
PROGRAMMING
GUIDE

iÉ

INFORMATION SYSTEMS MANAGEMENT _

ri

Regional 	Expansion
Economic 	Économique
Expansion 	Régionale

/ e 	a ,

DEPARTMENT OF REGIONAL AND ECONOMIC EXPANSION

SYSTEMS DEVELOPMENT LIFE CYCLE METHODOLOGY

PROGRAMMING GUIDE

1

OCTOBER, 1981

INDEX

1 .

2 .

3 .

4 .

5 .

6 .

PROJECT MANAGEMENT HANDBOOK

DEL I VE RABLE S REFERENCE MANUAL

USER ' S GUIDE

ANALYS IS GUI DE

DESIGN GUIDE

PROGRAMMING GUIDE

NOTE: It is recognized that all roles referred to throughout

this document will be filled by persons of either sex.

However, to maintain readability, personel pronouns or the

male gender are used.

He should be read as he/she.

His should be read as his/hers.

Him should be read as him/her.

Page

1.1
1.2
1.3

2.1
2.2

3.1
362

SYSTEMS DEVELOPMENT LIFE CYCLE METHODOLOGY

PROGRAMMING GUIDE

TABLE OF CONTENTS

1. 	INTRODUCTION
1.1 Purpose
1.2 Objectives
1.3 Scope

2. SUMMARY OF SYSTEM DEVELOPMENT LIFE CYCLE
2.1 Overview Data Flow Diagram
2.2 Phase Summaries

3. 	ROLES IN SYSTEM DEVELOPMENT LIFE CYCLE
3.1 Major Responsibilities by Phase (Matrix)
3.2 Summary of Roles

4. 	USER ROLES
4.1 Introduction
4.2 Verify Completeness of Module Specification
4.3 Perform Detailed Design of Module
4.4 Verify Detailed Design
4.5 Code Module
4.6 Verify Code
4.7 Test Module
4.8 Verify Completeness of Module Development

4.1
4.3
4.5
4.6
4.8
4.12
4.17
4.26

APPENDIX

SECTION 1

INTRODUCTION

1.1 Purpose
1.2 Objectives
1.3 Scope

1. 1

1. 	INTRODUCTION

1.1 Purpose

This guide has been prepared for the purpose of
providing programmers and their managers with a guide
to performing programming tasks during the Development
phase of an information systems development project.

Although the underlying philisophy contained herein is
a belief that the approach to program development must
be disciplined and structured to be successful, these
guidelines are flexible to allow for programmer
initiative to develop.

Each programming activity is described in terms of its
objectives, inputs, methods, working documents and
deliverables.

1.2

1.2 Objectives

This guide suggests techniques and methods for:

• developing programs that meet the Functional
Specifications;

• developing programs that meet technical requirements,
such as performance and security criteriae

• maximizing programmer efficiency;

. ensuring that prog .rams are reliable through
comprehensive testing procedures; and

. developing programs that are maintainable.

1. 3

1.3 Scope

This guide only addresses the primary responsibilities
of a programmer. They are to design, develop, document
and test program modules. The role of a programmer
ususally involves ancillary tasks such as support
during implementation and participation in acceptance
testing. These are outside the scope of this guide
which addresses specifically methods relating to
program development.

SECTION 2

SUMMARY OF SYSTEM DEVELOPMENT LIFE CYCLE

2.1 Overview Data Flow Diagram
2.2 Phase Summaries

Project Initiation
Request

Initiation
Report Feasibility

Study

Systems Development Life Cycle

System Plan

Data
Definitions

Feasibility Report

Data
Definitions

Data Dictionary .

Data
Definitions

Analysis System
Development

Technical
Requirements Technical

Requirements

Development Tools

System And Procedures

Post-
implement-
ation
Evaluation

Procure
Technical
Facilities
(External
To ProOct)

Production
Facilities 	le

Performance
Data • Performance

Evaluation

System
Design
Specifications

Implement-
ation

Regional 	Expansion
Economic 	Économique
Expansion 	Régionale

INFORMATION SYSTEMS MANAGEMENT
GESTION DES SYSTÈMES D'INFORMATION

2.2

2.2 Phase Summaries

The preceding diagram illustrates the phases comprising
the System Development Life Cycle of most information
systems projects. It depicts how the cycle commences
with the receipt of a Project Initiation Request and
ends with the preparation of a Post-Implementation
Evaluation Report following system implementation. The
end of each phase represents a major checkpoint where
managment, external to the project, may review the
continuing viability of the project and, as
appropriate, commit only the resources needed to
complete the following phase.

Summaries of each phase are as follows:

• Project Initiation

Every project begins with the identification of an
opportunity to be exploited, a problem to be solved,
or a requirement to be satisfied. This phase starts
when a request is received (on a Project Initiation
Request form) from a user. The request is first
screened to ensure that it is proberly authorized,
that the source of development funds is identified
and that there is justification for proceeding
further. Following this, details of the request are
documented by a (Business) Systems Analyst. He/she
prepares a brief Initiation Report which documents
the issues to be addressed, objectives, scope,
benefits, timeframe, policies, constraints and
potential solution strategies.

The objective of the report is to outline for
management the initial perception of the issue, and
to recommend an action plan to study the feasibility
of various solutions.

Normally, preparation of the report takes one half of
a day or so.

• Feasibility Study

This phase involves the Analyst working together with
user management in the research and analysis of
subject related data in order to identify various
solutions. These solutions dre both manual and
automated, and are evaluated for their relevance and
costs/benefits.

