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ABSTRACT 

Marcaccio, J.V., Gardner Costa J., and Midwood J.D. 2023. Use of remote sensing to 

track changes to fish habitat in a modified wetland. Can. Tech. Rep. Fish. Aquat. 

Sci. 3501: viii + 38 p. 

 

Development and restoration works modify aquatic habitat and often require 

monitoring by proponents to ensure projects do not cause undue harm to fishes and their 

habitat. With traditional field surveys, areal cover of habitat can be difficult to ascertain 

and cannot be sampled retroactively. With remote sensing, analysts can easily identify 

changes in fish habitat using historic habitat imagery before projects are undertaken to 

assess pre-intervention conditions. In this document we show how remote sensing can 

be used to delineate changes to fish habitat following modification of a wetland in Lake 

Ontario. Even though our work started a decade after modification, we estimated both 

pre- and post-construction habitat area using historic, high resolution (<5m pixel) image 

archives. Created ponds see significantly more aquatic habitat after construction and no 

significant changes thereafter, though the composition of wetland species in these ponds 

is different than similar undisturbed ponds. Summer imagery requires a more complex 

workflow but can describe species within habitat types, while spring/fall workflows are 

rapid but can only identify broad land cover categories. Results between the two methods 

are difficult to compare so one method/seasonality should be maintained for consistent 

monitoring. These workflows can allow for rapid discrimination of aquatic habitat without 

requiring direct field observations and can be applied for historical and future monitoring.  
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RÉSUMÉ 

Marcaccio, J.V., Gardner Costa J., and Midwood J.D. 2023. Use of remote sensing to 

track changes to fish habitat in a modified wetland. Can. Tech. Rep. Fish. Aquat. 

Sci. 3501: viii + 38 p. 

 

Les travaux d’aménagement et de restauration modifient l’habitat aquatique et 

nécessitent souvent que les promoteurs effectuent un suivi pour de s’assurer que les 

projets ne nuisent pas aux poissons et à leur habitat. Avec les relevés sur le terrain 

traditionnels, il peut s’avérer difficile de déterminer la couverture de l’habitat et de 

l’échantillonner de manière rétroactive. Grâce à la télédétection, les analystes peuvent 

facilement déterminer les changements dans l’habitat des poissons en utilisant les 

anciennes images de l’habitat avant que les projets ne soient mis en œuvre, et ce, dans 

un souci d’évaluer les conditions préalables aux interventions. Dans ce document, nous 

montrons de quelle façon on peut utiliser la télédétection pour déterminer les 

changements dans l’habitat du poisson à la suite de modifications d’une zone humide 

dans le lac Ontario. Même si notre travail a commencé une décennie après les 

modifications, nous avons estimé la superficie de l’habitat avant et après la construction 

au moyen d’archives d’anciennes images à haute résolution (<5/m pixel). Les étangs 

créés présentent un habitat aquatique beaucoup plus important après la construction et 

aucun changement important par la suite, bien que la composition des espèces de zones 

humides dans ces étangs sont différentes de celle d’étangs similaires non perturbés. 

L’imagerie en été nécessite un flux de travail plus complexe, mais elle permet de décrire 

les espèces dans les types d’habitats; les flux de travail au printemps et en automne sont 

quant à eux rapides, mais ne permettent de déterminer que les grandes catégories de 

couverture terrestre. Il est difficile de comparer les résultats des deux méthodes — c’est 

pourquoi il est préférable de conserver une seule méthode et une seule saison pour 

assurer un suivi cohérent. Ces flux de travail peuvent permettre de distinguer rapidement 

l’habitat aquatique, sans que l’on ait à effectuer des observations directes sur le terrain. 

On peut également les appliquer aux fins des travaux de suivi passés et futurs.  
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INTRODUCTION 

Diverse aquatic vegetation communities in coastal wetlands support a diverse fish 

community (Croft and Chow-Fraser 2007; Cvetkovic et al. 2010). Emergent, floating, and 

submerged aquatic vegetation within these systems provide ecosystem services by 

stabilizing sediment, limiting erosion, filtering nutrients from the surrounding watershed, 

producing oxygen, and providing essential habitat for a wide variety of aquatic organisms, 

including fish (Costanza et al. 1997; Wei et al. 2004; Lacoul and Freedman 2006; Kiviat 

2013). Fish utilize aquatic vegetation throughout their life history for spawning, nursery, 

or foraging (Jude and Pappas 1992) and factors such as the morphology of the vegetation 

(Dibble et al. 1997; Cvetkovic 2008), its density (Jacobus and Webb 2005; Midwood and 

Chow-Fraser 2012), and dominance of a particular species (Trebitz et al. 2009) may all 

influence the community composition and abundance of fish. Despite the importance of 

aquatic vegetation for fishes, many wetlands in the Laurentian Great Lakes, particularly 

those in Lakes Ontario and Erie, are degraded due to anthropogenic disturbances (Chow-

Fraser 2006; Trebitz et al. 2007), resulting in lower fish species richness and dominance 

of more degradation-tolerant fishes (Seilheimer and Chow-Fraser 2007; Bhagat et al. 

2007). It is therefore important to ensure that remaining wetland habitats are maintained 

and, where possible, restored in such a way to provide sufficient habitat quality and 

quantity for fish and other aquatic species (Turko et al. 2021; Alofs and Jackson 2014).  

The Fish and Fish Habitat Protection Program (FFHPP) at Fisheries and Oceans 

Canada is responsible for reviewing proposed works or activities that may impact fish and 

fish habitat to ensure any in-water activities are in compliance with the Fisheries Act and 

the Species at Risk Act. When a project may result in the harmful alteration, disruption, 

or destruction of fish habitat or the death of fish, there is often a requirement for 

implementing offsetting measures to counterbalance these impacts. Measures to offset 

may include: habitat restoration or enhancement, habitat creation, chemical or biological 

manipulations, or a limited contribution of elements that are complementary (e.g., data 

collection). Regardless of the approach undertaken, the offset should follow established 

guiding principles and thus should: support fisheries management objectives with a 

priority of restoring degraded habitat; be scaled to match the adverse effects of the 

activity; provide additional benefits beyond the works themselves; and be self-sustaining 

over the long term or at minimum comparable in duration to the adverse effects (Fisheries 

and Oceans Canada 2019). For habitat restoration, enhancement, or creation, the 

requirement for self-sustaining conditions necessitates repeated habitat surveys or 

assessments by either the project proponent or FFHPP to confirm that the capacity of the 

habitat to produce and sustain fish is maintained. Given its ability to yield repeatable and 

quantitative assessments of habitat, remote sensing can serve as a useful tool for 

supporting the ongoing assessment of the efficacy of habitat offsetting projects, 

particularly those related to the creation of new habitat.  

Remote sensing refers to the collection of information using airborne or space-

borne sensors; effectively, these are pictures of the Earth’s surface that contain 

information on the amount of electromagnetic radiation that is absorbed or reflected by a 
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given surface feature (Marcaccio et al. 2021). These features can be classified using both 

manual and automated methods based on differences in their absorption or reflectance. 

