Targeted sampling of *Toxolasma parvum* (Lilliput) in southwestern Ontario, 2022

Mandy P. Gibson, Kelly A. McNichols-O'Rourke, and Todd J. Morris

Fisheries and Oceans Canada Great Lakes Laboratory for Fisheries and Aquatic Sciences 867 Lakeshore Rd., P.O. Box 5050 Burlington, ON L7S 1A1

2023

Canadian Data Report of Fisheries and Aquatic Sciences 1369

Canadian Data Report of Fisheries and Aquatic Sciences

Data reports provide a medium for filing and archiving data compilations where little or no analysis is included. Such compilations commonly will have been prepared in support of other journal publications or reports. The subject matter of the series reflects the broad interests and policies of Fisheries and Oceans Canada, namely, fisheries management, technology and development, ocean sciences, and aquatic environments relevant to Canada.

The correct citation appears above the abstract of each report. Each report is abstracted in the data base *Aquatic Sciences and Fisheries Abstracts*.

Data reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page.

Numbers 1-25 in this series were issued as Fisheries and Marine Service Data Records. Numbers 26-160 were issued as Department of Fisheries and Environment, Fisheries and Marine Service Data Reports. The current series name was changed with report number 161.

Rapport statistique canadien des sciences halieutiques et aquatiques

Les rapports statistiques servent de base à la compilation des données de classement et d'archives pour lesquelles il y a peu ou point d'analyse. Cette compilation aura d'ordinaire été préparée pour appuyer d'autres publications ou rapports. Les sujets des rapports statistiques reflètent la vaste gamme des intérêts et politiques de Pêches et Océans Canada, notamment la gestion des pêches, la technologie et le développement, les sciences océaniques et l'environnement aquatique, au Canada.

Le titre exact figure au haut du résumé de chaque rapport. Les rapports à l'industrie sont résumés dans la base de données *Résumés des sciences aquatiques et halieutiques*.

Les rapports statistiques sont produits à l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement d'origine dont le nom figure sur la couverture et la page du titre.

Les numéros 1 à 25 de cette série ont été publiés à titre de Records statistiques, Service des pêches et de la mer. Les numéros 26-160 ont été publiés à titre de Rapports statistiques du Service des pêches et de la mer, ministère des Pêches et de l'Environnement. Le nom de la série a été modifié à partir du numéro 161.

Canadian Data Report of Fisheries and Aquatic Sciences 1369

2023

Targeted sampling of Toxolasma parvum (Lilliput) in southwestern Ontario, 2022

by

Mandy P. Gibson, Kelly A. McNichols-O'Rourke, and Todd J. Morris

Ontario and Prairie Region Fisheries and Oceans Canada Great Lakes Laboratory for Fisheries and Aquatic Sciences 867 Lakeshore Road Burlington, ON L7S 1A1

© His Majesty the King in Right of Canada, as represented by the Minister of the Department of Fisheries and Oceans, 2023

Cat. No. Fs97-13/1369E-PDF, ISBN 978-0-660-47796-1, ISSN 1488-5395

Correct citation for this publication:

Gibson, M.P., McNichols-O'Rourke, K.A., and Morris, T.J. 2023. Targeted sampling of *Toxolasma parvum* (Lilliput) in southwestern Ontario, 2022. Can. Data Rep. Fish. Aquat. Sci. 1369: vi + 29 p.

ABSTRACT	v
RÉSUMÉ	vi
INTRODUCTION	1
METHODS	2
SITE SELECTION	2
FRESHWATER MUSSEL SAMPLING	2
ENVIRONMENTAL DATA COLLECTION	2
DATA VISUALIZATION	3
RESULTS	3
LAKE ST. CLAIR WATERSHED	
LAKE ERIE WATERSHED	4
LAKE ONTARIO WATERSHED	4
ACKNOWLEDGEMENTS	5
REFERENCES	6

TABLE OF CONTENTS

LIST OF TABLES

Table 1. Site locations and sample dates for sites sampled in the Lake St. Clair, Lake
Erie, and Lake Ontario watersheds in 20229
Table 2. Location and dates for sites scouted but not sampled due to insufficient access
or unsuitable habitat in the Lake St. Clair, Lake Erie, and Lake Ontario watersheds in
2022
Table 3. Species detected at sites in the Lake St. Clair watershed. Total abundance,
Toxolasma parvum (Lilliput) Relative Abundance, live species richness, and dominant
species at each site11
Table 4. Species detected at sites in the Lake Erie watershed. Total abundance, live
species richness, and dominant species at each site
Table 5. Counts and sizes of live Toxolasma parvum (Lilliput) and counts of shells of
varying conditions found during freshwater mussel surveys in the Lake St. Clair
watershed at sites where <i>T. parvum</i> was detected
Table 6. Environmental data collected at each site in the Lake St. Clair watershed 17
Table 7. Environmental data collected at each site in the Lake Erie watershed
Table 8. Environmental data collected at each site in the Lake Ontario watershed 23

LIST OF FIGURES

4
5
6
7
8
9

ABSTRACT

Gibson, M.P., McNichols-O'Rourke, K.A., and Morris, T.J. 2023. Targeted sampling of *Toxolasma parvum* (Lilliput) in southwestern Ontario, 2022. Can. Data Rep. Fish. Aquat. Sci. 1369: vi + 29 p.

Toxolasma parvum (Lilliput) is currently listed as Endangered under the federal *Species at Risk Act* (SARA). At the time of its previous assessment by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC), only 39 live collections of *T. parvum* had ever been found in Canada. We hypothesized that the low detection of *T. parvum* may be the result of a failure to target preferred habitat types of this species in Canada. In 2022, Fisheries and Oceans Canada (DFO) initiated a sampling program to target Lilliput preferred habitats by sampling 28 sites in the Lake St. Clair watershed, 5 sites in the Lake Erie watershed, and 2 sites in the Lake Ontario watershed. A semi-quantitative timed-search survey was conducted at each site by a three- to five-person team for a 4.5 person-hour effort. In the Lake St. Clair watershed, 55 live *T. parvum* were detected, with presence at 50% of sites sampled and at 83.3% of waterbodies. *Toxolasma parvum* was not found live or as shells at any sites surveyed in the Lake Erie watershed or Lake Ontario watershed. These data provide updated information for the assessment of *T. parvum* by COSEWIC.

RÉSUMÉ

Gibson, M.P., McNichols-O'Rourke, K.A., and Morris, T.J. 2023. Targeted sampling of *Toxolasma parvum* (Lilliput) in southwestern Ontario, 2022. Can. Data Rep. Fish. Aquat. Sci. 1369: vi + 29 p.

Le toxolasme nain (*Toxolasma parvum*) est actuellement inscrit sur la liste des espèces en voie de disparition de la Loi sur les espèces en péril (LEP). Au moment de sa précédente évaluation par le Comité sur la situation des espèces en péril au Canada (COSEPAC), seulement 39 individus vivants de T. parvum avaient été observés au Canada. Nous avons émis l'hypothèse que la faible détection de *T. parvum* pourrait être le résultat d'un mauvais ciblage des types d'habitats privilégiés de cette espèce au Canada. En 2022, Pêches et Océans Canada (MPO) a lancé un programme d'échantillonnage dans le but de cibler les habitats privilégiés du toxolasme nain et a échantillonné 28 sites dans le bassin hydrographique du lac Sainte-Claire, 5 sites dans le bassin hydrographique du lac Érié et 2 sites dans le bassin hydrographique du lac Ontario. Une équipe de trois à cinq personnes a réalisé un relevé semi-quantitatif à intervalles réguliers sur chaque site, pour un effort de 4,5 heures-personnes. Dans le bassin hydrographique du lac Sainte-Claire, on a détecté 55 T. Parvum vivants, et on a observé une présence dans 50 % des sites échantillonnés et dans 83,3 % des plans d'eau. Aucun toxolasme nain vivant ou sous forme de coquille n'a été trouvé dans les sites ayant fait l'objet d'un relevé dans les bassins hydrographiques des lacs Érié et Ontario. Ces données fournissent des renseignements à jour pour l'évaluation de T. Parvum par le COSEPAC.

INTRODUCTION

Freshwater mussels are one of the most endangered taxa globally (Haag 2012). It is estimated that 33% of the Unionidae are threatened under the International Union for Conservation of Nature (IUCN) criteria (Böhm et al. 2021). In Canada, 38% of the 55 native freshwater mussel species have been assessed as at-risk by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) (Government of Canada 2021). The major threats contributing to their decline include habitat degradation by pollution, siltation, channelization, and impoundment as well as the invasion of species such as dreissenid mussels (Dreissena polymorpha, Zebra Mussel; D. rostriformis bugensis, Quagga Mussel) and Neogobius melanostomus (Round Goby) (Williams et al. 1992; Ricciardi et al. 1998; Lopes-Lima et al. 2018; Clark et al. 2022). Freshwater mussels play a crucial ecological role in aquatic ecosystems as ecosystem engineers (Haag 2012). They filter large volumes of water, promote nutrient cycling between pelagic and benthic foodwebs, and provide habitat for other organisms (Haag 2012). While many species share broad habitat tolerances and occupy dense species-rich aggregations, some species have specialized habitat preferences that produce unique and sometimes isolated distributions (Haag 2012). Accurately assessing and monitoring these species requires targeted sampling in these specialized habitats as they can go undetected during most general mussel surveys (Ortmann 1919; Metcalfe-Smith et al. 2007).

Toxolasma parvum (Lilliput) was assessed as Endangered by COSEWIC in 2013 based on 35 records representing 40 live individuals (COSEWIC 2013). It was listed as such on Schedule 1 of Species at Risk Act (SARA) in 2019 (Government of Canada 2021). Toxolasma parvum is a short-lived (Haag 2012), relatively small freshwater mussel; adults usually reach 25 mm in length and the maximum length in Canada is 54.8 mm (Fisheries and Oceans Canada, unpublished data). The species' habitat is known to be waterbodies with little current such as larger rivers, wetlands, and backwaters (Metcalfe-Smith et al. 2005) and it generally occurs in softer substrates such as muck, detritus, sand, silt, and clay (Metcalfe-Smith et al. 2005; COSEWIC 2013). These habitat types have been undersampled in Canada; thus, some populations may have gone undetected (Fisheries and Oceans Canada 2022). For this reason, targeted surveys were considered necessary to accurately define the Canadian range and distribution of T. parvum. Data outlined in this report aim to address two recovery measures identified in the Recovery Strategy and Action Plan for *T. parvum* by confirming the persistence of currently known populations and discovering new populations (Fisheries and Oceans Canada 2022). These data will provide updated information for COSEWIC to assess the status of *T. parvum* in Canada (Fisheries and Oceans Canada 2022).

METHODS

SITE SELECTION

Sites were selected based on the presence of live *T. parvum* or shells during previous surveys or based on the presence of the preferred habitat type of the species. In 2010, *T. parvum* was found live in the Belle and Ruscom rivers and Baptiste Creek (McNichols et al. 2012); therefore, these sites were revisited to determine the distribution within these systems. In addition, creeks and rivers found along the south shore of Lake St. Clair, north shore of Lake Erie, and in Spencer Creek (Lake Ontario drainage) were also explored. These included waterbodies where surveys had not been previously conducted but were within close proximity to other sites or waterbodies with *T. parvum* present. Sites were sampled based on accessibility, the presence of preferred habitat, and to ensure a representative distribution of sites within individual tributaries and throughout the greater watershed.

FRESHWATER MUSSEL SAMPLING

A semi-quantitative timed-search survey was conducted by a three- to fiveperson crew for a total of 4.5 person-hours at each site (Metcalfe-Smith et al. 2000). Crew members used long-handled mussel scoops (7 mm mesh) or tactile searching based on the depth of a site. Live individuals and shells of all mussel species found during the search time were collected in dive bags and processed at the end of the sampling period. All live mussels were identified to species, measured (maximum length in millimeters) using calipers, and sexed (if sexually dimorphic) before being returned to the waterbody. Individual *T. parvum* were classified as either adult or juvenile based on the measured shell length. Following the methods of Haag (2012) and using a length-atage dataset collected for *T. parvum* from Hamilton Harbour (Fisheries and Oceans Canada, unpublished data), individuals less than 15 mm in maximum length were considered juveniles.

In addition, shells of species not found live at the site were identified to species, enumerated, and shell condition was recorded (whole shell or valve, fresh or weathered). Partial valves or shell fragments were recorded as weathered valves and were identified to species when possible. All shells of *T. parvum* were kept as vouchers. Digital vouchers were taken of each species found following Morris et al. (2022).