2.3

The overall objectives are to select a solution (or
path), to develop a conceptual system design and to
secure further resources in order to perform a
detailed analysis of the information requirements.

The Feasibility Study is carried out at a general, or
conceptual, level. It provides management with an
early opportunity to evaluate the project's viability
before any substantial amounts of money have been
expended, and to re-evaluate it in relationship to
the user's priorities and strategies.

. Analysis

The Feasibility Study examined the issue being
addressed by the system at a general level. The
Analysis phase examines it at a very detailed level.
The precise business processes and the set of
information forming the business system is clearly
defined.

This definition establishes the basis for outlining
the system from a user perspective. For EDP systems,
this means that at the end of this phase the user
will know what information is included in the system
and what business processes will be machine assisted.

The Analysis phase involves substantial end-user
participation since it is during that phase that the
business content of the system is documented in
preparation for the design and development phases.

. System Design

Whereas the Analysis phase defined that "what" of the
system, the System Design phase defines "how".

The specifications delivered by the Analysis phase
represents the bridge between the user community, who
collectively define the business requirements for the
project, and the project designers who design a
system to address the requirements.

User participation in this phase involves reviewing
and approving more detailed aspects of the system
such as report and screen layouts, office procedures,
forms, etc.

2.4

• System Development

The objective of this phase is to develop the working
procedures and if automated, the computer programs
according to the system design specification.
Testing of the procedures and programs is also done
to ensure that all components of the system work
properly.

. Implementation

In this phase the working procedures and programs
developed are made operational. Users are trained in
preparation for the live running of the new system,
data files are converted from old media to new media
and the new system is installed. Parallel running,
when applicable, takes place.

. Post-Implementation Evaluation

This phase studies the operational performance of the
system for a pre-determined period and performs to
management its conclusions and recommendations.
Optionally, according to managements preferences, it
may also study the effectiveness and efficiency of
the development process itself.

SECTION 3

ROLES IN SYSTEM DEVELOPMENT LIFE CYCLE

3.1 Major Responsibilities by Phase
(Matrix)

3.2 Summary of Roles

PHASE

1. Initiation

2. Feasibility
Study

3. Analysis

DELIVERABLE/TASK
APPROVAL
AUTHOR=

MANAGffl11,7I1
AUDIT

USER
MANAGEMEUri STAFF

Approve Approve

Apprœe Approve

Review
Approve

Review

I APProve

IAPProve

OM MI MI 	11111 OM MI WM 	 UM OM MI MN Mal Mill MI Ili

3.1

3.1 	MAJOR RESPONSIBILTTIES BY PRASE

PRO3EC2 TEAM

4. System Design

Approve

Initiation Report

Feasibility Report
-User Requirements
.-Conceptual Solution

Requirements
Approval Authority

Submission

EDP Design
Specification

Design of User Aids
Approval Authority

Submission

Approve

Approve

Approve
Approve

Approve
Approve

Participate

Participate

Participate

Participate

Participate

PROJECT
MANAGER

Prepare

Review

Review
Prepare

Approve

Review
Prepare

SYSTEMS 	SYSTEMS
ANALYST 	DESIGNER

Prepare

Prepare 	Participate

Review 	Prepare

Prepare Participate

PROGRAMER.

Approve

5. System
Development

6. Implementation

7. Post-
Implementation
Evaluation

Program Design
Program Code
ProgranTest
System Test
Operations Manual
User Manual
Procedures Manual
Training Manual
ApIcroval Authprity

Submission

Acceptance Test
Conversion
Production Operation
Approval Authority
Semission

Evaluation Report

Participate

Participate

Participate

Approve
Approve
Approve

Approve
Approve

Approve

Participate
Update
Participate

Perform
Participate
Perfonn

Participate

Approve
Approve
Approve

Review
Prepare

Prepare

Approve

Review
Review
Prepare
Participate
Prepare
Participate
Prepare

Participate
Participate

Prepare

Participate

Perform
Prepare
Participate

Participate
Participate

Prepare
Prepare
Prepare
Participate
Participate

Participate
Participate

3.2

3.2 Summary of Roles

Approval Authority

The Approval Authority for any information systems
project may be a systems management committee, a
project steering committee, the head of ISM
(Information Systems Management) or a senior functional
manager depending upon the nature of development
project.

The Approval Authority acts on behalf of the user by
approving each of the end-of-phase submissions, by
allocating resources to each project phase, and by
maintaining control over the project's progress. These
responsibilities are exercised through periodic receipt
of documents and submissions from both the Project
Manager and the Systems Assurance Manager. Refer to
the Departmental ISM policy manual for specific
policies related to the approval process.

Business Systems Analyst

See: Systems Analyst

Data Analyst

A Data Analyst provides functional guidance and support
to the project on matters related to the logical repre-
sentation of data in project specifications. A Data
Analyst is a specialist in data and data relationships.
External to projects, he models the department in terms
of its data for the purpose of developing efficient,
cost effective data management facilities, e.g., data
bases. In order to achieve this he must develop data
models for each project application and synthesize them
into the Departmental data model.

NOTE: The Data Analyst's role may not be a full-time
staff position. The role may be filled by staff
with other responsibilities.

Inspector

An Inspector reviews project specifications in order to
assure their quality prior to release external to the
project. In this regard he examines specifications for
consistency in level of detail and style, and adherence
to standards. He also looks for incompatabilities
among related documents.

Depending upon the size of the project team and the
volume of project deliverables, the Inspector may be
one individual appointed for the duration of the
project, or he may be any member of the project team
(for example, a Systems Analyst) appointed for the
inspection of a single document.