Specifically for aquatic habitat, methods have been developed to classify different types 

of wetlands (Bourgeau-Chavez et al. 2015), different morphologies of aquatic vegetation 

(e.g., emergent and floating; Midwood and Chow-Fraser 2010), and even specific species 

(e.g., Phragmites australis [Marcaccio and Chow-Fraser 2018] or Myriophyllum spicatum 

[Brooks et al. 2019]). From these maps, information on the distribution, surface area, 

species composition, cover or density, height, and habitat heterogeneity can all be 

extracted and used to characterize aquatic habitat (Marcaccio et al. 2021). When 

mapping is conducted over multiple years of imagery, it can provide an indication of 

changes in the composition or amount of aquatic habitat (Zhao et al. 2013) and rates of 

expansion of species or patches of vegetation (Jung et al. 2017). Such changes in 

mapped aquatic habitat and vegetation have been further linked to changes in fish 

community composition (Midwood and Chow-Fraser 2012) or the abundance of specific 

species (e.g., Yellow Perch [Perca flavescens]; Massicotte et al. 2015). Consequently, 

the application of remote sensing to map aquatic vegetation and determine the extent of 

change in vegetation cover and the amount of aquatic habitat represents an important 

tool for effective management of fish habitat (Dauwalter et al. 2017).  

Given the importance of aquatic vegetation as habitat for fishes, considerable effort 

has gone into developing methods to quantify the extent, density, and composition of 

vegetation within an ecosystem. These efforts include traditional field sampling (Croft and 

Chow-Fraser 2009), the development of statistical models (Tang et al. 2020), as well as 

the noted application of remote sensing technology (Silva et al. 2008; Bourgeau-Chavez 

et al. 2015). While on-site monitoring allows for direct observation of fish species and their 

habitat, it is also labour-intensive and typically synoptic, meaning single snapshots are 

taken that can make it difficult to compare and characterize changes over time. Here we 

demonstrate a complementary tool to traditional assessments that uses remote sensing 

to map fish habitat and its change over time. There are numerous methods available to 

classify land cover types, which are outlined in Marcaccio et al. (2021), but the focus of 

this report is on how the results from a classification can be used by FFHPP or proponents 

to determine the efficacy and persistence of habitat creation efforts.  

Using a habitat offsetting project that involved the creation of a new coastal 

wetland as a model site, we demonstrate how: high-resolution satellite imagery can be 

used to map water and aquatic vegetation; total area of potential fish habitat (i.e., wetted 

area and aquatic vegetation) can be estimated; and changes in the area of habitat and 

types of vegetation cover can be tracked over time. This approach could provide FFHPP 

with a faster, cheaper tool that can be used in conjunction with or as a replacement for 

traditional monitoring to provide information on the status of habitat over time; ensure 

continued compliance with offsetting targets; and can increase the number of projects 

that can be monitored by FFHPP with minimal additional effort. Specifically at our model 

site, our objectives are to: 1) classify land cover features in the spring, summer, and fall 

and validate the accuracy of the classification, 2) quantify the areal coverage of target 
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land cover types at an ecotype and class-specific level, 3) quantify and describe changes 

in land cover, and 4) contrast changes at created ponds with those from local reference 

areas. For the discussion, we interpret the results in the context of how this approach and 

resulting output can be adapted to support FFHPP workflows. 

  

METHODS 

STUDY SITE 

The study was conducted at a coastal wetland complex located in the Bay of 

Quinte (Lake Ontario; Figure 1), an area that allowed us to explore changes in habitat 

before and after a habitat restoration project was completed. Prior to habitat creation 

efforts, large portions of the wetland were dominated by mats of cattails (Typha spp.) that 

were inaccessible, semi-aquatic areas with limited utility as fish habitat. Starting in 2013 

and continuing through 2014, three ponds were dug into the cattails to create fish and 

aquatic habitat as part of an offsetting agreement with Fisheries and Oceans Canada to 

provide compensatory fish habitat and production (Figure 2). For the present report, an 

additional five wetland areas situated within 0.3–5.0 km of the created ponds were 

included in the analyses to compare changes at the offsetting sites with proximate natural 

areas (herein all are referred to as “ponds”). Three of these reference ponds were similar 

to the created ponds since they were surrounded by Typha-dominated emergent 

vegetation, while the remaining two were distinct in that they were more coastal within the 

Bay of Quinte and contain a more traditional gradient of aquatic vegetation shifting from 

meadow dominated areas, then emergent, and finally submerged. Ponds were grouped 

into created, natural, and coastal categories and analyzed both as a group and 

individually. The boundaries of each pond were established prior to any analyses and 

were thus consistent within seasons. There were slight differences between the summer 

and spring/fall pond outlines and thus comparisons were not made between these two 

groups (reason for this are discussed in Appendix).  

Water levels within lake systems can play a larger role in changing aquatic habitat 

area especially for coastal wetlands (Keddy and Reznicek 1986) and, for Lake Ontario, 

water levels are directly controlled by the Moses-Saunders Dam in the St. Lawrence River 

(IJC 2021). The image data used herein spanned nine years with a mean annual water 

level of 74.90 metres above sea level (MASL; range: 74.67–75.26 MASL). There was an 

increase in 2017, which brought water levels up 0.04–0.50 m above the long-term mean 

(Great Lakes Environmental Research Laboratory 2022). Monthly mean water level was 

typically lower in the spring and fall (mean 74.86 MASL, range 74.67–75.11 MASL) 

relative to the summer (mean 75.92 MASL, range 74.97–75.53 MASL).  
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IMAGE DATA ACQUISITION AND CLASSIFICATION 

For this study, we required suitably high-resolution imagery that could delineate 

small differences (~5m or less) in land cover changes over the study site. For this reason, 

we chose to purchase image data from the SPOT satellite constellation from Planet Labs 

Geomatics Corporation (San Francisco, California). These were delivered via FTP 

download from Planet and are also available on the Earth Observation Data Management 

System (EODMS) for Government of Canada use. Details related to the preparation of 

the image data and the classification of the imagery are presented in the Appendix. 

Briefly, image data were acquired from the SPOT-6 satellite (resolution = 6.0 m in the red, 

green, blue, and near-infrared bands plus a 1.5 m resolution panchromatic band) except 

for one SPOT-5 image (resolution = 10.0 m in the red, green, and near infrared bands 

plus a 2.5 m panchromatic band). The specific years of image acquisition were dictated 

by the availability of clear sky imagery for our study region, which resulted in disparate 

dates for imagery among years. All remote sensing analyses were conducted in ArcGIS 

Pro (2.6.2, ESRI, Redlands, California). 

Spring and fall were selected for dedicated water mapping since during these 

seasons only limited submerged or floating aquatic vegetation would be present and 

emergent vegetation would be growing or senescing leaving water more visible. No pre-

construction spring/fall images were available, but post-construction spring (7 May 2015, 

16 April 2016) and fall (23 October 2015, 28 November 2017) images were acquired. A 

simple binary thresholding procedure (i.e., split into areas with or without water) was 

applied to these images using the Otsu method (Liu and Yu 2009) on the infrared band. 

With this approach, we were only interested in mapping the extent of water so we could 

estimate a gain or loss of water within the ponds and their associated channels; an 

accuracy assessment was not undertaken since we manually edited the outputs to only 

include true water polygons (this is a well-established method that can be achieved 

quickly with minimal effort; Figure 3).  

Summer imagery was acquired for more detailed classification of land cover types 

since aquatic vegetation would be at peak growth during this season. Imagery was 

acquired to provide one time period before pond construction (8 July 2010) and two post-

construction (5 July 2014, 1 August 2019). A supervised classification using the Random 

Forest (“Random Trees” in ArcGIS Pro) method was conducted on this imagery using an 

object-based approach (see Marcaccio et al. 2022 for details). Briefly, Random Forest is 

a classification algorithm that builds multiple random “trees” or decision networks, using 

subsets of the input image data and samples, and then takes the majority vote of the trees 

to assign a class. The accuracy of the overall supervised classification and for each 

individual class was determined using a distinct dataset of manually classified objects. 