ENVIRONMENTAL DATA COLLECTION

At each site, before conducting the timed-search survey, air temperature and wind speed were recorded using a Kestrel 2000 Pocket Wind Meter, water velocity was measured using an OTT MF Pro flow meter, water clarity was assessed using a 0.60 m turbidity tube, and water temperature and chemistry were measured using an EXO2 Multiparameter YSI. After the timed-search, substrate composition was qualitatively assessed and recorded as percentages of the total substrate at the site. Substrate sizes were modified from Stanfield (2010) and defined as: bedrock, boulder (>250 mm in diameter), cobble (65–250 mm), gravel (2–65 mm), sand (grainy, 0.06–2 mm), silt

(floury, <0.06mm), clay, muck (soft substrate), and detritus (plant matter). In addition, stream morphology was assessed and recorded as percentages; these include riffle, run, and pool, defined in Fuller (2018), and flat (shallow to moderately deep, low water velocity, no turbulence). Dimensions of the river were measured using a Nikon Laser 1200S waterproof laser range finder and included length of river reach searched and the minimum, maximum, and average river width at the site. The minimum and maximum depth searched was measured using a metre stick.

DATA VISUALIZATION

Figures and maps were created in R (R Core Team 2022; RStudio Team 2022) using the ggplot2 package (Wickham 2016). Additional packages used for creating maps were cowplot (Wilke 2020), ggrepel (Slowikowski 2023), ggspatial (Dunnington 2022), maptiles (Giraud 2022), sf (Pebesma 2018), terra (Hijmans 2022), and tidyterra (Hernangomez 2022).

RESULTS

Freshwater mussel surveys were conducted from June to August 2022 at 35 sites across all watersheds sampled (Table 1). An additional 12 sites were scouted but not sampled (Table 2). A total of 317 mussels were observed representing 11 species, including two species at risk (SAR): *T. parvum* and *Quadrula quadrula* (Mapleleaf) (Table 3; Table 4).

LAKE ST. CLAIR WATERSHED

In the Lake St. Clair watershed, a total of 300 mussels were observed representing 11 species, including two SAR at 28 sites (Table 3). Fifty-five live *T. parvum* were found at 14 of 28 sites (50%) surveyed (Figure 1, Table 5). Shells and/or partial shells were collected from five additional sites resulting in *T. parvum* detections at 19 of 28 sites (68%) (Table 5). Thus, *T. parvum* was found live at 10 of the 12 (83.3%) waterbodies sampled in this region and was detected at 11 of the 12 (91.7%) waterbodies sampled. The average length was 16.83 ± 1.28 mm and ranged from 6.6-38.2 mm (Figure 2; Table 5). Thirty-two individuals were considered juveniles, with 22 of these individuals found at one site, LSC-MSO-01, in an inlet off of Moison Creek. This site also had the highest number of *T. parvum* (24 individuals) found throughout the surveys; all other sites where *T. parvum* was found live yielded 1 to 4 individuals (Table 5). *Toxolasma parvum* represented the most abundant mussel species at 5 of 14 (35.7%) sites where it was found live (Table 3) with a median (± standard error) of 3 ± 1.6 live individuals/site. This yields a mean site catch per unit effort (CPUE; ± standard error) of 0.44 ± 0.19 mussels/hour for this watershed.

Throughout the surveys, six other species were found at the same sites as *T. parvum* (Table 3). The most common species found at sites where *T. parvum* was found live were *Utterbackia imbecillis* (Paper Pondshell) and *Pyganodon grandis* (Giant Floater). Interestingly, *U. imbecillis* was the most abundant at 7 of 14 (50%) sites where

T. parvum was found live whereas *P. grandis* was the most abundant species at just 1 of 14 sites (0.07%) where *T. parvum* was found live.

Quadrula quadrula, a species of Special Concern (Government of Canada 2021), was found at 6 of 28 (21.4%) sites and in 5 of 12 (41.7%) waterbodies. Thirty-five live individuals were found across all sites. The species was dominant at 2 of 28 (0.07%) sites. *Toxolasma parvum* and *Q. quadrula* were found live together at 3 of 28 (10.7%) sites.

Stream morphology (Figure 3) and substrate (Figure 4) differed between sites where *T. parvum* was detected (live or as shells) and not detected. Sites with *T. parvum* detection were comprised of averages (± standard error) of $49 \pm 11.26\%$ flat and $33 \pm 10.84\%$ pool habitat, whereas sites without *T. parvum* contained an average of $54 \pm 12.21\%$ run habitat (Figure 3). Substrate at sites with *T. parvum* detection had a mean of $49 \pm 5.24\%$ muck and $21 \pm 3.33\%$ detritus and sites without contained mean substrate compositions of $30 \pm 7.00\%$ muck, $22 \pm 7.13\%$ clay, and $19 \pm 6.51\%$ sand (Figure 4). Relevant habitat data can be found in Table 6.

LAKE ERIE WATERSHED

Five sites in five different waterbodies were sampled in the Lake Erie watershed (Figure 5). A total of 17 mussels representing three species were found including one SAR (Table 4). No evidence of *T. parvum* was found. The most abundant species was *P. grandis*; 14 individuals were found at 2 sites. *Quadrula quadrula* was found at one site on Sandusk Creek, LER-SDK-01. Relevant habitat data can be found in Table 7.

LAKE ONTARIO WATERSHED

No mussels were found at either of the two sites sampled (Figure 6) in Spencer Creek in the Lake Ontario watershed; however, *T. parvum* is known to occur in the area (Richer and Theijsemeijer 2017; Wright et al. 2020; Lower Great Lakes Unionid Database 2022). The only evidence of mussel presence was a single, weathered, unidentifiable shell fragment at one of the sites. Relevant habitat data can be found in Table 8.

ACKNOWLEDGEMENTS

The authors would like to extend special thanks to the Royal Botanical Gardens, Essex Region Conservation Authority, the Municipality of Lakeshore, Haldimand County, and many landowners for granting DFO access to the waterbodies sampled for this project. The authors also thank Laura Dutheil, Emma MacLennan-Nobrega, Emma Vokey, and Jessica Epp-Martindale for their field assistance. Thank you to Mariam Elmarsafy and Adam Van Der Lee for providing support and guidance in map creation. Thank you to Amy Boyko and Katie Stammler for reviewing this data report. Funding for this project was provided by Fisheries and Oceans Canada's Species at Risk program.

The work undertaken and reported here occurred on the traditional territories of Indigenous peoples that have lived in concert with the natural environment since time immemorial. In particular the authors would like to recognize the traditional territories of Walpole Island First Nation, Caldwell First Nation, Moravian of the Thames First Nation, Munsee-Delaware Nation, Oneida Nation of the Thames, Six Nations of the Grand River, Métis Nation of Ontario, and Mississaugas of the Credit First Nation who live along the shores of Lake St. Clair, Lake Erie, and Lake Ontario where sampling for *T. parvum* occurred. The authors recognize the importance of the lands, water, and terrestrial and aquatic wildlife for these groups.

REFERENCES

- Böhm, M., Dewhurst-Richman, N.I., Seddon, M., Ledger, S.E., Albrecht, C., Allen, D., Bogan, A.E., Cordeiro, J., Cummings, K.S., Cuttelod, A., and Darrigran, G. 2021. The conservation status of the world's freshwater molluscs. Hydrobiologia 848(12): 3231–3254. doi:10.1007/s10750-020-04385-w.
- Clark, K.H., Iwanowicz, D.D., Iwanowicz, L.R., Mueller, S.J., Wisor, J.M., Bradshaw-Wilson, C., Schill, W.B., Stauffer, J.R., and Boyer, E.W. 2022. Freshwater unionid mussels threatened by predation of Round Goby (*Neogobius melanostomus*). Scientific Reports **12**(1): 1–11. doi:<u>10.1038/s41598-022-16385-y</u>.
- COSEWIC (Committee on the Status of Endangered Wildlife in Canada). 2013. COSEWIC assessment and status report on the Lilliput *Toxolasma parvum* in Canada. Committee on the Status of Endangered Wildlife in Canada, Ottawa. ix + 57 p. Available from <u>https://wildlife-species.canada.ca/species-risk-</u> registry/virtual sara/files/cosewic/sr toxolasme nain lilliput 1213 e.pdf [accessed October 2022].
- Dunnington, D. 2022. ggspatial: spatial data framework for ggplot2. R package version 1.1.7. Available from https://CRAN.R-project.org/package=ggspatial [accessed December 2022].
- Fisheries and Oceans Canada. 2022. Recovery Strategy and Action Plan for Lilliput (*Toxolasma parvum*) in Canada. *Species at Risk Act* Recovery Strategy Series. Fisheries and Oceans Canada, Ottawa. vi + 61 p.
- Fuller, J.E. 2018. Defining ordinary and natural conditions for state navigability determinations. Arizona Geological Survey Contributed Report CR-18-B 135 p.
- Giraud, T. 2022. maptiles: download and display map tiles. R package version 0.4.0. Available from <u>https://CRAN.R-project.org/package=maptiles</u> [accessed December 2022].
- Government of Canada. 2021. Species at Risk Public Registry. Available from <u>https://wildlife-species.canada.ca/species-risk-registry/sar/index/default_e.cfm</u> [accessed November 2022].
- Haag, W.R. 2012. North American freshwater mussels. Cambridge University Press, New York, New York, U.S.A.
- Hernangomez, D. 2022. tidyterra: tidyverse methods and ggplot2 helpers for terra objects. R package version 0.3.1. Available from <u>https://CRAN.R-project.org/package=terra</u> [accessed December 2022].
- Hijmans, R. 2022. terra: spatial data analysis. R package version 1.6-41. Available from https://CRAN.R-project.org/package=terra [accessed December 2022].

- Lopes-Lima, M., Burlakova, L.E., Karatayev, A.Y., Mehler, K., Seddon, M., and Sousa, R. 2018. Conservation of freshwater bivalves at the global scale: diversity, threats and research needs. Hydrobiologia **810**: 1–14. doi:<u>10.1007/s10750-017-3486-7</u>.
- Lower Great Lakes Unionid Database. 2022. Lower Great Lakes Unionid Database. Microsoft Access 2016. Fisheries and Oceans Canada, Great Lakes Laboratory for Fisheries and Aquatic Sciences, Burlington, Ontario.
- McNichols-O'Rourke, K.A., Robinson, A., and Morris, T.J. 2012. Summary of freshwater mussel timed search surveys in southwestern Ontario in 2010 and 2011. Canadian Manuscript Report of Fisheries and Aquatic Sciences. 3009: vi + 42 p.
- Metcalfe-Smith, J.L., Di Maio, J., Staton, S.K., and Mackie, G.L. 2000. Effect of sampling effort on the efficiency of the timed search method for sampling freshwater mussel communities. Journal of the North American Benthological Society. **19**(4): 725–732. doi:<u>10.2307/1468129</u>.
- Metcalfe-Smith, J.L., MacKenzie, A., Carmichael, I., and McGoldrick, D. 2005. Photo field guide to the freshwater mussels of Ontario. St. Thomas, Ontario. St. Thomas Field Naturalist Club Inc.
- Metcalfe-Smith, J.L., McGoldrick, D.J., Zanatta, D.T., and Grapentine, L. 2007. Development of a monitoring program for tracking the recovery of endangered freshwater mussels in the Sydenham River, Ontario. Burlington, Ontario: Environment Canada. WSTD Contribution No. 07-510.
- Morris, T.J., Martel, A.L., Wilson, G., Goguen, M.N., McNichols-O'Rourke, K.A., and Colm, J.E. 2022. Guidance on the collection of freshwater mussel (Bivalvia: Unionida) vouchers within Canada. Canadian Manuscript Report of Fisheries and Aquatic Sciences. 3241: v + 15 p.
- Ortmann, A.E. 1919. A monograph of the naiades of Pennsylvania. Part III. Systematic account of the genera and species. Memoirs of the Carnegie Museum. 8: 1–385, 321 pls., 334 figs. doi:10.5962/p.234835.
- Pebesma, E. 2018. Simple features for R: standardized support for spatial vector data. The R Journal **10**(1): 439–446. doi:<u>10.32614/RJ-2018-009</u>.
- R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from <u>https://www.R-project.org/</u> [accessed November 2022].

Ricciardi, A., Neves, R.J., and Rasmussen, J.B. 1998. Impending extinctions of North

American freshwater mussels (Unionoida) following the zebra mussel (*Dreissena polymorpha*) invasion. Journal of Animal Ecology. **67**: 613–619. doi:10.1046/J.1365-2656.1998.00220.X.

