
   

 

Canadian Science Advisory Secretariat (CSAS) 

Research Document 2023/010 

Pacific Region 

           
 

             

            

  

       
   

    

      
   

    

     
    

    

       
  

    

      
   

    

  
  

     

      
  

   

  
   

    

Case Study Applications of LRP Estimation Methods to Pacific Salmon Stock 
Management Units 

Kendra Holt1 Carrie A. Holt2 Luke Warkentin3 Catarina Wor2 Brooke Davis3 Michael Arbeider4

Jessy Bokvist5 Sabrina Crowley6 Sue Grant7 Wilf Luedke5 Diana McHugh5 Candace Picco8

Pieter Van Will5

1Fisheries and Oceans Canada, Institute of Ocean Sciences 
9860 W Saanich Road 
Sidney, BC V8L 5T5 

2Fisheries and Oceans Canada, Pacific Biological Station 
3190 Hammond Bay Road 

Nanaimo, BC V9T 6N7 

3Fisheries and Oceans Canada, Annacis Offce 
100 Annacis Pkwy Unit 3 

Delta, BC V3M 6A2 

4Fisheries and Oceans Canada, BC Interior Area Offce 
986 McGill Place 

Kamloops, BC V2C 6X6 

5Fisheries and Oceans Canada, Southcoast Area Office 
3225 Stephenson Point Road

Nanaimo, BC V9T 1K3 

6Nuu-chah-nulth Tribal Council 
5001 Mission Road

Port Alberni, BC V9Y 8X9 

7Fisheries and Oceans Canada, Pacifc Regional Headquarters 
200-401 Burrard Street

Vancouver, BC, V6C 3S4

8Ha’oom Fisheries Society 
320 Opitsaht IR Road 
Tofino, BC V0R 2Z0 

July 2023 



  

                
             

        

                
                

                   
 

Foreword 

This series documents the scientifc basis for the evaluation of aquatic resources and ecosystems 
in Canada. As such, it addresses the issues of the day in the time frames required and the 
documents it contains are not intended as defnitive statements on the subjects addressed but 
rather as progress reports on ongoing investigations. 

Published by: 

Fisheries and Oceans Canada 
Canadian Science Advisory Secretariat 

200 Kent Street 
Ottawa ON K1A 0E6 

http://www.dfo-mpo.gc.ca/csas-sccs/ 
csas-sccs@dfo-mpo.gc.ca 

© His Majesty the King in Right of Canada, 2023 
ISSN 1919-5044 

Cat. No. Fs70-5/2023-010E-PDF ISBN 978-0-660-46977-5 

Correctcitationforthispublication:

Holt, K.R., Holt, C.A., Warkentin, L., Wor, C., Davis, B., Arbeider, M., Bokvist, J., Crowley, S., 
Grant, S., Luedke, W., McHugh, D., Picco, C., and Van Will, P. 2023. Case Study Applications 
of LRP Estimation Methods to Pacific Salmon Stock Management Units. DFO Can. Sci. 
Advis. Sec. Res. Doc. 2023/010. iv + 129 p. 

Aussi disponible en français : 

Holt, K.R., Holt, C.A., Warkentin, L., Wor, C., Davis, B., Arbeider, M., Bokvist, J., Crowley, S., 
Grant, S., Luedke, W., McHugh, D., Picco, C., et Van Will, P. Application de méthodes d’estimation 
des points de référence limites à des unités de gestion des stocks de saumons du Pacifique 
dans le cadre d’études de cas. Secr. can. des avis sci. du MPO. Doc. de rech. 2023/010. v + 
150 p. 

http://www.dfo-mpo.gc.ca/csas-sccs/
mailto://csas-sccs@dfo-mpo.gc.ca


                                        
                                   

                                          
                                   
                              

                         
                                           
                                              
                                    
                              
        
              
                 
                                         

                    
                                           
                                              
                               
                              
        
              
                 
                                         

                     
                                           
                                              
                                    
                              
        
                 
                                         

                     
                                    

                                       
                                
                           

                                            
          
       

                                    

TABLE OF CONTENTS 

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 
1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 
2. LRP ESTIMATION METHODS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

2.1. OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
2.2. CU STATUS-BASED LRPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 
2.3. AGGREGATE ABUNDANCE LRPS . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

3. CASE STUDY 1: INTERIOR FRASER COHO SALMON . . . . . . . . . . . . . . . . . . 13 
3.1. CONTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 
3.2. DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 
3.3. CU STATUS ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
3.4. LRP ESTIMATION: CU STATUS BASED . . . . . . . . . . . . . . . . . . . . . . . . 22 
3.5. LRP ESTIMATION: AGGREGATE ABUNDANCE, LOGISTIC REGRESSION LRPS 24 
3.6. LRP ESTIMATION: AGGREGATE ABUNDANCE, PROJECTION LRPS . . . . . . . 32 
3.7. HISTORICAL EVALUATION OF STATUS ACROSS LRP METHODS . . . . . . . . . 39 
3.8. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

4. CASE STUDY 2: WEST COAST VANCOUVER ISLAND CHINOOK . . . . . . . . . . . . 47 
4.1. CONTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 
4.2. DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 
4.3. INLET AND CU STATUS ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . 52 
4.4. LRP ESTIMATION: CU STATUS BASED . . . . . . . . . . . . . . . . . . . . . . . . 54 
4.5. LRP ESTIMATION: AGGREGATE ABUNDANCE, LOGISTIC REGRESSION LRPS 55 
4.6. LRP ESTIMATION: AGGREGATE ABUNDANCE, PROJECTION LRPS . . . . . . . 55 
4.7. HISTORICAL EVALUATION OF STATUS ACROSS LRP METHODS . . . . . . . . . 64 
4.8. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 

5. CASE STUDY 3: INSIDE SOUTH COAST CHUM - NON-FRASER . . . . . . . . . . . . 67 
5.1. CONTEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 
5.2. DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 
5.3. CU STATUS ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 
5.4. LRP ESTIMATION: CU STATUS BASED . . . . . . . . . . . . . . . . . . . . . . . . 71 
5.5. LRP ESTIMATION: AGGREGATE ABUNDANCE, LOGISTIC REGRESSION LRPS 73 
5.6. HISTORICAL EVALUATION OF STATUS ACROSS LRP METHODS . . . . . . . . . 77 
5.7. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 

6. LESSONS LEARNED FROM CASE STUDY APPLICATIONS . . . . . . . . . . . . . . . 83 
7. ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 
8. REFERENCES CITED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 

APPENDIX C. SUPPORTING INFORMATION FOR INTERIOR FRASER COHO 

APPENDIX E. SUPPORTING INFORMATION FOR INSIDE SOUTH COAST 

APPENDIX A. DATA AND ANALYSIS LINKS . . . . . . . . . . . . . . . . . . . . . . . . . . 92 
APPENDIX B. samSim MODEL DOCUMENTATION . . . . . . . . . . . . . . . . . . . . . . 93 

CASE STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 
APPENDIX D. SENSITIVITY OF PROJECTION-BASED LRPS TO EXPLOITATION RATES 115 

CHUM SALMON CASE STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 

iii 



ABSTRACT 

The revised Fisheries Act requires that Limit Reference Points (LRPs) be identifed for all major 
fsh stocks. For Pacifc salmon, major fsh stocks are represented by stock management units 
(SMUs). An SMU is composed of one or more salmon conservation units (CUs), which are the 
assessment units under the Wild Salmon Policy, WSP. We introduce methods to estimate LRPs 
at the SMU level that integrate statuses derived under the WSP at the CU level. We demonstrate 
and evaluate the LRPs for three case study SMUs: Interior Fraser Coho (Oncorhynchus kisutch), 
West Coast Vancouver Island (WCVI) Chinook (O. tshawytscha), and Inside South Coast Chum 
(O. keta) - excluding Fraser River. Methods are divided into two categories: CU status-based 
LRPs and aggregate abundance LRPs. CU status-based LRPs are recommended as the default 
method, and are based on the proportion of CUs above levels associated with increased risk 
of extinction (above ‘Red’ status) under the WSP. Aggregate abundance methods may be used 
supplementally to meet specifc fsheries management requirements. Aggregate abundance 
LRPs are subdivided into logistic regression LRPs and projection LRPs. Both types of aggregate 
abundance LRPs are defned at the SMU-level abundances associated with a desired probabilty 
of all component CUs being above Red status, but they differ in that logistic regression LRPs are 
determined directly from historical data while projection LRPs are determined from projections of 
CU-level population dynamics. We discuss suitability and requirements for the application of the 
various LRP estimation methods, drawing from the range of data and information availability 
among the case studies. In general, the application of aggregate abundance LRPs may be 
limited to SMUs where the CU-level populations covary, as demonstrated for the Interior Fraser 
Coho case study, and where covariance has not changed over time or, for projection LRPs, those 
changes can be parameterized. 
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1. INTRODUCTION

Under recent amendments to Canada’s Fisheries Act, Limit Reference Points (LRPs) will be 
required for all major fsh stocks prescribed in regulation. Stocks that drop below their LRP 
will trigger the development of a rebuilding plan. For Pacifc salmon, it is anticipated there will 
be more than 65 major fsh stocks (or stock management units, SMUs), where the proposed 
functional defnition of a SMU is a group of one or more Wild Salmon Policy (WSP) Conservation 
Units (CUs) that are managed together with the objective of achieving a joint status. LRPs have 
not yet been developed at the SMU-level for Pacifc Salmon. This working paper summarizes 
the application of methods for estimating SMU-level LRPs to three Pacifc salmon case study 
SMUs. These case study applications have been used to inform the development of guidelines 
for identifying LRPs for Pacifc Salmon, which are presented in the companion paper by Holt et al. 
(2023). 

While LRPs under the Fisheries Act are required at the SMU-level, monitoring and management 
under DFO’s WSP occurs at the fner CU level. Under the WSP, a CU is defned as ‘a group 
of wild salmon suffciently isolated from other groups that, if lost, is very unlikely to recolonize 
naturally within an acceptable time frame, such as a human lifetime or a specifed number of 
salmon generations’ (DFO 2005). Methods to assess CU status have been identifed for a range 
of data types, including WSP Integrated Assessment methods (hereafter called ‘WSP assessments’) 
that use expert opinion to combine multiple metrics into a single estimate of CU status (e.g., 
Grant et al. 2020). Metrics used to assess WSP CU status include spawner abundances, short-
and long-term trends in abundance, and distribution of abundance (Holt et al. 2009). Lower 
and upper benchmarks on those metrics are used to assign status into one of three zones, with 
the zones Green, Amber and Red, representing increasingly depleted populations that require 
increasing management intervention (DFO 2005). A more fulsome description of these concepts 
is provided in Holt et al. (2023). 

LRPs are defned within DFO’s ‘Precautionary Approach to Fisheries Decision-Making’ as the 
stock status below which serious harm is expected to occur to the stock (DFO 2009). While 
LRPs are often based on metrics directly linked to productivity, such as spawning biomass or 
fshing mortality rates, the type of metric used to defne an LRP can vary among species and 
data types, and may be related to other stock characteristics when appropriate. Since the CU 
is the fundamental unit of biodiversity that DFO aims to maintain under the WSP, it follows that 
metrics used to set LRPs for Pacifc salmon should be linked to the status of component CUs 
within an SMU. Our companion paper (Holt et al. 2023) argues that the maintenance of CU-
level spawning abundances above levels that would cause serious harm is the key biological 
requirement for Pacifc salmon LRPs. 

The specifc goals of this working paper are to: 

• apply proposed LRP methods to Pacifc Salmon case studies over a range of data types and
availabilities, and

• evaluate methods for developing LRPs using a combination of sensitivity analyses to key
parameters and assumptions, and where possible retrospective analyses.

A full evaluation of LRPs using closed-loop simulation is beyond the scope of the current project. 
This type of evaluation is a high priority for future research. 

The case studies considered include: 

1. Interior Fraser Coho Salmon (Oncorhynchus kisutch),

1 



         
          

   

2. West Coast Vancouver Island (WCVI) Chinook Salmon (O. tshawytscha), and

3. Inside South Coast Chum Salmon (O. keta), excluding Fraser River CUs.
Each of these SMUs consists of 3-7 CUs and was selected to represent a different level of data
availability ranging from data rich (Interior Fraser Coho) to data-limited (Inside South Coast
Chum and West Coast Vancouver Island Chinook). For each case study, the set of LRP estimation
methods considered is a function of available data and previously developed assessment methods
for the SMU.

The LRPs presented in this paper are for illustrative purposes only, and not meant to provide 
formal LRP estimates. The development of LRPs to support implementation of the Fisheries Act 
will require a more thorough review of data and assumptions with local analysts and partners. 

2. LRP ESTIMATION METHODS

In this section, we provide an overview of methods used to develop LRPs for our three case 
studies. Detailed methods specifc to each case study are provided in Sections 3 (Interior Fraser 
Coho), 4 (West Coast Vancouver Island Chinook), and 5 (Inside South Coast Chum, excluding 
Fraser). Links to GitHub repositories with the data and analysis code used for all three case 
studies are in Appendix A. An overview of the approaches applied to each of the three case 
studies are provided in Table 1. 

Table 1. Overview of CU assessment methods and SMU assessment methods applied for each case 
study. Cells marked with ‘-‘ at the CU-Level Assessment level indicate that a method was not applied to 
CUs in that case study. 

Interior Fraser 
Coho 

WCVI Chinook ISC Chum 

CU-level Assessment 

Composite Metric: (Salmon Scanner) Yes (only for CU 
status-based 
LRPs) 

Yes (only for CU 
status-based 
LRPs) 

Yes (only for CU 
status-based 
LRPs) 

Single Metric: 
Abundance relative 
to lower benchmark 

Spawner-recruitment 
benchmark 

Yes - Attempted, 
estimates 
unreliable 

Habitat-based 
benchmark 

- Yes -

Percentile benchmark - - Yes 

Single Metric: Distributional Yes - -

SMU Assessment 

CU status-based LRP (Required for Fisheries Act) Yes Yes Yes 

Aggregate Abundance 
LRP (Supplemental) 

Logistic Regression Yes Attempted, data-
defcient 

Attempted, 
unreliable 

Projection Yes Yes Not attempted, 
deemed 
unreliable 
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2.1. OVERVIEW 

We consider two types of LRPs based on two different metrics: 
1. CU status-based LRPs use a proportion as the metric upon which LRPs are based. Specifically,

they use the proportion of CUs within an SMU that are above the Red WSP status zone. We
assume that in order for an SMU to remain above its CU status-based LRP, 100% of CUs
must have status estimates above Red (i.e., either Amber or Green).

2. Aggregate abundance LRPs use the total SMU-level spawning abundance as the metric upon
which LRPs are based. Two methods of developing aggregate abundance LRPs are applied:
(i) Logistic Regression LRPs and (ii) Projection LRPs.

We propose that CU status-based LRPs are more appropriate for Pacifc salmon SMUs because 
they more directly align with DFO’s WSP objectives of maintaining salmon biodiversity; however, 
aggregate abundance LRP methods may be added to meet specifc fsheries management 
requirements. 

We implement CU status-based LRPs using approaches developed to assess CU status under 
DFO’s WSP (DFO 2005; Holt et al. 2009) and implemented for a subset of priority CUs (DFO 
2015; DFO 2016; Grant et al. 2020). These approaches use multiple metrics to evaluate status 
including trends in abundance and abundance metrics, and an expert-driven integration approach 
to combine statuses across metrics into a single status for each CU. In our case study applications, 
we apply the recently developed Pacifc Salmon Status Scanner tool (also referred to as the 
‘Salmon Scanner’; Pestal et al., In prep1) as a way to rapidly approximate more detailed WSP 
status assessments. The Salmon Scanner allows us to rapidly generate up-to-date estimates of 
integrated CU status for all of our case study applications. 

When developing candidate aggregate abundance LRPs, we aim to maintain consistency with 
the WSP by defning LRPs as aggregate abundance levels that have a high probability of all CUs 
being above their Red status zone. For these LRPs, estimates of CU status are approximated 
based on a comparison of spawning abundance to a single lower benchmark for each CU. Exceptions 
are described within specifc case study applications below. 

We also maintain consistency with the WSP by only including spawning streams without signifcant 
enhancement when evaluating CU and SMU status. We use the Proportionate Natural Infuence 
metric, PNI,as a basis for defning ‘signifcant enhancement’. PNI is a metric designed to estimate 
the relative strength of the hatchery and natural selective pressures resulting from gene fow 
between the two environments, and is used as a basis for determining genetic risk of hatcheries 
on natural populations. Values less than 0.5 indicate populations where most fsh are hatchery 
origin (classifed as integrated-hatchery populations) (Withler et al. 2018). We defned ‘signifcantly 
enhanced’ populations as those with PNI values < 0.5 and excluded them from case study 
analyses. 

Systems with levels of PNI ⩾ 0.5 can still have hatchery infuences; however, dynamics are 
predominately natural origin. Where time-series of the proportion of hatchery marked fsh on 
the spawning grounds are available (e.g., Interior Fraser Coho case study), these proportions are 
used to inform assessments in two ways: frst to develop time-series of natural-origin recruitment 
for benchmark estimation based on stock-recruitment relationships and second to develop time 
series of natural-origin spawners for status assessment against benchmarks. When reliable time-

1Pestal, G., MacDonald, B, Grant, S, and Holt, C., In prep. Rapid Status Approximations from Integrated Expert 
Assessments Under Canada’s Wild Salmon Policy. Can. Tech. Rep. Fish. Aquat. Sci. 
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series of the proportion of hatchery infuence are not available (WCVI Chinook), total spawners 
are used for LRP analyses provided that the threshold of assumed PNI ⩾ 0.5 has been met. 
More detailed descriptions of LRP estimation methods are provided in the following sections, 
while guidance on when and how CU status-based and aggregate abundance LRPs should be 
applied is provided in Holt et al. (2023). We recommend that users consult Holt et al. (2023) 
before applying any of the methods described in this case study paper. 

2.2. CU STATUS-BASED LRPS 

A CU status-based LRP was set as 100% of CUs above their Red status zone. The LRP therefore 
acts as a trigger that is breached when one or more CUs in an SMU is assessed as having Red 
status. Rationale for this choice of 100% of CUs required to be above Red status is described in 
Holt et al. (2023). 

We compare three different methods of assessing CU status when using CU status-based LRPs: 
(i) the proportion of CUs with a recent WSP status assessment above the Red zone (e.g., Grant
et al. (2020)), (ii) the proportion of CUs with a recent Salmon Scanner status assessment above
the Red zone (see below for more details), and (iii) the proportion of CUs with status estimated to
be above a single CU lower benchmark (e.g., Sgen, percentile-based benchmarks, etc.). We
recommend methods using composite metrics such as (i) and (ii) for CU assessments, and
provide method (iii) for comparison purposes.

When assessing CU status relative to a single abundance-based lower benchmark in approach 
(iii), we compare generational mean spawner abundances to the benchmark, as described in 
Holt et al. (2023). 

2.2.1. Multidimensional Approach to CU Status Assessments Within the Pacific Salmon
Status Scanner

The Pacifc Salmon Status Scanner ( the Salmon Scanner) estimates statuses for individual WSP 
metrics and also integrates the statuses on multiple metrics into a single status estimate (e.g., 
Red, Amber, Green; Pestal et al., In prep). By automating this process, the Salmon Scanner 
supports implementation of Canada’s WSP by rapidly approximating the more detailed, comprehensive 
WSP status assessment process. The Salmon Scanner’s approach can be implemented annually 
and for a broader range of CUs, given it is less time and labour intensive that full WSP integrated 
status assessments. The Salmon Scanner was developed using Classifcation and Regression 
Tree (CART) analyses, and expert judgement gained from integrated status assessment processes, 
to create algorithms that approximate the integrated status assessment results. 

Data inputs and outcomes from previous WSP assessment processes were used in analyses 
used to develop the Salmon Scanner: Fraser River Sockeye, Interior Fraser Coho, and Southern 
BC Chinook (DFO 2015, 2016, 2018; Grant et al. 2020). Briefly, the Salmon Scanner uses 
a decision tree to estimate CU status based on data type, quality, abundance, and trends (e.g., 
Figure 1). The decision tree algorithm was verifed with data and local expertise (Pestal et al. In 
prep). As with other methods, an expert review of rapid status results for each CU is intended 
to be incorporated into the application of this tool (S. Grant, DFO, Vancouver, BC, pers. comm.). 
Such a review would help identify occurrences of false negatives or false positives in estimated 
CU status through expert opinion. When using this method in the case study, we took the outputs 
of the algorithms at face value and did not confrm them based on expert o pinion. In practice, 
results from the Salmon Scanner will be validated against local expertise when implemented 
annually (S. Grant, DFO, Vancouver, BC, pers. comm.). 

4 



              
             

          
            

            
       

   

              
               

             
                
               

                
   

               
               

              
             

                 
                  

                  
                  

               
            

         
              

               
            

               
               

               
               

            
            

             
            

             
                  

            
              
        

For absolute or relative abundance metrics, the Salmon Scanner uses the most recent generational 
mean spawner abundance (calculated as a running geometric mean) to compare to benchmarks, 
including absolute abundance thresholds (e.g., 1500 spawners), abundance-based lower benchmarks 
(e.g., Sgen or percentile), and abundance-based upper benchmarks (e.g., 0.8SMSY or percentiles). 
Generational mean spawner abundances are also used when calculating trends in spawner 
abundances over time (Pestal et al., In prep.).

2.3. AGGREGATE ABUNDANCE LRPS 

Aggregate abundance LRPs are based on the assumption that there is a predictable relationship 
between SMU-level abundance and the probability that all CUs will be above Red status. When 
estimating aggregate abundance LRPs, status relative to a single lower benchmark (LBM) is 
used a proxy for status above the Red zone. Aggregate abundance LRPs are then estimated by 
using the predicted relationship to fnd the SMU-level abundance at which there is a prescribed 
probability that 100% of CUs (the same proportion that was used for CU status-based LRPs) will 
be above the LBM. 

The above defnition of aggregate abundance LRPs requires a decision to be made about the 
required probability that 100% of CUs will be above their LBMs. We consider four alternative 
probability levels for our case studies that represent a range of calibrated probability categories 
developed by the Intergovernmental Panel on Climate Change (Mastrandrea et al. 2010): 50%, 
66%, 90%, and 99%. The 50% value represents the mid-point of the “About as likely as not” 
category (33 - 66%), indicating that there is an equal probability that all CUs will be above their 
LBMs as there is that they will not. The 66% values represents the lower end of the “Likely” 
category (i.e., it is “Likely” that all CUs will be above their LBMs), the 90% value represents the 
lower end of the “Very Likely” category, and the 99% value represents the “Virtually Certain” 
category. A discussion of considerations for selecting the appropriate probability threshold when 
calculating abundance LRPs is included in Holt et al. (2023). 

We consider two types of aggregate abundance LRPs in our case studies: logistic regression 
LRPs and projection LRPs. These two methods differ in the approach taken to estimate the 
underlying relationship between SMU-level aggregate abundance and the probability that all CUs 
will be above their LBMs. Logistic regression LRPs are estimated by ftting statistical models to 
historical data to estimate this relationship. In this case, LRPs are based on previously observed 
covariation in CU status, and thus implicitly assume the past is a reasonable approximation of 
the future. In comparison, projection LRPs use historical data as a basis for quantifying population 
dynamics, and then project population dynamics using stochastic simulations to identify an 
equilibrium state. Simulation outputs are then used to characterize the underlying relationship 
between aggregate abundance and the probability that all CUs will be above their LBMs. 

The projection LRP approach allows uncertainty in current (or future) processes that might 
affect estimation of the LRP to be accounted for through alternative scenarios. For example, 
if there is evidence of recent changes in covariation among CUs, possibly due to a subset of CUs 
experiencing reduced productivity, this hypothesis can be modelled in projections. In comparison, 
logistic regression LRPs are limited to using historically observed data, which may not include 
enough observations of the new and emerging covariation structure. 

5 



                      
               

Figure 1. Decision tree (also referred to as the multidimensional algorithm) used in the Pacific Salmon Status Scanner to assess status of 
Conservation Units based on multiple metrics under the Wild Salmon Policy (Pestal et al. In prep.).
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For both logistic regression and projection LRPs, we characterize annual CU status using a 
single metric, spawner abundances relative to a LBM, instead of using the status from the multi-
dimensional algorithm within the Salmon Scanner tool. While in theory, estimates of CU status 
from the multidimensional approach could be used for logistic regression LRPs, we found little 
evidence of a statistical relationship between CU statuses from the Salmon Scanner and 
aggregate spawner abundances for the one case study where we considered this approach, 
Interior Fraser Coho. We provide further discussion of this result within the Interior Fraser Coho 
case study section of this paper. In addition, projection LRPs are derived from equilibrium 
conditions identified from projections that do not incorporate temporal dynamics required for 
assessment of trends in the multidimensional approach. While estimates of CU status relative 
to a single LBM such as Sgen is a readily available output from the Salmon Scanner tool, we 
calculated these metrics external to the tool for our case studies. 

When assessing CU status for the purpose of estimating aggregate abundance LRPs, we used 
unsmoothed annual spawner abundances instead of generational averages. This approach was 
based on preliminary analyses of the logistic regression method that showed using unsmoothed 
spawner abundances improved the spread in the data used to establish a relationship between 
CU status and aggregate spawning abundance. Furthermore, using generational means in the 
logistic regression approach led to considerable autocorrelation in the aggregate abundance time 
series, violating assumptions of the logistic regression. 

However, when assessing SMU status, we used generational running averages (geometric 
average) of aggregate spawner abundances. This approach reduced variability in annual decisions 
about whether an LRP had been breached arising from variability in cohorts within a generation. 
The decision to use generational averages of aggregate spawner abundances when determining 
whether an LRP is breached is consistent with the approach used for CU status-based LRPs. 
In both cases, the underlying metric being used to determine SMU status (either aggregate 
abundance or CU-level status of component CUs for the CU status-based approach) is based on 
generational-averaged values in order to reduce annual variability in status. 

2.3.1. Logistic regression LRPs 

Logistic regression LRPs are derived from an empirically estimated relationship between CU-
level status and aggregate SMU abundance. Using this approach, the LRP represents the 
aggregate abundance level that has historically been associated with a given probability of 100% 
of CUs having status above a selected LBM. For each year of observed data, CU-level status is 
quantifed as a Bernoulli variable: 1 (success) = all CUs have estimated status greater than their 
LBM and 0 (failure) = all CUs do not have status > LBM. A logistic regression is then ft to these 
outcomes to predict the probability that all CUs will have status > LBM as a function of aggregate 
SMU spawner abundance using the logistic regression equation: 

i=nCUs 

log( 
p 
) = B0 + B1 Si,t (1)

1 − p Σ
i 

where, p is probability, B0 and B1 are estimated logistic regression parameters and Si,t is spawner 
abundance to CU i in year t. Equation 1 is then re-arranged to calculate the LRP as the aggregate 

∗ spawner abundance associated with the pre-specifed probability threshold of p , 

log( p ∗
∗ ) − B0 

LRP = 1−p (2)
B1 
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An example logistic regression ft is shown in Figure 2. We show the estimation of LRPs based 
∗ ∗ on this ft for four possible probability thresholds: p = 0.5, 0.66, 0.90, and 0.99. For each p level, 

LRP estimates represent the aggregate abundance that is associated with that probability of all 
CUs having status greater than their LBM. LRPs were calculated from parameters of the logistic 
regression model (Eqn. 2), with uncertainty in the LRP quantifed based on a 95% confdence 
interval on the maximum likelihood estimate, MLE. 

Figure 2. Logistic regression ft to annual Bernoulli data to predict the probability of all CUs being above 
their lower benchmark (LBM) as a function of aggregate SMU abundance. Each black dot represent a 
year in the observed time series as a Bernoulli indicator showing whether the requirement of all CUs 
above their LBM was met (success = 1) or not (failure = 0) as a function of aggregate spawning 
abundance to the SMU. The black solid line is the maximum likelihood model ft to indicator data, and the 
grey shaded region shows the 95% confdence interval around the ft model. Coloured lines illustrate 
aggregate abundance LRPs for 4 different probability thresholds: p* = 0.5 (yellow), 0.66 (blue), 0.90 
(green), and 0.99 (orange) probability that all CUs > LBM. Horizontal dotted lines intersect the y-axis at 
each probability threshold, while the solid vertical lines show the corresponding aggregate escapement 
that will represent the LRP. 

We initially considered an alternative approach to logistic regression in which the LRP represents 
the aggregate abundance that has historically been associated with a pre-specifed proportion 
of CUs being above their lower benchmark. Using this approach, a logistic regression was ft to 
predict the proportion of CUs with status > LBM as a function of aggregate spawner abundance 
to the SMU (i.e., abundance from nCUs combined). We do not present this method for our case 
studies, however, due to inherent limitations when the required proportion of CUs above their 
lower benchmarks is 100%. Equation 2 cannot be solved directly for a threshold proportion of 
∗ ∗ p = 100%, and LRP estimates were highly sensitive to the choice of p value used as a proxy. 

∗ ∗ ∗Using p = 99% vs. p = 99.9% vs. p = 99.99% gave very different LRP estimates. 

The logistic regression model was implemented in TMB (Kristensen et al. 2016). The model 
was statistically integrated, which means that both the CU-specifc lower benchmarks (Sgen) and 
the SMU logistic regression parameters were estimated within the same statistical model. The 
integrated approach allowed for the propagation of uncertainty in parameter estimates from the 
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CU level to the SMU level, resulting in uncertainty intervals that better capture uncertainty in 
benchmarks as well as the logistic model fit. 

2.3.1.1. Logistic Regression Model Diagnostics 

There are several assumptions associated with logistic regression, three of which are relevant 
for our application to LRPs and are listed below. Model diagnostics were applied to evaluate the 
extent to which those assumptions were met, as well as statistical significance of model 
coefficients, goodness-of-fit, and classification accuracy of LRPs developed from the logistic 
regression. The three assumptions are as follows: 

1. The relationship between aggregate abundance and log-odds (the logarithm of the odds of
all CUs being above their lower benchmark) is linear.

2. The observations are independent of each other (i.e., residuals are not autocorrelated).

3. There are no infuential outliers.

Evaluating assumption of linearity (Assumption 1)

A Box-Tidwell test was used to evaluate linearity by assessing the signifcance of an additional 
interaction term in the logistic regression, 

i=nCUs i=nCUs i=nCUs 

log( ) = B0 + B1 Si,t + B2 Si,t × log( Si,t) (3)
1 − 
p

p Σ Σ Σ
i i i 

A signifcant interaction term B2, indicates a non-linear relationship between aggregate abundance 
and log-odds, violating this assumption (Fox 2016). 

Evaluating independence (Assumption 2) 

Deviance residuals, d, were estimated for each year, r
µ 1 − µ

d = ± −2(y log( ) + (1 − y) log( )) (4) 
y 1 − y 

where µ is the predicted probability of all CUs being above their lower benchmark and y is the 
observation (1 or 0, indicating all CUs above Red or not, respectively), in a given year (Fox 2016). 
Equation 4 reduces to (Ahmad 2011): ( p

− −2 log(1 − µ) , if y = 0 
d = p (5)

, if y = 1 

9 

−2 log(µ)

The magnitude of lag-1 autocorrelation was then estimated among deviance residuals and 
evaluated for statistical signifcance. 

Evaluating outliers (Assumption 3) 

We recommend identifying infuential outliers using leverage statistics where possible. For our 
case studies, we identifed outliers independent of their infuence because the software used to 
estimate model parameters (TMB) does not provide the hat-matrix required to assess infuence 
of individual points. Instead, we focused on identifying outliers based on the general rule of 
thumb that deviance residuals greater than 2 are considered to be outliers because 95% of the 
distribution is expected to be within 2 standard deviations of the mean. Further work to identify 
infuential outliers is recommended when other statistical model ftting tools are used. 



Statistical signifcance of model coeffcients 

Statistical signifcance of coeffcients was evaluated using the Wald test statistic, calculated from 
the ratio of the B1 model coeffcient to the standard error of that coeffcient, which is assumed to 
be normally distributed. Test statistics and signifcance were estimated within TMB (Kristensen et 
al. 2016). 

