
DESIGN
GUIDE

INFORMATION SYSTEMS MANAGEMENT

p, 	crteem
@i3traii.:zzatgo 4/e4, 0_

Cdral
—DE PA RTME NT OF REGIONAL AND ECONOMIC EXPANSION/

/SYSTEMS DEVELOPMENT LIFE CYCLE METHODOLOGY",

DESIGN GUIDE

OCTOBER, 1981

1.

2.

3.

4.

5.

6.

INDEX

PROJECT MANAGEMENT HANDBOOK

DELIVERABLES REFERENCE MANUAL

USER'S GUIDE

ANALYSIS GUIDE

DESIGN GUIDE

PROGRAMMING GUIDE

NOTE: It is recognized that all roles referred to throughout

this document will be filled by persons of either sex.

However, to maintain readability, personel pronouns of the

male gender are used.

He should be read as he/she.

His should be read as his/hers.

Him should be read as him/her.

Page

1.1
1.2
1.3
1.4

2.1
2.2

3.1
3.2

SYSTEMS DEVELOPMENT LIFE CYCLE METHODOLOGY

DESIGN GUIDE

TABLE OF CONTENTS

1. 	INTRODUCTION
1.1 Purpose
1.2 Objectives
1.3 Scope
1.4 Other Aids

2. 	SUMMARY OF SYSTEM DEVELOPMENT LIFE CYCLE
2.1 Overview Data Flow Diagram
2.2 Phase Summaries

3. 	ROLES IN SYSTEM DEVELOPMENT LIFE CYCLE
3.1 Major Responsibilities by Phase (Matrix)
3.2 Summary of Roles

4. THE METHODOLOGY
4.1 Introduction
4.2 Prepare for Design Phase
4.3 Divide the System into Sub-System Components
4.4 Design Sub-System Structure
4.5 Design Detailed Components
4.6 Design User Aids
4.7 Design System Test
4.8 Design Conversion Procedures
4.9 Complete Design Phase

4.1
4.3
4.5
4.9
4.14
4.24
4.27
4.34
4.37

APPENDICES

SECTION 1

INTRODUCTION

1.1 Purpose
1 . 2 Objectives
1 . 3 Scope
1 . 4 Other Aids

1. 	INTRODUCTION

1.1 Purpose

This manual has been prepared for the purpose of
providing system designers with a guide to designing
systems. Three areas of design are considered:

• computer system design, from the overall system
structure or architecture to the detailed component
specifications;

• test plan and test case design, to verify that what
is created satisfies what was requested; and

• manual system design, done currently with computer
system design, to facilitate the user's operation of
the system.

During the Analysis phase, the "what" of the system was
defined in terms of the application area. Now, in the
Design phase, the "how" to achieve the "what" is
described.

At the end of this phase, the system should be
described to a level of detail to enable programming
and testing to commence in the next phase. During this
phase, functional specifications are packaged into
system components and subsequently modules. The
intermodule data flows are defined and a process
narrative developed for each module. Test plans for
modules and test cases are developed. The design of
the user aids is also carried out.

1.1

1.2

1.2 Objectives

The structured technique is recommended for the design
of a computer system. It is the optimal method of
producing a GOOD design; good in terms of achieving the
system objectives. A computer system has to satisfy a
number of requirements:

. Performance - how fast and accurately the designed
system will do the required work.

. Control - how secure is the designed system.

. Changeability - the ease with which the designed
system can be modified later in its life to meet
changing requirements.

. Usability - the ease of human use of the designed
system.

There is a fifth requirement and this is the most
important one. The designed system must satisfy the
requirements of the user as defined by the requirements
specified during the Analysis phase.

Structured Design gives a structure to the system that
is hierarchical and functional. It isolates the
components to allow:

. ease of change; individual components can be changed
without affecting other components

. for the location of modules that most strongly affect
the performance of the system (an industry rule-of-
thumb for most systems is that 90% of the work is
done by 10% of the system); and

. for the protection of critical components for control
purposes.

1. 3

1.3 Scope

The main inputs to this process are the Functional
Specifications. These contain:

• A Logical design at a general level;

• Processing requirements at a detailed level;

• Data flow diagrams and supporting narrative; and

. Data dictionaries.

The inputs also describe the physical environment in
which the system will reside including:

. the mode of the system - batch, interactive,
transactional;

• the hardware;

• the configuration - distributed, local, centralized,
timesharing; and

. the software - DBMS's, TP monitors, proprietary
software, etc.

This manual will show the designer how to derive and
document from these inputs the physical design of the
system for both the manual and computer components.

Although the design of the physical data base is
carried out during the Design phase, the procedure is
not detailed in this guide since:

a) physical data bases address the logical data needs
of the Department as a whole, rather than a single
project's needs; and

b) the design of data bases tends to be dependent on
the particular data base management software
packages in use on the particular computers used by
the Department.

Close coordination of activities between the data base
administration and the project is required because of
the dependency of a project on the physical design and
development of the data base.

1 . 4

1.4 Other Aids

There are other manuals making up this methodology
package that designers should be familiar with:

• Project Management Handbook; provides an overview of
all the activities, milestones and controls through-
out the system life cycle phases.

• Analysis Guide; defines the methods used to derive
the Information System Requirements Specifications
which form the basis for all subsequent work.

• Programming Guide; defines the programmers guidelines
regarding the development of application programs.

• User's Guide; defines the user's role throughout the
phases.

• Deliverables Reference Manual; defines in detail the
deliverables, including the System Design
Specification.

SECTION 2

SUMMARY OF SYSTEM DEVELOPMENT LIFE CYCLE

2.1 Overview Data Flow Diagram
2.2 Phase Summaries

Initiation
Report

Project Initiation
Request

lam

Systems Developrnent Life Cycle

System Plan

Feasibility Report

Data
Definitions

Data
Definitions

Analysis

Information
Systems
Requirements

System
Design
Specifications

Technical
Requirements Technical

Requirements 	j
Development Tools

System And Procedures

Post-
implement-
ation
Evaluation

Procure
Technical
Facilities
(External
To Project)

Production
Facilities

Performance
Evaluation

Regional 	Expansion
Economic 	Économique
Expansion 	Régionale

INFORMATION SYSTEMS MANAGEMENT
GESTION DES SYSTÈMES D'INFORMATION

Performance
Data

2.2

2.2 Phase Summaries

The preceding diagram illustrates the phases comprising
the System Development Life Cycle of most information
systems project. It depicts how the cycle commences
with the receipt of a Project Initiation Request and
ends with the preparation of a Post-Implementation
Evaluation Report following system implementation. The
end of each phase represents a major checkpoint where
management, external to the project, may review the
continuing viability of the project and, as appro-
priate, commit only the resources needed to complete
the following phase.

Summaries of each phase are as follows:

. Project Initiation

Every project begins with the identification of an
opportunity to be exploited, a problem to be solved,
or a requirement to be satisfied. This phase starts
when a request is received (on a Project Initiation
Request form) from a user. The request is first
screened to ensure that it is properly authorized,
that the source of development funds is identified
and that there is justification for proceeding
further. Following this, details of the request are
documented by a (Business) Systems Analyst. He/she
prepares a brief Initiation Report which documents
the issues to be addressed, objectives, scope,
benefits, timeframe, policies, constraints and
potential solution strategies.

