LIBRARY
를 OTINWA
of UIBLIOTHEQUE expansion tóconomiour
NORTHERN SASKATCHEWAN
TRANSPORTATION REVIEW
DEPARTMENT OF REGIONAL
ECONOMIC EXPANSION
AUGUST 1973
W.R. ANDERSON

PREFACE

This study was performed for the Department of Regional Economic Expansion over the period May-August 1973 by Mr. W.R. Anderson. It is intended to serve as an input to joint federal-provincial development planning for Northern Saskatchewan. Considerable work on northern transportation planning had been done by the Department of Highways and Transportation, Saskatchewan; especially by Mr. A.A. Jones of the Planning section of the Department. This study, conducted in conjunction with Mr . Jones, reviews and summarizes the results of planning to data on the highways and air modes. In terms of the air mode this study investigated alternative northern air systems and a system is recommended based on this investigation.

SUMMARY

This study reviews transportation in Northern Saskatchewan (north of the Department of Northern Saskatchewan jurisdictional boundary but including air linkages to Saskatoon and Regina). Transportation is reviewed in the context of the two modes which are relevant to the area, highway and air, including a marine service across Lake Athabaska as an extension to the highway system. Other aspects of transportation in the area such as freight movement to Uranium City are also covered.

A factor to be emphasized in connection with this area is the need to decrease remoteness of settlements, (particularly those isolated from road connections) thus improving the mobility psychological and physical, of the population.

The rationale for this review is to serve as input to federal-provincial joint development planning in northern Saskatchewan. Transportation is germane to development planning both in terms of a service function requiring responsiveness to demand and elimination of service deficiencies as these may restrict development and in terms of development facilitation through provision of transportation services. This report is intended to review transportation planning in the area to date and was prepared in conjunction with the Saskatchewan Department of Highways and Transportation.

In the case of the air mode a number of alternative systems are evaluated in light of present system deficiencies.

The cost implications of these alternatives are examined and a system which is the most suitable is recommended. Physical facilities are also reviewed in light of planning to date by the DHT and the Canadian Aviation Transportation Administration regional office. Requirements for physical airport and ancillary facilities are priorized.

In the case of the highway mode the review of transportation planning shown in this study is based on work to date by the DHT which was accepted as rationally derived and further evaluation of highways by the Department of Northern Saskatchewan which has indicated additional and modified road requirements to those indicated by the DHT. Internal provincial departmental highways programs had not yet been resolved at the time of this review.

Air Services

In the present system poor service results from use of obsolescent aircraft, ex. the DC-3. Slow progress in replacement of aircraft has been due to fixed traffic flows which inhibit growth in aircraft utilization hours.

Advantages of older aircraft types, using reciprocating engines have been,
(i) rugged uncomplicated design, with relatively
simple maintenance procedures,
(ii) ability to operate from short rough airstrips.

Such aircraft are slow, cannot increase earnings without added cost to customers, overhaul costs increase, without increase in time between overhauls, with difficulty in obtaining parts.

Use of expensive turbine powered aircraft requires potential expansion of the market and past traffic growth in northern Saskatchewan has been insufficient to justify investment. Operators in northern Canada in general have acquired new types of aircraft (jet and turbo-prop); following this trend, operators in northern Saskatchewan are purchasing new types of equipment over time. Increases in use of aviation services are resulting in a demand for increased coverage of navigation aids, and imporved airport facilities.

The air system was examined as follows:
The existing system, using DC-3's on northern links to Uranium City, Stony Rapids, Wollaston, Cluff Lake, amongst others, and the Twin Otter on southern links, was outlined
and costed. This cost structure is used as a model into which other aircraft are introduced for comparison.

Alternatives evaluated are as shown in Table s-1. The recommended system uses two. Hawker-Siddely 748 aircraft for northern service and one Iwin Otter in addition for southern links. This is essentially a mainline system and three regional feeder services are also recommended centred on Buffalo Narrows, La Ronge and Uranium City. The recommended system is shown in figure $\mathrm{S}-\mathrm{l}$. Airfield improvements required indicated by aircraft suitability including two forestry base airfields (Buffalo Narrows, Meadow Lake) are recommended and are detailed in Table $S-2$ as are requirements for additional navigation aids.

TABLE S-1

ALTERNATİVE MAINLINE AIR SERVICE

	ANNUAL		
SYSTEM	DIRECT	ANNUAL	EVALUATION
	OPERATING	REVENUE	

1. Existing system $\$ 755,000 \quad \$ 921,000 \quad$ Poor service DC-3 on northern links, Twin Otter on southern links

2 Hawker-Siddely 748 \$829,000 $\$ 921,000$ Economically feasible to provide northern weekly service

3 Fokker 28 to pro- $\$ 1,640,000$ \$1,107,000 vide more frequent service but requires HS 748 based in Prince Albert

4 Two HS 748 air- \$1,424,000 \$1,107,000 Recommended as being craft and one Twin Otter for southern links.

As indicated the alternatives examined were not mutually discrete but were derived incrementally in improvements to the present system until an alternative providing the required service at minimal cost was reached.

Highways

Requirements exist for highway improvement. These include highway connections to the most northern parts of the province, to provide good roads for freight-trucking, private automobiles, resource development, with emphasis on forestry and mineral extraction. Planning involves upgrading of some gravel roads to pavement, some winter roads to gravel and provision of access roads.

The proposed DHT highway plan is shown in figure $\mathbf{S - 2}$. From a review of the rationale for the plan on transportation service criteria it appears to be supportable, however, as mentioned earlier the DNS has evaluated additional and modified requirements.

The DHT highways plan is composed of three elements; a surfacing program for 620 miles of highway, a northern highway upgrading program and a transportation facility program.

Highway requirements are detailed in Table S-3 as are proposed DHS revisions and additional highway requirements. As part of the study a hovercraft service across Lake Athabaska was examined in relation to a ferry/winter road service and the latter was forced to be for more economic and is therefore recommended.

Summary of Recommendations and Estimated Costs

A. Air Services

1. A mainline air system using	Capital Cost	$\$ 3,300,000$
two Hawker-Siddeley 748	Annual Subsidy	$\$ 500,000$
turbo prop aircraft (1 Twin		
Otter now in operation)		
*The subsidy is expected		
to become negligivle over		
a lo year period as traffic		
growth occurs		

2. Regional air services

Three feeder systems:
centred on Buffalo Narrows, east of La Ronge; centred
on Uranium City. Using
Islander aircraft.

Capital Cost
\$5-600,000
Annual Subsidy
$\$ 55,000$
*3. Airfield improvements
*4. Navigation Aids

Capital Cost
\$6-7,000,000
Capital Cost \$1,400,000

B. *Highways

$$
\begin{array}{lll}
\text { 1. Surfacing program for } & \text { Capital Cost } & \$ 28,000,000 \\
620 \text { miles of highway } & & \\
\text { 2. Northern Highway upgrading } & \text { Capital Cost } & \$ 8,600,000
\end{array}
$$

3. Northern transportation

Capital Cost $\$ 11,300,000$ facility provision program
4. DNS additional proposals Capital Cost
\$ 33, 000, 000 under item 3 due to higher standards of facility provision, additional major facilities and additional access roads.
5. Forestry access roads
$\$ 3,200,000$
6. Ferry service across Lake Capital Cost \$500,000 Athabaska vessel, terminal and winter roads.
*See Table S-3 for detail.

AIRPORT AND ANCILLARY FACILITIES

Category	Priority	Facilities	$\begin{gathered} \text { Estimated } \\ \text { Cost } \end{gathered}$
1. Mainline route	high	La Ronge	\$4,000,000
	high	Rabbit L, Wollaston L.	
		Cluff L., Stony Rapids	\$650,000
2. Feeder centred on Buffalo Narrows	high	Meadow L., Buffalo Narrows	
	.	Patuanak, Pinehouse	
		Dilion, Ile a-la-Crosse,	
		Beauval	\$550,000
	1ow	Turnor.L., Green L., Canoe	
		Narrows/Cole Bay, Dore L.,	
		La Loche	\$ 350,000
3. Feeder east of La Ronge	high	Stanley Mission	\$100,000
	med.	Cumberland House, Southend ${ }^{\text {- }}$	
		Kinoosao, Island Falls	
		Pelican Narrows, Deschambault	\$ 500, 000
4. Feeder centred On Uranium City	med.	Camsell Portage, Fond-du-Lac	\$ 190,000
			\$6,340,000
5. Navigation aids	high	10 locations, see report	\$1,400,000
6. Additional crosswind runways to be considered (not	very high	5 locations, see report	\$3,150,000
	high	5 locations, " "	\$600,000
	med.	9 locations, " "	\$578,000
included in recommendations	low	7 locations, " "	\$432,000
			\$4,760,000

TABLE S-3

HIGHWAY AND ANCIILARY FACILITIES

Category	Hwy .	Location	Requir ment	Dept.	$\begin{gathered} \text { Estimated } \\ \text { Cost } \\ \hline \end{gathered}$
1. Northern Highway	2	Jct. 264-La Ronge north 20 miles	G\&P	H	\$5,700,000
	55\%	Big River to Ile a-la-Crosse	G\&P	H	\$5,000,000
	155				
Surfacing Program	120	Jct. 55 to Big Sandy L.,	G\&P	H	\$7,300,000
	106	Jct. 55 to Creighton	OT	H	\$ $\$ 10,000,000$
					\$28,000,000
2. Northern $\begin{aligned} & \text { Highway } \\ & \text { Upgrading } \\ & \\ & \text { Program }\end{aligned}$	109	Jct. 3 to Jct. 163	G\&P	H	\$1,678,000
	155	Ile a-la-Crosse to La Loche	G\&O	H	\$2,842,000
	$\begin{aligned} & 224 \& \\ & 104 \end{aligned}$	Meadow L. to Canoe Lake	G\&O	H	\$1,246,000
	tote roads		G	H	\$1,120,000
	$\begin{aligned} & 155 \\ & 163 \end{aligned}$	Bridge at Buffalo Narrows Shoal Lake I.R. West	G	H	$\begin{array}{r} \$ 1,350,000 \\ 364,000 \\ \hline \end{array}$
					\$8,600,000
3. Northern Pacility Provision		-Turnor Lake to Cluff L. to			
		south shore L. Athabaska		$\mathrm{H} \& \mathrm{~N}$	\$12,250,000
		-S. Shore L. Athabaska to Stony Rapids		N	\$4,750,000
DHT		-Stony Rapids-Wollaston L.		N	\$8,500,000
+		-La Ronge-Beauval		N	\$6,250,000
DNS		-access to Stanley Mission		H\&N	\$1, 200,000
Programs		-access to Pinehouse		H\&N	\$1,200,000
amalgamated		-access to Patuanak		H\&N	\$1,160,000
		-access to Dillon		H\&N	\$1,500,000
		-Big River to Meadow L (sawmill)		H	\$2,000,000
		-Kinoosao to Lynn Lake		\mathbb{N}	\$ 690,000
		-Sturgeon Landing		N	\$1,640,000
		-Meridian Bridge on Onion L. road		N	\$1,500,000
		-other access roads to settlements		N	\$1,700,000
4. Forestry access roads					\$44,340,000
					\$3,200,000

G-Grading, not necessarily entire length
P-staged paving or 8"AC
S-staged asphalt base
o-oiling
OT-oil treatment
$\mathrm{H}-\mathrm{MHT}$
H\&N-DHT with DNS modifications proposed

TABLE OF CONTENTS

Page
Introduction 1
PART A AIR SERVICES AND RELATED FACILITIES 2

1. Introduction 3
2. Existing Mainline Air Services 7
3. Alternative Improved Mainline Air Services 12
4. Feeder Services 40
5. Airport Improvements 42
6. Navigation and Landing Aids 52
PART B HIGHWAYS 55
7. Introduction 56
8. Access Roads under the DHT Plan 60
9. Conclusions 65
PART C LAKE ATHABASKA SYSTEM 66
10. Evaluation of Hovercraft Service 67
11. Alternatives to a Hovercraft Service: 81
12. Conclusions 89

