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ABSTRACT 
This paper presents an assessment modeling framework that integrates all available fishery 
monitoring and survey data into a Spatially Implicit Statistical Catch-At-Length (SISCAL) 
operating model for Northwest Atlantic Fishery Organization (NAFO) Subareas 0+1 (offshore) 
Greenland Halibut (GH-0+1). The model is subsequently used to provide both an assessment of 
stock status and productivity as well as a closed loop simulation framework for evaluating  
GH-0+1 feedback harvest strategies. The SISCAL model fit reasonably well to GH-0+1 data, as 
determined by standard goodness of fit metrics, although some sensitivities and data issues 
were noted. The retrospective behaviour of the model was also within reason. Simulation-
evaluation self-tests also showed that the model was unlikely to be biased over a large number 
of simulated data sets. After model testing, SISCAL was used to condition a closed-loop 
simulation framework for testing GH-0+1 management procedures against performance metrics 
based on NAFO precautionary approach fishery management policy. As an illustrative example, 
we defined an adaptive model/index-based management procedure that set total allowable 
catches on a biennial basis, using decision rule parameters that were updated via simulated 
SISCAL stock assessments every 6 years. Simulated SISCAL stock assessments were fit to 
historical and simulated catch and biological data from six commercial fleets, differing by nation 
and gear type, and stock indices and length compositions from three fishery independent 
surveys. The three surveys included two existing offshore (NAFO Divisions 0A1CD) and inshore 
(NAFO Divisions 1A to F) research vessel surveys, as well as an additional proposed survey 
that will begin in 2022 and was assumed to encounter small fish in inshore waters of Divisions 
0A and 0B. For comparison, a non-adaptive index-based method was also tested, where 
decision rule parameters are based off the initial SISCAL model for the entire simulation. The 
adaptive procedure performed well, keeping biomass above the limit reference point of  
𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙 = 0.3𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 in all simulations, and avoiding the limit fishing mortality rate 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀 with 
high probability. In contrast, the non-adaptive procedure ended up slightly overfishing the  
GH-0+1 stock, with biomass appearing to continue declining past the end of the simulation. 
Moreover, the non-adaptive procedure had a roughly neutral probability of exceeding 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙, 
making it unacceptable under NAFO policy. We close with recommendations for future work to 
expand this framework to a full management strategy evaluation, enabling the development of a 
full harvest strategy for the GH-0+1 fishery consistent with fishery management policy. 
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INTRODUCTION 
The Greenland halibut (Reinhardtius hippoglossides) stock in North Atlantic Fisheries 
Organisation (NAFO) Subareas 0+1 is exploited in a transboundary fishery that has been 
expanding over the past several decades. Local traditional and subsistence fishing by 
Greenlanders has been recorded since as early as 1852 (Smidt 1969, Bowering and Brodie 
1995) and, while commercial fishing has occurred since the early 1900s, catches have 
increased significantly since 1968 (Bowering and Brodie 1995, Treble and Nogueira 2020). 
Historically, from 1976 to 1992, both offshore and inshore fisheries were managed under a 
single total allowable catch (TAC); however, since 1993, the contemporary offshore NAFO 0+1 
Greenland halibut fishery (referred to hereafter as GH-0+1) has been managed with its own 
TAC. Offshore TACs have ranged from around 11 kt (1995 - 2001) to as high as 36 kt in 2018 
(Treble and Nogueira 2020). 
There are currently limited information feedbacks available to adjust TACs in response to 
changes in Greenland Halibut stock status. Since 2016, TACs have been set using a moving 
average biomass index (Treble and Nogueira 2020), which was produced via the offshore 
research vessel (RV) survey in NAFO Divisions 0A1CD. While the survey was conducted and 
an index produced for 2019, significant gear and vessel differences affected gear performance, 
reducing confidence in the results (Nogueira and Treble 2020, Treble and Nogueira 2020); 
therefore, the fishery has been under a constant total allowable catch (TAC) since 2018. While 
there are other available data sources, such as the inshore survey of small fish in Divisions  
1A-F, fishery catch-per-unit-effort (CPUE), and length composition, there are also well 
documented uncertainties that may weaken feedbacks based on all of them. For example, the 
inshore survey appears to target smaller fish, which are largely distinct from the larger fish 
targeted by commercial fisheries. Further, portions of these inshore areas are linked to inshore 
stocks that are considered sink populations, which if true may further erode information linkages 
between TAC decisions and the index over the whole region. Finally, without the aid of a model, 
it is generally difficult to determine year-class strength from length composition data collected 
over different surveys and fisheries that each have somewhat unique sampling designs and 
protocols. 
In this paper, we present an example end-to-end (data-to-advice) assessment modelling 
framework in three parts: 
a) estimating GH-0+1 stock status and biological reference points from fishery and survey 

data; 
b) simulation-testing the assessment model to better understand the range of estimation 

performance (i.e., bias and precision of estimates) given the available data types, quality, 
and quantity; and 

c) conditioning operating models for simulation-testing precautionary harvest strategies. 
We use this framework to develop and test an example precautionary harvest strategy involving 
an adaptive model-/index-based management procedure (MP) for setting GH-0+1 TACs as 
future information accumulates from existing and planned new surveys. 
The modelling framework in Part A develops a spatially integrated statistical catch-at-length 
(SISCAL) approach that integrates GH-0+1 data sources via interactions between stock 
dynamics and data-generating mechanisms. Throughout this document, we refer to this model 
as SISCAL-GH. SISCAL-GH produces Bayes posterior probability distributions for key biological 
and management parameters (e.g., 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀, 𝑀𝑀𝑀𝑀𝑀𝑀, 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀). In Part B, we develop and apply a 
simulation self-testing framework for SISCAL-GH in which bias and precision of assessment 
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estimates are evaluated based on simulated data sets. Finally, in Part C, we embed  
SISCAL-GH in a closed-loop simulation algorithm to generate new data, conduct an 
assessment, and set TACs on a predetermined temporal cycle into the future. We then apply an 
example MP assuming the assessment is updated every 6 years and sets TACs annually based 
on an index-based method similar to the existing approach. The index-based method uses 
survey catchability estimated from the assessment to estimate exploitable biomass. In the 
simulations, we provide realistic performance expectations of this approach since the assumed 
catchability of the index is updated in each assessment cycle, rather than incorrectly assuming 
that survey catchability is known perfectly over a 47-year simulation horizon. This adaptive 
approach is specifically designed to allow scientists and managers to design surveys, sampling 
designs, and protocols that optimize fishery performance (i.e., completing the “data-to-advice” 
loop) to the extent possible. 
In Part A, we also conduct sensitivity analyses on several SISCAL-GH model assumptions, 
including larger GH-0+1 size-at-age, time-varying catchability for fishery CPUE, form of fishery 
selectivity, and temporal variability in natural mortality and bottom trawl catchability. We also 
discuss how selected sensitivities can be used as alternative operating model hypotheses in 
harvest strategy evaluation. 

METHODS 

SISCAL-GH: A TWO SEX STATISTICAL CATCH-AT-LENGTH OPERATING MODEL 
The SISCAL-GH model is an age- and sex-structured population dynamics model fit to fishery-
independent biomass indices and length compositions, and fishery-dependent landings, CPUE, 
and catch-at-length data (Figure 1). Fishery landings and length compositions are split by gear 
type and, where possible, nation, but aggregated over Subareas 0 and 1. The SISCAL-GH 
model is an implicitly spatial or ‘areas-as-fleets’ model, as only Canadian vessels fish in 
Subarea 0, and all other vessels fish in Subarea 1. Model notation is given in Table 1 and 
population dynamics and statistical model equations in Tables 2 and 3, respectively. 
Commercial fishing fleet definitions are given in Table 4. Below, we provide a narrative 
description of the model using these tables for equation references. 
SISCAL-GH partitions the base model parameters into four subsets (Table 2, P.1 - P.4), 
consisting of:  

• estimated parameters (𝜃𝜃𝑒𝑒𝑒𝑒𝑒𝑒),  

• nuisance catchability and variance parameters estimated conditionally on the leading 
parameters (𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐),  

• fixed parameters for growth, maturity-at-length, recruitment standard deviations, and fixed 
model variance for time-varying parameters (𝜃𝜃𝑓𝑓𝑙𝑙𝑓𝑓𝑒𝑒𝑐𝑐), and  

• parameters specifying the prior distributions (𝜃𝜃𝑝𝑝𝑝𝑝𝑙𝑙𝑐𝑐𝑝𝑝) for other model parameters.  
Parameter membership in the fixed and estimated sets differ from the base model for some of 
the model variations considered in the sensitivity analysis. 
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Figure 1. Summary of available index, catch, and length-composition data for the SISCAL-GH stock 
assessment model as of 2020. Points indicate the presence of data in each year (x-axis) and fleet 
(colours explained in figure legend). For length composition data, the total sample size over all years is 
shown at the right hand end of the panel. CAN_BTM = Canada Bottom Trawl; CAN_LL = Canada 
Longline; GRL_BTM = Greenland Bottom Trawl; CAGR_GN = Canada Greenland Gillnet ; OTH_BTM = 
Other Bottom Trawl; GRNF_LL = Greenland Norway Faroe Islands Longline; RV_0A1CD = Research 
Vessel 0A1CD Survey; RV_SFW1AF = Research Vessel Shrimp and Fish West Greenland 1AF; 
BTM_CPUE = Bottom Trawl Catch per Unit Effort. 

Table 1. Notation used in the specification of the SISCAL-GH stock assessment model, along with a 
description of each variable, and possible fixed values. 

Symbol Value Description 
𝑇𝑇 53 Total number of time steps 1965 - 2021 
𝐴𝐴 35 Plus group age-class 
𝐿𝐿 32 Number of length bins (4cm width) 
𝑡𝑡 1,2, … ,𝑇𝑇 Time step 
𝑎𝑎 1,2, … ,𝐴𝐴 Age-class index 
𝑙𝑙 2,6, … ,112 Length-bin mid-points (𝐿𝐿 = 32 total length bins) 
𝑔𝑔 1, . . . ,9 Gear index as described in Table 4 (𝑔𝑔 = 9 only used in projections) 
𝑥𝑥 1,2 Sex index for males (𝑥𝑥 = 1) and females (𝑥𝑥 = 2) 
𝐵𝐵0 - Unfished female spawning stock biomass 
ℎ - Beverton-Holt stock-recruitment steepness 
𝑅𝑅0 - Unfished equilibrium age-1 recruitment 
𝑀𝑀𝑎𝑎,𝑓𝑓 - Unfished equilibrium survivorship-at-age and sex 
𝜙𝜙0 - Unfished equilibrium spawning biomass per recruit 
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Symbol Value Description 
𝛽𝛽1,𝛽𝛽2 28, 10 Beta prior parameters for steepness (mean of .73, sd of 0.07) 
𝜔𝜔𝑒𝑒 - Annual recruitment processs error log-deviations 
𝜎𝜎𝑅𝑅 1 Standard error of 𝜔𝜔𝑒𝑒 recruitment deviations 
𝑞𝑞𝑔𝑔 - Catchability coefficient for RV surveys (𝑔𝑔 = 7,8,9) 
𝑞𝑞𝑒𝑒 - Time-varying catchability coefficient for commercial CPUE index 
𝑀𝑀𝑓𝑓,𝑒𝑒 - Time-varying natural mortality rate for males and females  
𝑀𝑀0,𝑓𝑓 - Time-averaged natural mortality rate for males and females  
𝜇𝜇𝑀𝑀 0.14 Natural mortality prior mean for males and females 
𝜎𝜎𝑀𝑀 0.05 Natural mortality prior standard deviation for males and females 
𝜖𝜖𝑀𝑀,𝑒𝑒 - Time-varying natural mortality random walk log-deviations 
𝐿𝐿∞,𝑓𝑓 68, 72 Asymptotic length (cm) for males and females  
𝜎𝜎𝐿𝐿,𝑓𝑓 0.08, 0.11 CV in length-at-age distribution 
𝐾𝐾𝑓𝑓 0.10, 0.559 von Bertalanffy growth constant for males and females  
𝐿𝐿1,𝑓𝑓 16.26, 16.53 Length-at-age 1 for males and females 
𝑐𝑐1, 𝑐𝑐2 3.86𝐸𝐸−6, 3.22 Allometric length-weight transformation coefficients 
𝑙𝑙50, 𝑙𝑙95 67,78 Length-at-50% and -95% maturity 
𝐿𝐿𝑎𝑎,𝑓𝑓 - Mean length-at-age (cm) for males and females  
𝑤𝑤𝑎𝑎,𝑓𝑓 - Mean weight-at-age (cm) for males and females  
𝑚𝑚𝑙𝑙 - Proportion females mature-at-length 
𝑚𝑚𝑎𝑎 - Proportion females mature-at-age 
𝑠𝑠𝑙𝑙,𝑔𝑔 - Mean selectivity-at-length 𝑙𝑙 for gear 𝑔𝑔 
𝑠𝑠𝑎𝑎,𝑓𝑓,𝑔𝑔 - Mean selectivity-at-age 𝑎𝑎 for gear 𝑔𝑔 and sex 𝑥𝑥 

𝐿𝐿50,𝑔𝑔
𝐴𝐴  - Length-at-50% selectivity for ascending limb 

𝐿𝐿95,𝑔𝑔
𝐴𝐴  - Length-at-95% selectivity for ascending limb 

𝐿𝐿50,𝑔𝑔
𝐷𝐷  - Length-at-50% selectivity for descending limb 

𝐿𝐿95,𝑔𝑔
𝐷𝐷  - Length-at-95% selectivity for descending limb 

𝑁𝑁𝑎𝑎,𝑓𝑓,𝑒𝑒 - Numbers-at-age 𝑎𝑎 for sex 𝑥𝑥 in year 𝑡𝑡 
𝐵𝐵𝑒𝑒 - Female spawning biomass in year 𝑡𝑡 
𝐶𝐶𝑔𝑔,𝑒𝑒 - Observed total catch (biomass units) for gear 𝑔𝑔 in year 𝑡𝑡 
𝐶𝐶𝑎𝑎,𝑓𝑓,𝑔𝑔,𝑒𝑒 - Expected catch-at-age (numbers) 𝑎𝑎 and sex 𝑥𝑥 by gear 𝑔𝑔 in year 𝑡𝑡 
𝐶𝐶′𝑎𝑎,𝑓𝑓,𝑔𝑔,𝑒𝑒 - Expected catch-at-age (biomass units) 𝑎𝑎 and sex 𝑥𝑥 by gear 𝑔𝑔 in year 𝑡𝑡 

𝐵𝐵𝑒𝑒
𝑒𝑒𝑓𝑓𝑝𝑝 - Allocation weighted average exploitable biomass in year 𝑡𝑡 
𝑈𝑈𝑔𝑔,𝑒𝑒 - Exploitation rate by gear 𝑔𝑔 in year 𝑡𝑡 
𝑈𝑈𝑒𝑒 - Total exploitation rate in year 𝑡𝑡 
𝐼𝐼𝑔𝑔,𝑒𝑒 - Observed biomass/abundance index for gear 𝑔𝑔 ∈ {7,8} in year 𝑡𝑡 

𝐼𝐼𝑔𝑔,𝑒𝑒 - Expected biomass/abundance index for gear 𝑔𝑔 ∈ {7,8} in year 𝑡𝑡 

𝜏𝜏𝑔𝑔 - Standard deviation of biomass index observation log-residuals 
𝑢𝑢𝑙𝑙,𝑓𝑓,𝑔𝑔,𝑒𝑒 - Observed length composition data for sex 𝑥𝑥 in gear 𝑔𝑔 at time 𝑡𝑡 
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Symbol Value Description 
𝑢𝑢�𝑙𝑙,𝑓𝑓,𝑔𝑔,𝑒𝑒 - Expected length composition data for sex 𝑥𝑥 in gear 𝑔𝑔 at time 𝑡𝑡 

�̂�𝜏𝑓𝑓,𝑔𝑔
𝑙𝑙𝑒𝑒𝑐𝑐 - Conditional MPDE of length composition sampling error, by sex and gear 

𝑤𝑤𝐵𝐵0 10 Weighting on unfished biomass improper Jeffreys prior 

Table 2. Process and observation model equations for the SISCAL-GH stock assessment model. 
Equation number (No.) prefixes help readers partition equations into subsets, defined as P = parameters; 
G = growth and maturity; M = Mortality, S = Selectivity; EQ = Equilibrium characteristics; C = Catch 
equations; N = Numbers-at-age equations.  

No. Equation 
(P.1) 𝛩𝛩𝑙𝑙𝑒𝑒𝑎𝑎𝑐𝑐 = �𝐵𝐵0, {𝜔𝜔𝑒𝑒}𝑒𝑒∈1:𝑇𝑇,ℎ,𝑀𝑀𝑓𝑓, {𝜖𝜖𝑒𝑒}𝑒𝑒∈1:𝑇𝑇, {𝐿𝐿50,𝑔𝑔

𝐴𝐴 , 𝐿𝐿95,𝑔𝑔
𝐴𝐴 , 𝐿𝐿50,𝑔𝑔

𝐷𝐷 , 𝐿𝐿95,𝑔𝑔
𝐷𝐷 }𝑔𝑔∈1:8� 

(P.2) 𝛩𝛩𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �{log𝑞𝑞𝑔𝑔}𝑔𝑔∈{7,8}, {𝜏𝜏𝑓𝑓,𝑔𝑔
𝑙𝑙𝑒𝑒𝑐𝑐}𝑔𝑔∈1:8� 

(P.3) 𝛩𝛩𝑓𝑓𝑙𝑙𝑓𝑓𝑒𝑒𝑐𝑐 = �𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒,50, 𝑙𝑙𝑙𝑙𝑎𝑎𝑒𝑒,95,𝜎𝜎𝑅𝑅,𝜎𝜎𝑀𝑀� 
(P.4) 𝛩𝛩𝑝𝑝𝑝𝑝𝑙𝑙𝑐𝑐𝑝𝑝𝑒𝑒 = �𝑚𝑚𝑀𝑀, 𝑠𝑠𝑀𝑀, {𝑚𝑚𝐿𝐿50,𝐴𝐴,𝑔𝑔,𝑚𝑚𝐿𝐿95,𝐴𝐴,𝑔𝑔,𝑚𝑚𝐿𝐿50,𝐷𝐷,𝑔𝑔,𝑚𝑚𝐿𝐿95,𝐷𝐷,𝑔𝑔,𝜎𝜎𝑔𝑔𝑀𝑀𝑒𝑒𝑙𝑙}𝑔𝑔∈1:8� 
(G.1) 𝑙𝑙𝑎𝑎,𝑓𝑓 = 𝐿𝐿1 + �𝐿𝐿1 − 𝐿𝐿∞,𝑓𝑓� ⋅ 𝑒𝑒−𝑘𝑘𝑥𝑥(𝑎𝑎−1) 
(G.2) 𝐷𝐷(𝑙𝑙 | 𝑎𝑎, 𝑥𝑥) = 𝑒𝑒−�𝑓𝑓𝑝𝑝𝑎𝑎𝑐𝑐�𝑙𝑙−𝑙𝑙𝑎𝑎,𝑥𝑥�2⋅𝜎𝜎𝐿𝐿⋅𝑙𝑙𝑎𝑎,𝑥𝑥�
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(G.3) 
𝑃𝑃(𝑙𝑙 | 𝑎𝑎, 𝑥𝑥) =

𝐷𝐷(𝑙𝑙 | 𝑎𝑎, 𝑥𝑥)
∑ 𝐷𝐷𝑙𝑙′ (𝑙𝑙′ | 𝑎𝑎, 𝑥𝑥) 

(G.4) 𝑤𝑤𝑎𝑎,𝑓𝑓 = 𝑐𝑐1𝑙𝑙𝑎𝑎,𝑓𝑓
𝑐𝑐2  

(G.5) 
𝑚𝑚𝑙𝑙 = �1 + 𝑒𝑒

−log19
𝑙𝑙−𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚,50

𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚,95−𝑙𝑙𝑚𝑚𝑎𝑎𝑚𝑚,50�
−1

 

(G.6) 𝑚𝑚𝑎𝑎 = �𝑃𝑃
𝑙𝑙

(𝑙𝑙 | 𝑎𝑎, 𝑥𝑥 = 2)𝑚𝑚𝑙𝑙 

(M.1) 
𝑀𝑀𝑓𝑓,𝑒𝑒 = �

𝑀𝑀𝑓𝑓 𝑡𝑡 = 1
𝑀𝑀𝑓𝑓,𝑒𝑒−1 ⋅ 𝑒𝑒𝜎𝜎𝑀𝑀𝑒𝑒𝑝𝑝𝑒𝑒𝑙𝑙𝑙𝑙𝑐𝑐𝑐𝑐𝑚𝑚 𝑡𝑡 > 1 

(M.2) 𝑀𝑀0,𝑓𝑓 =
1
𝑇𝑇
�𝑀𝑀𝑓𝑓,𝑒𝑒
𝑒𝑒

 

(S.1) 
𝑠𝑠𝑙𝑙,𝑔𝑔𝑋𝑋 = �1 + 𝑒𝑒

−log19
𝑙𝑙−𝐿𝐿50,𝑔𝑔

𝑋𝑋

𝐿𝐿95,𝑔𝑔
𝑋𝑋 −𝐿𝐿50,𝑔𝑔

𝑋𝑋
�

−1

 

(S.2) 𝑠𝑠𝑙𝑙,𝑔𝑔 = 𝑠𝑠𝑙𝑙,𝑔𝑔𝐴𝐴 ⋅ 𝑠𝑠𝑙𝑙,𝑔𝑔𝐷𝐷  
(S.3) 𝑠𝑠𝑎𝑎,𝑓𝑓,𝑔𝑔 = �𝑃𝑃

𝑙𝑙

(𝑙𝑙 | 𝑎𝑎, 𝑥𝑥)𝑠𝑠𝑙𝑙,𝑔𝑔 

(EQ.1) 
𝑀𝑀𝑎𝑎,𝑓𝑓 = �

0.5 𝑎𝑎 = 1,
𝑀𝑀𝑎𝑎−1,𝑓𝑓𝑒𝑒−𝑀𝑀0,𝑥𝑥 1 < 𝑎𝑎 < 𝐴𝐴

𝑀𝑀𝑎𝑎−1,𝑓𝑓𝑒𝑒−𝑀𝑀0,𝑥𝑥/(1 − 𝑒𝑒−𝑀𝑀0,𝑥𝑥) 𝑎𝑎 = 𝐴𝐴.
 