The objective of the report is to outline for
management the initial perception of the issue, and
to recommend an action plan to study the feasibility
of various solutions.

Normally, preparation of the report takes one half of
a day or so.

• Feasibility Study

This phase involves the Analyst working together with
user management in the research and analysis of
subject related data in order to identify various
solutions. These solutions are both manual and auto-
mated, and are evaluated for their relevance and
costs/benefits.

2.3

The overall objectives are to select a solution (or
path), to develop a conceptual system design, and to
secure further resources in order to perform a
detailed analysis of the information systems require-
ments.

The Feasibility Study is carried out at a general, or
conceptual, level. It provides management with an
early opportunity to evaluate the project's viability
before any substantial amounts of money have been
expended, and to re-evaluate it in relationship to

• the user's priorities and strategies.

. Analysis

The Feasibility Study examined the issue being
addressed by the system at a general level. The
Analysis phase examines it at a very detailed level.
The precise business processes and the set of
information forming the business system is clearly
defined.

This definition establishes the basis for outlining
the system from a user perspective. For EDP systems,
this means that at the end of this phase the user
will know what information is included in the system
and what business processes will be computer
assisted.

The Analysis phase involves substantial end-user
participation since it is during this phase that the
business content of the system is documented in
preparation for the design and development phases.

. System Design

Whereas the Analysis phase defined the "what" of the
system, the System Design phase defines "how".

The specifications delivered by the Analysis phase
represent the bridge between the user community, who
collectively define the business requirements for the
project, and the project designers Who design a
system to address these requirements.

User participation in this phase involves reviewing
and approving more detailed aspects of the system
such as report and screen layouts, office procedures,
forms etc.

2.4

• System Development

The objective of this phase is to develop the working
procedures and, if automated, the computer programs
according to the system design specification.
Testing of the procedures and programs is also done
to ensure that all components of the system work
properly.

• Implementation

In this phase the working procedures and programs
developed are made operational. Users are trained in
preparation for the live running of the new system,
data files are converted from old media to new media,
and the new system is installed. Parallel running,
when applicable, takes place.

. Post-Implementation Evaluation

This phase studies the operational performance of the
system for a pre-determined period, and presents to
management its conclusions and recommendations.
Optionally, according to management's preferences, it
may also study the effectiveness and efficiency of
the development process itself.

SECTION 3

ROLES IN SYSTEM DEVELOPMENT LIFE CYCLE

3.1 Major Responsibilities by Phase (Matrix)
3.2 Summary of

DELIVERABLE/TASK

Initiation Report

MANAGEMENT
AUDIT

USER
MANAGEMENT! STAFF

Approve

Approve

Review

Review sign

tion

tion

MI MI BM MI Ma MI MI Ili MI 	MI MI MINI MI IIIIIIII 	MI MI all

3.1

3.1 	MAJOR RESPONSIBILTTIES BY PHASE

PROJECT TEAM

JASE

)n

LtY

APPROVAL
ALTHORIUY

Approve

Approve

Approve

Approve

Feasibility Report
-User Requirements
-Conceptual Solution

Requirements
Approval Authority

Submission

EDP Design
Specification

Design of User Aids
Approval Authority

Stibmission

Approve

APProve

Approve
APProve

Approve
Approve

Participate

Participate

Participate

Participate

Participate

PROJET
MANAGER

Prepare

Review

Review
Prepare

Afflove

Review
Prepare

SYSTEMS 	SYSTEMS
ANALYSE 	DESIGNER

Prepare

Prepare 	Participate

Review 	Prepare

Prepare 	Participate

PROGRAMMER

Approve

Approve

Approve

Program Design
Program Code
Program Test
System Test
Operations ManuR1
User Manual
Procedures Manual
Training Manual
Approval Authority

Sdbmission

Acceptance Test
Conversion
Production Operation
Approval Authority

Stibmission

Evaluation Report

Participate

Participate

Participate

Approve
Approve
Approve

Approve
Approve

Approve

Participate
Update
Participate

Perfprm
Participate
Perform

Participate

Approve
Approve
Approve

Review
Prepare

Prepare

Approve

Review
Review
Prepare
Participate
Prepare
Participate
Prepare

Participate
Participate

Prepare

Participate

Perform
Prepare
Participate

Participate
Participate

Prepare
Prepare
Prepare
Participate
Participate

Participate
Participate

3.2

3.2 Summary of Roles

Approval Authority

The Approval Authority for any information systems
project may be a systems management committee, a
project steering committee, the head of ISM
(Information Systems Management) or a senior functional
manager depending upon the nature of development
project.

The Approval Authority acts on behalf of the user by
approving each of the end-of-phase submissions, by
allocating resources to each project phase, and by
maintaining control over the project's progress. These
responsibilities are exercised through periodic receipt
of documents and submissions from both the Project.
Manager and the Systems Assurance Manager. Refer to
the Departmental ISM policy manual for specific
policies related to the approval process.

Business Systems Analyst

See: Systems Analyst

Data Analyst

A Data Analyst provides functional guidance and support
to the project on matters related to the logical repre-
sentation of data in project specifications. A Data
Analyst is a specialist in data and data relationships.
External to projects, he models the department in terms
of its data for the purpose of developing efficient,
cost effective data management facilities, e.g., data
bases. In order to achieve this he must develop data
models for each project application and synthesize them
into the Departmental data model.

NOTE: The Data Analyst's role may not be a full-time
staff position. The role may be filled by staff
with other responsibilities.

Inspector

An Inspector reviews project specifications in order to
assure their quality prior to release external to the
project. In this regard he examines specifications for
consistency in level of detail and style, and adherence
to standards. He also looks for incompatabilities
among related documents.

Depending upon the size of the project team and the
volume of project deliverables, the Inspector may be
one individual appointed for the duration of the
project, or he mav he anv

3.3

Programmer

A Programmer designs, develops and tests program
modules using structured programming techniques. He
may also be required to perform duties in system
testing, acceptance testing, conversion and post-
implementation support.

See Programming Guide for further details.

Project Manager

The Project Manager has overall responsibility for
achieving the project goals through the day-to-day
conduct of the project. In this respect, he develops
operational plans and budgets, acquires the required
resources, identifies and organizes the appropriate
business and technical expertise, periodicaly submits
plans, requests for approval and progress reports to
the approval authority, coordinates with user
management and the Systems Assurance Manager user
participation in the project, conducts regular project
management progress meetings and ensures effective
quality control over project deliverables.

See Project Management Handbook for further details.

Steering Committee

See: Approval Authority

Systems Analyst

A Systems Analyst identifies, analyzes and specifies
information systems requirements using structured
analysis techniques. He may also carry out ancillary
duties involving user interface such as development of
user manuals, training, system conversion, and
acceptance testing. Systems Analysts may be members of
a user section or branch (Business Systems Analysts) or
may be drawn from ISM staff.

See Analysis Guide for further details.