INST OF TABLES

Number Page
1 The Revenue System for Existing Scheduled Service, DC-3 and Twin Otter 8
2 Block Times and Load Factors for Existing DC-3 Twin Otter Scheduled System 11
3 Block Times and Load Factors for the Hawker- Siddeley 748, Under the Existing Price Structure 17
4 Block Times and Load Factors for the $\mathrm{F}-28$ Twin Jet, Under Existing Price Structure 21
5 Annual Utilization Hours for F-28 and HS 748 Used in Conjunction 28
6 Derivation of Annual Utilization Hours for Twin Otter and Hawker-Siddeley 748 on Improved Frequency Schedule 34
7 Potential Revenue Increase Due to Increased Traffic Capture, Derived from Table 1 36
8. Present Airport Conditions, with Recommended Improvements 47,48
9 Frequencies and Block Times of a Hovercraft System on Lake Athabasca 69
10 A.C.V. Revenue on Local System 76
11 Derivation of Block Times on Regional Air Service, Region C. 83
NumberPage1 Mainline Schedule Service, withFrequencies4
2 Estimated Origin/Destination Flows 10
3. Route Pattern and Frequencies, HS 748from Saskatoon16
4. Hawker-Siddeley 74i8/DHC Twin Otter Service Based on Regina 24
5 HS 748 and Fokker 28, Used in Conjunction 27
6 Improved Service to Settlements with HS 748 32
7 Location of. Airfields Recommended for Improvement 44.
8
Location of Settlements/Sites Without Present Road Access 58
9 Highway Improvement Program. See Summary.10 Location of Settlements - Lake AthabascaRegion68
11 Sketch of Proposed Air Cushion Vehicle System 71
12 Freight and Passenger Flows on Edmonton - Uranium City Linkages 72
13 Cost of Freight at Edmonton 70
14 Showing 80% of Flows on Regional System 77
15 Flows Across Lake Athabasca if 10% 78Diversion were Achieved
16 Equivalent Passenger Flows on Air Service $8 / 2$ for Region C.

APPENDICES

Number
1 Aircraft Data
2
Norcanair Schedule
3 Extracts from North-west Study by A.A. Jones
4 Provincial Highway Programs
5 Department of Northern Saskatchewan Highways Proposals

The objective of this review is to assess transportation in northern Saskatchewan in terms of required improvements.

The assessment falls naturally into three categories. These are
A. Air Services and related facilities
B. Highways
C. Lake Athabaska system

The principle issues to be considered include:

1. provision of improved air access to remote northern communities, by use of more modern aircraft types,
2. adequacy of airfields for provision of satisfactory service,
3. requirements for more numerous navigation aids,
4. keeping system costs to a minimum while providing high quality service at lowest possible cost, and to avoid price discrimination against a captive market,
5. providing alternate modal systems where necessary and feasible,
6. provision of highway access to settlements, where it does not exist, and is justified to decrease or eliminate isolation,
7. the need for access roads to resource areas,
8. the construction of an all-weather inter-connecting and intermodal network to serve northern Saskatchewan.

PART A

AIR SERVICES AND RELATED FACILITIES

1. Introduction

In considering existing services, it was first necessary to establish a definition of the existing system,
a) scheduled and charter operations,
b) the linkages,
c) the link flows, passengers and freight for both schedule and charter work.

To rationalize the flows, it was found easier to use an equivalency method to represent freight quantities as passengers. The equivalence was usually based on aircraft capacity, e.g. each 250 lbs. represents one equivalent passenger for the DC-3 airplanes, while 165 lbs. was used on some other occasions.

The existing system employs DC-3 aircraft, aging, obsolescent machines, on the mainline system, (see Figure 1), and by a variety of smaller aircraft mostly on a charter basis, on subsidiary routes, e.g. DHC-2 Beaver, DHC- Otter, DHC Twin Otter, Cessna 180, Cessna 185, using wheels, floats or skis. A weekly scheduled service is offered to the subsidiary regions using a DHC-2 Beaver.

It was decided to examine possible new scheduled services, based on a two-level framework using modern aircraft to service the communities. The primary one would use:
a) turbo-prop aircraft, or
b) twin-jet aircraft,
on the main linkages. A linkage in this context is defined as the total connection from a wholesale distribution centre to destination, e.g. Saskatoon to Uranium City.

The secondary system will use small feeder aircraft on local regional service. Northern regional services at present are seen as falling into three potential geographic systems:
a) The area centered on Buffalo Narrows, including Dillon, Patuanak, Pinehouse, Ile a la Crosse, Beauval, Meadow Lake, etc.
b) The settlements east of La Ronge, including Stanley Mission, Deschambault, Pelican Narrows, Southend, Kinoosao, etc.
c) The northern-most region, centered on Uranium City and including Stony Rapids, Fond du Lac and Camsell-Portage.

Consideration has been given to airfield improvements at all points in each system, to accommodate aircraft suggested for service.

Due to exigencies of time, the main concentration in the study has been on the mainline route patterns. For regional services reference can be made to a study by A. A. Jones, Location Engineer, Department of Highways, Saskatchewan, "Recommendations for improved transport services to the mid-north-west portion of Saskatchewan, generally described by Prince Albert - Meadow Lake - La Loche - La Ronge", i.e. covering sub-system A. A brief costing examination has, however, been done on sub-system C in connection with proposed services on and around Lake Athabaska. The "mainline" system serves

Regina, Saskatoon, Prince Albert, La Ronge, Rabbit Lake, Wollaston Lake, Stony Rapids, Uranium City and Cluff Lake. Investigation of aircraft capability was carried out using the present price structure pertaining to the scheduled Norcanair service with DC-3 and DHC Twin Otter airplanes, To do this the schedule operation was briefly analyzed and costed, (see Tables 1 and 2), and two new aircraft types,
a) the Hawker-Siddeley 748, turbo-prop,
b) the Fokker 28, twin jet,
were tested within that price structure. Following that, consideration was given to:
i) increased frequency of scheduled service,
ii) increased costs associated with (i),
iii) the possibility of attracting an increased percentage of potential traffic at present price levels,
iv) diversion of traffic from other routes to this system, by reduction of fares.

The Hawker-Siddeley 748 and Fokker 28 were tested as being representative turbo-prop and jet aircraft with some background in the northern environment, and due to difficulties of obtaining suitable data on other airplanes in the time available. Similar aircraft types may, after due examination, be found eminently suitable for service in northern Saskatchewan.

Table 2 below, uses distance between nodes to produce block times. Block times are used to obtain aj.rcraft utilization hours per year. The total annual passenger capacity is the product of link frequency/week X capacity of the aircraft (DC-3, 28, passengers) X 52 (weeks pe'r year).

The origin destination passenger flows were distributed along the links in the system, according to the route scheduled frequencies. (See Figure 2)

The greatest capacity and passenger flows are on the two southern links, and the La Ronge - Stony Rapids link. The first two are links to and from large population centres, the third because the operation of four flights along this route shows through flows from other node points. The load factor is generally low, ranging from 0.24 to 0.72 .

3. Alternative Improved Mainline Air Services
a. Modifications to services by use of chartered aircraft to serve mining developments

Assumptions were made concerning airlift of
operatives from mining developments at Chuff Lake and Rabbit Lake by chartered aircraft. This being so, some modifications should be made to the scheduled system and the revenue.

Charter lift of operatives between Prince Albert - Chuff Lake, Prince Albert - Rabbit Lake.
Sluff Lake to \quad Rabbit Lake to Prince Albert Prince Albert
Prince Albert \quad Prince Albert \quad to Cluff Lake to Rabbit Lake

Demand 2400 pass/yr.
 Prince Albert to Chuff Lake to Rabbit Lake
i.e. pass. 46/wk.
$\downarrow 46 / w k$.

DC-3 services required

$\downarrow i / w k$.
$\uparrow 1 / w k$.

Reduction in revenue in the scheduled system on account of this change would only amount to about $\$ 38,000$. Revenue reduced to approximately $\$ 921,000$.

The route for the scheduled service has now been reduced to:

An approximate operating cost reduction of $\$ 21,000$. per year can now be deducted from the scheduied system. Direct operating cost/year is reduced to $\$ 755,000$.

Cost for Cluff Lake/ Rabbit Lake Charter

Prince Albert to Cluff Lake $=$
2.45° (hrs/wk) X 4 Flts/wk X $52=509.5 \mathrm{hrs} / \mathrm{yr}$.

Prince Albert to Rabbit Lake =
2.28 (hrs/wk) X 4 Flts $/ \mathrm{wk} \mathrm{X} 52=\frac{474.2}{\mathrm{hrs} / \mathrm{yr} .}$
Total
$984 \mathrm{hrs} / \mathrm{yr}$.

Annual utilization hours for DC-3 charter $=984$.
Direct operating cost/yr. $\quad=984 \times 158.30=$ $\$ 155,767$

The overall direct cost of the existing scheduled system is taken to be $\$ 755,000$; revenue $\$ 921,000$; gross estimates.
b. Replacement of DC 3 by HS 748

Having estimated the direct operating cost of the existing system, the Hawker-Siddeley 748 was tested on the route linkages, retaining the same price structure. For route patterns and frequencies see Figure 3. Service is provided from Saskatoon to Prince Albert, La Ronge, Wollaston Lake, Stony Rapids and Uranium City; the two mining developments are left to a chartered operation by this airplane. Service from Regina to Saskatoon is provided by a DHC Twin Otter as in existing system. There is a reduction in frequency of service to as little as one per week on some links, while the overall load factor is seen to be low. (See Table, 3 below.)

TADLE 3

Block Times and Load Factors for the Hawker-Siddeley 748 Under the Existing Price Structure

Link	$\begin{gathered} \text { Distance } \\ \text { (S. Miles) } \\ \hline \end{gathered}$	Frequency Per Week	$\begin{aligned} & \text { Block } \\ & \text { Link } \\ & \hline \end{aligned}$	Time Total	Capacity Passenger	Link Flow	Load Factor
skatoon - Prince Albert	85	10	0.58	5.80	29,120	7073	0.24
ince Albert - La Ronge	132	σ	0.74	4.44	17,472	8071	0.46
Ronge - Wollaston Jake	221	1	1.04	1.04	2,912	1759	0.60
Ilaston - Stony Rapids	125	1	0.72	0.72	2,912	2818	0.97
Ronge - Stony Rapids	288	3	1.28	3.84	8,376	3337	0.40
ony Rapids - Uranium City	96	2	0.61	1.22	5,824	2818.	0.48
Ronge - Uranium City	329	2	1.43	2.86	5,824	2497	0.43
				19.92			

nual Utilization for Scheduled Service: 19.92 (hrs/wk) X $52=1036 \mathrm{hrs} / \mathrm{yr}$.

Provision of Charter Service to Mining Sites

Total Utilization for HS 748

Direct operating cost HS $748 / \mathrm{hr} .=\frac{\$ 252,460}{1364} \div 197$
$=. \$ 382$
(Direct cost, charier segment, 328 hrs. $\mathrm{X} 382=\$ 125,296$)

Scheduled service:
Annual direct operating cost: $1036 \mathrm{X} \mathrm{382}=\$ 395,752$
approximately equal to $\$ 400,000$
Annual direct operating cost DHC I'vin $=\$ 429,000$
otter (Regina-Saskatoon)
Direct Cost for Scheduled System $=\overline{\$ 829,000}$

On a gross estimate this compares favourably with the cost of $D C-3$, Twin Otter system, approximately $\$ 800,000$.

CONCLUSIONS

PRO.