Target accuracy for the both the overall classification and for each land cover class of 

interest (i.e., aquatic habitat types) was set to 80% (after Aronoff 1985). After 

classification, land cover types were grouped at two levels: 1) ecotype (e.g., terrestrial, 

emergent vegetation, or aquatic) and 2) class (e.g., water, floating vegetation); a full list 

and description of each class presented in Table 1. 
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CLASSIFICATION INTERPRETATION 

To demonstrate how multi-year image classification (thresholding or supervised) 

can be used to explore changes in land cover through time, the area of water and each 

land cover type was calculated for each imagery time period. In this study, we consider 

connecting channels to be a part of the associated pond (water) feature as disconnected 

ponds would not provide suitable habitat or access for larger adult fish. For the spring and 

fall imagery, area of water in the different pond types was compared using a two-way 

repeated measures ANOVA that was implemented in RStudio (version 1.2.1335, RStudio, 

Boston, Massachusetts). Area of water was set as the dependent variable with year, and 

pond type being factors with ponds within a type treated as replicates. A repeated mixed-

measures ANOVA was also conducted that added season (fall vs. spring) as a factor. For 

the summer images, the mean proportional coverage within each pond type (e.g., 

created, natural, and coastal) for the ecotype and class-levels of land cover were 

determined and plotted for each time period. Similar to the changes in water, changes in 

the area of the ecotypes among pond types were compared using a two-way repeated 

measures ANOVA. To determine the type and amount of class conversion among years, 

the classification was converted to polygons and then the “Union” function in ArcGIS Pro 

was used to combine the classification from two years into distinct class conversion pairs 

(e.g., non-water to water or Typha to water to floating) and then the area and proportional 

area for each class conversion pair was calculated (see Appendix for further details). We 

focused our interpretation of changes on the aquatic ecotype classes since these are the 

most relevant for fish habitat.  

RESULTS 

CLASSIFICATION RESULTS – WATER MAPPING 

In spring and fall, area of water in the created ponds ranged from a low of 16.8 ha 

(fall 2016) to a high of 17.4 ha (spring 2016; Table 2). No significant differences among 

created, natural, or coastal ponds per year were noted (two-way repeated measures 

ANOVA, p>0.5); pairwise t-test within pond types did not reveal any significant differences 

within ponds. In the mixed-effects model, seasonality was not a significant factor either. 

Water area within the created ponds increased slightly between the spring of 2015 and 

2016 by 0.22 ha (gain of 1.3%) and was slightly higher in fall 2017 relative to 2015 (0.07 

ha or 0.4%). The natural and coastal ponds showed the same pattern in the spring 

(increases of 0.8% and 0.4%, respectively), but in the fall, while the natural ponds similarly 

increased (1.2%), the coastal ponds showed a slight decrease (-1.1%; Table 2). 
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CLASSIFICATION RESULTS – SUMMER LAND COVER CHANGES 

Classifications at both the ecotype and class levels exceeded the target of 80% for 

overall accuracy with ranges of 91–93% and 87–90%, respectively. For ecotypes, 

accuracies for both aquatic and low marsh ecotypes were consistently above 85%. Within 

the aquatic ecotype, the water class had consistently high classification accuracy (>90%), 

but floating and Nitellopsis-class accuracies were lower (75–92% and 53–77%, 

respectively), more variable among years, and most often confused with each other. A 

more detailed discussion of the accuracy of the classification can be found in the 

Appendix.  

The surface area of each ecotype and class within the ponds among years are 

outlined in the Appendix; however, proportional cover of each ecotype or class is the 

primary focus of the interpretation of the results due to marked differences in the core 

area of each pond and among pond types. There were significant differences by pond 

type in the two way repeated measures ANOVA; only the created ponds showed a 

significant change in aquatic area between 2010 and 2014/2019 (pairwise t-test, p<0.05). 

For ecotypes, between 2010 and 2014, the created ponds produced a considerable 

amount of aquatic habitat (gain of 26.0 ha in 2014); however, following this gain there 

was a significant decrease in aquatic habitat between 2014–2019 . These gains primarily 

reflected the replacement of the emergent ecotype by aquatic habitat which was also 

significantly different (Figure 4). Similar changes were not observed at the natural or 

coastal ponds with total area of aquatic habitat at the natural (range across years 98.9–

103.4 ha) and coastal (range across years 88.0–90.4 ha) remaining comparatively stable 

(i.e., no significant difference based on a two-way repeated measures ANOVA between 

2010–2014 and 2014–2019 Figure 4; Appendix).  

At the class level, aquatic habitat gains were primarily driven by the expansion of 

areas of open water (14.3 ha and 12.6 ha in 2014 and 2019, respectively) and to a lesser 

extent Nitellopsis and floating vegetation (7.4 ha and 0.4 ha, respectively by 2019; 

Appendix). The noted overall decrease in aquatic habitat between 2014 and 2019 was 

mostly driven by a decline in floating vegetation, with water and Nitellopsis classes 

remaining stable (Figure 5; Appendix). Similar reductions in floating vegetation between 

2014 and 2019 were also evident in the natural and coastal wetlands, but here the floating 

vegetation was largely converted to Nitellopsis and thus there was no net decline in 

aquatic habitat (Figure 6). Without pond creation, the Typha class at the coastal and 

natural wetlands was stable through time with increasing areal coverage of Phragmites 

starting in 2014 and continuing into 2019; a similar increase in Phragmites was also 

evident at the created ponds. The proportional cover of aquatic classes in the created 

ponds was distinct with more open water areas and less floating vegetation than the 

natural and coastal ponds (Figure 5; Appendix).   

From an ecotype conversion perspective, the gains in aquatic habitat from 2010–

2014 are clear at the created ponds, driven by increases in the water and Nitellopsis 

classes and, to a lesser extent, the floating vegetation class. These gains were primarily 
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at the expense of the emergent ecotype. The created ponds, however, had greater 

proportional losses at the class level between 2014–2019 than the coastal or natural 

systems where proportional gains or losses were comparatively stable during both time 

periods and represented changes of less than 10% of the total area (in contrast, created 

ponds saw 25–45% changes; Figure 6). Losses of aquatic habitat at the created ponds 

between 2014–2019 were apparent for all three aquatic classes, with the greatest 

proportional change in Nitellopsis shifting to both emergent and terrestrial ecotypes 

(Figure 6). While similar shifts among classes were also evident at the coastal and natural 

ponds, their individual proportional change was low (i.e., <1% of the area).  

 

DISCUSSION 

Remote sensing can provide a quick off-site alternative to field measurements of 

aquatic habitat area and composition. Here we demonstrate how a simple classification 

of water in the spring and fall can provide the amount of area available to fish in natural 

and created ponds. Additionally, using summer imagery and a slightly more complex 

classification method, information on the extent and composition of aquatic vegetation 

within these ponds can be determined. By applying these same approaches over multiple 

years, changes in the extent of fish habitat and changes in the composition of this habitat 

can be determined. For the discussion, we first provide a brief interpretation of the findings 

from the present study with particular focus on the accuracy of the classification, the 

observed land cover changes, and mapping of invasive aquatic plants. We then provide 

a more detailed discussion to provide guidance for habitat managers who may wish to 

request the use of image classification as an offsetting monitoring technique.  

CLASSIFICATION ACCURACY 

Consistent with previous satellite-based classification of aquatic habitat features, 

annual overall accuracies exceeded the target of 80% (Aronoff 1985; Shao et al. 2001). 

Greater variability in accuracy for non-aquatic land cover types is not surprising since: 1) 

these were not the focus of the classification and were thus often masked out of the area 

of interest, and 2) they were typically represented by fewer ground truth points, which 

would make them prone to greater variation in accuracy due to small sample sizes. 