Systems Assurance Manager

The Systems Assurance Manager represents the
departmental interest in a systems project and is
responsible for ensuring that all user-related matters
pertaining to quality control are addressed. Acting on
behalf of the user, the Systems Assurance Manager:

• participates with the Project Manager in planning the
commitment of user resources to the project;

3.4

• ensures that the appropriate level and quality of
user resources are available to the project (i.e.,
that sufficently senior user personnel are assigned
the key review and sign-off roles for all
user-related deliverables produced by the project
team);

• ensures that the user community's participation is
comprehensive and active;

• verifies that the Project Manager has obtained user
sign-off of all user-related deliverables (it is the
responsibility of the Project Manager to obtain each
sign-off);

• verifies that any changes to project plans which
impact the user community have been agreed and
approved by the user community;

• brings forward user concerns regarding the project to
the Steering Committee for resolution if and when
these concerns cannot be addressed through
negotiations between the Project Manager and the user
community;

• reports to the Steering Committee on user
satisfaction with the project.

Ideally, the Project Manager and the Systems Assurance
Manager should work cooperatively to support the
successful execution of the project. Situations may
arise, however, in Which the Project Manager and the
Systems Assurance Manager disagree (i.e., the Systems
Assurance Manager may request, on behalf of the users,
the expansion of the project scope, beyond the terms of
reference understood by the Project Manager). The
Project Manager and the Systems Assurance Manager are
jointly responsible for making every effort to resolve
any such disagreements to the mutual satisfaction of
the project team and the user community. Disagreements
should be brought forward to the Steering Committee
only when resolution cannot be achieved through
negotiation.

System Designer

A System Designer transforms information systems
requirements, in the form of functional specifications,
into system and sub-system design specifications using
structured design techniques. Although a System
Designer is normally the designer of the computer
internals - system transactions, screens, files, input,
output, etc. - this role may also encompass design of
user aids such as training packages and user manuals.

3.5

Technical Specialist

A Technical Specialist provides functional support and
guidance to the project on matters of a technical
nature. These would include hardware studies,
telecommunications networking, technical feasibility of
design alternatives, and acquisition and use of
development tools.

He is considered "external" to any project and his
abilities are shared on an organization-wide basis.
This is to optimize the economic efficiency of using
specialized technical staff.

User

The User's role in the Systems Development Life Cycle
relates to those activities which have direct impact
on him and his area of responsibility. These include:

. definition of systems subject matter;

. planning and provision of subject matter expertise;

. delegation of authority to staff assigned to
participate in development activities;

. quality control over subject matter documented by the
project team;

. training of staff;

. preparation of administrative environment for system
installation;

. approval and acceptance of project deliverables.

In some sections or branches, user staff may also be
engaged in carrying out development roles, such as
systems analysis. These are not considered user
roles.

See the User's Guide for further details.

SECTION 4

THE METHODOLOGY

Page
4.1 Introduction 	 4.1
4.2 Prepare for Design Phase 	 4.3
4.3 Divide the System into Sub-System Components 4.5
4.4 Design Sub-System Structure 	 4.9
4.5 Design Detailed Components 	 4.14
4.6 Design User Aids 	 4.24
4.7 Design System Test 	 4.27
4.8 Design Conversion Procedures 	 4.34
4.9 Complete Design Phase 	 4.37

4.1

4. 	THE METHODOLOGY

4.1 Introduction

This section describes the inputs, working documents
and deliverables that System Designers are to use for
developing system specifications. In addition, it
describes the method for designing a system, which is:

. Divide the System into Sub-System Components,
specifying the interfaces. This gives the prelimi-
nary physical structure of the new system, and
indicates how the components communicate with one
another and with external entities.

. Design the Sub-System Structure. This provides the
internal architecture or framework around which the
remainder of the physical system is designed.

. Design Detailed Components. Each module identified
in the above process is described in detail.

. Design the User System. The user system and aids are
designed in an initial form.

. Design the System Test. The test plan and test cases
are prepared.

. Design Conversion Procedures. Modules, user aids and
plans are developed for conversion from the old
system to the new one.

A data flow diagram of the process showing the
information connections between the steps is shown on
the next page.

Management discretion should be applied when planning
activities for small or modest sized projects Where
less rigorous formality may be appropriate. Some of
the steps could be combined so that some of the work
would occur simultaneously.

A

Prepare
For

Design
Phase

Information
Systems
Requirements

Develop
Plan

I Data
Definitions

Data Dictionary

Design
System

Design
I Spec.
I Components

‘......■•■•■■•■••/

IPlan
For
Next ,
Phases

Package
System
Design
Specs

Technical Fieqts,

User
Verification

And
Approval

	 .)

Design Specifications
Obtain

Approval Approved System
Design Specs.

Terms Of
Reference

Design. Specifications

Phase 4 — System Design

Regional 	Expansion
Economic 	Économique
Expansion 	Régionale

INFORMATION SYSTEMS MANAGEMENT
GESTION DES SYSTÈMES D'INFORMATION

4. 3

4.2 Prepare for Design Phase (4.A)

Designers must become familiar with the project, its
objectives, and the output of the Analysis phase before
attempting any design. Ideally, project management
will include designers in the Analysis "inspection"
process so that there is more than just documented
bridges between the Analysis and Design phases.
However, documented background material can be found in
the Feasibility Report, and the following sections of
the Information Systems Requirements are essential
input:

. Executive Summary

. Functional Specifications

. Performance and Security Goals

. Cost/Benefits

. Technical Requirements

B.1

Divide
System

Into
Sub-System
Components

B.5

Sub-System
Structure

Conversion
System
Specs.

Information
System FReqts.

1 Sub-System
Definition

[

Design
Sub-System

Structure
Data Dictionary

Design
System

Test

B.3 Data
Definitions

Module Specs.
Design Spec.
Components

Test
Specs.

Design
Detailed

Components
To Plan
And
Package

Module
Specs.

B.4 Ti3

Design
Conversion
Procedures

Design
User
Aids

User Aid Design Specs.

Activity 4.B — Design System

Regional 	Expansion
Econornic 	Économique
Expansion 	Régionale

INFORMATION SYSTEMS MANAGEMENT
GESTION DES SYSTÈMES D'INFORMATION

4.5

4.3 Divide the System into Sub-System Components (4.B.1)

Objectives

The objectives of this step are:

. to divide the overall logical system into component
sub-systems;

. to further develop the physical system structure by
detailing the man-machine interfaces; and

. to confirm requirements for the the technical
environment.

Input

Information System Requirements

. Functional Specifications

. Performance and Security Goals

. Technical Requirements

. Cost/Benefits

Methods

. Summary of Steps
- divide the system into sub-systems
- define the inputs
- define the outputs
- verify sub-system division

. Divide the System into its Sub-Systems

Use the system data flow diagram to divide the system
into its component sub-systems (see the figure on the
next page); each being a piece of software which
could run on its own or in conjunction with the
others.

The criteria to use in this process are the
capabilities and limitations of the hardware, the
user requirements and the cost feasibility.

