
/TWO-BYTEDATA BLOCK

AND BUNDLE CODES FOR THE

BROADCAST TELIDON SYSTEM

//Brian Mortime/

Mike Moore

with the assistance of

James Currie

Paula Gray

Andrew Dobrawalski

Lee Oattes

Brian Leroux

Industry Canada
Library Oueen

APR 2 8 1998
Industrie Canada

Bibliothèque Queen

A Progress Reporyprepared f-pr the

Department of Communications, Ottawa-:.

under DSS Contract 'No. 0SU82-00164

November, 1982

 •

. u" 	 „," „

A c E: 7

UMW — •

CONTENTS

3.

0. 	Introduction 1.

1. A Particular Two-Byte Code

1.1 The Code,' 	 1,

1.2 Relationship to the Product One-Byte Code

1.3 Decoding the Code e

1.4 Code Dependent and Independent Factors

1.5 The Code 	Defined 	 G.

1.6 Performance under Independent Errors 	 10.

Figure 1.1 Expected Number of Blocks Until 	 12-
Decoding Failure and Error

2. Coding A Bundle of Data Blocks

2.1 The Bundle Codes

Figure 2.1 Arrangement of the 14 Interleaved 	t .

Codewords of the Bundle Code

2.2 Performance of the System with Independent Errors 	1‘.

Figure 2.2 Expected Number of Bundles Until 	 17.
Decoding Fault

2.3 Implementations 	 18.

Bibliography

O. INTRODUCTION

This report describes some of the results obtained by

our research group in our work on error correcting codes for

the Broadcast Telidon System_ We begin by describing a

particular code which could be used as a two-byte data block

code. This code extends the product code and corrects all

double errors and any error confined to a single byte. It

is in fact a single symbol correcting Reed-Solomon code and

is easily decoded.

The second topic considered is the idea of collecting a

number of data blocks together and encoding them as a unit.

At the receiving end, the decoding would be done off line

after all the packets from that unit have arrived. We show

that this approach can give very good performance with

negligible delays to the user.

We have actually pursued many other avenues of inquiry

in our research and some of these will be outlined in our

Final Report. The topics covered here though are perhaps

the most important.

1. A Particular Two-Byte Code

1.1 The Code

We will present in this section a particular error

correcting code. 	We will call it e . 	This code is an

instance of a Reed-Solomon code. 	We consider it in the

context of a teletext system taking as its symbols bytes of

•
•

•

8 bits. The code 	uses two bytes of redundancy and can be

extended in a natural way to cover 127 bytes in total.

This code is capable of two types of correction: error

correcting and erasure correction. An 'error' in this

context means an erroneous symbol whose location is unknown

while an 'erasure' denotes an erroneous symbol whose

location is known. The distinction is unimportant if the

symbols are binary since to know the location of a binary

symbol is to know how to correct it. In our case there are

256 possible errors in each symbol so locating a faulty byte

is only half the problem.

The code 	can correct any single byte-error or any

double byte-erasure. Thus if any error corrupts a single

byte it can be corrected. In addition, if an error corrupts

two bytes in a way that makes the bytes locatable, say by

leaving them with the wrong parity, this error can also be

corrected. In any one codeword we do one type of correction

or the other but not both. Clearly, this code will correct

any single bit error. If two bit errors occur • then they

either fall in the same byte or fall in two bytes and change

the parity of each. Thus double bit errors are always

correctable. If three bit errors fall two in one byte and

one in a second or in three different bytes then these

errors are not correctable. (In fact a two byte code cannot

possibly correct all triple errors). •

o In the context of a teletext system uàing known parity

data bytes the decoding can procede as follows:

• Count the number N of - bytes with à parity faiiure,

• If N=0 - or 1 • hen attempt a single byte (error)
correction,

• If N=2 then attempt a double byte (erasure)
correction,

• If N > 2 then declare a failure.