Goodness-of-ft 

The goodness-of-ft was evaluated by comparing the ratio of residual deviance to null deviance, 
similar to a likelihood ratio. This ratio is assumed to follow a Chi-square distribution with 1 degree 
of freedom derived from the difference in the number of parameters between full and null models. 
P-values <0.05 indicate signifcant lack of ft (Fox 2016).

In addition, the pseudo-R2 was calculated to indicate the ratio of the model ft to the null model 
without an independent variable (Dobson and Barnett 2018), 

Σt=nY ears 
t d

pseudo-R2 = 1 − (6)
Σt=nY ears d0t 

where d0 are the deviance residuals for the null model. The pseudo-R2 is a measure of the 
strength of the relationship between aggregate abundances and probability of all CUs being 
above their lower benchmarks. Unlike R2 values for linear models, the pseudo-R2 does not 
represent the percentage of variance explained by the model and is not related to the correlation 
coeffcient. 

In addition, the length of available time-series will impact the power to detect signifcant model 
coeffcients. Coeffcient estimates may be biased when time-series are short. Peduzzi et al. 
(1996) recommend a minimum of 10 data points for the least frequent outcome to avoid biases 
in model coeffcients, based on simulation study of epidemiological data. For example, if the 
frequency of outcomes were 0.5 and 0.5 (for 0 and 1, respectively), then a sample size of at 
least 10/0.5 = 20 would be suffcient. This minimum sample size would be higher if the data were 
skewed, e.g., if frequency of outcomes were 0.7 and 0.3, the minimum sample size would be 
10/0.3 = 33. A similar evaluation of sample sizes to minimize biases in logistic regression LRPs 
for fsheries applications is warranted. Although it is possible to estimate LRPs with lower sample 
sizes, the risks of biases in model parameters (and LRPs) increases. We calculate minimum 
sample sizes for our case studies using the approach of Peduzzi et al. (1996). 

Classifcation accuracy of LRPs 

Classifcation accuracy was evaluated based on the ratio of successful classifcations to total 
number of data points in the logistic regression, also called the hit ratio. Successful classifcations 
were the number of years when the model successfully predicted that all CUs were above their 
lower benchmark plus the number years when the model successfully predicted that at least 
one CU was below its lower benchmark. The hit ratio tends to be biased towards optimistic 
classifcation rates when computed with the same sample used for ftting the logistic model. 
Therefore, we also considered an out-of-sample approach to classifcation accuracy, where the 
logistic regression was estimated iteratively removing a single data point and the occurrence of 
successes relative to observations were based on the model that did not contain that data point. 
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2.3.2. Projection LRPs

Projection LRPs are estimated using simulated CU abundances to characterize the relationship 
between aggregate SMU-level spawner abundance and the probability that all CUs will be above 
their lower benchmarks (e.g., Sgen). Parameters describing CU-level population dynamics are 
estimated from available data, and then individual CUs are projected forward under current 
exploitation rates (with sensitivity analyses used to explore alternative exploitation rates). This 
approach allows for explicit consideration of uncertainty as the user can specify various projection 
scenarios to refect a lack of biological and/or fsheries in formation. Natural variability in recruitment 
and ages-at-maturity are incorporated into projections, as is implementation uncertainty in 
exploitation rates. As with logistic regression LRPs, we relied on status estimated from a single 
metric rather than multidimensional status estimates from the Salmon Scanner tool to develop 
LRPs. 

For our case studies, we ran projections for 30 years after an initialization period to identify 
aggregate abundances characterized by an equilibrium state represented by stable distribution 
of projected abundances. We recommend that the initialization and number of years be chosen 
on an SMU-by-SMU basis to ensure the distribution of trajectories capture equilibrium conditions. 
These projections should not be interpreted as predictions of future abundance; rather, they are 
used to simulate the underlying relationship between SMU-level abundance and the probability 
that all CUs will be above their LBMs. 

We used the samSim closed loop simulation modelling tool to conduct stochastic projections for 
our case study applications. samSim is an R package that was developed to evaluate fsheries 
rebuilding plans in simulation for Pacifc salmon (Freshwater et a l. 2020; Holt et a l. 2020). We 
created a modifed version of samSim to support LRP estimation. The LRP version of samSim is 
described in detail in Appendix B, and model code is available on GitHub (Appendix A). 

Detailed descriptions of the parameterization of samSim for our two case study applications of 
projection LRPs (Interior Fraser Coho and WCVI Chinook) are presented in Sections 3 and 4, 
respectively. In both cases, we incorporated uncertainty into projected CU dynamics through the 
specifcation of empirically-derived probability distributions for key biological and management 
parameters, including stock-recruitment parameters, proportion of recruits at age, and exploitation 
rates (ER). Larger structural uncertainties in model formulation were represented through the 
use of sensitivity analyses and/or specifcation of alternative model s tructures. Observation 
error was not included in projections because derivation of LRPs was based on projected ‘true’ 
abundance levels rather than observed abundance. 

The following steps were taken to calculate projection LRPs: 

1. Use samSim to project spawner abundances forward for nY ears over nT rial stochastic
simulations, under current exploitation.

2. For each simulated year-trial combination, characterize abundances as follows:

• Assign aggregate SMU level spawner abundance for each year-trial combination to an
abundance bin (AggSbin), based on intervals of 200 fish. E.g., AggSbin = 0:200 fish,
201:400 fish, 401:600 fish, . . . etc.

• Determine whether all CUs for that year-trial combination were above their CU-level
lower benchmarks on abundances. If they were, the year-trial combination is scored as a
success (1). If they were not, the year-trial combination is scored as a failure (0).

3. For each aggregate abundance bin, AggSbin:

11 



               .

• Summarize the realized number of year-trial combinations that fell within that bin. For
example, if a projection was run for 30 years with 1000 replicates, there might be 500
year-trial combinations that had an aggregate abundance in 10,000 - 10,200 fsh bin.

• Summarize the number of ‘successful’ year-trial combinations that occurred for that
bin. For example, 125 of 500 year-trial combinations in the aggregate abundance bin
of 10,000 - 10,200 fsh are successes with all CUs above their lower benchmarks.

• Calculate the probability that all CUs will be above their lower benchmarks as the ratio of
the number of successes to the number of realizations for each bin:

NumberofsuccessesinSAggbin
Pr(AllCUs > LBM) = (7)

NumberofrealizationsinSAggbin

For example, if 125 of the 500 realizations that fell within the SAggbin of 10,000 - 10,200 
fsh were ‘successes’, there would be a 25% probability (125 / 500 = 0.25) that all CUs 
would be above their lower benchmarks when aggregate abundances are between 10,000 
and 10,200 fsh. 

4. Identify the LRP as the mid-point of the aggregate abundance bin, AggSbin, that is closest to
the desired probability threshold that all CUs are above their LBMs.

An example of the derivation of an LRP from the projected curve of aggregate abundance bins 
versus the probability of all CUs being > their lower benchmark is shown in Figure 3 for the four 
probability levels used in our case studies (p* = 0.5, 0.66, 0.90, and 0.99). 

Figure 3. Example of projected probability curve derived from projections over 30 years and 10,000 MC 
trials. The curve shows the projected probability of all CUs being above their lower benchmark (LBM) as a 
function of aggregate SMU abundance, where aggregate spawning abundance is a bin of 200 fsh (e.g., 
0-200, 201-400, etc.). Each dot in the curve therefore represents a single 200-fsh bin. Coloured lines
demonstrate how aggregate abundance LRPs are calculated for 4 different probability thresholds: p* = 0.5
(yellow), 0.66 (blue), 0.90 (green), and 0.99 (orange) for the probability that all CUs are greater than their
LBM. Horizontal dotted lines intersect the y-axis at each probability threshold, while the solid vertical lines
show the corresponding aggregate escapement that will represent the LRP.
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Uncertainty intervals for LRPs are not generated in this method because it does not include 
statistical estimation and projections integrate uncertainties in all underlying parameters to 
identify LRPs with specified probabilities of all CUs being above LBM. However, LRP estimates 
could be presented as a range based on the SAggbin bin size. 

3. CASE STUDY 1: INTERIOR FRASER COHO SALMON

3.1. CONTEXT 

The Interior Fraser Coho SMU is well-suited for illustrating aggregate abundance LRPs due to 
the long history of using aggregate abundance-based recovery targets and fsheries reference 
points at the SMU scale. These rely on an underlying relationship between aggregate abundance 
and the distribution of abundance among sub-populations and CUs. Furthermore, it is a relatively 
data-rich SMU with spawner-recruitment time series available for all CUs starting in 1998. 

The SMU includes Coho Salmon that spawn in the Fraser River and tributaries upstream of 
Hells Gate in the Fraser Canyon. Like most Coho Salmon, Interior Fraser Coho spend at least 
one full year in freshwater as fry before migrating to the ocean as smolts (Arbeider et al. 2020). 
Most (88%) Interior Fraser Coho have a 3-year life history, in which they leave freshwater in their 
second year and spend 18 months at sea prior to returning to their natal system to spawn. The 
remaining 12% have a 4-year life history in which they spend an additional year in freshwater 
before migrating as smolts in their third year. Both the 3-year and 4-year life histories spend 18 
months at sea. Less than 1% of Interior Fraser Coho are believed to return as jacks (precocious 
mature males that spend only 6 months as sea) or at ages older than 4 years (Arbeider et al. 
2020). 
Five WSP CUs have been identifed for Interior Fraser Coho based on genetics and geographic 
separation: Middle Fraser, Fraser Canyon, Lower Thompson, North Thompson, and South 
Thompson (Figure 4) (DFO 2015). Previous work by the Interior Fraser Coho Recovery Team 
(IFCRT) identifed 11 sub-populations nested within the fve CUs, and developed recovery objectives 
based on maintaining abundance above a 1000-spawner threshold in each of these sub-populations 
(IFCRT 2006, Table 2). The delineation of sub-populations was based on several factors, including 
the presence of natural barriers, the infuence of large lakes on downstream discharge and 
thermal regimes, observations of spawner aggregations under differing discharge conditions, 
and genetic differentiation. The 11 sub-populations are described in detail by the IFCRT (2006). 

Only the upper portion of the Fraser Canyon CU (upstream of Hells Gate on the Fraser River) is 
included in our delineation of Interior Fraser Coho. This delineation is consistent with previous 
analyses for this SMU (e.g. Arbeider et al. (2020)). As a result, Nahatlatch is the only sub-population 
included in our description of the Fraser Canyon CU. Kawkawa Creek, which is located below the 
Fraser Canyon near Hope, BC, is not included in the data we use. 
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Figure 4. Distribution of the Interior Fraser Coho SMU, including the fve CUs that make up the SMU. Only 
the upper portion of the Fraser Canyon CU (upstream of Hells Gate) is shown here to be consistent with 
the spatial scale of the data that was used for analyses. 

Table 2. Interior Fraser Coho Conservation Units (CUs) and associated sub-populations. Note that the 
defnition of these sub-populations, including mapped boundaries, are provided in IFCRT (2006). 

Conservation Unit Sub-populations 

Middle Fraser • Lower Middle Fraser
• Upper Middle Fraser

Fraser Canyon • Nahatlatch

Lower Thompson • Lower Thompson
• Nicola

North Thompson • Lower North Thompson
• Middle Thompson
• Upper North Thompson

South Thompson • Adams Drainage
• Lower and Middle Shuswap Rivers
• Shuswap Lake Tributaries
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Hatchery enhancement has occurred, and continues to occur, in some parts of the Interior 
Fraser Coho SMU. Two CUs are currently considered wild populations based on the criteria 
developed by Withler et al. (2018) (i.e., do not have hatchery programs; strays from out-of-basin 
hatchery production are limited to <3% per year), while the other three are considered integrated-
wild populations (i.e., with Proportionate Natural Infuence (PNI) values most likely ≥ 0.72; M. 
Arbeider, pers. comm.). Within integrated-wild populations, most fsh are considered ‘wild’ under 
the WSP with parents who were born in the natural environment. The Lower Thompson CU 
had higher levels of hatchery enhancement between 1998 and 2005, so would likely have been 
considered an integrated-transition population (0.5 ≤ PNI < 0.72) during this period. 

The fve Interior Fraser Coho CUs have historically shown relatively high levels of covariation 
in escapement among CUs, with an average correlation in spawner abundances among CUs 
of 0.56. Similarity among CU responses to environmental and anthropogenic drivers is further 
supported by application of the four criteria proposed by Holt et al. (2023) to evaluate the extent 
to which status of data defcient CUs can be inferred from CUs with data. A summary of our 
consideration of these criteria for Interior Fraser Coho are provided in Appendix C. Results 
showed that Interior Fraser Coho CUs have many shared characteristics. We found few signifcant 
indicators that would have prevented us from inferring CU status for one CU from neighboring 
CUs prior to our case study analyses. 

Interior Fraser Coho is included in the frst batch of major stocks proposed for regulation under 
the Fish Stocks provisions of the revised Fisheries Act, necessitating the development of LRPs 
for this SMU. 

3.1.1. Previous Assessments 

Declines in Interior Fraser Coho spawner abundance throughout the 1990’s led to a suite of 
management actions to promote recovery, including signifcant fshery restrictions starting in 
1998 (Decker et al. 2014). Evidence of a new, lower productivity regime starting in return year 
1994 has been well documented, coinciding with declines in spawner abundances (Decker et al. 
2014). In 2002, the Interior Fraser Coho stock management unit was designated ‘endangered’ by 
the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) based on the stock 
unit being assessed as a single ‘Designatable Unit’ (DU). 

Subsequent work by the Interior Fraser Coho Recovery Team (IFCRT) led to a conservation 
strategy outlining short-term and long-term recovery objectives for the management unit (IFCRT 
2006). In 2014, Decker et al. assessed status relative to the 2006 IFCRT objectives, and concluded 
that Interior Fraser Coho had been above the short-term recovery target in every year since 
2008, and above the long-term recovery target in the most recent two return years (2012 and 
2013). Also in 2014, Interior Fraser Coho were assessed under the framework of DFO’s Wild 
Salmon Policy (WSP). The WSP Integrated Status Assessment classifed three of these CUs 
as being Amber status (Middle Fraser, Fraser Canyon, South Thompson) and the remaining 
two CUs as Amber/Green status (Lower Thompson, North Thompson, DFO 2015). As part of 
the WSP assessment, Sgen and SMSY were estimated for each CU and used along with other 
benchmarks when assigning integrated CU status. A subsequent COSEWIC assessment in 
2016 upgraded the status assessment for the Interior Fraser Coho DU from ‘endangered’ to 
‘threatened’ (COSEWIC 2016). In 2018, DFO undertook a Recovery Potential Assessment 
(RPA) for Interior Fraser Coho that described status, habitat, threats, limiting factors to recovery, 
candidate recovery targets, and abundance projections for the DU, as well as recommendations 
regarding mitigation and allowable harm (Arbeider et al. 2020). 
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3.1.2. History of Aggregate-Abundance Based Reference Points 

Interior Fraser Coho show a strong positive relationship between their spatial distribution and 
overall abundance, which has been used as a basis for identifying aggregate abundance recovery 
targets and reference points for the stock group. Starting in 2006, the IFCRT identifed a recovery 
goal of one or more viable sub-populations in each of the fve ‘populations’, where their defnition 
of populations aligns with CUs under the WSP (IFCRT 2006). Note that from this point on, we 
use the term CU instead of population when describing IFCRT recovery goals to be consistent 
with the WSP. The IFCRT identifed a short-term recovery objective that the 3-year average 
escapement in at least half of the sub-populations within each of the fve CUs was to exceed 
1,000 natural-origin spawning Coho Salmon, excluding hatchery fsh spawning in the wild. Based 
on analysis of the relationship between aggregate abundance and the number of CUs that met 
this objective based on historical data, the IFCRT identifed an abundance short-term recovery 
target of 20,000 spawners as the level required to meet their distributional objective. In addition, 
the IFCRT identifed a long-term recovery target of 40,000 spawners, which represented a level 
that was expected to maintain 1,000 or more wild Coho Salmon in all 11 sub-populations. Decker 
et al. (2014) updated the IFCRT’s original analysis using a longer time series of escapement 
data. They also quantifed the relationship between aggregate abundance and distribution by 
using a logistic regression to estimate the probability of meeting short-term and long-term recovery 
objectives as a function of aggregate abundance. They concluded that aggregate spawner 
abundance levels of 20,000 and 40,000 spawners would result in near 100% probability that 
the IFCRT’s short-term objective and long-term recovery objectives would be met, respectively. 

Korman et al. (2019) also used logistic regressions of the relationship between the IFCRT’s 
distributional objectives and aggregate abundance when evaluating how exploitation and smolt-
to-adult survival rates affected the ability of Interior Fraser Coho to meet conservation targets. 
Their approach was similar to that of Decker et al. (2014), except they applied logistic regressions 
at the CU-level instead of the SMU-level. Using this approach, they calculated the probability that 
IFCRT sub-population objectives were met as a function of total escapement to the CU within 
their simulation evaluation. When evaluating how well conservation targets were met at the SMU-
level, they chose to rely on the previous values of 20,000 and 40,000 identifed by the IFCRT 
instead of updating these values. Finally, the 2018 RPA used an updated logistic regression 
to identify a long-term recovery target for Interior Fraser Coho that met the long-term IFCRT 
objective of 1000 spawners in all sub-populations (Arbeider et al. 2020). As a result, Arbeider et 
al. (2020) recommended that the long-term recovery target for Interior Fraser Coho should be a 
3-year geometric mean abundance of 35,935 natural-origin spawners.

3.2. DATA 

Data for this case study cover return years 1998-2020. Data prior to 1998 were not used due to 
inconsistent assessment methods and data quality. All Interior Fraser Coho data were provided 
by DFO’s Fraser River Stock Assessment Unit (M. Arbeider, DFO, Kamploops, BC, pers. comm.). 
These data included: (i) annual spawner abundance by CU (1998-2020), (ii) annual natural 
origin recruits-at-age by CU (brood years 1998 - 2016), (iii) a hatchery-based smolt-to-adult 
survival rate index, (iv) annual exploitation rates, and (v) annual spawner abundances for 11 
sub-populations nested within the 5 CUs. 

Two types of spawner abundance series were provided: total spawners and natural-origin returns 
to the spawning grounds (sometimes called ‘natural returns’). The frst type, total spawners, 
includes both natural-origin spawners and spawners that originated from hatcheries but returned 
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to spawn naturally, but excludes fsh removed from the river for hatchery brood s tock. When 
modelling spawner-recruit dynamics, total spawners was paired with natural-origin recruitment 
so that estimated productivity from all spawners was fully captured. The second type of spawner 
abundance series, natural-origin spawning returns, included only natural-origin fsh that returned 
to spawn, with hatchery brood stock included. Natural-origin spawning returns were used when 
comparing spawning abundance to CU benchmarks or SMU-level LPRs in order to estimate CU 
or SMU status. 

Data were similar to those previously described in Arbeider et al. (2020); data treatments, assumptions, 
inflling, and data quality are described in detail in that document. More recent updates that are 
not described in Arbeider et al. (2020) include the incorporation of three additional years of data 
(return years 2018-2020; brood years 2014-2016), updates to the SMU smolt-to-adult survival 
rate index to use a weighted average by release size, and increased data quality screening of 
scale ages used to calculate the proportion of recruits at age (M. Arbeider, DFO, Kamploops, BC, 
pers. comm.). 

The exploitation rate time series is a large source of uncertainty for Interior Fraser Coho. Exploitation 
rates are only available at the SMU-level, so are assumed identical among all CUs. This assumption 
is unlikely to be true because of known differences in freshwater fsheries among CUs. Furthermore, 
models used to reconstruct exploitation rates require a large number of assumptions that are 
expected to be incorrect (Arbeider et al. 2020). Because exploitation rate time series are used 
to reconstruct recruitment time series, errors in exploitation rates will propagate through to 
estimates of stock-recruitment parameters, relative abundance benchmarks such as Sgen, and 
covariation in recruitment residuals. Additional sources of uncertainty in Interior Fraser Coho 
data sets include observation errors in spawner abundance estimates and estimates of age-
at-escapement. Spawner abundance estimates are largely derived from visual surveys, for 
which observer effciency is not estimated and survey life is diffcult to estimate accurately. Scale 
sampling to determine age structure is incomplete at the CU-level with small sample sizes, 
missing data, and limited spatial representation within CUs in some years (Korman et al. 2019). 

3.3. CU STATUS ESTIMATION 

We use three alternative ways to characterize CU status when developing LRPs for Interior 
Fraser Coho: 1) multidimensional status estimates derived from the Pacifc Salmon Status 
Scanner, 2) CU-level abundance relative to Sgen as a lower benchmark on abundance, and 3) 
distribution of spawning abundance relative to distributional targets developed by the IFCRT. 

The frst approach, which uses the Salmon Scanner tool developed by the State of the Salmon 
program (Section 2.2.1), is consistent with Canada’s WSP. The other two approaches are primarily 
used to develop aggregate abundance LRPs in this case study, as well as for a point of comparison 
with the Salmon Scanner tool. 

The second approach is based on comparing the current abundance of each CU to its CU-
specifc estimate of Sgen, where CU status is considered Red when abundance drops below Sgen. 
The value of Sgen represents the number of spawners required to recover to SMSY (spawners at 
maximum sustainable yield) within one generation, under equilibrium conditions in the absence 
of fshing (Holt et a l. 2009). S gen is one of several benchmarks available for assigning multidimensional 
CU status in WSP Integrated Status Assessments and the Salmon Scanner; it represents a 
lower benchmark between Red and Amber status zones and was used as part of the 2014 
Integrated Status Assessment for Interior Fraser Coho (DFO 2015). While estimates of CU 
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status relative to Sgen are readily available outputs from the Salmon Scanner tool, we calculated 
this metric external to the tool for our case study. 

The third approach is based on the distribution of spawning escapement among sub-populations 
nested within CUs (Table 2). We apply this approach for Interior Fraser Coho to maintain consistency 
with previous recovery planning processes for this SMU (IFCRT 2006; Arbeider et al. 2020). 
Since the distributional target we use was initially developed by the Interior Fraser Coho Recovery 
Team in 2006, we refer to it as “IFCRT distributional”. Specifcally, we use the IFCRT’s short-
term recovery objective that the 3-year geometric average escapement in at least half of the 
sub-populations within each of the fve CUs is to exceed 1,000 wild-origin spawners, excluding 
hatchery fsh spawning in the wild. We selected the short-term recovery target as a proxy for 
the lower benchmark in our case study because, as noted by Arbeider et al. (2020), the short-
term target was designed as an immediate target when the population was endangered. As 
such, it was interpreted as a level expected to prevent extinction or loss of genetic diversity. We 
have included this third approach to defning CU status to demonstrate the range of approaches 
and metrics that can be used, and to demonstrate sensitivity of the LRP to choice of metrics for 
assigning CU-status. Future iterations of the Pacifc Salmon Status Scanner approach could 
include distributional metrics such as those used in the IFCRT approach. 

3.3.1. Estimation of Sgen

Estimates of Sgen are required when assessing CU status using both the multidimensional 
algorithm within the Pacifc Salmon Status Scanner and the comparison of current CU-level 
abundance to Sgen. While the application of the Salmon Scanner to Interior Fraser Coho CUs in 
Pestal et al. (in prep) relies on peer-reviewed estimates of Sgen from the WSP Integrated Status 
Assessment (DFO 2015), we re-estimate Sgen here using data updated to 2020. In addition, 
we explore alternative stock-recruitment model formulations to better understand how model 
assumptions at the CU-level affect resulting LRP estimates. 

Two different formulations of stock-recruitment model were used to estimate Sgen: (i) a base 
Ricker model, which includes a smolt-to-adult survival covariate, and (ii) an alternative form of 
the Ricker model in which an informative prior distribution is used to increase SREP compared 
to the base model, labelled ‘Ricker_priorCap’. SREP is the spawner abundance level at which 
the stock replaces itself; the relationship between SREP and Ricker stock-recruitment model 
parameters is shown below (Equation 13). Both of these models have been previously developed 
and applied to Interior Fraser Coho CUs. The smolt-to-adult survival covariate used when ftting 
both models is a hatchery-based smolt-to-adult survival rate index. The index is not CU-specifc; 
the same index is applied to all CUs. A third Ricker model, in which both an informative prior 
on SREP and depensatory mortality were included, was also used by Korman et al. (2019) and 
Arbeider et al. (2020); however, we did not include it in our case study for simplicity. As noted 
by Korman et al. (2019), there is no indication in available data of depensatory dynamics, and 
the SR model ft with depensatory mortality required a highly uncertain assumption about the 
escapement level at which depensation occurs. Furthermore, formal model selection criteria 
showed that adding depensatory mortality into models lead to a reduction in model ft (Korman et 
al. 2019). 

Korman et al. (2019) and Arbeider et al. (2020) used a hierarchical model structure for both the 
base Ricker and Ricker_priorCap models that assumed CU-level productivity parameters were 
sampled from a common, normal distribution shared by all CUs. Using formal model selection 
criteria (i.e., DIC), Korman et al. (2019) found higher support for the hierarchical structure than 
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when productivity parameters were assumed independent among CUs. However, our initial 
examination of the hierarchical approach applied to the updated data set lead us to select the 
independent CU approach for our evaluation. Firstly, we found that LRP estimates were sensitive 
to the assumed standard deviation on the hyper-distribution prior for the productivity parameter. 
Using the individual model approach removed prior infuence on model results. Secondly, a 
logistic regression ft to status estimates obtained using the hierarchical model was unable to 
converge on a solution in several years between 2015 and 2020, including the most recent year 
(2020). 

Future stock-recruitment analyses for Interior Fraser Coho may wish to re-visit the hierarchical 
approach to modelling productivity. Bayesian posterior distributions of the productivity parameter 
from our individual model fts show some differences in productivity among CUs (particularly 
for the Fraser Canyon CU; Appendix C). However, there was substantial overlap in CU-level 
distributions for all other CUs. We do not expect our decision to apply an individual-stock modelling 
approach here will affect our general conclusions. In preliminary analyses, LRPs were similar 
between individual and hierarchical modelling approaches. 

The formulations for the two stock-recruitment models are described below. 

Model 1: Ricker 

The base Ricker stock-recruit model formulation was: 
−σ2log(αi)+γlog(mt−1)−βiSRi,a,t = Pi,a,t−aSi,t−ae

i,t−a /2vi (8) 

vi ∼ Normal(0, σvi ) (9) 

where, 

Ri,a,t = the predicted number of natural origin recruits from CU i of age a returning in year t (i.e., 
recruits that were produced by escapement in brood year t − a) 

Pi,a,t−a = the proportion of recruitment from CU i returning at age a from brood year t − a 

Si,t−a = spawners from CU i in brood year t − a 

αi = productivity parameter for CU i 

γ = smolt-to-adult survival co-effcient shared among CUs 

mt−1 = hatchery smolt-to-adult survival index shared among CUs for sea entry in year t-1 

βi = density dependent term describing the rate of decrease in density dependent survival for CU 
i with increasing spawner abundance 

σvi = standard deviation of process error on recruitment deviations 

Total recruitment from a brood year, BY , was calculated as the sum of age 3 and age 4 recruits 
in consecutive years, 

Ri,BY = Ri,a=3,BY + Ri,a=4,BY (10) 

Observations of ln(RBY /SBY ) were assumed to be normally-distributed random variables with a 
standard deviation of σvi . 

This model formulation is similar to the Ricker model used in Arbeider et al. (2020), but without a 
hierarchical structure imposed on log(αi). We placed the following non-informative constraints on 
the likelihood function to replicate the Bayesian model ftting routine of Arbeider et al. (2020): 

γ ∼ Normal(0, 10) (11) 
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σvi ∼ InverseGamma(0.1, 0.1) (12) 

Model 2: Ricker_priorCap 

To maintain consistency with this previous work on Interior Fraser Coho, we also consider a 
version of the Ricker model that uses an informative prior distribution on SREP to increase carrying 
capacity. Korman et al. (2019) suggested that the Ricker model with a smolt-to-adult survival co-
variate (Model 1) over-estimated compensatory dynamics at high spawner abundances when 
applied only to data from 1998 onwards. They noted that spawner abundances since 1998 
have been much lower than historic levels. Given that sparse data at high spawner abundances 
makes it diffcult to estimate carrying capacity, base Ricker estimates of carrying capacity may be 
unreliable (Korman et al. 2019). Furthermore, they observed that one brood line had persisted 
at a relatively higher and more stable spawner abundance than the other two brood lines, which 
they viewed as evidence for a higher capacity than the base Ricker model estimates. Based 
on these concerns, Korman et al. (2019) proposed an alternative Ricker model that used an 
informative prior distribution to increase carrying capacity (represented as the spawner abundance 
at which the stock replaces itself, SREP). Arbeider et al. (2020) followed the approach of Korman 
et al. (2019) by considering both the base Ricker model and a version of the Ricker model with 
an informative prior distribution on SREP to be plausible when providing management advice. 

αi + γ + log(m)
βi = (13)

SREP,i

SREP,i ∼ Normal(µSREP , σSREP ) (14) 

log(αi 
′ ) = log(αi) + γlog(m) (15) 

where, m is the average smolt-to-adult survival rate over the available time series. 

SMSY was calculated as a function of log(α ′ ) and βi using:i 

W (e1 − αi 
′ )

SMSY,i = 1 − (16)
βi

where, W represents the Lambert W function (Scheuerell 2016). Sgen was then calculated 
numerically by solving the following equation: 

= α ′ −βi ·Sgen,iSMSY,i iSgen,ie (17) 
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Arbeider et al. (2020) and Korman et al. (2019) set µSREP
at 1.5 times the SREP value estimated

from the base model fit without a prior on SREP. For our model fits (described in Section 3.5.1.),
we found that we needed to constrain µSREP at no more than 1.4 times the SREP value to achieve
model convergence, so we used the 1.4 times expansion instead. We set σSREP at

√
2× 1000 =

1414 spawners, which is the same value used by Arbeider et al. (2020). Note that the “×1000”
term is used to correct for scaling spawner abundance by 1/1000 when fitting models. The effect
of adding the prior on SREP when fitting individual models to available data is shown in Figure 5.

Calculation of Sgen

The inclusion of a smolt-to-adult survival co-variate in both stock-recruit models means that the
realized productivity changes from year to year with changing survival. We incorporated this
adjustment into our calculations of Sgen by first calculating the effective productivity for each CU
as:



Figure 5. Spawner-recruitment curves ft to spawner and recruitment data using individual models for each 
CU. Solid black lines shows the MLE ft for the base Ricker model while solid blue lines shows the MLE ft 
for the Ricker_priorCap model. Associated black and blue shaded regions show the 95 percent confdence 
intervals on respective model fts using the average long-term smolt-to-adult survival rate from the 
available time series. The red lines show the replacement line. 
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3.4. LRP ESTIMATION: CU STATUS BASED 

3.4.1. Methods 

To derive CU status-based LRPs, we calculated the proportion of CUs that had multidimensional 
statuses from the Pacifc Salmon Status Scanner above the Red zone. Status was assessed 
as being below the LRP in years in which one or more CUs assessed as having Red status. 
Both Ricker model formulations described above were used to estimate abundance-based 
benchmarks (lower benchmark = Sgen and upper benchmark = 0.8SMSY) when assessing status 
with the Pacifc Salmon Status Scanner: the base Ricker model and the Ricker_priorCap model. 
Estimates of Sgen and SMSY were estimated using all data available up to 2020. 

For comparison, we also calculated LRPs from the proportion of CUs that had recent generational 
average (3-year) spawning abundance greater than Sgen and from the proportion of CUs that 
failed to meet the IFCRT distributional target of at least half of all sub-populations within each CU 
having more than 1000 spawners. 

3.4.2. Results 

Estimates of Sgen based on the Ricker_priorCap model were higher than those based on the 
base Ricker model for four of the fve CUs (Middle Fraser, Lower Thompson, North Thompson, 
and South Thompson) and were approximately equal for the ffth CU (Fraser Canyon; Appendix C). 
As a result, generational average spawning abundance was more likely to drop below Sgen when 
it was estimated using the Ricker_priorCap model. Under the base Ricker model formulation, 
generational average spawning abundance remained above Sgen for all years between 2000 and 
2020 (Figure 6). In comparison, under the Ricker_priorCap formulation, generational average 
abundance dropped below Sgen for 5 of the 21 years between 2000 and 2020. These occurrences 
included the Lower Thompson CU (2006), the Middle Fraser CU (2006, 2008), and the South 
Thompson CU (2000, 2006, 2007, 2015; Figure 7). All fve CUs had spawning abundances 
above Sgen in 2020, regardless of which spawner recruitment model was used, indicating that 
the stock would be above a CU status-based LRP based on Sgen. 