Request • r
I. 	r) 	ii , Captured : •
I 	I 	Submit 	I Request 1 I

Respond
To

Request

•••• • ••nn •• • •••n •

Submit
Applicant

Request

Data Flow Diagrams
Example of System Division

Reply

• •n •

Sub-System A
i 	(On-Line)

Application

Request

17-11e I
Response I

Send 	i
Reply

	

IL 	

	

Reply 	7- 	•

v

Sub-System B
(Batch)

Send
Reply

Captured
Request

Application

Logical Representation
Reply

)wit
rme • wilm • mum • mi•• • n•• • ••mo • mum • n •• • Iiin • um» um . •nn • • mum • Im•• •

• n 111 • «MM. • •••n • 	• UM, • Ma. 1n 111

Physical Representation
Division Into Subsystems

Regional 	Expansion
Economic 	Économique
Expansion 	Régionale

INFORMATION SYSTEMS MANAGEMENT
GESTION DES SYSTÈMES D'INFORMATION

4.7

. Define all inputs to the computer system. These
inputs may consist of data entered on-line, data
entered in documents, data entered as an existing
automated file, or data received from another
automated system.

For each on-line input record the following
information:

- screen name
- screen number
- screen description
- screen specification
- screen format
- program(s) involved
- file(s) created.

For each document input to the system record the
following information:

- document name
- document number
- document description
- document sample
- encoding instructions
- program(s) involved
- file(s) created.

In most instances an automated file input represents
an interface with another system. Identify the
file name and input name.

. Define all system outputs. Outputs from a system may
consist of on-line screen reports, printed reports or
automated files. For screen reports note the
following:

- screen name
- screen number
- screen description
- screen specification
- screen format
- program(s) involved

For each printed output from the system define the
following information:

- report name
- report number
- report description
- report layout
- report frequency
- report volume
- program(s) involved

4 . 8

In most instances an automated file output represents
an interface to another system. Specify the
following:

- file name
- dispersal specification

Complete details of the specifications will be found
in the System Design Specification contained in the
Deliverables Reference Manual.

. Verify the sub-system division.

A walkthrough of the deliverables from this activity
is conducted by the designer to verify the design and
its technical feasibility. Ideally, the following
should be in attendance:

. the design team leader;

. a technical specialist from ISM;

. a data analyst (representing the data base
perspective); and

. an informed user representative (optional).

Following group approval (subject to modifications
being agreed upon), user community representative
should be asked to approve the finalized
inputs/outputs and interfaces.

Working Documents

Walkthrough Records

Deliverables

. Data Flow Diagrams and complete descriptions of
computer sub-systems

. Sub-system Interfaces - inputs, outputs

. System Flow charts for each sub-system

4.9

4.4 Design Sub-System Structure (4.B.2)

Objectives

• To form sub-system structures by synthesizing
functional, performance, security, and physical
requirements for each sub-system.

• To develop the physical data structure by trans-
forming conceptual files and data flows into system
data descriptions (files, messages, transactions)

Inputs

• Functional Specifications
• Performance and Security Goals
• Technical Requirements
• Data Flow Diagrams of Sub-Systems
. Sub-System Interfaces

Methods

. Summary of Steps

- Decompose the Functional Computer Design to the
initial system structure

- Refine Design

- Alter data flows and conceptual files from the
Functional Specifications into system data
descriptions (file design, messages)

- Ensure Data Dictionary requirements are met

- Verify System Design

. Decompose the Functional Computer Design to the
initial system structure.

The technique of transform/transaction analysis is to
be used in deriving the initial structure of the
system in the form of a structure dhart.

A structure dhart is a diagramatic method of showing
the hierarchy of modules and the relationships among
them, specifically the control connections and the
data connections. A brief explanation of how
structure dharts are drawn, is given in the text
which follows and in the example provided on the next
page.

EXAMPLE

4.10

STRUCTURE CHARTS

SYMBOLS AND NOTATIONS

Connector - The line connects the
called transform

Parameters - System Data

- Control Data or
"Flags"

Procedural - decision or condition calls

0 Invoice Number e

4 Validation Flag•

- iterative procedure or loop

- convention, procedures performed
left to right
top to bottom

D

- "A" performs the large loop (1) of "B", "C", "Du, "E", and "F"

- within loop 1, "A" decides to call either "B" or "C" and "A",
then performs the loop of "D", "E", and "F", deciding within
that loop, whether or not to call "E.

4.11

Synopsis of Transform Analysis

1. The top of the Structure Chart is chosen to
correspond to that part of the Data Flow Diagram
where inputs change to outputs.

2. Define one second level module for each major
input stream, output stream and process stream.

3. Data Flows in the Structure Chart correspond to
Data Flows in the Data Flow Diagram.

4. The input and output portions of the Structure
Chart correspond on a one-to-one basis to the
processes of the input and output legs of the Data
Flow Diagram input process.

5. Data Flows in the substructures correspond to the
data flows into and out of the associated
processes in the DFD.

Reference material is identified in Appendix A.

. Refine Design

Any creative process requires an iteration, a look at
the end product and then a revision and refinement.
This is especially needed in the complex case of
information systems design. Once the structure has
been initially designed, it must then go through a
refinement process. This is to verify its correct-
ness in terms of the functional specifications, to
enhance its capabilities, to adhieve the performance,
control or changeability objectives, and to verify
the module's position in the rest of the system.

The first step is to verify that it is a "good"
design according to the methods of evaluation of
Structured Design (see Composite Structured Design,
referred to in Appendix A):

- minimize coupling - the connections between modules
- limit span of control - no more than 7 subordinates
- have the scope of effect contained within the

scope of control
- limit module size.

4.12

The design must also be refined to fit into the
technical and organizational environment of the
system. To this end consideration should be given to
the organizational impact and operational
efficiency of the design.

. Alter data flows and conceptual files (data stores)
from the Functional Specifications, into system data
descriptions.

In a highly modularized system the greatest source of
problems occurs in the inter-module and inter-sub-
system data flows. A lot of care and attention must
be paid to the design and specification of these
parameters.

The logical contents of the files plus access would
be given in the Functional Specification. Consider-
ing these specifications and the technical environ-
ment in which the system will operate, the physical
files are designed in an initial form. (If a data
base is required by the user, then the Department's
Data Base group would design the physical file
structure).

Similarly, all system messages and inter-module
communications would be specified. The inputs to
this specification would be the data flows
(couplings) on the DFD's and the data element and
data structure descriptions from the Data
Dictionary.

. Data Dictionary Requirements

At all stages in the Design, the data dictionary must
be kept up to date with the addition of new or
altered Data Structures or Data Elements.

. Verify System Design

A careful verification of the structure, module
interfaces and sub-system interfaces is critical as
each module has an impact on the rest of the system.
At a minimum, the designer should carefully check
these elements. However, the documents should also
be inspected through a formal inspection process.
See Appendix B for description of a "walkthrough".

4.13

Working Documents

. Walkthrough Notes

. Initial File Design

. Initial Interface Descriptions

Deliverables

. Structure Charts

. Functional coverage matrix that ensures that all of
the functions are covered

. Updated Data Dictionary

4.14

4.5 Design Detailed Components (4.B.3)

Objectives

To build a detailed specification for each component or
module. It is important, when writing program specifi-
cations, to ensure that all of the information necess-
ary for writing a program is provided.

It should also be remembered that a designer's function
should be to define a problem, showing the inputs,
outputs and the rules as to how the data will be
manipulated. It is not his function to tell the
programmer how to write and structure his program.

Inputs

. System Structure - the system structure chart

. System Data Descriptions - initial file design from
the first activity plus logical file design from the
Functional Specifications

. Component Data Flows - initial interface descriptions

. Data Dictionary

Methods

. Summary of Steps

- Derive Module Structure from Structure Chart
- Define detailed module interfaces
- Develop module process descriptions
- Verify the completeness and accuracy
- Package all of the design components into the
program specifications.