- Richer, S., and Theijsemeijer, T. 2017. Lilliput (*Toxolasma parvum*) at Royal Botanical Gardens. Provincial Status: Endangered. Natural Lands Department. Report No. 2017-3. Royal Botanical Gardens. Hamilton, Ontario.
- RStudio Team 2022. RStudio: integrated development environment for R. RStudio, PBC, Boston, MA. Available from <u>http://www.rstudio.com/</u> [accessed November 2022].
- Slowikowski, K. 2023. ggrepel: automatically position non-overlapping text labels with 'ggplot2'. R package version 0.9.3. Available from <u>https://CRAN.R-project.org/package=ggrepel</u> [accessed May 2023].
- Stanfield, L. 2010. Ontario stream assessment protocol. Version 8. Fisheries Policy Section. Ontario Ministry of Natural Resources. Peterborough, Ontario, Canada. Available from <u>https://docs.ontario.ca/documents/2575/226871.pdf</u> [accessed November 2022].
- Wickham, H. 2016. ggplot2: elegant graphics for data analysis. Springer-Verlag New York, 2016. Available from https://ggplot2.tidyverse.org [accessed December 2022].
- Wilke, C. 2020. cowplot: streamlined plot theme and plot annotations for 'ggplot2'. R package version 1.1.1. Available from <u>https://CRAN.R-project.org/package=cowplot</u> [accessed December 2022].
- Williams, J.D., Fuller, S.L.H., and Grace, R. 1992. Effects of impoundment of freshwater mussels (Mollusca: Bivalvia: Unionidae) in the main channel of the Black Warrior and Tombigbee rivers in western Alabama. Bulletin of the Alabama Museum of Natural History. **13**: 1–10.
- Wright, K.A., McNichols-O'Rourke, K.A., and Morris, T.J. 2020. Timed-search surveys of freshwater mussels in coastal wetland and riverine sites in lakes Ontario, Erie, and St. Clair in 2015. Canadian Manuscript Report of Fisheries and Aquatic Sciences. 3192: v + 24 p.

Table 1. Site locations and sample dates for sites sampled in the Lake St. Clair, Lake Erie, and Lake Ontario watersheds in 2022. Highlighted sites were originally sampled in 2010, all other sites were previously unsampled. Sites without public access marked with an asterisk.