•

1.2 Relationship to the Product One-Byte Code

The code e uses two bytes of check symbols. It is

defined in such a way that the exclusive-or sum of all the

bytes is zero. Thus each codeword of e is also a codeword

the Product code specified in the provisional version of

ES-14 [1]. 	Either of the two bytes can be used as the

Product code check byte. 	When interpreted as a Product

codeword we just have to remember that the penultimate byte

is not data and should not be passed to the picture

generating unit.

1.3 Decoding the Code

The code e can be quickly decoding using a software

decoder based on look-up tables. We have an implementation

which uses a Motorolla 6809 processor running at 1.29 MHz.

The decoder takes about a millisecond to decode one

• codeword using 512 bytes of look-up tables and a program 181

•

bytes long.

Hardware decoding would certainly be feasible. It would

be a straightforward exercise in implementing algebraic

equations in logic circuits. Some commercial enterprises,

such as Berlekamp and Golomb's Cycotomics Ltd., are currently

marketing hardware Reed-Solomon decoders of much greater

complexcity than would be required for our code.

1.4 Code Dependent and Independent Factors

The code ^ has many vïrtues:

. it extends the Product code,

. it corrects all double bit errors,

. it has a straightforward algebraic definition,

it can be used both as a data block code and to form

an interleaved code on a collection of data blocks

(see § 2 below).

We must deal though with the question of optimality. Is

there a better code? The criterion to be optimized is

performance; that is, the number of errors allowed to reach

the user of the teletext system. We take decoding

complexity as a secondary factor to be considered and this

acts as a constraint on the optimization process.

The decoding of a received message may have one of two

outcomes: a correct decoding or an incorrect decoding. We

0

thus .can calculate (at least in principle) for a given

channel error • model the probability 	PCof. a correct

decoding and hence the probability 	P I = 	of an

incorrect decoding. 	This depends only on the patterns of

errors which are corrected '(single bit-error, double

bit-error, single byte-error etc.). So if we are correcting

double bit-errors then every double-bit-error-correcting code

which is decoded as such has the same P and PI '

The code itself becomes important when we look in more

detail at 	P I' There are two forms of 	'incorrect

decoding' which can occur. 	The decoder may notice an

uncorrectable error and set a flag even though it can't

correct the fault. This is a decoding failure and occurs

gl, 	
with probability PF • 	The other possibility is that the

errors are uncorrectable but fool the decoder into believing

that they can be corrected. 	This outcome is called a

decoding error and occurs with probability. 	The E

result of a decoding failure is that the system must wait

for a rebroadcast; the effect of decoding error is to pass

rubbish on to the user as genuine data. It also follows

that 	P I = 	+ PE' 	In general decoding errors are P F

rare compared to decoding failures.

The optimization problem then splits into two parts:

• maximize P 	by choosing the right decoding
strategy for your error patterns and system,

•

• minimize PE , given the decoding strategy, by
choosing a code which has few codewords which re-
semble the'commonest error types.

•

These remarks apply equally to the data block codes and

to the bundle codes oùtlined in§ 2 below. We have attempted

to use the bundle code to make PC large. Thus the

expected number of bundles until a decoding error or failure

is made large enough that the importance of minimizing Pu

is greatly reduced. Moreover we have tried to use the same

two-byte code for both the data block and bundle codes to

eliminate the need •for a second decoder.

Given these assumptions and constraints we are left

only with the possibility of finding another code with

smaller PE which fits our conditions. This code would

then give better service in the case of either decoders

which do not deal with bundle codes or databases which are

not bundle coded. This is a hard problem. We will give

some results in 1.6 on the situation when errors arise

independently.

•

1.5 The Code 	Defined

The code e is a one-symbol-error-correcting Reed

Solomon code with symbols taken from the field F128 of

123 elements [3], [4]. We define using a primitive

element 	of the field. 	Thus the 127 powers p 0
 ,

1
,

126 ..., 	 are distinct and are a list of the non-zero

field elements. 	The codewords are polynomials in one

variable with coefficients in F128. These polynomials

• C(X) 	must satisfy two conditions to belong' to 	(for a

constant 11 < 128):

(i) deg (C(X)). < n 	 •

(ii) C(p °) = C(i31) = 0 .