1. Provides a fast; more comfortable aircraft, hence, some time-savings.
2. Compares favourably with the cost of DC-3 operation.

CON.

1. Reduction in frequency provides a meagre service to northern communities.
2. Such reduction could cause potential decrease in link flows, hence, impairing load factor further.

PROPOSAL
If a higher annual utilization were possible, this aircraft could prove more favourable than the DC-3; hence a higher frequency will be examined, which may genexate higher flows.
C. Examination of Fokker 28 aircraft

The Fokker 28 was examined under the existing system and price structure. Frequency of service was as for the Hawker-Siddeley 748, in Figure 3. In this case the aircraft is seen as providing 65 seats. Hence, the load factors are very low on most links. See Table 4 below.

An additional estimated cost of $\$ 234,000$ is shown on the cost of the existing DC-3 system (\$989,000 $\$ 755,000=\$ 234,000)$.

Conclusions

The $\mathrm{F}-28$ is less favourably suited compared to the DC-3 cost structure.

Although time is saved, and a comfortable aircraft offered, the service is reduced, which in turn promises a potential reduction in traffic volume for the scheduled system.

The $F-28$ would only be viable if utilization can be increased. Under the present price structure an approximate utilization of 1,200 hours/year would be required to achieve a 'break-even' situation. Allowing for 5% growth over 10 years, it appears that within the present structure, using Saskatoon as a southern base, this aircraft would still lose over $\$ 30,000$ per year.

TABLE 4

Block Times and Load Fäctors for F28 Jet Aircraft
 Under Existing Price Structure

NNUAL UTILIZATION ON SCHEDULED SYSTEM $=13.56 \times 52=705 \mathrm{hrs} / \mathrm{yr}$.
nnual utilization hours on Schedule system: $=13.56$ (hrs/wk) x $52=705 \mathrm{hrs} / \mathrm{yr}$.
nnual utilization for Charter (Cluff/Rabbit) $=\underline{200}$
TOTAL ANNUAL UTILIZATION $=905$ hours
ased on 905 hours annual utilization, direct hourly operating cost is estimated to be $=\frac{\$ 446,375}{905}+\$ 300=\$ 793$
nnual direct operating cost $=\$ 793 \times 705=\$ 560,000$
nnual direct operating cost Twin Otter segment $=429,000$
cheduled System Total D.O.C.

d. Assumed Replacement of the Present System by a HS 748 and Twin Otter Service based in Regina

This service proposes a frequency of 20 aircraft per week between Regina and Saskatoon, 3 by HS 748, 17/week by a Twin Otter, and $1 /$ week by $H S 748$ to northern settlements. For details of frequencies see Figure 4.

Direct cost of potential new service.

Hawker-Siddeley 748

Utilization on scheduled service $\quad=1,165 \mathrm{hrs} / \mathrm{yr}$.
Utilization for Cluff/Rabbit Lake $\underset{\text { Tharter }}{\text { Total }}=\frac{328}{1,493} \mathrm{hrs} / \mathrm{yr}$.
Direct hourly operating cost $-\frac{\$ 252,460}{1493}+\$ 197=\$ 366$
Annual direct cost of Scheduled Service by HS 748

$$
\begin{aligned}
& =1,165 \times 366 \\
& =\$ 426,501
\end{aligned}
$$

DHC Twin Otter
Total utilization on schedule (Regina - La Ronge) =
2,699 hrs/yr.
Direct cost $=2,699 \mathrm{x} \$ 136.78+62,875=\$ 432,044$
Total annual direct operating costs for this schedule $=$ $\$ 426,501+432,044=\$ 858,545$.

The revenues produced by the scheduled service, existing system are: DC-3 + Iwin Otter: \$921,000.

Viability of a Hawker-Siddeley/Twin Otter Service at These Frequencies of Service:

Direct operating costs of system displayed in Figure 4, approximately equal to $\$ 906,000$.

Revenues under present price structure, approximately equal to $\$ 921,000$.

This leaves $\$ 15,000$ disposable for overheads (buildings, organization, ticketing, promotion, etc.). Initially; this system would operate at a loss.

Over 10 Year Period
Estimating a 5\% annual growth, over 10 years, this
wil! produce an increase in revenue of 25%. There is no cost increase because of available surplus capacity in the system.

10 years average revenue at present day price
structure
10 years average direct cost
$=\$ 1,151,250$
$=\underline{906,000}$
Surplus $\quad \$ \quad 245,000$

Conclusions

Over 10 years this would be a feasible economic service as proposed in Figure 4. However, as for proposals in Figure 3, the reduction in frequency of service to the far northern settlements is detrimental and could result / in a reduction in passenger flows.

The faster, modern aircraft does produce timesavings, e.g. on a typical trip Uranium City - Regina direct, time savings are 6 hours -4.8 hours $=1.2$ hours. The capital, Regina also receives benefit from the augmented service. This HS 748 Twin Otter system will introduce a total saving of 8,500 passenger hours per year over the present DC-3 Twin Otter service.
e. "Fokker 28 assessment for a more frequent scheduled service

A single Fokker 28, twin jet, was tested on a system from Regina-Saskatoon-Prince Albert-La Ronge-Uraṇium City-Cluff Lake-Ia Ponge-Prince Albert-Saskatoon-Regina. It was proposed to service the links north of La Ronge on a daily basis, including the northeastern Iinks on alternate days. One aircraft was unable to supply this more frequent service and still have time, in any one day, to provide a day time charter service for operatives from cluff Lake and Rabbit Lake. Time from Regina back to Regina is. approximately 8 hours, allowing for time on the ground. See Table 5.

There is no justification for two jet aircraft on the northern links, so, to provide more adequate service, a combination of one Fokker 28, and one Hawker-Siddeley 748 was examined, in conjunction with a Twin Otter on southern links. This employs the F-28 on the main northsouth run, Regina to Uranium City to Regina and the HS 748 on the northeastern scheduled run, plus charter work, and based in Prince Albert. See Figure 5.

Direct operating cost/hour $=\frac{\$ 252,460}{1592}+\$ 197=\$ 356$
$\frac{\text { Annual direct operating cost for scheruie (fis 748) }}{1264 \times 356=\frac{549,984}{x}}=$

F28 Schedule Link Distribution		ock me urs	Frequency/week	Utilisation Hours/Year		
Regina - Saskatoon	148	0.54	10		280	
Saskatoon-Prince Albert	85	0.42	10		218	
Prince Albert-La Ronge	132	0.51	10		265	
La Ronge - Uranium City	329	0.89	5		231	
Uranium City - Cluff Lake	92	0.44	5		114	
Cluff Lake - La Ronge	276	0.79	5		205	
				Total	$\underline{1313}$	
H.S. 748 Schedule Link						
Prince Albert-La Ronge	132	0.73	10		380	
La Ronge-Rabbit Lake	228	1.07	5		278	
Rabbit Lake-Wollaston	20	0.33	5		86	
Wollaston-Stoney Rapids	125	0.71	5		185	
Stoney Rapids-La Ronge	288	1.29	5	Total	$\frac{335}{1264}$	

Utilisation hours Hawker-Siddeley 748
Charter Service - Rabbit Lake/Cluff Lake Scheduled services
$=328$ hours/year
Annual Total utilisation
$=1264$ hours/year
$=1592$ hours/year

Fokker 28
Total annual utilization on schedule $=1313$ hours.
Direct operating cost/hour $=\frac{446,375}{1313}+300=\$ 640$.
Annual direct operating cost $=1313 \mathrm{x} 640=\$ 840.320$ for schedule

DHC Twin Otter
Annual utilization $=2106$ hours.
Direct operating cost/hour $=2106 \mathrm{x} \$ 136.78+\$ 62,875=$ $\$ 350,934$

Total direct cost of scheduled service $=\$ 449,984+$ $\$ 340,320+\$ 350,934=$ $\$ 1,641,238$.

The total cost for this system is estimated at $\$ 1,641,238$ at present day flow levels. Revenues expected would be $\$ 1,107,000$ (see Table 7), as derived for increased potential. There could be an added revenue increment due to service provided by the $\mathrm{F}-28$.

Scheduled Service Only

Average Annual Subsidy for Next 10 Years at 5\% Annual Growth

Cost
Present Day Flows
\$1,641,238
Revenue Subsidy
$\frac{\$ 1,107,000}{\$ 53 \frac{4}{4}, 238}$ (Table 7)
\$1,641,238 (No extra cost due
$\frac{\$ 1,383,000}{\$ 258,238}$

It is not considered that the time savings and other benefits from the $\mathrm{F}-28$, combined with the large increase in capital cost; are commensurate with the increment in subsidy.

This system introduces three different aircraft types for what is basically one mainline service, hence, large increase in cost for spares, maintenance, etc.
f.، Assessment of HS 748 for a more frequent scheduled service

Examination of the suitability of this airplane for an increased frequency of service on the system links north of La Ronge, with Tvin Otter service on the southern links.

The service provided by a single Hawker-Siddeley 748, illustrated in Figure 4, is the maximum which could be performed by one aircraft, leaving two days in each week for daylight charter airlift from cluff Lake and Rabbit Lake. A DHC Twin Otter was employed on the southern links in conjunction with one HS 748 , both operating from Regina.

In examining increased service to northern settlements, it was decided to confine the Twin otter to service between Regina and Saskatoon. Use of a second HS 748 is suggested, to back up on scheduled service and to fulfill any charter obligations necessary, thus extending the benefits of fast modern aircraft to all communities in the system. See Figure 6.

The existing system offers 2 flights a week to the most northern settlements: It is now possible to assess the possibility of offering an augmented service using modern aircraft. The service examined offers:
a) two flights a day from Prince Albert to La Ronge,

b) one flight a day from Prince Albert to La Ronge to Uranium City,
c) one flight per day to Wollaston Lake and Stony Rapids,
d) a scheduled stop at Cluff Lake and Rabbit Lake in addition to charter,
e) service directly in and out of Regina using the HS 748.

In sum, this system provides an improved scheduled service with one HS 748, the second fulfills the charter contract, and acts as a back-up.

Table 6 shows the utilization hours and frequencies.

Estimation of Revenue Improvements

It is considered that due to the increased
frequency, speed, added comfort and convenience, there is potentially an additional percentage of total link flows to be captured by this new scheduled service. For a gross estimate of this percentiage increase in flows and revenue see Table 7 .

TABLE 6
Derivation of Annual Utilization Hours for Twin Otter and Hawker-Siddeley 748 on Improved Frequency Schedule

The improved service shown in Figure 6 indicates:

1. Service improved to a daily flight for most northern communities.
2. Modern aircraft offer shorter travel time, comfort, convenience.
3. Regina has been connected directly to northern Saskatchewan by larger modern aircraft.
4. Service between Prince Albert and La Ronge (now a government centre to 10 a week.)
5. The service will require substantial subsidy. Present day cost $\$ 1,423,860$ Estimated improved $\begin{array}{ll}\text { revenue } & \$ 1,107,000 \\ \text { Required } & \$ 316,680\end{array}$
6. Average annual subsidy over 10 years, allowing 5\% annual growth. Present day cost (no extra cost due surplus capacity) 1,423,860 Revenue $\quad 1,383,750$ Required
$\$ 40,110$

Since this paper was written it appears that
Norcanair, the licensed class 2 carrier for scheduled operation in Saskatchewan, has acquired one HawkerSiddeley 748 to be operated from Regina via La Ronge to the far northern settlements. It is understood that operation of a second Hawker-Siddeley 748 is under consideration. Service is due to start September 17, 1973.

g. Potential for diversion of established Edmonton
Uranium City Traffic Flows..

Most of the passenger and freight flows to Uranium City originate in Edmonton, following an intermodal system, via
a) air for passengers and some freight,
b) highway and water for most general freight and bulk fuel.