LSC-BAP-02 Lake St. Clair Baptiste Creek 42.305403 -82.435649 24-Aug-2022 TR-55 Lake St. Clair Baptiste Creek 42.28785 -82.41109 18-Jul-2022 LSC-BLR-01 Lake St. Clair Belle River 42.20271 -82.77258 28-Jun-2022 LSC-BLR-03 Lake St. Clair Belle River 42.25112 -82.715592 28-Jun-2022 LSC-BLR-01 Lake St. Clair Belle River 42.272778 -82.715592 28-Jun-2022 LSC-BC-01 Lake St. Clair Bolda's Lake 42.288524 -82.687112 5-Aug-2022 LSC-DUC-01 Lake St. Clair Duck Creek 42.292344 -82.687112 5-Aug-2022 LSC-JEA-01 Lake St. Clair Jeannette's Creek 42.324877 -82.397899 24-Aug-2022 LSC-JEA-02 Lake St. Clair Jeannette's Creek 42.3044619 -82.481451 10-Aug-2022 LSC-PKC-01 Lake St. Clair Pike Creek 42.293131 -82.485142 4-Aug-2022 LSC-PKC-02 Lake St. Clair Puce River 42.293131 </th <th>Site Code</th> <th>Drainage</th> <th>Waterbody</th> <th>Latitude</th> <th>Longitude</th> <th>Date</th>	Site Code	Drainage	Waterbody	Latitude	Longitude	Date
LSC-BLR-01 Lake St. Clair Belle River 42.16401 -82.72757 28-Jun-2022 LSC-BLR-02 Lake St. Clair Belle River 42.20271 -82.72058 29-Jun-2022 LSC-BLR-03 Lake St. Clair Belle River 42.27178 -82.71459 28-Jun-2022 LSC-BLR-13 Lake St. Clair Big Creek 42.272778 -82.715592 28-Jun-2022 LSC-BDC-01 Lake St. Clair Big Creek 42.286524 -82.687397 22-Aug-2022 LSC-DUC-01 Lake St. Clair Duck Creek 42.292344 -82.687112 5-Aug-2022 LSC-JEA-01 Lake St. Clair Jeannette's Creek 42.3924716 -82.397899 24-Aug-2022 LSC-TC-01 Lake St. Clair Jeannette's Creek 42.3044619 -82.664345 10-Aug-2022 LSC-FKC-01 Lake St. Clair Mison Creek 42.29313 -82.645412 4-Aug-2022 LSC-PCC-01 Lake St. Clair Pice Creek 42.29313 -82.781276 14-Aug-2022 LSC-PCC-02 Lake St. Clair Puce River 42.295942	LSC-BAP-02	Lake St. Clair	Baptiste Creek	42.305403	-82.435649	24-Aug-2022
LSC-BLR-02 Lake St. Clair Belle River 42.20271 -82.72058 29-Jun-2022 LSC-BLR-03 Lake St. Clair Belle River 42.25112 -82.71449 28-Jun-2022 LSC-BLR-13 Lake St. Clair Belle River 42.27778 -82.715592 28-Jun-2022 LSC-BGC-01 Lake St. Clair Big Creek 42.276633 -82.4645 11-Aug-2022 LSC-BDO-01 Lake St. Clair Boda's Lake 42.286524 -82.687397 22-Aug-2022 LSC-DUC-01 Lake St. Clair Jeannette's Creek 42.324716 -82.397899 24-Aug-2022 LSC-JEA-02 Lake St. Clair Jeannette's Creek 42.30548 -82.51122 23-Aug-2022 LSC-FKC-01 Lake St. Clair Moison Creek 42.297598 -82.664345 10-Aug-2022 LSC-PKC-01 Lake St. Clair Pike Creek 42.3044619 -82.783059 4-Aug-2022 LSC-PCR-02 Lake St. Clair Pice River 42.297064 -82.78376 15-Jun-2022 LSC-PCR-04* Lake St. Clair Puce River 42.29542	TR-55	Lake St. Clair	Baptiste Creek	42.28785	-82.41109	18-Jul-2022
LSC-BLR-03 Lake St. Clair Belle River 42.25112 -82.71449 28-Jun-2022 LSC-BLR-13 Lake St. Clair Belle River 42.272778 -82.715592 28-Jun-2022 LSC-BC-01 Lake St. Clair Big Creek 42.2726633 -82.4645 11-Aug-2022 LSC-BOD-01 Lake St. Clair Boda's Lake 42.282524 -82.687397 22-Aug-2022 LSC-DUC-01 Lake St. Clair Duck Creek 42.292344 -82.687112 5-Aug-2022 LSC-JEA-01 Lake St. Clair Jeannette's Creek 42.324877 -82.397899 24-Aug-2022 LSC-JEA-01 Lake St. Clair Jeannette's Creek 42.30548 -82.51122 23-Aug-2022 LSC-ITC-01 Lake St. Clair Moison Creek 42.297598 -82.664345 10-Aug-2022 LSC-PKC-01 Lake St. Clair Pice Creek 42.3044619 -82.843059 4-Aug-2022 LSC-PCR-02 Lake St. Clair Puce River 42.297064 -82.78376 15-Jun-2022 LSC-PCR-03* Lake St. Clair Puce River 42.290212	LSC-BLR-01	Lake St. Clair	Belle River	42.16401	-82.72757	28-Jun-2022
LSC-BLR-13 Lake St. Clair Belle River 42.272778 -82.715592 28-Jun-2022 LSC-BGC-01 Lake St. Clair Big Creek 42.276633 -82.4645 11-Aug-2022 LSC-BOD-01 Lake St. Clair Boda's Lake 42.288524 -82.687397 22-Aug-2022 LSC-DUC-01 Lake St. Clair Duck Creek 42.324877 -82.330013 24-Aug-2022 LSC-JEA-02 Lake St. Clair Jeannette's Creek 42.324877 -82.330013 24-Aug-2022 LSC-JEA-02 Lake St. Clair Jeannette's Creek 42.324877 -82.330013 24-Aug-2022 LSC-JEA-02 Lake St. Clair Jeannette's Creek 42.30548 -82.664345 10-Aug-2022 LSC-PKC-01 Lake St. Clair Moison Creek 42.297598 -82.664345 14-Aug-2022 LSC-PKC-02 Lake St. Clair Pike Creek 42.3044619 +82.845412 4-Aug-2022 LSC-PCR-03 Lake St. Clair Puce River 42.295942 +82.783576 15-Jun-2022 LSC-PCR-04* Lake St. Clair Puce River 42.	LSC-BLR-02	Lake St. Clair	Belle River	42.20271	-82.72058	29-Jun-2022
LSC-BGC-01 Lake St. Clair Big Creek 42.276633 -82.4645 11-Aug-2022 LSC-BOD-01 Lake St. Clair Boda's Lake 42.288524 -82.687397 22-Aug-2022 LSC-DUC-01 Lake St. Clair Duck Creek 42.292344 -82.687112 5-Aug-2022 LSC-JEA-02 Lake St. Clair Jeannette's Creek 42.324877 -82.330013 24-Aug-2022 LSC-JEA-02 Lake St. Clair Jeannette's Creek 42.304817 -82.397899 24-Aug-2022 LSC-JEA-02 Lake St. Clair Jeannette's Creek 42.304618 -82.51122 23-Aug-2022 LSC-MSO-01* Lake St. Clair Moison Creek 42.297598 -82.664345 10-Aug-2022 LSC-PKC-01 Lake St. Clair Pike Creek 42.3044619 -82.843059 4-Aug-2022 LSC-PKC-02 Lake St. Clair Pice River 42.297064 -82.783576 15-Jun-2022 LSC-PCR-03* Lake St. Clair Puce River 42.290212 -82.783726 23-Aug-2022 LSC-PCR-05* Lake St. Clair Ruscom River 4	LSC-BLR-03	Lake St. Clair	Belle River	42.25112	-82.71449	28-Jun-2022
LSC-BOD-01 Lake St. Clair Boda's Lake 42.288524 -82.687397 22-Aug-2022 LSC-DDUC-01 Lake St. Clair Duck Creek 42.292344 -82.687397 22-Aug-2022 LSC-JEA-01 Lake St. Clair Jeannette's Creek 42.324877 -82.330013 24-Aug-2022 LSC-JEA-02 Lake St. Clair Jeannette's Creek 42.324716 -82.397899 24-Aug-2022 LSC-HC-01 Lake St. Clair Little Creek 42.30548 -82.51122 23-Aug-2022 LSC-PKC-01 Lake St. Clair Moison Creek 42.297598 -82.664345 10-Aug-2022 LSC-PKC-01 Lake St. Clair Pike Creek 42.3044619 -82.843059 4-Aug-2022 LSC-PCR-02 Lake St. Clair Pike Creek 42.297064 -82.783576 15-Jun-2022 LSC-PCR-03* Lake St. Clair Puce River 42.295942 -82.782318 15-Jun-2022 LSC-PCR-04* Lake St. Clair Puce River 42.290542 -82.781277 4-Aug-2022 LSC-PCR-05* Lake St. Clair Ruscom River 42.2	LSC-BLR-13	Lake St. Clair	Belle River	42.272778	-82.715592	28-Jun-2022
LSC-DUC-01 Lake St. Clair Duck Creek 42.292344 -82.687112 5-Aug-2022 LSC-JEA-01 Lake St. Clair Jeannette's Creek 42.324877 -82.330013 24-Aug-2022 LSC-JEA-02 Lake St. Clair Jeannette's Creek 42.324716 -82.397899 24-Aug-2022 LSC-JEA-02 Lake St. Clair Jeannette's Creek 42.30548 -82.51122 23-Aug-2022 LSC-HC-01 Lake St. Clair Moison Creek 42.297598 -82.664345 10-Aug-2022 LSC-PKC-01 Lake St. Clair Pike Creek 42.3044619 -82.843059 4-Aug-2022 LSC-PKC-02 Lake St. Clair Pike Creek 42.293313 -82.845412 4-Aug-2022 LSC-PCR-02 Lake St. Clair Puce River 42.295942 -82.783576 15-Jun-2022 LSC-PCR-03* Lake St. Clair Puce River 42.290212 -82.781277 4-Aug-2022 LSC-PCR-04* Lake St. Clair Ruscom River 42.18117 -82.65369 8-Jun-2022 LSC-PCR-05* Lake St. Clair Ruscom River 42.2	LSC-BGC-01	Lake St. Clair	Big Creek	42.276633	-82.4645	11-Aug-2022
LSC-JEA-01 Lake St. Clair Jeannette's Creek 42.324877 -82.330013 24-Aug-2022 LSC-JEA-02 Lake St. Clair Jeannette's Creek 42.324716 -82.397899 24-Aug-2022 LSC-JEA-02 Lake St. Clair Little Creek 42.30548 -82.51122 23-Aug-2022 LSC-HC-01 Lake St. Clair Moison Creek 42.297598 -82.664345 10-Aug-2022 LSC-PKC-01 Lake St. Clair Pike Creek 42.297598 -82.664345 10-Aug-2022 LSC-PKC-02 Lake St. Clair Pike Creek 42.293113 -82.843059 4-Aug-2022 LSC-PCR-02 Lake St. Clair Puce River 42.295942 -82.783576 15-Jun-2022 LSC-PCR-03* Lake St. Clair Puce River 42.280055 -82.781277 4-Aug-2022 LSC-PCR-04* Lake St. Clair Puce River 42.20212 -82.783726 23-Aug-2022 LSC-PCR-05* Lake St. Clair Ruscom River 42.1917 -82.6213 8-Jun-2022 LSC-PCR-05* Lake St. Clair Ruscom River 42.2014 <td>LSC-BOD-01</td> <td>Lake St. Clair</td> <td>Boda's Lake</td> <td>42.288524</td> <td>-82.687397</td> <td>22-Aug-2022</td>	LSC-BOD-01	Lake St. Clair	Boda's Lake	42.288524	-82.687397	22-Aug-2022
LSC-JEA-02 Lake St. Clair Jeannette's Creek 42.324716 -82.397899 24-Aug-2022 LSC-LTC-01 Lake St. Clair Little Creek 42.30548 -82.51122 23-Aug-2022 LSC-MSO-01* Lake St. Clair Moison Creek 42.297598 -82.664345 10-Aug-2022 LSC-PKC-01 Lake St. Clair Pike Creek 42.293313 -82.843059 4-Aug-2022 LSC-PKC-02 Lake St. Clair Pike Creek 42.297064 -82.783576 15-Jun-2022 LSC-PCR-03* Lake St. Clair Puce River 42.290212 -82.782318 15-Jun-2022 LSC-PCR-04* Lake St. Clair Puce River 42.290212 -82.783726 23-Aug-2022 LSC-PCR-05* Lake St. Clair Puce River 42.290212 -82.65369 8-Jun-2022 LSC-PCR-05* Lake St. Clair Ruscom River 42.21993 -82.6213 29-Jun-2022 RS-02 Lake St. Clair Ruscom River 42.2139 -82.6213 29-Jun-2022 RS-05 Lake St. Clair Ruscom River 42.21739 <td< td=""><td>LSC-DUC-01</td><td>Lake St. Clair</td><td>Duck Creek</td><td>42.292344</td><td>-82.687112</td><td>5-Aug-2022</td></td<>	LSC-DUC-01	Lake St. Clair	Duck Creek	42.292344	-82.687112	5-Aug-2022
LSC-LTC-01 Lake St. Clair Little Creek 42.30548 -82.51122 23-Aug-2022 LSC-MSO-01* Lake St. Clair Moison Creek 42.297598 -82.664345 10-Aug-2022 LSC-PKC-01 Lake St. Clair Pike Creek 42.3044619 -82.843059 4-Aug-2022 LSC-PKC-02 Lake St. Clair Pike Creek 42.293313 -82.845412 4-Aug-2022 LSC-PCR-02 Lake St. Clair Puce River 42.295942 -82.783576 15-Jun-2022 LSC-PCR-03* Lake St. Clair Puce River 42.29064 -82.783726 23-Aug-2022 LSC-PCR-04* Lake St. Clair Puce River 42.290212 -82.783726 23-Aug-2022 LSC-PCR-05* Lake St. Clair Ruscom River 42.18117 -82.65369 8-Jun-2022 RS-02 Lake St. Clair Ruscom River 42.21993 -82.62143 8-Jun-2022 RS-05 Lake St. Clair Ruscom River 42.21739 -82.6213 29-Jun-2022 LSC-RUS-07 Lake St. Clair Ruscom River 42.172616 -82.6	LSC-JEA-01	Lake St. Clair	Jeannette's Creek	42.324877	-82.330013	24-Aug-2022
LSC-MSO-01* Lake St. Clair Moison Creek 42.297598 -82.664345 10-Aug-2022 LSC-PKC-01 Lake St. Clair Pike Creek 42.3044619 -82.843059 4-Aug-2022 LSC-PKC-02 Lake St. Clair Pike Creek 42.293313 -82.843059 4-Aug-2022 LSC-PCR-02 Lake St. Clair Puce River 42.297064 -82.783576 15-Jun-2022 LSC-PCR-03* Lake St. Clair Puce River 42.295942 -82.78376 15-Jun-2022 LSC-PCR-04* Lake St. Clair Puce River 42.290212 -82.783726 23-Aug-2022 LSC-PCR-05* Lake St. Clair Puce River 42.290212 -82.783726 23-Aug-2022 LSC-PCR-05* Lake St. Clair Ruscom River 42.21993 -82.62143 8-Jun-2022 RS-02 Lake St. Clair Ruscom River 42.21993 -82.6213 29-Jun-2022 RS-05 Lake St. Clair Ruscom River 42.2193 -82.6213 29-Jun-2022 LSC-RUS-07 Lake St. Clair Ruscom River 42.24354 -82.61	LSC-JEA-02	Lake St. Clair	Jeannette's Creek	42.324716	-82.397899	24-Aug-2022
LSC-PKC-01 Lake St. Clair Pike Creek 42.3044619 -82.843059 4-Aug-2022 LSC-PKC-02 Lake St. Clair Pike Creek 42.293313 -82.845412 4-Aug-2022 LSC-PCR-02 Lake St. Clair Puce River 42.297064 -82.783576 15-Jun-2022 LSC-PCR-03* Lake St. Clair Puce River 42.295942 -82.782318 15-Jun-2022 LSC-PCR-04* Lake St. Clair Puce River 42.290212 -82.78376 23-Aug-2022 LSC-PCR-05* Lake St. Clair Puce River 42.290212 -82.783726 23-Aug-2022 LSC-PCR-05* Lake St. Clair Puce River 42.290212 -82.783726 23-Aug-2022 RS-02 Lake St. Clair Ruscom River 42.21993 -82.62143 8-Jun-2022 RS-03* Lake St. Clair Ruscom River 42.20214 -82.62332 27-Jun-2022 RS-06 Lake St. Clair Ruscom River 42.21993 -82.62433 8-Jun-2022 LSC-RUS-07 Lake St. Clair Ruscom River 42.24354 -82.614373<	LSC-LTC-01	Lake St. Clair	Little Creek	42.30548	-82.51122	23-Aug-2022
LSC-PKC-02 Lake St. Clair Pike Creek 42.293313 -82.845412 4-Aug-2022 LSC-PCR-02 Lake St. Clair Puce River 42.297064 -82.783576 15-Jun-2022 LSC-PCR-03* Lake St. Clair Puce River 42.295942 -82.782318 15-Jun-2022 LSC-PCR-04* Lake St. Clair Puce River 42.2905942 -82.782318 15-Jun-2022 LSC-PCR-04* Lake St. Clair Puce River 42.290212 -82.783726 23-Aug-2022 LSC-PCR-05* Lake St. Clair Puce River 42.290212 -82.783726 23-Aug-2022 RS-02 Lake St. Clair Ruscom River 42.18117 -82.65369 8-Jun-2022 RS-03* Lake St. Clair Ruscom River 42.21993 -82.62143 8-Jun-2022 RS-06 Lake St. Clair Ruscom River 42.21021 -82.6832 27-Jun-2022 LSC-RUS-07 Lake St. Clair Ruscom River 42.172616 -82.664458 14-Jun-2022 LSC-RUS-08 Lake St. Clair Tilbury Creek 42.20423 -82.452	LSC-MSO-01*	Lake St. Clair	Moison Creek	42.297598	-82.664345	10-Aug-2022