The frequency of years in which the IFCRT distributional target failed to be met for one or more 
CUs was similar to that observed when Sgen based on the Ricker_priorCap was used, with 
distributional targets not met in 4 of the 21 years between 2000 and 2020 (breached in 2006, 
2015-2017). Eight of the 11 sub-populations had generational average escapement drop below 
the 1000 spawner threshold in one or more years (Figure 8). Sub-populations tended to differ in 
which years they dropped below the 1000 spawner threshold, which meant that the distributional 
target of at least half of the sub-populations within each CU with greater than 1000 fsh was more 
often met than not. All 11 sub-populations had generational average spawning abundances 
above 1000 spawners in 2020, indicating that the stock would be well above a CU status-based 
LRP based on the IFCRT-distributional target (Figure 8). 
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Figure 6. Escapement time series for Interior Fraser Coho CUs shown as annual escapements (lines) and 
3-year geometric mean escapements (dots). First geometric mean includes years 1998-2000. Grey dots
indicate years when all CUs had multidimensional Salmon Scanner assessments above Red when Sgen 
was estimated using the Ricker model, while red dots indicate when one or more CUs had assessments in
the Red zone, which would trigger a breach of the LRP. Orange lines show estimated Sgen.

Figure 7. Escapement time series for Interior Fraser Coho CUs shown as annual escapements (lines) and 
3-year geometric mean escapements (dots). Grey dots indicate years in which all CUs had
multidimensional Salmon Scanner assessments above Red when Sgen was estimated using the
Ricker_priorCap model, while red dots indicate years in which one or more CUs had assessments in the
Red zone, which would trigger a breach of the LRP. Orange lines show estimates of Sgen.
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Figure 8. Escapement time series for 11 sub-populations of Interior Fraser Coho shown as annual 
escapements (lines) and 3-year geometric mean escapements (dots). First geometric mean includes 
years 1998-2000. Grey dots shows years in which the 3-year geometric mean escapement was above the 
1000 fsh threshold used to assess distributional status, while red dots show years in which the 1000 fsh 
threshold was not met. CUs are represented by columns with labels long the y axis. 

Multidimensional status derived from the Salmon Scanner is driven by abundance metrics for 
this SMU. Because absolute abundance data and benchmarks based on Sgen and SMSY were 
available, the multidimensional algorithm within the Salmon Scanner (Figure 1) most often 
assigned CU status based on this metric (Figures 6 and 7). Though status in some cases was 
also infuenced by absolute abundance relative to the threshold of 1500 spawners. This occurred 
in the Fraser Canyon CU between 2015 and 2017. In these years, the generational average 
of absolute spawning abundance was < 1500 spawners and the CU was assigned Red status 
under the frst node of the decision tree even though spawning abundances are above Sgen. 

The total number of years in which an LRP would have been breached using the multidimensional 
approach depended on which Ricker stock-recruitment model was used to estimate Sgen. When 
status was assessed using abundance-based benchmarks estimated from the base Ricker 
model, a CU status-based LRP for the SMU would have been breached in 4 of 21 years. For 
three of these years, the breach was based on Fraser Canyon spawning abundances dropping 
below 1500 spawners (2015-2017), while for the one additional year (2000) it was due to the 
Lower Thompson CU having spawning abundance < Sgen (Figure 6). In comparison, when 
status was assessed using abundance-based benchmarks from the Ricker_priorCap model, 
a CU status-based LRP would have been breached in 9 of 21 years (2000-2001, 2005-2007, 
2010, 2015-2017; Figure 7). For both stock-recruitment models, multidimensional status from 
the Salmon Scanner was above Red for all CUs based on the most recent generational average, 
indicating that the SMU is currently above a CU status-based LRP, regardless of spawner recruitment 
model. 

3.5. LRP ESTIMATION: AGGREGATE ABUNDANCE, LOGISTIC REGRESSION LRPS 

3.5.1. Methods 

We present aggregate abundance LRPs derived using logistic regressions with two of the Interior 
Fraser Coho benchmarks considered: Sgen and the IFCRT-distributional target. Because two 
stock-recruitment models were used to estimate Sgen, we distinguish these models as ‘Logistic:Sgen-
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Ricker’ and ‘Logistic:Sgen-priorCap’ for the Ricker and Ricker_priorCap models, respectively. We 
use the label ‘Logistic:IFCRT’ to denote the case in which the IFCRT distributional target was 
used to develop the aggregate abundance, logistic regression LRP. See Section 2.3.1 for an 
overview of the approach used to calculate aggregate abundance LRPs using logistic regression. 

When estimating logistic regression LRPs using Sgen, we used an integrated modelling approach 
in which CU-level Sgen values and the SMU-level LRP were simultaneously estimated. The 
integrated Sgen-LRP models had two components: 

(i) Stock-recruitment models ft to each of the 5 CUs to estimate CU-level Sgen (Equation 8 and
Equations 15 - 17)

(ii) A logistic regression model ft to aggregated data to estimate the LRP as the aggregate
abundance that has historically been associated with a specifed probability of all CUs being
above Sgen (Equations 1 - 2)

We initially considered a third version of the logistic regression model, in which we used the 
multidimensional algorithm within Salmon Scanner to characterize CU status. Preliminary model 
evaluations led us to exclude this model due to poor ft. The multidimensional algorithm relies on 
generational mean (smoothed abundances) to assess status of individual CUs against benchmarks, 
while our logistic regression approach uses raw (unsmoothed) aggregate abundance as a predictor 
variable. As a result, when logistic regressions were ft to multidimensional CU status estimates, 
there was a mismatch in the timing of abundance highs and lows. This mismatch led to a weak/nonexistent 
relationship between SMU status and the raw (unsmoothed) abundances. In addition, using the 
generational mean of aggregate abundance as the predictor variable in the logistic regression ft, 
instead of raw annual abundance values, introduced considerable autocorrelation in statuses. 

Retrospective Analysis and Analysis Evaluating Impact of Missing CUs 

We used retrospective analyses to examine the effect of time series length on logistic regression 
LRP estimates. For each year between 2010 and 2020, we used data only available up to that 
year to calculate LRPs and associated confdence intervals. 

In addition, to examine the effect of missing CUs on retrospective LRP estimates, we calculated 
LRPs using data from only a subset of the fve Interior Fraser Coho CUs. We limited our analysis 
to missing data from either one or two CUs so that we had at least three CUs of available data 
when calculating the proportion of CUs above their benchmarks. For each missing data case, we 
calculated SMU aggregate status as 

ΣnCU 
i Si,t

AggStatust = (18)′ LRPt 

where nCU is the number of CUs used (3, 4, or 5), Si,t is the abundance of natural-origin spawners 
′returning to CU i in year t (including fsh removed for brood), and LRP is the LRP calculated in t 

year t using only data from nCU . SMU-level status in a given year was calculated for all possible 
combinations of CUs available (5 combinations when nCU= 4 and 10 combinations when nCU 
= 3) to allow examination of the stability of status estimates among available combinations. 
Estimates of SMU status relative to LRPs were used to compare among missing CU scenarios 
instead of actual LRP estimates because the magnitude of the LRP will vary with the number 
and combination of CUs used. Since uncertainty estimates for spawner abundance are not 
available, confdence intervals on LRP status are based solely on estimated 95% confdence 
intervals for the LRP. 
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3.5.2. Results 

LRP Estimates 

Logistic regression model fts in 2020 from the integrated Logistic:Sgen-Ricker, Logistic:Sgen-
priorCap and Logistic:IFCRT models are shown in Figure 9. All three logistic regression LRP 
methods were able to converge on a solution in 2020. Resulting LRPs for different p thresholds 
are shown on the regression curves, as well as in Table 3. There was considerable uncertainty 
around predicted curves as seen in the large areas of gray shading in Figure 9. 

Figure 9. Logistic regression ft from the three logistic regression models (Logistic:Sgen-Ricker, 
Logistic:Sgen-priorCap and Logistic:IFCRT) using data from 1998 - 2020. Dots represent individual years 
and ’x’ represents the latest year in the time series. The yellow vertical line shows the LRP estimate based 
on the requirement of a 50% probability of all CUs being above Sgen, while the yellow shaded region 
shows the associated 95% confdence interval around the LRP. LRPs for three alternative probability 
thresholds, 66%, 90%, and 99%, are shown in blue, green, and orange, respectively. 

When the Logistic:Sgen-Ricker model was used, aggregate abundance LRPs ranged from 
21,190 to 35,737 spawners, depending on whether the required probability of all CUs being 
above Sgen was moderate (50%) or very likely (99%) (Table 3). LRPs increased across all probability 
levels when the carrying capacity was assumed higher under the Logistic:Sgen-priorCap model 
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(Table 3). The higher Sgen values for most CUs under the alternative Logistic:Sgen_priorCap 
model formulation resulted in more historical years in which < 100% of CUs were above Sgen. 
The result was a shift of the logistic curve to the right (Figure 9). LRPs based on the 
Logistic:Sgen_priorCap model ranged from 23,245 to 39,200 spawners, depending on whether 
the required probability of all CUs being above Sgen was moderate (50%) or very likely (99%). 

When CU status was based on the IFCRT distributional target, the fit of the logistic curve had a 
more gradual slope than the two Sgen models due to a greater overlap in ‘successful’ (all CUs 
> distributional target) and ‘unsuccessful’ (<100% of CUs above distributional target) years at
low to moderate aggregate abundances. In 3 of the 6 years with aggregate abundances below
20,000 spawners, the distributional target was not met for all CUs (Figure 9). LRPs based on this
model also became increasingly large at high probability thresholds (Table 3). The LRP based on
a 99% probability was 44,403 spawners, with a 95% confdence interval extending from 15,102 -
73,703 spawners.

Table 3. Aggregate abundance based LRPs (with 95% confdence intervals) from three different logistic 
regression LRP models. For each probability level, the LRP estimate represents that probability that all 
CUs will be above their lower benchmark. 

Probability Sgen-Ricker Sgen-priorCap IFCRT 

50% (As likely as 21,190 (16,383- 23,245 (17,456- 17,515 (9,695-
not) 25,996) 29,034) 25,336) 

66% (Likely) 23,289 (17,364- 25,547 (18,158- 21,396 (13,418-
29,215) 32,937) 29,375) 

90% (Very likely) 28,145 (17,566- 30,874 (18,129- 30,372 (15,711-
38,725) 43,620) 45,033) 

99% (Virtually 35,737 (16,525- 39,200 (16,922- 44,403 (15,102-
certain) 54,949) 61,479) 73,703) 

Logistic Regression Diagnostics 

Logistic regression diagnostics showed that key regression assumptions were met, and that 
model fts were strong enough to support estimation of logistic regression LRPs from all three 
models (Table 4). The assumption of linearity was demonstrated based on the Box-Tidwell 
test. This test evaluates the signifcance of adding a non-linear interaction term to the logit 
regression. We found that this additional interaction term was not signifcant, supporting the 
linearity assumption (Table 4). An examination of deviance residuals did not show any large 
outliers, i.e., no residual values were greater than 2 standard deviations away from zero for all 
three models. Observations were also found to be independent at all year lags examined for all 
three models based on no signifcant autocorrelations among residuals. 

The Wald test showed that the logistic model coeffcient for aggregate abundance was marginally 
signifcant (p < 0.10). Pseudo-R2 statistics indicated a moderately strong relationship between 
aggregate abundance and the probability of all CUs being above their lower benchmarks, and 
the goodness of ft statistics indicated a signifcant ft of the model with aggregate abundance 
relative to the null model based on p-values less than 0.01. Finally, ‘out-of-sample’ hit ratios 
representing classifcation accuracy as the proportion of successful predictions when one year 
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of data was iteratively left out of the model ft, were relatively high at low probability thresholds, 
indicating good accuracy. This result was especially true for the Logistic:Sgen-Ricker and Logistic:Sgen-
priorCap models which had hit ratios ranging between 0.83 and 0.87 at probability thresholds of 
50% and 66%. Classifcation accuracy was lowest for all models at the 99% probability threshold. 

Table 4. Model diagnostic statistics from Sgen:LRP, Sgen_priorCap:LRP, and Dist-LRP model fts. A 
description of diagnostic tests is provided in Section 2. Hit ratios are shown for all four probability 
thresholds considered. The symbol indicates a result that only marginally met the recommended criteria 
for demonstrating good model ft 

Diagnostic Test Sgen-Ricker Sgen-priorCap IFCRT 

Box-Tidwell p-value 0.44 0.94 0.79 

Max. deviance 
residual 

1.98 1.81 1.66 

AR-1 -0.07 0.09 0.05 

Wald p-values 0.07∗ 0.06∗ 0.09∗ 

Goodness-of-ft p-
value 

<0.01 <0.01 <0.01 

Pseudo-R2 0.60 0.61 0.40 

Hit Ratio (p= 50%, 
66%, 90%, 99%) 

0.87, 0.83, 0.74, 
0.70 

0.83, 0.83, 0.83, 
0.74 

0.76, 0.71, 0.76, 
0.52 

Sample sizes were small due to the short time series available for Interior Fraser Coho; only 
23 years of observations were available to ft logistic regression models. Peduzzi et al. (1996) 
recommend a minimum requirement of 10 data points for the least frequent outcome based 
on their simulation studies in the feld of clinical epidemiology. In our case, the least frequent 
outcome was the failure of all CUs to be above their benchmarks (i.e., 0). We were not able to 
make this minimum requirement for any of our model fts; we had only 7, 8, and 5 data points at 
the least frequent outcome for the Logistic:Sgen-Ricker, Logistic:Sgen-priorCap, and Logistic-
IFCRT models, respectively. Based on the current ratio of successes and fails in the data, the 
estimated minimum sample sizes that would be required to meet the criteria of Peduzzi et al. 
(1996) ranged from 26 to 42 years. However, despite small sample sizes, hit ratios are high for 
all models at p = 50%. As a result, we suggest that logistic regression LRPs may still be useful 
for this SMU. We proceeded with retrospective analyses in order to examine how sensitive LRPs 
based on these model fts were to variations in the level of available data. 

Retrospective Analysis and Analysis Evaluating Impact of Missing CUs 

We started the retrospective analyses for the three logistic regression models in 2010. Throughout 
the time series, the Logistic:Sgen-Ricker did not converge when the estimates were truncated 
to 2013 and 2014. The Logistic:Sgen-priorCap model did not converge on an LRP estimate in 
2018. All three models showed some fuctuations in LRP estimates over time (Figure 10). The 
Logistic:IFCRT model tended to produce the lowest estimates of LRPs over time, followed by the 
Logistic:Sgen-Ricker and the Logistic:Sgen-priorCap. However there was considerable overlap 
between the confdence interval of all three LRP estimates (Figure 10). 
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Figure 10. Three-year geometric mean of aggregate spawning abundance for the Interior Fraser Coho 
SMU (black line) and associated time series of retrospective LRPs from logistic regression estimation 
methods. LRPs are based on a 50% probability that all CUs will be above their lower benchmarks. Annual 
LRP estimates are shown as maximum likelihood values (coloured lines) and associated 95% confdence 
intervals (shaded areas). 

When the Logistic:Sgen-Ricker model was applied retrospectively to missing data scenarios 
with 4 out of the 5 CUs, only a subset of scenarios had LRP estimates that converged on a 
solution (Figure 11). All fve possible 4-CU combinations had estimates in 2017-2019, while 
only four combinations had estimates in 2020. For scenarios in which LRP estimates were 
possible, estimates of aggregate status (Equation 18) were often close to the estimate obtained 
when all 5 CUs were used, and always overlapped with the 95% confdence interval of the 
full data estimate. The Logistic:Sgen-Ricker model was less likely to converge on a solution 
when data from only 3 CUs were used. This pattern was especially true for 2020 when only 
six out of the ten possible combinations had estimates. For 3-CU scenarios that were able to 
converge, aggregate status estimates tended to be more uncertain than 4- and 5-CU scenarios, 
and showed larger deviations from estimated status when all CUs were used. One missing data 
scenario in 2019 had a status estimate that fell outside of the 95% confdence interval of the full 
data estimate. 
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Figure 11. Estimates of SMU status (with 95% confdence intervals) from the Logistic:Sgen-Ricker model 
under different scenarios about missing CUs, where aggregate status is characterized as the recent 
generational mean of aggregate abundance / LRP. LRPs are based on a 50% probability that all CUs will 
be above their lower benchmarks. The set of status estimates associated with each number of CUs on the 
x-axis represents all possible combinations of CUs created by selecting that number from the 5 available
CUs. Red dashed lines show the maximum likelihood estimate when no data is missing (i.e., all 5 CUs) for
comparison with the missing data scenarios. Note that the y-axis has been truncated at 6, so the upper
limits of some error bars are not shown.

When the Logistic:Sgen-priorCap model was applied to missing data scenarios in which 4 out of 
5 CUs had data, LRP estimates were only available for two of the fve CU combinations (Figure 12). 
For scenarios in which LRP estimates were available, status was poorly estimated with the 
estimate often falling outside of the 95% confdence interval of the full data estimate. While 
convergence was more frequent when only 3 CUs were used, estimates had high uncertainty 
and were variable among scenarios. Several of the status estimates from 3-CU scenarios fell 
outside of the 95% confdence interval for the full data case. In the year 2018 the model did not 
converge when all CUs were included, but estimates for missing CU scenarios were available. 
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Figure 12. Estimates of SMU status (with 95% confdence intervals) from the Logistic:Sgen-priorCap 
model under different scenarios about missing CUs, where status is characterized as the recent 
generational mean of aggregate abundance / LRP. LRPs are based on a 50% probability that all CUs will 
be above their lower benchmarks. The set of status estimates associated with each number of CUs on the 
x-axis represents all possible combinations of CUs created by selecting that number from the 5 available
CUs. Red dashed lines show the maximum likelihood estimate when no data is missing (i.e., all 5 CUs) for
comparison with the missing data scenarios. The model with full data (5 CUs) failed to converge in 2018.
Note that the y-axis has been truncated at 5, so the upper limits of some error bars are not shown.

LRPs based on the Logistic:IFCRT model could be estimated for all 4-CU data combinations in 
all years (Figure 13). Resulting estimates of SMU status were similar to the full data estimate for 
4 of the 5 CU combinations. Status estimates were highest and most uncertain when the South 
Thompson CU was dropped from the analysis (i.e., the last of the fve 4-CU combinations shown 
for each year in Figure 13). This pattern is due the 2015 data point for the South Thompson CU, 
which is an infuential observation that has a large impact on the shape of the model ft. The 
South Thompson CU is the only CU that failed to meet the distributional target in 2015, which 
meant that its removal leads to a ‘failure’ year (i.e., at least one CU below its lower benchmark) 
becoming a ‘success’ (all CUs above lower benchmark). This shift results in a lower LRP and 
a higher status estimate. For missing data scenarios in which only 3 CUs were included, status 
estimates often had higher uncertainty than the 4-CU or full data scenarios, and showed high 
variability among scenarios in estimated status. 
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Figure 13. Estimates of SMU status (with 95% confdence intervals) from the Logistic:IFCRT model under 
different scenarios about missing CUs, where status is characterized as the recent generational mean of 
aggregate abundance / LRP. LRPs are based on a 50% probability that all CUs will be above their lower 
benchmarks. The set of status estimates associated with each number of CUs on the x-axis represents all 
possible combinations of CUs created by selecting that number from the 5 available CUs. Red dashed 
lines show the maximum likelihood estimate when no data is missing (i.e., all 5 CUs) for comparison with 
the missing data scenarios. Note that the y-axis has been truncated at 8, so the upper limits of some error 
bars are not shown. 

3.6. LRP ESTIMATION: AGGREGATE ABUNDANCE, PROJECTION LRPS 

3.6.1. Methods 

Projections of each of the fve CUs within the Interior Fraser Coho SMU were implemented using 
the samSim modelling tool (Appendix B). Finer-scale projections at the scale of sub-populations 
were not possible as spawner-recruitment data series were not available at this scale. As a 
result, projection LRPs using the IFCRT recovery target was not possible; we were restricted 
to estimating CU-level status based on Sgen. Parameters characterizing CU-level population 
dynamics, smolt-to-adult survival rates, and exploitation rates were derived directly from data 
sets described in Section 3.2. Base case parameters and alternative parameter values tested in 
sensitivity analyses are provided in Table 5. Additional details on key model parameterizations 
and sensitivity analyses are also described in text below. 
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Table 5. Parameters used for CU-specifc projections of Interior Fraser Coho population dynamics. 

Parameter Value Source 

Ricker Parameters (α, 
β, γ,σ) 

CU-specifc (Appendix C) Drawn from posterior from MCMC 
model ft to 1998-2016 brood years 

Smolt-to-adult 
survival rate (all CUs)

Drawn from Lognormal(-4.83, 
1.21), bound between [-9.21, 
-3.32]

Estimated from brood years 1998 -
2016, with bounds set at lowest and 
highest observations 

 

Among-CU variability 
in smolt-to-adult 
survival coeffcient 
γ 

σγ = 0 (all CUs the same) Assumed value when ftting models. 
Varied between 0 and 0.09 in 
sensitivity analyses 

Ave age proportions 
at maturity (ages 3, 
4) 

MiddleFR, LThomp, SThomp 
= (0.86,0.14) , FRCanyon 
= (0.87, 0.13), NThomp = 
(0.88, 0.12) 

Estimated from time-series of 
proportions of recruits at age 

Interannual variability 
in age proportions 
(tau from multivariate 
logistic distribution) 

MiddleFR, NThomp, SThomp 
= 1.0, LThomp = 0.9, 
FRCanyon = 0.8 

Estimated from time-series of ppns 
of recruits at age 

Average exploitation 0.125 
rate 

Estimated from annual estimates, 
brood years 1998 - 2016. Varied in 
sensitivity analyses (0.05 - 0.35). 

Interannual variability CV = 0.442 
in exploitation rates 

Estimated from annual estimates 
from brood years 1998 - 2016. 
Assumed to be Beta distributed. 

Variability in CV = 0.221 
exploitation rates 
among CUs 

Assumed to be half of interannual 
variability. Varied in a sensitivity 
analysis (0-0.442). 

Initial abundances CU-specifc Based on spawner-recruit series 
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Projections were run for 30 years over 20,000 simulation trials, with projections initialized using 
spawner abundances from the most recent 4 return years, 2016 - 2020. The high number of 
simulation trials was required to stabilize LRP estimates given the binning of aggregate escapement 
in 200-fsh intervals to identify LRPs based on probability thresholds. The distribution of projected 
trajectories were near equilibrium after 4 years of projections. During the frst 4 years, trajectories 
depended primarily on the historical time-series (Figures C.6 and C.7). 

Stock-recruitment dynamics 

Stock-recruitment parameters for all fve CUs were drawn from joint posterior distributions obtained 
by ftting the two stock-recruit models described in Section 3.3.1 (Ricker and Ricker_priorCap) to 
available spawner-recruit data using Bayesian Markov Chain Monte Carlo (MCMC) estimation. 
Bayesian estimation was done using ‘tmbStan’ (Kristensen et al. 2016), which is an R package 
that allows MCMC samples to be drawn from a TMB model object using ‘rStan’ (Stan Development 
Team 2020). Three MCMC chains were run for 14,000 iterations, with the frst half of each chain 
excluded from the fnal posterior sample. Resulting joint posterior distributions included 21,000 
samples. Posterior sampling was initiated at the MLE estimates for each model formulation. 
Neither model showed signs of convergence failure based on our examination of R̂ and effective 
sample size diagnostics, as well as visual inspections of marginal posterior distributions. A 
summary of marginal posterior distributions for each stock-recruitment parameter (α, β, γ, and σ) 
is provided in Appendix C. 

The two stock-recruitment models, Ricker and Ricker_priorCap, were treated as two alternative 
hypotheses about stock-recruitment dynamics, which we compare against each other. We also 
considered a simple model-averaging approach, in which we equally weighted the two stock-
recruit models by combining projections prior to calculating a projection LRP as a demonstration 
of model averaging. Additional sensitivity analyses described below were applied to the base 
Ricker model. 

Covariance in recruitment residuals 

We parameterized correlations in recruitment residuals among CUs from MLE predictions of 
pairwise correlations from stock-recruitment model fts. The correlation matrix from the base 
Ricker model ft is shown in Figure 14. Correlation values for the Ricker_priorCap model were 
similar (not shown). 

We initially attempted to reduce covariation in spawner abundances among CUs by scaling 
correlations in recruitment residuals (i.e., scalar < 1). However, we found that scalars had little 
effect on projected correlations in spawner abundances among CUs due to the shared smolt-to-
adult survival rate coeffcient dominating among-CU variability in recruitment. We therefore used 
sensitivity analyses of the level of variability in smolt-to-adult survival coeffcients among CUs to 
drive patterns of covariation in spawner abundance, as described below. This approach differs 
from that taken for WCVI Chinook (Section 4). 

Variability in smolt-to-adult survival coeffcient among CUs 

When ftting stock-recruit models to data, we followed the approach of Korman et al. (2019) and 
Arbeider et al. (2020) in assuming that all CUs experienced the same smolt-to-adult survival rate 
for given sea-entry year, and that the smolt-to-adult survival coeffcient, γ, was constant both 
among CUs and among years. When projecting CUs forward, we maintained this assumption 
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Figure 14. Bubble plot of pairwise correlation coeffcient in recruitment residuals among CUs from base 
Ricker model ft. 

in our base case by generating a single smolt-to-adult survival rate for each sea entry year 
and setting σγ = 0, where σγ is the standard deviation of among-CU variability in γ such that 
γi ∼ Normal(γ̄, σγ ). We used sensitivity analyses on σγ to test the effect of changes in spawner 
abundance covariation among CUs on projected LRP estimates. Three alternative levels of 
σγ were used in sensitivity analyses: σγ = 0.045, 0.0675, and 0.09. We selected these levels 
to cover a range between 0 and 0.09, where 0.09 was the standard deviation of the estimated 
marginal posterior distribution for γ from our Ricker stock-recruitment model ft. 

The resulting correlations in spawner abundances from the projections are shown in Figure 15. 
In the forward projections, pairwise correlations in projected spawner abundances among CUs 
for the base case assumption of σγ = 0 were similar to observed pairwise correlations in spawner 
abundances among CUs. Increasing σγ resulted in decreased among-CU correlation in projected 
spawner abundances. 

Variability in age proportions of recruitments among CUs 

Annual variability in the age structure of returns was generated from a multivariate logistic distribution 
parameterized using CU-specifc time series of proportions at age. The underlying average 
age structure for each CU was set at the average from the available time series (brood years 
1998 - 2016), while annual deviations from underlying age-specifc means were drawn from a 
multivariate logistic distribution. Annual deviations were held constant among all CUs; however, 
the scale of annual deviations was controlled by the variability parameter τ , which was estimated 
individually for each CU. This meant that while all CUs simultaneously experienced increases or 
decreases in a given year, the magnitude of the increase or decrease was CU-specifc. Annual 
deviations were held constant among CUs to represent the strong covariation in proportions 
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Figure 15. Distribution of correlations of spawner abundances among CUs for observed data between 
1998 and 2020 and projected time-series under alternative assumptions about the standard deviation on 
the smolt-to-adult survival co-effcient among CUs for the base Ricker model formulation. 

at age seen in available time series for Interior Fraser Coho, especially since 2010 (Figure 16). 
When the constraint of constant annual deviations was removed, generated proportion at age 
data was much more variable than observed data, which was considered to be unrealistic. 

Annual variability in the age structure of recruitments has not been included in other recent 
projection analyses for this SMU. Both Korman et al. (2019) and Arbeider et al. (2020) assumed 
a constant age structure over time. 

Figure 16. Proportion of recruits returning at age 3 for 1998 - 2016 brood years. Only two age classes 
(age 3 and age 4) are present in the age structure, so the proportion of recruits returning at age 4 will 
account for the remainder of returns from each brood year. 
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Covariance in exploitation 

We assumed an average exploitation rate of 12.5% for all CUs in forward projections based on 
recent average values, with common interannual variability in exploitation rates due to shared 
fshery impacts among CUs each year. Interannual variability in exploitation rates was assumed 
to be Beta distributed (constrained between 0 and 1), with the standard deviation of the Beta 
distribution parameterized from estimated exploitation rates for 1998 - 2016 brood years. The 
corresponding coeffcient of variation (CV) for interannual variability was 0.44. 

Exploitation rates for Interior Fraser Coho are only available at the SMU-level due to limited 
coded-wire indicator programs (one to two CUs with indicators / year) that have been available 
for the Fishery Regulation Assessment Model used by the Pacifc Salmon Commission for Coho 
Salmon (Pacifc Salmon Commission et al. 2013). As a result, empirically-based estimates of 
among-CU variability in exploitation rates are not available. However, there are reasons to expect 
exploitation rates to vary among CUs in a given year, including differences in freshwater fsheries. 
We assumed that CU-specifc variability in exploitation rates was half the common (SMU-level) 
interannual variability (CV=0.22), and varied this in sensitivity analyses from 0 and 0.44 to cover 
plausible bounds. Varying assumptions about variability in exploitation among CUs between 
CV = 0 and 0.44 in forward projections did not impact the distribution of correlations in spawner 
abundances in the projections (results not shown). 

3.6.2. Results 

LRP Estimates 

Aggregate abundance LRPs estimated using the Ricker model as a basis for forward projections 
were lower than those obtained when the Ricker_priorCap model was used, regardless of which 
probability threshold was used (Table 6; Figure 17). This result is similar to the logistic regression 
LRPs, where LRPs derived using Sgen estimates from the Ricker_priorCap model were higher 
due to higher Sgen values. The projected curve showing the probability of all CUs being above 
Sgen had a slope that was more gradual and further from the origin for the Ricker_priorCap 
model compared to the base Ricker model (Figure 17). When projection outputs from both 
stock-recruitment model formulations were combined prior to binning in order to create a model-
averaged scenario (with equal weight assigned to both scenarios), the resulting probability curve 
was mid-way between the curves from the two individual models. In all cases, projected curves 
had higher scatter with increasing aggregate abundance, such that LRP estimates at probability 
thresholds of p = 0.90 and p = 0.99 were unstable. 

Projection LRPs were higher than logistic regression LRPs calculated using the same stock 
recruitment relationship. While we did not explore the underlying cause of this pattern, or whether 
it was a general result or specifc to this case study, it may occur because projection LRPs 
account for more sources of uncertainty than logistic regression LRPs. Generational average 
spawning abundance (based on a 3-year geometric mean) remained above the projection LRP 
derived using the Ricker model with a probability threshold of p = 0.5 for most years between 
2000 and 2020. There were two years when aggregate spawning abundance decreased below 
the LRP: 2006 and 2007 (Figure 18). In comparison, when projection LRPs were derived using 
the Ricker_priorCap model with p = 0.5, aggregate spawning abundance remained below the 
LRP for 11 out of the 21 years. 
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Figure 17. Probability of all CUs being above their lower benchmark of Sgen along a gradient in aggregate 
abundances within bins of 200 fsh for two different stock-recruit model options (Ricker and 
Ricker_priorCap) as well as a model averaged case (Combined) in which results from both 
stock-recruitment models were equally weighted. Results are derived from projections over 30 years and 
20,000 MC Trials. Each dot is the proportion of MC trials where all CUs were > lower benchmarks of Sgen. 
Candidate LRPs at p=0.5 (yellow) and p=0.66 (blue), 0.90 (green), and 0.99 (orange) are highlighted. 

Table 6. Projection LRPs from forward projections under two different stock-recruit model options (Ricker 
and Ricker_priorCap), as well as a model averaged case (Combined) in which results from both 
stock-recruit models were equally weighted. For each probability level, the LRP estimate represents that 
probability that all CUs will be above their lower benchmark of Sgen. 