In order to improve economic prospects for air transportation services between northern and southern Saskatchewan centres, some diversion of that traffic to saskatchewan based systems is necessary. To achieve this a comparable price structure is necessary to that pertaining between Edmonton and Uranium City.

A preliminary estimate shows that the fare from Uranium City to Saskatoon would need a reduction from the present $\$ 67$ to about $\$ 40$, and general freight from $\$ 12.50 /$ 100 lbs. to $\$ 10 / 100$ lbs., or less. Such a reduction on one link would call for others.

A gross estimate of revenue loss on all northern links in the system, due to fare reduction, indicates that a 40% reduction would create a decrease (loss) of $\$ 266,000$ income. Using an average fare of $\$ 40$ per passenger, Uranium City to Saskatoon, this would mean that $\frac{266,000}{40}=$ 6,650 passengers should be diverted. This is approximately 20% of the present Edmonton-Uranium City flow.

Any decision concerning reduction of fares depends on the availability of subsidy, and the potential for diverting traffic flows. About 10% diversion of Edmonton traffic would be required to break even. This takes no account of any small incremental costs for handling extra traffic, there is already surplus capacity on the airplane; or benefits from any multiplier effects due to increased spending within the province.

An extra study of the firmness of ties between Uranium City and Edmonton would be required, to establish business/monetary ties, family ties, etc.
h. Conclusions and Recommendations

To provide improved quality of service to mainline northern communities, a service on the lines of one of those examined, is essential. of those, a system using two Hawker-Siddeley 748 airplanes in conjunction with the DHC Iwin Otter, seems to fulfill most of the requirements.

It replaces service provided by aging, obsolescent aircraft with faster, modern aircraft; offers travel comfort and convenience between distant settlements; allows adequate capacity for expansion of service. This proposed system connects the main southern centres. Regina and Saskatoon, directly to the northern parts of the province.

A subsidy would be required to operate the system.

Regarding availability of the aircraft, the manufacturers point out that under the Export Credit arrangements, (E.C.G.D.) in the U.K., 10% down on the selling price of the aircraft, the balance over 8 years at $6 \frac{3}{2} \%$ to. 7% is standard financing. No doubt similar arrangements apply to other aircraft and countries of manufacture.

While the above comments may not have direct bearing on DPEE assistance programs, this examination of aircraft suitability has provided criteria necessary to decisions on airstrip development, in particular those concerning runway length and vearing strength. It is suggested that, in the light of desired provincial growth, these developments should be provided by a provincial carrier.

4. Feeder Services

It was proposed above that air transportation in northern Saskatchewan should be developed as a two-tiered system. Localized regions have been referred to earlier as A, B and $C ;$ a feeder service in these areas is suggested based on use of the Britten-Norman BN2A Islander. The Islander is a twin engined, ten seat, nine passenger aircraft, with a payload of 2,000 lbs.
A.A. Jones, in a study entitled "Recommendations for Improved Transport Services to the Mid-North-West Portion of Saskatchewan, generally described by Prince Albert Meadow Lake - La Loche, Beauval", has examined the capabilities of the Islander for that area. Appendix 3 shows some extracts from that study, including maps. Map, Figure 1, (A.A. Jones) illustrates the present system. Map, Figure 5, (A.A. Jones) depicts the proposed BN2A Islander service. Table 3 (A.A. Jones) shows the aircraft utilization, passenger flows and load factors. Passenger equivalents are based on freight @ $165 \mathrm{lbs} . /$ passenger, added to present passenger flows. Table 5 (A.A. Jones) provides an economic summary for provision of an Islander service in Region B, based on an annual cost of $\$ 91,000$ and requiring an annual subsidy of $\$ 26,500$.

No direct analysis has yet been done for Region B, to the east of La Ronge including Stanley Mission, Deschambault, Pelican Narrows, Southend, Kinoosao. However, a similar system would apply; airfield improvements have been suggested, in line with the A.A. Jones study.

For Region C, based on Uranium City, serving
Camsell-Portage, Fond du Lac and Stony Rapids, a BrittenNorman Islander service was estimated to cost about $\$ 59,000$ per year. That analysis is shown later in association with transportation on and around Lake Athabaska.

5. Airport Improvements

Examination of the suitability of certain aircraft to perform a mainline function leads to the investigation of the ability of the associated airfield system to sustain the service.

The ability of the mainline airfields (Prince Albert La Ronge - Rabbit Lake - Wollaston Lake - Stony Rapids Uranium City - Cluff Lake) to support the existing DC-3 system is self-evident. It was necessary to evaluate the airfield size, surface condition and bearing capacity in relation to the minimum requirements of
a) the turbo-prop, Hawker-Siddeley 748
b) the twin jet, Fokker 28.

In close association with the mainline system it was necessary to evaluate airstrips serving settlements in the geographic regions designated A, B and C, bearing in mind the suggestion to use a Britten-Norman Islander airplane. (See Figure 7 for airfield locations)

Examination of the feasibility of the HS 748 and F-28 showed that a service using two of the former was more efficient. This being the case, mainline airfields should be designed to handle this airplane; it requires, as a minimum, 4, 400 ft. X 100 ft. compacted gravel. However, considering future jet services; and present day
potential requirements for occasional jet traffic, it was decided to recommend that runways be constructed with that in view. The $\mathrm{F}-28$ requires $5,000^{\prime} \mathrm{X}$ 150' compacted gravel, preferably pavement; hence, the recommendation is for 5,000' X 150' with oil treatment. These figures are for 1,500 ft. A.M.S.L. and conform to requirements for northern settlements. Airfields at Prince Albert and Uranium City already fulfill these demands.

Airstrips in the feeder zones, geographic Regions A; B and C are required to accommodate the BrittenNorman BN2A Islander. The excellent S.T.O.L. characteristics of this aircraft specify a maximum requirment of l,500 ft. for accelerating stop conditions, as prescribed for licensing standards for runways. Doubtless other aircraft, with requirements for longer runways will continue to use these settlement airfields, so that the Islander cannot be considered as the "critical aircraft".

A compromise proposal is for 3,000 ft. X 100 ft. gravel, preferably oil treatment, to accommodate other unspecified aircraft. It was decided to discount use of the $D C-3$ to these settlements, which could not support its use over any long period. The DC-3 has a limited future in the north.

Only one runway has been accounted for in the accompanying table, at all locations, except at Rabbit Lake where two runways constructed by Gulf Minerals already exist, however, of these suggested standards, the systems can supply a Class 2 service with the HawkerSiddeley 748, and a Class 3 service with the EN2A Islander. Ultimately, a Class 1 service would be hoped for with two runways at each location, as specified in the M.O.T. draft report, "Aerodrome Standards and Physical Characteristics". Table 8 shows present conditions at all airfields in the mainline and regional systems, with recommended improvements. The total cost for these improvements is $\$ 6,345,000$.

Buffalo Narrows is a base for forest fire fighting operations, used by Canso aircraft. 'An expansion in this role is proposed for the future. A 4,000 ft. all-weather airstrip, with oil treatment, is considered adequate at this time, Cost estimate is $\$ 70,000$.

Meadow Lake
This airfield plays an important role in projected forestry developments. It will be used by Canso and other aircraft for firefighting. A 4,000' by 100 ' all-weather strip with oil treatment, is recommended. Approximate cost is $\$ 80,000$. M.о.т. have already an agreement to upgrade the airfield to the west of the town.

Both Buffalo Narrows and Meadow Lake should be given priority for a second runway, in view of forestry and other developments.

Table 8, outlining present airport conditions, and recommended improvements, was prepared by Saskatchewan Department of Highways and Transportation for the Federal Ministry of Transport, July 1973.

AJKPORT LOCATION	$\begin{aligned} & \text { POPULA- } \\ & \text { TION } \\ & (1971 / 72) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{VFR} \\ & \mathrm{OR} \\ & \mathrm{IFR} \end{aligned}$	LICHTS	A.G.C.	OWNER \& OPERATOR	RUNWAYS	ORIENTATION	$\begin{aligned} & \text { LENGTH } \\ & (\mathrm{Et} .) \end{aligned}$	$\begin{aligned} & \text { WIDTH } \\ & (E t .) \end{aligned}$	$\begin{array}{\|c\|} \hline \text { SURFACE } \\ \text { TYPE } \\ \hline \end{array}$	NOTES -
4 Beauval	438	VFR	2.	x	Private	1	NW-SE	2000		-	Located 5 milcs from setthe:
2 Buffalo Narrows	1128	VFR	x	\checkmark	D.N.S.	1	10-28	3300	200	Turf	'
3 Cansell Portage	87	-	-	-	-	-	-	-	-	-	No airport .
- 4 Canoe Narrows	455 ${ }^{\text {b }}$	-	-	-	-	-	-	-	-	- .	$\cdots \because \because \quad$ - 在
- 5 Cluff lake	200 (ext)	VER	x	$\underline{\times}$	Private	1	-	4800	150	Gr.	\%
- is Cumberland House	1016	VFR	x	x	D.N.S.	2	$\begin{aligned} & 09-27 \\ & .18-26 \end{aligned}$	$\begin{aligned} & 4700 \\ & 2800 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \end{aligned}$	Sod	\cdots
67 Denare Beach	351	-	-	-	-	-	-	-	-	-	No airport
3 Deschambault	195	-	\therefore	-	, -	-	-	-	-	$-$	No airport \vdots,
3 Dillon	451	-	-	-	- - .	-	-	-	-	-	No alrport .
- 1.5 Dore Lake	100	VFR	x	*	D.N.S.	1	E-W	-	-	Gr.	,
11 Fond-du-lac	328	VFR	*	x	D.N.S.	1	10-28	2600	75	Gr.	1
12 Green Lake	453	VFR	*	*	D.N.S.	1	N-S	2150	200	Sod
13 Ile-a-1a-Crosse	1001	VFR	x	x	D.N.S.	1	N-S	2800	-	Sod	
- 1' Is land Falls	494	VER	x	x	Private :	1	NE-SW	1700	150	Clay	
15 Kinoosao	119	-	-1	1-	-	-	- -		-	-	No atrport $\cdot \cdots \frac{1}{4}$

PRESENT AIRPORT CONDITIONS

Airfield Development Priorities

Main Line	High Priority	
	La Ronge Rabbit Lake Wollaston Lake Stony Rapias Cluff Lake	
Cost:	\$4;650,000	
Region A. Fiigh	Medium	Low
Meadow Lake		Turnor Lake
Buffalo Narrows		Green Lake
Pinehouse		Canoe Narrows/Cole Bay
Patuanak		Dore Lake .
Dillon		La Loche
Ile-a-la-Crosse		
Beauval		
Cost: $\$ 555,000$		Cost: $\$ 350,000$
Region B .		
High	Medium	
Stanley Mission	Cumberland House	\sim
	Southend	\sim
	Kinoosao	
	Island Falls	
	Pelican Narrows	
	Descharibault	
Cost: \$100,000	Cost: \$ 500,000	
Region C .		*
	Mediurn	
	Camsell Portage Fond du Lac	/
	Cost: $\$ 190,000$	
motai	COST: $\$ 6,345,000$	

Additional Runways
As indicated earlier, single runways have been proposed initially at the foregoing locations, except at Rabbit Lake. Some settlements have a very high priority due to prevailing winds, increased traffic by tourist aircraft and modern larger-aircraft, which require a well oriented runvay.

Consideration should be given to planning and location of these cross strips when construction of main runways begin.