LSC-PCR-02 Lake St. Clair Puce River 42.297064 -82.783576 15-Jun-2022 LSC-PCR-03* Lake St. Clair Puce River 42.295942 -82.782318 15-Jun-2022 LSC-PCR-04* Lake St. Clair Puce River 42.286055 -82.781277 4-Aug-2022 LSC-PCR-05* Lake St. Clair Puce River 42.290212 -82.783726 23-Aug-2022 RS-02 Lake St. Clair Ruscom River 42.18117 -82.65369 8-Jun-2022 RS-03* Lake St. Clair Ruscom River 42.21993 -82.62143 8-Jun-2022 RS-05 Lake St. Clair Ruscom River 42.230214 -82.62832 27-Jun-2022 RS-06 Lake St. Clair Ruscom River 42.24354 -82.614373 14-Jun-2022 LSC-RUS-07 Lake St. Clair Ruscom River 42.19217 -82.664458 14-Jun-2022 LSC-RUS-09 Lake St. Clair Tilbury Creek 42.290423 -82.452014 23-Aug-2022 LSC-TIL-01 Lake St. Clair Tilbury Creek 42.263815 -82.4492	LSC-PKC-01	Lake St. Clair	Pike Creek	42.3044619	-82.843059	4-Aug-2022
LSC-PCR-03* Lake St. Clair Puce River 42.295942 -82.782318 15-Jun-2022 LSC-PCR-04* Lake St. Clair Puce River 42.286055 -82.781277 4-Aug-2022 LSC-PCR-05* Lake St. Clair Puce River 42.290212 -82.783726 23-Aug-2022 RS-02 Lake St. Clair Ruscom River 42.18117 -82.65369 8-Jun-2022 RS-03* Lake St. Clair Ruscom River 42.21993 -82.62143 8-Jun-2022 RS-05 Lake St. Clair Ruscom River 42.21391 -82.6213 29-Jun-2022 RS-06 Lake St. Clair Ruscom River 42.24354 -82.614373 14-Jun-2022 LSC-RUS-07 Lake St. Clair Ruscom River 42.172616 -82.664458 14-Jun-2022 LSC-RUS-08 Lake St. Clair Ruscom River 42.290423 -82.452014 23-Aug-2022 LSC-RUS-09 Lake St. Clair Tilbury Creek 42.263815 -82.449205 25-Aug-2022 LSC-TIL-01 Lake St. Clair Tilbury Creek 42.263815 -82.449	LSC-PKC-02	Lake St. Clair	Pike Creek	42.293313	-82.845412	4-Aug-2022
LSC-PCR-04* Lake St. Clair Puce River 42.286055 -82.781277 4-Aug-2022 LSC-PCR-05* Lake St. Clair Puce River 42.290212 -82.783726 23-Aug-2022 RS-02 Lake St. Clair Ruscom River 42.18117 -82.65369 8-Jun-2022 RS-03* Lake St. Clair Ruscom River 42.21993 -82.62143 8-Jun-2022 RS-05 Lake St. Clair Ruscom River 42.217139 -82.62832 27-Jun-2022 RS-06 Lake St. Clair Ruscom River 42.172616 -82.664458 14-Jun-2022 LSC-RUS-07 Lake St. Clair Ruscom River 42.172616 -82.664458 14-Jun-2022 LSC-RUS-08 Lake St. Clair Ruscom River 42.19217 -82.63632 29-Jun-2022 LSC-RUS-09 Lake St. Clair Ruscom River 42.19217 -82.63632 29-Jun-2022 LSC-RUS-09 Lake St. Clair Tilbury Creek 42.290423 -82.452014 23-Aug-2022 LSC-TIL-01 Lake St. Clair Tilbury Creek 42.826315 -82.449205 25-Aug-2022 LSC-TIL-02 Lake St. Clair <td< td=""><td>LSC-PCR-02</td><td>Lake St. Clair</td><td>Puce River</td><td>42.297064</td><td>-82.783576</td><td>15-Jun-2022</td></td<>	LSC-PCR-02	Lake St. Clair	Puce River	42.297064	-82.783576	15-Jun-2022
LSC-PCR-05* Lake St. Clair Puce River 42.290212 -82.783726 23-Aug-2022 RS-02 Lake St. Clair Ruscom River 42.18117 -82.65369 8-Jun-2022 RS-03* Lake St. Clair Ruscom River 42.21993 -82.62143 8-Jun-2022 RS-05 Lake St. Clair Ruscom River 42.30214 -82.6233 29-Jun-2022 RS-06 Lake St. Clair Ruscom River 42.27139 -82.62832 27-Jun-2022 LSC-RUS-07 Lake St. Clair Ruscom River 42.24354 -82.614373 14-Jun-2022 LSC-RUS-08 Lake St. Clair Ruscom River 42.172616 -82.664458 14-Jun-2022 LSC-RUS-09 Lake St. Clair Ruscom River 42.19217 -82.63632 29-Jun-2022 LSC-RUS-09 Lake St. Clair Tilbury Creek 42.290423 -82.452014 23-Aug-2022 LSC-RUS-09 Lake St. Clair Tilbury Creek 42.263815 -82.449205 25-Aug-2022 LSC-TIL-01 Lake St. Clair Tilbury Creek 42.863815 -82.449	LSC-PCR-03*	Lake St. Clair	Puce River	42.295942	-82.782318	15-Jun-2022
RS-02 Lake St. Clair Ruscom River 42.18117 -82.65369 8-Jun-2022 RS-03* Lake St. Clair Ruscom River 42.21993 -82.62143 8-Jun-2022 RS-05 Lake St. Clair Ruscom River 42.30214 -82.6213 29-Jun-2022 RS-06 Lake St. Clair Ruscom River 42.27139 -82.62832 27-Jun-2022 LSC-RUS-07 Lake St. Clair Ruscom River 42.24354 -82.614373 14-Jun-2022 LSC-RUS-08 Lake St. Clair Ruscom River 42.172616 -82.664458 14-Jun-2022 LSC-RUS-09 Lake St. Clair Ruscom River 42.19217 -82.63632 29-Jun-2022 LSC-RUS-09 Lake St. Clair Tilbury Creek 42.290423 -82.452014 23-Aug-2022 LSC-TIL-01 Lake St. Clair Tilbury Creek 42.84417 -79.76004 29-Aug-2022 LER-EVC-01 Lake Erie Evans Creek 42.84417 -79.93915 29-Aug-2022 LER-LYN-01 Lake Erie Sandusk Creek 42.823639 -79.993915	LSC-PCR-04*	Lake St. Clair	Puce River	42.286055	-82.781277	4-Aug-2022
RS-03* Lake St. Clair Ruscom River 42.21993 -82.62143 8-Jun-2022 RS-05 Lake St. Clair Ruscom River 42.30214 -82.6213 29-Jun-2022 RS-06 Lake St. Clair Ruscom River 42.27139 -82.62832 27-Jun-2022 LSC-RUS-07 Lake St. Clair Ruscom River 42.24354 -82.614373 14-Jun-2022 LSC-RUS-08 Lake St. Clair Ruscom River 42.172616 -82.664458 14-Jun-2022 LSC-RUS-09 Lake St. Clair Ruscom River 42.19217 -82.63632 29-Jun-2022 LSC-RUS-09 Lake St. Clair Tilbury Creek 42.290423 -82.452014 23-Aug-2022 LSC-TIL-01 Lake St. Clair Tilbury Creek 42.84315 -82.449205 25-Aug-2022 LER-EVC-01 Lake Erie Evans Creek 42.84417 -79.76004 29-Aug-2022 LER-LYN-01 Lake Erie Lynn River 42.823639 -79.993915 29-Aug-2022 LER-SDK-01 Lake Erie Stoney Creek 42.8188 -79.9264	LSC-PCR-05*	Lake St. Clair	Puce River	42.290212	-82.783726	23-Aug-2022
RS-05 Lake St. Clair Ruscom River 42.30214 -82.6213 29-Jun-2022 RS-06 Lake St. Clair Ruscom River 42.27139 -82.62832 27-Jun-2022 LSC-RUS-07 Lake St. Clair Ruscom River 42.24354 -82.614373 14-Jun-2022 LSC-RUS-08 Lake St. Clair Ruscom River 42.172616 -82.664458 14-Jun-2022 LSC-RUS-09 Lake St. Clair Ruscom River 42.19217 -82.63632 29-Jun-2022 LSC-RUS-09 Lake St. Clair Ruscom River 42.290423 -82.452014 23-Aug-2022 LSC-TIL-01 Lake St. Clair Tilbury Creek 42.290423 -82.449205 25-Aug-2022 LSC-TIL-02 Lake St. Clair Tilbury Creek 42.263815 -82.449205 25-Aug-2022 LER-EVC-01 Lake Erie Evans Creek 42.84417 -79.76004 29-Aug-2022 LER-LYN-01 Lake Erie Sandusk Creek 42.82639 -79.993915 29-Aug-2022 LER-SDK-01 Lake Erie Stoney Creek 42.8188 -79.9264 <td>RS-02</td> <td>Lake St. Clair</td> <td>Ruscom River</td> <td>42.18117</td> <td>-82.65369</td> <td>8-Jun-2022</td>	RS-02	Lake St. Clair	Ruscom River	42.18117	-82.65369	8-Jun-2022
RS-06 Lake St. Clair Ruscom River 42.27139 -82.62832 27-Jun-2022 LSC-RUS-07 Lake St. Clair Ruscom River 42.24354 -82.614373 14-Jun-2022 LSC-RUS-08 Lake St. Clair Ruscom River 42.172616 -82.664458 14-Jun-2022 LSC-RUS-09 Lake St. Clair Ruscom River 42.172616 -82.664458 14-Jun-2022 LSC-RUS-09 Lake St. Clair Ruscom River 42.19217 -82.63632 29-Jun-2022 LSC-TIL-01 Lake St. Clair Tilbury Creek 42.290423 -82.452014 23-Aug-2022 LSC-TIL-02 Lake St. Clair Tilbury Creek 42.263815 -82.449205 25-Aug-2022 LER-EVC-01 Lake Erie Evans Creek 42.84417 -79.76004 29-Aug-2022 LER-LYN-01 Lake Erie Lynn River 42.823639 -79.993915 29-Aug-2022 LER-SDK-01 Lake Erie Stoney Creek 42.8188 -79.9264 14-Jul-2022 LER-WDC-01 Lake Erie Wardell Creek 43.27001 -79.92657 <td>RS-03*</td> <td>Lake St. Clair</td> <td>Ruscom River</td> <td>42.21993</td> <td>-82.62143</td> <td>8-Jun-2022</td>	RS-03*	Lake St. Clair	Ruscom River	42.21993	-82.62143	8-Jun-2022
LSC-RUS-07 Lake St. Clair Ruscom River 42.24354 -82.614373 14-Jun-2022 LSC-RUS-08 Lake St. Clair Ruscom River 42.172616 -82.664458 14-Jun-2022 LSC-RUS-09 Lake St. Clair Ruscom River 42.19217 -82.63632 29-Jun-2022 LSC-RUS-09 Lake St. Clair Tilbury Creek 42.290423 -82.452014 23-Aug-2022 LSC-TIL-01 Lake St. Clair Tilbury Creek 42.263815 -82.449205 25-Aug-2022 LSC-TIL-02 Lake St. Clair Tilbury Creek 42.84417 -79.76004 29-Aug-2022 LER-EVC-01 Lake Erie Lynn River 42.79186 -80.203082 30-Aug-2022 LER-SDK-01 Lake Erie Sandusk Creek 42.8188 -79.9264 14-Jul-2022 LER-STO-01 Lake Erie Stoney Creek 42.8188 -79.9264 14-Jul-2022 LER-WDC-01 Lake Erie Wardell Creek 42.845379 -79.774845 29-Aug-2022 LON-SPC-04 Lake Ontario Spencer Creek 43.27001 -79.92657 2-Jun-2022	RS-05	Lake St. Clair	Ruscom River	42.30214	-82.6213	29-Jun-2022
LSC-RUS-08 Lake St. Clair Ruscom River 42.172616 -82.664458 14-Jun-2022 LSC-RUS-09 Lake St. Clair Ruscom River 42.19217 -82.63632 29-Jun-2022 LSC-TIL-01 Lake St. Clair Tilbury Creek 42.290423 -82.452014 23-Aug-2022 LSC-TIL-02 Lake St. Clair Tilbury Creek 42.263815 -82.449205 25-Aug-2022 LER-EVC-01 Lake Erie Evans Creek 42.84417 -79.76004 29-Aug-2022 LER-LYN-01 Lake Erie Lynn River 42.823639 -79.993915 29-Aug-2022 LER-SDK-01 Lake Erie Stoney Creek 42.8188 -79.9264 14-Jul-2022 LER-WDC-01 Lake Erie Wardell Creek 42.845379 -79.774845 29-Aug-2022 LON-SPC-04 Lake Ontario Spencer Creek 43.27001 -79.92657 2-Jun-2022	RS-06	Lake St. Clair	Ruscom River	42.27139	-82.62832	27-Jun-2022
LSC-RUS-09 Lake St. Clair Ruscom River 42.19217 -82.63632 29-Jun-2022 LSC-TIL-01 Lake St. Clair Tilbury Creek 42.290423 -82.452014 23-Aug-2022 LSC-TIL-02 Lake St. Clair Tilbury Creek 42.263815 -82.449205 25-Aug-2022 LER-EVC-01 Lake Erie Evans Creek 42.84417 -79.76004 29-Aug-2022 LER-LYN-01 Lake Erie Lynn River 42.823639 -79.993915 29-Aug-2022 LER-SDK-01 Lake Erie Sandusk Creek 42.8188 -79.9264 14-Jul-2022 LER-WDC-01 Lake Erie Wardell Creek 42.845379 -79.774845 29-Aug-2022 LON-SPC-04 Lake Ontario Spencer Creek 43.27001 -79.92657 2-Jun-2022	LSC-RUS-07	Lake St. Clair	Ruscom River	42.24354	-82.614373	14-Jun-2022
LSC-TIL-01 Lake St. Clair Tilbury Creek 42.290423 -82.452014 23-Aug-2022 LSC-TIL-02 Lake St. Clair Tilbury Creek 42.263815 -82.449205 25-Aug-2022 LER-EVC-01 Lake Erie Evans Creek 42.84417 -79.76004 29-Aug-2022 LER-LYN-01 Lake Erie Lynn River 42.79186 -80.203082 30-Aug-2022 LER-SDK-01 Lake Erie Sandusk Creek 42.823639 -79.993915 29-Aug-2022 LER-STO-01 Lake Erie Stoney Creek 42.8188 -79.9264 14-Jul-2022 LER-WDC-01 Lake Erie Wardell Creek 43.27001 -79.92657 2-Jun-2022	LSC-RUS-08	Lake St. Clair	Ruscom River	42.172616	-82.664458	14-Jun-2022
LSC-TIL-02 Lake St. Clair Tilbury Creek 42.263815 -82.449205 25-Aug-2022 LER-EVC-01 Lake Erie Evans Creek 42.84417 -79.76004 29-Aug-2022 LER-LYN-01 Lake Erie Lynn River 42.79186 -80.203082 30-Aug-2022 LER-SDK-01 Lake Erie Sandusk Creek 42.823639 -79.993915 29-Aug-2022 LER-STO-01 Lake Erie Stoney Creek 42.8188 -79.9264 14-Jul-2022 LER-WDC-01 Lake Erie Wardell Creek 42.845379 -79.774845 29-Aug-2022 LON-SPC-04 Lake Ontario Spencer Creek 43.27001 -79.92657 2-Jun-2022	LSC-RUS-09	Lake St. Clair	Ruscom River	42.19217	-82.63632	29-Jun-2022
LER-EVC-01 Lake Erie Evans Creek 42.84417 -79.76004 29-Aug-2022 LER-LYN-01 Lake Erie Lynn River 42.79186 -80.203082 30-Aug-2022 LER-SDK-01 Lake Erie Sandusk Creek 42.823639 -79.993915 29-Aug-2022 LER-STO-01 Lake Erie Stoney Creek 42.8188 -79.9264 14-Jul-2022 LER-WDC-01 Lake Erie Wardell Creek 42.845379 -79.774845 29-Aug-2022 LON-SPC-04 Lake Ontario Spencer Creek 43.27001 -79.92657 2-Jun-2022	LSC-TIL-01	Lake St. Clair	Tilbury Creek	42.290423	-82.452014	23-Aug-2022
LER-LYN-01 Lake Erie Lynn River 42.79186 -80.203082 30-Aug-2022 LER-SDK-01 Lake Erie Sandusk Creek 42.823639 -79.993915 29-Aug-2022 LER-STO-01 Lake Erie Stoney Creek 42.8188 -79.9264 14-Jul-2022 LER-WDC-01 Lake Erie Wardell Creek 42.845379 -79.774845 29-Aug-2022 LON-SPC-04 Lake Ontario Spencer Creek 43.27001 -79.92657 2-Jun-2022	LSC-TIL-02	Lake St. Clair	Tilbury Creek	42.263815	-82.449205	25-Aug-2022
LER-SDK-01 Lake Erie Sandusk Creek 42.823639 -79.993915 29-Aug-2022 LER-STO-01 Lake Erie Stoney Creek 42.8188 -79.9264 14-Jul-2022 LER-WDC-01 Lake Erie Wardell Creek 42.845379 -79.774845 29-Aug-2022 LON-SPC-04 Lake Ontario Spencer Creek 43.27001 -79.92657 2-Jun-2022	LER-EVC-01	Lake Erie	Evans Creek	42.84417	-79.76004	29-Aug-2022
LER-STO-01 Lake Erie Stoney Creek 42.8188 -79.9264 14-Jul-2022 LER-WDC-01 Lake Erie Wardell Creek 42.845379 -79.774845 29-Aug-2022 LON-SPC-04 Lake Ontario Spencer Creek 43.27001 -79.92657 2-Jun-2022	LER-LYN-01	Lake Erie	Lynn River	42.79186	-80.203082	30-Aug-2022
LER-WDC-01 Lake Erie Wardell Creek 42.845379 -79.774845 29-Aug-2022 LON-SPC-04 Lake Ontario Spencer Creek 43.27001 -79.92657 2-Jun-2022	LER-SDK-01	Lake Erie	Sandusk Creek	42.823639	-79.993915	29-Aug-2022
LON-SPC-04 Lake Ontario Spencer Creek 43.27001 -79.92657 2-Jun-2022	LER-STO-01	Lake Erie	Stoney Creek	42.8188	-79.9264	14-Jul-2022
	LER-WDC-01	Lake Erie	Wardell Creek	42.845379	-79.774845	29-Aug-2022
LON-SPC-05 Lake Ontario Spencer Creek 43.27256 -79.92519 2-Jun-2022	LON-SPC-04	Lake Ontario	Spencer Creek	43.27001	-79.92657	2-Jun-2022
	LON-SPC-05	Lake Ontario	Spencer Creek	43.27256	-79.92519	2-Jun-2022