An Inspector should not review specifications which he
developed.

3.3

Programmer

A Programmer designs, develops and tests program
modules using structured programming techniques. He
may also be required to perform duties in system
testing, acceptance testing, conversion and post-
implementation support.

Project Manager

The Project Manager has overall responsibility for
achieving the project goals through the day-to-day
conduct of the project. In this respect, he develops
operational plans and budgets, acquires the required
resources, identifies and organizes the appropriate
business and technical expertise, periodicaly submits
plans, requests for approval and progress reports to
the approval authority, coordinates with user
management and the Systems Assurance Manager user
participation in the project, conducts regular project
management progress meetings and ensures effective
quality control over project deliverables.

See Project Management Handbook for further details.

Steering Committee

See: Approval Authority

Systems Analyst

A Systems Analyst identifies, analyzes and specifies
information systems requirements using structured
analysis techniques. He may also carry out ancillary
duties involving user interface such as development of
user manuals, training, system conversion, and
acceptance testing. Systems Analysts may be members of
a user section or branch (Business Systems Analysts) or
may be drawn from ISM staff.

See Analysis Guide for further details.

Systems Assurance Manager

The Systems Assurance Manager represents the
departmental interest in a systems project and is
responsible for ensuring that all user-related matters
pertaining to quality control are addressed. Acting on
behalf of the user, the Systems Assurance Manager:

. participates with the Project Manager in planning the
commitment of user resources to the project;

3.4

• ensures that the appropriate level and quality of
user resources are available to the project (i.e.,
that sufficently senior user personnel are assigned
the key review and sign-off roles for all
user-related deliverables produced by the project
team);

• ensures that the user community's participation is
comprehensive and active;

. verifies that the Project Manager has obtained user
sign-off of all user-related deliverables (it is the
responsibility of the Project Manager to obtain each
sign-off);

. verifies that any changes to project plans which
impact the user community have been agreed and
approved by the user community;

• brings forward user concerns regarding the project to
the Steering Committee for resolution if and when
these concerns cannot be addressed through
negotiations between the Project Manager and the user
community;

. reports to the Steering Committee on user
satisfaction with the project.

Ideally, the Project Manager and the Systems Assurance
Manager should work cooperatively to support the
successful execution of the project. Situations may
arise, however, in Which the Project Manager and the
Systems Assurance Manager disagree (i.e., the Systems
Assurance Manager may request, on behalf of the users,
the expansion of the project scope, beyond the terms of
reference understood by the Project Manager). The
Project Manager and the Systems Assurance Manager are
jointly responsible for making every effort to resolve
any such disagreements to the mutual satisfaction of
the project team and the user community. Disagreements
should be brought forward to the Steering Committee
only when resolution cannot be achieved through
negotiation.

System Designer

A System Designer transforms information systems
requirements, in the form of functional specifications,
into system and sub-system design specifications using
structured design techniques. Although a System
Designer is normally the designer of the computer
internals - system transactions, screens, files, input,
output, etc. - this role may also encompass design of
user aids such as training packages and user manuals.

See Design Guide for further details.

3.5

Technical Specialist

A Technical Specialist provides functional support and
guidance to the project on matters of a technical
nature. These would include hardware studies,
telecommunications networking, technical feasibility of
design alternatives, and acquisition and use of
development tools.

He is considered "external" to any project and his
abilities are shared on an organization-wide basis.
This is to optimize the economic efficiency of using
specialized technical staff.

User

The User's role in the Systems Development Life Cycle
relates to those activities which have direct impact
on him and his area of responsibility. These include:

. definition of systems subject matter;

. planning and provision of subject matter expertise;

. delegation of authority to staff assigned to
participate in development activities;

. quality control over subject matter documented by the
project team;

. training of staff;

. preparation of administrative environment for system
installation;

. approval and acceptance of project deliverables.

In some sections or branches, user staff may also be
engaged in carrying out development roles, such as
systems analysis. These are not considered user
roles.

See the User's Guide for further details.

SECTION 4

THE METHODOLOGY
Page

4.1 Introduction 	 4.1
4.2 Verify Completeness of Module Specification 4.3
4.3 Perform Detailed Design of Module 	 4.5
4.4 Verify Detailed Design 	 4.6
4.5 Code Module 	 4.8
4.6 Verify Code 	 4.12
4.7 Test Module 	 4.17
4.8 Verify Completeness of Module Development 	4.26

4.1

4. 	THE METHODOLOGY

4.1 Introduction

A systematic, disciplined approach to programming
significantly increases the probability that programs
will be developed efficiently and exhibit desirable
characteristics. The approach described in this
document consists of the following steps:

• Verify Completeness of Module Specification
• Perform Detailed Design of Module
. Verify Completeness and Accuracy of Detailed Design
• Code Module
• Verify Completeness and Accuracy of Code
• Test Module
• Verify Completeness of Module Development.

These steps, and their related deliverables, are shown
in the data flow diagram on the preceding page.

In addition to having a detailed knowledge of this
guide, it is desirable for programmers to be familiar
with other documents, including:

• Project Management Handbook
. Analysis Guide
• Design Guide
• User's Guide
• Deliverables Reference Manual
• Functional Specifications of the System
• Phase and Project Plans
• Other Material (see Appendix A)
. Coding Guidelines (See Appendix C).