(EQ.2) 𝜙𝜙 = 𝑒𝑒−𝑀𝑀0,𝑥𝑥=2 ⋅�𝑀𝑀𝑎𝑎,𝑓𝑓=2
𝑎𝑎

⋅ 𝑤𝑤‾𝑎𝑎,𝑓𝑓=2 ⋅ 𝑚𝑚𝑎𝑎 

(EQ.3) 𝑅𝑅0 = 𝐵𝐵0/𝜙𝜙 
(EQ.4) 𝑁𝑁𝑎𝑎,𝑓𝑓

𝑒𝑒𝑒𝑒 = 𝑅𝑅0 ⋅ 𝑀𝑀𝑎𝑎,𝑓𝑓 
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No. Equation 
(C.1) 𝑁𝑁𝑎𝑎,𝑓𝑓,𝑒𝑒+𝛿𝛿𝑔𝑔 = 𝑁𝑁𝑎𝑎,𝑓𝑓,𝑒𝑒+𝛿𝛿𝑔𝑔−1 ⋅ 𝑒𝑒

−1⋅�𝛿𝛿𝑔𝑔−𝛿𝛿𝑔𝑔−1�𝑀𝑀𝑥𝑥,𝑚𝑚 

(C.2) 𝑁𝑁𝑎𝑎,𝑓𝑓,𝑔𝑔,𝑒𝑒 = 𝑁𝑁𝑎𝑎,𝑓𝑓,𝑒𝑒+𝛿𝛿𝑔𝑔 ⋅ 𝑠𝑠𝑎𝑎,𝑓𝑓,𝑔𝑔 

(C.3) 𝐵𝐵𝑎𝑎,𝑓𝑓,𝑔𝑔,𝑒𝑒 = 𝑁𝑁𝑎𝑎,𝑓𝑓,𝑔𝑔,𝑒𝑒 ⋅ 𝑤𝑤𝑎𝑎,𝑓𝑓 
(C.4) 𝐵𝐵𝑔𝑔,𝑒𝑒 = �𝐵𝐵𝑎𝑎,𝑓𝑓,𝑔𝑔,𝑒𝑒

𝑎𝑎,𝑓𝑓

 

(C.5) 𝐵𝐵𝑒𝑒
𝑒𝑒𝑓𝑓𝑝𝑝 = �𝜌𝜌𝑔𝑔

𝑔𝑔

𝐵𝐵𝑔𝑔,𝑒𝑒 

(C.6) 𝐶𝐶′𝑎𝑎,𝑓𝑓,𝑔𝑔,𝑒𝑒 = 𝐶𝐶𝑔𝑔,𝑒𝑒 ⋅
𝐵𝐵𝑎𝑎,𝑓𝑓,𝑔𝑔,𝑒𝑒

∑ 𝐵𝐵𝑎𝑎′,𝑓𝑓,𝑔𝑔,𝑒𝑒𝑎𝑎′
 

(C.7) 𝐶𝐶𝑎𝑎,𝑓𝑓,𝑔𝑔,𝑒𝑒 = 𝐶𝐶′𝑎𝑎,𝑓𝑓,𝑔𝑔,𝑒𝑒/𝑤𝑤𝑎𝑎,𝑓𝑓 
(C.8) 𝑁𝑁𝑎𝑎,𝑓𝑓,𝑒𝑒+𝛿𝛿𝑔𝑔 = 𝑒𝑒−�𝛿𝛿𝑔𝑔−𝛿𝛿𝑔𝑔−1�⋅𝑀𝑀𝑥𝑥,𝑚𝑚 ⋅ 𝑁𝑁𝑎𝑎,𝑓𝑓,𝑒𝑒+𝛿𝛿𝑔𝑔−1 − 𝐶𝐶𝑎𝑎,𝑓𝑓,𝑔𝑔,𝑒𝑒 

(C.9) 𝑈𝑈𝑔𝑔,𝑒𝑒 = 𝐶𝐶𝑔𝑔,𝑒𝑒/𝐵𝐵𝑒𝑒
𝑒𝑒𝑓𝑓𝑝𝑝 

(N.1) 𝑀𝑀𝐵𝐵𝑒𝑒 = � 𝑚𝑚𝑎𝑎
𝑎𝑎,𝑓𝑓=2

𝐵𝐵𝑎𝑎,𝑓𝑓=2,𝑒𝑒 

(N.2) 𝑅𝑅𝑒𝑒+1 =
𝑎𝑎𝑝𝑝𝑀𝑀𝐵𝐵𝑒𝑒

1 + 𝑏𝑏𝑝𝑝𝑀𝑀𝐵𝐵𝑒𝑒
⋅ 𝑒𝑒𝜎𝜎𝑅𝑅𝜔𝜔𝑅𝑅,𝑚𝑚 

(N.3) 
𝑁𝑁𝑎𝑎,𝑓𝑓,𝑒𝑒+1 = �

0.5𝑅𝑅𝑒𝑒+1 𝑎𝑎 = 1
𝑒𝑒−(1−𝛿𝛿𝐺𝐺)𝑀𝑀𝑥𝑥,𝑚𝑚 ⋅ 𝑁𝑁𝑎𝑎−1,𝑓𝑓,𝑒𝑒+𝛿𝛿𝐺𝐺 2 ≤ 𝑎𝑎 ≤ 𝐴𝐴 − 1

𝑒𝑒−(1−𝛿𝛿𝐺𝐺)𝑀𝑀𝑥𝑥,𝑚𝑚 ⋅ �𝑁𝑁𝑎𝑎−1,𝑓𝑓𝑒𝑒,𝑒𝑒+𝛿𝛿𝐺𝐺 + 𝑁𝑁𝑎𝑎,𝑓𝑓,𝑒𝑒+𝛿𝛿𝐺𝐺� 𝑎𝑎 = 𝐴𝐴.
 

Table 3. Statistical model prior and likelihood functions for the SISCAL-GH stock assessment model. The 
function 1(𝑋𝑋) is the indicator function, taking value 1 when 𝑋𝑋 is true, and 0 when 𝑋𝑋 is false. Equation 
number (No.) prefixes help readers partition equations into subsets, defined as O = observation model; 
NLL = Negative log-likelihood for index data; LL = Length data Likelihood, Pr = Priors; OF = Objective 
Function. 

No. Equation 
(O.1) 

𝑞𝑞𝑔𝑔,𝑒𝑒 = �
𝑞𝑞𝑔𝑔 𝑡𝑡 = 𝑡𝑡𝑔𝑔,1

𝑞𝑞𝑔𝑔,𝑒𝑒−1𝑒𝑒𝜖𝜖𝑞𝑞,𝑔𝑔,𝑚𝑚 𝑡𝑡𝑔𝑔,1 < 𝑡𝑡 < 𝑡𝑡𝑔𝑔,𝑐𝑐𝑔𝑔
 

(O.2) 𝐼𝐼𝑔𝑔,𝑒𝑒 = 𝑞𝑞𝑔𝑔,𝑒𝑒𝐵𝐵𝑔𝑔,𝑒𝑒 
(O.3) 

𝑢𝑢�𝑙𝑙,𝑓𝑓,𝑔𝑔,𝑒𝑒 =
∑ 𝑃𝑃𝑎𝑎 (𝑙𝑙 | 𝑎𝑎, 𝑥𝑥)𝑠𝑠𝑎𝑎,𝑓𝑓,𝑔𝑔𝑁𝑁𝑎𝑎,𝑓𝑓,𝑔𝑔𝑒𝑒−𝑓𝑓𝑔𝑔𝑍𝑍𝑎𝑎,𝑥𝑥,𝑚𝑚

∑ ∑ 𝑃𝑃𝑎𝑎′𝑙𝑙′ (𝑙𝑙 | 𝑎𝑎′, 𝑥𝑥)𝑠𝑠𝑎𝑎′,𝑓𝑓,𝑔𝑔𝑁𝑁𝑎𝑎′,𝑓𝑓,𝑔𝑔𝑒𝑒−𝑓𝑓𝑔𝑔𝑍𝑍𝑎𝑎′,𝑥𝑥,𝑚𝑚
 

(NLL.1) 
𝑛𝑛𝑔𝑔 = �1

𝑇𝑇

𝑒𝑒=1

�𝐼𝐼𝑔𝑔,𝑒𝑒 > 0� 

(NLL.2) 

𝑧𝑧𝑔𝑔,𝑒𝑒 =

⎩
⎪
⎨

⎪
⎧ log

𝐼𝐼𝑔𝑔,𝑒𝑒

𝐵𝐵𝑔𝑔,𝑒𝑒
𝑔𝑔 = 5

log
𝐼𝐼𝑔𝑔,𝑒𝑒

𝑞𝑞𝑔𝑔,𝑒𝑒𝐵𝐵𝑔𝑔,𝑒𝑒
𝑔𝑔 = 1,4

 

(NLL.3) 𝑞𝑞�𝑔𝑔 =
1
𝑛𝑛𝑔𝑔
𝑧𝑧𝑔𝑔,𝑒𝑒 ,     𝑔𝑔 = 4 
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No. Equation 
(NLL.4) 

�̂�𝜏𝑔𝑔2 =

⎩
⎪
⎨

⎪
⎧

1
𝑛𝑛𝑔𝑔
�1
𝑒𝑒

�𝐼𝐼𝑔𝑔,𝑒𝑒 > 0� ⋅ �𝑧𝑧𝑔𝑔,𝑒𝑒 − 𝑞𝑞�𝑔𝑔�
2 𝑔𝑔 = 5

1
𝑛𝑛𝑔𝑔
�1
𝑒𝑒

�𝐼𝐼𝑔𝑔,𝑒𝑒 > 0� ⋅ �𝑧𝑧𝑔𝑔,𝑒𝑒�
2 𝑔𝑔 = 1,4

 

(NLL.5) 𝑙𝑙𝑔𝑔,1 =
1
2
�𝑛𝑛𝑔𝑔log�̂�𝜏2 + 𝑛𝑛𝑔𝑔� 

(LL.1) 𝑛𝑛𝑓𝑓,𝑔𝑔,𝑒𝑒
𝑙𝑙𝑒𝑒𝑐𝑐 = �1

𝑎𝑎

�𝑢𝑢𝑙𝑙,𝑓𝑓,𝑔𝑔,𝑒𝑒 > 0� 

(LL.2) 𝜂𝜂𝑙𝑙,𝑓𝑓,𝑔𝑔,𝑒𝑒 = log𝑢𝑢𝑙𝑙,𝑓𝑓,𝑔𝑔,𝑒𝑒 − log𝑢𝑢�𝑙𝑙,𝑓𝑓,𝑔𝑔,𝑒𝑒 
(LL.3) 

𝑍𝑍𝑓𝑓,𝑔𝑔 = � � �𝜂𝜂𝑙𝑙,𝑓𝑓,𝑔𝑔,𝑒𝑒 −
1

𝑛𝑛𝑓𝑓,𝑔𝑔,𝑒𝑒
𝑙𝑙𝑒𝑒𝑐𝑐 �𝜂𝜂𝑙𝑙′,𝑓𝑓,𝑔𝑔,𝑒𝑒

𝑙𝑙′

�
𝑎𝑎𝑒𝑒

 

(LL.4) �̂�𝜏𝑙𝑙𝑒𝑒𝑐𝑐,𝑔𝑔,𝑓𝑓
2 =

1
∑ 𝑛𝑛𝑓𝑓,𝑔𝑔,𝑒𝑒

𝑙𝑙𝑒𝑒𝑐𝑐
𝑒𝑒

𝑍𝑍𝑓𝑓,𝑔𝑔 

(LL.5) 
𝑙𝑙𝑔𝑔,2 = � �

1
2
�𝑛𝑛𝑓𝑓,𝑔𝑔,𝑒𝑒

𝑙𝑙𝑒𝑒𝑐𝑐

𝑒𝑒

⋅ log�̂�𝜏𝑎𝑎𝑔𝑔𝑒𝑒,𝑔𝑔,𝑓𝑓
2 �

𝑓𝑓

 

(Pr.1) 𝑝𝑝ℎ = −[(𝛽𝛽1 − 1)logℎ + (𝛽𝛽2 − 1)log(1 − ℎ)] 
(Pr.2) 𝑝𝑝𝑀𝑀 =

𝑀𝑀𝑙𝑙 − 𝜇𝜇𝑙𝑙
2𝜎𝜎𝑀𝑀2

+
𝑀𝑀𝑓𝑓 − 𝜇𝜇𝑓𝑓

2𝜎𝜎𝑀𝑀2
 

(Pr.3) 
𝑝𝑝𝑒𝑒 = � �

𝛼𝛼𝑔𝑔 − 𝜇𝜇𝛼𝛼𝑔𝑔
2𝜎𝜎𝑒𝑒𝑒𝑒𝑙𝑙,𝑔𝑔2 +

𝛽𝛽𝑔𝑔 − 𝜇𝜇𝛽𝛽,𝑔𝑔

2𝜎𝜎𝑒𝑒𝑒𝑒𝑙𝑙,𝑔𝑔2 �
𝑔𝑔

 

(Pr.4) 
𝑝𝑝𝑅𝑅 = �𝜔𝜔𝑒𝑒

2
𝑇𝑇

𝑒𝑒=2

 

(OF.1) 𝑓𝑓 = ��𝑤𝑤𝑔𝑔𝑙𝑙𝑐𝑐𝑓𝑓𝑙𝑙𝑔𝑔,1 + 𝑤𝑤𝑔𝑔𝑙𝑙𝑒𝑒𝑐𝑐𝑙𝑙𝑔𝑔,2�
𝑔𝑔

+ 𝑝𝑝ℎ + 𝑝𝑝𝑀𝑀 + 𝑝𝑝𝑒𝑒 + 𝑝𝑝𝑅𝑅 + 𝑤𝑤𝐵𝐵0 log𝐵𝐵0 

Table 4. GH-0+1 commercial fleet code definitions (Fleet), which indicate Nation and Gear, as well as 
average catch between 1968 and 2020 (Mean Historical Catch), and allocation based on average catch 
share during 2011 – 2020 (10-yr Allocation). 

Fleet Nation Gear Mean Historical 
Catch 

10-yr 
Allocation 

CAN_BTM Canada Bottom 
Trawl 

3.285 0.3480722 

CAN_LL Canada Longline 0.166 0.0059228 
GR_BTM Greenland Bottom 

Trawl 
3.221 0.3666405 

CAGR_GN Canada and Greenland Gillnet 1.759 0.2094441 
OTH_BTM Russian, Norway, Japan, Germany, 

Spain, Faroe Islands, Estonia, Latvia 
Bottom 
Trawl 

1.564 0.0631904 

GRNF_LL Greenland, Russia, Norway, Faroe 
Islands 

Longline 0.148 0.0067300 
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SISCAL-GH model state dynamics 
The model parameters, equilibrium states, and full state dynamics for SISCAL-GH are given in 
Table 2. Unfished equilibrium recruitment (EQ.3) and numbers-at-age (EQ.4) are derived via 
spawning biomass per recruit (EQ.2), which is itself a function of female natural mortality (M.2), 
weight-at-age, and unfished equilibrium survivorship-at-age (EQ.1), as well as female maturity-
at-age integrated over uncertainty in the length-at-age distribution (G.1 – G.6, Figure 2). The 
Von Bertalanffy length-at-age model was estimated from 315 fish sampled during the 2017 
offshore survey cruise in Division 0A, while the allometric weight-at-length model was estimated 
from observations of 9057 fish, sampled in the same area between 2001 and 2019. Values for 
length-at-50% and -95% maturity were taken from studies of Division 0A fish (Morgan and 
Treble 2006, Harris et al. 2009), and converted to maturity-at-age by integrating over the length-
at-age distribution. 

 
Figure 2. GH-0+1 growth (top) and maturity (bottom row) models. Von Bertalanffy length-at-age models 
(top left panel) are fit to data for males (blue) and females (red) sampled by the 2017 offshore research 
vessel survey cruise in Division 0A, while the allometric length-weight conversion is fit to length/weight 
data collected between 2001 and 2019 by the same survey and aggregated over sexes (grey points). 
Maturity-at-length is an input to the model, based on length-at-50% and length-at-95% values taken from 
studies of Greenland Halibut in NAFO Division 0A, while maturity-at-age is derived by integrating the 
maturity-at-length over the female length-at-age distribution. 
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A model year in SISCAL-GH begins on January 1 and ends on December 31. Age- and  
sex-class abundances are initialised in an unfished state in 1968, which seems reasonable 
given the trace levels of catch up to that time. Spawning biomass in 1968 is generated by 
summing weight-at-age over an unfished equilibrium abundance-at-age structure (A.1). Annual 
recruitment (occurring on the first day of the year) is assumed to follow a Beverton-Holt  
stock-recruitment function parameterized via stock-recruitment steepness ℎ, unfished spawning 
stock biomass 𝐵𝐵0, and recruitment process error deviations 𝜔𝜔𝑒𝑒 (A.2). The female spawning 
stock biomass is calculated from numbers-at-age based on the maturity-at-age ogive and mean 
weight-at-age (Figure 2). The population dynamics progressed from year-to-year by advancing 
each age-class after applying mortality due to natural causes 𝑀𝑀𝑓𝑓,𝑒𝑒 and commercial fishing 
(explained below) and adding age-1 recruitment (A.3). In cases where natural mortality is 
modeled as time-varying, the 𝑀𝑀𝑓𝑓,𝑒𝑒 series proceeds as a simple random walk with annual 
deviations 𝜖𝜖𝑒𝑒 (M.1). 
Selectivity-at-length was asymptotic (logistic; Table 2, S.1) with length-at-age for all fleets 
except the Canadian Bottom Trawl fleet, and both the offshore and inshore research vessel 
(RV) surveys, in Divisions 0A1CD and 1A-F, respectively. Those three fleets had dome shaped 
(double logistic) selectivity, which was taken as a product of an ascending limb 𝑠𝑠𝑙𝑙,𝑔𝑔𝐴𝐴  and 
descending limb 𝑠𝑠𝑙𝑙,𝑔𝑔𝐷𝐷  (S.2). All fleets use the same parameters for the ascending limb:  
length-at-50% selectivity 𝐿𝐿50,𝑔𝑔

𝐴𝐴  and length-at-95% selectivity 𝐿𝐿95,𝑔𝑔
𝐴𝐴 . For the fleets with  

dome-shaped selectivity, there are additional descending limb length-at-95% selectivity 𝐿𝐿95,𝑔𝑔
𝐷𝐷  

and length-at-50% 𝐿𝐿50,𝑔𝑔
𝐷𝐷  selectivity parameters. Apart from the ascending limb 𝐿𝐿50,𝑔𝑔

𝐴𝐴  parameter, 
all other selectivity model parameters are modeled as increases from the previous parameter on 
the left (i.e., 𝐿𝐿50𝐷𝐷 > 𝐿𝐿95𝐷𝐷 > 𝐿𝐿95𝐴𝐴 ), thereby ensuring the descending limb is always to the right of the 
ascending limb, which reduces the sharpness of the selectivity peak. Selectivity-at-length was 
converted to sex-specific selectivity-at-age via the sexually dimorphic von Bertalanffy growth 
model (S.3, Figure 2). Sensitivity to the assumption of dome shaped or asymptotic selectivity for 
trawl fleets is considered in Appendix A. 
Removals by all commercial fisheries in both Subareas 0 and 1 were represented as discrete 
fisheries occurring around halfway through the year at a fractional time step 𝛿𝛿𝑔𝑔 (Table 2,  
C.1 - C.9), where 0.45 < 𝛿𝛿𝑔𝑔 < 0.55. Fish were removed from the population by estimating the 
catch-at-age in biomass for each fishery (C.6), which was then converted to total caught 
numbers-at-age via mean weight-at-age (C.7), and then subtracted from population  
numbers-at-age (C.8). Annual exploitation rates for total landings 𝑈𝑈𝑒𝑒 and each commercial fleet 
𝑈𝑈𝑔𝑔,𝑒𝑒 are calculated as the ratio of landed catch to an allocation-weighted exploitable biomass, 
which weights the selected biomass of the commercial fleets by the average proportion of 
landed catch from each over the 2011-2020 period (Table 2, C.5, C.9; Table 4 for allocation). 