Probability Ricker Ricker_priorCap Combined 

50% 20,100 32,700 26,500 

66% 24,900 40,100 33,500 

90% 41,100 68,900 65,300 

99% 75,100 87,300 83,500 

Sensitivity Analyses 

Increasing σγ , which corresponded with reduced between-CU pairwise correlation in spawner 
abundances over time (Figure 15), resulted in a fattening of the projected relationship between 
aggregate spawner abundances and the probability of all CUs being above their lower benchmarks 
(Figure 19, where σγ is labelled ‘sigGamma’). LRP estimates corresponding to a given probability 
threshold increased as σγ increased due to curves shifting to the right and becoming more 
gradual (i.e., less steep). For the two highest σγ scenarios examined (σγ =0.0675 and 0.09), a 
99% probability of all CUs being above their lower Sgen benchmark was never achieved. Increasing 
the average exploitation rate used in forward projections also led to a shift in projected curves to 
the right; however, the shift was more gradual over the range of exploitation rate scenarios we 
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considered than the effect of increasing σγ (Figure 20). The effect of increasing exploitation rates 
was smallest at low probability thresholds. At p = 0.5, the LRP differed by 400 fish between the ER 
= 2.5% and ER = 12.5% scenarios (range = 19,700 - 21,000), and by < 4000 fish among all four 
scenarios (range = 19,700 - 24,000). Differences were much larger among the four exploitation rate 
levels examined for the p = 0.90 threshold. When the average exploitation rate was set at 22.5% or 
32.5%, aggregate abundances barely exceeded 60,000 fish, and it was not possible to achieve a 
99% probability of all CUs being above their lower Sgen benchmarks.

Figure 18. Three-year geometric mean of aggregate natural-origin spawning abundance for the Interior 
Fraser Coho SMU (black line) relative to projection LRP estimates using two different stock-recruitment 
model formulations, Ricker and Ricker_priorCap, with a probability threshold of p=0.5. Forward projections 
used to estimate reference points were parameterized using available 1998-2020 time series under base 
model assumptions. 

3.7. HISTORICAL EVALUATION OF STATUS ACROSS LRP METHODS 

We compared annual estimates of SMU status relative to LRPs for the range of LRP estimation 
options considered in this case study (Figure 21). For all aggregate abundance LRPs, we illustrate 
LRPs estimated from a probability threshold of p = 0.5 (i.e., a 50% probability that all CUs would 
have status above their lower benchmark). We used the following labeling convention when 
comparing historical status estimates across LRP estimation methods: “Metric” : “LRP Method” : 
“CU Status Method”. ‘Metric’ refers to the choice of whether to base an LRP on the proportion 
of CUs above Red CU status (CU status-based LRPs; labelled as ‘CUbased’) or on aggregate 
SMU-level abundance (Abund). The ‘LRP’ method only applies to aggregate-abundance based 
LRPs, which can be logistic regression (Logistic) or projection (Proj). Finally, the ‘CU Status 
Method’ can be based on the multidimensional algorithm within the Pacific Salmon Status Scanner 
in which CU abundance benchmarks are based on one of the two Ricker models (Scanner-
Ricker or Scanner-priorCap). Alternatively, when only a single benchmark is used to characterize 
CU status, it can be based on Sgen estimated from one of the two Ricker models (Sgen-Ricker 
or Sgen-priorCap) or the IFCRT target (IFCRT). For example, when referring to an aggregate 
abundance LRP that is estimated via a logistic regression fit to historical CU status, with CU 
status estimated relative to Sgen from the base Ricker model, it was labelled as “Abund: Logistic: 
Sgen_Ricker”. In the future, 21 could be expanded to include the number of CUs in the Red 
zone and / or the names of CUs in the Red zone. This type of information may help inform the 
development of rebuilding plans by highlighting CUs that are consistently in the Red zone.
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Figure 19. Probability of all CUs being above their lower benchmark of Sgen along a gradient in aggregate 
abundances (within bins of 200 fsh) for alternative scenarios about the value of s igGamma. The baseline 
value used for forward projections was sigGamma = 0. Results are derived from projections over 30 years 
and 20,000 MC Trials. Each dot is the proportion of MC trials where all CUs were > Sgen. Candidate LRPs 
at p=0.5 (yellow) and p=0.66 (blue), 0.90 (green), and 0.99 (orange) are highlighted. 

We show historical results for three types of CU status-based LRP methods: using the proportion 
of CUs with Pacific Salmon Status Scanner status > Red (e.g., CUbased: Scanner-Ricker), using 
the proportion of CUs with abundance > Sgen (e.g., CUbased: Sgen-Ricker), and using the 
IFCRT distributional target status (CUbased: IFCRT) . Holt et al. (2023) recommend CU statuses 
be derived from a multidimensional approach such as that used within the Salmon Scanner; 
however, we show results for the single metric Sgen and IFCRT approaches to demonstrate 
how these approaches impact SMU status. This comparison is of interest because our 
aggregate abundance LRPs use status estimates based on a single metric rather than a 
multidimensional approach. 

In addition to the LRP estimation methods presented so far in this case study, we include the full 
WSP assessment that was conducted in 2014 as an option for estimating CU status for use in a 
CU status-based LRP. We label this case “CUbased : WSP-2014”. SMU status would have 
been assessed as being above the LRP at this time as all CUs were assessed as Amber or
Amber/Green.
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Figure 20. Probability of all CUs being above their lower benchmark of Sgen along a gradient in aggregate 
abundances (within bins of 200 fsh) for alternative scenarios about average exploitation rates (ER) in 
forward projections. The baseline value used for forward projections was ER = 12.5%. Results are derived 
from projections over 30 years and 20,000 MC Trials. Each dot is the proportion of MC trials where all 
CUs were > Sgen. Candidate LRPs at p=0.5 (yellow) and p=0.66 (blue), 0.90 (green), and 0.99 (orange) 
are highlighted. 

In general, estimated LRP breaches coincided with low points in the aggregate abundance time 
series (2000, 2005 - 2007 and 2015-2017). However, there were differences among methods 
in the years that SMU status was estimated to be below the LRP, as well as a couple methods 
for which status was never estimated to be below the LRP (CUbased: Sgen-Ricker and Abund: 
Logistic: IFCRT). 

Comparison of SMU status estimates over time for all LRP estimation methods that used Sgen
from the base Ricker model showed differences in statuses between the CU status-based and 
aggregate abundance methods (status bars 2-5 in Figure 21). Under the ‘CUbased: Scanner-
Ricker’ method, the LRP was breached in years 2000 and 2015-2017, but for the ‘CUbased: 
Sgen-Ricker’ method, the LRP was only breached in the year 2000. The Salmon Scanner 
multidimensional algorithm includes a step in which CU status is designated as Red when the 
generational mean spawning abundance is less than 1500 spawners (Figure 1). Because estimated 
Sgen is less than 1500 spawners for the Fraser Canyon CU, it is possible for the criteria of <1500 
spawners in a CU to be breached even though abundance exceeds Sgen. 
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Figure 21. Historical evaluation of status relative to LRP options considered for Interior Fraser Coho. The 
black line shows the 2000-2020 generational mean aggregate spawning abundance to the SMU. Red bars 
indicate years in which SMU status would have been assessed as being below the LRP. Estimates of Sgen 
benchmarks and aggregate abundance LRPs were based on data available up to 2020 

This situation occured for the Fraser Canyon CU in 2015-2017. Therefore, LRP methods that use 
the multidimensional approach to characterize CU status can be more precautionary than methods 
that rely on a single Sgen benchmark. 

In the years 2005-2006, SMU status for both the ‘Abund: Proj: Sgen-Ricker’ and ‘Abund: Logistic: 
Sgen-Ricker’ methods fell below the LRP, while the CU status-based methods (labelled ‘CUbased:’) 
did not. Declines in aggregate SMU abundance in 2005-2006 were driven by declines in the four 
larger CUs (which, still remained above their individual Sgen estimates). Declines in the abundance 
of the Fraser Canyon CU were not as drastic. As a result, while SMU-level aggregate abundance 
dropped below the abundance LRP, the Fraser Canyon CU that triggered Red status in 2015-2017 
exceeded 1500 spawners and did not trigger the CUbased: Scanner-Ricker method. The aggregate 
abundance LRP from the ‘Abund: Proj: Sgen-Ricker’ estimation method was higher than that from 
the ‘Abund: Logistic: Sgen-Ricker’, so only the former method triggered an LRP breach. 

When the Ricker-priorCap model was used to estimate Sgen instead of the base Ricker model, both 
Sgen and LRP estimates were higher than under the base Ricker model formulation. This in turn 
resulted in more frequent LRP breaches when the Ricker-priorCap model was used (status bars 
6-9 in Figure 21).
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Among the ‘priorCap’ methods, status was most frequently estimated to be below the LRP when 
the ‘Abund: Proj:Sgen-priorCap’ method was used; for this method, the LRP was triggered in 14 
out of the 21 years between 2000 and 2020. In comparison, the LRP was triggered in 9, 9, and 8 
of the 21 years for the ‘CUbased: Scanner-priorCap’, ‘CUbased: Sgen-priorCap’ and ‘Abund: 
Logistic:Sgen-priorCap’ methods, respectively. 

Finally, SMU status was below the LRP in four years (2006, 2015-2017) out of the 21 years 
for the ‘CUbased: IFCRT’ method, but was only triggered in 2006 under the ‘Abund: Logistic: 
IFCRT method’ (status bars 10-11 Figure 21). The ‘Abund: Logistic: IFCRT method’ produced 
the lowest LRP of all logistic methods (Figure 9 and Table 3), therefore the LRP tended to get 
breached less often. 

Despite the differences in status estimates in some years for CU status-based and aggregate 
abundance LRPs highlighted above, estimated status tended to match in more years than not for 
CU status-based and aggregate abundance methods. Out of the 21 years available for comparison, 
the number of years with consistent status estimates for CU status-based and aggregate abundance 
LRPs ranged from 15 - 18 years (71 - 86% of years), depending on the exact methods being 
compared. For the Base Ricker models, the proportion of years with consistent status estimates 
was lowest when comparing the CUbased:Scanner-Ricker method to the Abund:Logistic:Sgen-
Ricker and Abund:Proj:Sgen-Ricker methods (15 / 21 years; 72% for both comparisons). These 
proportions were higher when comparing among the Ricker_priorCap models (86% and 81% for 
the same comparisons). 

3.8. DISCUSSION 

The Interior Fraser Coho SMU is considered a data-rich SMU because it has stock-recruitment 
time series for all fve CUs within the SMU, which allowed for the estimation of stock-recruitment 
based benchmarks (Sgen). However, time series were restricted to years after 1998, when spawner 
abundance data were collected with more consistent methodologies and regularity. This period 
also aligns with the low productivity period (Decker et al. 2014) when the SMU abundance is 
considered depressed relative to historical levels. Despite the short time series, Interior Fraser 
Coho are well-suited for looking at the application of aggregate abundance LRPs due to the long 
history of using aggregate abundance recovery targets and fsheries reference points (IFCRT 
2006; Korman et al. 2019; Arbeider et al. 2020). While we were able to estimate aggregate 
abundance LRPs using a suite of CU-level benchmarks and LRP estimation methods (logistic 
regression and projection), our results highlight variability in status against aggregate abundance 
LRPs that in some cases deviates from status against CU status-based LRPs. Our results also 
highlight the sensitivity of logistic regression based LRPs to data availability. 

3.8.1. CU Status-Based vs. Aggregate Abundance LRP Methods 

Comparisons of status between the abundance-based methods and the CU status-based methods 
yielded mixed results. While there were differences in the years in which CU status-based and 
aggregate-abundance based methods dropped below LRPs, status tended to match in more 
years than not. Out of the 21 years available for comparison, the number of years with consistent 
status estimates for CU status-based and aggregate abundance LRPs ranged from 15 - 18 years 
(72-86% of years), depending on the exact methods being compared. 

Consistency between CU status-based and aggregate abundance LRPs depended on the 
method used to assess CU status. For methods using the base Ricker model, status tended 
to drop below CU status-based LRPs when abundance of individual CUs was low (2000-2001, 
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2015-2017), and drop below aggregate abundance LRPs when aggregate abundances were low 
(2006-2007). As a result, CU status-based LRPs were breached in years with low abundance 
in only one CU (e.g, 2000, 2015-2017) whereas the aggregate abundance methods did not. In 
comparison, status was generally consistent for the scenarios in which the Ricker_priorCap 
model was used with LRPs breached in similar years. This result occurred because estimated 
Sgen and aggregate abundance LRPs were higher under the Ricker_priorCap model, which 
resulted in a more frequent occurrence of years with both aggregate abundance below the LRP 
and individual CUs below benchmarks. Finally, when the IFCRT distributional target was used, 
the CU status-based LRP was breached for 3 years in which the aggregate abundance was not 
(2015-2017) due to low abundance in one CU. 

When considering CU status-based LRPs, comparisons between using a single metric benchmark 
to estimate CU status (i.e., Sgen) and using a multidimensional approach yielded similar results. 
This occurred because the multidimensional algorithm relies on Sgen benchmarks when those 
are available. Exceptions occur when an estimated Sgen is less than the absolute threshold of 
1500 spawners, as occurred for the Fraser Canyon CU. 

3.8.2. Structural Uncertainty in Spawner-Recruitment Dynamics 

Most methods evaluated for the Interior Fraser Coho case study relied on the evaluation of CU 
status relative to Sgen. As a result, the method used to estimate Sgen had a large infuence on 
results. Sgen estimates were higher for the Ricker_priorCap model compared to the base Ricker 
model, which meant that LRPs were more frequently triggered under this formulation. This 
pattern was observed for all four methods that relied on the Ricker_priorCap Sgen estimates. 

We considered two alternative Ricker models for Interior Fraser Coho to represent different 
assumptions regarding carrying capacity, which in turn affected productivity. This approach 
has also been used in previous analyses for this SMU. Arbeider et al. (2020) used a model 
averaging approach with three SR models equally weighted when assessing recovery potential 
for the Interior Fraser Coho SMU (the base Ricker and Ricker_priorCap models we used, as well 
as a third depensatory mortality version that we did not consider). Korman et al. (2019) also 
considered multiple Ricker model formulations when estimating reference points for the Interior 
Fraser Coho SMU; however, they opted to focus on results for the base Ricker model instead of 
using model averaging approaches. 

Future analyses to characterize Interior Fraser Coho dynamics and estimate biological reference 
points could further explore model structure by considering more varied approaches. For example, 
life-cycle models that partition the life cycle into separate marine and freshwater components 
allow for more direct representation of smolt abundance and subsequent marine survival than 
our current approach of using smolt-to-adult survival as a covariate in adult-to-adult spawner 
recruitment models (Bradford 1998). Treating smolt abundance as a latent variable within a life-
cycle model would allow the smolt-to-adult survival rate index to be directly applied to smolt 
abundance (Ohlberger et al. 2018). Modelling frameworks that incorporate hatchery enhancement 
into spawner-recruitment models while allowing for differential productivity between hatchery-
and natural-origin spawners could also be considered in the future (Falcy and Suring 2018). 

The consideration of multiple model structures requires a decision on which model, or models, 
should be used to assess stock status. One approach to accounting for uncertainty in underlying 
model structure is to integrate estimates of LRP status over alternative structures. We demonstrate 
this approach when using projection estimates of aggregate abundance LRPs, in which we 
combine projections under each SR model scenario before calculating the LRP. This approach 
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is basically a model averaging approach in which both scenarios are equally weighted. However, 
other methods of assigning weights among model are possible, such as weighting based on 
prediction skill (Kell et al. 2021). When model averaging, it is important to consider the plausibility 
of various models and the distribution of uncertain parameters (e.g., their variances and biases)(Millar 
et al. 2015; Dormann et al. 2018). It may be more appropriate to select one model instead of 
averaging over models when they provide competing hypotheses (i.e., bimodal distributions) with 
differing management implications (Millar et al. 2015). 

3.8.3. Logisic Regression LRPs 

Retrospective analyses of logistic regression LRP options showed that LRPs were sensitive 
to data availability, with LRP estimates changing over time as more data became available. In 
addition, relatively small shifts in estimated Sgen over time meant that logistic models based 
on Sgen were sometimes unable to converge on a solution even with more data. This failure to 
converge was a result of a lack of overlap between aggregate abundance levels associated with 
‘successes’ and ‘failures’, which is a requirement for logistic models. This limitation did not occur 
for the IFCRT logistic regression approach, in which the absolute threshold used to defne CU 
status was constant over time. 

Missing data scenarios, in which 1 or 2 CUs were removed from the data set, further highlighted 
limitations in the ability of the logistic regression models to converge on a solution given small 
changes in the pattern of ‘successes’ and ‘failures’. In addition, we found that removing CUs 
in logistic regression LRPs resulted in an increase in uncertainty of estimated status. However, 
despite these limitations, the 95% confdence intervals for the missing data scenarios usually 
overlapped with status based on all CUs being included. This result suggests that our assumption 
of CU representativeness for stock status within the Interior Fraser Coho SMU, as described 
in Appendix C, may be supported. Future work on this SMU (or, other SMUs wishing to apply 
these methods) could use retrospective analyses of CU status-based approaches to see whether 
status estimates remain stable when 1 or 2 CUs are removed from the data set. The extent 
to which this result can be applied to other SMUs is expected to be dependent on the level of 
covariation in CU status among CUs within an SMU. 

Taken together, these retrospective results highlight that caution should be used when applying 
logistic regression LRPs. While they did provide similar estimates of SMU status as CU status-
based methods for several (but not all) years in the historical comparison, they were sensitive 
to reductions in data availability. For the specifc case of Interior Fraser Coho, retrospective 
performance may improve in the future as more data become available to improve the statistical 
power of logistic regression fts. 

3.8.4. Projection LRPs 

Projection LRPs have the advantage of being able to incorporate uncertainty about current (and 
future) population and / or fshery dynamics into LRP estimates, whereas logistic regression 
LRPs represent conditions that have been previously experienced, which may or may not persist 
into the future. Projection LRPs also allow key structural uncertainties to be incorporated into 
LRP estimates through the combination of multiple projection scenarios. For example, in the 
current application, we chose not to apply a third formulation of the Ricker model with depensatory 
mortality that has been used previously (Korman et al. 2019; Arbeider et al. 2020). However, 
future applications of projection LRP methods for Interior Fraser coho could easily incorporate 
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depensation as an additional scenario in a model-average approach if this was considered a key 
uncertainty to be represented. 

The sensitivity of projection LRPs to exploitation rate means that these LRPs are specifc to the 
management context. In our Interior Fraser Coho projections, we set exploitation rates at the 
recent average as fshery restrictions since 1998 been stable. In this case, the LRP represents 
the level of aggregate abundance that would be required to ensure all CUs were above Sgen
given that constant exploitation rate. However, Interior Fraser Coho are not managed using 
a fxed ER policy. While harvest has been relatively constant for several recent years, target 
harvest rates can vary among years for several reasons, including fshery plans for other species 
(e.g., Fraser Sockeye Salmon). For years in which target exploitation rates are increased, the 
LRP would also need be increased accordingly to ensure that the underlying objective of all 
CUs above Sgen could be achieved. This pattern arises due to variability in productivity among 
CUs; when higher exploitation rates are applied, some low productivity CUs will require higher 
spawning abundances to ensure that they remain above Sgen. This effect is demonstrated in 
Appendix D. As a result, projection LRPs are not static measures of serious harm, as commonly 
developed for other stocks and species. 

Projection LRPs were also sensitive to the level of covariation in spawner abundances among 
CUs over time. Reductions in covariation resulted in increased LRP estimates. This pattern 
will result in higher LRPs as the relationship between aggregate abundance and CU status 
weakens because random dynamics among CUs will increase the probability of any one CU 
having Red status. We recommend that possible instabilities in projections be evaluated for this 
SMU, and other applications for projection LRPs, which could arise due to changes in covariation 
of spawner abundance among CUs due to CUs with different productivity levels responding 
differently to exploitation. 

3.8.5. Distributional-Based Benchmarks 

The distribution of spawning abundances among smaller populations or sub-populations within a 
CU is recognized as an important component of CU status (DFO 2005). We relied on previously 
established distributional targets for Interior Fraser Coho to demonstrate the development of 
LRPs based on fner-scale distributional metrics. These metrics were based on a short-term 
recovery target of of 1000 spawners in at least 50% of sub-populations (IFCRT 2006). While 
these targets were used for recent recovery planning analyses (Arbeider et al. 2020), they were 
not considered as part of the 2015 WSP Status Assessment for Interior Fraser Coho (DFO 2015) 
and are included in the Pacifc Salmon Scanner Tool because formal distributional benchmarks 
have not been identifed under the WSP. We recommend research on the development and 
evaluation of metrics and benchmarks of distribution of spawning within CUs, as well as the 
development of guidelines on how to incorporate these into CU-level assessments under the 
WSP. 
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4. CASE STUDY 2: WEST COAST VANCOUVER ISLAND CHINOOK

4.1. CONTEXT 

The West Coast of Vancouver Island (WCVI) Chinook SMU is comprised of three CUs (Holtby 
and Ciruna 2007; DFO 2013; Pacifc Salmon Commission Sentinel Stocks Committee 2018), 
7 large inlets (or sounds), and 20 escapement indicators populations which have relatively 
complete time-series and consistent observation methodology (Figure 22, Table 7) (Riddell et 
al. 2002). Hatcheries produce a relatively large component of the total production for many of 
these populations, where they help achieve harvest, conservation and assessment objectives. 
However, hatcheries are also considered a risk factor for the long-term sustainability of CUs 
because they can reduce wild genetic diversity and ftness (Withler et a l. 2018). As described 
in Holt et al. (2023), only escapement indicator populations without signifcant enhancement 
(i.e., populations with Proportionate Natural Infuence, PNI, values ⩾ 0.5) were included in this 
analysis. Although most fsh in these populations are of natural origin (i.e., they spawned in 
the wild), ‘wild’ fsh, defned in the WSP as second generation natural-origin fsh, may be in the 
minority (Withler et al. 2018). 

Table 7. Overview of WCVI Chinook SMU. Italics represent escapement indicators with average PNI 
values < 0.5 and are excluded from analyses. The inlets, San Juan and Nitinat do not contain 
escapement indicator populations with PNI ⩾ 0.5 and are not included in these analyses. 

CU Inlets Indicators 

West Vancouver Island-
South (CK-31) 

San JuaSan Juan 

Nitinat 

Barkley 

Clayoquot 

n 

Nitinat 

Nahmint , Sarita, Somass 

Bedwell/Ursus , Megin , Moyeha , 
Tranquil 

West Vancouver Island-
Nootka & Kyuquot (CK-
32) 

Nootka/Esperanza 

Kyuquot 

Burman, Conuma, Gold, Leiner,
Tahsis 

Zeballos, Artlish, Kaouk, Tahsish 

West Vancouver Island-
North (CK-33) 

Quatsino Cayeghle, Marble 

This SMU was included as a case study, in part, to demonstrate the development of LRPs under 
data limitations when recruitment data are not available for deriving stock-recruitment based 
benchmarks, but habitat-based benchmarks exist, as is often the case for Chinook Salmon in BC. 
WCVI Chinook is also included in the proposed frst batch of major stocks for regulation under 
the Fish Stocks provisions, necessitating the development of LRPs for this SMU. In addition, 
WCVI Chinook is highly enhanced yet does not have complete data on the proportion of hatchery-
origin spawners contributing to total production, similar to many other Chinook Salmon SMUs. 
Furthermore, this SMU was unique among the case studies in the consideration of inlets within 
CUs as the level of assessment, demonstrating various spatial scales that can be integrated 
into SMU-level assessments. This scale is similar to the sub-population scale used in sensitivity 
analyses for the Interior Fraser River Coho case study. 
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Figure 22. Map of the WCVI Chinook SMU, component CUs (coloured red, blue, and yellow), and inlets 
(labelled in black). Note, Designatable Units (DUs) defned by COSEWIC are aligned with CUs in this 
SMU. 

Virtually all Chinook in this SMU are ‘ocean type’, entering the ocean 1 to 3 months after emergence 
from spawning gravel (DFO 2012). ‘Stream type’ Chinook, those that stay in the river for one 
year after emergence, are rare in this SMU. After entering the ocean, WCVI Chinook generally 
migrate into northern BC and southeast Alaskan waters to rear for 2 to 6 years, returning to 
spawn predominantly at ages 3, 4 and 5 (DFO 2012). 

4.1.1. Previous Assessments 

Two of the three CUs in this SMU, West Vancouver Island-South and West Vancouver Island-
Nootka & Kyuquot, were assessed as Red status in an integrated Wild Salmon Policy assessment 
(DFO 2016). For these CUs, assessments were based on component populations without hatchery 
enhancement within the most recent 12 years, omitting populations with enhancement during 
that period. For West Vancouver Island-South, Red status was based primarily on threats of 
genetic introgression from strays from nearby large-scale hatcheries. For West Vancouver Island-
Nootka & Kyuquot, Red status was based on a very low index of abundance for non-enhanced 
populations and threats of genetic introgression from strays from large-scale hatcheries. 
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The third CU, West Vancouver Island-North, was not assessed because the indicator site for this 
CU was enhanced over the most recent 12 years (other metrics of hatchery enhancement, e.g., 
Proportionate Natural Influence or PNI were not considered). A list of escapement indicator and 
non-indicator populations within each CU is available in Brown et al. (2020). 

WCVI Chinook was identified as a stock of concern in the 2021 Integrated Fisheries Management 
Plan, IFMP, for South Coast Salmon, and a rebuilding plan is under development (DFO 2021a). 
Poor smolt-age 2 survival rates for WCVI Chinook and low spawner levels over the past two 
decades are reasons for conservation concern in the IFMP (DFO 2021a). Since the mid 1990s, a 
variety of management measures have been implemented to restrict harvest on WCVI Chinook and 
address these concerns, described in the IFMP (DFO 2021a). 

For some Chinook Salmon populations including those on the west coast of Vancouver Island, 
habitat-based benchmarks have been used to derive status on spawner abundances (Parken et al. 
2006). These benchmarks are estimated using an empirical relationship between watershed area 
of spawning habitat and two stock-recruitment benchmarks, spawner abundances at replacement, 
SREP (also called spawners at equilibrium Seq), and SMSY, in a meta-analysis of 25 Chinook 
populations across North America (Parken et al. 2006; Liermann et al. 2010). Using this relationship, 
benchmarks can then be predicted for populations without stock-recruitment data from their 
watershed area. 

In November 2020, COSEWIC (2020) designated the West Vancouver Island-South and West 
Vancouver Island-Nootka & Kyuquot DUs as Threatened, and West Vancouver Island-North as 
Data Deficient. Threatened statuses were determined primarily from genetic risks of hatcheries 
enhancement and habitat threats from forestry. The West Vancouver Island-North DU was 
designated data deficient because it contains only one escapement indicator population. 

4.2. DATA 

4.2.1. Spatial Scale 

Under Canada’s Wild Salmon Policy, CUs are identified at a spatial scale that allows for long-term 
sustainability of the species (Holtby and Ciruna 2007). For WCVI Chinook, inlets nested within CUs 
are another important spatial scale of diversity given the geographic separation of spawning 
habitats among inlets and limited straying among inlets (D. McHugh pers. comm. DFO South Coast 
Stock Assessment). We used a hybrid approach in which LRPs were developed 
to preserve inlet-scale diversity within CUs. However, only 5 of the 7 inlets on the west coast of 
Vancouver Island contained indicator populations without significant hatchery influence. Both 
Nitinat and San Juan inlets, which are the two most southern inlets within the WCVI-South CU, 
have large-scale hatcheries and infrequent monitoring of sites with natural spawning. These two 
inlets lack escapement escapement indicator populations without significant hatchery influence. 
Because the remaining five inlets with significant natural spawning are nested within the 3 WCVI 
Chinook CUs, preserving this inlet-scale biodiversity (5 inlets with data) will also preserve CU-scale 
biodiversity required under the Wild Salmon Policy. Future analyses could limit LRP estimation to the 
scale of CUs or extend it to include all 7 inlets with additional natural escapement indicators for 
Nitinat Lake and San Juan Bay, if they are developed. 
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4.2.2. Watershed Areas 

To derive habitat-based benchmarks, watershed areas were updated for WCVI Chinook using 
methods described in Parken et al. (2006) by identifying 3rd order watershed areas that contain 
spawning habitat and omitting areas above obstacles to fsh passage from the Provincial Obstacles 
to Fish Passage database. Only watershed areas for escapement indicator populations were 
included in the current analysis. These watershed areas were then summed within inlets to 
derive inlet-specifc watershed areas (Table 8). As a result, inlet-level benchmarks presented in 
this case study are on a relative scale; they represent the abundance of select indicator streams. 
In future analyses, watershed areas of all known spawning populations could be included (omitting 
areas above obstacles to fsh passage) to derive habitat-based benchmarks on an absolute 
abundance scale. These benchmarks could be compared against total abundances to each inlet. 
This approach was not used in this case study because of large uncertainties in abundances of 
non-indicator populations that precluded the development of reliable estimates of total absolute 
abundance. 

Table 8. Sum of watershed areas for escapement indicator populations within inlets, km2. Only indicator 
populations that are not highly enhanced (i.e., PNI ⩾ 0.5) are included. 

Inlet Watershed Area, km2

Barkley 

Clayoquot 

Kyuquot 

Nootka/Esperanza 

Quatsino 

42 

460 

336 

77 

217 

4.2.3. Spawner Abundances 

Spawner abundances were provided for 20 WCVI escapement indicators populations (D. Dosbon 
and D. McHugh pers .comm.; Table 7; Figure 23). These time-series are compiled annually 
by DFO South Coast Area staff for local and international assessment and management (e.g., 
DFO 2021b). Missing values were not inflled and in some cases methodologies for monitoring 
changed over time, which limited the estimation of historical SMU status. Although some escapement 
time-series begin in 1953, others begin as late as 1995, limiting our analyses to these most 
recent years that are based on a consistent escapement methodology (Pacifc Salmon Commission 
Sentinel Stocks Committee 2018). In future work, inflled time-series of escapement indicator 
populations within inlets (or CUs) could be developed to extend the available time-series. Spawner 
abundances for escapement indicators populations are estimated from a combination of snorkel, 
boat and aerial surveys, bank walks, and fence counts, which range in accuracy and precision 
(see DFO 2014 for a summary of monitoring and assessment methods). In particular, spawner 
estimates from visual surveys are a source of uncertainty for this SMU. Abundances are usually 
estimated using Area-Under-the-Curve (AUC) or associated maximum likelihood methods. For 
populations that are not surveyed continuously over the spawning season, abundances are 
estimated using peak counts or a combination of observations from multiple surveys, contributing 
additional uncertainties to the annual abundance estimates. 
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Figure 23. Time-series of spawner abundances by escapement indicator population, in units of 1000s. 
Dark blue time-series are escapement indicator populations where most production is from natural 
spawning and Proportionate Natural Index (PNI) values are generally ⩾ 0.5; light blue time-series are 
escapement indicator populations where hatchery production is dominant, where PNI values are generally 
< 0.5 over available time-series. Provisional average PNI values are provided in the top right corner of 
each panel, where they are available. 

4.2.4. Proportionate Natural Infuence, PNI 

The metric, Proportionate Natural Infuence, PNI is used to estimate the relative strength of 
the hatchery and natural selective pressures in hatchery-infuenced populations (Withler et al. 
2018). PNI values for 14 WCVI escapement indicator populations were provided to DFO South 
Coast Stock Assessment by DFO’s Salmonid Enhancement Program (J. Bokvist, pers. comm., 
DFO South Coast Salmon Assessment). Populations were considered signifcantly enhanced 
and excluded from our analyses if average PNI values over the available time-series where 
hatchery objectives have remained constant were < 0.5. Thermal marking was used to identify 
the proportion of hatchery-origin spawners on the spawning grounds to derive PNI values. When 
data on thermal marking were not available, coded-wire tags (CWTs) were used to identify 
hatchery-origin spawners. Although Gold River had average PNI values > 0.5 (0.52), most of 
the unmarked spawners are thought to be second generation (or descendants of) hatchery-
origin fsh from the Robertson Creek hatchery. Thus, Gold River was excluded from our analyses. 
Also, although the average PNI of Artlish was marginally < 0.5 (0.46), PNI estimates were only 
available for one year (2015) using CWTs, which was deemed to be unrepresentative of this 
population which is relatively unenhanced. Thus this population was retained in our analysis. 
Five of the remaining six escapement indicator populations without PNI data are not thought 
to be signifcantly enhanced: Cayeghle, Kaouk, Megin, Moyeha and Tasish (D. McHugh, pers. 
comm., DFO South Coast Stock Assessment), and were retained in the analysis. One escapement 
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indicator population without PNI data, Tranquil, was considered signifcantly enhanced and was 
omitted from our analyses (D. McHugh, pers. comm., DFO South Coast Stock Assessment). 