.•Derive Module Structure From Structure Chart

The structure dhart gives all of the functional
components of the system. The Designer now has to
package these into program modules and uniquely
identify each module. Normally, a program module is
defined for each module on the structure chart.
However, there may be some cases Where the code of a
module should be included in the code of its super-
ordinate module. This will occur when there are too

4.15

few lines of code to justify having a separate
compilable module with all of the associated
overheads. This is referred to as "lexical
inclusion" in Structured Design, and is shown in the
structure dhart with a triangle on top of the module
to be included (see the next page for an example).

In the example, module 6.4.1 consists of a check-
digit verification routine probably 10-20 lines of
code. So it is more feasible to include the code in
module 6.4.

. Define Detailed Module Interfaces

Now that the physical module structure has been
specified the module interfaces have to be specified
in detail.

Included are:

- names of data passed
- contents of data passed
- methods of passing the data
- physical description of data
- logical description of the passed data

The Data Dictionary must be updated to include these
new physical details.

. Develop Module Process Descriptions

The intent of this section is to clearly identify the
processing functions of the program.

The method of documenting the process could be one or
a combination of:

- narrative
- structured English or Pseudocode
- Decision Trees
- Decision Tables
- Flow Charts

Structured English or Pseudocode

Pseudocode is narrative that is used to describe a
process within a system. It is more structured and
formal than prose but not so formal as to be
compilable.

6.4
Edit

Personal
Information

Input Record

Personal File
Info

File
Flag

IId-Number

Id-Number

I Id-num
Flag

Id-Number

6.4.2
Verify

Person on
File

6.4.3
Get Personal
Information

From File

6.4.4
Check
Input

Info With
File Info.

Personal
) File

Info

Input
Record

Edit
Flag

Info-Flag

6.4.1
Verify

Identification
Number

Program Structure Chart

Regional 	Expansion
Economic 	Économique
Expansion 	Régionale

INFORMATION SYSTEMS MANAGEMENT

GESTION DES SYSTÈMES D'INFORMATION

4.17

Pseudocode describes a module's functions in the order
which they will be performed, together with the logical
decisions that control the processing.

Pseudocode lends itself to "stepwise refinement".
Thus, pseudocode statements are often vast
generalities, such as "calculate pension entitlement",
that are subsequently elaborated into hundreds of
statements of code.

Note: The description Which follows is meant as a
guideline. It has been reviewed by practioners,
and is hopefully complete. It should not be
deviated from without reason. But neither
should it be slavishly adhered to When you have
a better idea.

There are four types of pseudocode statements:

. Unconditional imperative statements;

. Statements causing exception condition;

. Statements that express flow of control; and

. Module calling statements.

1. The unconditional imperative statement is the
simplest kind. It causes no side-effects, it
raises no exception conditions. e.g.:

MOVE transaction name to master name.

2. Statements causing exception conditions. Many
statements can give rise to conditions that must
be tested. These statements are usually only
encountered in low-level, detailed pseudocode.
For example, in COBOL:

READ input-record from trans-file
AT END

MOVE high-values to input-record
or,

COMPUTE sum-squares = (data*data) + sum-squares
ON OVERFLOW

MOVE 'Y' to error-flag
MOVE zero to sum-squares.

4.18

3. 	Statements that express flow of control.

. IF, as in:
IF the cat is hungry THEN

FEED the cat
ELSE

SEND the cat outside
ENDIF.

. CASE, as in:
CASE gender of

male:
PERFORM animus

female:
PERFORM anima

neutral:
PERFORM psychoanalysis

ENDCASE.

• FOR, as in:
FOR each entry in table

ADD entry to sum
ENDFOR.

• DOWHILE, as in:
DOWHILE end-of-file not true

APPLY transaction to master file
READ next transaction

ENDDOWHILE

• RETURN or STOP.

4. 	Module calling statements:

. PERFORM check-trans-code using new-code

. CALL calculate entitlement using
new record
new entitlement

• INVOKE P3726 (Error-code, Personal-Identity-
Table)

At the high level of design, you may not want to
explicitly define how the module is to be called
(e.g. internal with PERFORM's or external with
CALL's). In that case, just state the function:

• CHECK transaction code
. CALCULATE entitlement

4.19

Decision Tables

Decision tables are a tabular method of describing
logic by showing the relationship between conditions
and actions in a compact manner.

In the standardized format, the decision table is
divided into four sections. The "condition statements"
are listed in the upper left hand side with the subse-
quent "action statements" listed below. On the
right-hand side are the "condition" and "action". This
side is divided into a number of columns or rules.
Each rule corresponds to one set of conditions being
fulfilled and shows the action(s) to be performed in
these circumstances.

Tables can be completed in one of two ways, "limited
entry" or "extended entry". With a limited entry
table, the statement of each condition or action is
ccmpletely self-contained. The entry portions of this
table indicate whether a particular rule satisfies the
condition or requires the action stated. The entries
are YES (Y), NO (N) or a "hyphen" (-) if the condition
is not pertinent to the rule.

In an extended entry table, the statements of condition
and action are incomplete. Both the statement and the
entry sections of any particular row in the table must
be considered together to decide if a condition or
action is relevant to a given rule. The entries can be
any statement. The advantage of the extended entry
method is a saving in space, although an extended entry
table can always be converted to a limited entry form.
The following pages show the two methods, used to state
the same problem. Further reference material is
identified in reference 6 of Appendix A.

1
STATEMENT
CONDITION

RULES
3 	4

4.20

LIMITED ENTRY DECISION TABLE

QUANTITY-ORDERED DISCOUNT-QUANTITY

WHOLESALE

QUANTITY-ORDERED QUANTITY-ON-HAND

YNN- YN - Y

Y YNNY -NN

Y Y Y YNNNN

ACTION

BILL AT DISCOUNT-RATE

SHIP QUANTITY-ORDERED

BILL AT REGULAR-RATE

SHIP QUANTITY-ON-HAND

BACKORDER QUANTITY-ORDERED LESS
QUANTITY-ON-HAND

X X

X X X X

- X X X - X X X

- - 	- X X X X

X X X X

STATEMENT RULES

•-n

4.21

=ENDED ENTRY DECISION TABLE

CONDITION

ORDERED-DISCOUNT

ORDERED-ON-HAND

BUYER

1 	 2 	3 	 4 	5 	6 	ET SE

Y 	Y 	Y 	Y 	N 	N 	-

Y 	 Y 	N 	 N 	Y 	N 	-

WHOLESALE RETAIL WHOLESALE RETAIL MM. 	 •••• n 11,

ACTION

BILL

SHIP

BACKORDER ORDERED
LESS ON-HAND

INVESTIGATE ERROR

DISCOUNT REGULAR DISCOUNT REGULAR REGULAR REGULAR -

ORDERED ORDERED ON-HAND ON-HAND ORDERED ON-HAND -

X 	 X 	 X

LESS THAN 6 	 3%

MORE THAN 5 	 5%

LESS THAN 6 	 2.5%

MORE THAN 5 	 4.5%

MANAGEMENT

CLERICAL

MALE

4.22

Decision Trees

Decision Trees can be used for logic verification of
moderately complex decisions which result in up to
10-15 actions.

e.g. Pension Rates

LEVEL OF WORK
PENSION

YRS OF SERVICE 	RATE

Flowcharts

Flowcharts should be prepared in accordance with the
Section standard practices used in the ISM section.