Priorities for Additional Runways

Very High	High	Medium	Low
La Ronge	Patuanak	Beauval	Green Lake
Meadow Lake	Pinehouse	Ile-a-la-Crosse	Dore Lake
Buffalo Narrows	Wollaston	Dillon	Canoe Narrows
Stony Rapids	Cluff Iake	Kinoosoa	La Loche
Uranium City	Stanley Mission	Southend	Turnor Lake
		Cumberland	Camsell-
		House	Portage
		Island Falls	Fond du Lac
		Pelican Narrows	
		Deschambault	
\$3,150,000	\$ 600,000	\$ 578,000	\$ $\quad 432,000$
	Total cost of additional runways $=$ $\$ 4,760,000$		

Cost is assumed approximately equal to 80% of cost of initial runway.
La Ronge cross-strip taken to cost $\$ 1,300,000$.
Uranium City cross-strip taken to cost $\$ 1,500,000$ (gross estimate) Cluff Lake cross-strip taken to cost $\$ 200,000$.

Airport Buildings

It was not possible to do any complete evaluation of the need for buildings and other facilities at airports. However, each airfield ought to have a minimum shelter building, waiting room, ticketing facilities. Air carriers will probably provide these at most points, as well as transportation of passengers from airfield to settlement.

Airfield Lighting

Most of these airports are scheduled for a daily V.R.R. service, except for possible I.F.R. requirements on southern links, eg. into La Ronge, Prince Albert where lighting systems already exist. Uranium City has a lighting system installed: Priority consideration is suggested for Meadow Lake and Buffalo Narrows due to growth of traffic at these points.
6. Navigation and Ianding Aids

Four non-directional radio beacons (N.D.B.'s)
established by the Ministry of Transport are established in northern Saskatchewan at: Prince Albert

La Ronge
Creek Lake
Uranium City
Two privately installed N.D.B.'s owned by Norcanair
are located at: Wollaston Lake Stony Rapids

It is generally acknowledgedthat this coverage is probably the minimum provision for safe operation. Demands are heard from various sources for more and better navigation aids, e.g.

> air carriers, private flyers, Chambers of Commerce mining interests,
and emphasizing the paucity of present installations.
An evaluation of the existing sites using the D.O.T.
rating form, 26-0181, for comparison purposes shows all present installations to have high priority. Potential sites similarly evaluated, fell into high and moderate priority categories.

Although such a generalized evaluation has limited application in remote areas, with very small populations, and where traffic is often confined to light aircraft, it is felt that the minimum requirement for aids, will justify
standard N.D.B.'s at: Buffalo liarrows Meadow Lake Wollaston Lake Stony Rapids Rabivit Lake Cluff Lake.

These are important points on present and proposed scheduled air routes, with significant spatial location. Anticipated cost is $\$ 500,000$. An average N.D.B. costs $\$ 70,000$ as per D.O.T. form, 26-0181, maintenance about $\$ 10,000 /$ year.

It was felt that we had insúfficient data and background information to assess needs for establishment of V.O.R. On a general basis it is recommended that V.O.R. be installed at Prince Albert, La Ronge, Cree Lake and Uranium City, a system which would provide a minimum coverage to the northern areas.

- The Ministry of Transport has long range plans for installation of V.O.R. at:

Prince Albert, 1974-75 V.O.R. 1980 I.I.S.

La Ronge 1976-77 V.O.R. Cree Lake Beyond 1980 V.O.R.

Another evaluation is recommended of V.O.R. requirements, with a view to early installation of V.O.R. at all these points, thus avoiding an "initial staging" installation of N.D.B.'s which are regarded as obsolescent.

The approximate cost for V.O.R. systems at:
 Prince Albert
 La Ronge
 Cree lake Uranium City
 Buffalo Narrows
 Meadow Lake
 Wollaston Lake Stony Rapids Rabbit Lake Cluff Lake,

is $\$ 1,400,000$.

PART B

HIGHWAYS

1. Introduction

Under tine existing system a number of communities and sites lack road access. These are:-

Camsell Portage
Pop. 1971
Uranium City-Eldorado 2153
Fond du Lac 328
Stony Rapids
Black Lake 186
471
Cluff Lake (winter road). 200
Rabbit Lake (all-weather road by 1974)
Wollaston Lake 200

Cree Lake
Kinoosao (Co-op. Point, Road access from Manitoba)

119
Dillon . 451
Patuanak
Pinehouse 310 -

Southend 427

Stanley Mission 916
(See Figure 8)
All these communities are served by air systers of varyircj degrees of frequency. One of the principle aims of proposals in this program is to lessen the isolation characteristics of such settlements, by providing additional access modes.

The Saskatchewan Provincial government has a long range (5 year, 1974-78) program which comprises a package for upgrading existing highways, rebuilding and surfacing new links, including access roads to remote settlements.

The stated objectives are:
a) to provide access to remote communities,
b) encourage resource development,
c) promote tourism,
d) increase safety factors,
e) minimize total system cost's,
f) improve quality and reduced user cost,
g) increase user comfort.

This Northern Transportation Program (Highways),
is divided into four parts viz. (See Appendix 4)
$\$$ Cost (Millions)

1. Northern Highway Surfacing Program 28.00
2. Northern Transportation Facility Provision Program
13.40
3. Northern Road Upgrading Program 8.60
4. Timber Road Program 3.20 $\$ 53.20$

Under 1 a total of 620 miles of highway would be graded and/or surfaced.

Under 2 a tote road (225 miles) would be constructed from
Turnor Lake to south shore Lake Athabasca: Cost $\$ 5,750,000$;
all-weather roads to settlements Dillon, Pinehouse, Stanley Mission

Cost \$3,001,000;
a new road from Big River to Meadow Lake Sawmill

Cost $\$ 2,000,000$;
Also included under 2 is capital cost of a Hovercraft (A.C.V.), with I year operating subsidy $\$ 2,000,000$.

Not itemized, but to be requisitioned is $\$ 1,000,000$ for the Beauval,Patuanak all-weather road. Operation of the Hover-

craft is costed below and not recommended.
Under 3. 281 miles of highway would be upgraded or surfaced.
Under 4. A number of legal agreements by the Province of Saskatchewan concerning timber roads with the Meadow Lake Sawmill, Simpson Timber Company, and the Prince Albert Pulp Company, involves construction or purchase of timber roads from the private sector. Federal funding is unlikely to be involved, except if these forestry roads, whose location is not known, inter-relate with other highways.

The Department of Northern Saskatchewan has also
prepared a program of road improvements as shown in Appendix 5. This program adds to and modifies the DHT plan as follows:

Northern	-Turnor Liake to Cluff L. to		
Facility	south shore L. Athabaska	H\&N	\$12,250,000
Provision	-S.Shore L. Athabaska to Stony Rapids	N	4,750,000
DHT	-Stony Rapids-Wollaston L.	N	8,500,000
	-La Ronge-Beauval	N	6,250,000
DNS	-access to Stanley Mission	H\&N	1,200,000
programs	-access to Pinehouse	H\&N	1,200,000
amalgamated	-access to Patuanak	H\&N	1,160,000
amalgamated	-access to Dillon	H\&N	1,500,000
	-Big River to Meadow L. (sawmill)	H	2,000,000
	-Kinoosao to Lynn Lake	N	690,000
	-Sturgeon Landing	N	1,640,000
	-Meridian Bridge on Onion L. road	N	1,500,000
	-other access roads to settlements	N	1,700,000
			\$44,340,000

Modifications include a higher standard facility from Turnor L. to S. Shore L. Athabaska, major new proposed facilities and additional access roads.

```
*H - DHT
    N - DHS
    H&N - DHT modified by DNS
```


2. Access Roads under the DHT plan

$$
\begin{aligned}
\text { Access roads to: } & \text { Dillon } \\
& \text { Patuanak } \\
& \text { Pinehouse } \\
& \text { Stanley Mission }
\end{aligned}
$$

are either under construction or have been recommended. The first three are discussed in "Recommendations for improved Transport Services to Mid-North-West portion of Saskatchewan", by A.A. Jones. Dillon

A low standard 18-20 foot gravel-surfaced, allweather road from Vermette Lake to Dillon was evaluated. 28 miles @ $\$ 18,000 / \mathrm{mile}$. Initial construction cost, $\$ 504,000$, incremental outlay $\$ 68,000 /$ year. An alternate access to Dillon via the southern end of Peter Pond Lake, across the Niska Channel shows 38 miles of construction costing $\$ 684,000$, incremental costs $\$ 92,000 /$ year.

Patuanak
The Department of Northern Saskatchewan proposes an all-weather access road from Beauval, costing $\$ 929,000$, with incremental outlay for construction and maintenance $\$ 13,000 /$ year.

All-weather roads to Dillon and Patuanak would facilitate and speed up the export of lumber products from the sawmills.

Pinehouse

An all-weather gravel road connecting Pinehouse to the new forestry road near Pisew Lake, is estimated to cost $\$ 1,044,000$ for 58 miles, continuing the orientation of travel towards Lia Ronge and Prince Albert. Depending on the financing, and equipment provided, these highways will take between l-3 years to complete. Map, Figure 7 (A.A. Jones) outlines these roads. (See Appendix 3.)

TOTE ROAD ACCESS (A.A. JONES)

Settlement
atuanak lllon
Finehouse

Pop. 1971
310
451
427

Road Ann. Rd. Average 20 Year Bene of
Road Ann. Rd. Average 20 Year Benefits/ Cost $\$$ Ćost $\$$ Savings Benefits Annual Cost

This table enables a quick assessment of roads to the other remote settlements, where detailed evaluation is curtailed due to time.

Stanley Mission
This settlement is served by a DHC-3 Otter once a week from La Ronge, more frequently by chartered aircraft. There is a turf airstrip, but most air traffic is on floats. It comes under recomendations for service to Region B, with a BN2A Islander, feeder aircraft, hence., a recommendation for a new gravel runvay, 3,000' X 100'. There is seasonal access by a winter road.

An all-weather surfaced access road, 20 miles costing $\$ 1,494,000$ has been proposed. Road access is recommended, due to the population size (916,1971) and provision of another access to the Churchill River system. However, the provision of a surfaced highway seems to be out of proportion, considering the gravel surfaced roads recommended for the other three settlements discussed above.

An all-weather gravel road is recommended, in the short term, to cost between $\$ 800,000$ and $\$ 1,000,000$. It may be of interest to note that community opinion in Stanley Mission is not unanimous about the beneficial effects of a highway.

With implementation of the transportation facilities program, only these communities will remain lacking road access:
(Camsell Portage (Uranium City/Eldorado (Fond du Lac (Stony Rapids Southend Wollaston Lake Kinoosao (Co-op Pt.)
Cree Lake
The first four are on Lake Athabasca and are
discussed below with reference to transportation in region C (centred on Uranium City).

Southend (Pop. 275)
This community is divided, part living on Big Island; part having been moved to the mainland close by. The mainland portion is served by a new spur access road from Highway 102; the island portion has only seasonal direct access by winter road.

Southend is included in the proposed regional feeder air.schedule, for region B.

A detailed evaluation of either installation of a ferry, or building a causeway is recommended.

Kinoosao (Pop. 119)
This small settlement has road access to Lynn Lake, Manitoba. It is included in the feeder service proposed for region B_{k} by $B N 2 A$ Islander with provision of an airstrip.

Provision of an all-weather access road is not recommended due to high cost, low benefit; for a tiny population; a winter road would cost about $\$ 56,000 /$ year.

No upgrading in surface access is proposed due to the proximity of the trade centre Lynn Lake; improved connection with centres in southern Saskatchewan will be provided by the improved scheduled air service. Wollaston Lake (Pop. 339, 1971)

Wollaston is serviced by the DC-3 schedule from La Ronge and Stony Rapids. It is included in the mainline proposal using the Hawker-Siddeley 748 aircraft.

For an all-weather road running south of Wollaston Lake, 60 miles, a gross estimate is $\$ 1,800,000$. Expected benefits are not thought to justify this expenditure.

A winter road is recommended, from a point near the Rabbit Lake (Collins Bay) across the Lake, 25 miles at about $\$ 800 /$ mile. Cost $\$ 20,000$ per year.

