (C o,  .6e,  Cn-1 ) is sent and an 

error occurs in a single symbol C,. Then for some e, 

the vector received is actually 

(C 	C 	C.+e. 	c_)  0' 	1 , 	D 	D' 	' 	n-1 

Writing this as polynomials R(X) = C(X) + E(X) is received 

	

whereE(X)=e.Xj. 	Now we evaluate R(X) 	at /3 	= 1 

1 and /5 1  noting that C(P o ) = c (ie ) = 0. We obtain, 

o ) =  c (p ) + 5n o ) 

E
((
3o ) 
o.j 

eie 	e j 
which is the error value, and 

= Cy) + E(/4) 

= E) 

= e j  pi . 



Thus we write R( )/R (1) as a power of 3 to

obtain j, the index of the faulty byte. Then R(l) is the

quantity to be subtracted to correct the error. This proves

that is single symbol correcting.

Now suppose that the error polynomial has the form

E(X) = ejX^ + ekXk so that errors occurred in the

j-th and k-th symbols. Suppose that the integers j and k

are known. This is the erasure situation. Again we

evaluate at P 0 = 1 and P 1 =P . Then

ej + ek = R(1)

ejP + ek^ = R(^ )

are known as are the
k Thus wecoefficients /93 and

• can solve for ej and ek (since j0 k) and correct

the errors. Therefore two symbols whose locations are known

can be corrected.

We must now relate the symbols to bytes. Let d-/ be

another primitive element of F128. In fact we will take

û_/ $ =(3 but this is only important later. The first 7

powers of GY. namely 1,64 , 0z/ 2, .. , y 6 are linearly

independent over F2 = {0,1} so each field element,c,^

corresponds to a unique 7-tuple of bits by /

l,c (u0, ul, ..., u6) iff ,U = u00.0+...u6 a

0
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tr. 0 

with each 	u := 0 or 1. 	The set 1 	7 is 

linearly dependent since QC satisfies a polynomial of degree 

7. 	We will take ()C. as a root of 	X 7 + X 3 + 1 	for 

• 
example. Now each field element has two representations as 

= u0
0  + 	u7k

7 

withu.=0 or 1. 	In one representation the parity of 

the byte 	(u 0' u1 ,  •' u7 ) 	is even and in the other 

it is odd. We change from one representation to the other 

by adding 0 = 1 + 3 + a 7 . Therefore if we use bytes 

of one fixed parity, we have a unique byte for each field 

element. . . 

Now the bytes to be coded 	B 	B 	 3n-3 0' 	1 ,  "" 

represent field elements and we are to determine B n-2' 

B n-1 so that 

B(1) =B 0  +B+ 	+ B n-1 = 1 

Be = B 0  +  31P+ 	+ B An-1 = 0 . n-lr 

But B + B1 + 	+  3n-1 is just the exclusive-or of 0 

the corresponding bytes since we are working in a field of 

characteristic 2. Therefore a codeword of r is a Product 

codeword. 	The second condition translates into the 

statement that if the bytes 	B 	B 	Bn-1 	are 0' 	1 	'"' 

written as a bit string m0 1111' "" m8n-1 	then we 

have 

= 0 . 

• 



errors at a time invariant bit error rate 

When errors are independent the probability of decoding 
• p. 

• 
• 

This follows from the assumption (3 = x 8 and  thé use of 

01 	 7 the 	quasi-basis 	: { OC , t), I 
	

••• 	a/.., 	) 	for 	F 1 2 8. . 

This means that the codewords of e are also codewords of 

Carleton code as it was defined in [2]. 

1.6 Performance under Independent Errors  

Once we have decided to use a double-bit-error 

correcting code on the data blocks this determines the 

probability of a correct decoding. Further refinement of 

the code can only change the probability of decoding failure 

and decoding error. All of these probabilities depend 

crucially on the frequency and correlations of the errors in 

the channel. We deal only with the case of independent 

error PE can be calculated from the weight distribution 

of the code; that is, from the numbers Ai  of codewords 

with exactly i non-zero entries for i = 0,1,...,n. For a 

double bit-error correcting code of length n we have 

A0 = 11 ' 1 Al = A2 = A3 = A4 = 0 and 

n 	k...t 	l<  4- ( k + )A k, 	( kr- )A,,i X k  
PE  = 

• 

where q = 1-p and x = p/q. We see that PE  is reduced 

greatly if we can take A5  = 0 and then minimize A6 . 

11, 	
The low weight distribution of code 

weight codewords, is 

which has no odd 



jIb 	1 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10  
1 

. 	I 	0 	8,600 	0 	1.21E6 	0 	1.75E I 10 	. 

• 

Can we find another code with no  odd weight codewords and 

with A6 smaller than 8,600 , perhaps even with A 6=0? 

The answer to the first qustion is unknown but we can prove 

that A6 must be positive. 