Accuracy assessment of the spring and fall water classification was not possible as the 

data were manually selected after binary thresholding to exclude errors; however, this 

method is widely used and, given the binary nature of the classification, likely yields 

suitable output for a simple estimate of the surface area of water. While not the focus of 

the current works, results here confirm that aquatic habitat features including water and 

vegetation, can be accurately classified using satellite imagery and remote sensing 

techniques.  
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OBSERVED CHANGES – WATER MAPPING  

The habitat creation project mapped herein is primarily linked to ensuring the 

surface area of open water in the system is maintained so that there is not major deviation 

(i.e., <3%) from the as-built conditions. The binary thresholding approach applied to the 

spring and fall imagery directly addresses this target, and found limited interannual 

variation (0.4–1.3%) in area of water among ponds. We explicitly did not compare the 

mapped values to the as-built conditions since these efforts are not meant to assess the 

project itself; rather this limited variation suggests the surface area of water is stable within 

the created ponds.  

Based on the spring imagery, there was no apparent change in aquatic habitat 

within the ponds between 2015 and 2017. While individual ponds did show areal changes 

between image dates, when pooled by pond type these differences were not significant. 

The slight changes in area of aquatics among years and between spring and fall are to 

be expected given natural variations in water levels. Water level fluctuations, both 

seasonally and annually, are natural within the Great Lakes (Hanrahan et al. 2009). In the 

present study, water levels varied by up to 0.44 m during the spring and fall time periods 

(Great Lakes Environmental Research Laboratory 2022), but clearly did not result in a 

marked change in wetted area of the sheltered created ponds. This suggests that for 

these ponds spring and fall imagery can be used interchangeably for future comparisons 

of wetted area. This may not be the case in other systems where wetlands are more 

directly connected to the lake, or where water level fluctuations are not regulated as they 

are in Lake Ontario and can thus be much greater (e.g., Lake Michigan-Huron). 

Understanding the natural water level dynamics within the study system will therefore be 

critical when considering temporal changes in wetted area. Despite this caveat, given its 

relative ease of application and speed of processing of imagery data, binary thresholding 

of spring/fall data is clearly a suitable method for determining wetted area. By applying 

this technique over multiple years, it can serve as a useful tool for tracking changes in 

wetted area in aquatic ecosystems and for supporting the assessment of habitat creation 

projects. 

OBSERVED CHANGES – SUMMER LAND COVER  

The detailed land cover classification approach presented here expands on the 

more simplistic water mapping and provides greater context regarding the type of 

vegetation (and thus habitat conditions) that are present in a system. While not directly 

tied to the assessment of compliance with the terms of the offsetting agreement for these 

ponds, this extension provides more nuance on the potential benefits to the fish 

community from the pond creation work. Several of the land cover features mapped in 

the summer imagery represent functional groupings of vegetation that have been 

previously linked to distinct patterns of use by fishes (e.g., floating vegetation, Typha 

[emergent vegetation], and Phragmites; Jacobus and Webb 2006; Midwood and Chow-

Fraser 2012; Croft-White et al. 2021). While not explored herein, mapping these distinct 

vegetation groups can be used to link the derived habitat maps with existing fish 
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community composition data to determine whether mapped products can be used to 

predict fish assemblages. The relative dominance of different vegetation types can also 

indicate the quality of wetland habitat for fishes (Midwood and Chow-Fraser 2012), which 

can expand project offsetting beyond simple measures of the area of habitat and allow 

connections to be made between the heterogeneity of vegetation within a wetland and 

the richness or productivity of the fish communities it may support. Such a shift in focus 

from quantity of habitat to also the quality of that habitat would help improve offsetting 

efforts and support FFHPP in confirming that the capacity of the habitat to produce and 

sustain fish is being maintained. 

The observed variation in proportional changes among pond types highlights the 

importance of including control ponds (both natural and coastal). By also classifying these 

areas we can explore whether annual changes in land cover type within the created ponds 

are linked to natural processes (i.e., phenology or water level fluctuations; Grabas and 

Rokitnicki-Wojcik 2015) or related to the creation of the ponds themselves (i.e., 

succession, planting; Keddy 2010). Any fluctuations due to Lake Ontario water level 

would be seen most dramatically in vegetation in the coastal ponds due to their high level 

of connectivity, while other natural changes in less-connected areas would be reflected 

in the natural ponds (i.e., changes in precipitation patterns or runoff from adjacent lands). 

These areas thus serve as a control against which to contrast patterns within the created 

ponds. In the present study, the summer classification data show a notable decrease in 

aquatic area at the created ponds from 2014–2019 that is not reflected in the natural or 

coastal ponds. This suggests that observed changes in aquatic habitat composition within 

the created ponds are linked more to processes such as succession than background 

natural variation (i.e., something distinct about the ponds being created is driving a 

change). While the overall aquatic area of the created ponds is less than the coastal and 

natural ponds, the observed decrease (9–14% of the area of aquatic classes) still 

represents a decline in the area of fish habitat and therefore continued monitoring is 

required to assess whether this variability stabilizes as the ponds age or if high rates of 

variation in aquatic habitat are to be expected in created ponds. Such a determination will 

inform expectations for future habitat creation projects as well as associated maintenance 

plans for these areas.  

INVASIVE AQUATIC PLANTS 

The establishment and spread of invasive aquatic plants (AIP) can potentially 

impact the quality of fish habitat in aquatic ecosystems (Schultz and Dibble 2012; 

Bradshaw et al. 2015). In the present study, the classification was able to map two AIP, 

Nitellopsis and Phragmites, with variable levels of accuracy; both AIP were present in the 

created, natural, and coastal ponds. Nitellopsis has been present in the Great Lakes 

region for over 40 years; however, no assessment of its potential impacts on fish and fish 

habitat has been undertaken, despite evidence for negative effects on both invertebrates 

and wetland water quality (Harrow-Lyle and Kirkwood 2020; Ginn et al. 2021). Phragmites 

has similarly been present in the Great Lakes region for decades, with documented high 
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rates of expansion, particularly in areas of disturbance (Wilcox et al. 2003). The potential 

impact of Phragmites on fish and fish habitat has received some attention with both 

evidence for negative consequences for some fish species (e.g., mummichog [Fundulus 

heteroclitus]; Able and Hagan 2003) and use by some fishes when it is flooded (Croft-

White et al. 2021). Due to uncertainty around impacts on fish and fish habitat from these 

species, further research is warranted, and remote sensing techniques can provide a 

complementary data source for such efforts. 

The temporal classification results presented herein offer insight into the expansion 

of Nitellopsis and Phragmites within the study area. Nitellopsis was noted to be expanding 

its areal extent in both the coastal and natural ponds, while Phragmites first appeared in 

the 2014 imagery and had increased by 2019. An outstanding question about Phragmites 

as it pertains to fish habitat relates to the extent to which it expands and converts aquatic 

areas to more terrestrial ecotypes (Croft-White et al. 2021; Gilbert et al. In Prep.). This 

may lead to a net reduction in fish habitat, and remote sensing approaches should be 

used to explore and quantify the extent and rate of this conversion. While Phragmites has 

been a frequent target of remote sensing-based mapping (Jung et al. 2017; Marcaccio 

and Chow-Fraser 2018), to our knowledge this is the first demonstration of the potential 

for summer imagery to be used to map Nitellopsis. As such, the spectral attributes of 

Nitellopsis are not described in the remote sensing literature and it appears to be most 

readily confused with other floating vegetation types (e.g., lilies). Summer imagery seems 

to hold promise for mapping this species, but more work is required to enhance 

separability of this non-native AIP; further analyses are also warranted given its noted 

expansion within the study area and in other freshwater systems (Ginn et al. 2021). Such 

mapping of Nitellopsis can help to inform not only its extent and rate of expansion, but 

also contribute to our understanding of its potential impacts on fish and fish habitat.  