We initially considered a stricter defnition of hatchery enhancement that included only populations 
with PNI values ⩾ 0.72. This stricter threshold resulted in excluding most data since reliable time-
series of PNI values and spawner abundances are only available for exploitation-rate indicator 
populations where coded-wire tags have been applied and sampled for recoveries, which on the 
WCVI tend to be populations with hatcheries. The PNI threshold of ⩾ 0.5, a level associated with 
most fsh being natural origin, accounts for the trade-off between assessing CU-level biodiversity 
and excluding signifcant hatchery impacts. 

Guidelines and methods for estimating PNI values are currently being documented by DFO’s 
Salmonid Enhancement Program (DFO, in review)2. Uncertainties in PNI values stem from low 
sample sizes on the spawning grounds to estimate proportion hatchery-origin spawners, large 
uncertainties from CWT estimates of hatchery-origin spawners due to insuffcient marking of 
hatchery production, and lack of data on proportions of natural-origin brood stock (and assumption 
that proportions of natural-origin brood stock equal proportions of natural-origin spawners). 

Because current and historical times-series of the proportion of hatchery-origin spawners were 
not consistently available for populations with PNI ⩾ 0.5, total spawner abundances (i.e., combined 
natural- and hatchery-origin spawners) were used in the assessment of CU and aggregate 
SMU level statuses. This may result in optimistic assessments of status. We recommend the 
design of hatchery marking and spawning ground sampling programs to collect data to estimate 
the contribution of hatchery-origin spawners to total production for these escapement indicator 
populations. The inclusion of hatchery-origin fsh in estimates of status is a key source of uncertainty 
for this SMU, and likely many others in Pacific Region. 

4.3. INLET AND CU STATUS ESTIMATION 

Inlet status was derived by applying the multidimensional algorithm used within the Pacifc 
Salmon Status Scanner to individual inlets (Pestal et al., in prep). We found that the status using 
this algorithm was equivalent to status on a single metric, abundances relative to an estimated 
lower benchmark for all inlets. When abundances are only available on a relative scale and 
abundance benchmarks can be estimated, status within the multidimensional algorithm reduces 
to spawner abundances relative to abundance-based benchmarks (as shown in Figure 1). Because 
the resulting LRPs were equivalent, in some cases we present only a single set of results, labeled 
as the single metric approach which also represents status based on the multidimensional 
algorithm in this case. Holt et al. (2023) recommend applying the multidimensional approach 
used in the Salmon Scanner to derive CU-level status. 

Sgen is the spawner abundance required to achieve SMSY within one generation without fshing 
under equilibrium conditions, and is the lower benchmark on abundances applied under the WSP. 
We derived Sgen by optimizing the Ricker equation with recruitment set to SMSY (equation 17 
repeated again here for transparency): 

SMSY = a · Sgen · e −b∗Sgen (19) 

2DFO in review. Guidelines for Calculating the Proportionate Natural Infuence Index as a Metric of the Genetic 
Infuence of Enhanced Pacifc Salmon on Wild Populations. Report of the Salmonid Enhancement Program, 
Vancouver, BC 
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log(a)
b = 

SREP
(20) 

1 − W e1−log(a) 
SMSY = 

b 
(21) 

where, 

and a is recruits-per-spawner at low productivity and W represents a Lambert function (Scheuerell 
2016). Maximum likelihood estimates of SREP values (and 95% CIs) were derived from the 
watershed-area model adapted from Parken et al. (2006), that included hierarchical structure 
in the underlying meta-analysis accounting for similarities in productivity among ocean-type and 
stream-type fsh (Liermann et al. 2010, Table 9). 

Ricker a values were approximated from a life-stage model that partitioned survival across 
freshwater and marine life-stages for ocean-type Chinook based on empirical data and expert 
opinion (W. Luedke pers. comm. DFO South Coast Stock Assessment). Life-stage specifc 
survival rates were then combined to derive an overall survival from spawners to recruitment . 
Despite the relatively large uncertainties in the life-stage specifc survival rates, this approach 
provides an approximation for productivity that is more realistic than the high estimate previously 
derived from the watershed-area model and reported for many other ocean-type Chinook populations 
(> 7 recruits/spawner, Parken et al. 2006). From the life-stage model, mean a values were 
estimated at 2.7 recruits-per-spawner, with standard errors ranging from 1.6 to 4.5). 

Our approach to estimating SMSY (and Sgen) differed from that of Parken et al. (2006), because 
we derived productivity independently, whereas Parken et al. (2006) estimated both SMSY and 
SREP from the watershed-area model thereby inferring relatively high estimates of productivity, a. 
Those estimates of productivity were deemed unrealistically high for WCVI Chinook, necessitating 
the alternative approach adopted here. 

Approximate confdence intervals of Sgen were estimated by repeated sampling of the normal 
distributions of SREP and log(a), with standard deviations in log(SREP) derived from the watershed-
area model. This method does not account for covariance between productivity and capacity 
typically found in stock-recruitment relationships, and will overestimate uncertainty in derived 
benchmarks. In future analyses, we recommend Bayesian estimation of habitat-based benchmarks 
to facilitate integration of uncertainties from various sources. 

Table 9. Benchmarks (in units of number of spawners) and approximate 95% confdence limits, CL 
(labelled to the right of each benchmark) for fve inlets, including only escapement indicator populations 
that are not highly enhanced. 

Population or Inlet Sgen upper 95%CL lower 95%CL SREP upper 95%CL lower 95%CL 

Barkley 120 28 430 640 290 1,400 

Clayoquot 1,400 350 4,300 7,300 4,100 13,000 

Kyuquot 1,000 240 3,200 5,300 2,900 9,600 

Nootka/Esperanza 220 55 760 1,200 570 2,400 

Quatsino 650 160 2,100 3,400 1,800 6,300 
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Figure 24. Time-series of spawner abundances by inlet, including only escapement indicator populations 
that are not highly enhanced. Horizontal yellow line is Sgen and dots are generational geometric average 
spawner abundances coloured by red (below Sgen) and grey (above Sgen). 

CU status was derived from the proportion of component inlets above their lower benchmarks. 
Serious harm is expected to occur at levels where any one inlet within each of the three CUs 
dropped below its lower benchmark. Here we have assumed that the status of the one escapement 
indicator population in the West Vancouver Island-North CU (Marble River, in Quatsino Sound) 
is not signifcantly enhanced and is representative of the CU. However, further review of these 
assumptions by local experts is warranted. 

4.4. LRP ESTIMATION: CU STATUS BASED 

4.4.1. Methods 

The LRP on the proportion of CUs was identifed as all three CUs containing inlets with current 
statuses exclusively above Red status. Because inlets are nested within CUs, this LRP accounts 
for the distribution of spawning among inlets within CUs. If any CU contained an inlet with Red 
status, the LRP was considered breached. Status of component inlets was derived from the 
multidimensional approach used within the Pacifc Salmon Status Scanner, which for this SMU 
reduced to a single metric of spawner abundances relative to the lower benchmark, Sgen. 

We further considered a CU status-based LRP based on CU statuses derived from a previously 
published WSP integrated assessment (status in 2014 only, DFO 2016). 
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4.4.2. Results 

In the most recent year with data, 2020, four of the fve inlet had abundances above their abundance-
based lower benchmark, Sgen (Figure 24). Therefore, two of the three CUs contained inlets with 
current statuses exclusively above their lower benchmarks. One CU, Southern Vancouver Island, 
contains an inlet, Clayoquot, with status that has been consistently below its lower benchmark 
throughout the available time-series. Therefore, this SMU falls below the LRP of 100% of CUs 
above Red status. 

Only two of the three component CUs were assessed in the previously published WSP assessment, 
though those CUs were assessed as Red in 2014. For this year, the LRP would be considered 
breached because at least one CU had Red status. 

4.5. LRP ESTIMATION: AGGREGATE ABUNDANCE, LOGISTIC REGRESSION LRPS 

Logistic regression LRPs could not be identifed for WCVI Chinook because there are no years 
when all inlets were above their lower benchmark in the historical record (Figure 24). In order to 
ft a logistic regression model to data, observations of successes (years when all inlets were 
> lower benchmarks) and failures (years when all inlets were not > lower benchmarks) are
required. The estimation of logistic regression LRPs is limited to SMUs with historical records
that demonstrate contrast in status over time.

4.6. LRP ESTIMATION: AGGREGATE ABUNDANCE, PROJECTION LRPS 

4.6.1. Methods 

Projection LRPs were derived for WCVI Chinook by projecting inlet-specifc population dynamics 
using the samSim modelling tool (Appendix B). We chose to project inlet-specifc rather than CU-
specifc population dynamics to refect the relative demographic isolation of in lets. Population 
dynamics and exploitation parameters were derived from a previously developed CU-specifc 
run-reconstruction for WCVI Chinook based on spawner abundances and age compositions 
from indicator populations, and exploitation rates from the Robertson Creek hatchery indicator 
population (D. Dobson & D. McHugh, pers. comm. DFO South Coast Stock Assessment). Because 
this run-reconstruction has not been peer-reviewed, it is not used to develop benchmarks, but 
can provide plausible distributions for parameters of projections. CU-specifc parameters were 
applied across all component inlets. Inlet-specifc population capacities, SREP, were estimated 
from the watershed-area model (Parken et al. 2006) (Table 8) and applied in projections of 
recruitment with a Ricker stock-recruitment model. Base-case parameters are provided in Table 10 
and sensitivity analyses are described in the text below. 

The model was initialized at inlet-specifc equilibrium abundances and projected for a 40-year 
initialization period to stabilize the distributions of spawner abundances. The model was then 
run for an additional 30 years and annual aggregate abundances and inlet-specifc statuses 
were recorded. Because the projections identify long-term equilibrium abundances and statuses, 
the outputs are independent of initial abundances. Projections were summarized over 50,000 
random Monte Carlo trials. A relatively large number of Monte Carlo trials was required for 
LRP estimation because the algorithm required a suffcient sample size within each 200-fsh 
incremental bin of aggregate abundances along a range of realistic abundances (from near 
zero to carrying capacity). Projection LRPs were identifed from the aggregate abundances with 
specifed probabilities of all component inlets being above lower benchmarks. We recommend a 
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review of model assumptions and parameters by local experts prior to adopting a projection LRP 
for this SMU. We provide an example for demonstration purposes. 

Table 10. Parameters used for inlet-specifc projections of WCVI Chinook population dynamics. 

Parameter Value Source 

Ricker log(a) (mean) WCVI-South = 1.14, WCVI-
Nootka & Kyuquot =1.58, 
WCVI-North = 1.53 

Run reconstruction for WCVI 
Chinook (1985-2019, D. Dobson 
& D. McHugh pers. comm.) 

Ricker log(a) (SD) 0.5 Approximate 95% CI and bounds 
from life-stage specifc model (W. 
Luedke per. comm.) 

SREP (Spawners at 
replacement, mean) 

Barkley = 637, Clayoquot = 
7879, Nootka/Esperanza 
= 1184, Kyuquot = 5273, 
Quatsino = 3384 

MLE estimate from watershed-area 
model 

SREP (SD) Barkley = 0.40, Clayoquot 
= 0.30, Nootka/Esperanza 
= 0.37, Kyuquot = 0.31, 
Quatsino = 0.32 

Derived from standard error of MLE 
estimate from the watershed-area 
model 

SD in Ricker 
residuals (sigma) 

WCVI-South = 0.80, WCVI-
Nootka & Kyuquot = 0.69, 
WCVI- North = 0.68 

Run reconstruction for WCVI 
Chinook (1985-2019, D. Dobson 
& D. McHugh pers. comm.) 

Covariance in Ricker 
residuals among 
inlets 

Equal to covariance in 
spawner time-series among 
inlets 

Covariance in spawners among 
inlets from wild escapement 
indicator populations (D. Dobson 
& D. McHugh, pers. comm.) 

Ave proportions of 
age-at-maturity (age 
2, 3, 4 and 5). Ages 
5 and 6 are grouped. 

WCVI-South = 0.02, 0.14, 
0.45, 0.38; WCVI-Nootka & 
Kyuquot = 0.01, 0.10, 0.48, 
0.40; WCVI-North = 0.02, 
0.15, 0.47, 0.36 

Average proportions from run 
reconstruction (D. Dobson & D. 
McHugh pers. comm.) 

Variability in age 
proportions (tau from 
multivariate logistic 
distribution) 

WCVI-South = 0.7, WCVI-
Nootka & Kyuquot = 0.6, 
WCVI-North = 0.7 

Estimated from time-series of 
proportions of ages-at-maturity from 
the run reconstruction. Assumed 
variable over CUs and years. 

Average exploitation 
rate 

0.30 Average pre-terminal ERs 2010-
2019 for Robertson Creek hatchery 
indicator (D. Dobson & D. McHugh 
pers. comm.). Varied in sensitivity 
analyses 0.05 - 0.45. 
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Parameter Value Source 

Interannual variability 
in exploitation rates 
(CV) 

0.17 Estimated from pre-terminal ERs 
2010-2019 for Robertson Creek 
hatchery indicator. Assumed to 
be Beta distributed, constrained 
between 0-1. 

Variability in 
exploitation rates 
among inlets (CV) 

0.085 Assumed to be half of interannual 
variability, varied in a sensitivity 
analysis (0-0.17). Assumed to 
be Beta distributed, constrained 
between 0-1. 

Initial abundances SREP (inlet-specifc) MLE from watershed-area model 

We chose covariance parameters so that the resulting projections of inlet-specifc spawner 
abundances exhibited correlations among inlets that were similar to those observed (Figure 25). 
Specifcally, model parameters were tuned so that resulting correlations among inlets in projected 
spawner abundances approximated observed correlations in spawner abundances, described in 
more detail below. 

Pairwise correlations between observed inlet-specifc spawner time series were relatively strong 
in the 1990s and early 2000s, and have become slightly weaker since 2015. The correlations 
among inlets for running 20-year time periods are provided in Figure 25. Starting in 1995, the 
frst boxplot displays the distribution of pair-wise correlations among the fve inlets for the time 
period 1995-2015; the second boxplot displays correlations for 1996-2016, etc. A decline in 
correlations in evident in the last two time periods. The fnal boxplot shows the correlation over 
the entire time-series. 
Within the forward projection model, correlations in spawner abundances among inlets are driven 
by three model components, each described in more detail below: (1) covariance in exploitation 
rates among inlets, (2) covariance in recruitment residuals among inlets, and (3) covariance in 
age proportions of recruits among inlets. 

Covariance in exploitation 
Covariance in exploitation rates among inlets is modelled as common interannual exploitation 
parameterized from pre-terminal exploitation on Robertson Creek hatchery Chinook, with additional 
inlet-specifc variability. The common variability occurs due to their overlapping distribution in 
offshore fsheries, whereas inlet-specifc variability results form inlet-specifc vulnerability to 
exploitation in coastal waters and terminal fsheries within the inlets. 

We assumed an average exploitation rate as observed for WCVI Chinook in recent years (2010-
2019, Robertson Creek indicator, 30%, Figure 26). In projections, interannual variability in exploitation 
rates was assumed to be Beta distributed (constrained between 0 and 1), parameterized from 
estimated pre-terminal exploitation rates for Robertson Creek, with a coefficient of variation (CV) 
= 0.17 (Table 10).
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Figure 25. Running correlations in spawner abundances among inlets in 20-year time periods, with the 
start year of the 20-year period on the X-axis. Each boxplot shows the distribution of pairwise correlations 
among the fve inlets (n=10 pairwise correlations). 

Figure 26. Pre-terminal exploitation rates for Robertson Creek CWT indicator population. 

Without data to parameterize inlet-specific variability in exploitation rates, we assumed the inlet-
specific variability was half the common (SMU-level) interannual variability (CV=0.085), and 
varied this in sensitivity analyses from 0 and 0.17 to cover plausible bounds (Figure 27). We 
assumed that inlet-specific deviations from the SMU-level average exploitation rate were 
consistent over years (e.g., due to the spatial and temporal variability in inlet-specific migration 
patterns affecting vulnerability to fisheries), but that this deviation changed over MC trials. 
Future analyses could include consistent biases in exploitation for specific inlets (e.g., positive 
biases for southern inlets and negative biases for northern inlets). 
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Figure 27. Variability in projected exploitation rates over time (cv=0.17) and among inlets (CV=0.085), 
from an average exploitation of 0.3. 

In the forward projections, pairwise correlations in projected spawner abundances among inlets 
were similar to recent observed pairwise correlations in spawner abundances among inlets 
(Figure 28). Varying assumptions about variability in exploitation among inlets between CV= 0 
and 0.17 did not impact the distribution of correlations in spawner abundances in the projections. 

Covariance in recruitment residuals 

We parameterized correlations in recruitment residuals among inlets from the observed correlations 
in spawner abundances among inlets derived from the WCVI Chinook run reconstruction (D. 
Dobson and D. McHugh, pers. comm. DFO South Coast Stock Assessment, Fig. 29). However, 
spawner abundances may be more weakly correlated than recruitment due to differences in 
exploitation among inlets and sub-populations within inlets. 

In sensitivity analyses, we scaled pairwise correlations in recruitment residuals among inlets 
by 0.5 and 0 of the observed spawner correlations (0 representing recruitment residuals that 
were uncorrelated among inlets in the projections). We then compared the resulting correlations 
in projected spawner abundances to observed correlations, to evaluate the extent to which the 
model provided realistic projections under each assumption. When we scaled correlations in 
recruitment residuals to less than observed spawner correlations (i.e., scalar < 1) the resulting 
correlations in spawner abundances from the projections were lower than observed correlations 
(Figure 28), but were roughly similar when recruitment residuals were scaled to 1. So, for our 
base case, we assumed correlations in recruitment residuals among inlets were equal to observed 
correlations among inlets. 

Variability in proportions in age-at-maturity among inlets 

For the base case, we assumed that proportions in age-at-maturity varied over time and among 
inlets parameterized from proportions of ages-at-maturity calculated for each CU in the WCVI 
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Figure 28. Distribution of correlations of spawner abundances among inlets for observed data over the 
most recent 20 years (n=10 pairwise correlations, 1st boxplot) and projected time-series under various 
assumptions: with a CV in exploitation rates among inlets = 0, 0.085 or 0.17 (0.85 is the base 
case)(2nd-4th boxplots), with a scalar on covariance in recruitment residuals of 0 (no correlation in 
recruitment residuals), 0.5 and 1 (equal to observed spawner correlations, base case) (5th-7th boxplots), 
and variable or constant age proportions among inlets (variable is the base case) (8th-9th boxplot). For 
each set of assumptions the other variables were held constant at base-case values. 

Chinook run reconstruction (D. Dobson pers. comm. DFO Science; inlet-specifc age-proportions 
were not available) (Figure 30). We used the CU-specifc mean proportions at each age from the 
run reconstruction with annual deviations in those proportions based on a multivariate logistic 
distribution, parameterized from the estimated time-series of age proportions. 

For these analyses, recruitment was calculated from total spawner abundances (i.e., combined 
natural- and hatchery-origin spawners) and catches, which may result in biased proportions 
for hatchery-infuenced populations if hatchery-origin adults return at different (younger) ages 
than natural-origin salmon (Larsen et al. 2019). As mentioned above, the inclusion of hatchery-
origin fsh in estimates of status is a key source of uncertainty for this SMU. We ran a sensitivity 
analysis under an alternative assumption where age proportions varied over years but were 
constant among CUs. Under this assumption, we found that pairwise correlations of spawner 
abundances in projections were much higher than those observed (Figure 28), generating time-
series that were unrealistic. 

4.6.2. Results 

Projection LRPs were developed under the base-case assumptions of (1) interannual variability 
in exploitation rates among inlets with a CV = 0.085, (2) correlations in recruitment residuals 
among inlets equal to observed spawner correlations among inlets, and (3) variability in age 
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Figure 29. Bubble plot of correlations in spawner abundances among inlets over time, 1994-2020. 

proportions among CUs and years. We identifed a provisional aggregate abundance LRP with 
p=0.5 (50% probability of all inlets being greater than their lower benchmark) equal to 11300 
(Figure 31). Provisional LRPs at p=0.66 (“likely” that all inlets are above their lower benchmarks) 
is also shown, near 20,000 (Figure 31). Probabilities that all inlets were above their lower benchmarks 
never exceeded 0.9, so LRPs at higher p values could not be estimated. Note that the LRP 
at p=0.66 required more MC trials for full stabilization and is shown here for demonstration 
purposes only. Candidate projection LRPs were compared against time-series of aggregate 
abundances observed for WCVI Chinook salmon (sum of escapement indicator populations with 
PNI > 0.5), showing that abundances are currently below these LRPs and have been near or 
below them over the available time-series (Figure 32). 

4.6.3. Sensitivity Analyses 

We considered sensitivity analyses on interannual variability in exploitation rates among inlets 
with a CV = 0 and 0.17 (Figure 33), and found LRPs at 50% probability were not sensitive to 
interannual variability in exploitation rates over the range of values we considered. We further 
considered sensitivity analyses on average exploitation rates from 5-45% (Figure 34), where 30% 
exploitation was the base case. As exploitation increased, the LRP associated with a specifed 
probability of all inlets being above their lower benchmark also increased. At high exploitation, 
individual inlets dropped below their lower benchmarks more frequently despite often relatively 
high aggregate abundances on the remaining inlets. To explain the initially counter-intuitive 
result of the sensitivity of projection LRPs to exploitation rates, we ran additional analyses for a 
hypothetical SMU where the spawner-recruitment parameters were either varied or kept constant 
over component inlets (or CUs) and Monte Carlo trials, and a range of exploitation rates were 
applied (Appendix D). Based on these sensitivity analyses, we found that differences in productivity 
among component inlets results in inlet-specifc variability in sensitivity to exploitation rates. 
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Figure 30. Time-series of proportions at age in recruitment aligned by brood year, calculated from run 
reconstruction for WCVI Chinook by CU. 

Figure 31. Probability of all inlets being above their lower benchmark along a gradient in aggregate 
abundances within bins of 200 fsh, derived from projections over 30 years and 50,000 MC Trials. Each 
dot is the proportion of MC trials where all inlets were > lower benchmarks. Candidate LRPs at p=0.5 
(yellow) and p=0.66 (blue) are highlighted, where p is the probability of all inlets being > their lower 
benchmarks. 

Inlets with relatively low productivity fall below lower benchmarks more frequently. This effect 
is accentuated when exploitation rates are high resulting in divergences in status among inlets 
and higher aggregate abundances required for all inlets to be above their lower benchmarks (i.e., 
higher LRP). 
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Figure 32. Time-series of aggregate escapement for WCVI Chinook (indicator populations with PNI >= 
0.5), with projection LRPs associated with component inlets being > lower benchmarks at p=0.5 (yellow) 
and p=0.66 (blue). Red points are the generational average escapement (geometric mean), indicating 
status below LRPs 

Figure 33. Probability of all inlets being above their lower benchmark along a gradient in aggregate 
abundances within bins of 200 fsh, derived from projections over 30 years and 50,000 MC Trials. The 
projections assumed variability in ERs among inlets with a CV=0, 0.085, and 0.17. 

Given uncertainty in current and anticipated productivity, projection LRPs were further evaluated 
under a range of productivities from 75% - 150% of base case estimates, under current exploitation. 
Scenarios with lower productivity (< 0.75x current estimates) had a large proportion of trajectories 
with productivity below replacement, for which LRPs could not be estimated. 

Projection LRPs tended to increase under low productivity and vice versa (Figure 35), a trend 
that was expected due to the inverse relationship between productivity and inlet-specifc Sgen
values (Holt and Folkes 2015). At low productivity, Sgen tends to increase, thereby becoming 
more precautionary. The sensitivity of LRPs to productivity highlights the value of updating 
benchmarks and projection LRPs as productivity changes. Our results also show that uncertainty 
in projections increased under low productivity, likely requiring more random Monte Carlo trials 
for stabilization at p=0.5. The probability of all inlets being above their lower benchmark rarely 
met or exceeded 0.66 (‘likely’ category, Mastrandrea et al. 2010) when productivity was low, so 
LRPs at this level could not be estimated. When productivity was high, the probability of all inlets 
being above their lower benchmark rarely dropped below 0.66. At high productivity, LRPs at the 
p=0.5 level could not be estimated. More detailed analyses of LRPs along the entire range of 
productivities and exploitation was beyond the scope of this case study.
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Figure 34. Probability of all inlets being above their lower benchmark along a gradient in aggregate 
abundances within bins of 200 fsh, derived f rom projections over 30 years and 50,000 MC Trials, under a 
range of average exploitation rates from 5-45%. Candidate LRPs at p=0.5 (yellow) and p=0.66 (blue) are 
highlighted. 

4.7. HISTORICAL EVALUATION OF STATUS ACROSS LRP METHODS 

We evaluated the status of WCVI Chinook using LRPs estimated using CU status-based and 
projection methods. We show status against three types of CU status-based LRPs: an LRP 
based all component inlets having status above Red using the multidimensional algorithm in the 
Salmon Scanner, an LRP based all component inlets having spawner abundances above Sgen, 
and status based on the previously published WSP integrated assessment of CUs (status in 
2014 only, DFO 2016, Figure 36). The results from the multidimensional approach and 
abundances against Sgen are identical, but are shown separately for clarity. Although the Salmon 
Scanner can equally provide status on a single metric of abundances, we have differentiated 
them here to highlight the unique approach to multidimensional assessments provided within the 
Scanner. 

All methods indicate this SMU being below its LRP for years where data are available. We use 
the same nomenclature as for Interior Fraser River Coho Salmon, where ‘CUbased’ indicates 
CU status-based LRPs, ‘Abund’ indicates aggregate abundance LRPs, ‘Scanner’ indicates 
CU-level assessments derived from multidimensional approach within the the Pacific Salmon 
Status Scanner, ‘Sgen’ indicates CU assessments derived on a single metric, (e.g.,
abundances relative to the lower benchmark Sgen), and ‘Proj’ indicates projection LRPs.
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Figure 35. Projection LRPs estimated under assumptions of reduced productivity (0.75x of current levels) 
and increased productivity (1.5x current levels). Candidate LRPs at p=0.5 (yellow) and p=0.66 (blue) are 
highlighted. More Monte Carlo trials are required for stabilization of LRPs at low productivity. LRPs at 
p=0.66 could not be estimated at low productivity, and LRPs at p=0.5 could not be estimated at high 
productivity 

4.8. DISCUSSION 

A few key conclusions from this case study are highlighted for broader relevance. Status was 
consistent across the LRP methods that were available, and with a previously published assessment. 
This SMU is generally managed at scales smaller than the SMU supporting the application 
of CU status-based LRPs to allow management decisions to be responsive to CU- or inlet-
level statuses. However, aggregate abundance, projection LRPs were also estimated here for 
demonstration purposes. It was not possible to estimate a logistic regression LRP due to lack of 
contrast in the time-series. 

Projection LRPs were highly sensitive to average exploitation for this SMU. LRPs derived assuming 
current exploitation rates cannot be used as an indicator of serious harm if the management 
procedure changes. Projection LRPs were also highly sensitive to underlying population 
productivities. As productivity declined, LRPs increased, becoming more precautionary, reflecting 
trends of underlying benchmarks. Projection LRPs at probabilities levels of 90% and 99% could 
not be estimated for this SMU because of the relatively low covariation in population dynamics 
among CUs. The probability of all CUs exceeding their lower benchmarks was never high, even at 
high aggregate abundances. 

A key uncertainty for this SMU is the contribution of hatcheries to total abundances. Although only 
escapement indicator populations where most of the production was from natural spawning were 
included, hatchery production likely biases abundance estimates upwards, providing an optimistic 
characterization of status compared to if the hatchery contribution were removed. Furthermore, 
hatchery production can result in optimistic estimates of recruitment and productivity, resulting in 
LRPs that are biased low. Time-series of hatchery-origin spawners were not available for most of 
the populations we considered, precluding the ability to account for enhancement quantitatively in 
abundance estimates. 

We recommend a few areas for further research relevant to this SMU: 

• The projection LRPs illustrated here should further be evaluated for sensitivity to key structural
assumptions, such as the stock-recruitment model, and the presence and magnitude of
depensation, among other assumptions. This evaluation is especially important for this SMU
because of the lack of peer-reviewed stock-recruitment models. We based our assumption
of a Ricker form of the stock-recruitment relationship from its application to other Chinook
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populations in BC (Parken et al. 2006), but this form may not represent the high observed 
variability and declining productivity that are now common for Chinook salmon.

• In the development of CU status-based and projection LRPs, inlets were chosen as the
spatial scale of biodiversity required for the sustainability for the SMU. In future analyses,
alternative assumptions could be considered, including LRPs derived to maintain diversity
at the CU scale by projecting CU-level abundances. In addition, we recommend research
on the development and evaluation of metrics and benchmarks of distribution of spawning
within CUs, and guidelines on how to incorporate these into CU-level assessments under
the WSP.

• Future iterations of the multidimensional status assessments used within the Pacifc Salmon
Status Scanner could include information on the distribution of spawners across inlets within
CUs to incorporate this fner scale of biodiversity.

• Further evaluation of the infuence of hatcheries on spawner abundances, including the
extent and magnitude of straying among basins is warranted for this, and other Chinook
SMUs.

Figure 36. Historical evaluation of status using available methods for estimating LRPs. Red bars indicate 
status below LRP; grey x’s indicate status not available 
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5. CASE STUDY 3: INSIDE SOUTH COAST CHUM - NON-FRASER

5.1. CONTEXT 

The Inside South Coast Chum - Non-Fraser SMU (abbreviated as ISC Chum) includes seven 
CUs of Chum Salmon from rivers that drain into Johnstone Strait and the Salish Sea along the 
mainland of British Columbia and the east coast of Vancouver Island (Figure 37; Holtby and 
Ciruna (2007)). This area includes deep fjords, glaciers, large rivers, and small coastal streams. 
Chum salmon CUs spawning in the Fraser River watershed are not included in this SMU. They 
have been categorized as a separate ‘Inside South Coast Chum - Fraser’ SMU. While these 
two SMUs have substantial overlap in ocean fsheries, they have been separated into two SMUs 
based on differences in terminal fshery impacts and freshwater habitats. 

Figure 37. The seven Conservation Units that make up the Inside South Coast Chum Stock Management 
Unit (not including Lower Fraser and Fraser Canyon Conservation Units). 

The ISC Chum SMU is considered data-limited. While escapement time series are available for 
many streams starting in 1953, several series are incomplete and require inflling assumptions 
(i.e., not all streams counted each year, some CUs have no counts in some years). In addition, 
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run reconstructions of recruitment are uncertain, making the development of benchmarks based 
on spawner and recruitment data problematic. There are also no data on marine survival (although 
there are some scale/growth data in Debertin et al. 2017). Other unique characteristics of this 
SMU include high contrast in abundance among CUs and relatively low correlation in abundance 
among CUs over time. The SMU covers a large area with many diverse watersheds, fow regimes, 
and ocean entry locations. Wild Salmon Policy status assessments have not been done on any 
ISC Chum CUs. Godbout et al. (2004) identifed long-term increases or variable abundance 
in Georgia Strait and Howe Sound-Burrard Inlet and declines in Northeast Vancouver Island 
and especially in the Southern Coastal Streams CU (from 1953-2002). Holt et al. (2018) found 
similar results in a provisional assessment of status. At this time, a peer-reviewed WSP status 
assessment has not been developed for ISC chum. 

Holt et al. (2023) provide steps for applying LRPs to salmon SMUs, one of which is to identify 
if the status of data-defcient CUs can be represented by other data-rich CUs. This is relevant 
for the ISC Chum case study because two CUs have no observations in some years (Upper 
Knight and Bute Inlet). To infer status of data-defcient CUs from data-rich CUs, Holt et al. (2023) 
recommend providing evidence for similar threats, environmental drivers, biological characteristics, 
and population capacity among CUs. 