Cree Lake (Pop. 47)
Cree Lake is remote with a tiny population.
It is connected to the outside by charter aircraft. Road access is not justified by the small population, nor could a regional air service be sustained. A form of local subsidy for charter may be considered.

3. 'Conclusions

The highway development program put forward by the DHT' proposes oil treatment, bituminous surfacing, graves and weather roads, which can be justified on economic grounds, e.g. the gravel road to La Ronge performs badly in rainy weather. It carries substantial tourist traffic, supply trucks, and pulp timber trucks along much of the route.

With regard to provision of new access roads to settlements an economic justification may be difficult. However, much of the justification for such access depends on intangible factors, one of which is remoteness. One of the reasons for this study is to encourage attempts to decrease the remoteness of isolated settlements...If any "cut-backs" in the highway development program are necessary, the trade-off must be made between oil treatments for main highways and new access roads. The latter must take precedence. (Refer Appendix 4)

PART C

LAKE ATHABASKA SYSTEM

1. Evaluation of Hovercraft Service

It is proposed to connect the system of settlements on the northern shore of Lake Athabaska to southern Saskatchewan trade centres, by highway. (See Figure 10 for locations). At present, a winter road runs from Turnor Lake, via Cluff Lake to the south shore of Lake Athabaska, somewhere close to William Point; thence across the lake to Uranium City. It is intended to construct an all-weather, gravel tote road, along this route to William Point. (William Point used for ease of reference). One proposal for year round access to Uranium City, and settlements Camsell-Portage, Fond du Lac and Stony Rapids, is to operate an air cushion vehicle (Hovercraft) service, to carry passengers and freight from William Point.

The bulk of freight and passenger traffic to Uranium City is along the Uranium City - Edmonton linkage; heavy freight is water-borne along the Athabaska River/Lake system in summer, passenger and air freight by aircraft throughout the year. A brief examination of the feasibility of a hovercraft system on Lake Athabaska is carried out below.

A hovercraft service must operate on direct relation to a new all-weather road from Turnor Lake to William Point.

Cost of road $\$ 5,625,000$, over 10 years @ $8 \%=\$ 568,000 / \mathrm{yr}$.

+ Maintenance $=\frac{135,000}{\$ 703,000 / \mathrm{yr} .}$

In assessing a hovercraft service, nevly generated traffic and a potential diversion of traffic from the Edmonton - Uranium City orientation to a Saskatoon Uranium City system, along the new road, must be accounted for. Such diversion will depend on price structures from Saskatoon. The proposed service by air cushion vehicle would replace the alternate regional air service using a BN2A Islander based on Uranium City, and must be considered in relation to it.

Table 9 shows the frequencies and block times of a hovercraft system on Lake Athabasca. See Figure 11.

The Bell Aerospace Voyageur air cushion vehicle was used for this study. It has a payload of 25 tons, cruises at $50 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. for a range of about 630 miles . On deck it can accommodate several passenger cars, small trucks, containerized traffic. It is not large enough to carry semi-trailers such as will operate on the tote road, (74,000 lbs.). Capital cost is $\$ 1,250,000$. (See Appendix for data.)

Table 9

Link	Distance	Biock Times Firs.		
		Freq./Wk.	Link	Total/Wk.
iam Point to				
anium City	35	10	0.87	8.7
ium City to msell-Portage	24	6	0.65	3.9
ium City to	24	6	0.65	3.9
nd du Lac	75	10	1.67	16.7
du Lac to				
ony Rapids	53	10	1.23	12.3
			Total	41.6 hr

Some allowance was made to allow for extra mileage due to winter conditions (ice ridges, etc.)

Annual utilization $=41.6 \mathrm{X} \cdot 52(\mathrm{wks} / \mathrm{yr})=2163 \mathrm{hrs} / \mathrm{yr}$. ,
Diréct Cost of Operation $=2163 \times \$ 236 / \mathrm{hr} .=\$ 510,468$ $\begin{aligned} & \text { Fixed Cost } \\ & \text { Total }\end{aligned}=\frac{269,700}{\$ 780,168 / \mathrm{yr} .}$

To operate this service on a break even basis, the revenues must approximate the hourly operating cost;

$$
\frac{\$ 780,168}{2163 \mathrm{hrs}}=\$ 361
$$

In order to estimate the quantity which would have to be diverted to a southern Saskatchewan supply centre to ensure a breakeven operation for a hovercraft service, the cost of transporting goods from Edmonton to Uranium City must be ascertained, to be compared to a corresponding cost from Saskatoon. See Figure 12 for flows on the Edmonton - Uranium City and associated linkages.

Figure 13

Edmonton \rightarrow Ft. McMurray. For general merchandise an average rate of ll¢ per ton mile is assumed. i.e. \$33/ton. Ft. McMurray $\rightarrow->$ Uranium City by river-barge; average rate of $\$ 1.50 / 100 \mathrm{lb} .$, general freight $=\$ 30 /$ ton.

Hence, freight from Edmonton to Uranium City, rate $=\$ 63 /$ ton/
Edmonton to Fond du Lac, general freight rate $=\$ 71.20 /$ ton.
Edmonton to Stony Rapids, general freight rate $=\$ 74.00 /$ ton.
(note: There are winter inventory warehousing costs on top of these freight rates.)

An average distance of 620 miles is used, following the highway to Turnor Lake, then the new tote road to William Point via Cluff Lake.

620 miles at average lik/ton-mile $=\$ 68 /$ ton.
This means that to truck goods from Saskatoon to William Point (on south shore Lake Athabasca) costs approximately the same as from Edmonton to Uranium City by truck and barge, including trans-shipment at Waterways.

Hence, from this gross cost estimate, it is evident that hovercraft costs, when added to freight rates from Saskatoon, would have to be traded off against:
a) winter warehousing inventory costs inherent in Edmonton based system,
b) multiplier effects on Saskatchewan economy,
c) diversion of sales to Saskatchewan.

Thus, if the hovercraft operation were offered as
a free service across Lake Athabasca, freight trucked north from Saskatoon would scarcely compete with that from Edmonton.

An estimate is now made of income to the hovercraft system;
(i) operating between Uranium City, CamsellPortage, Fond du Lac and Stony Rapids, where the hovercraft is seen to replace the air service. (Note that on the proposed mainline service a route between Uranium City and Stony Rapids is not included; i.e. left to a regional air service.)
(ii) assuming that 10% of Edmonton oriented traffic has been diverted to the new system. In discussing (i) the flows between those northern settlements will be used, i.e. transferred to the A.C.V. service. The existing air fare structure is used, and the assumption made that 80% of the total flows can be attracted to the hovercraft system. See Figure 14 for 80% flows on regional system.

Current schedule air fares/rates.

	One Way Passenger	Freight/ton	
Uranium City to Camsell-Portage	$\$ 7$	$\$ 56$ (est.)	
Uranium City to Fond du Lac	$\$ 10$	$\$ 71$	"
Fond du Lac to Stony Rapids	$\$ 9$	$\$ 71$	

Table 10

A.C.V. (Hovercraft) Revenue on Local. System.

Link Pass. Revenue Freight Rate Total

The revenue under the existing fare structure is estimated at $\$ 132,926$. This means that the cost of ($\$ 780,000-\$ 133,000$) providing the A.C.V. service is approximately $\$ 647,000$; a very high subsidy. It is due to operation of a large vehicle at too high a frequency, combined with a low Load factor (average of 0.1). The frequency of service, one way, requires a reduction to possibly two a week from five a week. This would result in a load factor which is still expressed as a percentage of the total flow captured. Thai flow would probably continue to fall because of the reduced frequency of service.
Discussion of (ii), takes account of
potential new revenue generated on the tote road, which would include income from traffic diverted from Edmonton.

For initial analyses, revenue accruing if 10% of Edmonton oriented traffic were diverted, is now examined. The initial cost comparison showed the Saskatchewan supply base in an unfavourable light, i.e. even if a free A.C.V. service were provided, a very low diversion figure could be expected.

Figure 15 shows flows across Lake Athabasca if 10\% diversion were achieved.

Figure 15

William Point to Uranium City

William Point to Fond du Lac
lliam Point to Stony Rapids

$$
1260 @ \$ 7=\$ 8,870
$$

Freight Revenue $\$ 1.50 /$ ton mile

Total

Passenger Revenue @ 20¢/seat mile

$$
\begin{aligned}
& \mathbf{T}=\text { tons } \\
& \mathbf{P}=\text { passengers }
\end{aligned}
$$

South Shore

$$
680 @ \$ 52=\$ 35,360 \cdot \$ 44,180
$$

$$
88 @ \$ 97=\$ 8,536
$$

$$
8,536
$$

$$
55 @ \$ 180=\$ 9,900
$$

$$
9,900
$$

Total
$\$ 62,616$

If a 10\% diversion of Edmonton based traffic results in a revenue of $\$ 62,616$, then 100% diversion of that traffic, plus local revenue would be required to enable the A.C.V. operation to "break even". The A.C.V. service total cost is roughly $\$ 780,000$, local revenue $\$ 133,000$, 100\% diversion of Edmonton traffic $\$ 630,000$.

This estimate was based on high uncompetitive aircraft rates, so that probably no diversion could be achieved.

Assuming a total diversion of Edmonton based traffic to an A.C.V. system and also assuming
i) freight capacity for A.C.V. to be 25 tons,
ii) passenger capacity 150 ,
the load factor on links in the system would be:
William Point to Uranium City 0.85
Uranium City to Camsell-Portage 0.02
Uranium City to Fond du Lac 0.20
Fond du Lac to Stony Rapids 0.11

1. A load factor 0.85 would be achieved providing that 100\% of Edmonton oriented traffic were diverted, based on a frequency of one trip each way/day, William Point to Uranium City.
2. Assuming capture of all local flows to Camsell, Fond du Lac, Stony Rapids, the load factor would be
extremely low. A reduction in service to at most 2/week from 5/week would be necessary.
3. Operation and cost of A.C.V. would then be altered to:

	Total Freq./wk.	$\frac{\text { Hrs./wk. }}{}$
William Point to Uranium City	10	8.7
Uranium City to Camsell-Portage	4	3.6
Uranium City to Fond du Lac	4	6.68
Uranium City to Stony Rapids	4	4.92
	Total	

Direct cost reduced to $22.9 \times \$ 236+\$ 269,700=\$ 550,700$.
4. If all traffic moved north from Saskatoon via the tote road and then on the proposed hovercraft, and if the air fare structure were still used, a break even posiition could be achieved. Such air rates would be competing with road and barge prices, and would not be competitive. Iittle, if any, traffic would be captured. It would be necessary to reduce rates to 8 个 - lly/ton mile, particularly on the William Point - Uranium City link, hence, involving heavy subsidy.
2. Alternatives to a Hovercraft Service

Alternative 1

Surface traffic to Uranium City hinges on the allweather tote road from Turnor Lake to William Point on south shore of Lake Athabaska. An alternative to an air cushion vehicle is:
a) a winter road across the lake from William Point,
b) a ferry vessel from William Point for use during the open water period,
c) a year round regional scheduled air service, based on use of the proposed BN2A Islander.

Examination of the freight costs on the tote road to William Point has shown that freight trucked there costs about the equivalent of the cost from Edmonton to Uranium City.
a) Winter Road Across Lake Athabaska

In assessing winter road service across the lake, the operating costs of vehicles using it must be included, to make the study comparable with that done on the hovercraft. Construction and maintenance costs:

$$
35 \text { miles @ } \$ 800 / \mathrm{mile} \quad \$ 28,000 / \text { year }
$$

Annual traffic operating costs (120 days x 15 veh/day x 35 mls x \$0.10 factor)

6,300
$\$ 34,300 /$ year
b) Cost of Proposed Ferry Boat Service

Estimated capital cost of ferry, motors, minimum payload 75,000 lbs.
$\$ 500,000$
Annual amortized cost over 10 years @ 8\% with 25% residual value
$\$ 56,000 / \mathrm{yr}$.
Annual operating and maintenance, salaries, housing, etc., (estimated assuming 140 day operation)
$\$ 70,000 / \mathrm{yr}$.
$\$ 126,000 / \mathrm{yr}$.
c) Regional Air Service for Uranium City, Fond du Lac, Stony Rapids, Camsell-Portage

The traffic flows are assumed to be the same as for the A.C.V., Table 10 , i.e. 80% of total flows on the links. (See Figure 14). Expressed as passenger equivalents at 165 lbs. of freight equals one passenger, the flows are

Figure 16

Table 11

Derivation of Block Times on Regional Air Service, Region C.