APPLICATION OF REMOTE SENSING FOR PROJECT MONITORING 

Information on the extent of fish habitat is required to ensure habitat creation or 

offsetting works are in compliance with authorized area-based targets. While not all 

projects will require more detailed information on the composition of the habitat, those 

that include area-based targets for vegetation planting or removal of invasive aquatic 

plants as part of their authorization would benefit from this type of information. The 

workflows presented here as well as those outlined in Marcaccio et al. (2021) can be used 

by FFHPP to support the incorporation of image classification into the monitoring section 

of a Fisheries Act authorization offsetting plan. This could help to reduce the cost for 

proponents while also providing FFHPP with accurate and spatially comprehensive 

information on the compliance of these works. 

One of the main benefits of using remote sensing techniques is that they can 

contribute to site observations without requiring field access. Habitat surveys for extent 

and composition have historically involved on-site mapping, which may require repeated 

site visits to validate findings or track changes through time. These types of surveys allow 

for the direct observation of the type of habitat present at a site (e.g., vegetation species, 
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substrate composition, water chemistry) as well as observations of fish species that are 

associated with these habitats. Such surveys, however, can be costly and time-

consuming, and access to a site may be limited due to its remote location or land 

ownership. When measuring the extent of habitat features in the field, estimates may be 

biased by limited GPS positional accuracy (particularly when tall buildings or trees are 

present; Kong 2011). Finally, field surveys cannot be done retrospectively and as such 

pre-modification information may be limited or may not capture historic changes and 

fluctuations to the natural system. Given these potential challenges, adopting a remote 

monitoring approach can reduce costs, simplify workflows, and allow for the 

establishment of longer-term records all while providing accurate information on 

composition and extent of aquatic habitat. Blending field-based surveys with remote 

sensing techniques is optimal since initial field work can provide more detailed site-based 

information on habitat and fish composition, which can then inform the development of 

more accurate image classifications (Millard and Richardson 2015). After a site-level 

survey has been completed, future works may only require remote monitoring of the 

habitat to note any significant changes to its extent or composition. 

CONSIDERATION FOR IMPLEMENTING A REMOTE SENSING PROJECT 

If remote monitoring of a project is deemed acceptable, there are some important 

technical considerations that should be resolved through a review of relevant publications 

(e.g., Daulwater et al. 2017; Marcaccio et al. 2021) or discussions with those familiar with 

remote sensing techniques. First, when selecting appropriate imagery for habitat 

monitoring it is important to acquire imagery at a sufficient resolution to allow mapping of 

the features of interest. For the present work, we used medium-high resolution imagery 

(1.5–6.0 m resolution), which allowed us to map features of interest but at a lower cost 

than imagery that has sub-meter resolution Depending on the project goals, lower-

resolution imagery that is freely available (e.g., Landsat imagery, 30 m resolution) may 

be appropriate; however, most projects will require higher-resolution commercial image 

data like that used in the present works. While dependent on project specifications, the 

cost of this type of imagery is not necessarily prohibitive (as little as $200 for 25km2) and 

if purchased by DFO can be freely transferable within the department through EODMS 

(eodms-sgdot.nrcan-rncan.gc.ca). By exploring image repositories such as EODMS, 

Planet Labs’ web tools (planet.com/trial), and Maxar/DigitalGlobe’s viewer 

(discover.digitalglobe.com), analysts can also identify pre-construction imagery, which, 

depending on the satellite system, may include 10–35 years of historical images. Much 

of these data are available under standing offer within the federal government and as 

such are relatively easy to acquire.  

A second important consideration is the seasonal timing of image collection. The 

present study demonstrates that if only the area of water is required, then cloud- and ice-

free image data from spring or fall will provide the best results since vegetation coverage 

is minimized. In contrast, projects interested in aquatic vegetation species should use 

late-summer imagery since growth will be close to its peak and thus allow the most 

file:///C:/Users/MarcaccioJ/Documents/Publications/Tech%20Reports/QuinteMapping/PostEditng/eodms-sgdot.nrcan-rncan.gc.ca
file:///C:/Users/MarcaccioJ/Documents/Publications/Tech%20Reports/QuinteMapping/PostEditng/planet.com/trial
file:///C:/Users/MarcaccioJ/Documents/Publications/Tech%20Reports/QuinteMapping/PostEditng/discover.digitalglobe.com
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accurate estimates of their peak areal cover. Separation among plant types may also be 

most accurate during the summer when at peak growth, although this can be species-

specific (e.g., Bourgeau-Chavez et al. 2015, Rupasinghe and Chow-Fraser 2019). Given 

the potential for shifts in vegetation and other land cover types among seasons, collection 

of similarly timed imagery is essential for comparison of land cover among years.  

WHAT TO REQUEST FOR REPORTING 

From a reporting perspective, in addition to project-specific needs, which may 

include the extent or changes in the extent and composition of habitat, there are two key 

elements presented in this report that should also be included in any report. The first is 

an assessment of the accuracy of the classification using an independent dataset, which 

includes the a priori selection of accuracy targets for both the overall classification and, 

more importantly, the classification accuracy of the target land cover type. This 

assessment is essential since it ensures the resulting maps reflect the conditions on the 

ground. Here we used a minimum accuracy target of 80%, but a higher value may be 

desirable, particularly if the project is focused primarily on one land cover type (e.g., 

mapping Phragmites to measure control efforts, can likely increase this minimum 

accuracy to 85% after Chow-Fraser et al. 2018). High land cover-level classification 

accuracy is also essential since, when comparing the classifications from two different 

images or time periods, the accuracy of this comparison is the product of the accuracy of 

each individual classification (Tung and LeDrew 1988; Serra et al. 2003). So, if the 

classification of a land cover type in each of two time periods is 80%, the accuracy of any 

comparison between these time periods will only be 64%. Ensuring high initial accuracies 

is therefore essential for developing good-quality comparisons. For example, in the 

present work, we were willing to accept reduced accuracy of non-target classes (e.g., 

terrestrial land cover types) since our target ecotype had high accuracy (>90%). Without 

a presentation of the accuracy of any classification that is based on an independent 

dataset (i.e., distinct from the data used to train the classification), the results will be of 

unknown validity. 

The second key reporting element is the inclusion of control areas, which is most 

important when a temporal comparison at a site is desirable. In these instances, including 

control areas provides an indication of the background variation in the focal system, which 

may be unrelated to any interventions at the site and more linked to natural processes or 

temporal misalignments in image acquisition. Since the goal of many habitat offsetting 

projects is to create functional aquatic habitat approximating natural conditions, 

comparing the created areas to control sites is essential. For example, in the present 

study, there was considerably more proportional class conversion in the created ponds 

compared to the coastal and natural ponds. This is most relevant for the period from 

2014–2019 since changes at the created ponds in the previous time period were driven 

by the creation of the ponds themselves. Class changes in the coastal and natural 

systems were likely driven by a combination of natural water level variation, vegetation 

succession, and errors in the class-level classification. For the created ponds, while 
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similar factors were likely at play, the stark difference in magnitude (i.e., <10% variation 

in the coastal and natural ponds vs >20% variation in the created ponds) suggests that 

vegetation composition in the created ponds was less stable and these systems may not 

be functioning like natural ponds yet. While we did not seek to determine the exact cause 

of the proportional differences, such discrepancies between the created and natural areas 

would not be apparent without the inclusion of control sites.  