. Verify the Completeness and Accuracy

A careful verification that the program specifications
address all required issues, greatly reduces problems
in the programming phases. This verification can be
performed in a number of ways, depending on project
policy and circumstances.

Specifications must be Checked by another member of
the project team as well as by the designer. If at
all possible, a formal walkthrough should be
conducted. It is highly desirable to have the
programmer who is assigned to do the programming
participate in the "walkthrough". A description of
the procedures to use for "walkthroughs" can be found
in Appendix B.

4.23

A checklist of problem areas in component design
should include:

- Logic
- Test and branch conditions
- Data area usage
- Return codes, messages
- Module attributes - is the module well structured?
- External linkages
- More detail/less detail needed
- Standards
- Higher level design documents
- User specification
- Maintainability
- Performance

. Package all of the Design Components into Program
Module Specifications

The final task is for the Designer to gather all the
components into the Program Module Specification.

In spite of program specifications being one of the
most important facets of designing and implementing a
computer system, they are quite often the most
neglected; especially in the areas organization and
completeness. The success of the system can be
seriously and adversely affected by poor program
specifications. Specifications should be written and
packaged in a clear and organized fashion. There
should be no ambiguities or misunderstandings of the
requirements by the prôgrammer. When organized in a
standard manner, the Designer responsible for the
system can quickly check the program specifications
against the overall systems design, and also ensure
that all aspects of the requirements are covered.

Complete details of the format can be found in the
System Design Specifications Section of the
Deliverables Reference Manual.

Working Documents

. Walkthrough Notes

. Designer's Notes
- the Designer should keep the informal notes on file

for later use by the Programmer.

Deliverable

Completed and verified Program Module Specifications
- refer to the Deliverables Reference Manual for a

detailed list of contents.

4.24

4.6 Design User Aids (4.B.4)

Objectives

At some time during the project life cycle process,
there must be specific attention paid to the manual
sub-system. As it is the system that most of the users
come in contact with, it is just as important as the
computer sub-system, (and in the eyes of the user
staff, often more important). The design of the manual
system is further detailed in this activity.

Inputs

. Functional Specifications - including man-machine
interfaces, manual processes, inputs and outputs, and
organizational requirements.

• System and Sub-system Specifications - giving
detailed man-machine interfaces which could consist
of input documents, input screens, input dialogues,
output screens and/or dialogues, and output reports.

Methods

• Summary of Steps
- Refine manual requirements
- Refine manual operations
- Design user aids
- Test and refine the design

. Refine the Manual Requirements

The Functional Requirements of the system as it
relates to interfaces with end users, will have to be
finalized.

- Identify the end user audience:
- who will enter or receive the data?
- what are their present skills?
- can their skills be changed through training?
- are the users a homogeneous group?

- Identify the Business Procedures - those sets of
procedures that are required either before or after
the actual man-machine interface.

4.25

. Refine the Manual Operations

Once the requirements have
man-machine operations are
operations required to use
environment can be defined

. Design User Aids

been refined and the
known, then the manual
the system in the business
in detail.

Based upon the requirements and the existing skill
levels, the aids required to bring existing skill up
to the required levels and to operate the system can
now be designed. The aids could take the form of:

- User Manuals
- Procedure Manuals
- Training programs/guides
- Computer operations Manuals

An analysis of the needs of the system will have to
be performed to decide on the specific user aids
required.

User Manual

During implementation of the system, and for the
entire life of the system, the users prime
information document will be the User Manual. It
will serve the users in three ways:

a) The User Manual will provide management with an
overview of the total system, its functions, and
its features.

h) The User Manual will serve as a tedhnical
reference document for line management and other
system users.

c) In conjunction with the Training Manual, it will
aid in training users through the use of examples
and explanation of tasks.

Procedure Manuals

Procedure Manuals contain documentation of office
procedures for the manual and automated systems, and
administrative activities followed in an
organizational unit.

4.26

This differs from the User Manual in that the User
Manual is oriented towards describing a specific
computer system. The procedure manuals have in
contrast, an orientation toward a job function and
specify when activities take place within a given
organizational unit. Procedure manuals normally
include documentation on: policies, regulations,
authorities, responsibilities, and detailed document
flow.

Training Manual

The Training Manual is intended to be a supplementary
document to the User Manual. It provides additional
examples of how to perform specific tasks, highlights
particularly complex situations, specifies what
periodic training is to take place, and basically
serves as an organized means of storing training
material.

It will be used during the initial training of
personnel in the operation of the new system and will
also serve as a permanent staff training aid.

Computer Operations Manual

The Computer Operations Manual is designed to fully
describe all phases of the operation of a computer
system, both by internal operations and any service
bureau from which services are purdhased.

. Test and Refine the Design

The design should be verified in detail, internally,
by the project team, and especially by the user
representative as these aids are often the main
interface between the user and the system.

Methods of Verification:

. Informal checks

. Formal inspections

. Walkthroughs

Working Documents

N/A

Deliverables

User Aid Design Specifications
for each applicable user aid:
. Objectives
. Tables of Contents
. Point Form Details

4.27

4.7 Design System Test (4.B.5)

Objectives

The objective of system testing is to compare the
system to its original objectives. To achieve this,
the following are done:

- Requirements for testing the functions of the new
system are defined.

- A plan and test cases are developed for testing of
groups of components, versions of the system and
sub-systems, and the entire system in as realistic an
environment as is possible.

Inputs

. Functional Specifications giving the system require-
ments and objectives, the inputs, outputs and
processes of each component, both computer and
manual.

• System structure giving the sub-systems, programs and
program components.

• System data flow

• User Aid Design Specifications

. Hardware environment and requirements

Methods

• Summary of Steps
- Determine the approach
- Draw up test-case coverage matrix
- Define test cases
- Review test plan and test cases
- Document the System Test

. Determine the Approach

System testing is done to ensure that the system
meets its requirements at all stages in its
evolution. Therefore the levels of the system and
relevant tests must first be defined. This requires
categorization of the system testing into:

- integration levels (linking of modules)
- sub-system levels
- full system test

4.28

Clear objectives must be drawn up in advance of the
test case preparation from the Functional
Specifications, for each level of test and for each
function or process being tested. The objectives
could include: (see The Art of Software Testing,
referred to in Appendix A):

- completeness with which process is covered; both
manual as well as computer

- volume testing; subjecting the system to large
volumes

- stress testing; subjecting the system to peak
volumes over a short span of time

- usability testing; attempting to cover the human
factor side of the system

- security testing

- performance testing

- storage testing

- configuration testing

- compatibility/conversion testing; especially if
the new system replaces an older one that
interfaced with other systems

- installability testing

- reliability testing

- recovery testing

- servicability testing

- documentation testing, examples in the document-
ation should be used as in test cases

- procedures testing, any prescribed human operations
should be tested.