SISCAL-GH Observation Models 
Temporal variation in GH-0+1 abundance and population composition are monitored via an 
offshore research vessel trawl survey of the southern part of Division 0A and Division 1CD 
(RV_0A1CD), and an inshore small mesh survey in Divisions 1A to F (RV_SFW1AF). Length 
compositions are also collected by both surveys and all commercial fishing fleets to varying 
degrees. Additionally, there is a bottom trawl catch per unit effort (CPUE) series that combines 
catch and effort data across several nations via a catch-weighted average of selected biomass 
for each trawl fleet (CAN, GRL, and OTH, using mean catches in Table 4). 
Survey indices and CPUE are assumed to be linear (i.e., no hyperstability or hyperdepletion) in 
the population state that they are indexing, which is total survey biomass for the offshore RV 
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survey, total survey abundance for the inshore RV survey, and weighted average vulnerable 
biomass for the combined trawl fishery CPUE (Table 3, O.1; Table 4 for average catch weights). 
Catchability parameters for the surveys, and model residual standard deviations for all three 
indices, are estimated via conditional maximum likelihood (NLL.1 – NLL.5). Given the possible 
spatial expansion of fisheries comprising the trawl CPUE time series, we estimated a time-
varying catchability parameter for that series beginning in 2014, which is meant to track possible 
catchability changes as the fishery expanded (O.1). 
Proportion-at-length (i.e., length composition) observations are modeled in 4 cm length bins via 
a logistic-normal likelihood function (Schnute and Haigh 2007, Francis 2014), with expected 
values equal to the proportions of the vulnerable numbers-at-length (Table 3, O.3). We used a 
tail-compression procedure that combined data from length bins with less than 0.1% of the 
samples with neighbouring length bins that were above that threshold. This procedure 
eliminates zeroes or very small proportions in the length composition data, but also creates a 
variable number of bins at each time step (LL.1). Fleet and sex specific length sampling error 
variances were estimated via conditional maximum likelihood as nuisance parameters (LL.4). 

Objective function and optimization 
The SISCAL-GH objective function (Table 3, OF.1) is proportional to the negative log Bayes 
joint posterior density function. The negative log posterior is defined as the sum of the negative 
log likelihood functions for observed data (NLL.5, L.8 and F.4), negative log prior densities for 
recruitment (Pr.1) and natural mortality (Pr.2) process errors, and other priors on leading 
parameters (Pr.3 - Pr.4). 
The SISCAL-GH objective function is implemented in Template Model Builder (TMB), and 
optimised via the nlminb() function in the R statistical package (Kristensen et al. 2016, R Core 
Team 2015). Model parameters are considered converged when the maximum gradient 
component of the log-posterior surface had absolute value less then 10−2 and the model 
Hessian matrix (i.e., the inverse of the covariance matrix of leading parameters) was positive 
definite. 
Bayes posterior distributions are generated via four independent chains of 1000 samples each 
using Hamiltonian Monte-Carlo (Monnahan and Kristensen 2018). Chain starting values were 
overdispersed by sampling from a normal distribution with mean values at the maximum 
posterior density estimates (MPDEs) and standard deviations equal to three times the standard 
error of each parameter. Hamiltonian Monte-Carlo differs from Markov-Chain Monte-Carlo by 
minimising the auto-correlation between successive posterior samples, thereby producing a 
mixed model posterior sample with lower absolute sample sizes and little or no thinning 
(Monnahan et al. 2017). 

Goodness of fit 
Goodness of fit is reflected in two ways. First, residual standard errors and likelihood function 
values are shown for all datasets. Second, the posterior chain characteristics are examined, 
including within-chain autocorrelation, correlation among leading parameters, potential scale-
reduction factors (i.e., 𝑅𝑅� values less than 1.01), and effective sample size (ESS; at least 100 per 
chain). 

MSY based reference points 
Biological maximum sustainable yield (MSY-based) reference points were estimated from 
SISCAL-GH estimates of GH-0+1 unfished biomass and productivity parameters, fleet 
selectivity, and the allocation of catch among fleets based on the catches from 2011 - 2020 
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(Table 4). The resulting reference points provide estimates of optimal spawning biomass 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀, 
exploitable biomass 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀

𝑒𝑒𝑓𝑓𝑝𝑝 , yield 𝑀𝑀𝑀𝑀𝑀𝑀, and optimal exploitation rate 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑀𝑀𝑀𝑀𝑀𝑀/𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀
𝑒𝑒𝑓𝑓𝑝𝑝 . While an 

optimal fishing mortality rate (𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀) is estimated as part of the reference point derivation, it is a 
grid search parameter used to scale fleet specific fishing mortality rates based on the allocation, 
from which equilibrium yield is calculated. Therefore, the 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀 value is not directly interpretable 
as a total fishing mortality rate, given the range of fleet selectivities. Instead, the optimal 
exploitation rate 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 is used to define MPs and performance metrics in the closed loop 
simulation procedure used in Part C. 

Sensitivity analysis 
This section describes sensitivity tests of several model assumptions, including the asymptotic 
length, time-varying versus constant parameters for aggregated trawl CPUE catchability and 
natural mortality, and the minimum sample size and tail compression settings for length 
composition likelihood calculations. Additional tests of SISCAL-GH performance relative to 
changes in data sets and structural assumptions were conducted as part of the peer review 
process, which are summarised in Appendix A. 
Asymptotic Length 
Preliminary SISCAL-GH fits suggested that the growth model may be estimating a negatively 
biased mean length-at-age for the GH-0+1 stock. Evidence for this bias is based on the 
observed maturity-at-length proportions for areas 0A and 0B (Cooper et al. 2007, Harris et al. 
2009) showing that fully mature fish are in the upper tails of estimated length-at-age distribution 
for age 35+ fish, which results in less than 100% maturity-at-age in the age 35+ group (Figure 
2). Additionally, there was trouble fitting to the gillnet fishery length compositions, which had a 
modal length in the upper tails of the length-at-age-35. We tested sensitivity to 𝐿𝐿∞,𝑓𝑓 for both 
sexes by re-estimating the von Bertalanffy growth model and fixing 𝐿𝐿∞,𝑓𝑓 = 𝛼𝛼 ⋅ 𝐿𝐿�∞,𝑓𝑓, where 𝐿𝐿�∞,𝑓𝑓 
was the original value freely estimated from the 2017 offshore survey age/length data. The 
remaining parameters for growth rate 𝐾𝐾𝑓𝑓, length-at-age coefficient of variation (CV) 𝑐𝑐𝐿𝐿,𝑓𝑓, and 
theoretical age-at-length-0 𝑡𝑡0,𝑓𝑓 were re-estimated (Figure 3) and used as inputs when re-fitting 
SISCAL-GH to the full GH-0+1 assessment data. 
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Figure 3. Refit growth models used for the L∞ sensitivity analysis. Solid lines show the maximum 
likelihood estimate of the mean length-at-age, while dashed lines show the central 95% of the 
 length-at-age distribution for each asymptotic length (colours in legend).  

Time varying parameters 
Sensitivity was tested to both time-varying or constant catchability and time-varying natural 
mortality as applied in the base SISCAL-GH model hypothesis. Time-varying catchability was 
applied post 2014 to improve the fit to recent high CPUE data points possibly associated with 
increasing spatio-temporal range of the fishery. The time-varying mortality was applied to match 
a depletion signal in CPUE data from 1989 - 2000, which may be associated with mortality that 
is otherwise unaccounted for in SISCAL-GH (e.g., possible bycatch from cod fishing effort, 
unreported catch by the cod fleet following the northern cod collapse, or fish landed in other 
areas). All four combinations of both parameters varying, one parameter varying, or both 
constant, are tested. 
Length sample size and tail compression 
We also tested sensitivity to length-composition data treatments for likelihood function 
calculations. Both the minimum sample size for inclusion of length composition data in the data 
set and the minimum proportion used for tail compression are adjusted to demonstrate model 
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sensitivity, as well as changes in the residual standard error for some fleets across those 
settings. 

Retrospective analyses 
A retrospective analysis was performed by fitting to successive ‘peels’ of data going from 2010 
to 2020. Each peel is compared via MPDEs of spawning biomass time series, unfished 
biomass, unfished recruitment, natural mortality, and stock-recruit steepness. Additionally, 
MPDEs of MSY-based reference points are calculated for each data peel to understand the 
effect of new data on model equilibria and the associated management targets. 

Simulation self-testing 
The ability of SISCAL-GH to estimate key model parameters was tested via a simulation self-
test in which the ‘true’ operating model was based on MPDEs of SISCAL-GH parameters (𝛩𝛩∗). 
Parameters were estimated under the base hypothesis with time-varying selectivity for the 
inshore survey, time-varying catchability for trawl CPUE, and time-varying natural mortality. All 
recruitment and natural mortality process errors were held fixed at their MPDEs, but new 
observation errors (i.e., data) were simulated for all data series. 
New data were simulated in three scenarios, where simulated data replaced the observed data 
originally used to estimate the base model parameters. The three scenarios were: 

1. SimLengths: simulated length composition data and true (original) observed 
biomass/abundance index data; 

2. SimIdx: true observed length composition data and simulated biomass/abundance index data; 
3. SimAll: All length and index data simulated. 

Under all scenarios, simulated data were generated using the standard errors estimated for the 
base SISCAL-GH model for each data series. 
SISCAL-GH self-test performance was measured via relative errors of selected parameters 
summarised as median relative errors (MREs) and median absolute relative errors (MAREs) of 
key parameters. The MRE measures the bias of a model estimate, and the MARE can be 
interpreted as a measure of precision relative to the MRE. Both 𝑀𝑀𝑅𝑅𝐸𝐸(𝛩𝛩) and 𝑀𝑀𝐴𝐴𝑅𝑅𝐸𝐸(𝛩𝛩) 
summarise the distribution of relative errors 𝑅𝑅𝐸𝐸𝑙𝑙(𝛩𝛩), which is defined as: 

𝑅𝑅𝐸𝐸𝑙𝑙(𝛩𝛩) =
𝛩𝛩�𝑙𝑙 − 𝛩𝛩∗

𝛩𝛩∗
 

where 𝑖𝑖 indexes the simulation replicate, 𝛩𝛩�𝑙𝑙 is the estimate of SISCAL-GH model parameters 
from simulated data in replicate 𝑖𝑖, and 𝛩𝛩∗ is the MPDE of 𝛩𝛩 from the true data. For both metrics, 
values closer to zero indicate better model estimates. 
An additional simulation test was conducted during peer review to test the sensitivity of  
SISCAL-GH estimates to the assumption of deterministic recruitment from 1968 to 1988 
(Appendix B). 

CLOSED-LOOP FEEDBACK SIMULATION FRAMEWORK 
We conditioned an operating model with SISCAL-GH model estimates, using the same 
dynamics in Table 2. The model, which we refer to as MS3-GH, simulates the GH-0+1 fishery 
management system forward in time from 2021, generating stock responses to fishery removals 
of TACs, which are set based on simulated MPs. Simulated dynamics are then used to calculate 
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fishery performance metrics based on (hypothetical) fishery objectives derived from current 
NAFO precautionary approach policy (PA) (Brodie et al. 2013). 
The MS3-GH operating model provides a practical and realistic representation of GH-0+1 stock 
dynamics, fishery harvesting processes, and fishery monitoring data so that non-linear 
feedbacks and data uncertainties can be accounted for in annual TAC advice. These processes 
interact to determine short- and long-term performance of fishery harvest strategies with respect 
to (hypothetical) fishery objectives. In the absence of fishery objectives, we have defined 
standard conservation and yield metrics based on the NAFO PA (Brodie et al. 2013). 
Performance metrics then provide a quantitative approach to assessing fishery compliance with 
international fishery policy. 
The closed loop simulations include an additional RV survey to reflect the new survey design 
currently being initialised for the GH-0+1 stock, which includes the previous offshore RV survey 
design, plus some additional inshore sets in Division 0A and an expansion to include sets in 
Division 0B. The new survey design was simulated in projections as two separate indices. The 
first continues the existing RV survey, with the same selectivity and catchability. The second is a 
simulated new RV survey as a 9th fleet (𝑔𝑔 = 9), which has similar selectivity to the existing 
inshore survey in Subarea 1 and a simulated catchability of 𝑞𝑞9 = 1. While the simulated 
selectivity and catchability values are conjecture at this time given a lack of any existing data for 
this survey, there is some basis for the choice of values. Selectivity is similar to the current 
inshore survey to simulate the capture of small fish in shallower waters, as there was no  
catch-at-length data available at the time of writing and additional sets are planned in shallower 
waters. Catchability was set to 1 (i.e., an absolute survey) as without data this is an arbitrary 
choice, which should not affect the model performance in closed loop simulations, as long as 
simulated assessments estimate 𝑞𝑞9. The precision of the newRV survey is the basis of two 
alternative operating model hypotheses for the closed loop simulations, explained below. 

Adaptive model-/index-based management procedure 
The GH-0+1 adaptive model-/index-based MP attempts to capture the main elements of a full 
fishery stock assessment and management framework cycle. In management frameworks for 
similar species (e.g., Atlantic Halibut) a full age-structured stock assessment is performed every 
5 - 8 years, while in the intervening years a simpler index-based procedure is used to set TACs 
on an annual basis. Control parameters (e.g., catchability and target exploitation rate) for the 
index-based procedure are re-estimated at full stock assessment updates. Updated parameters 
are then usually re-tested in closed-loop simulations to ensure expected procedure performance 
is commensurate with fishery objectives under contemporary estimates of stock-status, 
biomass, and productivity, but we skipped this step for computational reasons. 
For the adaptive model-/index-based MP, the full stock assessment model update is scheduled 
every six years and TAC revisions happen every two years with both beginning in 2024. We 
chose 2024 because it was the first year where the simulated new RV survey would have 
enough data for conditional estimates of both catchability and residual standard errors, and will 
also be the next time that a TAC update is scheduled for the real GH-0+1 stock. 
In full assessment years, only the index-based stock assessment parameters are updated  
(i.e., target harvest rates and MSY-based reference points remain constant at their current 
estimates). At each full assessment, we update the offshore RV survey catchability 𝑞𝑞𝑅𝑅𝑅𝑅,𝑒𝑒 
estimate, as well as an exploitable biomass adjustment factor 

𝜌𝜌𝑒𝑒 = 𝑒𝑒
�16∑ log𝑚𝑚

𝑚𝑚′=𝑚𝑚−5 �𝐵𝐵𝑚𝑚′
𝑒𝑒𝑥𝑥𝑒𝑒/𝐵𝐵𝑚𝑚′

𝑅𝑅𝑅𝑅��
, 
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where 𝐵𝐵𝑒𝑒
𝑒𝑒𝑓𝑓𝑝𝑝 and 𝐵𝐵𝑒𝑒𝑅𝑅𝑅𝑅 are the estimates of exploitable and RV survey biomass over the most 

recent 6 years. The biomass adjustment factor attempts to track differences between the 
exploitable and survey biomasses resulting from variation in recruitment and the underlying age-
structure. This approach is similar to the JABBA select model (Winker et al. 2020), which scales 
spawning biomass to exploitable biomass using model equilibria. The main difference here is 
that we used an age-structured model to estimate both RV and exploitable biomass, which were 
compared directly and updated over time. 
The index-based component of the MP sets TACs according to the following steps at each time 
step: 

1. Compute the 3-year average of the offshore RV_0A1CD survey index 

𝐼𝐼‾𝑒𝑒 = 𝑒𝑒�
1
3∑ log𝑚𝑚

𝑚𝑚′=𝑚𝑚−2 𝐼𝐼𝑅𝑅𝑅𝑅,𝑚𝑚′�; 
2. Compute the estimated exploitable biomass from the 3-year average RV survey index, the latest 

catchability estimate, and the biomass adjustment factor via 

𝐵𝐵�𝑒𝑒
𝑒𝑒𝑓𝑓𝑝𝑝 = 𝜌𝜌𝑒𝑒 ⋅

𝐼𝐼‾𝑒𝑒
𝑞𝑞�𝑅𝑅𝑅𝑅,𝑒𝑒

, 

where 𝑞𝑞�𝑅𝑅𝑅𝑅,𝑒𝑒 is the conditional MPDE of the RV_0A1CD survey index catchability parameter 
estimated in the most recent assessment, and 𝜌𝜌𝑒𝑒 is the exploitable biomass adjustment factor. If 
𝜌𝜌𝑒𝑒 and 𝑞𝑞𝑅𝑅𝑅𝑅,𝑒𝑒 are not estimated for time 𝑡𝑡, then use the values from time 𝑡𝑡 − 1. 

3. Calculate the target fishing mortality rate 𝐹𝐹𝑒𝑒 from the harvest control rule 

𝐹𝐹𝑒𝑒 =

⎩
⎪
⎨

⎪
⎧0 𝐵𝐵�𝑒𝑒

𝑒𝑒𝑓𝑓𝑝𝑝 ≤ 0.3𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀
𝑒𝑒𝑓𝑓𝑝𝑝

𝐹𝐹𝑏𝑏𝑏𝑏𝑓𝑓 ⋅
𝐵𝐵�𝑒𝑒
𝑒𝑒𝑓𝑓𝑝𝑝 − 0.3𝐵𝐵�𝑀𝑀𝑀𝑀𝑀𝑀

𝑒𝑒𝑓𝑓𝑝𝑝

0.7𝐵𝐵�𝑀𝑀𝑀𝑀𝑀𝑀
𝑒𝑒𝑓𝑓𝑝𝑝 − 0.3𝐵𝐵�𝑀𝑀𝑀𝑀𝑀𝑀

𝑒𝑒𝑓𝑓𝑝𝑝 0.3𝐵𝐵�𝑀𝑀𝑀𝑀𝑀𝑀
𝑒𝑒𝑓𝑓𝑝𝑝 < 𝐵𝐵�𝑒𝑒

𝑒𝑒𝑓𝑓𝑝𝑝 ≤ 0.7𝐵𝐵�𝑀𝑀𝑀𝑀𝑀𝑀
𝑒𝑒𝑓𝑓𝑝𝑝

𝐹𝐹𝑏𝑏𝑏𝑏𝑓𝑓 0.7𝐵𝐵�𝑀𝑀𝑀𝑀𝑀𝑀
𝑒𝑒𝑓𝑓𝑝𝑝 < 𝐵𝐵�𝑒𝑒

𝑒𝑒𝑓𝑓𝑝𝑝

, 

where the maximum harvest rate is 𝐹𝐹𝑏𝑏𝑏𝑏𝑓𝑓 = 0.8𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀
𝑒𝑒𝑓𝑓𝑝𝑝 = 0.099, the upper control point is 0.7𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀

𝑒𝑒𝑓𝑓𝑝𝑝 =
𝐵𝐵𝑏𝑏𝑏𝑏𝑓𝑓
𝑒𝑒𝑓𝑓𝑝𝑝 = 95.6 kt, and the lower control point, where harvest rates drop to 0, is 0.3𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀

𝑒𝑒𝑓𝑓𝑝𝑝 = 41 kt in 
this example. The biomass 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀

𝑒𝑒𝑓𝑓𝑝𝑝  is the equilibrium exploitable biomass producing 𝑀𝑀𝑀𝑀𝑀𝑀 (see 
results for values used in the simulations). Note that this rule uses a simple hockey-stick 
functional form common to Canadian fisheries policy (DFO 2006), which is effectively ‘mapped 
onto’ the NAFO PA policy by the choice of control/reference points (Figure 4; Brodie et al. 
2013). All control/reference point values such as 𝐹𝐹𝑏𝑏𝑏𝑏𝑓𝑓, 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙, and 𝐵𝐵𝑏𝑏𝑏𝑏𝑓𝑓 may be adjusted based on 
fishery manager preferences, and as tuning parameters, to bring fishery performance metrics in 
line with NAFO PA framework requirements under projected operating model conditions (Brodie 
et al. 2013). 