Upper Knight and Bute Inlet CUs are both associated with long fjords that run from the Broughton 
Archipelago through the Coast Mountains. They include rivers with headwaters in the Cariboo 
region farther inland than other CUs in the SMU (Figure 37). Southern Coastal Streams, Georgia 
Strait, and Howe Sound-Burrard Inlet also include portions of the Coast Mountains and some 
glaciers, but to a lesser extent and their inlets are shorter and their watersheds do not go as far 
inland. Upper Knight and Bute Inlet are unique in that they are the only CUs in the SMU that only 
include watersheds that drain into the upper end of long inlets. They are both more remote than 
the other CUs, which is partly why there are fewer observations over time for Chum with fall run 
timing. 

Chum from the Upper Knight and Bute Inlet CUs are exposed to different threats to habitat, 
survival and productivity than the other fve CUs in both the freshwater and the early marine 
phase. While these two CUs have, on average, lower impacts from forest harvest, impervious 
area, and roads, they have larger impacts from forest defoliation and pests (Pacifc Salmon 
Foundation 2021). They may also have different levels of risk from disturbances such as glacier 
melt, avalanches, debris fows, and foods because they have large melting glaciers associated 
with lakes, steep slopes, and unstable terrain. In the Bute Inlet CU, the glacial lake outburst food 
that caused a debris fow in the Southgate River in November 2020 is one example of such an 
event. These events are capable of killing an entire brood year of eggs/alevins and reshaping 
habitat with impacts on spawning habitat and stream ecosystems for many years. They can also 
change water quality in near shore marine habitats. These catastrophic events may be less likely 
in watersheds with gentler topography and that lack glaciers and glacial lakes. 

Environmental drivers, biological characteristics, and population capacity for Upper Knight and 
Bute Inlet CUs also differ from the other fve CUs. The hydrology of these two CUs likely differs 
from that of other CUs with more low-lying topography. The two largest watersheds in these 
CUs (Homathko and Klinaklini) fall within their own Freshwater Adaptive Zone, which indicates 
unique freshwater habitat conditions (Figure 76 and Table 52 in Holtby and Ciruna (2007)). 
These watersheds have large glaciers and high amounts of snowmelt, compared to more low-
elevation coastal watersheds with more rain-dominant hydrographs. Marine conditions when 
smolts enter the ocean in these systems may vary from that of the other fve CUs, as they are 
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entering the upper ends of large fjords. Competition with other salmon in the ocean and ocean 
conditions affect chum salmon in this SMU (Debertin et al. 2017; Litz et al. 2021), although 
declines in Pink salmon populations in this general area may suggest that these factors are not 
affecting these CUs only. Regarding biological characteristics, Bute Inlet and Upper Knight have 
a higher proportion of summer-run populations of Chum (Table 11). Recruits per spawner of the 
Upper Knight and Bute Inlet CUs (estimated using CU-level inflling, which introduces error) are 
more variable than for other CUs in this SMU, exhibiting very productive years (>100 recruits 
per spawner) and years with very low productivity. These CUs also have lower habitat capacity, 
with fewer streams with fall timed Chum spawners than the other CUs (Table 11). Based on 
these differences, we cannot infer the status for Bute Inlet and Upper Knight from the other CUs. 
Note that these criteria used to evaluate whether status can be inferred for these CUs extends 
to whether reliable spawner escapement data can be inflled using escapement in the other CUs. 
Thus, these CUs are dropped for years with no spawner data in this case study. 

Table 11. The seven Conservation Units in the Inside South Coast Chum Non-Fraser Stock Management 
Unit, and the number of streams in the fall and summer runs. Note that only fall run streams were used in 
this study due to run reconstruction methods. LBM = Lower Benchmark, UBM = Upper Benchmark 
derived using the percentile method. 

CU Name Fall run streams Summer run streams LBM UBM 

Southern Coastal Streams 23 8 NA NA 

North East Vancouver Island 17 0 50% 50% 

Upper Knight 

Loughborough 

Bute Inlet 

3 

37 

4 

2 

0 

1 

50% 

50% 

NA 

50% 

50% 

NA 

Georgia Strait 125 1 

Howe Sound-Burrard Inlet 0 

25% 

66 25% 

50% 

50% 

Previous evaluations of WSP benchmarks for Inner South Coast Chum have shown that percentile 
benchmarks can be comparable to those based on stock-recruitment relationships when productivity 
is relatively high and harvest is relatively low (Holt et al. 2018). However, in some cases, percentile 
benchmarks may be inappropriate due to low productivity or high harvest, resulting in a shifting 
baseline (Holt et al. 2018). 

We chose the ISC Chum SMU as a case study because we were interested in exploring LRP 
options for a data-limited SMU without stock-recruitment or habitat-based benchmarks. We 
applied LRPs based on two methods: proportions of CUs above Red status, and aggregate 
abundance LRPs estimated using the logistic regression approach. 

5.2. DATA 

We used the same data used in Holt et al. (2018), but updated with fve additional years of data. 
Available data included spawner abundance time series from 1959 - 2018 and corresponding 
CU-level recruitment estimated from run reconstruction. Spawner abundance series rely heavily 
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on inflling; 60% of observations (count of spawners for an individual stream, in a given year) 
were missing and needed to be inflled. We chose to apply inflling procedures for this SMU 
when possible to develop metrics of wild spawner abundance since inflling methods for this 
SMU have been previously peer reviewed (Holt et al. 2018). This differs from the approach taken 
for WCVI Chinook, in which inflling methods were not implemented due to high and variable 
hatchery infuences. Recruitment data are considered highly uncertain for all ISC Chum CUs 
due to uncertain assumptions required to assign mixed-fshery catch to CUs within the run-
reconstruction model. As a result, we did not consider recruitment time-series to be reliable 
enough to estimate stock-recruitment based benchmarks such as SMSY and Sgen. We did however 
use spawner recruitment model fts to provide approximate estimates of CU-level productivity, 
which are used to inform the application of percentile-based benchmarks. 

Van Will (2014) provides more details on the data sources, inflling procedures and run reconstruction, 
which were reproduced for this study. We did not include the Lower Fraser or Fraser Canyon 
Chum CUs. More details can be found in Appendix E. We removed three systems with extensive 
enhancement (Qualicum River and Little Qualicum River from spawning channels, and Puntledge 
River from hatchery production, all within the Georgia Strait CU). It is assumed that the enhanced 
contribution to spawning was near 100% for these systems. 

5.3. CU STATUS ESTIMATION 

For this case study, we consider two approaches for characterizing CU status: (1) Multidimensional 
algorithm within the Pacifc Salmon Scanner Tool, or Salmon Scanner (Pestal et al. in prep.) and 
(2) CU-level abundance relative to a percentile lower benchmark.

The frst approach is a multidimensional approach consistent with Canada’s WSP, as recommended 
by Holt et al. (2023) for estimating CU status when using the CU status-based LRP approach. 
The second approach is presented for comparison with the multidimensional approach. 

When applying the multidimensional algorithm used within the Salmon Scanner to ISC Chum, 
we used percentile benchmarks when they were available for a CU. For CUs in which percentile 
benchmarks were not appropriate, the multidimensional algorithm used trends in spawner abundance 
as a basis for assessing CU status (Figure 1). As a result, both of our approaches to CU status 
estimation depend at least partially on percentile benchmarks. 

Percentile benchmarks can be applied to assess status of CUs when other data - like benchmarks 
based on productivity or habitat - are not available or reliable (Clark et al. 2014; Holt et al. 2018). 
The suitability of percentile benchmarks was evaluated for ISC Chum by Holt et al. (2018), who 
tested how well percentile benchmarks matched benchmarks from stock-recruitment parameters, 
using retrospective and simulation analyses. Holt et al. (2018) also calculated benchmarks 
based on stock-recruitment model parameters for ISC Chum CUs, but did not recommend them 
due to uncertainty in spawner and recruitment data. They tested how well a 25% percentile 
benchmark (and higher values up to 50%) compared to estimates of Sgen for these CUs. They 
found that percentile benchmarks (from 25-50%) under moderate to high harvest rates and 
low to moderate productivity tended to underestimate ‘true’ Sgen values (estimated from the 
same data), which would lead to optimistic and incorrect status assessments. More work on 
alternatives to percentile benchmarks were needed in this case. 

For this case study, percentile benchmarks were calculated using the raw inflled time series 
of annual escapement (i.e., not smoothed). In contrast, status for year i was determined by 
comparing the generational mean (geometric mean on a 4 year window, ending with year i) 
spawner abundance with the benchmark. This approach of using raw (unsmoothed) escapements 
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when calculating benchmarks, and generational smoothed escapements when estimating CU 
status relative to benchmarks, is consistent with the approaches taken for our other two case 
studies for proortional LRPs. 

Table 12. Selected percentile-based lower and upper benchmarks identifed to be similar or higher in value 
than stock-recruitment based benchmarks under the WSP, along gradients in productivity (Ricker α) and 
average harvest rates. * denotes the low-productivity scenario where lower and upper Ricker-based 
benchmarks are very close to one another, resulting in lower and upper percentile-based benchmarks that 
are the same. Adapted from Table 6, Holt et al. 2018. 

Harvest rate 

<20% 20-40% 40-60 %

Productivity (Ricker α) >4 25th (lower) 
50th (upper) 

25th (lower) 
50th (upper) 

25th (lower) 
50th (upper) 

2.5-4 25th (lower) 
50th (upper) 

25th (lower) 
50th (upper) 

Further 
evaluation 
required 

1.5-2.5 *50th (lower 
and upper) 

Further 
evaluation 
required 

Further 
evaluation 
required 

Based on recommendations in Holt et al. (2018) (Table 12), Georgia Strait and Howe Sound-
Burrard Inlet fall in the category of using 25% as a lower benchmark and 50% as an upper 
benchmark (Ricker α 2.5-4, harvest rate 20-40%). Loughborough, Northeast Vancouver Island, 
and Upper Knight (α 1.5-2.5 and harvest rate 0-20%) had a 50% lower and upper benchmark 
recommended. Bute Inlet (α 1.5-2.5, harvest rate 20-40%) needed further evaluation and percentile 
benchmarks were not recommended. Percentile benchmarks were also not recommended for 
Southern Coastal Streams due to low productivity (α <1.5; Table 11). 

The methods for multidimensional assessments within the Salmon Scanner are described in 
Section 2. In applying the multidimensional approach to ISC Chum, we used percentile benchmarks 
as recommended in Holt et al. (2018) for lower and upper benchmarks for the fve CUs that have 
appropriate percentiles benchmarks identifed (as described above). Percentile benchmarks 
were not available for Bute Inlet and Southern Coastal Streams, in which case the multidimensional 
algorithm used trends to assess CU status (Figure 1). 

5.4. LRP ESTIMATION: CU STATUS BASED 

5.4.1. Methods 

To derive CU status-based LRPs, we calculated the proportion of CUs that had status estimates 
above the Red zone (or, above the lower percentile benchmark). As with the Interior Fraser Coho 
and WCVI Chinook case studies, we required all CUs to be above the Red zone for the ISC 
Chum SMU to be classifed as being above the LRP. 

The single-metric approach to assessing CU status based on percentiles has specifc data 
requirements (Holt et al. 2018) while the multidimensional approach can be applied to any CU 
with at least a consistent time-series of spawner abundances. To compare LRPs based on CU 
assessment from these two approaches we compared data subsets including those that used the 
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same data for each method, and all appropriate data for each method. We evaluated six different 
combinations of data and LRP methods (Table 13). 

Table 13. Scenarios using different subsets of data (CU names abbreviated) and methods to assign LRP 
status. ’Y’ indicates a full time series, ’YP’ indicates a time series was included but is partial (missing 
years that required CU-level inflling which wer omitted). Bute Inlet and Southern Coastal Streams do not 
have appropriate percentile benchmarks. ’Full’ scenarios use only years with full time series (no CU-level 
inflled CUs) and ’partial’ scenarios include CU-level inflled CUs but drop years with CU-level inflling for 
those CUs. 
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1. CUbased: Scanner: 4CUs full - Y - Y - Y Y 

2. CUbased: Percentile: 4CUs full - Y - Y - Y Y 

3. CUbased: Scanner: 5CUs partial - Y YP Y - Y Y 

4. CUbased: Percentile: 5CUs partial - Y YP Y - Y Y 

5. CUbased: Scanner: 5CUs full Y Y - Y - Y Y 

6. CUbased: Scanner: 7CUs partial Y Y YP Y YP Y Y 

When describing ISC Chum LRP scenarios in Table 13 and throughout this case study, we use 
the following labeling convention: Metric : CU Status Method : Data Scenario. ‘Metric’ refers to 
the choice to base all ISC Chum LRPs on the proportion of CUs above Red CU status (CUbased). 
The ‘CU Status Method’ can be based on the multidimensional algorithm within the Salmon 
Scanner (Scanner) or on a single percentile benchmark used to characterize CU status (Percentile). 
Finally, ‘Data Scenario’ labels indicate both the number of CUs represented (4, 5, or 7) and the 
completeness of the time series (Full or Partial). ‘Full’ scenarios only included CUs with complete 
time series (no CUs with missing years). ‘Partial’ scenarios included CUs with incomplete time 
series (years that did not have observations in those CUs were omitted). When using percentile 
benchmarks in these scenarios, we used percentiles based on Holt et al. (2018). The benchmarks 
were estimated using the entire time series. 

For Scenarios 2 and 4 in Table 13, we used CU status based on percentile benchmarks that 
are determined by productivity and historical exploitation, as outlined in Holt et al. (2018). This 
method used annual escapement values to calculate benchmarks and the generational mean of 
escapement (geometric mean over 4 years) to assess status in each year. Scenario 2 includes 
the four CUs that had complete time series (observations in each year, no CU-level inflling) 
and that also had appropriate percentile benchmarks (Table 13). For example, Upper Knight 
was excluded because it did not have a complete time series, Southern Coastal Streams was 
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excluded because it does not have an appropriate percentile benchmark, and Bute Inlet was 
excluded for both of these reasons. We then relaxed this requirement for all CUs to have data 
in all years and included all CUs that meet the constraints of Holt et al. (2018) even if they had 
missing data for some years (Scenario 4). This scenario included Upper Knight in some years, 
which meant that it had fve CUs in some years and four in others. Thus, the power to detect Red 
status varied among years in Scenario 4, using more of the available data than Scenario 2. 

For Scenarios 1, 3, 5 and 6 in Table 13, we used status based on the multidimensional algorithm 
within the Salmon Scanner. To compare results between status on a single metric (abundance 
relative to percentile benchmarks) and the multidimensional approach, we applied the multidimensional 
algorithm to the same two data sets used for percentiles, i.e., using same CUs and years. For 
examples, Scenarios 1 and 2 use the same data, and Scenarios 3 and 4 use the same data. 
Because the multidimensional assessments do not require abundance-based benchmarks to 
assign status, this method could also be used for CUs that did not have appropriate percentile 
benchmarks (Southern Coastal Streams and Bute Inlet). Scenario 5 only included CUs with a 
full time series, and Scenario 6 included Upper Knight and Bute Inlet, which had some missing 
years. 

5.4.2. Results 

CU Status Based on the Multidimensional Approach within the Salmon Scanner 

Using the CU status based on the multidimensional approach within the Salmon Scanner, two 
out of fve CUs with data in the most recent year of data (2018) would be above their lower 
benchmark (Amber or Green zone) and three would be below (Red zone; Figure 38). Over the 
time series, status for Howe Sound-Burrard Inlet and Georgia Strait has improved, while status in 
other CUs has declined or switched from Green to Red several times. 

CU Status Based on Percentile Benchmarks 

Two out of four CUs were below their percentile lower benchmark in 2018 (Figure 39). Howe 
Sound-Burrard Inlet and Georgia Strait had status above their lower benchmarks, and Upper 
Knight did not have observations in 2018. Status for North East Vancouver Island and Loughborough 
was occasionally above the Red zone before the 2000s, but has been mainly Red for the past 
∼ 20 years. Georgia Strait and Howe Sound-Burrard Inlet have been above Red status in every 
since ∼ 1970. Upper Knight has been mainly Red status except for two short periods in in the 
1960s and 1970s, and did not have any observations since 2004. In supplementary analyses, 
we evaluated percentile benchmarks retrospectively for each year in the time series using only 
data prior to that year. As more years of data were included, percentile benchmarks increased 
over time for Georgia Strait (especially the 50th percentile) and had modest increases for Howe 
Sound-Burrard Inlet (Figure E.5). Percentile benchmarks decreased by a small amount for 
Loughborough and North East Vancouver Island. Southern Coastal Stream shows evidence of 
shifting baselines, as the percentiles decrease over time following a general decline in abundances 
(Figure E.5). Upper Knight also shows this pattern but to a lesser extent. 

5.5. LRP ESTIMATION: AGGREGATE ABUNDANCE, LOGISTIC REGRESSION 
LRPS 

5.5.1. Methods 

We evaluated whether the proportion of CUs above their lower benchmark could be predicted 
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by aggregate abundance using logistic regression models. We tested this using percentile 
benchmarks. While we initially considered logistic regression LRPs that used Sgen as a lower 
CU benchmark instead of percentiles, we decided to drop this approach due to unreliable stock-
recruitment data. Using recruitment data would not satisfy reliability principles in Holt et al. (2023). 
These methods used four CUs with over 50 years of data and appropriate percentile benchmarks 
(North East Vancouver Island, Loughborough, Georgia Strait, and Howe Sound-Burrard Inlet). 
Aggregate abundance (predictor variable) was calculated using only these four CUs. We omitted 
Bute Inlet and Upper Knight (both had CU-level infilling in recent years) and Southern Coastal 
Streams (no appropriate percentile benchmark). Refer to Section 2 for more details. 

Figure 38. Status of CUs based on multi-dimensional Salmon Scanner. Years with CU-level infilling were 
not included. The top row shows the overall SMU status based on the CU status-based LRP of all CUs being 
above Red status. 

Due to poor logistic model fits using the entire 1953-2018 time series, we did not conduct retrospective 
analyses of logistic regression LRPs for this SMU as was done for the Interior Fraser River Coho 
case study. The characteristics of the data that led to poor logistic model fits are highlighted in the 
results section below. 

Projection LRPs are an alternative aggregate abundance LRP that we did not consider for this 
SMU due to lack of reliable stock-recruitment parameter estimates for component CUs. However, 
this approach could be considered in future analyses given consensus on model structure and 
parameterization that provide realistic uncertainties in projections of population dynamics. 
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Figure 39. Spawner escapement (solid black line) with generational mean (4 year rolling geometric mean) 
of escapement in points. Dashed lines indicate percentile lower benchmarks. Red points indicate years 
when the generational mean of abundance was below the lower benchmark, and gray points indicate 
when it was above. Southern Coastal Streams and Bute Inlet are omitted because they do not have 
appropriate percentile benchmarks due to low productivity and moderate to high harvest. Note that Upper 
Knight is missing observations in 1979-1980, 1982, 1984, 1989, 1991, 1996, and 2004-2018. 

5.5.2. Results 

The logistic model predicting whether all CUs were above their benchmark based on aggregate 
abundance ft the data poorly (Figure 40). The sum of abundance for all CUs in a given year was 
not a good predictor of whether those CUs were above their benchmarks in that year. Years 
with high aggregate abundance but with some CUs below their benchmark make a logistic 
model unsuitable for the purpose of estimating which aggregate abundance is linked to a high 
probability of each component CU being above its lower benchmark. 
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The diagnostics for the logistic regression indicated that the model ft was poor (Table 14, Figure 40). 
Pseudo R2 was low (0.03), indicating a poor ft. The Box-Tidwell test indicated a signifcant lack 
of linearity in the relationship between aggregate abundance and log-odds (p-value = 0.02), 
which means that the assumption that the relationship between aggregate abundance and 
log-odds is linear was not met. Including aggregate abundance in the model did not improve 
ft over the null model based on a Goodness of ft p-value of 0.13 (>0.05). The ratio of correct 
classifcations (above below LRP) relative to all classifcation was 0.7 based an LRP at p=0.5. 
Note that this method tends to have overly optimistic values when the data used to ft the logistic 
model and to evaluate classifcation accuracy are the same. The Wald p-value was not signifcant 
for B1 (p=0.19, the coeffcient for aggregate abundances). There was no evidence of outliers or 
autocorrelation in residual deviations. Despite meeting the last two assumptions (no autocorrelation 
or outliers), they were not enough to overcome the defciencies identifed by the other diagnostic 
criteria. Therefore, logistic regression LRPs are not presented here. 

Figure 40. Logistic regression of whether escapement of all component CUs were above their percentile 
benchmarks based on aggregate abundance, for Inside South Coast Chum SMU. Includes CUs where 
percentile benchmarks were appropriate (no Bute Inlet, Upper Knight, or Southern Coastal Streams). 
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Table 14. Model diagnostic statistics from logistic regression LRP using percentile benchmarks. A 
description of diagnostic tests is provided in Section 2. Hit ratios are shown for p=0.5. 

Diagnostic Test Value 

Box-Tidwell p-value 0.02 

Max. deviance residual 1.69 

AR-1 0.14 

Wald p-value 0.19 

Goodness-of-ft p-value 0.13 

Pseudo-R2 0.03 

Hit Ratio (p= 50%) 0.7 

Several factors led to these poor model fts. The Inside South Coast Chum SMU is made up of 
seven CUs that vary in their escapement abundance. In many years, escapement in Georgia 
Strait and Howe Sound-Burrard Inlet is greater than in other CUs by two orders of magnitude 
(Figure E.2). In addition, the correlation in escapement among these seven CUs is low (Figure 41). 
These characteristics mean that the aggregate abundance may be high due to one or more CUs 
with high escapements, while one more smaller CUs are below their benchmark. High aggregate 
escapements do not mean that all CUs are above their benchmark. The low pairwise correlations 
in CU escapements are likely due to the SMU covering a large area, with varying numbers of 
populations affected by both local and regional factors, as described in Section 5.1 

In a preliminary retrospective analysis, the logistic model fts were more appropriate using a 
truncated portion of the data that ended in the 1980s. Although logistic regression may be used 
to estimated LRPs based on aggregate abundance in SMUs where abundance is more even 
among CUs and escapements are more correlated, these relationships may not remain static 
and could break down over time. 

5.6. HISTORICAL EVALUATION OF STATUS ACROSS LRP METHODS 

The ISC Chum SMU was consistently below the LRP for large portions of the historical time 
series, regardless of LRP estimation method (Figure 42). While the aggregate abundance of the 
SMU increased over time, SMU status remained below the LRP in every year of the past two 
decades except 2004 for all estimation methods. These results were mainly due to the tendency 
of Georgia Strait and Burrard Inlet-Howe Sound CUs to have high and increasing abundances 
while smaller CUs, such as North East Vancouver Island, Loughborough, and Southern Coastal 
Streams, remained low (Figures 39, E.1). 
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Figure 41. Pairwise correlations of spawner abundance between Inside South Coast Chum Conservation 
Units. 
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Figure 42. Comparison of LRP status (red = below LRP, gray = above LRP) for six scenarios. The black 
line shows aggregate abundance. Scenarios 1-3 and 6 do not include Bute Inlet or Southern Coastal 
Streams (no appropriate percentile benchmarks). ’Full’ scenarios use only years with full time series (no 
CU-level inflled CUs) and ’partial’ scenarios include CU-level inflled CUs but drop years with CU-level 
inflling for those CUs. 

79 



             
              

                
                   

                  
              

               
                

                 
                 
              

               
                 

               
            

             
               

 

               
              

               
             

              
            

            
               

                 
                

             
               

            
              

             
                 

              
               

             
           

When using the same data, LRP status based on a single metric on abundances relative to 
percentile benchmarks and the multidimensional approach within the Salmon Scanner were 
identical (Figure 42). This result can be seen by comparing Scenario 1 and 2 and Scenario 3 
and 4. These identical results occur because all CUs in Scenarios 1-4 have percentile 
benchmarks and never drop below 1500 fish, which means that the multidimensional approach 
relies on percentile benchmarks to assess CU status for all CUs in all years. If some CUs did 
not have percentile benchmarks, requiring trends to be used instead, or if their absolute 
abundances dropped below 1500 spawners, then the two approaches could have led to different 
results. 

In this case study, adding more data changed the number of years that the SMU was below 
the LRP. Scenario 6 (most data) had the most years below the LRP, with every year after the first 
being below the LRP (Figure 42, Table 13). A comparison of Scenarios 2 and 4, which are both 
based on percentile benchmarks, shows that including more data (Scenario 4) results in more 
years below the LRP. A comparison of Scenarios 5 and 6 (Salmon Scanner), shows that 
including more observations results in one year switching from above the LRP to below it, with 
the addition of data from two CUs with partial time series. Finally, a comparison of Scenarios 4 
and 6 (where Scenario 6 had two more CUs than Scenario 4), shows that three years switched 
from above the LRP to below, as the two CUs without percentile benchmarks are added. 

We found that SMU status can be below the LRP even if the aggregate abundance increases 
(Figure 42). For ISC Chum, this is mainly due to years with high abundances of Georgia Strait 
and Howe Sound-Burrard Inlet and low abundances and Red status in other, smaller CUs, such 
as Southern Coastal Streams. The moderate correlation in spawner abundances in Georgia 
Strait and Howe Sound-Burrard Inlet exacerbates this pattern (Figure 41). This highlights the 
importance of including metrics of status at the CU level, which influence the overall SMU status. 

5.7. DISCUSSION 

As a data-limited SMU, the ISC Chum case study had unique characteristics to inform the 
guidelines for LRP development. We found that only the CU status-based LRP were applicable 
to this SMU, which is based on individual CU status. Because there were no reliable stock-
recruitment parameter estimates, we relied on data-limited methods to estimate CU status. We 
assessed CU status based on abundance relative to percentile benchmarks alone, or on a 
combination of percentiles and trends using the multidimensional algorithm within the Salmon 
Scanner. The use of the multidimensional algorithm was particularly valuable because percentile 
benchmarks were not appropriate for two of the CUs (Bute Inlet and Southern Coastal Streams, 
Table 11). Missing data also required decisions to be made about which CUs to include in which 
years. We used this case study to explore how sensitive CU status-based LRPs were to the 
decisions on number of CUs, and years of data to include in the analysis. 

Using a multidimensional approach allowed us to include two CUs that did not have appropriate 
percentile benchmarks (Bute Inlet and Southern Coastal Streams). It allowed all seven CUs 
to be included when assessing SMU status by allowing alternative trend-based metrics to be 
considered. The seven-CU partial case provided the most pessimistic status of the scenarios 
considered as this approach used the most data. It resulted with the most years of the SMU 
being below the LRP (Figure 42). This multidimensional approach is especially useful for SMUs 
with a mix of data qualities and benchmark types, including those with and without relative 
abundance benchmarks. Like any approach to assess LRPs, the underlying data, and benchmarks 
applied (if abundance benchmarks can be used) should be verified by experts. 
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In its current form, the multidimensional algorithm within th Salmon Scanner relies on whether 
abundance is < 0.79× the long-term geometric average and whether abundances are > 1500 in 
the absence of abundance-based benchmarks. It is worth noting that this long-term geometric 
average may also be sensitive to shifting baselines. This is another reason for experts to 
thoroughly review the data before any status assessment is made. 
This case study highlighted requirements and limitations of percentile benchmarks on data-
limited CUs. Shifting baselines are one of the challenges of applying this method. If abundance 
has decreased over time, the resulting percentile benchmark will also decrease as more data is 
included (Figure E.5). This can arise from a decrease in abundance in the period of data or by an 
unrecorded high level of abundance before the period of data followed by a decrease before data 
are available. Thus, a CU with low abundance could be Green status based on the current 
benchmark, but would be Red using a benchmark with data before decreases in abundance. The 
result is an overly optimistic view of current status that does not reflect the reality of long-term 
declines. Two CUs (Southern Coastal Streams and Upper Knight) showed evidence of shifting 
baselines as abundances decreased over the last several decades (Figure E.5). Decreasing 
productivity can exacerbate this pattern. As productivity decreases, a larger abundance of 
spawners would be required to produce the same number of recruits. Experts should thoroughly 
review historical abundance data and determine where shifting baselines may be occurring, and 
can adjust benchmarks accordingly. In some cases it may be appropriate to choose benchmarks 
based on historical data or information prior to declines to avoid shifting baselines (Holt and 
Folkes 2015). Thus, while they are useful for CUs that lack reliable stock-recruitment information, 
they cannot be used universally on data-limited CUs. 

Existing guidelines and cautions should be incorporated into any LRP analysis using percentile 
benchmarks. We followed guidelines from Holt et al. (2018) and did not use percentile benchmarks for 
CUs with low productivity and high exploitation rate (Tables 11, 12). In their simulation study, 
percentile-based benchmarks overestimated status with harvest rates >40% and α <4, or harvest 
rates 20-40% and α <2.5. In these cases of low productivity and high harvest rates, more exploration 
could be done on alternative benchmarks. These could include benchmarks based on Traditional 
Ecological Knowledge, habitat availability, or other information. If productivity and/or harvest is 
unknown, low contrast in escapement time-series could be indicators of cases where percentile 
benchmarks may not be appropriate (Holt et al. 2018). We also note that cases with identical lower 
and upper benchmarks carry the risk of moving immediately from Green to Red status with time in 
the Amber status zone (North East Vancouver Island, Upper Knight, Loughborough, Table 11). 
CUs with shorter time series also have the risk of unreliable percentile benchmarks. Confidence 
intervals for percentile benchmarks can also be derived by bootstrapping escapement data, 
accounting for autocorrelation in time-series (Holt et al. 2018; Peacock et al. 2020). 

Clark et al. (2014) applied a similar percentile-based approach for Alaskan salmon populations, 
where applicability of percentiles was categorized in into 3 tiers based on contrast in spawner 
abundances, harvest rate, and precision of escapement data. They tested the suitability of 
this tiered approach with theoretical, simulation, and meta-analysis methods using 76 stock-
recruitment data sets from Alaska covering all 5 species of Pacific salmon. The goal of these tiers 
was to choose a Sustainable Escapement Goal (SEG; an upper and lower percentile) as 
a proxy for keeping escapement within a range that includes SMSY (Clark et al. 2014). Moving to 
British Columbia, Hilborn et al. (2012) adopted the percentile-based thresholds for evaluating the 
status of Inside South Coast Chum in BC for the purpose of certification with the Marine 
Stewardship Council (Hilborn et al. 2012). 
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Percentile benchmarks are used differently in Alaska and BC. In BC, percentiles are used at 
the CU scale, while in Alaska they are applied to each river (McKinley et al. 2020). ISC chum 
includes 296 streams among the seven CUs, with 126 in Strait of Georgia alone. Aggregating 
over river systems within CUs ignores the distribution of spawning within the CU and may not 
capture the loss of some less productive streams, rivers, or sub-populations within the CU. 
This risk is especially relevant in this case study because the data is infilled assuming 
correlation in spawning escapement within CUs. 

An additional source of uncertainty stems from spawner time series that may include the influence 
of enhancement, which introduces the risk of inflating wild spawner numbers and providing an 
overly optimistic status assessments. We removed three systems that are highly enhanced 
(Qualicum and Little Qualicum from spawning channels, and Puntledge from a hatchery) before 
infilling stream escapements, but hatchery influence may impact time-series for the remaining 
systems through production and/or straying (Lynch et al. 2020). 

We showed that increasing the number of CUs included in CU status-based LRP status assessment 
gave a more pessimistic status. This is not surprising given the low correlation of CUs within this 
SMU; we do not expect CUs to be interchangeable. Therefore, using as much data as possible 
will provide more realistic assessments of status, where those data are reliable. For this SMU 
where the status of two data-limited CUs, Upper Knight and Bute Inlet, cannot be inferred from 
data-rich CUs (see Section 5.1), omitting the data-limited CUs from analyses can result in either 
an SMU status that is data deficient or below the LRP depending on status of remaining data-
rich CUs. When the status of at least one of the data-rich CUs is in the Red zone, the CU status-
based LRP of 100% of CUs above the Red zone is considered breached. However, if the status 
of all data-rich CUs are above the Red zone, the SMU is considered data deficient if status of 
data-limited CUs is unknown because it cannot be inferred. In our case, we could assess status 
based on trends for these data-limited CUs as applied in the Salmon Scanner. However, in other 
SMUs, there may be cases where data to estimate trends are not available. 