CONCLUSIONS 

Remote sensing can be a key tool in describing changes to aquatic habitat features 

that are relevant to fish species. With adequate imagery and historic image archives 

projects can be observed well before any works are conducted even if prior field 

observations were not made. The methods can be continuously applied when new 

imagery is available without repeated site visits to track the evolution of aquatic habitat 

within the project area. Based on the present study, summer image data can be used to 

delineate wetland plant species if these are of interest to a project. In situations where 

only aquatic habitat area (i.e., wetted area) is required, spring or fall image data can be 

leveraged using a faster binary thresholding approach. For future projects assessed by 

FFHPP, we encourage the use of remote sensing as a complementary component of 

monitoring programs given the type of information that can be extracted (e.g., habitat 

area) and relative ease with which it can be implemented. These works can be requested 

for the proponent to undertake (i.e., via a consulting company or internally) or, in the case 

of large projects and/or those with related works and goals within DFO Science, could be 

conducted within DFO collaboratively between science and regulatory members.  
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Table 1: Descriptions of land cover classes and how they were grouped into higher-levels. 
The delineated class represents the features that were identified during the creation and validation 
of the classification. These are further grouped into the class level, which reflects species or 
functional forms that may reflect fish habitat. Finally, the classes are grouped into distinct 
ecotypes to distinguish overall area of fish habitat (aquatic) from emergent marsh and terrestrial 
ecotypes.  

 

Ecotype  Description Class Description Delineated 
Class 

Description 

Aquatic Land cover classes 
that are potential fish 
habitat 

Water  Water Water with a flat 
surface 

    Wavy 
Water 

Water with waves that 
may break up the 
surface 

  Floating Same as delineated Floating Vegetation with leaves 
primarily floating on 
the surface (e.g., 
Nymphaea spp., 
Nuphar spp., etc.) 

  Nitellopsis Same as delineated Nitellopsis Starry stonewort 
(Nitellopsis obtusa); 
invasive submerged 
species that can 
breach the surface in 
shallow water areas 

Emergent Transitional land cover 
classes between 
aquatic and terrestrial 

Phragmites  Phragmites Common reed 
(Phragmites australis); 
invasive species  

  Typha  Typha Cattails with lighter 
colours 

    “Dark” 
Typha 

Cattails with darker 
appearance – some 
variability in the 
spectral signature of 
this species are to be 
expected 

Terrestrial Natural/anthropogenic 
terrestrial land cover 
classes 

Forest  Trees  

    Shrubs  
  Grass  Grass  
  Urban  Anthropogenic land 

cover classes 
Road  

 



 

21 

Table 2: Areal cover of water (ha) as defined by the water threshold maps from spring or fall, and the areal changes between 
image dates. Spring images represent any growth/expansion of vegetation from the previous year, while fall images will represent 
conditions from the same year. The percent change (both for each and for all ponds of the same types when combined) are shown.  

  Area (ha) Change (ha) Change (%) 

Pond 
Num. 

Pond 
Type Spring 2015 

(May) 
Fall 2015 

(Oct.) 

Spring 
2016 
(Apr.) 

Fall 
2017 
(Nov.) 

Spring 2015 – 
Spring 2016 

Fall 2015 – 
Fall 2017 

Spring 2015 – 
Spring 2016 

Fall 2015 – Fall 
2017 

1  Created 6.02 5.89 6.12 5.94 0.10 0.05 1.7 0.8 

2  Created 4.86 4.27 4.94 4.69 0.08 0.42 1.9 9.0 

3  Created 6.35 6.63 6.39 6.23 0.04 -0.40 0.6 -6.4 

4  Natural  4.36 5.03 4.94 4.64 0.58 -0.39 11.5 -8.4 

5  Coastal  65.21 66.60 65.38 65.66 0.17 -0.94 0.3 -1.4 

6  Natural  52.40 51.68 52.54 52.02 0.14 0.34 0.3 0.7 

7  Natural  44.15 43.41 44.26 45.25 0.11 1.84 0.3 4.1 

8  Coastal  35.02 35.65 35.25 35.50 0.23 -0.15 0.6 -0.4 

          

Overall Created  17.23 16.79 17.45 16.86 0.22 0.07 1.3 0.4 

 Natural  100.91 100.12 101.74 101.91 0.83 1.79 0.8 1.8 

 Coastal  100.23 102.25 100.63 101.16 0.40 -1.09 0.4 -1.1 
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Figure 1: Location of study area (red) within Lake Ontario. 
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Figure 2: Land cover map from 2019 summer image data acquired by SPOT-5 satellite. 
Ponds are numbered, with created ponds (1, 2, 3), natural ponds (4, 6, 7), and coastal ponds (5, 
8).   
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Figure 3: Binary water threshold map from 07 May 2015 using the near-infrared band of 
a SPOT-6 image. As a spring image, this represents any potential overgrowth of vegetation from 
the 2014 season. Considerable speckling (i.e., classification of water when shadow is a more 
likely feature being mapped) is evident in areas outside of the delineated ponds (black dashed 
line) in bottom-right image. Selecting for only large, continuous areas of water shows the true 
water coverage in the right image. 
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Figure 4: Mean proportion of land cover that was classified for each ecotype per pond 
type for the summer images. Created ponds were constructed from 2012–2014 leading to little 
aquatic land cover in the 2010 image for this pond type.
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Figure 5: Mean proportion of land cover that was classified for each class per pond type 
for each summer image. Created ponds were constructed from 2012–2014, hence the dominance 
of the Typha vegetation class. Phragmites was not detected in the 2010 summer imagery, but 
was present in 2014 and had expanded in all pond types by 2019.
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Figure 6: Mean proportional change in aquatic habitat at the class level per pond type between summer images. Areas that did 
not change, changes within non-aquatic ecotypes (e.g., emergent and terrestrial), and aquatic classes that did not change to a different 
ecotype (e.g., conversion from floating to Nitellopsis) are not shown in this figure.
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APPENDIX 

IMAGE DATA PREPARATION AND CLASSIFICATION 

Methods 

Image data preparation 

All spring/fall data were pan-sharpened by the imagery distributor to 1.5 metre 

resolution and georectified on delivery. The summer imagery (including the sole SPOT-5 

image) were pan-sharpened in ArcGIS Pro (2.6.2, ESRI, Redlands, California) using the 

Gram-Schmidt method (Laben et al. 2000) with default parameters for their respective 

satellites (i.e., SPOT-5 and SPOT-6). These data were then manually georectified to 

basemap imagery as they were delivered ungeoreferenced; this resulted in a slight shift 

in image pixels and therefore a separate pond outline was derived for these data. As a 

result of this slight spatial misalignment, differences in the total area within each pond 

were evident between spring/fall and summer imagery; direct comparisons between 

seasons were thus not undertaken.  

Image classification 

All remote sensing analyses were conducted in ArcGIS Pro (2.6.2, ESRI, 

Redlands, California). For spring/fall imagery, a simple binary thresholding procedure was 

applied in ArcGIS Pro using the Otsu method (Liu and Yu 2009) on the infrared band to 

determine the extent of water. This method creates two classes while reducing within- 

and between-class variance. Thresholding can rapidly generate results with minimal user 

input (only requiring one value to separate two classes) and Otsu-based thresholding is 

entirely autonomous. A downside to this method is that it can produce some speckle (“salt 

and pepper” effect), as small areas of water and naturally darker patches within stands of 

emergent vegetation (including shadows) can be identified as water. To mitigate this 

effect, the data are converted to polygons wherein ponds and their channels become 

contiguous polygons. The speckle can be easily excluded in this manner by manual 

deletion of polygons that appear to be incorrectly classified as water or by filtering out 

polygons that are smaller than some set threshold. 