4. Compute the proposed 𝑇𝑇𝐴𝐴𝐶𝐶′𝑒𝑒 = (1 − 𝑒𝑒−𝐹𝐹𝑚𝑚)𝐵𝐵�𝑒𝑒
𝑒𝑒𝑓𝑓𝑝𝑝; 

5. Apply any interannual TAC change limit, here set as 𝛥𝛥𝑒𝑒 = 1.0, i.e., 

a. If 𝑇𝑇𝐴𝐴𝐶𝐶′𝑒𝑒 > (1 + 𝛥𝛥𝑒𝑒)𝑇𝑇𝐴𝐴𝐶𝐶𝑒𝑒−1, then 𝑇𝑇𝐴𝐴𝐶𝐶𝑒𝑒 = (1 + 𝛥𝛥𝑒𝑒)𝑇𝑇𝐴𝐴𝐶𝐶𝑒𝑒−1;  

b. Otherwise, 𝑇𝑇𝐴𝐴𝐶𝐶𝑒𝑒 = 𝑇𝑇𝐴𝐴𝐶𝐶′𝑒𝑒 

We chose 𝛥𝛥𝑒𝑒 = 1.0 so that TACs could be dropped to 0 if exploitable biomass was estimated 
below 0.3𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀

𝑒𝑒𝑓𝑓𝑝𝑝 , however this change limit can be adjusted based on manager/stakeholder 
preferences to reduce interannual TAC variation. 
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Figure 4. A ‘hockey-stick’ harvest control rule for GH-0+1, setting target fishing mortality rates (y-axis) as 
a function of exploitable biomass (x-axis) as estimated by the index-based management procedure (both 
adaptive and fixed 𝑞𝑞 versions). The hockey-stock rule is overlaid on the five zones defined by the NAFO 
precautionary approach (PA) policy to show how Canadian precautionary fishery management policy 
effectively maps on to the NAFO PA policy. For this example, 𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 is set as a limit mortality rate, 
and 𝐹𝐹𝑏𝑏𝑏𝑏𝑓𝑓 = 0.8𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀 as the target fishing mortality rate. 

The final 𝑇𝑇𝐴𝐴𝐶𝐶𝑒𝑒 for each year is then allocated among the 6 commercial fleets according to 
allocated proportions (Table 4). Catches are removed from the population as in the SISCAL-GH 
model, where fleets are assumed to take catch in one discrete pulse in the middle of the fishing 
year, before and after which half of the natural mortality is applied. For years where the MP is 
not formally completed (e.g., under a biennial TAC schedule as in the GH-0+1 fishery) the 
procedure carries forward the previous year’s TAC. 

The adaptive approach, which we called qAdapt, used here to update the RV survey 𝑞𝑞𝑅𝑅𝑅𝑅 
parameter and biomass adjustment factor 𝜌𝜌 at longer time intervals than the TAC, serves two 
purposes. First, it simulates future uncertainty in the 𝑞𝑞𝑅𝑅𝑅𝑅 parameter rather than unrealistically 
assuming a perfectly known value that is close to an optimal choice. Secondly, while the 
offshore RV survey has the highest spatial overlap with the exploited portion of the stock, the 
RV survey selects for a higher proportion of small fish than any fishery, meaning that as natural 
and fishing mortality alter the age structure of the stock, the survey biomass and exploitable 
biomass will diverge. Therefore, the updated 𝑞𝑞𝑅𝑅𝑅𝑅,𝑒𝑒 and 𝜌𝜌𝑒𝑒 values are required to bring the TAC 
decision closer to the target fishing mortality rate, as the proportional difference between 
exploitable and offshore survey biomass will vary over time and among posterior draws used to 
condition simulation replicates. 
For comparison purposes, we also evaluated a non-adaptive fixed parameter procedure, called 
qFixed, with no simulated model updates. Under the qFixed procedure, we fixed 𝜌𝜌𝑒𝑒 = 0.82 and 
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𝑞𝑞𝑅𝑅𝑅𝑅,𝑒𝑒 = 0.38 for all time steps 𝑡𝑡 at their Bayes posterior medians estimated by the SISCAL-GH 
model fit to data up to 2020. 

Closed-loop feedback simulation algorithm for evaluating harvest strategies 
We use the following closed-loop simulation algorithm to apply the simulated model-/index-
based MP (Walters 1986, de la Mare 1998, Cooke 1999, Punt and Smith 1999, Sainsbury et al. 
2000, Butterworth 2007): 
1. Initialize a pre-conditioned operating model for the historical period (1968 – 2020) based on 

the SISCAL-GH model; 
2. Project the operating model population and fishery one time step into the future for 47 years 

(corresponding to two GH-0+1 generations), starting in 2021. At each time step apply the 
following: 

i. Generate the catch and survey data available for stock assessment; 
ii. If a full stock assessment is scheduled, estimate SISCAL-GH states and parameters 

from the simulated data, and generate new 𝑞𝑞𝑅𝑅𝑅𝑅,𝑒𝑒 and 𝜌𝜌𝑒𝑒 values for the index-based 
procedure; 

iii. If a TAC update is scheduled, apply the harvest control rule to generate a new TAC, 
otherwise bring the previous time step’s TAC forward; 

iv. Update the MS3-GH operating model population dynamics given the total natural 
mortality, removals due to fishing allocated among fleets, and new recruitment; 

v. Repeat steps 2.i - 2.iv until the projection period ends. 
3. Repeat step 2 for 100 replicates 
4. Calculate quantitative performance statistics across all 100 replicates; 
In the real GH-0+1 management system, the current and new survey index and catch-at-length 
data will not be collected before the 2022 summer season, therefore, our simulations held the 
TAC at the 2020 catch of 32 kt until 2025, following the first simulated full stock assessment in 
2024, after which TACs will be updated on a biennial cycle and stock assessments (𝑞𝑞𝑅𝑅𝑅𝑅,𝑒𝑒 and 𝜌𝜌𝑒𝑒 
values) will be updated on a 6-year cycle. While the true TACs may in fact be lower (but 
probably not higher), the performance under the assumption of a constant 32 kt TAC until 2024 
can be considered a conservative under-estimate of true fishery performance, as biomass 
would be higher with lower TACs in the short term. 
The adaptive model-/index-based procedure is evaluated under two operating model scenarios, 
which differ by precision used for simulated newRV survey data: 
1. isPrec: precision is taken from the existing inshore RV survey; 
2. osPrec: precision is taken from the existing offshore RV survey. 
The qFixed MP was evaluated only under one scenario, as it did not rely on the newRV survey 
data at all so results are identical for both. 

Performance Metrics 
We calculated the following example performance metrics for evaluating the adaptive GH-0+1 
MP in closed loop simulation. These are chosen to exhibit a balance of conservation and yield 
metrics in line with NAFO PA policy. 
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1. Probability that female spawning biomass is below the limit reference point (LRP)  
𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙 = 0.3𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 (pLRP), 

2. Probability that the exploitation rate exceeds 𝑈𝑈𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 (pOverfish) 

3. Mean exploitation rate above 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 (mUoverfish) 

4. Median average catch over 10 years (avgC) 
5. Average annual variation in yield over 10 years (AAV) 

The limit reference point 𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙 is defined as 30% of the female spawning biomass that produces 
MSY, and the limit exploitation rate is the optimal exploitation rate 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 (a proxy for 𝐹𝐹𝑙𝑙𝑙𝑙𝑙𝑙 in 
NAFO PA policy) (Brodie et al. 2013). 
For the adaptive model-/index-based procedure, we also calculated and compared relative 
errors in key model parameters for the simulated stock assessments in 2024 and 2054, similar 
to the simulation self-test procedure outlined earlier. 

RESULTS 

SISCAL-GH BASE MODEL ESTIMATES 

Fits to GH-0+1 data 
The observation model residual standard deviations for each data set (Table 5) are good 
indicators of the quality of SISCAL-GH fits shown in Figures 5 and 6. In general, these standard 
errors are in log-space, so they can be interpreted more or less as coefficients of variation (CV). 
For example, the offshore RV survey had a residual standard error of 𝜏𝜏𝑅𝑅𝑅𝑅0𝐴𝐴1𝐶𝐶𝐷𝐷 = 0.15 (i.e., 15% 
CV), indicating that the model and RV index have strong agreement not only on the trend, but 
also on the interannual variation (Figure 5, upper panel), despite the somewhat large residual in 
2016. Occasional large deviations are not necessarily unexpected for a log-normal distribution, 
even one with CV ~ 10%. 

Table 5. Estimated standard errors for length composition data (first three columns), proportion female in 
each length bin (fourth column), and stock indices (last column) for Canadian trawl (CANBTM), Canadian 
longline (CANLL), Greenland trawl (GRBTM), Canadian and Greenland gillnet (CAGRGN), all other trawl 
(OTHBTM), Greenland/Russian/Norway/Faroe Isl. longline (GRNFLL), offshore survey (RV0A1CD) and 
inshore survey (RV_SFW1AF). 

 Male Female Combined Prop Female Indices 
𝜏𝜏𝐶𝐶𝐴𝐴𝐶𝐶𝐵𝐵𝑇𝑇𝑀𝑀 - - 0.431 - - 
𝜏𝜏𝐶𝐶𝐴𝐴𝐶𝐶𝐿𝐿𝐿𝐿 - - 0.762 - - 
𝜏𝜏𝐺𝐺𝑅𝑅𝐵𝐵𝑇𝑇𝑀𝑀 - - 0.842 - - 
𝜏𝜏𝐶𝐶𝐴𝐴𝐺𝐺𝑅𝑅𝐺𝐺𝐶𝐶 - - 0.604 - - 
𝜏𝜏𝑂𝑂𝑇𝑇𝑂𝑂𝐵𝐵𝑇𝑇𝑀𝑀 - - 0.827 - - 
𝜏𝜏𝐺𝐺𝑅𝑅𝐶𝐶𝐹𝐹𝐿𝐿𝐿𝐿 - - 1.144 - - 
𝜏𝜏𝑅𝑅𝑅𝑅_0𝐴𝐴1𝐶𝐶𝐷𝐷 - - 0.387 - 0.15 
𝜏𝜏𝑅𝑅𝑅𝑅_𝑀𝑀𝐹𝐹𝑆𝑆1𝐴𝐴𝐹𝐹 0.71 0.565  0.392 0.38 
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Figure 5. SISCAL-GH fits (lines) to abundance and biomass indices (points), with standardised log-
residuals for each index (bottom panel). Trawl CPUE indices are scaled by time-varying catchability after 
2014, which results in a downward trend of the data to meet the stock.  
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Figure 6. Time-averaged SISCAL-GH fits (lines and points) to length composition data (blue bars) for 
males (left), females (middle), and combined sexes (right), sampled by each fishery and survey (labeled 
on the right). Total sample size N over all years is given in the top-right hand corner of each panel.  

The inshore RV survey had a higher residual standard error at 𝜏𝜏𝑅𝑅𝑅𝑅𝑀𝑀𝐹𝐹𝑆𝑆1𝐴𝐴𝐹𝐹 = 0.38 indicating a 
marginally acceptable fit with several large residuals occurring after 2004 (Figure 5, second 
panel), which coincide with some variation in execution of this survey (Treble and Nogueira 
2020). While comparative towing can align the mean catchability of two surveys, it cannot 
account for any process variance that stems from different gear or a variable number of sets. 
On the bright side, variation in survey designs/protocols are fixable in the future and could lead 
to lower residual standard deviations in future assessments. 

The combined bottom trawl CPUE had a very low residual standard error of 𝜏𝜏𝐵𝐵𝑇𝑇𝑀𝑀 = 0.073 
(Figure 5, third panel), which is not totally indicative of quality since the model had extra 
flexibility in the form of time-varying mortality and time-varying catchability to help fit that series. 
In such cases, one needs to also consider the variances used in those random-walk 
components in assessing fit quality, which was 0.1 on the log scale, or roughly a 10% CV. None 
of the biomass index series had a significant residual trend (Figure 5, bottom panel, 𝑝𝑝 > 0.05 for 
all indices) or an indication of bias. 
Time-averaged fits to length compositions are given in Figure 6, with annual fits provided in 
Appendix D. The time-averaged fits are adequate to show where the model consistently misses 
certain aspects of the data. In general, residual standard errors of 0.3 - 0.5 are considered very 
good for compositional data, 0.5 - 0.8 are good, 0.8 - 1.0 are usually adequate, and above 1.0 
indicates that there may be model mis-specification that fails to sufficiently capture the data 
collection process. Here, the Canadian bottom trawl and longline fleets, mixed gillnet fleet, and 
two fishery independent surveys fall into the very good and good ranges, while the remaining 
commercial fleets fall into adequate (2 fleets) and likely mis-specified (1) categories (Table 5). 
Note, however, that the term ‘mis-specified’ here is used generally and may include not properly 
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capturing inadequate or biased sampling processes; that is, the model assumes ideal sampling 
designs, which is almost surely incorrect, especially for fishery-dependent data. Nevertheless, 
model fits and variance indicators are helpful in identifying where standardizing sampling 
designs and protocols could improve overall assessment performance. For example, the 
GR_BTM (Greenland) and the OTH_BTM (not Greenland or Canada) fleets both had 
reasonable fits to length compositions in many years (Figures D.3 and D.5); however, there 
were also several years where the expected composition was translated either to the right or 
left, leading to higher residuals despite matching the overall shape well. These residuals could 
be reduced by using a time-varying selectivity, which would allow some flexibility to shift the 
expected values to meet the observations, or by adjusting the tail compression settings 
(explored in sensitivity analysis below). But, more importantly, they point to possible issues in 
the underlying data that should be examined further and corrected, if possible. 
The GRNF_LL (Greenland, Russia, Norway, and Faroe Islands) fleet had high proportions of 
length observations in the upper tail of the length-at-age distributions for older fish that were not 
present for any other fleets (Figure D.6). Assuming this is probably not a sampling bias or error 
(although it could be), there may be a size-at-age mismatch between the portion of the stock 
generating age/length samples for the growth model and the portion of the GH-0+1 stock fished 
by these fleets. A growth model misspecification means that adjustments to the selectivity 
function will not completely improve the fit to the length composition data and may just mask the 
problem. In sensitivity analyses below, we investigate the potential implications of this mismatch 
via alternative asymptotic length hypotheses. 
The residual standard error for the proportion female data from the inshore RV survey (Table 5) 
is similar to length composition data for that survey. Most large residuals were observed in 
length bins towards either end of the range, which is expected since outer bins typically have 
smaller sample sizes and higher individual variances than those in the centre of the composition 
(Figure 7). 
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Figure 7. SISCAL-GH model fits to proportion of females observed in inshore survey length compositions 
by length bin. Green circles show data, while vertical line segments show expected values from the model 
for bins with (black) and without (light grey) data.  

Standard Bayesian posterior chain diagnostics suggest that chains converged (Figure 8) with 
most leading parameters having potential scale reduction factor 𝑅𝑅� values less than 1.01 (i.e., 
that posterior standard deviations within each chain are within 1% of each other across chains) 
(Betancourt and Girolami 2015). There were 10 marginal parameters where 1.02 ≥ 𝑅𝑅� > 1.01 
and bulk or tail effective sample sizes were below 400 (i.e., 100 effective samples per individual 
chain), namely the length-at-50% selectivity for the Canadian longline fleet, four time-varying 
selectivity deviations, recruitment deviations in 1996, 2006, and 2009, and time-varying natural 
mortality deviations for 1969 and 2019. Low effective sample sizes and corresponding 𝑅𝑅� > 1.01 
indicates that there was limited information for that parameter in the data, so a more informative 
prior or improved/increased sampling is warranted in future revisions; indeed, all marginal 
parameters had 𝑅𝑅� ≤ 1.02 and visual inspections of ESS versus chain length (not shown) 
indicate that increased sampling should eliminate all marginal convergence indicators. 
Moreover, there is limited available length composition for the Canadian Longline fleet, so it is 
unsurprising that selectivity parameters have quite high uncertainty (Figure 8, CV(theta)). 
Similarly, time-varying mortality, selectivity, and catchability parameters are all expected to be 
quite uncertain, even at convergence. Finally, high uncertainty in some annual recruitment 
deviations is also not surprising when fitting to length data compared to age composition 
directly. Parameter lag-1 autocorrelation within chains ranged between -0.5 and 0.6, but most of 
the density was between -0.4 and 0.4, with an average around 0 as expected for Hamiltonian 
Monte Carlo. 
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Figure 8. Distributions of Hamiltonian Monte Carlo convergence diagnostics over the set of leading 
parameters, Θ, for the SISCAL-GH model, showing scale reduction factors (Rhat), Lag-1 autocorrelation, 
Bulk and tail effective sample size, and coefficient of variation (CV (theta)). Red vertical lines show 
minimum threshold for effective sample size, and the grey vertical line shows mean lag-1 autocorrelation.  

Implications for stock dynamics 
SISCAL-GH estimates of female spawning biomass, recruitment, exploitation rate, and natural 
mortality rates suggest that the GH-0+1 stock is currently above 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 and, therefore, most likely 
in a healthy state according to Canadian fisheries policy (Figure 9) (DFO 2006). Posterior 
distributions for female spawning biomass show a slight increase from unfished equilibrium in 
1968 to around 110 kt in 1985. In the early 1980s, natural mortality starts to increase, driving 
GH-0+1 spawning biomass back down to below unfished levels. The estimated spawning 
biomass then appears to stabilize around 75 kt by the year 2000, around which time the natural 
mortality series returns close to the time-averaged 𝑀𝑀0. When compared to MSY-based 
reference points (Figure 10), the biomass was almost certainly above 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 in 2020, but the 
posterior distribution estimates a 50% probability that the exploitation rates were above 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 
(Figure 11, grey crosshair in 2020). Put another way, the GH-0+1 stock is almost certainly not 
overfished according to this SISCAL-GH model, but there is a 50% chance that current TACs 
are overfishing the stock. 
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Figure 9. SISCAL-GH estimates of historical GH-0+1 population dynamics showing (top panel) credibility 
intervals (red shaded region) and posterior median (red line) estimates of GH-0+1 female spawning 
biomass and total landings (grey bars), posterior 95% credibility intervals and median recruitment 
estimates (second row), posterior median harvest rates by fishery and in total (third row), and 95% 
credibility intervals and posterior median estimates of annual natural mortality rates averaged between 
males and females (bottom row).  
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Figure 10. Equilibrium GH-0+1 yield (top) and biomass (bottom) curves as a function of total exploitation 
rate. 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 reference points are shown as closed circles on each line. Posterior 95% credibility intervals in 
yield and biomass are shown as envelopes, while the 95% credibility interval for 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 is shown by the 
vertical dashed lines. 