Link	Dist.	Freq/ Wk.	Link	Week	Anin. Flow	Cap.	Fare	Load Factor	Revenue
Uranium City to Camsell-Portage	27	4	0.32	1.28	839	1872	3.70	0.45	\$ 3,104
Uranium City to Fond du Lac	49	20	0.45	9.00	8741	9360	5.90	0.93	\$51,572
Fond du Lac to Stony Rapids	48	20	0.45	9.00	6505	9360	5.80	0.70	\$37,729
		Total		19.28/wk.				Total	\$92,405

Fare based on $\$ 1.00+10 \%$ per air seat mile.
Annual utilization 19.28/wk. X $52=1002.5$
Direct variable costs (Islander) @ $\$ 32 / \mathrm{hr}=(\$ 32,080$
Fixed costs
27,000
Direct operating costs
$\$ 59,080$
(Including costs for administration, profit, etc.)
$\$ 30,540$
which shows an expected break even position $\$ 89,620$ in this region.

Costs for Lake Athabasca System

Cost for winter road . \$ 34,300
Cost for ferry service . 126,000
Cost Regional Air Service $\quad 59,000$
Total $\$ 219,000 /$ year.
(Note that some consideration must be given to capital cost for provision of an airfield at Camsell-Portage - \$100,000
and improvements at Fond du Lac airstrip, $\$ 90,000$.
This $\$ 218,000$ per year provides:
a) a regional scheduled air service,
b) a winter road, good for up to 90 days use,
c) a ferry for the remainder of the year.

Access will, however, be hindered for some weeks during freeze-up and melt, depending on the capabilities for the ferry vessel.

An air cushion vehicle service on Lake Athabasca would be very expensive. For a daily service on the main link, and two a week on the other links it costs $\$ 550,000$. In order to attract traffic from the Edmonton - Uranium City connection, revenues would have to be reduced to a minimum. The gross estimate of potential revenue generated under present conditions is $\$ 150,000$ per year, hence, an annual deficit of at least $\$ 400,000-\$ 650,000$.

The air cụshion vehicle operation would capture a large component of intra-regional air service traffic, as well as some passengers and freight from the Edmonton side. It would provide fast service across Lake Athabasca throughout the year, improving the service to Uranium City and the settlements. It would, however, require trans-shipment of freight for large semi-trailer vehicles, that is provided. for on the Edmonton-Uranium City service.

The winter road with ferry service would provide service except during "freeze-up" and "break-up", i.e. late October to mid-December, and mid̈-April to early June. It would enable all vehicles, including large trucks and semi-trailers to cross the lake; it is a much cheaper system, and can virtually break even on operating costs, while still attracting some traffic from the Edmonton flows. The regional air service by a BN2A Islander can be compared to the present schedule and charter service, presented earlier in this paper.

In summary, this alternative to the hovercraft system is recommendable.

Benefits of This System for the Northern Transportation Supply Service

All-weather tote road from Turnor Lake, in association with a winter road and/or ferry: Benefit:- this provides a tangible, direct link with southern Saskatchewan; improved access along the linkage, increase in sales in the province with multiplier effects; reduction in warehousing/inventory costs. The regional air service will provide efficiencies over the current air system.

Transport cost savings will not result, when compared with the present supply system from Edmonton. Benefits must be compared to the annual cost of the tote road and ferry.

Tote Road, 225 miles @ $\$ 25,000 /$ mile $=\$ 5,625,000$

$\$ 5,625,000$ over 20 years $@ 8 \%$	$=\$ 568,000 / \mathrm{yr}$.
Maintenance	$\$ 135,000 / \mathrm{yr}$.
Cost of ferry service	$\$ 703,000$
Cost of winter road	$\$ 126,000$
	$\$ 34,000 / \mathrm{yr}$.
	$\$ 863,000 / \mathrm{yr}$.

Alternative' 2... Access from the Eastern Sector
Discussion has centered on access to the Lake Athabasca region along the western axis, i.e., the allweather tote road via Cluff Lake.

An all-weather road is being constructed along the eastern axis, north to Wollaston Lake to end at Rabbit Lake (Collins Bay) mining site in 1974.

It seems desirable to examine this route as a potential road access to Uranium City and the Lake Athabasca settlements.

Included here is a precursory evaluation of an allweather road from Rabbit Lake to Eldorado (highway access from there to Uranium City exists), based on one done by A. Jones, Department of IIighways, Saskatchewan.

All-weather road Rabbit Lake to Stony Rapids: 130 miles at $\$ 30,000 / \mathrm{mile}$ (est.)
$\$ 3,900,000$
Stony Rapids - Fond du Lac - Uranium City (Eldorado)
110 miles at $\$ 60,000 /$ mile (est.) $\$ 6,600,000$
Total for road
$\$ 10,500,000$

Annual amortized cost of the tote road, assuming 20 years at 8\%
$\$ 1,060,000 / \mathrm{yr}$.

Annual maintenance cost, 240 miles @ $\$ 600 / \mathrm{mile} \$ \quad 144,000$
Annual cost of winter road from Turnor Lake to
Cluff Lake. (This would continue as a winter road if eastern access were adopted)
$\$ 128,000$
Total
$\$ 1,332,000 / \mathrm{yr}$.

1. Road access throughout year to Lake Athabasca settlements is provided, avoiding use of hovercraft, ferry or winter road. However, Uranium City, instead of being a distribution centre for the region, is now the terminus. 2. The road distance from Saskatoon to Uranium City is increased by over 100 miles, compared to access via Cluff Lake - William Point. Operating costs to road users would increase by $\$ 50,000-\$ 60,000$ per year, as well as several hours travel time.
2. Frequency would be reduced on the proposed regional air service, perhaps drastically due to easy highway access.

4: Access to Cluff Lake would revert to winter road status.
5. This, alternative costs about $\$ 470,000$ more than the proposed western access via Cluff Lake tote road. This route is not recommended.

A tote road with ferry operation to Uranium City and winter road was costed by A. Jones at $\$ 784,000$. This would offer poorer service all around except to Stony Rapids and Fond du Lac, and is not recommended.

3. Conclusions

The far northern settlements, would at this time, be better served by the proposed all-weather road from Turnor Lake via Cluff Lake to south shore Lake Athabaska; then by a combination of ferry and winter road.

It would provide a direct road link from southern centres to the far north of the province. In opening up the area it could provide a stimulus for further development; will produce some increase in purchase of consumer goods, hence, some multiplier effects on the provincial economy. Its non-economic role will increase mobility, reduce isolation, and improve provincial cohesion. Under this system it is difficult to see much price saving or diversion of trade/traffic from the established links to Alberta.

APPENDICES

Hawker-Siddeley 748 - Series 2A

Maximum structure limited payload	12,677 lbs.
Maximum landing, weight	43,000 lbs.
Maximum take-off weight	44,495 lbs.
Take-off, balanced field length	4,400 ft.
Landing field length	3,620 ft.
Typical cruise	274 m.p.h. - 279 m.p.h.
Range, maximum payload	564 S. miles
	(good for all
Range, full fuel, and 6,260 lbs.	$\begin{aligned} & \text { study links) } \\ & 1,667 \mathrm{~S} \text {. miles } \end{aligned}$

Reserves for 45 mins. hold at 10,000 ft. and 230 s. miles diversion.

Passenger capacity, 40 - 60.
Cap. used for study $=56$.

Block Speed/Time v. Distance (assumed cruise speed approximately 280 m.p.h.)

Dist. Block Speed Block Speed in Hours

114
0.44
0.62
0.80
0.97
1.15
1.33
1.51

161
188
206
217
226
232

Maneuvre time, T.O. and Ldg. - 8 mins. each (added 0.26 hrs.

50
100
150
200
250
300
350

Operating Costs

Direct Operating Costs (D.O.C.)
Maintenance
to each block time)
Maintenance $\quad=\$ 72.00 / \mathrm{hr}$.

* Crew cost
$=50.00 / \mathrm{hr}$.
Fuel and oil
$=75.00 / \mathrm{hr}$.
D.O.C.
$\$ 197.00 / \mathrm{hr}$.

Fixed costs (insurance, depreciation, interest)
Depreciation (capital cost $\$ 1,650,000$
over 10 years (8\%, 25\% residual value)
Insurance: 3\% of capital cost
Liability Insurance (\$325/seat)

$$
\begin{aligned}
& =\$ 184,760 / \mathrm{yr} \\
& =49,500 / \mathrm{yr} \\
& =\frac{18,200 / \mathrm{yr}}{}=\frac{\$ 252,460 / \mathrm{yr} .}{}
\end{aligned}
$$

* For crew costs assumed, to operate one aircraft on the system:

Annual utilziation $=2,500$ hours

Pilots	2
Co-Pilots	2
Hostesses	2

Airfield requirements taken to be:
4,400 ft. $X 100$ ft. gravel (min.) at l, 500 ft.
A.M.S.L.

Dust palliative desirable, e.g. oil treated surface.

Fokker 28, 1,000 c.

Maximum structure limited payload	$16,900 \mathrm{lb}$.
Maximun landing, weight	$59,000 \mathrm{lb}$.
Maximum take-off weight	$65,000 \mathrm{lb}$.
Take-off, gross weight	$5,000 \mathrm{ft}$.
Landing, maximum weight, approximately	$3,700 \mathrm{ft}$.
Best cruise (25,000 ft.)	$519 \mathrm{~m} . \mathrm{p} . \mathrm{h}$.
Range maximum payload	$600 \mathrm{~s} . \mathrm{mls}$.
Reserves, 30 minutes hold at $5,000 \mathrm{ft.}$,	
230 miles diversion. Passenger capacity 65 (used for study)	

Block Speed/Time v. Distance Distance Block Speed Block Time in Hours

50	138	0.36
100	217	0.46
150	2.73	0.55
200	307	0.65
250	337	0.74
300	357	0.83
350	376	0.93

Maneuvre time, T.O. and Ldg. $=8$ mins. each (added 0.26 hrs. to each block time)

Operating Costs

Direct operating costs;
… Maintenance $=\$ 110$
Crew, fuel, other direct expenses $=\$ 190$
$\$ 300 /$ hour.
Fixed costs;
Depreciation (capital cost $\$ 3,000,000$
over 10 years @ 8\%, 25\% residual
value) $=\$ 335,250$
Insurance - 3\% of capital cost $=90,000$
Liability insurance (\$325/seat) = $\cdots 21,125$

Airfield Requirements:

$$
\text { 5,000' X } 150^{\prime} \text {. gravel (min.) at 1,500 ft. A.M.S.I. }
$$

Note. D.O.C.
The best estimate of costs for the $F-28$ were given as 75% of DC-9 costs. Hence, D.O.C. were taken as 75% of $\mathrm{DC}-9$ costs defined in Volume 1. Northern Saskatchewan Transportation Study.
Payload 6,000 lbs. Passengers 28
Block Speed/Time v. Distance (cruise speed 175 m.p.h.)
Distance50100150200 250 300 350

Block Speed 91 120 134 143 148 152
155

Block Time
0.55
0.83
1.12
1.40
1.69
1.97
2.26
Maneuvring time, take-off cruise, landing, 0.26 hours added.
Operating Costs
Direct operating costs: \$ 158.30/hour.
(D.O.C. includes salaries, fuels, landing fees, other flying expenses, labour for maintenance, materials, etc. from Vol. 1. Northern Saskatchewan Transportation Study. A.A. Jones)

de Havilland Canada, Fwin Otter

Payload	4,000 lbs.
Passengers	19

Operating Costs

Direct Costs (from Vol. l, Northern Saskatchewan Transportation Study by A.A. Jones)

Flying costs	$=\$ 77.78 /$ hour
Maintenance	$=\frac{\$ 59.00 / \text { hour }}{}$

Fixed Costs
Depreciation (capital cost $\$ 400,000$
over 10 years, $8 \%, 25 \%$ residual
value) $\quad=\$ 44,700 / \mathrm{yr}$.
Insurance -. 3% of capital cost $=12,000 / \mathrm{yr}$. Liability insurance (\$325/seat) $\quad=\frac{\cdots 6,175 / \mathrm{yr} .}{\$ 62,875 / \mathrm{yr}}$.
S.T.O.L. Characteristics
Air Cushion Vehicle
Bell Aerospace-Voyageur Hovercraft.
Maximum payload Maximum speed Cruise speed Maximum range Cargo deck area 50,250 1b.