Supervised classification was conducted on summer imagery using an object-

based approach. The Random Forest (“Random Trees” in ArcGIS Pro) algorithm uses 

training data for known land cover types to teach the computer what class to assign to all 

objects in an image (Pal 2005; Belgiu and Dragu 2016). Image segmentation parameters 

were set independently in each image to maximize the effectiveness of this step (see , 

Table 1A for input parameters). Classification data were validated with a distinct set of 

manually delineated objects (i.e., a different group from the objects used to train the 

classification) and confusion matrices were generated to outline overall and per-class 
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accuracy (Aronoff 1982a, Aronoff 1982b, Aronoff 1985). Overall accuracy describes the 

total number of objects in the validation dataset that were classified correctly, producer’s 

accuracy describes the number of true ground features correctly classified on the map 

(inverse of omission error), and user’s accuracy describes the number of map features 

that truly represent ground features (inverse of omission error). Many studies aim for 

classifications that would achieve an overall accuracy greater than 80% (comparable to 

past wetland classification results; Wei and Chow-Fraser 2007), with individual land cover 

class accuracies for those of interest (in this case, aquatic habitat types) greater than 80% 

(Aronoff 1985). All steps of the Image Classification Wizard in ArcGIS Pro were followed 

except for the final manual reclassification. For an accurate classification, multiple rounds 

of image classification (wherein the input training data were modified or updated based 

on the success or failure of the previous iteration) were required with an average of three 

attempts (range one to seven) per image in order to achieve overall classification 

accuracies over 80%. This type of iterative approach is commonly used in the 

development of classification workflows since it allows the user to add more (or more 

distinct) training data points to better separate classes (San Miguel-Ayanz and Biging 

1996). It is important to note that the validation dataset was not modified or updated at 

the same time as the training data, but rather represented a fixed collection of validation 

objects.  

Georeferenced point or map data of a land cover type that has been confirmed in 

the field are typically required to implement (i.e., train) and confirm the accuracy of (i.e., 

validate) the classification of an image. However, for the present study field data could 

not be acquired due  travel restrictions. Therefore, all training and validation data were 

derived through manual delineation by J. Marcaccio and were informed by past 

experience with remote sensing-based mapping of wetland vegetation in Great Lakes 

wetland systems. The initial number of land cover classes that were manually delineated 

was greater than what was ultimately reported. This was done to allow the classification 

approach to correctly identify similar land cover types that may have unique spectral 

signatures within the image (e.g., wavy water and calm water appear different in imagery 

and were separately classified but then concatenated as “water”; San Miguel-Ayanz and 

Biging 1996). As a result, land cover classes can be organized in a hierarchical structure, 

with the largest number of classes being manually delineated and then concatenated into 

higher-level classes at two nested levels of organization: 1) class (e.g., water, floating 

vegetation), and 2) ecotype (e.g., terrestrial, emergent vegetation, or aquatic; Table 1).  

Results 

Image classification assessment 

For the spring/fall imagery, the binary thresholding polygons were manually 

selected which negated the potential for incorrect image classifications while adding 

minimal processing time. This also precluded conducting a traditional accuracy 

assessment like that done for the summer imagery classification. Some areas required 
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an additional step to split classified areas where correct water bodies were connected by 

a single pixel to incorrectly classified areas. This only occurred in seven distinct pond 

subsets through all four image dates and were easily removed; the excess data had a 

median of +13% area and a range from +3-202% area. There was no omission within 

these data. 

For the summer imagery (all years), three distinct ecotypes were classified, with 

eight final classes identified across all ecotypes (Table 1).  For ecotype, our classifications 

well exceeded the target of 80% overall accuracy with a range of 91–93%: (Table 2A). 

There was greater variation within ecotype classes with high producer’s and user’s 

accuracy for both aquatic and emergent vegetation (>88%), comparable producer’s 

accuracy for terrestrial (>81%), but lower user’s accuracy (<78%) for this ecotype. The 

terrestrial class had lower sample sizes (due to lower total land cover), which partially 

contributed to this lower accuracy, but was also sometimes confused with emergent 

vegetation and, to a lesser extent, the aquatic class (Table 2A). The overall accuracy 

declined for the class level classification, but still remained above our 80% target (range 

87–90%) with Kappa scores in the preferred range (i.e., >0.8;, Tables 3A–5A). There was, 

however, considerable variation in producer’s and user’s accuracy among individual 

classes. Water, Typha, and roads all had both high (>90%) producer’s and user’s 

accuracy, while grass was consistently low (i.e., <66%). The remaining four classes were 

more mixed, with generally higher producer’s accuracy relative to user’s accuracy, 

suggesting that other classes were more likely to be assigned to these four classes than 

they were to be assigned to another class. For example, for Nitellopsis, aquatic classes 

(e.g., water or floating vegetation) as well as Typha were more likely to be classified as 

Nitellopsis than Nitellopsis was to be classified as any other class (Tables 3A–5A). 

Phragmites was not observed in the 2010 imagery and was only infrequently observed in 

the 2014 and 2019 imagery. As a result, accuracy for this class was variable with high 

producer’s and low user’s accuracy in 2014 but the inverse in 2019. 

Tables 6A and 6B summarize the area of each individual class and ecotype within 

each pond for each year that imagery were classified.  

Discussion 

Spring/fall data were much easier to classify into aquatic and non-aquatic area with 

the use of binary thresholding and manual editing with polygons than summer image 

classification. On a site of this size, binary thresholding and further polygonization in 

ArcGIS Pro could be executed in under one minute per image. Selecting relevant 

polygons (and thereby excluding most commission errors) would take under five minutes, 

and any editing required (to remove extraneous pieces/attachments of false data) would 

take under ten minutes (for a total of approximately fifteen minutes per image). 

Supervised classification following the “Image Classification Wizard” in ArcGIS Pro 

automates the tools required to analyze the data but takes significantly longer; selection 

of suitable training polygons alone would take at least fifteen minutes. Combined with an 
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iterative approach to maximize classification accuracy, this workflow routinely took more 

than one hour to create an acceptable dataset. While the time required is much greater, 

supervised classification gives significantly more data to work with. Depending on the end 

goals and needs of the project, supervised classification may give a more complete 

dataset for monitoring. 
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Table 1A: Image segmentation parameters for each summer image. Minimum segment 
size for 2009 is smaller than that of 2014 and 2019 in part because the underlying data were of 
coarser spatial resolution (4m vs 1.5m, for pan-sharpened imagery).  

 2009 2014 2019 
Spectral Detail 18 19 19 
Spatial Detail 44 17 19 
Minimum Segment Size in Pixels 15 60  40 
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Table 2A: Confusion matrices outlining per-ecotype and overall accuracy for each of the 
summer image periods. The values reflect the number of objects in the validation dataset that 
were assigned into each ecotype by the supervised classification. 

2010 Aquatic Emergent Terrestrial Total User's Accuracy 

Aquatic 115 1 2 118 97% 

Emergent 2 122 1 125 98% 

Terrestrial 3 11 49 63 78% 

Total 120 134 52 306  
Producer's 
Accuracy 96% 91% 94%   

    

Overall 
Accuracy 0.93 

2014 Aquatic Emergent Terrestrial Total User's Accuracy 

Aquatic 120 5 3 128 94% 

Emergent h 1 151 5 157 96% 

Terrestrial 7 8 35 50 70% 

Total 128 164 43 335  
Producer's 
Accuracy 94% 92% 81%   

    

Overall 
Accuracy 91% 

2019 Aquatic Emergent Terrestrial Total User's Accuracy 

Aquatic 121 8 2 131 92% 

Emergent 0 138 0 138 100% 

Terrestrial 8 11 33 52 63% 

Total 129 157 35 321  
Producer's 
Accuracy 94% 88% 94%   

    
Overall 
Accuracy 91% 
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Table 3A: Confusion matrices outlining per-class and overall accuracy for the 2010 summer image. The values reflect the 
number of objects in the validation dataset that were assigned into each ecotype by the supervised classification.  