 
Figure 11. Phase plot showing posterior median GH-0+1 female spawning biomass (vertical axis) and 
total exploitation rate (horizontal axis) relative to 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 reference points. Arrows show the direction of time, 
beginning in 1968 and ending in 2020. Equilibrium spawning biomass is shown as a faint grey curve in 
the background of the plot. The distribution of stock status and exploitation rates relative to 𝑀𝑀𝑀𝑀𝑀𝑀 based 
reference points in 2020 is shown as a grey crosshair. 
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It is expected that the increase in natural mortality estimated by the model during the 1980s was 
driven by fitting to combined trawl fishery CPUE data. Trawl CPUE declined between the late 
1980s and late 1990s, presumably as trawl landings increased while fished area remained static 
(Treble and Nogueira 2020). While there are well documented issues with non-linearity in 
fishery CPUE data (i.e., hyper-depletion or hyper-stability), the trawl CPUE data was the only 
biomass index time series indicating any historical depletion signal for the GH-0+1 stock, which 
we considered an important signal to include. The increase in natural mortality estimated by the 
model around the early 1990s is consistent with temporal patterns estimated for other 
groundfishes such as Atlantic Halibut and Northern Cod (Johnson et al. In prep1, Cadigan 
2016). It is also concurrent with an estimated decrease in natural mortality for Greenland Halibut 
in NAFO Subarea 2 and Divisions 3KLMNO (Regular 2020); negatively correlated mortality 
patterns between neighbouring management units of GH may indicate that migration between 
those areas is being misrepresented as mortality.  
Beginning around the year 2000, the increasing combined trawl CPUE was driven by a 
combination of high recruitment and, possibly, a spatio-temporal expansion of the fishery to 
year-round timing and areas further north (Treble and Nogueira 2020). In the current  
SISCAL-GH formulation and data, there was not enough information to distinguish between 
either factor contributing to the CPUE increase. However, assuming that combined trawl 
catchability was time-varying after 2014 effectively assigns the increase to spatio-temporal 
expansion of fishing after that time by allowing catchability to increase instead of forcing the 
biomass to continue growing. The increase from 2000 - 2014 is then explained by the model 
with higher recruitment, creating a positive mean recruitment residual around 0.18 standard 
deviations (Figure 12, lower panel). 

 

1 Johnson, S., Hubley, B., Cox, S.P., den Heyer, C.E., and Li, L. In prep. Framework assessment of 
Atlantic Halibut on the Scotian shelf and Southern Grand Banks (NAFO Divs. 3NOPs4VWX5Zc) model 
update. DFO Can. Sci. Advis. Sec. Res. Doc. In preparation. 
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Figure 12. Time series of age-1 GH-0+1 recruitments (top) and standardised recruitment log-residuals 
(bottom). Absolute recruitments show equilibrium unfished recruitment R0 (horizontal dashed line), and 
95% credibility intervals (vertical line segments), and residuals are plotted with the average estimated 
residual (horizontal red dashed line).  

Despite a generally healthy picture of the GH-0+1 stock, there is considerable uncertainty in 
current biomass, and as a result, MSY-based biological reference points. For example, the 95% 
credible interval (CI) for Bayes posterior female spawning biomass ranges between 60 kt and 
160 kt in 2020, and there are similar relative variations in other biomass estimates as well 
(Figure 13). As a result, the 95% CI for exploitation rates ranges between 0.05 and 0.13 (Figure 
9, lower panel), leading to the aforementioned low chance that overfishing is occurring (Figure 
11). Similarly, there is high uncertainty in the 𝑀𝑀𝑀𝑀𝑀𝑀-based reference points with optimal 
exploitation rate 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 ranging between 0.07 and 0.16 (Figure 10, upper panel), and similar 
relative uncertainty in female spawning biomass at MSY (14 - 36 kt) and exploitable biomass 
(132 - 256 kt) (Figure 10, lower panel). 
Stability in spawning biomass since the early 2000s suggests that removals may have been 
balancing production since that time (Figure 13). That balance has been sustained by the 
generally high recent recruitments, which may not continue if future recruitments are closer to 
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the expected stock-recruitment relationship (Figure 14). If that were to happen, then the 
declines estimated in exploitable, total, and RV biomasses (Figure 13) after 2010 will materialise 
in the spawning biomass, which, if TACs remain at the current levels, may result in an 
overfished stock. 

 
Figure 13. SISCAL-GH posterior mean and 95% credibility intervals of exploitable (dark blue), total 
(black), female spawning (red), offshore RV survey (orange), and weighted trawlable (grey) biomass.  
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Figure 14. Bayes posterior stock-recruit relationship showing the posterior mean (solid line), central 95% 
credibility region (red envelope), as well as estimated recruitments (points) and their 95% credibility 
intervals.  

Sensitivity analyses 
Asymptotic Length 
In total, there were six alternative GH-0+1 growth models fit to the 2017 age/length samples 
from the offshore RV survey. All six models were largely the same for ages 1 - 15, but begin 
diverging for males at age 15, and females around age 16 (Figure 3). 
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The estimated unfished biomass (𝐵𝐵0) decreased as 𝐿𝐿∞ increased from 1.0 to 2.0 times the 
values estimated from the data. The largest percentage drop in unfished biomass occured 
between 1.0 and 1.2 times the estimated 𝐿𝐿∞, where 𝐵𝐵0 dropped by roughly 25%. After that the 
decreases in unfished biomass were much smaller, dropping by around 8% each time from 1.2 
to 1.6 times the estimated values (Table 6). Unfished recruitment 𝑅𝑅0, 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀, and MSY all 
decreased with unfished biomass while natural mortality and the mean recruitment deviation 𝜔𝜔‾𝑒𝑒 
increased, and optimal exploitation rates 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 showed no obvious pattern. 

Table 6. Asymptotic length (𝐿𝐿∞) sensitivity analysis results showing SISCAL-GH maximum posterior 
density estimates of unfished biomass (𝐵𝐵0), unfished recruitment (𝑅𝑅0), time-averaged natural mortality 
(𝑀𝑀0), MSY-based optimal biomass 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀, optimal harvest rate 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀, and maximum sustainable yield MSY, 
mean recruitment deviation 𝜔𝜔𝑒𝑒, and a convergence indicator (pdHess). 

multiplier 𝑳𝑳∞ 𝑩𝑩𝟎𝟎 𝑹𝑹𝟎𝟎 𝑴𝑴𝟎𝟎 𝑩𝑩𝑴𝑴𝑴𝑴𝑴𝑴 𝑼𝑼𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴𝑴𝑴 𝝎𝝎‾ 𝒕𝒕 pdHess 
1.0 64.71, 81.45 95.210 141.587 0.125 18.491 0.116 16.420 0.21 TRUE 
1.2 77.65, 97.74 71.587 75.155 0.127 14.604 0.113 9.264 0.30 TRUE 
1.4 90.6, 114.03 66.114 60.935 0.160 13.525 0.115 7.744 0.22 TRUE 
1.6 103.53, 130.32 61.779 51.622 0.217 12.283 0.121 6.899 0.15 TRUE 
1.8 116.48, 146.61 64.667 60.947 0.182 13.217 0.115 7.480 0.17 TRUE 
2.0 129.42, 162.9 60.654 53.196 0.227 12.016 0.122 6.699 0.14 TRUE 

As unfished biomass decreased, the temporal patterns in spawning biomass changed 
significantly (Figure 15). The initial increase in spawning biomass flattens out and changes 
concavity as the 𝐿𝐿∞ multiplier increases, eventually becoming a monotonically decreasing “one-
way trip” (Hilborn and Walters 1992) under the highest 𝐿𝐿∞ values. This reduction in informative 
contrast is mirrored in the weighted trawlable biomass series that is used to generate expected 
values for the combined trawl CPUE data series. As a result, models with higher 𝐿𝐿∞ have a 
lower negative log likelihood for CPUE data (Table 7), but no longer track the initial depletion 
signal between 1989 and 1999 in that index (not shown). 
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Figure 15. Asymptotic length (𝐿𝐿∞) sensitivity analysis estimates of female spawning biomass (top) and 
spawning biomass depletion (bottom).
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Table 7. Asymptotic length sensitivity analysis results, showing absolute (𝐿𝐿∞) asymptotic length, as well 
as their value relative to the base model (Multiplier), and negative log likelihood function values for all 
data (TotLike) and contributions from biomass/abundance index components for data from the offshore 
survey (idxRV0A1CD), inshore survey (idxRVSFW1AF), and trawl fishery CPUE (CPUE_BTM). 

Multiplier Linf TotLike idxRV0A1CD idxRVSFW1AF CPUE_BTM 
1.0 64.71, 81.45 153.42 -13.94 -13.4 -67.09 
1.2 77.65, 97.74 172.5 -13.48 -13.33 -67.98 
1.4 90.6, 114.03 139.16 -13.48 -12.21 -65.2 
1.6 103.53, 130.32 105.65 -14.12 -10.7 -54.87 
1.8 116.48, 146.61 134.35 -13.73 -11.31 -61.86 
2.0 129.42, 162.9 105.57 -14.3 -10.43 -51.31 

Based on negative log-likelihood values (Table 8), the best candidate 𝐿𝐿∞ multipliers for 
improving fits to the GRNF_LL and CAGR_GN length compositions are 1.4 and 1.6, which we 
recommend for deeper analysis in future, and as a possible candidate for an alternative 
operating model hypothesis.
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Table 8. Asymptotic length sensitivity analysis results, showing absolute (𝐿𝐿∞) asymptotic length, as well as their value relative to the base model 
(Multiplier), and negative log likelihood function values for all data (TotLike) and contributions from the inshore proportion female data 
(propFSFW), and length composition data from the Canadian trawl (lenCANBTM), Canadian longline (lenCANLL), Greenland trawl (lenGRLBTM), 
combined gillnet (lenCAGRGN), all other trawl (lenOTHBTM), Greenland/Russia/Norway/Faroe Islands longline (lenGRNFLL), and offshore 
(lenRV0A1CD) and inshore (lenRVSFW1AF) surveys. 

Multiplier Linf TotLike propFSFW lenCANBTM lenCANLL lenGRLBTM lenCAGRGN lenOTHBTM lenGRNFLL lenRV0A1CD lenRVSFW1AF 
1.0 64.71, 

81.45 
153.42 -152.45 -57.75 2.98 121.28 7.84 185.06 69.87 -54.27 125.28 

1.2 77.65, 
97.74 

172.5 -174.55 -34.29 4.99 103.51 17.87 220.78 63.5 -42.7 108.17 

1.4 90.6, 
114.03 

139.16 -181.83 -37.56 5.04 89.27 21.92 214.52 58.88 -43.42 103.23 

1.6 103.53, 
130.32 

105.65 -179.95 -35.38 5.07 84.23 25.6 175.2 54.6 -43.8 99.76 

1.8 116.48, 
146.61 

134.35 -180.06 -38.66 5.14 86.62 23.82 212.64 56.15 -44.1 99.7 

2.0 129.42, 
162.9 

105.57 -179.9 -35.25 4.98 83.32 26.23 172.53 55.05 -43.89 98.53 
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Time-varying vs constant parameters 
Similar to the 𝐿𝐿∞ sensitivity, switching between time-varying and constant 𝑀𝑀 and 𝑞𝑞 for the CPUE 
index had implications for both unfished biomass and fitting the CPUE index data. When 
keeping 𝑞𝑞 constant but allowing 𝑀𝑀 to vary, the unfished biomass increased slightly from 90 kt at 
unfished up to 126 kt (Table 9). With the removal of the time-varying catchability parameter the 
model decreased recent 𝑀𝑀 and increased recruitment to fit to the higher CPUE towards the end 
of the data series. At the same time, the mean recruitment deviation increased to 0.27 standard 
deviations (Table 9, 𝜔𝜔‾𝑒𝑒) and brought spawning biomass back up towards unfished in 2020 
(Figure 16). 

When 𝑀𝑀 was constant, almost all temporal variability was removed from the spawning biomass 
time series. In addition, unfished biomass dropped significantly for both 𝑞𝑞 hypotheses, but less 
so for the constant 𝑞𝑞 hypothesis (90.4 kt at unfished versus 82.9 kt; Table 9). Similar to the 
growth model sensitivity, the drop in unfished biomass and flatter trend led to poorer qualitative 
fits to the early depletion in the CPUE data (not shown). 

Table 9. Time-varying CPUE catchability and natural mortality sensitivity analysis results showing 
SISCAL-GH maximum posterior density estimates of unfished biomass (𝐵𝐵0), unfished recruitment (𝑅𝑅0), 
time-averaged natural mortality (𝑀𝑀0), MSY-based optimal biomass 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀, optimal harvest rate 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀, and 
maximum sustainable yield MSY, mean recruitment deviation 𝜔𝜔𝑒𝑒, and a convergence indicator (pdHess). 

Sensitivity M 𝑩𝑩𝟎𝟎 𝑹𝑹𝟎𝟎 𝑴𝑴𝟎𝟎 𝑩𝑩𝑴𝑴𝑴𝑴𝑴𝑴 𝑼𝑼𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴𝑴𝑴 𝝎𝝎‾ 𝒕𝒕 pdHess 

con q conM 90.440 134.364 0.138 19.192 0.107 14.495 0.45 TRUE 
con q tvM 126.130 187.787 0.127 24.741 0.115 21.487 0.27 TRUE 
tv q conM 82.902 122.797 0.138 17.635 0.107 13.244 0.39 TRUE 
tv q tvM 95.210 141.587 0.125 18.491 0.116 16.420 0.21 TRUE 
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Figure 16. Time-varying catchability and mortality sensitivity analysis estimates of female spawning 
biomass (top) and spawning biomass depletion (bottom). 

Length composition sample size and tail compression 
SISCAL-GH is sensitive to the way that length composition data are filtered for including within 
the logistic normal likelihood function. Raising the tail compression parameter (i.e., minimum 
threshold on the proportion of samples under which observations and predictions are 
aggregated with neighbouring bins) causes a steep drop in unfished biomass. Unfished biomass 
𝐵𝐵0, and reference points 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 and MSY all drop by close to 50%, with a jump in mean 
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recruitment deviation by about 61% (Table 10, minProp hypotheses). This suggests that the 
information in the tails of the length composition data drive a lot of the model estimates and is 
related to the difficulty fitting data in the low probability length bins (i.e., GRNF longline 
fisheries). While the absolute biomass scale of the stock changed a lot under the minimum bin 
proportion, the productivity appeared to be insensitive, with only minor differences in 𝑀𝑀0 and 
𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀. 

In contrast, SISCAL-GH model was only slightly sensitive to the minimum sample size for 
inclusion of length composition data (Table 10, minSampSize hypotheses). As minimum sample 
sizes were increased from 100 to 800 per year, there was a relatively small drop in unfished 
biomass, going from 101 kt to 95 kt, close to the base model estimate where a minimum sample 
size of 700 is used. As with the minProp sensitivity, the productivity of the stock appeared to be 
insensitive to the minimum sample size, with 𝑀𝑀0 and 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 differing on the order of 10−3. 

Table 10. Length composition minimum sample and minimum bin proportion threshold sensitivity analysis 
results showing SISCAL-GH maximum posterior density estimates of unfished biomass (𝐵𝐵0), unfished 
recruitment (𝑅𝑅0), time-averaged natural mortality (𝑀𝑀0), MSY-based optimal biomass 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀, optimal harvest 
rate 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀, and maximum sustainable yield 𝑀𝑀𝑀𝑀𝑀𝑀, mean recruitment deviation 𝜔𝜔𝑒𝑒, and a convergence 
indicator (pdHess). 

modelHyp 𝑩𝑩𝟎𝟎 𝑹𝑹𝟎𝟎 𝑴𝑴𝟎𝟎 𝑩𝑩𝑴𝑴𝑴𝑴𝑴𝑴 𝑼𝑼𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴𝑴𝑴 𝝎𝝎‾ 𝒕𝒕 pdHess 
minProp.001 95.210 141.587 0.125 18.491 0.116 16.420 0.21 TRUE 
minProp.01 57.084 90.058 0.133 11.116 0.110 9.987 0.34 TRUE 
minProp.02 50.320 80.092 0.133 9.624 0.113 8.827 0.30 TRUE 
minSampSize100 101.481 149.703 0.125 19.783 0.115 17.414 0.23 TRUE 
minSampSize400 100.076 148.188 0.125 19.529 0.115 17.195 0.23 TRUE 
minSampSize600 96.878 143.526 0.125 18.767 0.116 16.707 0.19 TRUE 
minSampSize800 95.278 141.803 0.125 18.534 0.116 16.423 0.20 TRUE 

Retrospective analysis 
Retrospective model fits show a shift in unfished biomass and abundance (𝐵𝐵0,𝑅𝑅0) over time 
(Table 11). Since 2010, model estimates of unfished biomass (𝐵𝐵0), optimal biomass (𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀) and 
yield (MSY) have increased by around 45%. On the other hand, spawning biomass depletion 
has remained fairly consistent over the 2010 - 2020 period (Figure 17), staying within 10 
percentage points for most of the years with overlap between peels. 

Table 11. Retrospective analysis results showing SISCAL-GH maximum posterior density estimates of 
unfished biomass (𝐵𝐵0), unfished recruitment (𝑅𝑅0), time-averaged natural mortality (𝑀𝑀0), MSY-based 
optimal biomass (𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀), optimal harvest rate (𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀), and maximum sustainable yield (𝑀𝑀𝑀𝑀𝑀𝑀), mean 
recruitment deviation(𝜔𝜔𝑒𝑒), and a convergence indicator (pdHess). 

Peel 𝑩𝑩𝟎𝟎 𝑹𝑹𝟎𝟎 𝑴𝑴𝟎𝟎 𝑩𝑩𝑴𝑴𝑴𝑴𝑴𝑴 𝑼𝑼𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴𝑴𝑴 𝝎𝝎‾ 𝒕𝒕 pdHess 
2010 66.472 98.800 0.123 13.053 0.118 11.636 0.30 TRUE 
2011 81.479 121.027 0.126 16.231 0.116 13.875 0.37 TRUE 
2012 90.386 133.654 0.125 17.709 0.117 15.518 0.18 TRUE 
2013 91.511 134.220 0.126 18.038 0.112 15.121 0.43 TRUE 
2014 92.465 135.628 0.125 18.154 0.111 15.290 0.32 TRUE 
2015 88.639 130.150 0.125 17.421 0.112 14.641 0.37 TRUE 
2016 97.918 143.663 0.125 19.402 0.113 16.361 0.29 TRUE 
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Peel 𝑩𝑩𝟎𝟎 𝑹𝑹𝟎𝟎 𝑴𝑴𝟎𝟎 𝑩𝑩𝑴𝑴𝑴𝑴𝑴𝑴 𝑼𝑼𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴𝑴𝑴 𝝎𝝎‾ 𝒕𝒕 pdHess 
2017 100.324 148.091 0.124 19.502 0.116 17.165 0.13 TRUE 
2018 97.584 144.129 0.125 19.003 0.114 16.696 0.17 TRUE 
2019 99.420 147.232 0.125 19.446 0.113 17.061 0.19 TRUE 
2020 95.210 141.587 0.125 18.491 0.116 16.420 0.21 TRUE 

 

 
Figure 17. SISCAL-GH retrospective estimates of female spawning biomass from 2010 to 2020. 

The increase in unfished biomass is largely driven by the increasing catch, and somewhat flat 
(or missing) survey indices. Since 2017, all peels have had estimates of unfished and terminal 
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biomass varying around similar values. The year 2017 is also the last usable offshore RV 
survey data point, and TACs have been fairly stable since this time. Stable TACs, flat survey 
data series, and limited recruitment information mean that there has been little added 
information about the scale of the GH-0+1 stock in intervening years. 

Simulation self-tests 
The simulation self-test suggests that SISCAL-GH is reasonably good at recapturing estimates 
of leading model parameters and survey biomass time series. MREs and MAREs for selected 
parameters are given for each data scenario in Table 12, while relative error distributions are 
shown for some of the same parameters in Figure 18 and for spawning and vulnerable biomass 
time series in Figure 19. 

Table 82. Median relative errors (MREs) and median absolute relative errors (MAREs) for selected 
SISCAL-GH parameters under the simulation-evaluation self-test. 