We were not able to estimate aggregate abundance logistic regression LRPs for ISC Chum due 
to poor model fits of the underlying data. The data were not suited to logistic regression, and 
aggregate abundance was not a good predictor of the status of component CUs. Abundance for 
two CUs was regularly two orders of magnitude larger than the smaller CUs (Figure E.2), and 
correlation in abundances between CUs was generally low (Figure 41). Thus, aggregate 
abundance can be high mainly due to high abundance CUs while low abundance CUs have Red 
status, and the SMU is thus below the LRP. This pattern is exacerbated because the two most 
abundant CUs have the highest correlation in escapement with each other, and generally low 
correlation with the other CUs (Figure 41). This pattern is also the reason why SMU status can 
be below the LRP even as aggregate abundances increase (Figure 42). The large geographical 
range of the SMU, different numbers of populations within each CU, and variation in productivity, 
threats, and ecosystem conditions help explain these characteristics of the data. 

The CUs that were missing observations in some years and required CU-level infilling (Upper 
Knight and Bute Inlet) were not used in the aggregate abundance LRP analysis because the 
assumption that escapement is correlated between CUs ignores diversity between CUs and the 
potential for uncorrelated escapements. Unlike CU status-based LRPs, we did not consider 
status based on the multidimensional algorithm in the Salmon Scanner for aggregate abundance 
LRPs. It should also be noted that Upper Knight and Bute Inlet do not represent a random 
subset of the seven CUs in the Inside South Coast Chum SMU due to their location, watershed 
characteristics, near-shore marine environment, threats, and environmental conditions (Section 5.1). 
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6. LESSONS LEARNED FROM CASE STUDY APPLICATIONS 

The three SMUs used as case studies were selected to represent a range of levels of data 
availability, ranging from data-rich to data-limited. For each case study, the set of LRP estimation 
methods considered (Table 1) was a function of available data and previously developed assessment 
methods for the SMU. Each case study section includes its own discussion section highlighting 
conclusions from that case study. In this section, we provide an summary of key lessons learned 
when looking across all three case studies. These lessons were used to inform the development 
of guidelines for defning LRPs for Pacifc Salmon SMUs, as described in Holt et al. (2023). 

Lesson 1: CU status-based LRPs based on the multidimensional algorithm within the 
Salmon Scanner could be readily estimated for all SMUs over a wide range of data availabilities, 
and were consistent with the multidimensional approach that has been developed for Wild 
Salmon Policy assessments. This was not the case for aggregate abundance LRPs. 

CU status-based LRPs based on the Salmon scanner could be applied in all three case studies; 
whereas aggregate-abundance methods required a strong positive relationship between observed 
aggregate abundance and the log-odds of all CUs being above their lower benchmarks (logistic 
regression LRP) and / or suffcient data to parameterize a population dynamics model (projection 
LRP). While the Interior Fraser Coho case study met both of these requirements, WCVI Chinook 
could only meet the second, and ISC Chum could not meet either of them. The use of the Pacifc 
Salmon Scanner tool to estimate multidimensional statuses for CU status-based LRPs was 
especially valuable for data-poor SMUs because it allowed a mix of data quality and benchmark 
types to be applied, depending on what was available for a given CU in a given year. For example, 
in the ISC Chum case study, applying the Salmon Scanner to develop CU status-based LRPs 
allowed all seven CUs to be included when assessing SMU status by using alternative trend-
based metrics for CUs without percentile benchmarks. The ability to assess CUs lacking abundance-
based lower benchmarks is particularly important when SMUs are composed of CUs with low 
levels of synchrony in which data defcient CUs cannot be represented by proxy, as was the case 
for ISC Chum. 

Lesson 2: The development of metrics and benchmarks on the distribution of spawning 
within a CU is a high priority to support WSP status assessments, which in turn will 
support the development of CU status-based LRPs at the SMU-level. 

Both the Interior Fraser Coho and WCVI Chinook case studies applied LRP estimation methods 
that considered the distribution of spawning abundance among smaller sub-units within CUs; 
however, different approaches were used in each case. For Interior Fraser Coho, we relied 
on previously established distributional targets that recognized the biological importance of 
maintaining spawning abundance within 11 identifed sub-populations nested within the 5 CUs. 
For WCVI Chinook, expert opinion brought into the development of the case study identifed 
inlets as an important spatial scale of diversity for the SMU (D. McHugh pers. comm. DFO South 
Coast Stock Assessment). As a result, LRPs were developed to preserve inlet-scale diversity for 
this case study instead of CU-scale diversity. 

Future research is needed to develop and evaluate distributional metrics and associated benchmarks 
that delineate WSP status zones. The establishment of distributional benchmarks would allow 
the distribution of spawning abundance within a CU to be directly incorporated into multidimensional 
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WSP status assessments, which in turn would enable a standardized approach to considering 
fner-scale spawning distribution when identifying LRPs at the SMU-level. 

Lesson 3: Annual status estimates from aggregate abundance LRPs and CU status-based 
LRPs will differ from each other in some cases. 

While annual status estimates from aggregate abundance methods were generally consistent 
with estimates from CU status-based methods using the recommended Salmon Scanner tool, 
they did not always match. For the Interior Fraser Coho case study, status tended to drop below 
CU status-based LRPs when abundance of individual CUs was low, and drop below aggregate 
abundance LRPs when aggregate abundances were low. While these conditions corresponded 
in most years, they did not always. For our case study on Interior Fraser River Coho, we found 
that the proportion of years with matching status estimates for CU status-based and aggregate 
abundance LRPs ranged from 72-86%, depending on the method used to estimate CU status. 

Lesson 4: Data from all component CUs should be used whenever possible. When data 
are missing from one or more CUs, careful consideration should be given to the question 
of whether status can be inferred from other CUs within the SMU. While there may be 
cases where inference is possible, uncertainty in resulting status estimates will increase, 
and this uncertainty should be clearly communicated in status assessments. 

In the case of ISC Chum, using data from all seven CUs when available (even if only a subset 
of years) resulted in status dropping below the LRP more frequently than when only a subset 
of CUs was used in all years. This result occurs because, for CU status-based LRPs, there is 
an asymmetry in how missing CUs may affect SMU status relative to the LRP. Adding additional 
CUs may decrease status from above to below the LRP if the additional CU is Red and all other 
CUs are Amber or Green. However, adding an additional CU will never increase status from 
below to above an LRP because if a Red CU already exists; the 100% threshold for all CUs 
to be above Red cannot be met in this case. Given that ISC Chum CUs have low correlations 
in among-CU spawner abundances over time, and experience different environmental drivers 
in their freshwater habitats, inferring status of missing CUs from other CUs with data is not 
recommended. Therefore, status estimates that only include a portion of CUs are potentially 
biased. 

In the case of Interior Fraser Coho, results from missing data scenarios for the logistic regression 
approach showed that it may be possible to use data-rich CUs as indicators for CUs with missing 
data. However, logistic regression-based LRPs were more uncertain when more than 1 CUs was 
missing, and the logistic regression model frequently failed to converge, so caution should be 
used when applying this method to SMUs with missing data. Furthermore, Interior Fraser Coho 
display higher levels of among-CU correlations in spawner abundances over time that ISC Chum, 
so the extent to which this result can be applied to other SMUs is expected to be dependent on 
the level of covariation in CU status among CUs within an SMU. 

Lesson 5: Logistic regression LRPs have several limitations and should only be used 
when (i) aggregate abundance LRPs are required and (ii) all assumptions of the logistic 
regression model can be met. 

Logistic regression LRPs are empirically derived from past observations of SMU abundance and 
CU statuses. By ftting a logistic regression to historical data, we identifed historical abundance 
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levels associated with probabilities that all component CUs have statuses above their lower 
benchmarks. Similar to the CU status-based LRP, this aggregate abundance method depends 
on the outcomes of individual CU assessments, which are sensitive to structural assumptions 
underlying the CU-level benchmarks and data availability. 

Logistic regression-based LRPs could only be estimated for one of our three case study SMUs, 
which suggests that they may only be an option for a small proportion of SMUs. Even for Interior 
Fraser Coho where a logistic regression ft was possible, estimates did not converge for all 
retrospective years, and status estimates were sensitive to missing data. Taken together, our 
exploration of logistic regression LRPs for our three case studies highlighted some limitations of 
this approach. 

First, logistic regression LRPs are limited to conditions that have been historically observed. 
This can be a problem when there is poor contrast in historical data, as was the case for WCVI 
Chinook. In this case, there were no years when all component inlets exceeded their lower 
benchmarks. However, similar challenges could occur in cases where no CUs drop below their 
lower benchmarks. The dependence on historically observed conditions is a further limitation 
when there have been changes in the correlation in populations dynamics among CUs over time 
such that current (or future) correlations are not represented by historical data. 

Second, model diagnostics do not support logistic regressions and their associated LRPs when 
CU-level abundances are not correlated or only weakly correlated. Here, we found that logistic 
regression LRPs could be estimated for Interior Fraser Coho (average correlation in spawner 
abundances among CUs of 0.56), but not for Inside South Coast Chum (average correlation 
among CUs of 0.12). Also, the wide range in productivities and capacities among CUs for the 
Inside South Coast Chum case study contributed to the weak relationship between aggregate 
abundances and CU-level statuses. In general, model diagnostics as described in Section 2 can 
be used to support or reject logistic regression LRPs. We illustrate how these diagnostics are 
used to evaluate model ft in Sections 3 and 5. 

Finally, preliminary analyses of logistic regression LRPs for Fraser River Sockeye Salmon (not 
presented in this paper) showed that the method was not easily applied to cyclic stocks. 

Lesson 6: Stochastic projections can be used to estimate aggregate abundance LRPs 
under various assumptions about population dynamics and covariance in dynamics 
among CUs. This approach allows uncertainties in our understanding of population 
dynamics to be represented in a more comprehensive way than other LRP methods. 

Projection LRPs rely on closed-loop simulation models to quantify the emergent relationship 
between aggregate SMU abundances and the probabilities that all CUs are above their lower 
benchmarks, given a predefned level of exploitation. The most important requirements for 
this approach are CU-specifc estimates of stock-recruitment parameters (productivity and 
capacity) and covariance in recruitment among CUs. Parameter estimates for productivity and 
capacity can be based on posterior distributions from stock-recruitment analyses (see Interior 
Fraser Coho case study, Section 3) or more qualitatively from expert input, life-stage models, or 
watershed-area model estimates (see WCVI Chinook case study, Section 4). 

Furthermore, we demonstrated an approach to choosing parameters and model assumptions 
used in the projections so that correlations in spawner abundances in projections were similar to 
observed correlations. We recommend that correlations in CUs within projections are explored 
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under various model assumptions, and that model parameters are tuned to derive realistic 
correlations. 

The projection LRP approach is fexible in that allows for consideration of structural uncertainty 
in SMU population dynamics through the consideration of alternative scenarios. For example, 
for the WCVI Chinook case study, sensitivity analyses were performed to assess the impacts of 
correlations in recruitment residuals and variability in exploitation among inlets. For the Interior 
Fraser Coho study case, structural uncertainty in the formulation of the stock-recruit model was 
considered through alternative projection scenarios. In this case, we demonstrated how a model-
averaging approach could be used to combine projections from these two scenarios into a single 
LRP. 

Future implementations of projection LRPs could also consider temporal shifts in stock-recruitment 
parameters, the potential for depensatory population dynamics at low population size, and future 
variability in fshery exploitation rates. Decisions about which scenarios to consider should be 
made on a case-by-case basis, and should be dependent on current understandings of key 
uncertainties for each SMU. 

Lesson 7: Projection LRPs are highly sensitive to exploitation rates 

Sensitivity analyses showed that projection LRPs are sensitive to the assumed levels of exploitation 
in the projections. Higher exploitation rates resulted in higher required SMU aggregate abundance 
to ensure that all CUs remain above their lower benchmarks. The sensitivity to exploitation rate 
increases as variability in stock-recruitment parameters among CUs increase and as uncertainty 
in parameter estimates increase. This property of projection LRPs is explored in Appendix D. 
Therefore projection LRPs developed under historical and current exploitation rates cannot 
necessarily be used as a basis for evaluating alternative management procedures. However 
demonstrating the changes in aggregate abundances required for all CUs to be above lower 
benchmarks (i.e. changes in projection LRP) under different exploitation scenarios may help 
analysts and managers understand the implications of changing exploitation rates on the ability 
to achieve WSP objectives. 
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APPENDIX A. DATA AND ANALYSIS LINKS 

Code for data and analysis for the case studies are available on the Git Hub repository: 

pacifc-salmon-assess/SalmonLRP_RetroEval 

Code for the samSim closed loop simulation modelling tool used to conduct stochastic projections 
are available on the ‘LRP’ branch of the following Git Hub repository: 

pacifc-salmon-assess/SalmonLRP_samSim 

Code for the write-up of this report are available on the Git Hub repository: 

pacifc-salmon-assess/SalmonLRP_csasdown 
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APPENDIX B. SAMSIM MODEL DOCUMENTATION 

samSim is the closed loop simulation modelling tool used for calculation of the projection-based 
LRPs. An overview of samSim and the code can be found in the LRP project github page. samSim 
has been previously used to evaluate harvest control rule performance relative to recovery 
potential (Freshwater et al. 2020; Holt et al. 2020). We created a modifed version of samSim 
to support LRP estimation for this paper. 

Updated functionality for the LRP version of samSim include: 

• The option to sample stock-recruitment parameter sets directly from an estimated Bayesian 
joint posterior distribution. 

• The addition of a stock-recruitment function that includes an environmental co-variate, as 
well as specifcation of future variability in the environmental co-variate (required for Interior 
Fraser Coho case study). 

• The option to initialize population dynamics for individual CUs at unfshed equilibrium when 
historical recruitment data are not available. While this option would not be appropriate 
for projections aimed at estimating recovery from a current state, it can be used to estimate 
projection-based LRPs because we are only interested in the underlying relationship between 
aggregate abundance and the probability individual CUs will be above their lower benchmark 
at equilbrium levels. 

• The option to include a log-normal bias-correction factor of −σ2/2 to recruitment projected 
using one of the two available Ricker stock-recruit models. This option was added to accommodate 
cases in which samSim is parameterized using stock-recruitment parameters that have been 
corrected for log-normal bias to represent expected (mean) parameters. The log-nomral 
bias correction is commonly applied in stock-recruit modelling because the expected value 
of eˆσ is eˆσ2/2 rather than zero when recruitment deviations are normally distributed (Cox 
et al. 2019; Ohlberger et al. 2019; Olmos et al. 2019; Forrest et al. 2020). When input 
parameters have been corrected for this log-normal bias, the bias correction must also be 
added to projections (as in Weir et al. (in press))1. We use a log-normal bias correction 
factor for all of our case study analyses. 

• Specifcation of variability in exploitation rates as a function of both variability among years 
and variability among CUs. 

This appendix describes the samSim model equations and the structure. We focus on providing 
detailed descriptions of the modeling options used for LRP study cases but include brief mentions 
of other model extensions already implemented within samSim. samSim includes two population 
scales, which can be applied to one Conservation Unit (CU) with component spawning populations 
or one Stock Management Unit (SMU; referred to as Management Unit, MU, in the samSim code 
and this appendix) with component CUs. For the projection-based LRP analysis two SMUs and 
their component CUs were used as study cases: the West Coast of Vancouver Island (WCVI) 
Chinook SMU (with three CUs) and the Interior Fraser Coho Salmon SMU (with fve CUs). The 
following sections in this appendix are organized similarly to the samSim code, for this reason 
the subheadings of this appendix can be read as pseudo code. The simulation model has two 
main phases: Model Priming and Projections. The model priming phase recreates data for 
past years, either by populating objects with observed data or by generating population trends 

1Weir, L., et al. Recovery Potential Assessment for 11 Designatable Units of Chinook Salmon, Oncorhynchus 
tshawytscha, Part 2: Elements 12 to 22. DFO Can. Sci. Advis. Sec. Res. Doc. In press 
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based on input parameters. The projection phase generates data for future years based on the 
input data and parameters as well as the user defned scenarios and management procedures. 
Model indicies are defned in Table B.1, model parameters and inputs are defned in Table B.2 
and the modeled quantities are defned in Table B.3. Detailed defnitions of the input data and 
parameters are provided in the repository’s README fle. 

Table B.1. List of samSim model indexes. 

Notation Defnition 

y year 

nP rime number of years in the priming phase 

Y number of years in the projection phase 

j age 

J maximum age 

i Conservation Unit (CU) 

I Number of conservation units 

n Nation: U.S. or Canada 
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Table B.2. List of samSim model parameters and user input variables. 

Notation Defnition 

αi 

βi 

σi 

ρ 

γ 

covMat 

Ricker productivity parameter 

Ricker inverse capacity parameter or 1/spawners at maximum recruitment 

Standard deviation for recruitment error 

Temporal autocorrelation coeffcient in recruitment residuals 

Survival covariate scalar 

Covariance matrix used to generate recruitment deviations with correlation 
among CUs 

ERn 

pi,j 

τi 

sv 

σsv 

  

φ 

ω 

σω 

CV (ERn) 

CV (ERy,i,n) 

ψ 

ERaggy,i 

κ 

α̂y,i 

β̂y,i 

Nation specifc long term average exploitation rate 

Mean proportions of recruits at age 

Multivariate logistic variability parameter for proportions of recruits at age 

Mean survival covariate 

Standard deviation for survival covariate 

Scalar to cap recruitment values 

Multivariate logistic variability parameter for observed proportions of recruits at 
age 

mean for forecast lognormal error 

variance for forecast lognormal error 

CV for MU-specifc exploitation rate variability 

CV for CU-specifc exploitation rate variability 

Proportion of the catch associated with mixed-stock catch 

Total exploitation rates 

multivariate logistic variability parameter associated with assigning catch in 
mixed-stock fsheries to the correct CU 

Estimated Ricker productivity parameter 

Estimated Ricker inverse capacity parameter 
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Table B.3. List of samSim model variables. 

Notation Defnition 

Sy,i Spawners 

Seqi Equilibrium spawners 

RYy,i Calendar year recruitments (returns) 

py,i,j Proportions of returns at age 

Ry,i Brood year recruits 

Ray,i,j Age specifc brood year recruits 

wy,i Recruitment deviations with temporal auto-correlation 

vy,i Recruitment deviations 

svy,j Brood year survival covariate 

svCYy Calendar survival covariate 

wsvy Survival covariate without bias correction 

Smsyi Spawners that produce the maximum sustainable yield 

Sgeni Number of spawners required to recover to Smsyi in one generation in the 
absence of fshing 

α ′ i Adjusted αi parameters for calculation of time invariant management 
benchmarks 

obspy,i,j Observed proportions of recruits at age 

f(Ry,i) Forecast of calendar year recruitment 

ERMU 
y,n Exploitation rate including only MU-specifc variability 

d1, d2 Shape parameters for Beta distribution used to generate MU-specifc variability 

ϑ Standard deviation for MU-specifc exploitation rate variability 

ERy,i,n Exploitation rate including MU- and CU-specifc variability 

o1, o2 Shape parameters for Beta distribution used to generate CU-specifc variability 

ϕy,i,n Standard deviation for CU-specifc exploitation rate variability 

Cy,i,n Catch 

mCy,i Mixed-stock Canadian catches 

sCy,i Single-stock Canadian catches 

ERaggy,i Aggregate exploitation rates 

obsCy,i,n Observed nation-specifc catches 

obsmCy,i Observed mixed-stock Canadian catches 
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Notation Defnition 

obssCy,i Observed single-stock Canadian catches 

uy,i,n Lognormal error component of observed catches 

pCUy,i Proportion of catches from each CU 

obspCUy,i Observed proportion of catches from each CU 

obsSy,i,n Observed spawners 

zy,i Lognormal error component of observed spawners 

obsRY y,i,n Observed calendar year recruits 

obsERy,i,n Observed exploitation rates 

B.1. MODEL PRIMING

The priming phase, or model initialization, represents the past data for CUs being modeled. It is 
used to represent true and observed abundances before starting the projection trials. This phase 
loops over a number of past years (‘nPrime’) and reconstructs recruitment time series for past 
years. The simulations can be initialized in two ways: with existing recruitment data or with user 
defined parameters, if recruitment data are not available. 

B.1.1. Recruitment Data are Available

If spawner-recruitment data are available, the number of initialization years ‘nPrime’ is defned 
based on the length of the longest CU time series available. The spawners, recruits, catch and 
exploitation rate objects are populated with the input data. If catch and/or exploitation rate data 
are not available, those values are set to zero. 

B.1.2. Recruitment Data are not Available

When Recruitment data are not available, the ‘nPrime’ is set to 10 times the maximum age of 
recruits. The frst step on this routine is to retrieve the stock-recruitment parameters. The user 
has the option of providing either one set of values to be used across all trials or many sets of 
parameter estimates, typically from MCMC samples. If MCMC samples are provided, a different 
set of parameters is used for each simulation trial. 

The stock-recruitment parameters can be altered according to the user defned scenarios, e.g., 
to simulate regime shifts. samSim includes options to adjust the productivity parameter, αi, the 
capacity parameter βi, and the recruitment standard deviations, σi. The LRP case studies do 
not include adjustments or changes in productivity over time, therefore we will not describe 
the parameter adjustment options in this appendix. Recruitment is assumed to be correlated 
between the CUs, where the variance-covariance matrix is calculated based on CU-specifc 
recruitment variances and the correlation matrix in recruitment residuals specifed in an input 
fles. 
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Once stock-recruitment parameters are defned, the number of spawners is initialized. The 
number of spawners is set at equilibrium for the frst 6 years (the maximum possible number 
of age classes) and then calculated based on recruitment and exploitation rates in the previous 
years (Equation B.1). If the calculated number of spawners is lower than the user inputted extinction 
threshold, then the number of spawners is set to zero. Recruitment error is given by a multivariate 
normal distribution refecting the recruitment covariance among CUs. ( 

if y =≤ 6 
Sy,i = (B.1) 

Seqi = αi/βi (B.2) 

The age structure of the recruitment by brood year is computed following a multivariate logistic 
error structure based on the long term average age structure for each CU, pi,j and the CU-
specifc variability parameter τ i (Schnute and Richards 1995) (Equation B.3. The age structure 
error can vary or be held constant among CUs. Calendar year recruitment is then calculated 
after the sixth year of the priming phase. It is the product of the brood year recruitment and the 
age structure of the recruits (Equation B.4.).

py,i,j ∼ Multivariate Logistic(pi,j , τi) (B.3) 

if y>6: 

RYy,i =Σ(Ry−j,i · py−j,i,j ) (B.4) 
j 

The computation of brood year recruitment follows the recruitment curve of choice. For the LRP 
version of samSim, three options for the recruitment curve are available: a simple Ricker curve 
(equation B.5 when ρ = 0), Ricker curve with temporal autocorrelation in recruitment error 
(equation B.5), and Ricker curve with a smolt-to-adult survival covariate (Equations B.8 and B.9, 
also described in Chapter 3). Recruitment error is assumed to be correlated among CUs for all 
versions of the Ricker curve. Random recruitment deviates can be generated with multivariate 
t or multivariate normal distributions, that can be symmetric or skewed. The study cases used 
in this report all assume that recruitment deviates come from a symmetrical multivariate normal 
distribution (Equation B.7). 

2σ 
2 
iαi−βi·Sy,i+wy,i− (B.5) Ry,i = Sy,i · e ( 

if y = 1 
(B.6) wy,i = 

if y > 1 

vy,i ∼ N(µ = 0, covMat) (B.7) 

2σ 
2 
i 

Ray,i,j = py,i,j · Sy,i · e αi−βi·Sy,i+γi·svy,j +vy,i− (B.8) 

Ry,i =ΣRay,i,j (B.9) 
j 

For the Ricker model with the smolt-to-adult survival covariate, the covariates for each calendar 
year are generated following a normal distribution with user defned mean and variance (Equation B.12). 
The distribution of survival covariates is truncated between maximum and minimum values 
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provided in the input fles. The brood year survival covariates, Survy,j , are currently populated 
following the dominant life history types from Interior Fraser Coho. For that stock, fsh with a 3-
year life cycle differ from those with a 4-year life cycle in the number of years spent in freshwater 
as juveniles, i.e., 18 months vs 30 months; both life cycles spend 18 months at sea before returning 
to spawn. Fish with a 2-year life cycle spend 18 months in the freshwater environment and only 
6 months at sea before returning as jacks. This life history results in the survival covariate being 
lagged by one year for ages 2 and 3 Equation B.10). The exception is the frst two years of the 
priming loop, when no lag is applied to the covariates. ( 

svy,j = (B.10) 
otherwise 

σsv 
2 

svCYy = wsvy − (B.11) 
2 

wsvy ∼ N(sv, σsv) (B.12) 

Recruitment numbers produced with either formulation of the Ricker model are capped. The 
default maximum recruitment value is 3 · Seq, but the scalar can be modifed by the user via the 
variable (Equation B.13). In addition, if the generated recruitment is lower than the user defned 
extinction threshold, then recruitment is set to zero. 

Ry,i = min(Ry,i,   · Seqi) (B.13) 

Although in our implementation of samSim for Interior Fraser Coho with smolt-to-adult survival 
covariate, data were used to prime the model, equations for simulating dynamics during this 
period are provided here for completeness. The equations for simulating population dynamics 
are also used in the projection phase of the model (see below). 

B.1.3. Compute Management Quantities and Benchmarks

In the priming loop, the management quantities and benchmarks are only calculated in the 
last two generations. The management benchmarks are calculated according to three options: 
“stockRecruit”, “percentile” and “habitat”. samSim has the capability of estimating management 
quantities and benchmarks on a yearly basis, relying on the data obtained from the beginning of 
the time series to the current simulation year. However for the purpose of the LRP study cases, 
time invariant management benchmarks were used. For this reason we omit the time index, y, 
from the notation used for the management quantities. 

If the “stockRecruit” option is used, the management quantities are Smsyi and Sgeni calculated 
based on the stock-recruitment parameters. When the model with the survival covariate is used, 
the αi parameter is modifed to incorporate the survival component (Equation B.14). In order to 
keep the management benchmarks constant through time, the long term average of the survival 
covariate is used. Smsyi is calculated following the explicit solution provided by Scheuerell 
(2016) using the Lambert W function (Equation B.15). Sgeni is estimated by solving Equation B.16 
numerically, as described by Holt et al. (2009). The lower benchmark is set to Sgeni and the 
upper benchmark is set to 80% of Smsyi. ( 

α ′ i = (B.14) 
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1−α ′ 1 − W (e i )
Smsyi = (B.15) 

βi 

i−βi·SgeniSmsyi = Sgeni · e α ′ (B.16) 

If the “percentile” benchmark option is chosen, the upper benchmark is set to the 50th percentile 
of historical spawners (S1:y,i). The lower benchmark is set to the 25th percentile of historical 
spawners. Note, percentile-based benchmarks were not implemented in our case studies for 
projection-based LRPs. Future applications could vary the percentiles used as lower and upper 
benchmarks as recommended in Holt et al. (2018). If the “habitat” benchmark option is chosen, 
the benchmarks are computed using the same approach as in the “stockRecruit” option. The 
difference is in the origin of the stock-recruit parameters, i.e., from the habitat model instead of 
spawner-recruitment curve. 

B.1.4. Infill Missing Data 

The last step of the model priming is inflling, which is only relevant if stock-recruitment data are 
available and there are gaps in the last 12 years of the time series. Any gaps in the last 12 years 
of the Spawners and Recruits time series are inflled with a geometric mean of the entire priming 
period. In the priming phase, we assume that all variables are known without error, therefore all 
observations are set to the true simulation values, i.e., no observation error is added. 

B.2. MODEL PROJECTIONS 

The model projection phase is used to represent future potential outcomes. The steps in this 
phase will depend on the scenarios and management procedures selected by the user, and 
therefore will vary depending on the model application. In the following section, we list all steps 
in the order they appear in the code and indicate in the text if the step was used for the LRP 
case studies. Similarly to the priming phase, the subheadings in this section can be read as 
pseudocode. The projections run for each trial from year nPrime + 1 to Y, the latter being the 
number of projection years defined by the user. 

B.2.1. Specify Stock Recruitment Parameters 

Similarly to the priming phase, the frst step on the projection loop is to defne the stock-recruitment 
parameters. The βi and σi parameters are fxed through time and were already defned in the 
priming phase. However, if the user specifes productivity changes through time, then the productivity 
parameter αy,i is adjusted every year following a linear trend. A detailed description of the algorithm 
used to generate productivity trends is out of the scope of this report as the study cases do not 
include scenarios with productivity changes. As the productivity parameter is held constant in 
the study cases, we will continue to use the time-invariant notation (αi) for the parameter in the 
sections to follow. 

B.2.2. Project Management Benchmarks 

Once αi is specifed, the true management quantities S msyi and S geni for the projection year 
are computed following Equations B.15 and B.16. The management benchmarks can be re-
estimated every year or set by the normative period, i.e., last year of the priming phase, nPrime. 
The study cases in this report use the normative period management benchmarks. 
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B.2.3. Project Observed Recruitment

In this step, we compute the observed proportions of returns at age and the observed recruitment 
for each brood year. The observation error for the proportions of returns at age is given by a 
multivariate logistic error structure as described by Schnute and Richards (1995). Observation 
error for the proportions of returns at age is not included in the LRP study cases, i.e., the variability 
parameter, φ, is set to zero. 

obspy,i,j ∼ Multivariate Logistic(py,i,j , φ) (B.17) 

The observed recruitment by brood year is retrieved by multiplying the true recruitment at age for 
each calendar year by the vector of observed proportions at age in the returns (Equation B.18). 

j 

obsRy−j,i =Σ(RYy−j,i · obspy−j,i,j ) (B.18) 

B.2.4. Project Recruitment Forecast

When forecast error is included in the projection scenarios, it is generated by adding lognormal 
error around the calendar year recruitment (Equations B.19 and B.20). The error distribution 
is also truncated between the 0.0001 and 0.9999 quantiles to avoid extreme forecast values. 
Forecast error is not considered in the LRP study cases. 

f(RYy,i) = RYy,i · exp(ωy,i) (B.19) 

ωy,i ∼ N(ω, σω) (B.20) 

B.2.5. Project Realized Catches

The next step is to calculate the realized catches following a harvest control rule. Both study 
cases in this report use the fxed exploitation rate harvest control rule. In this option, the catch is 
the product of calendar year recruits and fxed exploitation rate over all projection years (Equation B.29). 
However, even though the harvest control rule specifes fxed exploitation rate, the realized 
exploitation rates vary from year to year due to changes in population distribution and fsheries 
dynamics. In this section we describe the layers of variability added to the simulated catches. 
Two layers of variability are considered in samSim, these represent MU-specifc variability and CU-
specifc variability. Both uncertainty layers are implemented through draws of exploitation rate 
values from beta distributions. Currently only the Canadian catches include the annual added 
variability. In the LRP study cases, both U.S. Catches and Canadian single-stock catches are set 
to zero, therefore only the Canadian mixed-stock catches are implemented. 

The frst layer of catch variability is implemented at the MU level. The error is assumed to be 
the same for all CUs within an MU. The mean and variance for the MU level error are defned 
in the input fles and then transformed into shape parameters for the Beta distribution draw 
(Equations B.21-B.22 ). ( 

∼ B

= 

~
ERMU (B.21) y,n 
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2 1 − ERn 1 

d1 = ERn · − (B.22) 
ϑ2 ERn

1 
d2 = d1 · (B.23) 

ERn − 1 

ϑ = CV (ERn) · ERn (B.24) 

In the second layer, CU-specifc exploitation rates are drawn from a beta distribution using the 
output exploitation rate from the frst layer as mean and CU-specifc CV defned in the input 
fles. The mean and CVs are transformed into shape parameters for the Beta distribution draws 
(Equations B.25-B.28). The Catches are then computed by multiplying the CU specifc ER and 
the calendar year recruits Equation B.29. ( 

∼ 

= 

~ n=Canada
ERy,i,n (B.25) 

n=U.S. ! 
1 − ERMU 

= (ERMU )2 y,n 1 
o1y,i · − (B.26) y,n ϕ2 ERMU 

y,i,n y,n 

o2y,i = o1y,i · 
1 

(B.27) 
ERMU − 1y,n 

ϕy,i,n = CV (ERy,i,n) · ERMU (B.28) y,n 

Cy,i,n = ERy,i,n · RYy,i (B.29) 

The catch for Canada is further divided in two components, mixed-stock fshery and single-
stock fsheries (Equations B.30 and B.31). Single-stock fsheries were not included in our LRP 
analyses, setting psiy,i =1, where: 

mCy,i = Cy,i,n=Canada · ψy,i (B.30) 

sCy,i = Cy,i,n=Canada · (1 − ψy,i) (B.31) 

The next step is to compute the aggregate exploitation rate and the remaining number of spawners 
(Equations B.32 and B.33). 