B.5 B.4
Draft
Source
Code Verify

Code
Code

Module

Software
Verify

Completeness
Of

Module
Development

Test Documentation
And Object Code

Activity 5B - Develop Software

B.1 B.2 B.3

EDP System
Design Specs. Verify

Completeness
Of Module

Specification

Module
Specification

Perform
Detailed

Design Of
Module

Detailed
Module
Spec.
	 >I

Verify
Detail

Design

‘...•■■•••••■•••••■■■•/

Detailed Module
Specification

Source Code

B.6 B.7

Regional 	Expansion
Economic 	Économique
Expansion 	Régionale

INFORMATION SYSTEMS MANAGEMENT
GESTION DES SYSTÈMES D'INFORMATION

4.3

4.2 Verif Com•leteness of Module S•ecification (5.B.1)

Objectives

. to verify that the General Module Specification is
complete

. to familiarize the programmer with the module to be
developed

. to understand the general design logic

. to request revision of the module documents, if
necessary.

Inputs

. General Module Specification

. Designer's Notes

Methods

. Summary

- Verify Specification Documents for Completeness
- Module Familiarization
- Understand Module Logic
- Request Revision of Specification Documents

Note that some or all of these steps may not be
necessary if the programmer was involved with the
design of the module (e.g., it is often desirable for
the programmer to take part in design walkthroughs).

. Verify Specification Documents

It is important for the programmer to first verify
that the specification documents are complete. This
is done by carefully reviewing the specification,
ensuring that it makes sense at a general level, and
is consistent with documentation format given in the
Deliverables Reference Manual.

Any obvious or potential problems should be resolved
immediately by consulting with the designer and,
where appropriate, following the formal change
control procedures that apply for the project.

4.4

. Module Familiarization

The programmer normally receives a General Module
Specification and Designer's Notes from the designer.
The programmer is responsible for developing a
detailed understanding of these documents, which may
involve some brief discussions with the designer.
Lengthy discussions at this point may indicate that
the specification is too general, or may indicate
that the programmer is not sufficiently familiar with
the background material listed in Section 4.1.

The Designer's Notes are used by the designer to
record informal remarks that will help the
programmer, but which will not form part of the
formal module documentation. Such remarks could
include clarification, suggested methods, references,
warnings, and so on.

. Understand Module Logic

While the module logic will have been verified from a
design point of view during the design phase, it is
important for the programmer to spend some time
understanding the logic and satisfying himself that
it is correct.

. Request Revision of Specification Documents

When the verification process is complete, any
required changes to the specification must be
authorized using the change control procedures
defined in the Project Management Handbook.

Working Documents

. References (if any given in Implementation Notes)

Deliverables

. (Verified) General Module Specification

4.5

4.3 Perform Detailed Design of Module (5.B.2)

Objectives

. To expand the detail of the General Module
Specification and the Designer's Notes in order to
prepare for and facilitate the coding step.

Input

. General Module Specification

. Designer's Notes

Methods

It is usually not advisable to code directly from the
General Module Specification. This specification is
normally written at a relatively general level of
detail and is not intended to form the structure of the
actual code. In fact, programming language or other
constraints may force the programmer to write code that
is structurally quite different from the general
specification. For this reason, a detailed module
specification is developed at a relatively high level
of detail to initiate a preliminary code structure.

Implementation Notes should be produced to take into
account the refinement of the specification. The
Detailed Module Specification and Implementation Notes
should follow the same standards and conventions that
are used for the inputs from the Design phase.

Working Documents

None

Deliverables

. Detailed Module Specification

4.6

4.4 Verify Detailed Design (5.B.3)

Objectives

• To verify that the Detailed Module Specification is
complete.

• To ensure that the detailed design is logically
correct.

. To revise the module documents, if necessary.

Inputs

• Detailed Module Specification

. Implementation Notes

Methods

• Summary of Steps

- Verify Specification Completeness
- Verify Module Logic
- Revise Documents

. Verify Specification Completeness

A careful verification that the detailed specifica-
tion addresses all requirements greatly reduces
problems in the coding and testing phases. Detailed
verification procedures will be specified for each
project.

As a minimum, the programmer will be asked to
carefully desk-check the specification. Where
appropriate, a walkthrough will be performed with one
or more additional members of the project team. A
detailed description of the procedures to use for
walkthroughs can be found in Appendix B.

• Verify Module Logic

It is important to also verify that the module's
logic is correct. This step is again done by
desk-check, or walkthrough, depending on the
situation.

4 . 7

It will usually be more efficient to perform the
completeness and logic verification steps at one
sitting or meeting, although they should still be
treated as distinct steps.

Walkthrough decisions are formally recorded.

. Revise Documents

When the verification process is complete, detailed
design specifications are modified as required.

Working Documents

. Walkthrough Records

Deliverables

. (Verified) Detailed Module Specification

. (Verified) Implementation Notes

4 . 8

4.5 Code Module (5.B.4)

Objectives

• To produce fully-documented source code for the
module

Inputs

. Detailed Module Specification

. Implementation Notes

Methods

• Summary of General Principles
- Write Clear and Simple Code
- Follow Coding Standards, Guidelines, and

Conventions
- Anticipate Testing and Debugging

. Write Clear and Simple Code

In the past, it has often been a software development
priority to minimize hardware resource usage
(processor cycles, memory, disk, etc.) through the
use of complex coding structures. This frequently
resulted in code that was difficult to understand
and, therefore, difficult to maintain and low in
reliability. However, with the cost of hardware
rapidly decreasing relative to the cost of software,
it is becoming increasingly important that programs
be reliable and maintainable. As a result,
characteristics such as clarity and simplicity are
now generally considered to be more desirable than
hardware usage considerations for most applications.