Variable MRE MARE MRE MARE MRE MARE 
B0 -0.01 0.06 -0.02 0.04 -0.03 0.09 
H -0.03 0.03 0.00 0.00 -0.03 0.03 
M m 0.04 0.04 0.00 0.00 0.04 0.04 
M f 0.06 0.06 0.00 0.00 0.06 0.06 
L50A CAN BTM 0.00 0.01 0.00 0.00 0.00 0.01 
L95A CAN BTM 0.02 0.02 0.00 0.00 0.01 0.01 
L50D CAN BTM 0.02 0.02 0.00 0.00 0.02 0.02 
L95D CAN BTM 0.05 0.05 0.00 0.00 0.04 0.04 
L50A CAN LL -0.02 0.04 0.00 0.00 -0.02 0.05 
L95A CAN LL -0.01 0.04 0.00 0.00 -0.01 0.04 
L50A GRL BTM 0.03 0.03 0.00 0.00 0.03 0.03 
L95A GRL BTM 0.05 0.05 0.00 0.00 0.05 0.05 
L50A OTH BTM 0.03 0.03 0.00 0.00 0.03 0.03 
L95A OTH BTM 0.06 0.06 0.00 0.00 0.06 0.06 
L50A GRNF LL -0.01 0.01 0.00 0.00 -0.01 0.01 
L95A GRNF LL -0.01 0.01 0.00 0.00 -0.01 0.01 
q RV 0A1CD -0.07 0.10 0.02 0.05 -0.06 0.09 
tau RV 0A1CD -0.04 0.04 -0.10 0.17 -0.10 0.17 
L50A RV 0A1CD -0.02 0.02 0.00 0.00 -0.02 0.02 
L95A RV 0A1CD -0.02 0.02 0.00 0.00 -0.02 0.02 
L50D RV 0A1CD 0.01 0.01 0.00 0.00 0.01 0.01 
L95D RV 0A1CD 0.00 0.01 0.00 0.00 0.00 0.01 
q RV SFW1AF -0.06 0.10 -0.02 0.07 -0.06 0.12 
tau RV SFW1AF 0.03 0.03 -0.06 0.12 -0.07 0.13 
L50A RV SFW1AF 0.00 0.00 0.00 0.00 0.00 0.00 
L95A RV SFW1AF 0.01 0.01 0.00 0.00 0.01 0.01 
L50D RV SFW1AF 0.03 0.03 0.00 0.00 0.03 0.03 
L95D RV SFW1AF 0.04 0.04 0.00 0.00 0.04 0.04 
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Figure 18. Median (points) and central 95% (segments) of distributions of relative errors for SISCAL-GH 
Assessment Model (AM) estimates of leading parameter under the three simulation self-test scenarios 
(colours). 
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Figure 19. Distributions of relative errors in SISCAL-GH estimates of female spawning biomass (top), and 
vulnerable biomass time series for each modeled fleet (remaining rows) under the three simulation self-
test scenarios (columns). Heavy lines show median relative errors (i.e., median bias), while shaded 
regions show the central 95% (i.e., variation) of errors in each year.  

On average, SISCAL-GH is more sensitive to simulated length composition data than to 
simulated biomass and abundance index data, which is consistent with other length- and/or 
age-structured stock assessments since there are simply more data points to fit. MREs under 
the simulated index data only scenario (simIdx) are generally much lower than the scenarios 
including simulated length composition (simLengths) for unfished biomass (𝐵𝐵0), stock-recruit 
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steepness (ℎ), male/female natural mortality (𝑀𝑀𝑙𝑙/𝑀𝑀𝑓𝑓), and catchability (𝑞𝑞) for offshore and 
inshore surveys. Similarly, selectivity parameters were also sensitive to the simulated lengths, 
but not index data. In contrast, observation error standard deviations (𝜏𝜏) were often more 
biased and less precise under the simulated index scenario (Table 12, Figure 18). This 
dichotomous behaviour is expected, since length compositions inform selectivity and mortality 
parameters, which affect catchability and biological parameter estimates, while (unbiased) 
simulated indices affect model estimates of precision (i.e., 𝜏𝜏) more, as reflected in the time-
series of biomass relative errors (Figure 19). 
Overall, SISCAL-GH estimates of spawning biomass and vulnerable biomass for the 
commercial fleets were slightly negatively biased under the simLengths scenario, but not 
significantly so, and close to unbiased under the simIdx and simAll scenarios. Under the 
simLengths scenario, median relative errors for spawning and vulnerable biomass for fisheries 
were around -0.1, but relative error envelopes always contained 0 (Figure 19). By extension, 
estimates of exploitable biomass would also be slightly negatively biased (not shown). In 
contrast, relative error distributions for the survey biomass estimates are slightly positively 
biased under the simLengths and simAll scenario, with median errors around 0.1 on average. 
Most time series had very low and stable variation in relative errors under each scenario, with 
the exception of the inshore RV survey where variability increased towards the end of the time 
series due to time-varying selectivity. 

ADAPTIVE MODEL-/INDEX-BASED MANAGEMENT PROCEDURE EVALUATION 
FOR GH-0+1 
The adaptive model-/index-based MP performs relatively well based on the metrics we defined, 
which were chosen to roughly fit into NAFO PA policy guidelines (Table 13). Under either 
precision scenario, there was zero probability that female spawning biomass dropped below 
𝐵𝐵𝑙𝑙𝑙𝑙𝑙𝑙 = 0.3𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 over the 47 year simulation of the GH-0+1 stock. Moreover, the probability of 
being above 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 was around 82% for the whole projection period, and around 71% during the 
last 10 years of the projection, which is well above a probability of 50% usually associated with 
target biomass levels (DFO 2006). The probability of overfishing is around 22% for both 
scenarios, which is a little higher than the NAFO PA policy limit of 20% (Brodie et al. 2013), but 
the difference is small enough that the procedure can be tuned via a slightly lower 𝐹𝐹𝑏𝑏𝑏𝑏𝑓𝑓 value. 
Despite the higher-than-acceptable probability of overfishing in the earlier period, the expected 
exploitation rate above 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 was only 0.13, or 8% higher than the 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 limit.
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Table 93. Example performance metrics for the GH-0+1 stock under two management procedures and two newRV survey precision scenarios. 

Scenario MP pLRP pBtGtBmsy pBtGtBmsyEnd pOverfish mUoverfish avgCatch10 catchAAV10 
Adaptive model/index-based procedure     
isPrec qAdapt 0.000 0.821 0.710 0.213 0.13 25.1 0.06 
osPrec qAdapt 0.000 0.821 0.707 0.219 0.13 25.1 0.06 
Non-adaptive index-based procedure     
osPrec qFixed 0.016 0.667 0.443 0.423 0.14 25.1 0.06 
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Catch statistics in the first 10 years are heavily weighted by the initial constant TAC period from 
2021 - 2024 (Table 13). Average catch over the 2021 - 2030 period is 25.1 kt, which is only 
slightly lower than the current TAC of around 32 kt, and the AAV is 6%, again reflecting the 
early constant TACs and a relatively slow decline of TACs towards the MSY level given that 
they are set on a biennial frequency. 
Given the very similar performance under both precision scenarios, here we present detailed 
results for the isPrec scenario only. The same plots for the osPrec scenario are given in 
Appendix E (Figures E.1 - E.3). To compare the simulated variation among scenarios, Figures 
E.4 and E.5 show a single replicate of simulated abundance indices for the isPrec and osPrec 
scenarios, respectively. We also discuss the non-adaptive procedure at the end of this section 
in contrast to the adaptive procedure, with plots also given in Appendix E (Figures E.6 - E.8). 
Similarly, the bias and precision of simulated SISCAL-GH assessments was very similar under 
both isPrec and osPrec scenarios (Appendix F). 
The adaptive procedure does a good job of managing the development phase of the fishery, 
fishing down the standing biomass in a controlled manner across all the posterior draws, i.e., 
the range of parameter uncertainty (Figure 20), while also allowing the TACs to change in 
response to variation in survey biomass indices (Figure 21). Final median female spawning 
biomass is slightly above the posterior median 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 value (Figure 20), which is expected given 
the target maximum fishing mortality rate of 𝐹𝐹𝑏𝑏𝑏𝑏𝑓𝑓 = 0.8𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀, or exploitation rate of around 
0.8𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 (Figure 22, compare solid median line to horizontal black dashed line). Year-to year, 
the probability of exceeding 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 starts out above 20%, based on the constant TACs for the first 
4 projection years, but settles below 20% after about 25 years as the procedure adapts (Figure 
22, dark grey envelope). 
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Figure 20. Simulated GH-0+1 female spawning biomass depletion under the adaptive model/index-based 
MP and the isPrec survey precision scenario. Grey simulation envelopes show the central 95% (grey 
region), median (heavy black line), and 3 random simulation replicates (thin black lines) of spawning 
biomass depletion, the horizontal green line shows spawning biomass producing MSY, and the vertical 
dashed line indicates the start of the simulated management procedure in 2021. 
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Figure 21. Simulated total GH-0+1 catches under the adaptive model/index-based management 
procedure (MP) and the isPrec survey precision scenario. Grey simulation envelopes show the central 
95% (grey region), median (heavy black line), and 3 random simulation replicates (thin black lines) of 
spawning total catch across all fisheries. The beginning of the MP is shown as a vertical dashed line in 
2021. 
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Figure 22. Simulated GH-0+1 exploitation rates under the adaptive model/index-based management 
procedure (MP) and the isPrec survey precision scenario. Lines show median total (black) and fleet 
specific (colours) exploitation rates, with the simulation envelope showing the central 60% (dark grey) and 
central 95% (light grey) of total exploitation rates over the 50 replicates. Target and optimal exploitation 
rates are shown as horizontal dashed lines, and the beginning of the MP is shown as a vertical dashed 
line in 2021. 
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A single simulation replicate shows the ability of the MP to capture the GH-0+1 simulated 
dynamics, and bring biomass towards 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 via its adaptive nature (Figure 23). For this 
particular posterior draw, the spawning biomass estimates from SISCAL-GH are slightly 
positively biased, but the bias appears to decrease over the projection period as more data is 
generated for model fitting (Figure 23, grey lines). There was also a slight positive bias in 
exploitable biomass estimates from the index-based procedure early on, partly based on the 
bias in SISCAL-GH biomass estimates (Figure 23, blue circles). However, that positive bias in 
the biomass estimates is reduced as updated assessments revise the 𝑟𝑟ℎ𝑜𝑜𝑒𝑒 values. As a result, 
spawning biomass is brought almost exactly to its MSY-level (horizontal red dashed line), and 
although exploitable biomass levels out a little below the MSY level (horizontal blue dashed 
line), the stock is stable and on average biomass estimates are unbiased. 
Adaptation of the model-/index-based procedure can be seen in the trends in exploitable 
biomass estimates over time (Figure 23). For the chosen replicate, the trends in exploitable 
biomass and RV survey biomass diverge around 2023, with exploitable biomass decreasing 
further while RV biomass levels off after a short increase. The diverging biomasses, along with 
the observation errors in the survey indices, translate into a short period of positively biased 
exploitable biomass estimates between 2024 and 2028 (Figure 23, blue circles). The bias was 
eliminated after the next full SISCAL-GH simulated assessment, adapting the ratio 𝜌𝜌𝑒𝑒 and 
survey catchability 𝑞𝑞𝑅𝑅𝑅𝑅,𝑒𝑒 control parameters for the index-based method, bringing the exploitable 
biomass estimates much closer to the true exploitable biomass value, and long term spawning 
biomass close to the optimal 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 level. 
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Figure 23. A single simulation replicate from MS3-GH under the isPrec scenario and adaptive 
management procedure (MP) showing the true operating model female spawning biomass (red line), 
exploitable biomass (blue line), total biomass (black line), and RV survey biomass (orange line), as well 
as simulated RV survey biomass indices (orange points). Also shown are MP estimates of female 
spawning biomass (grey lines) produced by the simulated SISCAL-GH model update, and estimates of 
exploitable biomass from the index-based procedure (blue points). 

In contrast, the non-adaptive MP performs poorly relative to the chosen performance metrics. 
While there is still a very low probability of biomass dropping below the LRP, this is somewhat 
biased by the health of the stock in early years during the development phase (Figure B.7). The 
fixed 𝜌𝜌 and 𝑞𝑞𝑅𝑅𝑅𝑅 values do not adapt to changes in the ratio of exploitable and survey biomass, 
leading to overestimates of biomass. As a result, TACs are too high (Figure B.8), leading to 
median harvest rates around 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 (Figure B.9), with a 42% probability of exceeding the limit 
(Figure B.9, Table 13). As a result, there is a 56% probability of female spawning biomass being 
below 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 at the end of the projections (Table 13). Furthermore, the median spawning 
biomass does not appear to level off, indicating that it may not have equilibrated to the higher 
exploitation rate by the end of the projection (Figure B.7) 
Finally, simulated assessments appear to perform similarly in projections as under the 
simulation-estimation procedure (Tables C.1 and C.2). 
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DISCUSSION 
In this paper, we demonstrated an example end-to-end (data-to-advice) assessment modelling 
framework in three parts: 
A. estimating GH-0+1 stock status and biological reference points from fishery and survey 

data; 
B. simulation-testing the assessment model to better understand the range of estimation 

performance (i.e., bias and precision of estimates) given the available data types, quality, 
and quantity; 

C. conditioning operating models and simulation-testing precautionary harvest strategies. 
According to SISCAL-GH estimates, the GH-0+1 stock is likely in a development phase and not 
overfished, but there is a chance (50% probability) that the recent increases in exploitation rates 
are overfishing the stock. The SISCAL-GH model presented for Part A showed that the GH-0+1 
stock has sufficient data to produce a Bayesian stock assessment, estimating biological 
reference points and their associated uncertainty. It should be noted that there is considerable 
uncertainty about the scale of the stock, largely due to low statistical power data such as flat 
and noisy survey indices, and missing observations of older fish. Sensitivities presented here 
show a range of unfished female spawning biomass between 30 kt and 250 kt, with total 
biomass ranging much higher. While absolute scale is very uncertain, all models that fit the data 
well told a similar story (Appendix A): the GH-0+1 stock is likely to be above 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀, placing it in a 
relatively healthy state. Moreover, given the 1-way trip dynamics and catch history, commercial 
exploitation is likely to have been fishing down a standing stock in a fishery development phase. 
On the other hand, despite little evidence to suggest the stock is overfished, several barriers 
continue to prevent more certain determination of stock scale, and without scale information it is 
hard to determine whether current TACs are overfishing GH-0+1, and if so by how much 
(Appendix A). For example, it is difficult to observe larger fish, making growth estimates 
uncertain, and the portion of the stock that is in un-surveyed water deeper than 1500 m is not 
known—all of which suggest that now is an opportune time to develop and apply a simulation-
tested feedback harvest strategy approach for the GH-0+1 stock, tested for robustness against 
the uncertainty in the absolute biomass of the stock. Without such information feedbacks, it will 
be impossible to detect signs of overfishing and adjust management actions accordingly. 
There were some differences between the GH-0+1 model and the state-space model used to 
manage Greenland Halibut in NAFO Subarea 2 and Divisions 3KLMNO (referred to here as GH-
2+3 for short) (Rademeyer and Butterworth 2017, Regular et al. 2017, Regular 2020, Varkey et 
al. 2020). First, there is a large difference between the number of modeled age-classes for GH-
0+1 (plus group for age 35+) and GH-2+3 (plus group for age 10+). There is also a considerable 
difference in the weight-at-age for those ages that overlap, with age 10+ GH-2+3 fish being 
about the same weight as fish age 20 and higher in the GH-0+1 model. Finally, the GH-2+3 
model is not sex-structured, where SISCAL-GH is a sex-structured model. These differences 
are all related to the availability and quality of ageing data for each stock. There is substantially 
more ageing data available for GH-2+3 stock, with annual survey and commercial catch-at-age 
observations. However, there is considerable uncertainty in the age readings for fish above 10 
years old in the GH-2+3 stock (P. Regular, DFO, pers. comm.), and therefore the plus group 
age is set to that threshold. Given that there is a large portion of the stock aggregated into the 
plus-group for GH-2+3, there is considerable variation in size-at-age from year-to-year. 
Therefore, annual empirical weight-at-age is estimated from biological samples, leading to a 
higher weight-at-age assigned to age 10+ fish for the GH-2+3 stock assessment. 
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In contrast to the GH-2+3 stock, the GH-0+1 stock has age/length observations for the 2017 
offshore survey in Division 0A only. The limited data set means that a parametric growth model 
is necessary to convert numbers-at-age to stock biomass within the SISCAL-GH model and is 
also required to provide expected numbers-at-length for fitting to length composition data. While 
there is a suggestion of ageing error given large variation and overlap in length-at-age 
distributions for successive age classes above age 10 (Figure 2), there is also a positive trend in 
median length-at-age in the data. That positive trend is also reflected in estimated von 
Bertalanffy models that suggest that age observations are not completely unusable above age 
10, and that both sexes keep growing beyond the observed data. Therefore, despite differences 
to the GH-2+3 model, as well as identified limitations in how biology is modeled for GH-0+1—
such as the low maturity-at-age and possible bias in length-at-age given dome-shaped 
selectivity for the survey—we are confident that the plus-group age and growth models for GH-
0+1 are appropriate. 
It is not clear that there is the same level of ageing uncertainty for GH-0+1 as in the GH-2+3 
stock. As mentioned above, there is considerable overlap between length distributions for 
successive age-classes, which may suggest ageing error (Heifetz et al. 1999, Hanselman et al. 
2012). On the other hand, the sample size is very low, with about 175 fish for each sex, which if 
randomly assigned to age-classes would give an average of 7 individuals per age-class, and 
less for older ages given survivorship. Therefore, it is difficult to assign variation in length-at-age 
to low sample size, or a systemic difficulty in reading ages from Greenland Halibut otoliths. 
One notable similarity between the GH-2+3 stock assessment and the GH-0+1 stock 
assessment is the high mortality in the late 1980s and early 1990s. For GH-0+1, we have 
assigned it to time-varying natural mortality, given that the model is conditioned on catch. For 
GH-2+3, it is produced as elevated fishing mortality required to fit a large spike in catch from 
1990 to 1993. The GH-2+3 State Space Model (SSM) fits the catch reasonably well, but misses 
some of the points by around 5 kt (Regular et al. 2017, Regular 2020). Coincidentally, the GH-
2+3 SSM has a run of positive process errors in years corresponding to the elevated 𝑀𝑀 for GH-
0+1, which may be interpreted as fish moving between Subareas 0+1 and 2+3. 
Retrospective analysis of the SISCAL-GH model shows that the dynamics are relatively stable 
under the addition of new data. While the increased TACs over the years have pushed 
estimates of the absolute size (scale) of the stock up, there has been little variation in depletion 
estimates among data peels. This stability indicates that while estimates of stock scale have 
been increasing, there has been stability in estimates of the productivity of the stock (as 
reflected in several of the sensitivity analyses). On the other hand, that stability is partially due 
to informative priors on steepness and natural mortality, which compensate for low statistical 
power (i.e., flat or noisy) indices and length compositions, which are an imperfect substitute for 
improved age data. 
Overall, the SISCAL-GH model shows acceptable bias and precision in simulation self-tests. 
The SISCAL-GH model base hypothesis was used to simulate alternative data histories (based 
on the same population dynamics), either simulating stock indices, length composition data, or 
both. Each simulated data scenario tested SISCAL-GH for its bias and precision in selected 
biological and observation model parameters, as well as spawning and fishery/survey 
vulnerable biomass time series. Model estimates of biomass time series, biological parameters, 
and catchability were most sensitive to whether length composition data was simulated, while 
stock index residual standard errors were more sensitive to simulated index data. While MRE 
and MARE values all indicated low bias and moderate precision of parameters, there was 
moderately persistent negative bias of around -20% in spawning and vulnerable biomass for 
commercial fisheries. However, these biases are often ultimately irreducible, as there is always 
uncertainty in the data and the underlying population dynamics, which is something that closed-
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loop feedback simulations are designed to address. When fit to data generated by the same life-
history parameters but simulating random recruitments for the 1968 to 1988 period, there was 
more bias but the central 95% of distributions of biomass contained the true values (Appendix 
B). 
We closed the data-to-advice loop by demonstrating a closed-loop feedback simulation 
framework for testing potential harvest strategies. MS3-GH was conditioned on the estimates 
under the base SISCAL-GH hypothesis and used to simulation test an adaptive model-/index-
based MP also based on the SISCAL-GH stock assessment model. Using the current harvest 
control rule parameters (e.g., 𝐹𝐹𝑏𝑏𝑏𝑏𝑓𝑓 = 0.8𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀 and 𝐵𝐵𝑏𝑏𝑏𝑏𝑓𝑓 = 0.7𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀) the MP tends to meet 
management targets implied by those parameters. Moreover, the MP does a good job of guiding 
the GH-0+1 fishery through the development phase, fishing the stock down so spawning 
biomass ends up close to the optimal 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 level without any large probabilities of overfishing. 
The speed with which the MP adapts to changes in stock status could be increased by 
narrowing the time window used to update the full SISCAL-GH model or by updating target 
fishing mortality rates along with the catchability and biomass adjustment factor parameters. By 
using a shorter window (e.g., 3-5 years instead of 6), the 𝜌𝜌𝑒𝑒 scalar would be more responsive to 
changes in the ratio of exploitable to RV survey biomass. On the other hand, higher 
responsiveness in the index-based method would likely come at the cost of increased catch 
variability due, in part, to increased sensitivity to SISCAL-GH assessment errors to survey 
observation errors. 
The SISCAL-GH stock assessment model performed as expected (i.e., similar to self-tests) in 
projections as well. Bias and precision was similar to the simulation self-test across newRV 
survey precision scenarios and projection years (Appendix C). Predictably, the newRV survey 
parameter estimates improved with additional simulated data. 
As mentioned in the results around length composition uncertainties, a modelling framework like 
the one proposed here can be used for more than just TAC decision making. At the assessment 
level, there is also the ability to identify data sources that have the largest impact on uncertainty 
as identified by higher residual standard errors and/or negative log-likelihood function values. 
Once identified, problematic data sources can be investigated further, and potentially remedied. 
If there are deeper issues that require significant investment, such as standardisation of data 
collection processes, then the simulation framework can help to identify the data that will 
provide the largest return on investment (e.g., more stable TACs through smaller simulated 
assessment errors when future length data are simulated with, say, lower standard errors). 
The end-to-end (data-to-advice) framework presented in this paper can be readily extended to 
include new data sources and additional complexities. For example, different types of tagging 
data can be incorporated in the SISCAL-GH model. Tagging data is often integrated into 
assessments to inform movement among areas (for spatially explicit models), mortality rates 
(Cox et al. 2016), or selectivity estimates (Cox et al. 2019). There is also an increasing 
prevalence of genetic mark-recapture methods for conservation and management of fisheries 
including Greenland Halibut (Carrier et al. 2020), some of which may draw on SISCAL-GH 
estimates of cohort strength. Additionally, the framework can also be used to estimate the value 
of information from a new survey, such as a longline survey in deeper waters. Initial exploratory 
survey sets could determine the rough size structure of the portion of the GH-0+1 stock below 
1400 m, and be used to help design a new survey series that could be included in the closed 
loop simulations for MP testing. 
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FUTURE WORK FOR A FULL PEER-REVIEWED MSE 
This paper shows one example realisation of a closed-loop data-to-advice framework. As a 
result, there are several sources of uncertainty that we did not fully explore. A full, peer-
reviewed Management Strategy Evaluation process could expand upon this work in several 
ways, including, but not limited to: 

i. Additional MS3-GH scenarios for closed-loop simulations, using the same adaptive MP that 
fits SISCAL-GH under the base hypothesis for simulated assessments. This would test the 
MP under a model mis-specification scenario (sometimes called robustness tests). We 
suggest an operating model that fits to GRNF longline fishery length compositions better, 
perhaps via a larger 𝐿𝐿∞ value and alternative selectivity functional forms. 