The first condition implies that each code polynomial

represents a unique vector of length n over F128 :

•

•

C(X) = C o + C1 	 (C 	C1 , 	.' X + 	Cn-1X
n-1 	 C) . -- 	0' 	 n-1

This constant n is the code length (in symbols) and must

be less than 128.

The second condition allows us to perform corrections.

Suppose that a codeword (C o, .6e, Cn-1) is sent and an

error occurs in a single symbol C,. Then for some e,

the vector received is actually

(C 	C 	C.+e. 	c_) 0' 	1 , 	D 	D' 	' 	n-1

Writing this as polynomials R(X) = C(X) + E(X) is received

	

whereE(X)=e.Xj. 	Now we evaluate R(X) 	at /3 	= 1

1 and /5 1 noting that C(P o) = c (ie) = 0. We obtain,

o) = c (p) + 5n o)

E
((
3o)
o.j

eie 	e j
which is the error value, and

= Cy) + E(/4)

= E)

= e j pi .

Thus we write R()/R (1) as a power of 3 to

obtain j, the index of the faulty byte. Then R(l) is the

quantity to be subtracted to correct the error. This proves

that is single symbol correcting.

Now suppose that the error polynomial has the form

E(X) = ejX^ + ekXk so that errors occurred in the

j-th and k-th symbols. Suppose that the integers j and k

are known. This is the erasure situation. Again we

evaluate at P 0 = 1 and P 1 =P . Then

ej + ek = R(1)

ejP + ek^ = R(^)

are known as are the
k Thus wecoefficients /93 and

• can solve for ej and ek (since j0 k) and correct

the errors. Therefore two symbols whose locations are known

can be corrected.

We must now relate the symbols to bytes. Let d-/ be

another primitive element of F128. In fact we will take

û_/ $ =(3 but this is only important later. The first 7

powers of GY. namely 1,64 , 0z/ 2, .. , y 6 are linearly

independent over F2 = {0,1} so each field element,c,^

corresponds to a unique 7-tuple of bits by /

l,c (u0, ul, ..., u6) iff ,U = u00.0+...u6 a

0

•

•

871-1

tr. 0

with each 	u := 0 or 1. 	The set 1 	7 is

linearly dependent since QC satisfies a polynomial of degree

7. 	We will take ()C. as a root of 	X 7 + X 3 + 1 	for

•
example. Now each field element has two representations as

= u0
0 + 	u7k

7

withu.=0 or 1. 	In one representation the parity of

the byte 	(u 0' u1 , •' u7) 	is even and in the other

it is odd. We change from one representation to the other

by adding 0 = 1 + 3 + a 7 . Therefore if we use bytes

of one fixed parity, we have a unique byte for each field

element. . .

Now the bytes to be coded 	B 	B 	 3n-3 0' 	1 , ""

represent field elements and we are to determine B n-2'

B n-1 so that

B(1) =B 0 +B+ 	+ B n-1 = 1

Be = B 0 + 31P+ 	+ B An-1 = 0 . n-lr

But B + B1 + 	+ 3n-1 is just the exclusive-or of 0

the corresponding bytes since we are working in a field of

characteristic 2. Therefore a codeword of r is a Product

codeword. 	The second condition translates into the

statement that if the bytes 	B 	B 	Bn-1 	are 0' 	1 	'"'

written as a bit string m0 1111' "" m8n-1 	then we

have

= 0 .

•

errors at a time invariant bit error rate

When errors are independent the probability of decoding
• p.

•
•

This follows from the assumption (3 = x 8 and thé use of

01 	 7 the 	quasi-basis 	: { OC , t), I
	

••• 	a/..,) 	for 	F 1 2 8. .

This means that the codewords of e are also codewords of

Carleton code as it was defined in [2].