A number of techniques and rules have been identified
to help make code clear and simple, including:

. Use structured coding techniques;

• Don't write programs that modify their own code;

• Avoid complicated arithmetic expressions,
particularly Where implicit type conversion is
involved;

• Where possible and practical, avoid negative
Boolean logic;

4.9

. Avoid the use of constructs that "rename" the same
area of memory (e.g., REDEFINES in COBOL,
EQUIVALENCE in FORTRAN);

. Avoid jumping in and out of loops; and

. Format code for readability using spacing,
indentation, and other such techniques, especially
for complex statements and loops.

The inclusion of appropriate comments in the source
code is another important aspect of good coding. The
primary purpose of such comments is to facilitate the
maintenance of programs. Therefore, the comments
should be oriented towards describing what the
program does and, where necessary, why the program
does it that way. The comments should not simply
restate the code.

Comments are an integral part of the program, and
they must be included as the code is written.

Comments added during coding are more effective than
comments added after coding has been completed.

. Follow Coding Standards, Guidelines, and Conventions.

There are two reasons for using coding standards,
guidelines, and conventions:

1. For technical reasons, the use of various
constructs and techniques may be encouraged,
discouraged, restricted, or even prohibited. For
example, constructs that often cause reliability
problems (i.e. REDEFINES in COBOL) are often
prohibited or severely restricted.

2. For consistency reasons, the use of various
constructs and techniques may be standardized.
For example, a FORTRAN coding standard might
include a specific method for coding WHILE
loops.

Standards, guidelines, and conventions are developed
to help programmers produce code that is reliable,
easy to test and debug, and easy to understand. The
ISM guidelines are given in Appendix C.

4.10

AN EXAMPLE OF STRUCTURED CODE

PERFORM INITIALIZATION.
PERFORM UPDATE-MASTER
UNTIL NO-MORE-TRANSACTIONS
OR NO-MORE-MASTER-RECORDS,

IF 	NO-MORE-TRANSACTIONS
THEN PERFORM COPY-REMAINING-MASTER

UNTIL NO-MORE-MASTER-RECORDS
ELSE (NO MORE MASTER RECORDS)
SO PERFORM ADD-REST-OF-TRANSACTIONS

UNTIL NO-MORE-TRANSACTIONS.
PERFORM TERMINATION.
STOP RUN.

UPDATE MASTER.
IF TRANS-ACCTNO IS GREATER THAN MAST-ACCT-NO

THEN PERFORM WRITE-OUT-MASTER
PERFORM GET-NEXT-MASTER-RECORD

ELSE (TRANS EQUAL OR LESS THAN MAST)
IF TRANS-ACCT-NO IS EQUAL TO MAST-ACCT-NO
THEN PERFORM SET-UP-NEW-MASTER

PERFORM WRITE-OUT-MASTER
PERFORM GET-NEXT-TRANSACTION
PERFORM GET-NEXT-MASTER-RECORD

ELSE (TRANS LESS THAN MASTER)

4.11

. Anticipate Testing and Debugging

Ail programs must be thoroughly tested, and debugged.
Therefore, it is important to design, specify, and
code programs so that testing and debugging are made
easier. Normally, a number of techniques for doing
this are specified as part of the overall project
test plan. The test plan will probably include some
or all of the following techniques:

- parameter validation on subroutine entry;

- control and/or data tracing;

- error detection and processing for different
severity levels;

- techniques to allow convenient usage of debugging
utilities;

- I/0 counts by type of access; or

- transaction counts by type.

A detailed knowledge of the testing methods outlined
later in this document will help programmers become
proficient in "defensive programming" techniques such
as those listed above.

Working Documents

ISM Standard Practices Guides

Deliverables

. Detailed Module Documentation (includes Detailed
Module Specification plus other module documentation
generated during coding).

. Module Source Code

4.12

4.6 Verify Code (5.B.5)

Objectives

• to verify that the coding and detailed module
documentation are complete

• to ensure that the code is logically correct

• to ensure that the code obeys all applicable
standards, guidelines, and conventions

• to revise the code and module documents, if necessary

Inputs

• Detailed Module Documentation

• Module Source Code

Methods

• Summary of Steps

- verify code and module documentation completeness
- verify module logic
- verify adherence to standards

. Verify Code and Module Documentation Completeness

The completeness of the code and module documentation
should be verified using the desk-check or
walkthrough methods.

Records of walkthroughs are to be maintained as a
means for follow-up action.

. Verify Module Logic

The module logic should be verified in an orderly
manner. During a desk-check or walkthrough of actual
code, there are many potential sources of error that
should be checked. These can be broken down into the
following groups:

- Data Reference
- Data Declaration
- Computation
- Comparison
- Control Flow
- Interfaces
- Input/Output
- Miscellaneous

4.13

The following lists provide questions that should be
asked about each group. These questions should first
be asked by the programmer, and then by the
inspection team.

Data Reference

- Are variables initialized?

- Do subscripts exceed minimum/maximum ranges?

- Are integers used for subscripts?

- Do the record and structure attributes agree?

- Do structure definitions match across procedures?

- Are there "off-by-one" errors in indexing/sub-
scripting?

Data Declaration

- Are all variables declared?

- Are the default attributes understood/correct?

- Are arrays/strings properly initialized?

- Are correct lengths, types and storage classes
assigned?

- Is initialization correct with storage classes?

- Are there variables with similar names?