ii. Additional model sensitivities to (i) selected parameter prior distributions, and (ii) the initial 
year of time-varying catchability for the CPUE series, as well as any others suggested by 
reviewers. 

iii. Fit to any available data from the newRV survey to estimate selectivity and (in time) 
catchability, incorporating additional uncertainty in parameter values associated with its 
short time series of data. 

iv. Design a longline survey, perhaps in partnership with industry, with sets below 1400 m to 
identify the size/age structure and abundance of the unobserved portion of the GH-0+1 
stock (Cox et al. 2018). 
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APPENDIX A: ADDITIONAL SISCAL-GH SENSITIVITY ANALYSES 
During peer review, reviewers requested an analysis of SISCAL-GH sensitivities to the choice of 
data included for fitting by the stock assessment model, as well as some of the structural 
assumptions that were made to fit to those data. Specifically, concerns were raised about time-
varying parameter assumptions that increased flexibility of the model, and the limits of 
inferences about stock size and productivity drawn from monitoring data when the statistical 
power is low, such as with indices, or observations of certain portions of the population are 
missing due to lack of sampling or gear selectivity, such as larger fish that escape trawl fishing, 
and the un-surveyed portion of the population that resides in deeper water. 
Additional sensitivity runs and simulation tests were defined in response to the reviewers’ 
requests, testing the effects of several model assumptions and data sources on SISCAL-GH 
estimates. Specifically, the following configuration was suggested for SISCAL-GH: 
1. conM: constant natural mortality rate for males and females, 
2. noCPUE removing the BTM_CPUE index for which time-varying catchability was 

necessary, 
3. domeSel: dome-shaped selectivity for the GRL_BTM and OTH_BTM trawl fleets in 

addition to the dome-shaped selectivity already assumed for CAN_BTM. 
The original specification and the reviewers’ suggested specification for SISCAL were then both 
subjected to several sensitivity tests: 
1. Alternative priors for natural mortality and steepness parameters, i.e., Mprior(m,s)$, where 

𝑚𝑚 is the mean and 𝑠𝑠 is the standard deviation, and steepPrior(𝛽𝛽1,𝛽𝛽2), where 𝛽𝛽1,𝛽𝛽2 are the 
parameters for the beta prior on stock-recruit steepness, 

2. Lower weightings on the Jeffreys prior for unfished biomass jeffWtB0_1 and jeffWtB0_0, 
3. Earlier initial recruitment deviation in 1970 and 1980, 
4. later model initialisation in 1988, and 
5. noInshore testing the exclusion of data from the inshore RV survey that selected for 

smaller fish. 
Additional growth models were also explored, based on two additional sets of age/length 
observations. The first data set increased the original data from the 2017 0A survey by adding 
observations of larger fish from the gillnet fishery. The second added 0A survey data from 2014 
to the original data from 2017, but excluded the gillnet fishery. The effect of a single-sex model 
was also emulated by assuming no sexual dimorphism in the growth model for the original 2017 
data set, as well as the additional gillnet data. 
Detailed results are given in tables and selected figures below, but we summarise the main 
findings here for readers who do not want to stare at detailed tables. 
1. Unfished spawning biomass was not highly sensitive to the suggested changes to the 

model specification. The new specification had more effect on total biomass, and therefore 
the ratio of spawning to total biomass, but it was not extreme. Based on further sensitivity 
analysis, the natural mortality rate is the most significant influence on the total biomass 
relative to spawning biomass. 

2. Unfished spawning biomass was most sensitive to the first year that recruitment process 
errors were estimated. Earlier recruitment process errors drive unfished spawning biomass 
higher, but are coupled with a string of negative recruitment deviations in the 1980s that 
reduce biomass to fit indices, but are unacceptable in a stock assessment context. 
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3. The 2020 harvest rates range between 1.0 and 1.5 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 for both operating model (OM) 
specifications and across most sensitivities, but jump to above 2.0 for low M estimates (i.e., 
Mprior(.11,.1)). Overall, it was clear that lower 𝑀𝑀 values produced lower 𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 values and 
lower recent biomass, and the resulting model estimates of harvest rates indicate 
overfishing in recent years. 

4. Growth was found to affect stock scale and recent harvest rates the most, as the size-at-
age of the mostly unobserved older fish in the stock affects the total biomass, which in turn 
affects exploitable biomass. In some cases there were large changes in optimal harvest 
𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀 under different growth models, but that was less common. 

Overall, the model sensitivities showed that the absolute scale of GH-0+1 biomass is difficult to 
nail down, but is likely above 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀. Unfished spawning biomass ranged from around 30 kt to 
around 250 kt at the extremes. The uncertainty in biomass also means that recent harvest rates 
are very uncertain, making it hard to determine if GH-0+1 is currently subject to overfishing. On 
the other hand, despite the large range of unfished and current biomass estimates across 
models, all models in the sensitivity analysis estimated current biomass above the optimal 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀 
level, suggesting that while GH-0+1 may or may not be subject to overfishing, GH-0+1 is likely 
not currently overfished.
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Table A.1. Results of the sensitivity analysis of SISCAL-GH maximum posterior density estimates from the base operating model (OM) and the 
suggested OM specification initialised in 1968. Models were tested for sensitivity to initial year of recruitment deviations, a Jeffreys prior on 
unfished biomass, alternative natural mortality and steepness priors, and the inclusion of the inshore SFW survey. Results show MPDEs of 
unfished biomass (𝐵𝐵0), unfished recruitment (𝑅𝑅0), time-averaged natural mortality (𝑀𝑀0), MSY-based optimal biomass (𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀), optimal harvest rate 
(𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀), maximum sustainable yield (𝑀𝑀𝑀𝑀𝑀𝑀), and mean recruitment deviation. 

OM Sensitivity 𝑩𝑩𝟎𝟎 𝑹𝑹𝟎𝟎 𝑴𝑴𝟎𝟎 𝒉𝒉 𝑩𝑩𝟐𝟐𝟎𝟎𝟐𝟐𝟎𝟎 𝑫𝑫𝟐𝟐𝟎𝟎𝟐𝟐𝟎𝟎 𝑼𝑼𝟐𝟐𝟎𝟎𝟐𝟐𝟎𝟎 𝑼𝑼𝑴𝑴𝑴𝑴𝑴𝑴 𝑩𝑩𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴𝑴𝑴 meanRecDev 
GH-0+1conMnoCPUEdomeSel basefRecDev1990 93.181 138.233 0.138 0.742 64.136 0.688 0.119 0.109 19.743 14.969 0.26 
GH-0+1conMnoCPUEdomeSel fRecDev1980 227.399 342.220 0.139 0.724 104.946 0.462 0.073 0.098 50.523 36.387 -0.54 
GH-0+1conMnoCPUEdomeSel jefffWtB00 93.181 138.233 0.138 0.742 64.136 0.688 0.119 0.109 19.743 14.969 0.26 
GH-0+1conMnoCPUEdomeSel jefffWtB01 89.769 133.016 0.138 0.740 60.689 0.676 0.125 0.108 19.084 14.360 0.27 
GH-0+1conMnoCPUEdomeSel Mprior(.11,.1) 106.758 26.414 0.077 0.760 50.260 0.471 0.224 0.082 24.984 7.263 0.55 
GH-0+1conMnoCPUEdomeSel Mprior(.14,.1) 93.397 39.817 0.094 0.755 45.416 0.486 0.202 0.086 21.191 8.381 0.46 
GH-0+1conMnoCPUEdomeSel noInshore 81.748 119.628 0.138 0.739 50.029 0.612 0.152 0.108 17.407 12.899 0.25 
GH-0+1conMnoCPUEdomeSel steepPrior(20,10) 93.488 138.711 0.138 0.674 64.285 0.688 0.119 0.092 22.752 13.221 0.26 
GH-0+1conMnoCPUEdomeSel steepPrior(40,20) 93.508 138.742 0.138 0.670 64.296 0.688 0.119 0.091 22.923 13.125 0.26 
GH-0+1tvMqCPUE basefRecDev1990 95.210 141.587 0.125 0.778 61.884 0.650 0.117 0.116 18.491 16.420 0.21 
GH-0+1tvMqCPUE fRecDev1970 157.275 240.308 0.130 0.751 79.629 0.506 0.091 0.103 32.770 26.688 -0.28 
GH-0+1tvMqCPUE fRecDev1980 153.177 233.073 0.131 0.751 79.274 0.518 0.092 0.103 31.955 25.888 -0.35 
GH-0+1tvMqCPUE jefffWtB00 155.385 235.420 0.081 0.794 115.864 0.746 0.066 0.117 29.024 28.124 0.33 
GH-0+1tvMqCPUE jefffWtB01 139.442 209.704 0.091 0.792 103.493 0.742 0.073 0.117 26.194 24.962 0.30 
GH-0+1tvMqCPUE Mprior(.11,.1) 90.595 42.281 0.081 0.784 47.961 0.529 0.161 0.092 19.269 9.267 0.46 
GH-0+1tvMqCPUE Mprior(.14,.1) 91.732 57.474 0.092 0.779 51.700 0.564 0.147 0.096 19.224 10.620 0.38 
GH-0+1tvMqCPUE noInshore 88.823 130.040 0.125 0.771 53.881 0.607 0.132 0.114 17.583 14.885 0.17 
GH-0+1tvMqCPUE steepPrior(20,10) 93.434 138.703 0.126 0.731 61.852 0.662 0.116 0.103 20.273 14.746 0.25 
GH-0+1tvMqCPUE steepPrior(40,20) 95.259 141.655 0.125 0.704 61.900 0.650 0.117 0.096 21.877 14.315 0.21 
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Table A.2. Results of the sensitivity analysis of SISCAL-GH maximum posterior density estimates from the base operating model (OM) and the 
suggested OM specification initialised in 1988. Models were tested for sensitivity to initial year of recruitment deviations, a Jeffreys prior on 
unfished biomass, alternative natural mortality and steepness priors, and the inclusion of the inshore SFW survey. Results show MPDEs of 
unfished biomass (𝐵𝐵0), unfished recruitment (𝑅𝑅0), time-averaged natural mortality (𝑀𝑀0), MSY-based optimal biomass (𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀), optimal harvest rate 
(𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀), maximum sustainable yield (𝑀𝑀𝑀𝑀𝑀𝑀), and mean recruitment deviation. 

OM Sensitivity 𝑩𝑩𝟎𝟎 𝑹𝑹𝟎𝟎 𝑴𝑴𝟎𝟎 𝒉𝒉 𝑩𝑩𝟐𝟐𝟎𝟎𝟐𝟐𝟎𝟎 𝑫𝑫𝟐𝟐𝟎𝟎𝟐𝟐𝟎𝟎 𝑼𝑼𝟐𝟐𝟎𝟎𝟐𝟐𝟎𝟎 𝑼𝑼𝑴𝑴𝑴𝑴𝑴𝑴 𝑩𝑩𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴𝑴𝑴 meanRecDev 
GH-0+1conMnoCPUEdomeSel1988 basefRecDev1990 87.560 131.203 0.139 0.753 59.645 0.681 0.127 0.113 18.046 14.473 0.28 
GH-0+1conMnoCPUEdomeSel1988 jefffWtB00 87.560 131.203 0.139 0.753 59.645 0.681 0.127 0.113 18.046 14.473 0.28 
GH-0+1conMnoCPUEdomeSel1988 jefffWtB01 85.941 128.771 0.139 0.754 57.598 0.670 0.130 0.113 17.698 14.209 0.28 
GH-0+1conMnoCPUEdomeSel1988 Mprior(.11,.1) 106.226 27.865 0.078 0.767 54.301 0.511 0.210 0.084 24.454 7.544 0.54 
GH-0+1conMnoCPUEdomeSel1988 Mprior(.14,.1) 95.802 39.701 0.093 0.763 49.574 0.517 0.196 0.089 21.445 8.573 0.46 
GH-0+1conMnoCPUEdomeSel1988 noInshore 79.093 116.129 0.138 0.751 47.439 0.600 0.159 0.111 16.403 12.806 0.24 
GH-0+1conMnoCPUEdomeSel1988 steepPrior(20,10) 87.916 131.761 0.139 0.695 60.053 0.683 0.126 0.097 20.551 13.025 0.28 
GH-0+1conMnoCPUEdomeSel1988 steepPrior(40,20) 88.012 131.912 0.139 0.681 60.166 0.684 0.126 0.094 21.139 12.695 0.28 
GH-0+1tvMqCPUE1988 basefRecDev1990 95.748 141.545 0.204 0.754 61.451 0.642 0.118 0.110 19.740 15.734 0.02 
GH-0+1tvMqCPUE1988 jefffWtB00 112.590 166.344 0.206 0.751 81.644 0.725 0.092 0.109 23.406 18.402 0.00 
GH-0+1tvMqCPUE1988 jefffWtB01 110.237 162.831 0.205 0.751 78.841 0.715 0.095 0.109 22.903 18.018 0.01 
GH-0+1tvMqCPUE1988 Mprior(.11,.1) 91.140 41.937 0.160 0.776 49.406 0.542 0.158 0.089 19.785 9.189 0.36 
GH-0+1tvMqCPUE1988 Mprior(.14,.1) 91.534 53.188 0.168 0.770 50.436 0.551 0.152 0.093 19.679 10.093 0.28 
GH-0+1tvMqCPUE1988 noInshore 90.545 132.107 0.211 0.751 54.293 0.600 0.132 0.109 18.825 14.615 0.00 
GH-0+1tvMqCPUE1988 steepPrior(20,10) 95.574 141.203 0.203 0.695 61.731 0.646 0.117 0.095 22.361 14.060 0.05 
GH-0+1tvMqCPUE1988 steepPrior(40,20) 95.638 141.306 0.203 0.681 61.728 0.645 0.117 0.091 22.993 13.697 0.05 
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Table A.3. Results of the sensitivity analysis of SISCAL-GH maximum posterior density estimates from the base operating model (OM) and the 
suggested OM specification initialised in 1968 and usingalternative growth models including 2014 data, gillnet data, and assuming no sexual 
dimorphism. Models were tested for sensitivity to initial year of recruitment deviations, a Jeffreys prior on unfished biomass, alternative natural 
mortality and steepness priors, and the inclusion of the inshore SFW survey. Results show MPDEs of unfished biomass (𝐵𝐵0), unfished recruitment 
(𝑅𝑅0), time-averaged natural mortality (𝑀𝑀0), MSY-based optimal biomass (𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀), optimal harvest rate (𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀), maximum sustainable yield (𝑀𝑀𝑀𝑀𝑀𝑀), 
and mean recruitment deviation. 

OM Sensitivity 𝑩𝑩𝟎𝟎 𝑹𝑹𝟎𝟎 𝑴𝑴𝟎𝟎 𝒉𝒉 𝑩𝑩𝟐𝟐𝟎𝟎𝟐𝟐𝟎𝟎 𝑫𝑫𝟐𝟐𝟎𝟎𝟐𝟐𝟎𝟎 𝑼𝑼𝟐𝟐𝟎𝟎𝟐𝟐𝟎𝟎 𝑼𝑼𝑴𝑴𝑴𝑴𝑴𝑴 𝑩𝑩𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴𝑴𝑴 meanRecDev 
GH-0+1conMnoCPUEdomeSelMprior.11 identGrowth2017 41.036 24.601 0.093 0.763 16.151 0.394 0.319 0.094 9.851 6.839 0.51 
GH-0+1conMnoCPUEdomeSelMprior.11 identGrowthGNdata 29.836 26.942 0.116 0.766 8.871 0.297 0.504 0.133 6.873 7.484 0.41 
GH-0+1conMnoCPUEdomeSelMprior.11 sexDim0A201417 104.111 22.969 0.086 0.790 26.412 0.254 0.619 0.107 22.662 5.549 0.67 
GH-0+1conMnoCPUEdomeSelMprior.11 sexDim2017 109.665 24.907 0.074 0.759 54.249 0.495 0.240 0.086 26.459 7.158 0.57 
GH-0+1conMnoCPUEdomeSelMprior.11 sexDimGNdata 61.671 24.573 0.093 0.763 16.642 0.270 0.457 0.111 13.629 6.899 0.41 
GH-0+1tvMqCPUE identGrowth2017 54.027 123.212 0.128 0.768 34.098 0.631 0.143 0.124 11.024 13.999 0.22 
GH-0+1tvMqCPUE identGrowthGNdata 36.697 55.891 0.129 0.763 19.944 0.543 0.249 0.160 8.085 11.414 0.20 
GH-0+1tvMqCPUE sexDim0A201417 76.715 72.624 0.123 0.776 32.536 0.424 0.231 0.115 15.628 9.992 0.26 
GH-0+1tvMqCPUE sexDim2017 95.210 141.587 0.125 0.778 61.884 0.650 0.117 0.116 18.491 16.420 0.21 
GH-0+1tvMqCPUE sexDimGNdata 62.586 70.404 0.126 0.762 37.072 0.592 0.192 0.153 12.776 12.764 0.21 
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Table A.4. Results of the sensitivity analysis of SISCAL-GH maximum posterior density estimates from the base operating model (OM) and the 
suggested OM specification initialised in 1988 and using alternative growth models including 2014 data, gillnet data, and assuming no sexual 
dimorphism. Models were tested for sensitivity to initial year of recruitment deviations, a Jeffreys prior on unfished biomass, alternative natural 
mortality and steepness priors, and the inclusion of the inshore SFW survey. Results show MPDEs of unfished biomass (𝐵𝐵0), unfished recruitment 
(𝑅𝑅0), time-averaged natural mortality (𝑀𝑀0), MSY-based optimal biomass (𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀), optimal harvest rate (𝑈𝑈𝑀𝑀𝑀𝑀𝑀𝑀), maximum sustainable yield (𝑀𝑀𝑀𝑀𝑀𝑀), 
and mean recruitment deviation. 