1.6 Performance under Independent Errors

Once we have decided to use a double-bit-error

correcting code on the data blocks this determines the

probability of a correct decoding. Further refinement of

the code can only change the probability of decoding failure

and decoding error. All of these probabilities depend

crucially on the frequency and correlations of the errors in

the channel. We deal only with the case of independent

error PE can be calculated from the weight distribution

of the code; that is, from the numbers Ai of codewords

with exactly i non-zero entries for i = 0,1,...,n. For a

double bit-error correcting code of length n we have

A0 = 11 ' 1 Al = A2 = A3 = A4 = 0 and

n 	k...t 	l< 4- (k +)A k, 	(kr-)A,,i X k
PE =

•

where q = 1-p and x = p/q. We see that PE is reduced

greatly if we can take A5 = 0 and then minimize A6 .

11, 	
The low weight distribution of code

weight codewords, is

which has no odd

jIb 	1 	1 	2 	3 	4 	5 	6 	7 	8 	9 	10
1

. 	I 	0 	8,600 	0 	1.21E6 	0 	1.75E I 10 	.

•

Can we find another code with no odd weight codewords and

with A6 smaller than 8,600 , perhaps even with A 6=0?

The answer to the first qustion is unknown but we can prove

that A6 must be positive.

What we can show is that any 28 byte long code with two

check bytes, one of which is the check byte of Product code,

with data bytes of even parity must have A6 >1000. This

implies that such a code cannot correct all triple errors.

The number of weight 6 codewords in e might be reduced by
using an «. which is a root of a different polynomial or by

taking p to be different from 0! 8 . We have not tried

this as yet. Moreover the lower bound on A6 is not by

any means tight.

We should emphasize that the data block code is part of

a coding system. Ultimately the only performance that

matters is the performance of the system as a whole. The

most important calculations are therefore of the performance

of the prefix code, data block code and any 'bundle' code

acting in concert. We present the results of such

calculations in the next section.

•

10 -3

. 10 -4

10 -5

V
FIGURE 2.1 Performance of Code 	Against Independent Errors

CODE 	 Expected Number of Data Blocks until
Decoding Failure / Decoding Error

BER

Product 	 47 	 2.9E4

	

638 	 9.7E6

Product 	 4068 	 2.5E7

	

5.5E5 	 7.9E10

Product 	 4.0E5 	 2.3E10

	

5.4E8 	 7.8E14

•

• 2. CodincLa Bundle of Data Block S

•

•

•

2.1 The Bundle Codes

At a higher level than the individual data packets we

might choose to encode 'bundles' or groups of data blocks

together with a more powerful code to clean out any errors

left by the packet level codes. In this section we will

describe various ways of doing this.

For purposes of discussion we will fix the size of the

bundle at 8 data blocks with perhaps a 9-th data block whose

28 bytes are the check bytes of the bundle code. We defer

considerations of other sizes to our Final Report. We have

available a number of strategies for coding the bundle. For

any given strategy we ask, 'what is the probability that

after decoding a particular bundle of 8 data packets will be

completely correct?' 	We reformulate this question and

calculate an equivalent parameter: 	the mean number of

bundles before an incorrect bundle decoding. 	This mean

number depends on the error patterfts and their frequencies

in the channel and on the decoding strategy but does not

depend on the particular code used to implement that

strategy.

The coding of a bundle comes in 3 layers. The first is

the prefix code which consists of 5 bytes each encoded with

the Hamming (8,4) code. Due to the continuity count byte

(the 4th byte) and the interpretation of the packet

structure byte (the 5th byte) it will be a rare event that a

decoding error . in the prefix actually goes unnoticed by the

system. The most common error effect ie that a packet is

lost or appears to be lost from the broadcast stream. This

might also occur if there are synchronization problems when

the line arrives.

The second layer is the data block code. We consider

three options:

Byte-Parity (Parity)

The only coding is the parity bit in each data byte.

Single Bit Error Correction (SEC)

The 28th byte of the block is a check byte which allows
the correction of a single bit error. With only one
check byte it is not possible to correct all double
errors.

Double Bit Error Correction (DEC)

The 27th and 28th bytes of the block are check bytes.
Any double bit error can be corrected.