Σn Cy,i,n
ERaggy,i = (B.32) 

RYy,i 

Sy,i = RYy,i · (1 − ERaggy,i) (B.33) 

B.2.6. Project Observed Data

In this step, observation error is added to the quantities calculated in the current time step. Observation 
errors were not included in our implementation for LRPs because LRPs were derived from true 
underlying population dynamics without observation errors and the management procedure 
applied (constant exploitation rates) did not require information on observed abundances. 

Catch observation error is given by a log normal distribution (Equations B.34-B.36), the distribution 
is truncated between the 0.0001 and 0.9999 quantiles. If the catch is taken in a mixed-stock 
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fshery, additional multivariate logistic error is incorporated to account for uncertainty in the stock 
assignment process (Equation B.38). ( 

obsCy,i,n = 
n=U.S. 
n=Canada 

(B.34) 

Canadian mixed-stock fsheries observed catches: 

obsmCy,i = mCy,i · uy,i,n · obspCUy,i (B.35) 

Canadian single-stock fsheries observed catches: 

obssCy,i = sCy,i · uy,i,n (B.36) 

uy,i,n ∼ logN(0, σC ) (B.37) 

obspCUy,i ∼ Multivariate Logistic(pCUy,i, κ) (B.38) 

mCy,i 
pCUy,i = 

Σi mCy,i 
(B.39) 

Observed number of spawners is given by a log normal distribution truncated between the 
0.0001 and 0.9999 quantiles (Equation B.40). The observed recruitment is the sum of observed 
catches and observed spawner numbers (Equation B.42). The observed exploitation rate is 
directly calculated by dividing the observed catches by the observed recruitment (Equation B.43). 

obsSy,i = Sy,i · ·zy,i (B.40) 

zy,i ∼ logN(0, σS ) (B.41) 
n 

obsRYy,i =Σ obsCy,i,n + obsSy,i (B.42) 

Σn obsCy,i,n
obsERy,i = (B.43) 

obsRYy,i 

B.2.7. Run Stock Assessment and Calculate Management Quantities

This next phase of the projection loop simulates salmon stock assessment analysis. The linearized 

y,i are estimated. Again, 

underlying parameters provided as inputs (i.e., from a normative period). � � 
= 

obsR1:y,i 
log (B.44) 

obsS1:y,i 

The management quantities, i.e., Sgen and Smsy or Spawners quantiles, can then be recalculated 
based on the estimated stock-recruitment parameters and the observed time series of spawners 
using the same procedure described in section B.1.3. 

ay,i and b ˆ simple Ricker stock-recruit curve is ft to the observed data and 
this step was not implemented for LRP analyses, which used benchmarks calculated from true 

ˆ 
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B.2.8. Project Population Dynamics

In this section the brood year recruitment for the current projection year is computed. The frst 
step is to generate the smolt-to-adult survival estimates which are used to project recruitment 
when the Ricker model with survival covariates is applied. The survival covariates are generated 
using the method described in Section B.1.2 and Equations B.12 and B.10. Smolt-to-adult 
survival covariates are considered to be constant across CUs. 

The following step is to compute the age structure of the returns with random error, which follows 
the same procedure described in Section B.1.2. The age structure follows a distribution with 
mean age structure and standard deviation for each CU given in the input fles. 

In the next step generates recruitment deviations, which are computed with multivariate normal 
distribution, refecting the recruitment covariance among CUs. Recruitment is then calculated 
following the same procedure described in SectionB.1.2 and using Equation B.5 for the simple 
Ricker model, or Equation B.8 for the Ricker model with survival covariates. 

The last step of the projection loop is to compute the true and observed upper and lower benchmarks, 
which are based on the management quantities described in the previous section (Section B.2.7. 
These are either stock-recruit or percentile benchmarks, as described in section B.1.3 computed 
based on the true and observed spawner abundances. 
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APPENDIX C. SUPPORTING INFORMATION FOR INTERIOR FRASER COHO CASE 
STUDY 

C.1. ASSESSMENT OF CU REPRESENTATIVENESS BASED ON GUIDELINES
CRITERIA 

We considered the 4 criteria identifed in Holt et al. (2023) to evaluate if status of any one CU 
within this SMU could be inferred from the remaining CUs; these criteria included similarity in 
(i) threats, (ii) environmental conditions and drivers, (iii) life history and (iv) population capacity.
Although statuses are available for all CUs in this SMU, we consider the application of these
criteria to evaluate how decisions about whether CU status can be inferred from other CUs
based on these criteria differ from the results of sensitivity analyses presented in the main paper.
As part of these sensitivity analyses, we explored how removing one or two CUs affected LRP
estimation and status assessments against the LRP.

In an assessment of threats for Interior Fraser Coho completed as part of the 2018 Recovery 
Potential Assessment, Arbeider et al. (2020) ranked a comprehensive set of threats on a scale 
of high, medium, low, and unknown. The dominant threats to this SMU are from activities related 
to forestry, forest fres, agriculture, and urban and rural development. Specifc threats arising 
from these activities included the modifcation of catchment surfaces, effuents from agriculture 
and forestry, and linear development, which is defned as the straightening and channelization of 
streams (Arbeider et al. 2020). While impacts from a given activity may be higher in some CUs 
than others, the interconnected threats stemming from multiple activities, as well as cumulative 
impacts, mean that it is hard to isolate one CU that experiences threats differently than another. 
Furthermore, extensive agricultural and linear development in the lower Fraser River, which all 
Interior Fraser Coho smolts migrate through, and a proportion of juveniles rear in, means that 
there is a possibility that all CUs are affected by threats stemming from agriculture and linear 
development. 

When evaluating the similarity of environmental conditions and drivers among CUs, we looked 
to multiple ecosystem classifcation schemes. The frst scheme, Marine Adaptive Zones, applies 
to the riverine, estuarine, and marine habitats utilized by juveniles, and were used to inform CU 
delineation (Holtby and Ciruna 2007). For Interior Fraser Coho, all CUs belongs to the same 
Marine Adaptive Zone, Georgia Strait, suggesting that environmental conditions and drivers in 
these habitats are shared among all CUs. The second scheme, Freshwater Adaptive Zones 
(FAZ), represents the freshwater ecological drainage units, and was also used to delineate 
CUs (Holtby and Ciruna 2007). For Interior Fraser Coho, each CU belongs to a unique FAZ, 
which is often (but not always) the case with CU delineation. Finally, we looked at Biogeoclimatic 
Zones derived from vegetation classifcation. All fve Interior Fraser Coho CUs included a mix 
of Biogeoclimatic Zones with Interior vegetation, including Interior Douglas Fir, Bunchgrass, 
Montane Spruce, and Engelmann Spruce. The Middle Fraser CU included some boreal vegetation 
zones, such as Sub-Boreal Pine and Sub-Boreal Pine–Spruce. The Fraser Canyon CU was the 
only CU that included a more coastal vegetation type, Coastal Western Hemlock. However, it is 
not well understood how this difference would affect environmental conditions and drivers. More 
work is needed to better understand whether these differences are substantial enough to affect 
the representativeness of CUs. 

All Interior Fraser Coho CUs have the same predominantly 3-year life history, with the proportion 
maturing at age 3 similar among CUs. 
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Finally, we use the estimated SREP, which is the spawner abundance at which the stock replaces 
itself, from a base Ricker model ft (described in the main body of the paper) to look for differences 
in habitat capacity among CUs. SREP values ranged from 4023 (Fraser Canyon CU) to 14,595 
(North Thompson CU), with SREP values for the other three CUs evenly spaced within this range 
(Middle Fraser = 6925, Lower Thompson = 8614, South Thompson = 10,498). Given that there 
was no clear outlier in terms of extremely low or extremely high capacity, it is unclear whether 
these fve CUs would respond differently to threats based on habitat capacity alone. 

Based on similarities in threats, life history, population capacity, and some shared environmental 
drivers (i.e., lower Fraser River, estuary, and marine environments), we found few signifcant 
indicators that would have prevented us from inferring CU status for one CU from neighboring 
CUs prior to our case study analyses, especially when data from several other CUs are available 
to represent the missing CU. However, the large diversity in environmental conditions on land, 
Biogeoclimatic zones, and unique weather events, combined with the generally large areas 
encompassed by each CU, does require careful consideration when inferring CU status. For 
example, consideration may be required when environmental catastrophes occur that only 
impact individual CUs, or parts of CUs, such as landslides, foods, droughts, and forest fres; 
depending on the duration of the impacts of such events. An example of a recent catastrophic 
event is the Big Bar landslide, which only impacted one subpopulation within the Middle Fraser 
CU.If the impacts of this slide persist without mitigation, the status of the Middle Fraser CU 
would likely not be coupled with adjacent CUs. We also note that the Fraser Canyon CU may 
be the most unique in terms of it having the smallest capacity and a more coastal dominated 
biogeoclimatic zone, so special consideration may be given to cases in which CU-level data is 
missing from Fraser Canyon. 
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C.2. BAYESIAN STOCK-RECRUITMENT MODEL PARAMETER ESTIMATES 

Figure C.1. Prior distribution for SREP (the spawner abundance level at which the stock replaces itself) 
used when ftting the Ricker_priorCap model. The red dashed line shows the maximum likelihood estimate 
of SREP from the base Ricker model stock-recruitment ft. The mean of the SRep prior was set to 1.4 times 
the maximum likelihood estimate. 
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Table C.1. Summary of posterior distribution mean and quantiles (5%, 50%, and 95%) for stock-recruit 
model parameters and Sgen lower benchmark from the Ricker model ft. The ‘adjProd’ parameter is the 
effective productivity, α’, from Equation 15 in the main document. 

CU Variable Mean P05 P50 P95 

Middle Fraser adjProd 2.3800 1.7300 2.3200 3.2000 

alpha 2.8800 2.2000 2.8700 3.6200 

beta 0.0001 0.0001 0.0001 0.0002 

gamma 0.4200 0.2900 0.4200 0.5600 

Sgen 1,646.0000 870.0000 1,576.0000 2,663.0000 

sigma 0.4500 0.3400 0.4400 0.6000 

Fraser Canyon adjProd 6.2600 3.1600 5.6700 11.2100 

alpha 3.7900 2.9200 3.7700 4.7300 

beta 0.0004 0.0003 0.0004 0.0006 

gamma 0.4200 0.2900 0.4200 0.5600 

Sgen 314.0000 52.0000 266.0000 748.0000 

sigma 0.7600 0.5700 0.7400 1.0100 

Lower Thompson adjProd 2.5600 1.5700 2.4500 3.9600 

alpha 2.9300 2.2000 2.9300 3.6900 

beta 0.0001 0.0000 0.0001 0.0001 

gamma 0.4200 0.2900 0.4200 0.5600 

Sgen 1,977.0000 970.0000 1,841.0000 3,429.0000 

sigma 0.5900 0.4500 0.5800 0.7800 

North Thompson adjProd 3.1700 2.2900 3.0900 4.2900 

alpha 3.1700 2.5100 3.1600 3.8700 

beta 0.0001 0.0000 0.0001 0.0001 

gamma 0.4200 0.2900 0.4200 0.5600 

Sgen 2,482.0000 1,557.0000 2,409.0000 3,650.0000 

sigma 0.4100 0.3100 0.4100 0.5500 

South Thompson adjProd 2.4700 1.5900 2.3700 3.6600 

alpha 2.9100 2.1700 2.8900 3.7000 

beta 0.0001 0.0000 0.0001 0.0001 

gamma 0.4200 0.2900 0.4200 0.5600 
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CU Variable Mean P05 P50 P95 

Sgen 2,573.0000 1,291.0000 2,365.0000 4,667.0000 

sigma 0.5700 0.4300 0.5600 0.7500 
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Table C.2. Summary of posterior distribution mean and quantiles (5%, 50%, and 95%) for stock-recruit 
model parameters and Sgen lower benchmark from the Ricker_priorCap model ft. The ‘adjProd’ 
parameter is the effective productivity, α’, from Equation 15 in the main document. 

CU_Name Variable Mean P05 P50 P95 

Middle Fraser adjProd 2.29 1.64 2.22 3.19 

alpha 2.58 1.87 2.57 3.35 

beta 0.00 0.00 0.00 0.00 

gamma 0.37 0.23 0.36 0.51 

Sgen 2,515.00 1,339.00 2,452.00 3,932.00 

sigma 0.52 0.39 0.50 0.69 

Fraser Canyon adjProd 6.36 3.24 5.80 11.27 

alpha 3.55 2.68 3.53 4.49 

beta 0.00 0.00 0.00 0.00 

gamma 0.37 0.23 0.36 0.51 

Sgen 304.00 53.00 258.00 715.00 

sigma 0.75 0.57 0.74 1.00 

Lower Thompson adjProd 2.64 1.57 2.47 4.24 

alpha 2.70 1.93 2.68 3.53 

beta 0.00 0.00 0.00 0.00 

gamma 0.37 0.23 0.36 0.51 

Sgen 2,781.00 1,241.00 2,654.00 4,767.00 

sigma 0.67 0.51 0.66 0.89 

North Thompson adjProd 3.20 2.15 3.09 4.62 

alpha 2.91 2.19 2.90 3.66 

beta 0.00 0.00 0.00 0.00 

gamma 0.37 0.23 0.36 0.51 

Sgen 3,171.00 1,771.00 3,051.00 5,017.00 

sigma 0.50 0.37 0.49 0.66 

South Thompson adjProd 2.35 1.54 2.22 3.56 

alpha 2.59 1.83 2.57 3.41 

beta 0.00 0.00 0.00 0.00 

gamma 0.37 0.23 0.36 0.51 
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CU_Name Variable Mean P05 P50 P95 

Sgen 4,050.00 2,130.00 3,978.00 6,247.00 

sigma 0.64 0.48 0.62 0.84 

Figure C.2. Posterior distributions for Ricker α parameters, by CU, obtained from ftting the base Ricker 
stock-recruitment model. 

Figure C.3. Posterior distributions for effective productivity (α’) parameters, by CU, obtained from ftting the 
base Ricker stock-recruitment model. 
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Figure C.4. Posterior distributions for Ricker α parameters, by CU, obtained from ftting the 
Ricker_priorCap stock-recruitment model. 

Figure C.5. Posterior distributions for effective productivity (α’) parameters, by CU, obtained from ftting the 
Ricker_priorCap stock-recruitment model. 
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C.3. PROJECTED SPAWNER ABUNDANCES USED FOR THE PROJECTION LRP 
METHOD 

Figure C.6. Projected spawner abundances, for each of the fve Interior Fraser Coho CUs, used to develop 
projection LRPs under the base Ricker model. The solid line shows the median spawning abundance in a 
projection year while the grey shading shows the 10th and 90th percentiles of spawner abundance. 
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Figure C.7. Projected spawner abundances, for each of the fve Interior Fraser Coho CUs, used to develop 
projection LRPs under the Ricker_priorCap model. The solid line shows the median spawning abundance 
in a projection year while the grey shading shows the 10th and 90th percentiles of spawner abundance. 
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APPENDIX D. SENSITIVITY OF PROJECTION-BASED LRPS TO EXPLOITATION 
RATES 

To explain the initially counter-intuitive result of the sensitivity of projection based LRPs to exploitation 
rates, we ran an additional analysis where the spawner-recruitment parameters, productivity 
(log(alpha)) and spawners at replacement, SREP (log(alpha)/beta) were either varied or kept 
constant over inlets and Monte Carlo trials. 

Specifcally, we evaluated the sensitivity of aggregate projection-based LRPs to exploitation rates 
under three alternative scenarios, as applied to the case study on WCVI Chinook Salmon: 

1. All component inlets were assumed to have stock-recruitment parameters drawn from the 
same distributions (the mean and standard deviation for productivity and SREP as estimated 
for Quatsino, west coast Vancouver Island) but a unique set of stock-recruitment parameters 
was drawn for each inlet and trial (i.e., each inlet was a replicate of each other with random 
variability). We chose to draw SREP from a random distributions instead of Ricker beta or 
SMAX (1/beta) because the spawner-recruitment relationship was parameterized with SREP 
for this case study. In preliminary sensitivity analyses, we sampled from a random distribution 
of beta values and found similar results. We assumed strong positive covariation in recruitment 
residuals among inlets with pairwise correlations equal to 0.7. 

2. The productivity parameter was fxed at the mean of the assumed distribution for all inlets 
and trials. SREP was drawn from its distribution and allowed to vary across inlets and trials. 
The same distribution of SREP was used across inlets and trials, as in Scenario 1. 

3. SREP was fxed at the mean of the distribution across inlets and across trials. The productivity 
parameter was drawn from the distribution and allowed to vary across inlets and trials. The 
same distribution of productivity was used across inlets and trials, as in Scenario 1. 

We found that the sensitivity of projection-based LRPs to exploitation rates was due to variability 
in productivity and to a lesser extent SREP among inlets. In Scenario 1, when we applied a 
relatively high exploitation rate (45%), productivity and SREP tended to be lower for random 
trials and inlets that dropped below the lower benchmark in at least one year (Fig. D.1). Random 
trials and inlets with abundances that remained above the lower benchmark over the time-series 
tended to be more productive and slightly larger. 

Inlets and Monte Carlo trials with low productivity tended to have relatively high Sgen (lower 
benchmark) values (as described in Holt and Folkes (2015)), and therefore a higher frequency of 
dropping below the lower benchmark. This variability in productivity among inlets was associated 
with projection-based LRPs that were sensitive to exploitation rates (Fig. D.2). 

When productivity was fxed at the mean value among random trials and inlets in Scenario 2, the 
distribution of spawner-recruitment parameters for trials in which abundances dropped below the 
lower benchmark was the same or similar for trials that remained above it (Fig. D.3), and the LRP 
was insensitive to exploitation rate (Fig. D.4). 

When SREP was fxed at the mean value among inlets and random trials in Scenario 3, productivity 
was higher for inlets and trials that remained above benchmarks compared to those that dropped 
below them, similar to the scenario when both SREP and productivity varied (Scenario 1) (Fig. D.5). 
LRPs varied with exploitation rates but to a lesser extent than when both productivity and SREP 
varied (Fig. D.6). 
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Figure D.1. Distribution of (a) productivity (log alpha) and (b) spawners at replacement, S REP among 
MC trials, shaded according to whether abundances in that trial remained above the lower benchmark 
(red) or not (blue), under a 45% exploitation rate. Productivity and S REP varied among inlets and trials 
and were drawn from common distributions. 

Based on these sensitivity analyses, we conclude that variability in productivity among inlets 
results in inlet-specifc variability in sensitivity to exploitation rates. Inlets with relatively low 
productivity fall below lower benchmarks more frequently. This effect is accentuated when exploitation 
rates are high resulting in divergences in statuses among inlets and a higher aggregate abundance 
is required for all inlets to be above their lower benchmarks resulting in a higher LRP. These 
results are generalizable to other SMUs to the extent that productivities differ among component 
CUs. 
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Figure D.2. Probability of all inlets being above their lower benchmark along a gradient in aggregate 
abundances within bins of 200 fsh, derived from projections over 30 years and 10,000 MC Trials, under a 
range of average exploitation rates from 5-45%, assuming productivity and S REP varied across inlets 
and trials, and are drawn from common distributions. Horizontal dashed lines are at 50% and 66%. 
Orange and pale green vertical lines are the LRPs associated with 50% and 66% probability of all inlets 
being above their lower benchmarks, respectively. LRPs at 66% probability are not shown for exploitation 
rates greater than 30% because of large uncertainty in projections at high aggregate abundances. 
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Figure D.3. Distribution of (a) productivity (log alpha) and (b) spawners at replacement, S REP among 
MC trials, coloured by whether abundances in that trial remained above the lower benchmark (red) or not 
(blue), under a 45% exploitation and constant productivity among inlets and trials. S REP was drawn from 
a common distribution across inlets and trials. 
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Figure D.4. Probability of all inlets being above their lower benchmark along a gradient in aggregate 
abundances within bins of 200 fsh, derived from projections over 30 years and 10,000 MC Trials, under a 
range of average exploitation rates from 5-45% (across 9 panels), assuming the same productivity for 
each inlet and trial, and an S REP that varied across inlets and trials, drawn from a common distribution. 
Horizontal dashed lines are at 50% and 66%. Orange and pale green vertical lines are the LRPs 
associated with 50% and 66% probability of all inlets being above their lower benchmarks, but are 
indistinguishably here. 
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Figure D.5. Distribution of (a) productivity (log alpha) and (b) spawners at replacement, S REP among 
MC trials, coloured by whether abundances in that trial remained above the lower benchmark (red) or not 
(blue), under a 45% exploitation and constant S REP among inlets and trials. Productivity was drawn from 
a common distribution across inlets and trials. 
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Figure D.6. Probability of all inlets being above their lower benchmark along a gradient in aggregate 
abundances within bins of 200 fsh, derived from projections over 30 years and 10,000 MC Trials, under a 
range of average exploitation rates from 5-45% (across 9 panels), assuming the same S REP for each 
inlet and trial, and productivity that varied across inlets and trials, drawn from a common distribution. 
Horizontal dashed lines are at 50% and 66%. Orange and pale green vertical lines are the LRPs 
associated with 50% and 66% probability of all inlets being above their lower benchmarks, respectively. 
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APPENDIX E. SUPPORTING INFORMATION FOR INSIDE SOUTH COAST CHUM 
SALMON CASE STUDY 

E.1. DATA SOURCES AND TREATMENT 

E.1.1. Spawner Escapement 

We used spawning escapement data from 1953-2018. Most of the escapement data comes 
from the NUSEDS database (a small amount from Lower Fraser Stock Assessment for Areas 
28 and 29, FSC in-river catch from some First Nations, and enhanced escapement from DFO 
Salmon Enhancement Program). The number of Chum salmon that return to spawn is typically 
counted using visual surveys, and using fences or weirs on some rivers. Total escapement for 
each stream is usually a peak count or estimated using the area under the curve (AUC) method. 

E.1.2. Fishery Harvest, Genetics, and Age 

The number of Chum caught in fsheries in the Inside South Coast area were taken from the 
DFO Clockwork Database, which includes the DFO Fishery Operating System and Sales slip 
databases and Genetic Stock Identifcation data. Age distributions for each year were taken from 
the Johnstone Strait fshery aggregate, as age data for specifc CUs or streams was not available. 
Harvest data was available for 1954-2018. Age composition data was available for 1958-2018. 

E.1.3. Data Selection and Infilling 

We removed summer-run fsh because all of the data that goes into the run reconstruction work 
is associated with populations that return in the fall. Summer-run fsh are relatively minor portion 
of the total abundances for these CUs (Table 11). Because hatchery fsh are not visibly marked, 
time-series of proportion of hatchery-origin and natural origin-fsh were not available. However, 
we removed three systems because of high enhancement: Qualicum River and Little Qualicum 
River (spawning channels), and Puntledge River (hatchery production). These systems have 
been nearly 100% enhanced at least since enhancement began at these locations. It is assumed 
that hatchery enhancement is a relatively small component of total production in the remaining 
systems (Lynch et al. 2020). Brood take and rack abundances were also removed from spawner 
abundances to derive time-series of ‘natural’ escapement. 

After these removals, the steps for preparing the data for analysis were: 

• Infll total and wild escapement by CU and Area, (by stream for CUs with observations, by 
CU for years with no observations in a CU) 

• Run reconstruction, required to estimate CU-specifc productivity from stock-recruitment 
models: 

• Add fshery catch by CU and Area to total escapement to estimate total returns 

• Use proportion of natural escapement:total escapement (which includes brood stock and 
rack abundances and the three large hatchery systems), by CU and Area to estimate 
number of wild returns 

• Use age proportions of catch to estimate age of returns and get recruits by brood year for 
each CU. Result is wild spawners and corresponding recruits by brood year for each CU 
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E.1.4. Infilling of Spawner Escapement Data 

The data we used had years where not all streams were counted. Missing escapement values 
require inflling for two purposes: 

1. To ensure that all CUs have annual estimates of wild returns for input to the run reconstruction 
model, which allows recruits for each brood year to be estimated. 

2. To create CU-level time series of wild escapement that can be used to calculate status 
relative to CU-level benchmarks, as well as LRPs based on CU status. 

Two levels of inflling have previously been used for ISC Chum CUs (Holt et a l. 2018, Figure E.1). 
The frst level, inflling by stream, is used when a CU has some streams counted in a year. In this 
case, stream-level inflling is done by borrowing information from other streams within the same 
CU. The second level, inflling by CU, is used when there are no counts of spawners for a CU in a 
given year. We had to infll by CU to get total spawners to use for the run reconstruction, but we 
did not use CUs with CU-level inflling to calculate LRPs because the inflling procedure assumes 
that escapement is correlated between CUs in a given year. 

E.1.4.1. Infilling by Stream 

This applies to CUs and years when there were counts in some streams in the CU in a given 
year. For each stream, the geometric mean of escapement over all years was calculated as the 
stream’s average escapement. Then the total average escapement for each CU in each year 
was the sum of the average escapements from all streams. Then a proportion of monitored 
escapement in each year was the sum of average escapement of all streams with counts in a 
year divided by the sum of the average escapements for all streams (counted and uncounted) in 
that CU. The inflled escapement for a CU in given year was the sum of the observed escapements 
for that CU and year divided by the proportion of the monitored escapement for that CU and year. 

Inflling by stream typically made up a small proportion of the total escapement for each CU, 
with the exception of Howe Sound-Burrard Inlet. This was partly due to increasing escapements 
in the Cheakamus River and Indian River since 2000. This method assumes that escapement 
among streams is correlated, which is not always the case (see Figure 41 for correlations among 
CUs). 

E.1.4.2. Infilling by CU 

If there were no counts of any streams in a CU in a given year, a second round of inflling was 
done with data set that had already been inflled by s tream. This was the case for two CUs: 
Upper Knight (22 years: 1979-1980, 1982, 1984, 1989, 1991,1996,2004-2018) and Bute Inlet 
(13 years: 2005-2006, 2008-2018). We describe this level of inflling below, though it was not 
applied for development of LRPs as it violates assumptions of independence among CUs. 

Using by-stream inflled escapement summed for each CU, the CUs and years with missing data 
were inflled assuming the total CU escapement was correlated between CUs. The procedure 
was similar to that for inflling by stream, but a geometric average for each CU across all years 
was used to calculate the proportion of the average for each year, and then that was used to 
estimate escapement for the two CUs with no observations. 
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Figure E.1. Chum salmon escapement for the seven Conservation Units. Black points indicate actual 
counts, blue points are infilled by stream, and red points are infilled by Conservation Unit. 

E.1.5. Run Reconstruction to Estimate Recruitment 

We reconstructed the returns for each brood year to give recruits for brood years 1955-2012 
(age composition data from 1958-2018, minimum fsh age was 3 years, maximum fsh age was 
6 years). In prelminiary analyses we estimated stock-recruitment based benchmarks for these 
CUs. Using CU benchmarks based on stock-recruit parameters - in this case, Sgen - requires 
knowing the spawners and recruits (adult offspring produced by each brood year of spawners) 
for each brood year (spawning year). Estimating recruits requires knowing wild spawner escapement, 
number of wild fsh caught in fsheries, and the age of these fsh. 

To get these estimates, total (wild and hatchery origin) spawners based on the inflling methods 
above (both stream and CU level inflling) were calculated for each CU and Fishery Management 
Area (Figure 37). The number of fsh harvested in fsheries (wild and hatchery, by CU and Fishery 

124 



Management Area) were added to the total escapement to get an estimate of total adult returns 
by CU and Fishery Management Area for each spawning year. This total returns number was 
multiplied by the proportion of wild spawners in each CU and Fishery Management Area based 
on the inflled wild and total spawner escapement. The product was an estimate of wild returns 
(spawner escapement plus fshery harvest) by CU and Fishery Management Area for each brood 
year. Finally, the age composition of Chum harvested in the Johnstone Strait aggregate fshery 
(ages 3, 4, 5 and 6) were used to assign fsh from wild returns to brood years. As such, this 
analysis does not account for age diversity between CUs or streams. 

Note that the two CUs requiring CU-level inflling correspond to only one Fishery Management 
Area each, which allows the run reconstruction using fshery harvest data at this level. 

Figure E.2. Density (smoothed histogram) of chum escapement for the seven Conservation Units. Note 
that x axis is on logarithmic scale. 

E.2. RETROSPECTIVE ANALYSIS OF CU BENCHMARKS 

We conducted a retrospective analysis using the data for the Inside South Coast Chum to evaluate 
how stock-recruitment parameters and benchmarks, Sgen and percentile benchmarks, changed 
over time. When α, β, and Sgen were estimated annually using only data prior to that year, values 
changed over time as progressively more years of data were included (Figures E.3). Note that 
these are not estimates based on a model that accounts for time-varying parameters. Rather, 
the estimates of α, β, and Sgen in a given year come from ftting a Ricker model to spawners 
and recruits for all years up to and including that year, for each CU. Each subsequent year 
includes another year of data. Thus, as more data is included, the estimates of α, β, and Sgen 
may change. These results should be interpreted with caution due to the large residuals in 
observed vs. predicted recruits. Since α and β are correlated, the meaning of any trends in 
one parameter should be interpreted with the other parameter in mind, especially when model 
fts have large residuals. Similarly, since α and β determine SMSY and Sgen, changes in these 
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derived parameters can be challenging to interpret and can be due to changes in α, β, and 
their relative values. Retrospective estimates of α and β for Southern Coastal Streams show 
declines over time. SMSY and Sgen increase sharply in the frst few years due to large decreases 
in α and β. SMSY then decreases over time, while Sgen stays relatively stable. This is because as 
α decreases below approximately 2.5, Sgen decreases, but as β decreases, Sgen decreases, so 
that a simultaneous decrease in α and β can cancel out. However, the lower alpha is below 2.5, 
the less infuence β has on Sgen. 

Increasing Sgen for North East Vancouver Island is mainly due to an increase in α from <1.5 to 
>2 and then a decrease in β. α for Loughborough showed modest decreases over time, and Sgen 
was fairly stable. The Georgia Strait CU shows evidence of increasing α, and its Sgen estimate 
was fairly stable. Howe Sound-Burrard Inlet Sgen was fairly stable, and then increased due to 
decreases in α and β. 

Despite large uncertainties in the underlying recruitment data and stock-recruitment benchmarks, 
we estimated a logistic regression model based on aggregate abundances vs. CU status from 
abundances relative stock-recruitment benchmarks. Similar to our results for the logistic regression 
model based on percentile benchmarks, the model ft was poor and cannot be used as a basis 
for estimating LRPs (Figure E.4). We further evaluated status based on percentile-based benchmarks 
retrospectively, where status was evaluated annually based on benchmarks estimated from data 
prior to that year (Figure E.5). 
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Figure E.3. Retrospective estimates of α, β, Sgen (black line with grey confdence intervals) and SMSY 

(blue line) for fve CUs in the Inside South Coast Chum SMU. Note y axis is identical across CUs for α but 
varies for other parameters. 
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Figure E.4. Logistic regression of whether escapement of all component CUs were above their Sgen 

benchmarks based on aggregate abundance, for Inside South Coast Chum SMU. Includes the 5 CUs 
without CU-level infilling (no Bute Inlet or Upper Knight). 
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Figure E.5. Escapement with 25th and 50th percentile benchmarks shown by grey and black dotted lines, 
respectively. Benchmarks are calculated using escapements up to the given year. Values following the CU 
names indicate the appropriate percentile benchmark. Green and red points indicate status above or 
below benchmark, respectively. Transparent points are years with CU-level inflling. 
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