Computation

- Are the computations on numeric (arithmetic)
variables?

- Are there mixed mode computations?

- Are there computations on different length
variables?

- Is the target size less than the size of assigned
value?

4.14

- Is there intermediate result overflow/underflow?

- Is there a division by zero (or variable set/com-
puted to zero)?

- Is a variable's value outside a meaningful range?

- Are integer divisions correct?

- Is operator precedence understood (order in which
computations take place, e.g. multiply/division
before addition/subtraction)?

Comparison

- Are there inconsistent comparisons between
variables?

- Are there mixed-mode comparisons?

- Are Boolean expressions correct?

- Are comparison relationships correct?

- Is operator precedence understood (order in which
comparisons take place - AND before OR)?

- Is the computer evaluation of Boolean expressions
understood?

Control Flow

- Are multiway branches exceeded (i.e. are there more
values than branches for a GO TO DEPENDING ON)?

- Does each loop always terminate?

- Does the program terminate?

- Are any loops by-passed because of entry
conditions?

- Are possible loop fallthroughs correct?

- Are there any "off-by-one" iteration errors?

- Do the "DO/END" statements match?

- Are there any non-exhaustive decisions?

4.15

Interfaces

- Are the number and attributes transmitted to this
module received correctly?

- Are the number and attributes of parameters passed
to called modules sent correctly?

- Are there any references to parameters that are not
associated with the current point of entry?

- Are any input only arguments dhanged?

- Are global variable definitions consistent across
modules?

- Are constants passed as arguments?

Input/Output

- Are file attributes correct?

- Are open statements correct?

- Do the format specifications match I/O statements?

- Does the buffer size match the record size?

- Are any files opened before they are used?

- Are end-of-file conditions handled?

- Are I/0 errors handled?

- Is there more than one record area per file?

- Are files closed When no longer needed?

Miscellaneous

- Are there any unreferenced variables in the cross
reference listing?

- Is the attribute list as expected?

- Are there any warning/informational messages?

- Is the input checked for validity?

- Are there any missing functions?

4.16

. Verify Adherence to Standards

A team member appointed as "inspector" ensures that
the programs adhere to standards. Any deviation
detected should be amended by the program's author.

Working Documents

• Walkthrough Notes

Deliverables

• (Verified) Detailed Module Documentation

. (Verified) Module Source Code

4.17

4.7 Test Module (5.B.6)

Objectives

. To test the program to ensure that the module
operates in accordance with all applicable
specifications and requirements.

. To debug the program by finding and correcting errors
that are detected in the test step.

Inputs

. Detailed Module Documentation

. Module Source Code

Methods

. Summary of Steps

- Formulate Test Plan
- Create Test Data
- Determine Expected Results
- Run Tests
- Debug Module

. Formulate Test Plan

Before testing begins for a single module or a group
of modules, a detailed test plan must be formulated.
This plan will be simple for a single module, but may
be quite complex if a group of modules is involved.
Usually, programmers prepare test plans for their own
modules. However, on some projects, particularly
large ones, it may be desirable to have someone other
than the programmer plan and perform the testing. In
any case, the test plan should be subjected to a
walkthrough.

One key issue that must be considered when
formulating a test plan for a group of modules is
whether to use a top-down, bottom-up, or hybrid
approach. Individuals preparing test plans should be
aware of the tradeoffs involved. Readers unfamiliar
with these tradeoffs should read the sections related
to software testing in References 1, 2, and 3 of
Appendix A.

4.18

. Create Test Data

A set of test data must be created for each module.
The first action in this process is to create data to
ensure that all possible paths through the module are
tested. This document describes a method for doing
this, and consists of the following steps:

1. prepare a "logic path diagram".

2. use the logic path diagram to prepare a "case
diagram".

3. use the case diagram to prepare the actual test
data.

This method is a straightforward way (in a structured
environment) to ensure that all paths in a module are
tested. While additional test cases are needed to
fully test the module, this method is a convenient
way to handle a significant amount of test case
creation.

A sample problem will be used to show how the test
data creation method works. Assume that the
following program is to be tested:

TRIANGLE PROBLEM. The program reads three
integer values that represent the lengths of the
sides of a triangle. The program then prints a
message that states whether the triangle is
scalene, isosceles, or equilateal. The program
should also detect the error condition that
occurs when a triangle cannot exist with the
input side lengths.

The (simplified) pseudocode for this program might
be:

TRIANGLE-PROBLEM:
READ VALUES A, B, AND C
SORT VALUES A, B, AND C (ASCENDING)

TO GIVE AA, BB, AND CC
IF AA + BB CC
: IF AA = BB = CC

PRINT "EQUILATERAL TRIANGLE"
: ELSE

IF AA = BB
: PRINT "ISOSCELES TRIANGLE"

: : ELSE
: : : PRINT "SCALENE TRIANGLE"
: : ENDIF
: ENDIF
ELSE
: PRINT "TRIANGLE IMPOSSIBLE"
ENDIF

4.19

(Note that this algorithm has a bug in it; it will
not properly detect certain kinds of isosceles
triangles. This bug emphasizes the fact that the
test data created using this method must be supple-
mented with test cases designed to detect logic
errors).

The first step is to prepare a logic path diagram.
These diagrams are similar to flowcharts, except that
only branches are represented. Code that does not
result in a branch is ignored or grouped together.
If the logic path diagram is very complex and
difficult to understand, it is likely that the module
itself is too complex and ehould be split into two or
more new modules. The logic path diagram for the
Triangle Problems is shown in Figure 4.7.A.