The third layer of coding covers all of the data blocks

together (but excludes the prefix bytes). We consider four

options. The first is to add no further coding. The other

three are simply alternative decoding strategies for the same

encoding. For these we interleave a number of vertical

byte-correcting codes across the set of 8 data blocks adding

28 check bytes as a ninth data block (the layout of the

interleaving is given in Figure 2.1). We assume that the

basic code which is then interleaved is capable of correcting

any error pattern confined to a single byte or any two

byte-errors when the bytes are known (erasure decoding). We

could use code e, for example. We summarize the four

strategies for coding the bundle as follows.

Her..- ilret ■ x)1‘ 	 rDo.t.s. 	'13 loc k

--,--.-
?

.0# 	

,......
it,--- -. d
« 	 gi , 	 r., 10
1
...";-

Ill
'7,- r
,-- ,,

,,,,:, 	
/..

, 	 ,--- 	 f A

. 	. 	. 	. 	, 	
.n. 	P.

. 	. 	. 	.

!
› 	

s 	
- 1L1 +1, ve etica I 	coci e word.

• • 	.
	 3 rol 	ue-r-fica I 	coole waed

e 	 _

1.st. poLoket

2. not pa%.c k et

etp, rckft

hcc 1Dy tes
Lof verta. i*c

coot e (.0or`c.S

1st ver t1 cocieword.

Fire 21, 	A rra,, ,e »ie ,,toi ±-keiqVersc4 C'derei 	o .f ILL E -73 t4r%elle Cooie

•

•
•

Nocode:

The eight data blocks are sent as they are with no
further:protection.

Erasure correction:

The bundle code is used to replace a lost data block by
erasure correction. One data block can be retrieved
and no other corrections are attempted on the bundle.
This technique can overcome a failure in a single pre-
fix or a single synchronization error.

14 X 1-Byte-error correction:

A single byte error in each of the 14 interleaved code-
words is corrected. If there are two faulty bytes in
any one codeword then the errors are not correctable.

Erasures and Errors:

In each of the interleaved codewords we correct either
a single erroneous byte or two bytes with parity fail-
ures or two bytes which are absent entirely. In this
scheme a single missing data block is replaced if there
are no other errors.If all the data blocks are
present we correct either one byte error or two byte
erasures in each of the 14 vertical codewords.

2.2 Performance of the System with Independent Errors

In order to calculate the mean number of pages before a

decoding fault (not a correct decoding) we must first choose

a coding strategy for the second and third levels and then

make an assumption about the patterns and frequency of the

errors. As to the latter we will assume at this stage that

the errors arise independently and defer the question of

burst errors to later consideration. We are then able to

present (Figure 2.2) for each combination of coding

•

Coding Stategy Bit Error Rate

Bundle Data Block

Erasure cor-
ection of 1
data block

Single byte
correction
in 14 v.c.

f Parity SEC
DEC

{ Parity
SEC
DEC

1-byte error
2-byte erase.
in 14 v.c. r

S
arity
EC

DEC

No. code
Parity
SEC
DEC

0..02 0.20

• 	• 	• •
FIGURE 2.2 Expected Number of Bundles Until Decoding Fault

-4 10 -3 8x10
-4 6x10

-4
4x10 	2x10

-4 -4 	-5
10 	10

1.2 	1.3 	1.5 	2.0 	3.3 	6.1 	56
6.2 	9.2 	16 	33 	129 	505 	4.9E4
74 	137 	304 	940 	6280 	3.9E4 	1.6E6

1.2 	1.3 	1.4 	1.8 	 3.0 	5.9 	50
65 	145 	421 	1969 	2.9E4 	4.5E5 	4.4E9

9615 	3.3E4 	1.6E5 	1.6E6 	7.0E7 	2.7E9 	1.3E14

8.4 	13 	22 	 47 	185 	730 	7.2E4
71 	127 	252 	621 	2630 	1.0E4 	1.0E6

352 	615 	1241 	3247 	1.6E4 	7.0E4 	7.9E6

140 	263 	596 	1920 	1.5E4 	1.1E5 	2.8E7
* 	* 	* 	 * 	 * 	 * 	 *

1.5E4 	3.2E4 	8.5E4 	3.2E5 	2.7E6 	2.2E7 	2.0E10

Expected number of
bit errors in the
data blocks

2.02 1.61 	1.21 0.81 	0.40

Notes: 1)A Bundle contains eight data blocks and except for the case
of 'No code' above there is a ninth data block consisting
of check bytes.