Table 2. Location and dates for sites scouted but not sampled due to insufficient access or unsuitable habitat in the Lake St. Clair, Lake Erie, and Lake Ontario watersheds in 2022. Highlighted sites were previously sampled in 2010, all other sites were previously unsampled.

Site Code	Drainage	Waterbody	Latitude	Longitude	Date	Site Condition
	Lake St. Clair	Baptiste Creek	42.28130	-82.39621	14-Jun-22	Too deep
	Lake St. Clair	Big Creek	42.288996	-82.46272	11-Aug-22	Unsafe conditions
	Lake St. Clair	Duck Creek	42.273304	-82.68894	22-Aug-22	Unsuitable habitat; narrow stream and boulder substrate
	Lake St. Clair	Little Creek	42.29708	-82.51428	23-Aug-22	Too deep
	Lake St. Clair	Pike Creek	42.31356	-82.84301	4-Aug-22	Not accessible; no parking
	Lake St. Clair	Pike Creek	42.293207	-82.83794	4-Aug-22	Unsuitable habitat; narrow stream with artificial structures
	Lake St. Clair	Pike Creek	42.309614	-82.844309	4-Aug-22	Not accessible; posted "no trespassing"
	Lake St. Clair	Pike Creek	42.31557	-82.840971	4-Aug-22	Not accessible; no parking
	Lake St. Clair	Puce River	42.27747	-82.788816	4-Aug-22	Unsuitable habitat; riprap and sand substrate
RS-01	Lake St. Clair	Ruscom River	42.13716	-82.6725	8-Jun-22	Unsuitable habitat; narrow stream
RS-02	Lake St. Clair	Ruscom River	42.25045	-82.61957	8-Jun-22	Unsafe conditions
	Lake St. Clair	Tilbury Creek	42.276014	-82.44754	25-Aug-22	Too deep
	Lake Erie	Gates Creek	42.834985	-79.819889	29-Aug-22	Too deep
	Lake Erie	Hickory Creek	42.8075373	-80.023599	30-Aug-22	Unsuitable habitat; algal mats and sand substrate

-	•••		•	•			
Waterbody	Baptiste Creek	Baptiste Creek	Belle River	Belle River	Belle River	Belle River	Big Creek
Site Code	LSC-BAP-02	TR-55	LSC-BLR-01	LSC-BLR-02	LSC-BLR-03	LSC-BLR-13	LSC-BGC-01
Anodontoides ferussacianus	0	0	0	0	0	0	0
Lampsilis cardium	0	0	0	0	0	0	0
Lampsilis siliquoidea	0	0	0	0	0	0	0
Lasmigona complanata	0	0	0	SH	30	0	0
Potamilus alatus	0	0	0	0	0	0	0
Potamilus fragilis	0	0	0	0	0	0	0
Pyganodon grandis	1	1	0	SH	13	1	1
Quadrula quadrula	0	11	0	0	4	0	0
Strophitus undulatus	0	0	0	0	0	0	0
Toxolasma parvum	3	0	0	0	3	3	0
Truncilla truncata	0	1	0	0	0	0	0
Utterbackia imbecillis	2	4	0	0	0	0	4
Total Abundance	6	17	0	0	50	4	5
T. parvum Relative Abundance	0.50	0	0	0	0.06	0.75	0
Live Species Richness Dominant Species	3 T. parvum	4 Q. quadrula	0	0	4 L. complanata	2 T. parvum	2 U. imbecillis

Table 3. Species detected at sites in the Lake St. Clair watershed. Total abundance, *Toxolasma parvum* (Lilliput) Relative Abundance, live species richness, and dominant species at each site. Species at risk are highlighted. Sites with shells, valves, and/or shell fragments but no live specimens are indicated with SH.

Table 3. (Continued) Species detected at sites in the Lake St. Clair watershed. Total abundance, *Toxolasma parvum* (Lilliput) Relative Abundance, live species richness, and dominant species at each site. Species at risk are highlighted. Sites with shells, valves, and/or shell fragments but no live specimens are indicated with SH.

Waterbody	Boda's Lake	Duck Creek	Jeannette's Creek	Jeannette's Creek	Little Creek	Moison Creek	Pike Creek
Site Code	LSC-BOD-01	LSC-DUC-01	LSC-JEA-01	LSC-JEA-02	LSC-LTC-01	LSC-MSO-01	LSC-PKC-01
Anodontoides ferussacianus	0	0	0	0	0	0	0
Lampsilis cardium	0	0	0	0	0	0	0
Lampsilis siliquoidea	0	0	0	0	0	0	0
Lasmigona complanata	0	0	0	0	0	0	0
Potamilus alatus	0	0	0	0	0	0	0
Potamilus fragilis	0	0	0	0	0	0	0
Pyganodon grandis	3	0	SH	1	0	11	2
Quadrula quadrula	0	0	1	0	0	0	0
Strophitus undulatus	0	0	0	0	0	0	0
Toxolasma parvum	SH	2	1	3	1	24	4
Truncilla truncata	0	0	0	0	0	0	0
Utterbackia imbecillis	0	15	2	3	2	13	9
Total Abundance	3	17	4	7	3	48	15
<i>T. parvum</i> Relative Abundance	0	0.12	0.25	0.43	0.33	0.50	0.27
Live Species Richness Dominant Species	1 <i>P. grandis</i>	2 U. imbecillis	3 U. imbecillis	3 T. parvum & U. imbecillis	2 U. imbecillis	3 T. parvum	3 U. imbecillis

Table 3. (Continued) Species detected at sites in the Lake St. Clair watershed. Total abundance, *Toxolasma parvum* (Lilliput) Relative Abundance, live species richness, and dominant species at each site. Species at risk are highlighted. Sites with shells, valves, and/or shell fragments but no live specimens are indicated with SH.

Waterbody	Pike Creek	Puce River	Puce River	Puce River	Puce River	Ruscom River	Ruscom River
Site Code	LSC-PKC-02	LSC-PCR-02	LSC-PCR-03	LSC-PCR-04	LSC-PCR-05	RS-02	RS-03
Anodontoides ferussacianus	0	0	0	0	0	SH	0
Lampsilis cardium	0	0	0	0	0	0	0
Lampsilis siliquoidea	0	0	1	0	0	2	3
Lasmigona complanata	0	0	2	0	0	11	2
Potamilus alatus	0	0	SH	0	0	0	0
Potamilus fragilis	0	0	3	1	0	0	0
Pyganodon grandis	2	8	8	4	0	3	0
Quadrula quadrula	0	SH	7	0	0	0	3
Strophitus undulatus	0	0	0	0	0	0	0
Toxolasma parvum	SH	SH	4	2	3	SH	0
Truncilla truncata	0	0	0	0	0	0	0
Utterbackia imbecillis	1	1	3	7	2	0	0
Total Abundance	3	9	28	14	5	16	8
T. parvum Relative Abundance	0	0	0.14	0.14	0.60	0	0
Live Species Richness Dominant Species	2 P. grandis	2 P. grandis	8 P. grandis	4 U. imbecillis	2 T. parvum	3 L. complanata	3 L. siliquoidea & Q. Quadrula

Ruscom River	Ruscom River	Ruscom River	Ruscom River	Ruscom River	Tilbury Creek	Tilbury Creek
RS-05	RS-06	LSC-RUS-07	LSC-RUS-08	LSC-RUS-09	LSC-TIL-01	LSC-TIL-02
0	0	0	SH	0	0	0
0	0	1	0	0	0	0
0	2	2	0	1	0	0
0	0	SH	0	3	0	0
1	0	0	0	0	0	0
0	2	0	0	0	0	0
0	2	SH	SH	4	1	SH
0	SH	9	0	0	0	0
0	0	0	0	1	0	0
0	1	0	0	0	1	SH
0	SH	0	0	0	0	0
0	3	0	0	0	4	SH
1	10	12	0	9	6	0
0	0.10	0	0	0	0.17	0
1 <i>P. alatus</i>	5 U. imbecillis	3 Q. quadrula	0	4 P. grandis	3 U. imbecillis	0
	RS-05 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1	RS-05 RS-06 0 0 0 0 0 2 0 0 1 0 0 2 0 2 0 2 0 5 1 10 0 3 1 10 0 0.10 1 5	RS-05RS-06LSC-RUS-0700000102200SH10002002SH0SH90000SH00SH00SH00301101200.100153	RS-05RS-06LSC-RUS-07LSC-RUS-08000SH0010022000SH01000020002SHSH0SH900SH900SH900SH000SH000SH000SH000SH00110120110001530	RS-05RS-06LSC-RUS-07LSC-RUS-08LSC-RUS-09000SH0001000220100SH0310000020000200002SHSH40SH90001001010000SH0000SH0000SH000110120900.1000015304	RS-05RS-06LSC-RUS-07LSC-RUS-08LSC-RUS-09LSC-TIL-01000SH0000100002201000SH03000SH03010000010000002SHSH410SH90000SH90000SH90010SH00100SH00100SH00041101209600.100000.17153043

Table 3. (Continued) Species detected at sites in the Lake St. Clair watershed. Total abundance, *Toxolasma parvum* (Lilliput) Relative Abundance, live species richness, and dominant species at each site. Species at risk are highlighted. Sites with shells, valves, and/or shell fragments but no live specimens are indicated with SH.

Table 4. Species detected at sites in the Lake Erie watershed. Total abundance, live species richness, and dominant species at each site. Species at risk are highlighted. Sites with shells, valves, and/or shell fragments but no live specimens are indicated with SH.

Evan's Creek	Lynn River	Sandusk Creek	Stoney Creek	Wardell Creek
LER-EVC-01	LER-LYN-01	LER-SDK-01	LER-STO-01	LER-WDC-01
7	0	0	7	SH
0	0	2	0	0
1	0	0	0	0
8	0	2	7	0
2 P. grandis	0	1 Q. quadrula	1 P. grandis	0
	LER-EVC-01 7 0 1 8 2	LER-EVC-01 LER-LYN-01 7 0 0 0 1 0 8 0 2 0	LER-EVC-01 LER-LYN-01 LER-SDK-01 7 0 0 0 0 2 1 0 0 8 0 2 2 0 1	LER-EVC-01 LER-LYN-01 LER-SDK-01 LER-STO-01 7 0 0 7 0 0 2 0 1 0 0 0 8 0 2 7 2 0 1 1

Table 5. Counts and sizes of live *Toxolasma parvum* (Lilliput) and counts of shells of varying conditions found during freshwater mussel surveys in the Lake St. Clair watershed at sites where *T. parvum* was detected. Highlighted sites are where only shells were found.

	Watadaadaa			Fresh Whole	Fresh	Weathered Whole	Weathered Valves &
Site Code LSC-BAP-02	Waterbody Baptiste Creek	Live 3	Sizes (mm) 10.5 - 13.2	O O Shells	Valves 0	O O Shells	Fragments 0
LSC-BAR-02	Belle River	3	26.5 - 32	0	1	0	0
		-		-		0	
LSC-BLR-13	Belle River	3	12.8 - 38.2	0	0	<u> </u>	0
LSC-BOD-01	Boda's Lake	0		0	0	0	2
LSC-DUC-01	Duck Creek	2	34.7, 36.1	0	0	0	0
LSC-JEA-01	Jeannette's Creek	1	9.9	0	0	0	0
LSC-JEA-02	Jeannette's Creek	3	7.1 - 15.2	0	0	0	1
LSC-LTC-01	Little Creek	1	24.0	0	0	0	0
LSC-MSO-01	Moison Creek	24	6.6 - 15.5	0	0	1	0
LSC-PKC-01	Pike Creek	4	23.3 - 27.2	1	0	0	0
LSC-PKC-02	Pike Creek	0		0	0	0	1
LSC-PCR-02	Puce River	0		0	0	0	1
LSC-PCR-03	Puce River	4	8.9 - 33	0	0	0	1
LSC-PCR-04	Puce River	2	20.8, 21.6	0	0	0	0
LSC-PCR-05	Puce River	3	12.5 - 28.1	0	0	0	0
RS-02	Ruscom River	0		2	0	0	0
RS-06	Ruscom River	1	31.0	0	0	0	0
LSC-TIL-01	Tilbury Creek	1	35.6	0	0	0	0
LSC-TIL-02	Tilbury Creek	0		0	0	0	3