The second step is to prepare a case diagram, which
is used to determine all the paths that can be taken
within the module. The case diagram is prepared by
examining the logic path diagram and producing a
decision tree, Where the decision nodes correspond to
the decision points in the logic path diagram. Each
terminal node in this tree represents a path within
the module. The case diagram for the Triangle
Problem is shown in figure 4.7.B. The result of
taking a particular path must be a distinguishable
action, such as writing a record or printing a line.
If such a distinguishable action does not exist for a
path, then temporary code must be inserted to supply
an action (e.g. print a message).

The third and final step is to prepare the actual
test data. Each terminal node in the case diagram
tree results in a test case. The actual test data
for the test case is constructed by following the
path from the terminal node back to the rest of the
tree; the test data must be consistent with all of
the conditions on the branch of this path.

Logic Path Diagram For Triangle Problem
Figure 4.7.A

Regional 	Expansion
Economic 	Èconomique
Expansion 	Régionale

INFORMATION SYSTEMS MANAGEMENT
GESTION DES SYSTÈMES D'INFORMATION

AA + BB - CC AA + BB > CC

AA = BB = CC 	 NOT (AA = BB = CC)

AA = BB 	 AA 4 BB

Isosceles 	 Scalene

(Path 3) 	 (Path 4)

Triangle 	 Equilateral
Impossible
(Path 1) 	 (Path 2)

Case Diagram For Triangle Problem
Figure 4.7.B

Regional 	Expansion
Economic 	Économique
Expansion 	Régionale

INFORMATION SYSTEMS MANAGEMENT
GESTION DES SYSTÈMES D'INFORMATION

PATHS AA I BB I CC

2 4 1

2 2 2

3 2 2

2 4 3

4.22

The following table shows sample test cases developed
from the tree shown in Figure 4.7.8.

TEST CASE VALUES

PATH 1 (Triangle Impossible)
AA + BB < CC

PATH 2 (Equilateral)
AA = BB = CC
AA + BB)>CC

PATH 3 (Isosceles)
AA = BB
NOT (AA = BB = CC)
AA + BB>CC

PATH 4 (Scalene)
AA = BB
NOT (AA = BB = CC)
AA + BB>CC

4.23

In addition to the test data derived from the case
diagram, it is important to introduce test data
related to such things as "extreme conditions". Some
examples of common extreme conditions are:

- zero or negative values;
- zero or one transactions;
- empty files;
- missing files (file name not resolved);
- multiple updates of one Master;
- full, empty or missing tables;
- window headings;
- table entries missing;
- subscripts out of bounds;
- sequence error; or
- no remaining file space left.

Program reliability problems associated with extreme
conditions are very common and often costly to detect
and correct.

. Determine Expected Results

For each test case, the expected result(s) of that
case should be recorded.

. Run Tests

Once the test data is prepared, the actual running of
the tests should be a relatively straightforward
procedure. For some projects, a standard test driver
will be available for running the tests. This may be
a generalized driver that provides sophisticated and
very convenient test facilities, or it may simply be
a "skeleton" program that must be edited to produce a
customized driver program. In some cases, a special
driver program must be developed, while sometimes the
data must be entered manually (e.g. on-line). In any
case, full test documentation should be maintained
for each module. This documentation will consist of
the driver program (or equivalent), the test data,
and the test results. The exact nature of this
documentation will depend on the project environment
and will be defined in detail early in the project.

4.24

. Debug Module

If errors are detected during the test runs, then the
errors must be investigated and corrected. There are
many approaches and techniques that can be used to
attempt to optimize debugging. Some of these may be
standardized for a project (e.g. dynamic subroutine
entry/exit trace) and therefore will be mandatory for
that project. Others will be selected by the tester
depending on circumstances.

Readers should be familiar with the debugging
concepts and techniques found in References 2 and 3
of Appendix A. These techniques can be summarized as
follows:

1. Write small modules. It has been found that the
number and subtelty of bugs increases
exponentially with the number of instructions in
the module. By keeping modules small, it is
easier to find the bugs.

2. Try to determine the nature of the error. It may
be possible to isolate the general cause of the
error, (e.g., hardware, compiler, operating
system, application program) before narrowing the
search.

3. See if the bug is repeatable, otherwise the bug
may not be under the control of the programmer
and attention should be focused elsewhere.

4. Keep records of past mistakes. When a new bug is
found, a search through these records may show a
similar bug that occured before and the method
used to correct it.

5. Be thorough, methodical and logical in the
search.

6. Don't jump to conclusions. Try to explicitly
identify the possible causes of the error and
concentrate first on the cause that seems most
probable. Continually update the list of
possible errors and their probabilities as more
information is obtained.

4.25

7. Don't take anything for granted. The cause of
the error may not be in the module under
investigation, it could be in other modules that
link to this, in the software, and even
occasionally in the hardware.

8. Use test cases to confirm or reject suspicions.
The time and effort used to run a small test will
give far better quantifiable results than just
speculation (see points 6 and 7 above).

9. Seek help from colleagues. After working on the
problem for a reasonable time without any
success, the programmer should obtain a second
opinion. Because the programmer is so deeply
involved with the details, he might be missing an
obvious fact.

Working Documents

None

Deliverables

• Detailed Module Documentation

• (Tested) Module Source Code

• (Tested) Module Object Code

• Test Documentation
- Module Test Plan, including inspection notes
- Test Data Creation (logic path diagram, case

diagram, test data, expected results)
- Test Results (actual results, debugging notes)

4.26

4.8 Verify Completeness of Module Development (5.B.7)

Objectives

. To ensure that module development is complete.