. Draw Up Test-Case Coverage Matrix

A table must be drawn up listing all of the
components and objectives of the system testing.
This will be used later to ensure that the test cases
will satisfy all of the requirements.

4.29

. Define Test Cases

At the system level, test data is generated from the
sub-system specification and the program specifica-
tions in the system design specifications. This is
known as black box testing since it is nôt required
that the internal working of the module be known.

Black box testing involves creating test cases based
on program specifications. Black box methods
include:

• equivalence partitioning;
• boundary value analysis;
• cause effect graphing; and
• error guessing.

Equivalence Partitioning

This method involves analyzing the general specifica-
tion of the program module and creating a list of all
decisions the logic of the program should make,
dependent upon the input data. TesTIrig—à11
combinations of data is impossible -- therefore the
technique calls for grouping the data into classes
where all elements within the class test the same
decision. These are equivalence partitions, where
the tester assumes (reservedly) that a test of one
element in the class is equivalent to a test of any
other value. Consider this example:

The specification reads:

BEE codes are 2 characters alphanumeric and must
exist on the HONEY table. Both characters being
blank is invalid.

The following pages show the breakdown of these
simple specs into equivalence classes. There must
exist test cases that exercise each valid equivalence
class and each invalid equivalence class.
The valid equivalence class:

"1st numeric 2nd blank"
contains these data elements:

0, 1, 2...9

4.30

It is only necessary to test one of these elements.

Similarly the invalid equivalence class
"both special dharacter"
contains many elements some of which are

$$, 1 , $1, -@
Again it is only necessary to check one element.

Test Cases

Field Format

Table Consideration

Valid Equivalence
Classes

both alphabetic
both numeric
1st numeric 2nd blank
1st blank 2nd numeric
1st numeric 2nd alpha
1st alpha 2nd blank
1st blank 2nd alpha
1st alpha 2nd numeric

Invalid Equivalence
Classes

three

both blank
both special character
1st special 2nd numeric
1st special 2nd alphabetic
1st numeric 2nd special
1st alphabetic 2nd special

table missing

Number of characters (one two)

table empty
entry on table 	 entry not on table

This list shows 15 equivalence classes, the item in
) will be dhecked within the field format

classes. Any element within a class is
representative of the entire class.

Boundary Value Analysis

Test cases that explore the boundary condition have a
higher payoff of finding errors than cases that do
not. Boundary conditions are those situations in the
neighbourhood of the edge of input and output equiva-
lence classes.

0 1
31

4.31

A boundary condition is a condition which causes
different processing to be executed. Some examples
of boundary conditions are:

- minimum and maximum ranges
- end page processing
- end of file processing
- file full/file empty
- duplicate key
- invalid key
- key missing
- sequence Checking
- table empty
- table missing

In this method:

- each edge of the equivalence class is the subject
of the test;

- test cases are constructed for input conditions and
output conditions.

Example of Boundary Value Analysis

The day code will be 2 digits, numeric in the range
of 01 to 31.

TEST CASES

VALID 	 INVALID

00
32

both alphabetic
1st alphabetic 2nd numeric
2nd alphabetic 1st numeric

This shows 7 test cases to be input.

Cause-Effect Graphing

- divide specifications into workable pieces;

- identify causes and effects in the specification
(cause is a distinct input condition, effect is an
output condition);

- link the causes and effects into a Boolean graph
(cause-effect graph);

- convert graph into limited entry decision table;
and

- convert decision table into test cases.

4.32

This method is complex, meticulous and time
consuming. The technique will not be described fully
here. It is to be noted that this technique can be
automated and a number of computer packages are
available for performing cause-effect graphing.

More information can be found in "The Art of Software
Testing" by G.J. Myers.

Error Guessing

The method consists of:

. listing possible errors or error prone situations
based on specifications; and

. creating test cases to expose these errors.

The test case design methods discussed in this
section must be combined to produce an overall
testing strategy. The reason for combining them is
that each contributes a set of useful test cases but
none alone provides a thorough set of test cases. A
reasonable strategy is:

- start with cause-effect graphing if the
specification contains a combination of input
conditions at the design specification level;

- use boundary analysis. Be sure to include both
input and output boundaries. This yields a set of
supplemental test conditions many or all of which
can be incorporated into the cause-effect test;

- identify valid/invalid equivalence classes for
input/output and if necessary supplement the test
cases identified above;

- add additional test cases by using error guessing;
and

- examine the program logic with regard to the test
cases. By using this "white box" testing method,
determine if the test cases cover all the logic
conditions. If all conditions are not tested, add
sufficient test cases to cause the criterion to be
satisfied.

This strategy does not guarantee that all errors will
be found. It does represent a considerable amount of
hard work, but no one has claimed that program
testing was easy.

4.33

. Review Test Plan and Test Cases

The test plan should be reviewed in walkthroughs to
identify and correct errors and omissions.

The test cases should be reviewed both internally
with the project team, and with the users for:

- completeness, all functions and requirements are
covered; the test coverage matrix should be used to
verify this; and

- validity of test cases; the user can verify that
the test cases are valid in terms of the business
procedures of the organization. Often, the user
can provide typical processes with Which the test
cases can be dhecked.

. Document the System Test

Having considered and developed a system test,
document it as a specification made up of three
components:

- test plan;
- test case specifications; and
- performance evaluation criteria.

Working Documents

Walkthrough Notes on Test Cases

Deliverables

System Test Specifications
System Test Plan
Test Case Specifications
Performance Evaluation Criteria

4.34

4.8 Design Conversion Procedures (4.8.6)

Objectives

If there are existing manual or computer systems Which
will be replaced by the system under development, then
it is necessary to design procedures for smoothly
converting to the new system. A smooth conversion is
important from the user's perspective and therefore
care must be taken during this activity to consider
when, during implementation, the conversion will take
place, how the conversion will proceed and who will be
responsible for the various components of the
conversion.

Inputs

. Functional Specifications giving the system
requirements and objectives, the inputs, outputs and
processes of each component, both computer and
manual.

. System Structure giving the sub-systems, programs and
program components.

. Existing file descriptions from existing System
Specifications.

. Component Data Flow Descriptions.

. Data Dictionary.

. Hardware Configuration Descriptions - existing and
requirements.

Methods

. Summary of Steps

- Determine conversion requirements
- Design conversion procedures
- Develop conversion strategy
- Package conversion plan

. Determine Conversion Requirements

During this step it is necessary to compare in detail
the before and after image of data stores and data
flows, and to define what is required to transform
the existing data store or data flow into the
required format.

4 . 35

For manual data stores and data flows it is necessary
to consider such things as: storage medium (e.g.,
paper vs microfiche or active vs archive) form
changes (e.g., form re-design and printing) and
retention or transmission changes. Similarly, for
computer data stores and data flows, storage medium
(e.g., disk vs tape) storage format (e.g., data
element type and size or record layout) and
transmission changes must be considered.

It may also be necessary to consider changes to
existing processes. For example, manual processes
may be modified, or replaced with new manual
processes or computer processes. The required
changes must be identified so that conversion
procedures can be designed.

. Design Conversion Procedures

Once the required conversions have been identified it
is necessary to determine how the changes are to be
effected and by whom. It may be necessary to design
computer modules to transform a computer file from
one format or medium to another. These modules
should be designed using the structured approach
given in the preceding sections of this Guide. In
other cases, it may be necessary to arrange for data
to be transformed into machine-readable form, through
hiring temporary data entry staff or contracting with
a service bureau.