		Site Code	LSC-BAP-02	TR-55	LSC-BLR01	LSC-BLR-02	LSC-BLR-03	LSC-BLR-13
Site		0110 0000						
S C	ne	Watarbady	Baptiste Creek	Baptiste Creek	Belle River	Belle River	Belle River	Belle River
		Waterbody <i>T. parvum</i>	Creek	Not	Belle River	Delle Kivel	Delle River	Delle Kivel
	1	Presence	Live	Detected	Not Detected	Not Detected	Live	Live
ents		Length of Reach (m)	22.5	69.0	108.5	118.5	103.5	89.0
eme	N	Ain Width of	22.0	03.0	100.0	110.0	100.0	03.0
sure		Reach (m)	40	17	8	2	3	2
Search Area Measurements	IV	lax Width of Reach (m)		20	10	10	11	8
ea N	Av	g Width (m)		18	9	8	10	6
Ar		Max Depth						
arch	S	earched (m) Avg Depth	1.15	1.60	0.55	0.55	0.75	1.43
Sea	S	earched (m)	0.90	1.30	0.49	0.35	0.55	1.20
		ter Clarity						
	Wa	(m) Iter Velocity	0.08	0.17	0.05	0.09	0.10	0.20
		(m/s)	0	0.002	0.0003	0.006	0.008	0
	Strea	am Shading	Open	Open	Partly Open	Partly Open	Partly Open	Partly Open
	Α	Igal Growth	Present	Present	Absent	Present	Present	Present
	-	Water emperature						
		(°C)	24.82	28.16	18.16	19.25	18.70	26.62
YSI Measurements	Conductivity							
eme	(us/cm)		653.0	721.0	932.0	684.0	582.0	823.0
sure		ODO (%)	55.6	145.4	43.3	49.8	53.2	88.0
leas		ODO (mg/L)	4.60	11.37	4.06	4.52	4.95	7.30
SIN		рН	7.83	8.49	7.82	7.73	7.76	7.92
×		alinity (psu)	0.32	0.33	0.53	0.38	0.32	0.39
		TDS (mg/L)	426.058	440.652	695.443	499.331	430.082	516.214
		bidity (FNU)	103.35	30.03	50.81	41.87	47.06	17.27
۔ ع	rphology	Riffle (%)	0	0	0	2	0	0
Stream		Pool (%)	100	0	0	0	0	0
۲.	morp	Run (%)	0	100	0	98	0	0
		Flat (%)	0	0	100	0	100	100
_		Bedrock (%)	0	0	0	0	0	0
tior		Boulder (%)	0	0	0	0	0	0
iso		Rubble (%)	0	5	0	0	0	0
dmc		Gravel (%)	0	5	5	35	0	0
Substrate Composition		Sand (%)	0	5	25	35	30	10
rate		Silt (%)	0	0	5	5	0	30
lbst		Clay (%)	10	5	30	5	20	0
Su		Muck (%)	50	50	25	10	40	30
		Detritus (%)	40	30	10	10	10	30
		Dreissenid Presence	Live	Shells Only	Not Detected	Not Detected	Not Detected	Not Detected
		Fresence	LIVE	Only	NUL Delected	NUL Delected	NUL Delected	NUL Delected

Table 6. Environmental data collected at each site in the Lake St. Clair watershed.

	s	Site Code	LSC-BGC-01	LSC-BOD-01	LSC-DUC-01	LSC-JEA-01	LSC-JEA-02
Site	Details	Waterbody	Big Creek	Boda's Lake	Duck Creek	Jeannette's Creek	Jeannette's Creek
		<i>T. parvum</i> Presence	Not Detected	Shells Only	Live	Live	Live
ments		Length of Reach (m) Min Width of	13.0	80.0	40.0	47.0	36.5
asurei		Reach (m) Max Width of			20	46	67
a Mea		Reach (m)	31	65	20 20	46 46	67 67
Search Area Measurements		Avg Width (m) Max Depth Searched (m)	1.13	1.00	1.10	40 1.10	0.85
Searc		Avg Depth Searched (m)	0.72	0.80	1.00	0.86	0.70
		Water Clarity (m)	0.296	0.042	0.150	0.120	0.078
		Water Velocity (m/s)		0.007	0	0.001	0.01
	Si	tream Shading Algal Growth	Open Present	Open Present	Open Present	Open Present	Open Present
s		Water Temperature (°C)	25.71	23.96	25.58	25.52	27.73
ment		Conductivity (us/cm)	693.0	724.0	539.0	500.0	677.0
YSI Measurements		ODO (%) ODO (mg/L)	37.5 3.05	63.6 5.34	37.7 3.06	94.2 7.70	128.7 10.11
SI Me		рН	7.48	7.94	7.56	8.27	8.56
×		Salinity (psu) TDS (mg/L)	0.33 444.355	0.36 480.5	0.26 346.512	0.24 321.973	0.31 418.329
		urbidity (FNU)	10.70	125.49	21.25	36.34	21.35
Stream	Golo	Riffle (%) Pool (%)	0 100	0 100	0 0	0 0	0 0
Stre	Morphology	Run (%)	0	0	0	100	0
		Flat (%) Bedrock (%)	0	0	<u>100</u> 0	0	<u> </u>
ition		Boulder (%)	0	0	0	0	0
sodu		Rubble (%) Gravel (%)	0 10	5 2	5 5	0 5	0 0
Substrate Composition		Sand (%)	0	0	0	0	0
bstra		Silt (%) Clay (%)	0 0	0 90	0 10	0 0	0 0
Su		Muck (%)	70	0	45	60 25	60
		Detritus (%) Dreissenid Presence	20 Live	3 Not Detected	35 Shells Only	35 Not Detected	40 Shells Only
		FIESEIICE	LIVE	NUL DELECIEU	Shelis Only	Delected	

Table 6. (Continued) Environmental data collected at each site in the Lake St. Clair watershed.

		LSC-LTC-01	LSC-MSO-01	LSC-PKC-01	LSC-PKC-02	LSC-PCR-02	LSC-PCR-03
Site	era		Moison				
Č	Waterbody	Little Creek	Creek	Pike Creek	Pike Creek	Puce River	Puce River
	<i>T. parvum</i> Presence	Live	Live	Live	Shells Only	Shells Only	Live
Its	Length of						
men	Reach (m) Min Width of	20	60	20	100	84	34
Search Area Measurements	Reach (m)	19	34	10	13	21	10
leas	Max Width of Reach (m)	19	34	15	16	21	10
ea N	Avg Width (m)	19	34	13	14	21	10
Are	Max Depth						10
arch	Searched (m) Avg Depth	1.15	1.10	1.00	1.10	1.10	
Sea	Searched (m)	0.75	0.88	0.79	0.95	0.80	
	Water Clarity (m)	0.19	0.302	0.225	0.195	0.08	0.11
	Water Velocity						
	(m/s)	0.005	0.044	0	0.025	0.003	0.008
	Stream Shading	Partly Open	Open	Partly Open	Partly Open		Open
	Algal Growth Water	Present	Abundant	Present	Present		Absent
	Temperature						
ts	(°C) Conductivity	24.59	28.90	25.54	23.75	24.73	25.94
YSI Measurements	(us/cm)	442.3	425.8	836.0	1038.0	651.0	694.0
urer	ODO (%)	55.7	128.3	43.5	26.7	42.2	37.1
eas	ODO (mg/L)	4.64	9.90	3.54	2.25	3.41	2.94
Ň	рН	7.76	8.37	7.71	7.54	7.57	7.40
۶,	Salinity (psu)	0.21	0.19	0.40	0.53	0.32	0.33
·	TDS (mg/L)	289.000	257.658	537.927	691.497	431.651	442.556
	Turbidity (FNU)	20.00	15.79	14.98	18.00	134.62	8.62
Е <u>с</u>	Riffle (%) Pool (%) Bun (%)	0	0	0	0	0	0
Stream	Pool (%)	0	100	100	0	100	0
No.	Run (%) Flat (%)	0 100	0 0	0 0	0 100	0 0	100 0
	Bedrock (%)	0	0	0	0	0	0
uo	Boulder (%)	0	0	0	0	0	0
sitic	Rubble (%)	0	5	0	0	0	0
odu	Gravel (%)	0	5	12	5	2	0
Substrate Composition	Sand (%)	0	20	7	10	3	40
rate	Silt (%)	0	0	0	0	0	20
bsti	Clay (%)	5	5	17	20	0	0
Su	Muck (%)	80	55	42	35	85	40
	Detritus (%)	15	10	22	30	10	0
	Dreissenid Presence	Live	Not Detected	Live	Live	Live	Shells Only
	110301106			LIVO	LIVO		Choile Only

Table 6. (0	Continued)	Environmental	data collected	at each site in	the Lake St.	Clair watershed.

Site Details		Site Code	LSC-PCR-04	LSC-PCR-05	RS-02	RS-03	RS-05
Site	etall						
ů, č	ž	Waterbody	Puce River	Puce River	Ruscom River	Ruscom River	Ruscom River
		<i>T. parvum</i> Presence	Live	Live	Shells Only	Not Detected	Not Detected
Its		Length of			•		
men		Reach (m) Min Width of	95.0	48.0	105.5	33.0	79.5
Search Area Measurements		Reach (m)	15	8	2	9	2
eas		Max Width of	10	10	4	0	10
a M		Reach (m)	18 17	10	4	9 9	10 8
Are		Avg Width (m) Max Depth	17	8	3	9	0
rch		Searched (m)	1.0	1.10	43.0	94.0	1.5
Sea		Avg Depth Searched (m)	0.5	0.7	38.0	70.0	1.2
		Water Clarity					
		(m) Water Velocity	0.138	0.146	0.146	0.143	0.375
		(m/s)	0.002	0	0.101	0.039	
	St	tream Shading	Open	Partly Open	Open	Partly Open	Open
	1	Algal Growth	Present	Present	Present	Present	Present
		Water Temperature (°C)	25.46	22.30	17.08	18.39	23.43
YSI Measurements		Conductivity (us/cm)	732.0	796.0	641.0	599.0	249.7
rem		ODO (%)	65.7	28.0	84.7	79.5	113.8
asu		ODO (mg/L)	5.36	2.44	8.15	7.42	9.69
Me		рН	7.81	7.58	7.98	7.80	8.85
γSI		Salinity (psu)	0.35	0.41	0.37	0.34	0.12
		TDS (mg/L)	472.354	545.840	490.586	445.636	167.823
	Т	urbidity (FNU)	30.12	31.38	37.67	48.72	7.01
_	<u>V</u>	Riffle (%)	0	0	0	0	0
Stream	rphology	Pool (%)	0	100	0	0	0
Str	Morp	Run (%)	0	0	100	100	0
	≥	Flat (%)	100	0	0	0	100
~		Bedrock (%)	0	0	0	0	0
itior		Boulder (%)	0	0	0	0	0
isoc		Rubble (%)	0	0	10	10	0
lmo		Gravel (%)	5	3	20	15	5
Substrate Composition		Sand (%)	5	0	20	10	95
strat		Silt (%)	0	0	10	5	0
sqn		Clay (%)	35	0	20	30	0
S		Muck (%)	45	87	15	10	0
		Detritus (%) Dreissenid	10	10	5	20	0
		Presence	Not Detected	Shells Only	Not Detected	Not Detected	Live

Table 6. (Continued) Environmental data collected at each site in the Lake St. Clair watershed.

		RS-06	LSC-RUS-07	LSC-RUS-08	LSC-RUS-09	LSC-TIL-01	LSC-TIL-02
Site							
<u>ہ</u>	waterbody	Ruscom River	Ruscom River	Ruscom River	Ruscom River	Tilbury Creek	Tilbury Creek
s	<i>T. parvum</i> Presence Length of	Live	Not Detected	Not Detected	Not Detected	Live	Shells Only
ment	Reach (m) Min Width of	53.5	140.0	237.5	160.0	32.0	15.0
asure	Reach (m) Max Width of	3	5	1	2	3	20
Me	Reach (m)	8	5.5	5	5	30	20
vrea	Avg Width (m)	4	5.5	3.5	3	4	20
Search Area Measurements	Max Depth Searched (m) Avg Depth	1.25	0.77	0.85	0.55	1.10	1.15
Sea	Searched (m)	1.00	0.55	0.50	0.35	0.75	0.75
	Water Clarity (m)	0.12	0.096	0.153	0.098	0.22	0.198
	Water Velocity (m/s)	0.010	0.202	0.433	0.058	0.011	0.000
	Stream Shading	Open	Dense	Partly Open	Partly Open	Partly Open	Open
	Algal Growth	Absent	Absent	Present	Abundant	Present	Present
	Water Temperature (°C)	25.45	22.87	23.39	20.42	27.03	24.10
YSI Measurements	Conductivity (us/cm)	778.0	686.0	726.0	628.0	813.0	621.0
rer	ODO (%)	128.2	80.9	92.5	85.2	90.5	43.2
eası	ODO (mg/L)	10.46	6.94	7.86	7.66	7.17	3.63
Ň	pН	8.4	8.02	8.14	7.93	8.07	7.49
ΥS	Salinity (psu)	0.38	0.35	0.37	0.34	0.38	0.31
	TDS (mg/L)	501.857	464.675	487.254	447.075	507.375	410.558
	Turbidity (FNU)	27.64	64.47	31.76	41.50	13.88	88.25
_	Riffle (%)	0	0	30	5	0	0
Stream	Pool (%)	0	0	10	0	20	0
Str	Riffle (%) Pool (%) Run (%) Flat (%)	50	100	60	95	0	0
	1 141 (70)	50	0	0	0	80	100
~	Bedrock (%)	0	0	0	0	0	0
tior	Boulder (%)	0	2	0	0	0	0
isoc	Rubble (%)	5	3	5	0	0	0
dmg	Gravel (%)	10	10	15	10	0	5
Substrate Composition	Sand (%)	10	55	25	30	0	5
trat	Silt (%)	10	0	0	10	0	0
sqn	Clay (%)	0	30	50	15	0	0
S	Muck (%)	45	0	0	20	80	40
	Detritus (%)	20	0	5	15	20	50
	Dreissenid Presence	Not Detected	Not Detected	Not Detected	Not Detected	Live	Shells Only

Table 6. (Continued) Environmental data collected at each site in the Lake St. Clair watershed.