What we can show is  that any 28 byte long code with two 

check bytes, one of which is the check byte of Product code, 

with data bytes of even parity must have A6  >1000. This 

implies that such a code cannot correct all triple errors. 

The number of weight 6 codewords in e might be reduced by 
using an «. which is a root of a different polynomial or by 

taking p to be different from 0! 8 . We have not tried 

this as yet. Moreover the lower bound on A6 is not by 

any means tight. 

We should emphasize that the data block code is part of 

a coding system. Ultimately the only performance that 

matters is the performance of the system as a whole. The 

most important calculations are therefore of the performance 

of the prefix code, data block code and any 'bundle' code 

acting in concert. We present the results of such 

calculations in the next section. 

• 
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V 
FIGURE 2.1 Performance of Code 	Against Independent Errors 

CODE 	 Expected Number of Data Blocks until 
Decoding Failure / Decoding Error 

BER 

Product 	 47 	 2.9E4 

	

638 	 9.7E6 

Product 	 4068 	 2.5E7 

	

5.5E5 	 7.9E10 

Product 	 4.0E5 	 2.3E10 

	

5.4E8 	 7.8E14 

• 



• 2. CodincLa Bundle of Data Block S  
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2.1 The Bundle Codes  

At a higher level than the individual data packets we 

might choose to encode 'bundles' or groups of data blocks 

together with a more powerful code to clean out any errors 

left by the packet level codes. In this section we will 

describe various ways of doing this. 

For purposes of discussion we will fix the size of the 

bundle at 8 data blocks with perhaps a 9-th data block whose 

28 bytes are the check bytes of the bundle code. We defer 

considerations of other sizes to our Final Report. We have 

available a number of strategies for coding the bundle. For 

any given strategy we ask, 'what is the probability that 

after decoding a particular bundle of 8 data packets will be 

completely correct?' 	We reformulate this question and 

calculate an equivalent parameter: 	the mean number of 

bundles before an incorrect bundle decoding. 	This mean 

number depends on the error patterfts and their frequencies 

in the channel and on the decoding strategy but does not 

depend on the particular code used to implement that 

strategy. 

The coding of a bundle comes in 3 layers. The first is 

the prefix code which consists of 5 bytes each encoded with 

the Hamming (8,4) code. Due to the continuity count byte 

(the 4th byte) and the interpretation of the packet 

structure byte (the 5th  byte)  it will be a rare event that a 



decoding error .  in the prefix actually goes unnoticed by the 

system. The most common error effect ie that a packet is 

lost or appears to be lost from the broadcast stream. This 

might also occur if there are synchronization problems when 

the line arrives. 

The second layer is the data block code. We consider 

three options: 

Byte-Parity (Parity) 

The only coding is the parity bit in each data byte. 

Single Bit Error Correction (SEC) 

The 28th byte of the block is a check byte which allows 
the correction of a single bit error. With only one 
check byte it is not possible to correct all double 
errors. 

Double Bit Error Correction (DEC) 

The 27th and 28th bytes of the block are check bytes. 
Any double bit error can be corrected. 

The third layer of coding covers all of the data blocks 

together (but excludes the prefix bytes). We consider four 

options. The first is to add no further coding. The other 

three are simply alternative decoding strategies for the same 

encoding. For these we interleave a number of vertical 

byte-correcting codes across the set of 8 data blocks adding 

28 check bytes as a ninth data block (the layout of the 

interleaving is given in Figure 2.1). We assume that the 

basic code which is then interleaved is capable of correcting 

any error pattern confined to a single byte or any two 

byte-errors when the bytes are known (erasure decoding). We 

could use code e, for example. We summarize the four 

strategies for coding the bundle as follows. 
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Nocode: 

The eight data blocks are sent as they are with no 
further:protection. 

Erasure correction: 

The bundle code is used to replace a lost data block by 
erasure correction. One data block can be retrieved 
and no other corrections are attempted on the bundle. 
This technique can overcome a failure in a single pre-
fix or a single synchronization error. 

14 X 1-Byte-error correction: 

A single byte error in each of the 14 interleaved code-
words is corrected. If there are two faulty bytes in 
any one codeword then the errors are not correctable. 

Erasures and Errors: 

In each of the interleaved codewords we correct either 
a single erroneous byte or two bytes with parity fail-
ures or two bytes which are absent entirely. In this 
scheme a single missing data block is replaced if there 
are no other errors.If all the data blocks are 
present we correct either one byte error or two byte 
erasures in each of the 14 vertical codewords. 