2)The abbreviation v.c. above stands for vertical codeword.
3)The entries marked * have not been calculated at time of printing.

•
•

•

strategies and a range of bit error rates the expected

number of bundles until an incorrect decoding.

The . data of Figure 2.2 show clearly that performance

can be greatly improved if a bundle code is used ,at least,

to correct erased data blocks and then to correct more if it

can.This is especially true if a double bit error correcting

code is used on the packets first. The importance of the

double bit error corrections is made clear by calculating

the expected number of bit errors in the bundle. We

have included these numbers in Figure 2.2 as well. At a bit

error rate of 10 -3 we expect slightly more than 2 errors.

The probability that two bit errors are in the same block is

just 1/9. Thus a single bit error correcting code has a lot

of trouble. Also without erasure decoding we cannot escape

the failures from the prefix so these act as a limiting

factor. We can easily calculate for example that the

expected number of bundles until at least one prefix fails

is 800 at a BER of 10 -3 but we expect 1.4E6 bundles before

at least two prefixes fail at the same BER.

2.3 Implementations

We can interpret 'implementations' in at least three

relevant ways:

• How will we tell a teletext decoder that a bundle
code is in use?

•

How should we encode and decode a Particular code in
hardware or softwareandhow long does it take?.

• In a bundle code, is the check line encoded with a
data block code? Which one takes priority?

It is the second two questions that we address in this

section. We assume that the data blocks code is either the

Product code or code 	and the vertical codewords of the 14

bundle code are also from code 	We remarked that

decoding a code e codeword takes about 1 millisecond in

M6809 software at a clock speed of 1.29 MHz. Decoding the

whole bundle would then require about 23 milliseconds

including both horizontal and vertial codewords. This would

represent a negligible delay on the part of a user. Of

course we have ignored all problems of overhead in the

programming but we won't delay the user by more than a

twinkle of an eye at the outside. The details are deferred

to the Final Report.

The third question is more subtle. Suppose the data

blocks have a two byte code and we use only 13 vertical

codewords in the interleaving. Thus we do not encode the

data block check bytes in the bundle code. Then the ninth

line in the bundle code has 26 bytes of bundle checks and

the last two can be encoded for the horizontal data block

code. This is a reasonable solution to the problem since

having used the data block code we no longer care whether

there are errors in its check bytes or not.

•

• If for some reason the data block code is a single byte

Product code and we then superimpose a bundle code then the

preceding paragraph does not apply. Now however, a happy

event comes to pass. Encode the 8 data blocks with Product

code, then add the ninth line of 28 check bytes of 14

vertical codewords. It happens that this ninth line is in

fact automatically a codeword of the Product code.

Therefore no matter which data block code is used we

can arrange to have the bundle code check block also a

codeword of the data block code, albeit in a non-uniform

way.

•

Bibliography

[1] "Television Broadcast Videotex",Broadcast Specification

No. 14, Issue 1, Provisional, Telecommunication

Regulatory Service,Department of Communications, Canada,

June 19,1982

[2] Mortimer, B.C., "A Study of the Use of Error-Correcting

Codes in Broadcast Telidon",Final Report,DSS Contract

No.OSU81-00095,Deparment of Communications, Canada,

February,1982

[3] MacWilliams,F.J. and N.J.A.Sloane,"The Theory of

Error-Correcting Codes" ,North Holland Mathematical

Library Vol.16, North Holland, Amsterdam, 1977 '

[4] Peterson, W.W. and E.J.Weldon,"Error-Correcting Codes",

2nd Edition,MIT press, 1972