. To initiate the "release" of the module into more
widespread circulation (e.g. system testing).

Inputs

. Detailed Module Documentation

. Module Source Code

. Module Object Code

. Test Documentation

. Working Documents (from previous steps)

. Historical Documents (from previous steps)

Methods

. Verify Completeness of Module Development

For each project, the module completion procedures
will be defined as part of project policy, and a
"completion checklist" will be prepared. The
programmer should review the dhecklist to confirm
that all required documents exist and are filled
properly. The documents to be filled normally
include working documents and historical documents as
well as deliverables.

. Initiate Module Release

All projects will have a formal procedure for
releasing a module. It may for example, involve
integrating the module into a higher-level program or
placing the module in a library. In any case, this
step must be initiated by the programmer.

Working Documents

. Completion Checklist

Deliverables

. (Verified)

. (Verified)

. (Verified)

. (Verified)

. (Verified)

. (Verified)

Detailed Module Documentation
Module Source Code
Module Object Code
Test Documentation
Working Documents
Historical Documents

APPENDIX A

References

A. 1

REFERENCES

1. Software Reliability by Glenford J. Myers
360 pages
This book was written to describe solutions to the problems
of unreliable software. Every aspect of software production
is examined. Highly recommended for all programmers and
designers.

2. Techniques of Program Structure and Design by Edward Yourdon
An easy-to."read book on program design philosophies and
methods. Coverage includes dhapters on the dharacteristics
of a "good" computer program, top-down program design,
modular programming, structured programming, programming
style -- simplicity and clarity, anti-bugging, program
testing methods, debugging concepts and techniques, and four
major example problems.

3. The Art of Software Testing by Glenford J. Myers
177 pages
The book provides practical, rather than theoretical,
discussion of the purpose and nature of software testing.
It is highly recommended.

4. Structured Systems Analysis, Tools and Techniques by C. Gane
and T. Sarson
373 pages
The book describes techniques for the analysis and
definition of a new system using such tools as logical data
flow diagrams, data dictionaries and other structured design
techniques.

5. Composite/Structured Design by Glenford J. Myers
This book presents a program design methodology with the
goal of producing programs of higher reliability and
extensibility.

6. A Simplified Guide to Structured COBOL Programming by Daniel
D. McCracken and Brian Randall
389 pages

7. High Level COBOL Provramming by Gerald M. Weinberg
Stephen E. Wright, Richard Kauffman and Martin A. Goetz
252 pages

A.2

REFERENCES

8. Structured Programming in COBOL edited by H.P. Stevenson
Papers from an ACM symposium that cover the implementation
of strucuted programming in COBOL.

9. The Structured Programming Cookbook by Paul Noll
220 pages
This book is written to improve the productivity of the
experienced COBOL programmer.

APPENDIX B

Walkthrough

B.1

WALKTHROUGH

The walkthrough/inspection concept came from IBM's programming
teams. It uses the theory that the Programmer is a part of the
complete team and that the team (not just the Programmer) is
responsible for each program. This is commonly known as egoless
programming.

The walkthrough concept is basically an extension of the desk
check process. During desk dhecking, the programmer examines his
code to discover errors. During a walkthrough members of the
team inspect the code in a systematic manner to find any errors.

Although the walkthrough concept was developed for inspecting
programming output, and this description is in that context, it
is equally applicable to the products of analysis, design anà--
testing.

The objective of this process is to find errors in logic, in
specifications, etc. An inspection also looks for errors in
style such as readibility, efficiency, unreasonable specifica-
tions, etc. the purpose of the inspection is not to find fault
with the originator of the product being inspected but to improve
upon that product.

Also Refer to Datamation Oct. 1977.

Inspecting Software
By M.E. Fagan.

Below is an outline
project.

Design and Code

of an inspection technique used on one

Inspection team consists of:

. Chairman, who coordinates and schedules the meetings, chairs
the inspection, notes all errors, circulates the inspection
report and follows up on the rework.

. Document creator, the person who has created the document,
whether it be the program specification, design or code. It is
his responsibility to have all documents circulated to the
other members at least 24 hours before the inspection.

B.2

. Implementors, those who will be taking over responsibility for
the document (e.g., designers who will receive the specifica-
tions, programmers who will receive the program design, etc.).
There will normally be one or two people in this category.

Inspection process consists of:

. Preparation and distribution of the document to all members of
the inspection team prior to the meeting by the document
creator.

. Preparation by all of the inspection team members which
involves going over the document in some depth before the
meeting.

. Inspection of the document by the whole team in the meeting.
As the objective is to find errors, discussion continues only
until the point where an error is recognized. The aim of the
inspection is only to find errors, so often the Chairman must
be firm in limiting discussion. The error is then noted by the
chairman. At the end, the team decides if the document passes
the inspection and if not, a date is set for further
inspection.

. Circulation of the inspection report by the Chairman within 24
hours of the conclusion of the inspection meeting.

. Rework by the document creator to correct the errors.

. Follow-up. If the number of errors is small, than the Chairman
is responsible for verifying that all errors are redressed. If
there are a large number of errors, the inspection cycle is
repeated.

During a walkthrough of actual code, there are major areas where
problems occur. These are:

DATA REFERENCE
DATA DECLARATION
COMPUTATION
COMPARISON
CONTROL FLOW
INTERFACES
INPUT/OUT

1
1
I
I
1
I
I
I
I
I
I
I
I
I
I
I
1
I
I