Class Road Grass Forest Water Floating Nitellopsis Typha Phragmites Total 
User's 

Accuracy 
Road 8 0 1 0 0 1 0 

 
10 80% 

Grass 0 7 5 0 0 0 0 
 

12 58% 

Forest 0 3 34 0 2 1 11 
 

51 67% 

Water 0 0 0 62 2 2 0 
 

66 94% 

Floating 1 0 1 1 36 0 0 
 

39 92% 

Nitellopsis 0 0 1 1 5 6 1 
 

14 43% 

Typha 0 0 1 0 0 2 122 
 

125 98% 

Phragmites        
 

  

Total 9 10 43 64 45 12 134 
 

317  

Producer's 
Accuracy 

89% 70% 79% 97% 80% 50% 91% 

 
Overall 
Accuracy 

87% 
         

Kappa 0.82 
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Table 4A: Confusion matrices outlining per-class and overall accuracy for the 2014 summer image. The values reflect the 
number of objects in the validation dataset that were assigned into each ecotype by the supervised classification.  

Class Road Grass Forest Water Floating Nitellopsis Typha Phragmites Total 
User's 

Accuracy 
Road 10 0 0 0 0 0 0 0 10 100% 

Grass 0 6 0 0 2 0 2 0 10 60% 

Forest 0 1 28 2 3 0 6 0 40 70% 

Water 0 0 1 69 1 0 0 0 71 97% 

Floating 0 0 0 3 32 1 0 0 36 89% 

Nitellopsis 0 2 0 0 5 9 5 0 21 43% 

Typha 0 0 1 0 1 0 145 0 147 99% 

Phragmites 0 3 1 0 0 0 4 2 10 20% 

Total 10 12 31 74 44 10 162 2 345  

Producer's 
Accuracy 

100% 50% 90% 93% 73% 90% 90% 100% 
Overall 
Accuracy 

87% 
 

        Kappa 0.82 
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Table 5A: Confusion matrices outlining per-class and overall accuracy for the 2019 summer image. The values reflect the 
number of objects in the validation dataset that were assigned into each ecotype by the supervised classification.  

Class Road Grass Forest Water Floating Nitellopsis Typha Phragmites Total User's 
Accuracy 

Road 9 0 0 1 0 0 0 0 10 90% 

Grass 0 7 0 0 1 0 1 1 10 70% 

Forest 0 1 25 1 4 2 5 4 42 60% 

Water 0 0 0 73 0 0 0 0 73 100% 

Floating 0 0 0 0 16 1 0 0 17 94% 

Nitellopsis 0 1 1 0 1 30 8 0 41 73% 

Typha 0 0 0 0 0 0 137 1 138 99% 

Phragmites 0 0 0 0 0 0 1 9 10 90% 

Total 9 9 26 75 22 33 152 15 341  

Producer's 
Accuracy 

100% 78% 96% 97% 73% 91% 90% 60% 
Overall 
Accuracy 

90% 
 

        Kappa 0.86 
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Table 6A: Total area (ha) of each class and ecotypes based on the classification year, pond type, and pond number. 

   Aquatic    Emergent   

Year Pond Type 
Pond 

Number Water Floating Nitellopsis 
Aquatic 

Total Typha Phragmites 
Emergent 

Total 

2010 Coastal 5 10.42 37.77 11.99 60.18 40.49 0.00 40.49 

  8 8.63 12.07 9.53 30.23 55.86 0.00 55.86 

 Created 1 0.17 0.05 0.07 0.29 19.76 0.00 19.76 

  2 0.00 0.00 0.00 0.00 16.30 0.00 16.30 

  3 0.10 0.01 0.00 0.10 14.92 0.00 14.92 

 Natural 4 0.98 1.41 1.34 3.73 67.27 0.00 67.27 

  6 23.97 18.73 7.75 50.45 74.66 0.00 74.66 

  7 5.79 34.18 4.81 44.77 53.01 0.00 53.01 

2014 Coastal 5 12.63 32.52 14.31 59.47 52.10 0.45 52.55 

  8 18.12 15.01 4.48 37.62 63.34 0.73 64.07 

 Created 1 5.06 1.61 3.80 10.47 12.16 0.55 12.71 

  2 3.60 1.35 3.01 7.95 8.77 0.64 9.41 

  3 5.97 0.65 1.38 8.00 8.12 0.19 8.32 

 Natural 4 1.53 2.28 2.71 6.53 68.06 0.30 68.36 

  6 41.24 20.01 9.88 71.13 84.08 0.35 84.43 

  7 15.95 21.77 14.04 51.76 57.05 0.97 58.02 

2019 Coastal 5 11.28 14.23 34.01 59.53 47.52 3.39 50.90 

  8 9.91 5.53 15.86 31.31 58.43 1.23 59.67 

 Created 1 3.80 0.33 4.29 8.42 11.32 0.94 12.26 

  2 3.83 0.05 1.69 5.57 6.39 1.17 7.56 

  3 5.23 0.11 1.54 6.88 6.83 0.51 7.34 

 Natural 4 1.46 1.91 3.66 7.03 66.12 1.58 67.70 

  6 18.01 5.01 28.66 51.68 80.56 1.67 82.23 

  7 16.68 13.01 15.03 44.71 56.10 0.73 56.82 
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Table 6B: Total area (ha) of each class and ecotypes based on the classification year, 
pond type, and pond number. 

   Terrestrial    

Year 
Pond 
Type 

Pond 
Number Forest Grass Shrubs Road 

Terrestrial 
Total 

2010 Coastal 5 14.45 3.56 0.00 0.00 18.00 

  8 8.31 1.29 0.00 0.41 10.02 

 Created 1 4.41 0.34 0.00 0.00 4.75 

  2 1.25 0.27 0.00 0.00 1.52 

  3 1.90 0.45 0.00 0.00 2.35 

 Natural 4 6.69 0.75 0.00 0.00 7.44 

  6 13.52 1.15 0.00 0.00 14.68 

  7 6.64 0.36 0.00 0.00 6.99 

2014 Coastal 5 4.85 0.08 1.73 0.00 6.65 

  8 1.46 0.00 2.03 0.00 3.49 

 Created 1 0.49 0.02 1.11 0.00 1.62 

  2 0.25 0.06 0.15 0.00 0.46 

  3 0.60 0.00 0.46 0.00 1.06 

 Natural 4 1.44 0.01 2.11 0.00 3.55 

  6 2.98 0.02 1.85 0.00 4.84 

  7 0.28 0.25 2.44 0.00 2.97 

2019 Coastal 5 7.50 0.73 0.00 0.00 8.24 

  8 5.01 0.11 0.00 0.02 5.14 

 Created 1 3.91 0.21 0.00 0.00 4.12 

  2 4.67 0.02 0.00 0.00 4.69 

  3 3.04 0.11 0.00 0.00 3.15 

 Natural 4 3.55 0.16 0.00 0.00 3.71 

  6 5.65 0.23 0.00 0.00 5.88 

  7 2.97 0.27 0.00 0.00 3.24 

 