 54 m.p.h. (calm water)

 \(50 \mathrm{~m} . \mathrm{p} . \mathrm{h}\). (used for study)

 633 S. mls.

 1,320 S. Et.
 Capital Cost $\$ 1,250,000$.
Operating Costs
Direct operating cost:
Maintenance $=\$ 136 /$ hour Fuel/oil $=\$ 100 /$ hour
$\$ 236 /$ hour
Fixed costs
Crew, approximately equal to $\$ 80,000 /$ year
Depreciation (capital cost $\$ 1,250,000$over 10 years, 8% to 25% residual) $139,700 /$ year
Insurance (passengers and craft -4\% initial cost)50,000
Total 259,700/year.

1 -. 62.
 1) titions chanc. withoit t.ons ble t. amages esulter "a: or art.e at tum stated ? . bazange A!ovaive
$\begin{aligned} & \text { jor } 40 \mathrm{lbs} \text { one of which the } \\ & \text { al...) width plus the greate. } 1\end{aligned}$
and one of which the samt
55 . Unchorked baggage: one
mbined dimensions of which
plus total hoight) do not exceed
\because il he as :ewed for baggage in
cuse ann:yance to other
ed in the : bin.
2. $-\mathrm{LH}^{\prime}$: ITY
: , wher than as spectied in it

4 - CHIL. 2 RE

5. RE T:VYATICN'S

> w on a : way res rrvation. athally called Lon't be a olins, car your reservation that seat the company reser e to anyone

E-PA: HWGER CHECH. 4 N
 :es : ...n in int cieparture to allow for com \therefore...ck.c, wres Deplites will not be

1. - AR -XPPEQ: ATB CARGO
pr........st 13t. ad to the a port one (1) hour \because ie \quad : $n, 1$ be made tor shipments of

8 - GROLi.O TRA:ISPORYATION
e is avallotre between down

CHATTEA SFECIALISTS FROM BASES AT:
Saskatoon -- Prince Albert - L.a Ronge Stony Rapids - Uranium City - Buffalo Narrows

AIRCRAFT

Twin Engine -	Single Engine -
DC-3/CATS	OTIERS
CANSOS	BEAYERS
BRISTOL FREIGHTERS	CESSNAS
TWINOTTERS	
AZTECS	
FLEET OF OVER 25 AIRCRAFT	

Direct communications maintainod between all bases to book and arrange your flight.

Nor manea
"SASKATCHEWAN SERVICE"

$$
\begin{aligned}
& \text { es ? }
\end{aligned}
$$

anywhere with
$\pi x_{0} \%$

ϕ NODTH senvice

ESFCTIVE : $\% 1 \%, 10,3$

ATHABAS
100%

APPENDIX 3 (2,

NOTE: Percentage of flights handled by respective carriers are shown for each link.

NOTE: I. D show frequencies per week.
2. L.F. $=0.5$ is projected load factor.

TABLE \#3 [A.A.JONES]

Islander scheduled route service

Link	Service Freq. Each way per week	$\begin{aligned} & \text { Aircraft } \\ & \text { Utilization } \\ & \text { (hours) } \end{aligned}$	Service Capacity on link: (Pass. Equivs.)	\% of total link volume captured by sched.	Projected Flow (Pass. Equivs.)	Load Factor
B.N. - Pat.	3	69	2700	60	1469	0.54
Pat. Pinehouse	3	117	2700	60	$124{ }^{4}$	0.05
Pinehouse - La Ronge	6	270	5400	90	$3330{ }^{3}$	0.62
Pinehouse - Ile-a-la-C.	3	117	2700	60	2234	0.08
$\begin{aligned} & \text { B.N. - } \\ & \text { Ile-a-la-C. } \end{aligned}$	5	140	4500	90	3841	0.85
Ile-a-la-C. Beauval	2	40	1800	40	1263	0.70
Beauval -	2	112	1800	40	1788	. 0.99
$\begin{aligned} & \text { Meadow L. - } \\ & \text { P.A. } \end{aligned}$	2	200	1800	40	4375	0.24^{5}

Total 1065
Note: 1. Based upon 50 weeks per year and 130 m.p.h. block speed.
2. Includes diversion from road.
3. Based upon passenger priority over freight and no fish haul. Refer to 'Transport service for Pinehouse' for further details.
4. Does not account for any increased movements due to D.N.S. establishment in the north.
5. Does not account for any diversion from road.
Costs: Annual cost for provision of service = $\$ 91,600$Annual forecast revenues at the price structuredefined in Table $1=\$ 65,100$
Annual required subsidy \$26,500

Benefits:

Savings to travellers diverting from taxi	$=\$ 3,700$
Savings to travellers diverting from passenger car	$=\$ 3,100$
Savings due to diversion from charter aircraft	$=\underline{\$ 30,200}$
Total Annual Savings	$=\$ 37,000$
Additional benefits associated with nev trips	
generated by the air service (excluding future	
growth)	
$\therefore \quad$ Total Annual Benefit (1972)	$=\frac{\$ 38,900}{}$

NORTHERIN HIGHWAY SURFACING PROGRAM DETAILED COSTS					
HWY． NO．	SECTION LIMITS	LENGTH MILEAGE	COST（ 8 MILLIONS）		
			GRADING	SURFACING	TOTAL COST
22	Jct． 264 to La Ronge La Ronge to 20 miles North	102	0.8	$\begin{aligned} & 4.1^{1} \\ & 0.8^{1} \end{aligned}$	$\begin{aligned} & 4.1 \\ & 1.6 \end{aligned}$
		20			
		122			5.7
55155	Big River to Green Lake Green Lake to Ile A La Crosse	46	$\begin{aligned} & 1.2 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 0.2^{2} \\ & 0.6^{2} \end{aligned}$	$\begin{aligned} & 1.4 \\ & 3.6 \end{aligned}$
		130			
		176			5.0
120	Jct．\＃55 to Candle Lake Candle Lake to Jct．非106 Jct．\＃106 to Big Sandy Lake（Mile 88）	20	1.0	$\begin{aligned} & 1.0^{3} \\ & 2.3^{3} \\ & 3.0^{3} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.3 \\ & 4.0 \end{aligned}$
$\begin{aligned} & 120 \\ & 120 \end{aligned}$		37			
		40			
		97			7.3
106		．． 26	--------	$0.8{ }^{4}$	0.8
106		6845		3.84	3.8
$\begin{gathered} 106 \\ \dot{B} \\ 106 \end{gathered}$				$\begin{gathered} 2.4^{4} \\ 0.7^{4} \end{gathered}$	2.4
		25			0.7
106		18		0.44	0.4
106		19		$\begin{aligned} & 0.8^{4} \\ & 1.1^{4} \end{aligned}$	0.8
106		.24			1.1
		225			10.0
	Mile 88 to Mile 112 （Silica＊Haul） Mile 112 to Jct．非135 Jct．非135 to Creighton • Jct．非55 to Mile 25 S．Jct．$\# 120$ to Mile 62 Mile 62 to N．Jct．非120 Total Program	620			i． 28.0

1 Staged Pavement or $8^{\prime \prime}$ AC＠$\$ 40,000 / \mathrm{mile}$
2 Oiling © $\$ 5,000 / \mathrm{mile}$
32404 Staged Asphalt base
4 Oil Treatmert

The hovercraft service and the Cluff Lake tote road projects are interdependent. Both, therefore, compete with other programs for the transportation sector dollar. The provision of all-weather roads are projects which compete with other programs for fund allocation.

NORTHERN TRANSPORTATION FACILITY PROVISION PROGRAM DETAILED COSTS				
PROJECT	DESCRIPTION	RATE (DOLLARS)	LENGTH (MILES)	TOTAL COST (DOLLARS)
1	Winter Road construction from Turnor Lake to South shore of. Lake Athabasca	\$1,000/mile/yr	276 max.	\$650,000
2	Tote Road construction from Turnor Lake to South shore of Lake Athabasca	\$25,000/mile	225	\$5,750,000
3	New road from Big River to Meadow Lake Sawnill	$\begin{aligned} & \text { Grading at } \\ & \$ 25,000 / \mathrm{mile} \\ & \text { Oiling at } \\ & \$ 5,000 / \mathrm{mile} \end{aligned}$	55	\$2,000,000
4	Capital Cost of Hovercraft 1 year operating subsidy			$\begin{aligned} & \$ 1,500,000 \\ & \$ \quad 500,000 \end{aligned}$
5	All weather road construction from Cummins Lake to Dillon (Extension of Highway 104)	Grading at \$18,000/mile	28	\$500,000
6	All weather road construction from Pisew Lake to Pinehouse Lake	Grading at \$19,000/mile	53	\$1,007,000
7	All weather road construction from Jct. 非2 into Stanley Mission	Grading and Surfacing at \$83,000/mile	18	$\$ 1,494,000$
Total	Program Period Cost Total Federal Reimbursements Provincial Program Period Cost Total Provincial Annual Cost Total			$\begin{aligned} & \$ 13,400,000 \\ & \$ 6,700,000 \\ & \$ 6,700,000 \\ & \$ 1,340,000 \end{aligned}$

NORTHERN HIGHWAY UPGRADING PROGRAM DETAILED COSTS					
HWY.	SECTION LIMITS	LENGTH (MILES)	COST (8 MILLIONS)		
NO.			GRADING	SURFACING	TOTAL COST
109	Jct. 非3 to Jct. 非63	54	1,358,000	320,000 ${ }^{2}$	1,678,000
155	Ile-a-la-Cross Turnoff to Buffalo Narrows Ferry	27	668,000	134,000 ${ }^{1}$	802,000
155	Buffalo Narrows to La Loche	68	1,700,000	340,000 ${ }^{1}$	2,040,000
104	2.34 miles N.E. of Jct. \#224 to Flotten Lake	12	305,000	61,000 ${ }^{1}$	366,000
104	Meadow Lake Sawmill Road to Canoe Lake	16	400,000	$80,000^{1}$	480,000
224	Jct. \#104 to Waterhen River (north of Goodsoil)	30	250,000	150,000 ${ }^{1}$	400,000
Tote roads	25 percent (56 miles) of existing tote roads (Hwys. 102, 105 or 135)	56	1,120,000	- -	1.,120,000
155	Bridge at Buffalo Narrows				1,350,000
163	Shoal Lake I.R. - West	18	364,000	-	364,000
	Total Program	281	6,165,000	1,085,000	8,600,000

1 Oiling at $\$ 5,000 /$ mile
2 Bituminous Surfacing at $\$ 40,000 /$ mile