		Site Code	LER-EVC-01	LER-LYN-01	LER-SDK-01	LER-STO-01	LER-WDC-01
Site	Details				Sandusk	Stoney	
		Waterbody	Evans Creek	Lynn River	Creek	Creek	Wardell Creek
		T. parvum Presence	Not Detected				
nents		Length of Reach (m) Min Width of	20	33	27	83	75
Isurei		Reach (m) Max Width of	10		30		22
Search Area Measurements		Reach (m)	13	70	32	45	30
Are		Avg Width (m) Max Depth	12				26
arch /		Searched (m) Avg Depth	1	0.85	1.05	0.7	1
Sea		Searched (m)	0.80	0.85	1.00	0.58	0.90
		Water Clarity (m)	0.26		0.07	0.48	0.35
		Water Velocity (m/s)	0.033	0.000	0.011	0.004	0.006
	St	ream Shading	Open	Partly Open	Open	Partly Open	Open
	r —	Algal Growth	Present	Present	Present	Abundant	Abundant
"		Water Temperature (°C)	23.51	20.08	26.05	22.40	25.36
YSI Measurements		Conductivity (us/cm)	361.8	680.0	484.1	393.5	295.8
Inter		ODO (%)	66.4	47.6	109.5	93.5	110.5
easi		ODO (mg/L)	5.54	4.33	8.84	8.07	9.10
ž		рН	7.7	7.82	8.26	8.31	8.17
ΥS		Salinity (psu)	0.18	0.37	0.23	0.20	0.14
		TDS (mg/L)	243.319	487.958	308.717	269.245	191.295
	Т	urbidity (FNU)	11.08	3.52	81.38	15.14	12.70
c	vgc	Riffle (%)	0	0	0	0	0
Stream	hol	Pool (%)	0	100	0	100	0
Str	Morphology	Run (%)	100	0	100	0	100
	≥	Flat (%)	0	0	0	0	0
~		Bedrock (%)	0	0	0	10	0
tior		Boulder (%)	0	0	0	0	0
osi		Rubble (%)	0	0	0	10	0
dmo		Gravel (%)	0	0	5	10	0
Substrate Composition		Sand (%)	0	0	0	0	20
trat		Silt (%)	0	0	0	5	0
sqn		Clay (%)	5	0	10	0	5
ō		Muck (%)	60	60	70	30	65
		Detritus (%) Dreissenid	35	40	15	35	10
		Presence	Live	Not Detected	Shells Only	Live	Shells Only

Table 7. Environmental	data collected at eac	h site in the Lake	Erie watershed.

	s	Site Code	LON-SPC-04	LON-SPC-05
Site	etal			
6	ו ב	Waterbody	Spencer Creek	Spencer Creek
		T. parvum		
s	Presence ♀ Length of		Not Detected	Not Detected
ent	Reach (m) Min Width of Reach (m) Max Width of Reach (m)		101	46
rem				
Inst			15.5	2.0
Mea			17.5	6.0
Search Area Measurements	Avg	Width (m)	16.5	4.0
٩٢	I	Max Depth		
arch		arched (m) Avg Depth	1.25	1.1
Sea		arched (m)	1.05	1.00
··		ater Clarity		
	Wat	(m) er Velocity	0.290	0.222
	Wat	(m/s)	0.026	0.047
	Stream	m Shading	Partly Open	Open
	Alg	gal Growth	Absent	Absent
		Water		
	Те	mperature (°C)	15.99	16.64
nts	Co	onductivity	10.00	10.01
mer	(us/cm)		809.0	833.0
YSI Measurements		ODO (%)	85.6	91.3
easi	0	DO (mg/L)	8.41	8.87
Ň		рН	8.20	8.25
ΥS	Sa	linity (psu)	0.49	0.49
	٦	DS (mg/L)	635.315	644.299
	Turb	idity (FNU)	17.4	15.0
_ i	λ <u>β</u>	Riffle (%)	0	0
elo.		Pool (%)	0	0
Stream		Run (%)	0	10
2	ž	Flat (%)	100	90
	В	edrock (%)	0	0
uo		oulder (%)	0	0
siti		Rubble (%)	0	0
npc		Gravel (%)	0	0
Cor		Sand (%)	0	5
Substrate Composition		Silt (%)	10	0
stra		Clay (%)	85	85
Sub		Muck (%)	0	5
	ח	etritus (%)	5	5
		Dreissenid		
		Presence	Not Detected	Not Detected

Table 8. Environmental data collected at each site in the Lake Ontario watershed.

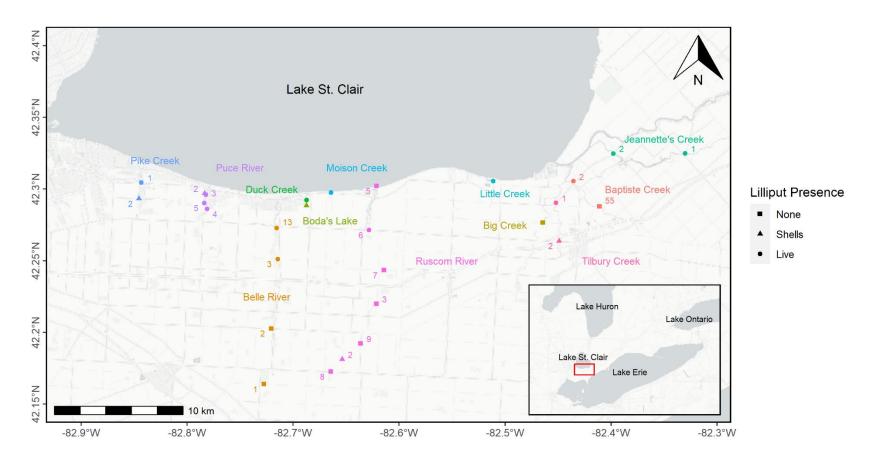


Figure 1. Sites sampled in the Lake St. Clair watershed in 2022. Sites are labelled with the site code suffix for sites in waterbodies containing more than one site; refer to Table 1 for the full site code. Map tiles by CartoDB, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

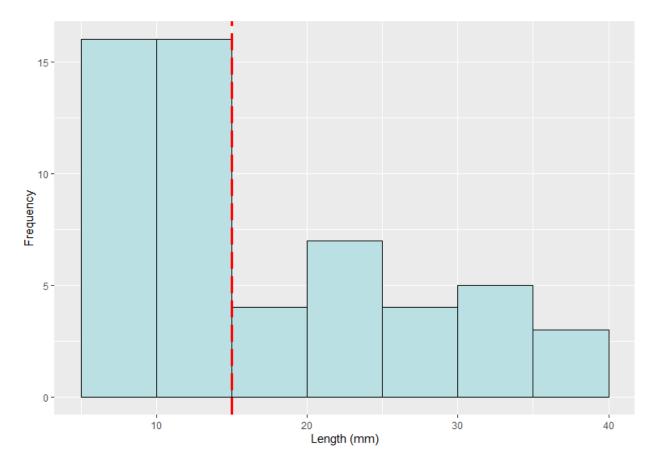


Figure 2. Length frequency of *Toxolasma parvum* (Lilliput, n = 55) found at 14 sites in the Lake St. Clair watershed. The dashed vertical line represents the division between *T. parvum* juveniles (<15.0 mm) and adults (\geq 15.0 mm).

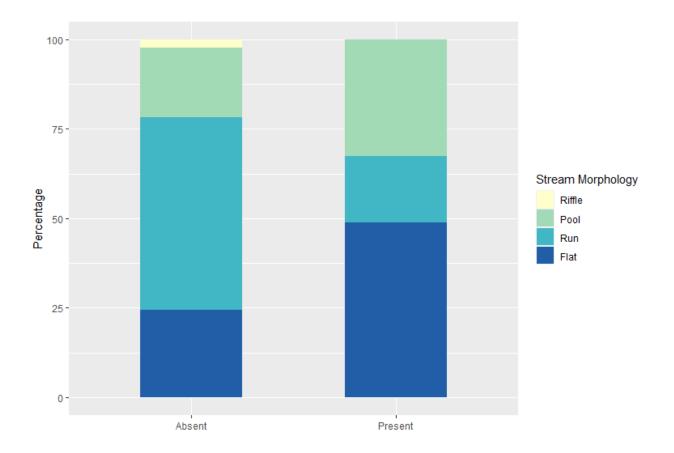


Figure 3. Comparison of mean percentage of riffle, pool, run, and flat stream morphology across sites where *Toxolasma parvum* (Lilliput) was present (live or shells) and absent.

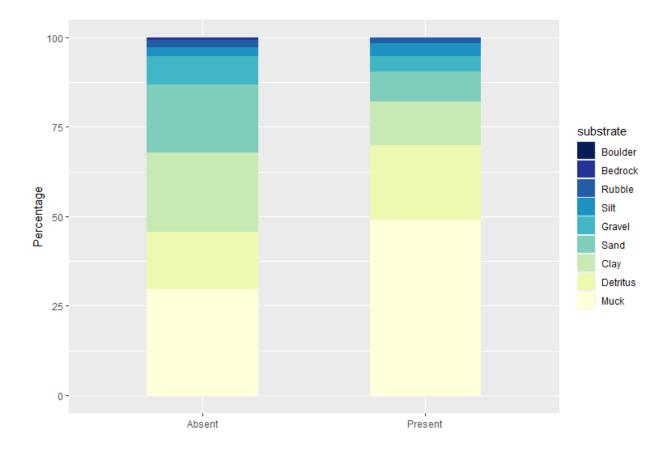


Figure 4. Comparison of mean percentage of substrate across sites where *Toxolasma parvum* (Lilliput) was present (live or shells) and absent.

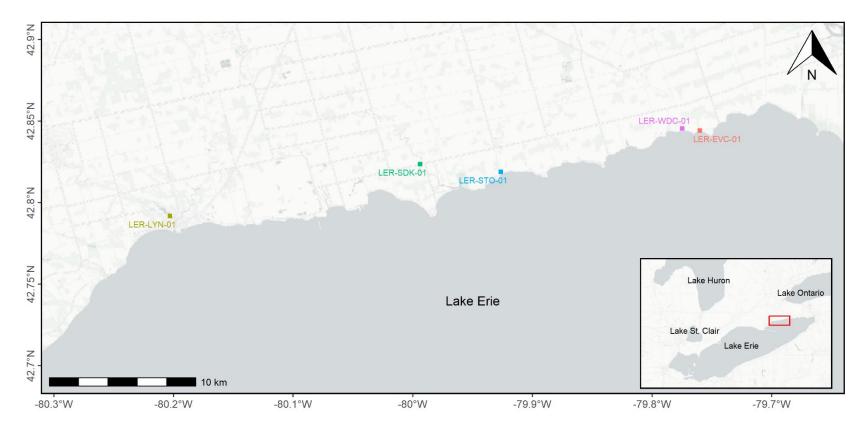


Figure 5. Sites sampled in the Lake Erie watershed in 2022. Map tiles by CartoDB, under CC BY 3.0. Data by OpenStreetMap, under ODbL.

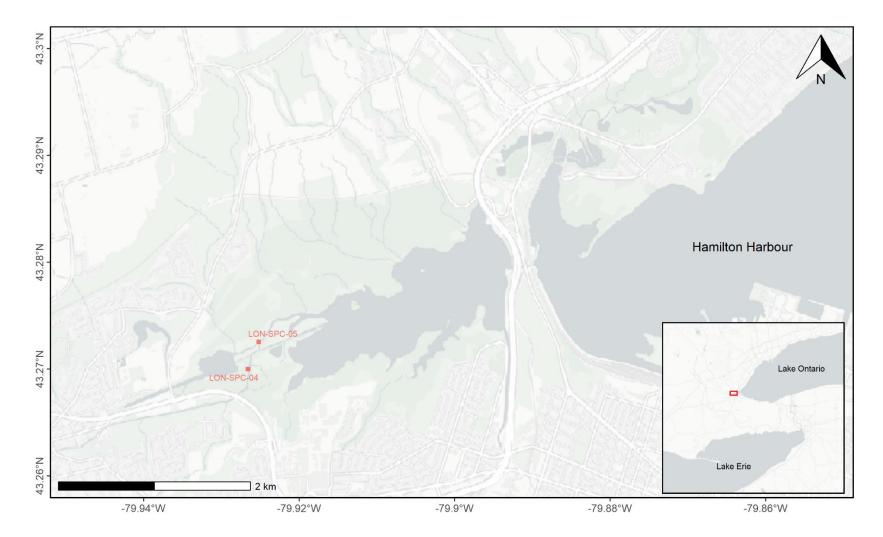


Figure 6. Sites sampled in the Lake Ontario watershed in 2022. Map tiles by CartoDB, under CC BY 3.0. Data by OpenStreetMap, under ODbL.