OM Sensitivity 𝑩𝑩𝟎𝟎 𝑹𝑹𝟎𝟎 𝑴𝑴𝟎𝟎 𝒉𝒉 𝑩𝑩𝟐𝟐𝟎𝟎𝟐𝟐𝟎𝟎 𝑫𝑫𝟐𝟐𝟎𝟎𝟐𝟐𝟎𝟎 𝑼𝑼𝟐𝟐𝟎𝟎𝟐𝟐𝟎𝟎 𝑼𝑼𝑴𝑴𝑴𝑴𝑴𝑴 𝑩𝑩𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴𝑴𝑴 meanRecDev 
GH-0+1conMnoCPUEdomeSelMprior.11 identGrowth2017 45.098 27.020 0.093 0.768 19.553 0.434 0.283 0.095 10.639 7.184 0.49 
GH-0+1conMnoCPUEdomeSelMprior.11 identGrowthGNdata 29.661 28.608 0.119 0.769 9.884 0.333 0.462 0.137 6.758 7.708 0.40 
GH-0+1conMnoCPUEdomeSelMprior.11 sexDim2017 106.226 27.865 0.078 0.767 54.301 0.511 0.210 0.084 24.454 7.544 0.54 
GH-0+1conMnoCPUEdomeSelMprior.11 sexDimGNdata 60.703 26.592 0.097 0.766 19.285 0.318 0.405 0.116 13.205 7.207 0.41 
GH-0+1tvMqCPUE identGrowth2017 57.917 131.542 0.204 0.753 37.334 0.645 0.133 0.119 12.272 14.579 0.05 
GH-0+1tvMqCPUE identGrowthGNdata 39.436 59.994 0.212 0.756 23.162 0.587 0.220 0.154 8.820 12.108 0.12 
GH-0+1tvMqCPUE sexDim2017 95.748 141.545 0.204 0.754 61.451 0.642 0.118 0.110 19.740 15.734 0.02 
GH-0+1tvMqCPUE sexDimGNdata 63.170 70.913 0.203 0.752 36.420 0.577 0.194 0.149 13.197 12.657 0.09 
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APPENDIX B: ADDITIONAL SIMULATION TESTS OF SISCAL-GH 
Simulation self-tests were re-run with stochastic recruitment simulated randomly off the stock-
recruit curve for 1968 - 1988. Three data scenarios were simulated, as in the main body of this 
paper, where either only indices were simulated (simIdx), only length compositions were 
simulated (simLengths), or both length and index data series were simulated (simAll). 
Simulations were completed over 50 Monte-Carlo replicates, due to time constraints, and the 
simulated SISCAL-GH stock assessment still assumed deterministic recruitment in the 1968-
1988 period. 
Overall, SISCAL-GH estimates were most sensitive to simulated length composition data. Under 
the simLengths and simAll scenarios, there was increased variance and bias in unfished 
biomass and natural mortality parameters, but similar levels of bias and variance for survey 
catchability and index standard errors. 
Biomass time series were also more variable when early recruitment process errors were 
simulated and tended to be more biased at the beginning and end of the series. Some of the 
error in model estimates could be attributed to the slow growing nature of Greenland Halibut in 
the GH-0+1 stock, where changes in recruitment took several years to work into the exploitable 
and spawning biomass, delaying the bias caused by random recruitment. 

 
Figure B.1. Relative errors in leading parameter estimates in the simulation-evaluation self test of 
SISCAL-GH when recruitments were randomly simulated over the period 1968 - 1988. 
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Figure B.2. Relative errors in biomass time series estimates in the simulation-evaluation self test of 
SISCAL-GH when recruitments were randomly simulated over the years 1968 - 1988. 
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APPENDIX C: ALTERNATIVE SIMULATED SURVEY CONFIGURATION 
An additional simulated projection was presented during peer review that reflects another 
possibility for the future survey configuration. Under the alternative configuration, the 0A1CD 
survey series stops after the Paamiut was retired in 2017, and the newRV survey begins in 
2022 (Figure C.1). The new survey is simulated with a different dome-shaped selectivity that 
increases sooner than the 0A1CD survey to catch more small fish, representing additional 
inshore sets similar to the simulation presented in the main body, but has a similar descending 
limb to the 0A1CD survey selectivity function (Figure C.2). The adjusted newRV index was used 
by both the adaptive and non-adaptive version of the index-based MP in closed loop simulations 
to set TACs over 50 simulation replicates, due to time constraints. For both non-adaptive and 
adaptive MPs, the SISCAL-GH model is fit to the newRV survey data 4 years into the projection 
to estimate a survey index scalar used to set TACs as in the method presented above. After the 
first model fit, the non-adaptive MP holds the scalar constant for the remainder of the projection, 
while the adaptive MP fits SISCAL-GH every 6 years to re-adjust. 

 
Figure C.1. GH-0+1 survey biomass (lines) and simulated indices (points) for the 0A1CD survey (yellow) 
and the newRV survey (purple) under the alternative survey configuration. The vertical dashed line shows 
the beginning of the simulated projection period. 
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Figure C.2. GH-0+1 selectivity-at-length for each fleet, highlighting the different newRV survey selectivity 
(bottom row). 

In the short term (until the adaptive procedure adjusts the scaling factor) both MPs appear to 
perform similarly, only diverging shortly after the first assessment. In the replicate shown, the 
adaptive procedure starts out with a close match between survey biomass and exploitable 
biomass, causing the index based method to follow the survey biomass as a large recruitment 
enters the fishery (Figure C.3, blue circles). As a result, after the initial spike in harvest rates 
(caused by the TACs held constant before the first assessment), harvest rates tend to have a 
saw-tooth pattern between assessments (Figure C.4). They stay closer to the target for a year 
or two following the assessment, and then begin to drift as new year classes recruit to the 
exploitable biomass. In the near term, given the closeness of survey and exploitable biomass at 
in the assessment year, but quick increase of survey biomass right afterwards (Figure C.3), the 
harvest rates spike until the next assessment is performed and the scalar is adapted (Figure 
C.4). The adaptation snaps the biomass estimates back towards exploitable biomass (Figure 
C.3), and the effective harvest rates are reduced (Figure C.4). For the remainder of the 
projection, the inter-quartile range of harvest rates tends to stay lower, varying between the limit 
and target harvest rates (Figure C.4), which could be improved to meet NAFO PA policy 
requirements via tuning of the target harvest rate or other input variables.  
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Figure C.3. A single simulation replicate from MS3-GH under the isPrec scenario and adaptive 
management procedure (MP) applied to the alternative survey configuration where newRV survey indices 
are used to set TACS. Model states show true operating model female spawning biomass (red line), 
exploitable biomass (blue line), total biomass (black line), and research vessel “new RV” survey biomass 
(purple line), as well as simulated research vessel survey biomass indices (purple filled points). Also 
shown are MP estimates of female spawning biomass (grey lines) produced by the simulated SISCAL-GH 
model update and estimates of exploitable biomass from the index-based procedure (blue points). 
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Figure C.4. Simulated exploitation rates under the adaptive model/index-based management procedure 
(MP) applied to the newRV survey biomass index, simulated under the isPrec survey precision scenario. 
Lines show median total (black) and fleet specific (colours) exploitation rates, with the simulation 
envelope showing the central 60% (dark grey) and central 95% (light grey) of total exploitation rates over 
the 50 replicates. Target (Target U) and optimal (Umsy) exploitation rates are shown as horizontal 
dashed lines, and the beginning of the MP is shown as a vertical dashed line in 2021. 

For the non-adaptive procedure, the first 10 years is very similar to the adaptive procedure. The 
first assessment creates the same adaptative response, leading to similar exploitable and 
survey biomass estimates (Figure C.5), and therefore similar harvest rates during that time 
(Figure C.6). After the first 10 years, the non-adapative procedure begins to diverge from the 
adaptive procedure results, as biomass estimates are not modulated by new ‘ground truth’ 
assessments. Therefore, as exploitable biomass declines but survey biomass remains high 
given a large number of small fish, the TACs remain high, translating into effective harvest rates 
that climb above the limit with greater than 50% probability (Figure C.6). 
The results here highlight the importance of an adaptive procedure. The newRV survey as 
specified is more sensitive to recruitments, given the higher selectivity for small fish, so the 
exploitable biomass and survey biomass tend to diverge more often and by larger amounts. 
Without adaptation, the harvest rates climb with the survey biomass and overfish the stock. 
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Figure C.5. A single simulation replicate from MS3-GH under the isPrec scenario and adaptive 
management procedure (MP) applied to the alternative survey configuration where newRV survey indices 
are used to set TACS. Model states show true operating model female spawning biomass (red line), 
exploitable biomass (blue line), total biomass (black line), and research vessel ‘newRV’ survey biomass 
(purple  line), as well as simulated research vessel ‘new RV’ survey biomass indices (purple points). Also 
shown are MP estimates of female spawning biomass (grey lines) produced by the simulated SISCAL-GH 
model update and estimates of exploitable biomass from the index-based procedure (blue points). 
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Figure C.6. Simulated exploitation rates under the adaptive model/index-based management procedure 
(MP) applied to the newRV survey biomass index, simulated under the isPrec survey precision scenario. 
Lines show median total (black) and fleet specific (colours) exploitation rates, with the simulation 
envelope showing the central 60% (dark grey) and central 95% (light grey) of total exploitation rates over 
the 50 replicates. Target (Target U) and optimal (Umsy) exploitation rates are shown as horizontal 
dashed lines, and the beginning of the MP is shown as a vertical dashed line in 2021. 
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APPENDIX D: ANNUAL FITS TO LENGTH COMPOSITION DATA 

 
Figure D.1. Canadian trawl fishery annual estimates (light blue lines and points) of GH-0+1 combined sex 
length composition data (bars). Each panel is annotated with the year (bold font, top left) and sample size 
(N, top right), and the dashed horizontal line shows the minimum proportion required to avoid tail 
compression.  
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Figure D.2. Canadian longline fishery annual estimates (lines and points) of GH-0+1 combined sex length 
composition data (bars). Each panel is annotated with the year (bold font, top left) and sample size (N, 
top right), and the dashed horizontal line shows the minimum proportion required to avoid tail 
compression.  
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Figure D.3. Greenland trawl fishery annual estimates (lines and points) of GH-0+1 combined sex length 
composition data (bars). Each panel is annotated with the year (bold font, top left) and sample size (N, 
top right), and the dashed horizontal line shows the minimum proportion required to avoid tail 
compression.  
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Figure D.4. Combined Greenland and Canadian gillnet fishery annual estimates (lines and points) of GH-
0+1 combined sex length composition data (bars). Each panel is annotated with the year (bold font, top 
left) and sample size (N, top right), and the dashed horizontal line shows the minimum proportion required 
to avoid tail compression.  
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Figure D.5. Other bottom trawl fishery annual estimates (lines and points) of GH-0+1 combined sex length 
composition data (bars). Each panel is annotated with the year (bold font, top left) and sample size (N, 
top right), and the dashed horizontal line shows the minimum proportion required to avoid tail 
compression.  
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Figure D.6. GRNF longline fishery annual estimates (lines and points) of GH-0+1 combined sex length 
composition data (bars). Each panel is annotated with the year (bold font, top left) and sample size (N, 
top right), and the dashed horizontal line shows the minimum proportion required to avoid tail 
compression.  
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Figure D.7. Offshore 0A/1CD RV survey annual estimates (lines and points) of GH-0+1 combined sex 
length composition data (bars). Each panel is annotated with the year (bold font, top left) and sample size 
(N, top right), and the dashed horizontal line shows the minimum proportion required to avoid tail 
compression.  
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Figure D.8. Inshore 1AF research vessel survey annual estimates (lines and points) of male GH-0+1 
length composition data (bars). Each panel is annotated with the year (bold font, top left) and sample size 
(N, top right), and the dashed horizontal line shows the minimum proportion required to avoid tail 
compression.  
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Figure D.9. Inshore 1AF research vessel survey annual estimates (lines and points) of female GH-0+1 
length composition data (bars). Each panel is annotated with the year (bold font, top left) and sample size 
(N, top right), and the dashed horizontal line shows the minimum proportion required to avoid tail 
compression.  
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APPENDIX E: ADDITIONAL MANAGEMENT PROCEDURE EVALUATION RESULTS 

 
Figure E.1. Simulated GH-0+1 inshore survey abundances (lines) and stock indices (points) for the 
existing inshore survey and proposed new inshore survey under the osPrec scenario. 
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Figure E.2. Simulated GH-0+1 inshore survey abundances (lines) and stock indices (points) for the 
existing inshore survey and proposed new inshore survey under the osPrec scenario. 
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Figure E.3. Simulated GH-0+1 female spawning biomass depletion under the adaptive model/index-
based management procedure (MP) and the osPrec survey precision scenario. Grey simulation 
envelopes show the central 95% (grey region), median (heavy black line), and 3 random simulation 
replicates (thin black lines) of spawning biomass depletion, the horizontal green line shows spawning 
biomass producing 𝑀𝑀𝑀𝑀𝑀𝑀, and the vertical dashed line indicates the start of the simulated MP in 2021. 
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Figure E.4. Simulated GH-0+1 total catches under the adaptive model/index-based management 
procedure (MP) and the osPrec survey precision scenario. Lines show median (heavy black line) and 
three random simulation replicates (thin black lines) with the simulation envelope showing the central 
95% (light grey) of total catch over all replicates, and the vertical dashed line shows the beginning of the 
simulated projection period in 2021. 
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Figure E.5. Simulated GH-0+1 exploitation rates under the adaptive model/index-based management 
procedure (MP) and the osPrec survey precision scenario. Lines show median total (black) and fleet 
specific (colours) exploitation rates, with the simulation envelope showing the central 60% (dark grey) and 
central 95% (light grey) of total exploitation rates over all replicates. Target and optimal exploitation rates 
are shown as horizontal dashed lines, and the beginning of the MP is shown as a vertical dashed line in 
2021. 
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Figure E.6. A single simulation replicate from MS3-GH under the osPrec scenario and adaptive 
management procedure (MP) showing the true operating model female spawning biomass (red line), 
exploitable biomass (blue line), total biomass (black line), and RV survey biomass (orange line), as well 
as simulated RV survey biomass indices (orange points). Also shown are MP estimates of female 
spawning biomass (grey lines) produced by the simulated SISCAL-GH model update, and estimates of 
exploitable biomass from the index-based procedure (blue points). 
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Figure E.7. Simulated GH-0+1 female spawning biomass depletion under the non-adaptive index-based 
management procedure (MP). Grey simulation envelopes show the central 95% (grey region), median 
(heavy black line), and 3 random simulation replicates (thin black lines) of spawning biomass depletion, 
the horizontal green line shows spawning biomass producing 𝑀𝑀𝑀𝑀𝑀𝑀, and the vertical dashed line indicates 
the start of the simulated MP in 2021. 
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Figure E.8. Simulated GH-0+1 total catches under the non-adaptive index-based management procedure 
(MP). Lines show median (heavy black line) and three random simulation replicates (thin black lines) with 
the simulation envelope showing the central 95% (light grey) of total catch over all replicates, and the 
vertical dashed line shows the beginning of the simulated projection period in 2021. 
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Figure E.9. Simulated GH-0+1 exploitation rates under the non-adaptive index-based management 
procedure (MP). Lines show median total (black) and fleet specific (colours) exploitation rates, with the 
simulation envelope showing the central 60% (dark grey) and central 95% (light grey) of total exploitation 
rates over all replicates. Target and optimal exploitation rates are shown as horizontal dashed lines, and 
the beginning of the MP is shown as a vertical dashed line in 2021. 
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APPENDIX F: SIMULATED STOCK ASSESSMENT RELATIVE ERRORS 

Table F.1. Simulated 2024 SISCAL-GH model update median relative errors (MREs) and median 
absolute relative errors (MAREs) for selected SISCAL-GH parameters. 

Variable 
isPrec osPrec 

MRE MARE MRE MARE 
B0 -0.02 0.06 -0.03 0.07 
h 0.00 0.00 0.00 0.01 
M m 0.00 0.07 0.00 0.08 
M f 0.00 0.07 0.00 0.08 
L50A CAN BTM 0.00 0.00 0.00 0.00 
L95A CAN BTM 0.00 0.00 0.00 0.00 
L50D CAN BTM 0.00 0.00 0.00 0.00 
L95D CAN BTM 0.00 0.00 0.00 0.00 
L50A CAN LL 0.00 0.00 0.00 0.00 
L95A CAN LL 0.00 0.00 0.00 0.00 
L50A GRL BTM 0.00 0.00 0.00 0.00 
L95A GRL BTM 0.00 0.01 0.01 0.01 
L50A OTH BTM 0.00 0.00 0.00 0.00 
L95A OTH BTM 0.00 0.00 0.00 0.01 
L50A GRNF LL 0.00 0.00 0.00 0.00 
L95A GRNF LL 0.00 0.00 0.00 0.00 
q RV 0A1CD -0.04 0.05 -0.05 0.05 
tau RV 0A1CD -0.01 0.07 0.00 0.07 
L50A RV 0A1CD 0.00 0.01 0.00 0.01 
L95A RV 0A1CD 0.00 0.00 0.00 0.00 
L50D RV 0A1CD 0.00 0.00 0.00 0.00 
L95D RV 0A1CD 0.00 0.00 0.00 0.00 
q RV SFW1AF -0.05 0.07 -0.05 0.08 
tau RV SFW1AF -0.02 0.04 -0.02 0.04 
L50A RV SFW1AF 0.00 0.00 0.00 0.00 
L95A RV SFW1AF 0.00 0.00 0.00 0.00 
L50D RV SFW1AF 0.00 0.00 0.00 0.00 
L95D RV SFW1AF 0.00 0.00 0.00 0.00 
q newRV 0.01 0.16 0.04 0.16 
tau newRV -0.71 0.71 -0.56 0.56 
L50A newRV 0.04 0.10 0.01 0.09 
L95A newRV 0.02 0.06 0.00 0.05 
L50D newRV 0.00 0.02 -0.01 0.02 
L95D newRV 0.00 0.04 -0.02 0.04 
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Table F.2. Simulated 2054 SISCAL-GH model update median relative errors (MREs) and median 
absolute relative errors (MAREs) for selected SISCAL-GH parameters. 

Variable 
isPrec osPrec 

MRE MARE MRE MARE 
B0 -0.02 0.12 -0.02 0.13 
h 0.02 0.03 0.03 0.04 
M m -0.03 0.07 -0.03 0.07 
M f -0.04 0.07 -0.05 0.07 
L50A CAN BTM 0.00 0.00 0.00 0.00 
L95A CAN BTM -0.01 0.01 -0.01 0.01 
L50D CAN BTM -0.01 0.01 -0.01 0.01 
L95D CAN BTM -0.03 0.03 -0.03 0.03 
L50A CAN LL -0.01 0.01 -0.01 0.01 
L95A CAN LL -0.01 0.01 -0.01 0.01 
L50A GRL BTM -0.01 0.01 -0.01 0.01 
L95A GRL BTM 0.00 0.01 0.00 0.01 
L50A OTH BTM -0.02 0.02 -0.02 0.02 
L95A OTH BTM -0.03 0.03 -0.04 0.04 
L50A GRNF LL -0.01 0.01 -0.01 0.01 
L95A GRNF LL -0.01 0.01 -0.01 0.01 
q RV 0A1CD -0.05 0.12 -0.05 0.12 
tau RV 0A1CD -0.02 0.06 -0.02 0.06 
L50A RV 0A1CD 0.02 0.02 0.02 0.02 
L95A RV 0A1CD 0.02 0.02 0.02 0.02 
L50D RV 0A1CD -0.01 0.01 -0.01 0.01 
L95D RV 0A1CD 0.00 0.00 0.00 0.00 
q RV SFW1AF -0.11 0.16 -0.13 0.15 
tau RV SFW1AF -0.02 0.05 -0.02 0.05 
L50A RV SFW1AF -0.01 0.01 -0.01 0.01 
L95A RV SFW1AF -0.02 0.02 -0.02 0.02 
L50D RV SFW1AF 0.00 0.01 0.01 0.01 
L95D RV SFW1AF -0.02 0.02 -0.02 0.02 
q newRV -0.02 0.12 -0.04 0.13 
tau newRV -0.09 0.11 -0.09 0.13 
L50A newRV 0.00 0.04 0.00 0.03 
L95A newRV -0.02 0.03 0.00 0.02 
L50D newRV -0.01 0.01 -0.01 0.01 
L95D newRV -0.05 0.06 -0.02 0.03 
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