If procedures will be changed to effect conversion, a
temporary training manual should be prepared. This
will be used to inform the user group of the
objectives and scope of the conversion, and to assist
the users during the actual conversion.

. Develop Conversion Strategy

Once the various conversion procedures have been
designed, it is necessary to consider when the
conversion procedures will be implemented. This
consideration of the time dimension in relation to
the user's requirements should lead to the
development of a conversion strategy. Four possible
strategies to be considered, for converting from one
system to another are:

- Parallel conversion - both systems run in parallel,
with the outputs being compared item by item until
all discrepancies are resolved.

4.36

- Pilot conversion - a stand-alone subset of the
final system or if the same system is to be
installed in a number of locations, one location,
is installed. The resources of the project team
can then be concentrated on that pilot system until
the system proves to be satisfactory.

- Phased conversion - only certain sub-systems of the
new system are installed. The basis of choice of
the sub-systems could be on time cycles (end-of-
month processing) or on functions (data capture) or
on the department's organizational lines.

- Immediate conversion - if none of the other methods
is suitable, the only alternative is to end the old
system one day and begin the new one the next.

Once having established a strategy acceptable to user
management, full system specifications covering the
conversion will be required.

Comparison of System Conversion Methods

impact of
damage if

relative user effort team effort failure
method 	costs 	required 	required 	occurs

PARALLEL High 	High 	Low 	 Low
PILOT 	Medium Low 	 Medium 	Medium
PHASED 	Medium Medium 	Medium 	Medium
IMMEDIATE Low 	Medium 	Low* 	High

* if successful, otherwise very high.

. Package Conversion Plan

The proposed conversion procedures and strategy
should be documented and added to the EDP System
Design Specifications (section 16). The conversion
plan should provide a list of activities, detailing
how conversion is to be effected, when it is to
proceed and who is responsible for each of the
activities.

Working Documents

. Conversion procedure descriptions

. Conversion strategy evaluation

Deliverables

Conversion Plan

4.37

4.9 Complete Design Phase (4.0 - 4.F)

To prepare a plan for the final phases of the project
and to package the design document for approval.

Inputs

• User Aid Design Specifications

• Program Module Specifications

• System Test Specifications - with associated test
plan, test cases and performance evaluation criteria.

Methods

• Summary of steps
- Develop plan for following phases;
- Package System Design Specifications;
- User verification;
- Departmental approval.

. Develop Plan for Following Phases

The detailed plan as prepared for the Development and
Implementation phases has taken into account the
completed systems design and testing plans. Plans
for the tools, methodologies, standards, etc., to be
used in the development phase must be prepared.
These plans will shorten the learning curve of the
development team and minimize the time required for
initial start-up.

. Package System Design Specifications

At this stage, the system design and the completed
specifications for the technical environment, plus
the development phase plan and schedule should be
taken into account to update the Cost/Benefits of the
new system. Any major Changes are to be identified.
Then, all the components of the System Specification
are to be packaged in preparation for transition to
the Development phase.

. User Verification

As the Design phase progresses each of the final
inputs, user procedures, turnaround times, and
outputs are verified and approved by appointed user
representatives. Project Management must ensure
evidence of user approval is retained and ultimately
submitted to the approval authority When obtaining
end of phase sign-off. It is not necessary to submit
specifications for the internal system architecture,
to users.

4.38

. Departmental Approval

A submission to the approval authority is required to
secure approval to proceed to the System Development
phase. It is not necessary to submit the total set
of deliverables for approval as they are at an
inappropriate level of technical detail for the
senior staff with the approval authority.

The strategy for obtaining approval for the Design
deliverables is to submit the planning aspects and
evidence that the affected parties have reviewed and
approved the Design specifications. This submission
then would contain the following components:

- Executive Summary
- Revised Cost/Benefit

DeliVerables

System Design Specification

APPENDIX A

References

A.1

REFERENCES

DeMarco, Tom. Concise Notes on Software Engineering. New York;
Yourdon, c1979.

DeMarco, Tom. Structured Analysis and System Specification.
Chapter 25.

Gane, C., Sarson, T. Structured System Analysis: Tools and
Techniques. Chapter 9.

Gildersleeve, Thomas R. Decision Tables and Their Practical
Application in Data Processing. Englewood Cliffs, N.J., Prentice-
Hall, c1970.

New York, Myers, Glenford J. The Art of Software Testing.
Toronto, J. Wiley & Sons, c1979.

Myers, Glenford J. Composite/Structured Design.
Toronto, Van Nostrand Reinhold, c1978.

New York,

APPENDIX B

Walkthroughs

B.1

WALKTHROUGH

The walkthrough/inspection concept came from IBM's programming
teams. It uses the theory that the Programmer is a part of the
complete team and that the team (not just the Programmer) is
responsible for each program. This is commonly known as egoless
programming.

The walkthrough concept is basically an extension of the desk
check process. During desk checking, the programmer examines his
code to discover errors. During a walkthrough members of the
team inspect the code in a systematic manner to find any errors.

Although the walkthrough concept was developed for inspecting
programming output, and this description is in that context, it
is equally applicable to the products of analysis, design and

 testing.

The objective of this process is to find errors in logic, in
specifications, etc. An inspection also looks for errors in
style such as readibility, efficiency, unreasonable specifica-
tions, etc. the purpose of the inspection is not to find fault
with the originator of the product being inspected but to improve
upon that product.

Also Refer to Datamation Oct. 1977.

Inspecting Software
By M.E. Fagan.

Below is an outline
project.

Design and Code

of an inspection technique used on one

Inspection team consists of:

. Chairman, who coodinates and schedules the meetings, chairs the
inspection, notes all errors, circulates the inspection report
and follows up on the rework.

. Document creator, the person who has created the document,
whether it be the program specification, design or code. It is
his responsibility to have all documents circulated to the
other members at least 24 hours before the inspection.

B.2

• Implementors, those who will be taking over responsibility for
the document (e.g., designers who will receive the specifica-
tions, programmers who will receive the program design, etc.).
There will normally be one or two people in this category.

Inspection process consists of:

• Preparation and distribution of the document to all members of
the inspection team prior to the meeting by the document
creator.

• Preparation by all of the inspection team members which
involves going over the document in some depth before the
meeting.

• Inspection of the document by the whole team in the meeting.
As the objective is to find errors, discussion continues only
until the point where an error is recognized. The aim of the
inspection is only to find errors, so often the chairman must
be firm in limiting discussion. The error is then noted by the
chairman. At the end, the team decides if the document passes
the inspection and if not, a date is set for further
inspection.

. Circulation of the inspection report by the chairman within 24
hours of the conclusion of the inspection meeting.

• Rework by the document creator to correct the errors.

. Follow-up. If the number of errors is small, than the Chairman
is responsible for verifying that all errors are redressed. If
there are a large number of errors, the inspection cycle is
repeated.

During a walkthrough of actual code, there are major areas where
problems occur. These are:

DATA REFERENCE
DATA DECLARATION
COMPUTATION
COMPARISON
CONTROL FLOW
INTERFACES
INPUT/OUT

,