2.2 Performance of the System with Independent Errors  

In order to calculate the mean number of pages before a 

decoding fault (not a correct decoding) we must first choose 

a coding strategy for the second and third levels and then 

make an assumption about the patterns and frequency of the 

errors. As to the latter we will assume at this stage that 

the errors arise independently and defer the question of 

burst errors to later consideration. We are then able to 

present (Figure 2.2) for each combination of coding 

• 



Coding Stategy Bit Error Rate 

Bundle Data Block 

Erasure cor-
ection of 1 
data block 

Single byte 
correction 
in 14 v.c. 

f Parity SEC 
DEC 

{ Parity 
SEC 
DEC 

1-byte error 
2-byte erase. 
in 14 v.c. r

S
arity 
EC 

DEC 

No. code 
Parity 
SEC 
DEC 

0..02 0.20 

• 	• 	• • 
FIGURE 2.2  Expected Number of Bundles Until Decoding Fault 

-4 10 -3 8x10
-4 6x10

-4 
4x10 	2x10

-4  -4 	-5 
10 	10 

1.2 	1.3 	1.5 	2.0 	3.3 	6.1 	56 
6.2 	9.2 	16 	33 	129 	505 	4.9E4 
74 	137 	304 	940 	6280 	3.9E4 	1.6E6 

1.2 	1.3 	1.4 	1.8 	 3.0 	5.9 	50 
65 	145 	421 	1969 	2.9E4 	4.5E5 	4.4E9 

9615 	3.3E4 	1.6E5 	1.6E6 	7.0E7 	2.7E9 	1.3E14 

8.4 	13 	22 	 47 	185 	730 	7.2E4 
71 	127 	252 	621 	2630 	1.0E4 	1.0E6 

352 	615 	1241 	3247 	1.6E4 	7.0E4 	7.9E6 

140 	263 	596 	1920 	1.5E4 	1.1E5 	2.8E7 
* 	* 	* 	 * 	 * 	 * 	 * 

1.5E4 	3.2E4 	8.5E4 	3.2E5 	2.7E6 	2.2E7 	2.0E10 

Expected number of 
bit errors in the 
data blocks 

2.02 1.61 	1.21 0.81 	0.40 

Notes: 1)A Bundle contains eight data blocks and except for the case 
of 'No code' above there is a ninth data block consisting 
of check bytes. 

2)The abbreviation v.c. above stands for vertical codeword. 
3)The entries marked * have not been calculated at time of printing. 
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strategies and a range of bit error rates the expected 

number of bundles until an incorrect decoding. 

The .  data of Figure 2.2 show clearly that performance 

can be greatly improved if a bundle code is used ,at least, 

to correct erased data blocks and then to correct more if it 

can.This is especially true if a double bit error correcting 

code is used on the packets first. The importance of the 

double bit error corrections is made clear by calculating 

the expected number of bit errors in the bundle. We 

have included these numbers in Figure 2.2 as well. At a bit 

error rate of 10 -3 we expect slightly more than 2 errors. 

The probability that two bit errors are in the same block is 

just 1/9. Thus a single bit error correcting code has a lot 

of trouble. Also without erasure decoding we cannot escape 

the failures from the prefix so these act as a limiting 

factor. We can easily calculate for example that the 

expected number of bundles until at least one prefix fails 

is 800 at a BER of 10 -3 but we expect 1.4E6 bundles before 

at least two prefixes fail at the same BER. 

2.3 Implementations  

We can interpret 'implementations' in at least three 

relevant ways: 

• How will we tell a teletext decoder that a bundle 
code is in use? 



• 

How should  we  encode and decode a Particular code in 
hardware or  softwareandhow long does it take?. 

• In a bundle code, is the check line encoded with a 
data block code? Which one takes priority? 

It is the second two questions that we address in this 

section. We assume that the data blocks code is either the 

Product code or code 	and the vertical codewords of the 14 

bundle code are also from code 	We remarked that 

decoding a code e codeword takes about 1 millisecond in 

M6809 software at a clock speed of 1.29 MHz. Decoding the 

whole bundle would then require about 23 milliseconds 

including both horizontal and vertial codewords. This would 

represent a negligible delay on the part of a user. Of 

course we have ignored all problems of overhead in the 

programming but we won't delay the user by more than a 

twinkle of an eye at the outside. The details are deferred 

to the Final Report. 

The third question is more subtle. Suppose the data 

blocks have a two byte code and we use only 13 vertical 

codewords in the interleaving. Thus we do not encode the 

data block check bytes in the bundle code. Then the ninth 

line in the bundle code has 26 bytes of bundle checks and 

the last two can be encoded for the horizontal data block 

code. This is a reasonable solution to the problem since 

having used the data block code we no longer care whether 

there are errors in its check bytes or not. 

• 



• If for some reason the data block code is a single byte 

Product code and we then superimpose a bundle code then the 

preceding paragraph does not apply. Now however, a happy 

event comes to pass. Encode the 8 data blocks with Product 

code, then add the ninth line of 28 check bytes of 14 

vertical codewords. It happens that this ninth line is in 

fact automatically a codeword of the Product code. 

Therefore no matter which data block code is used we 

can arrange to have the bundle code check block also a 

codeword of the data block code, albeit in a non-uniform 

way. 

• 
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