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ABSTRACT 
Automated detection and classification of the vocalizations of North Atlantic right whale (NARW) 
and other marine mammals is a highly desirable goal for researchers and managers seeking to 
monitor areas for whale presence as the basis to implement mitigation measures. Such 
automated acoustic processing is particularly important for real-time monitoring approaches 
where there are large-scale acoustic data inputs. 
All of the Detection and Classification Systems (DCSs) used by Fisheries and Oceans Canada 
(DFO) are expected to perform similarly well, given the metric (e.g., hours with calls/day) used 
to present NARW occurrence time-series. Previously, this was demonstrated by comparing 
performances of a variety of detectors during studies in 2004, 2013, and 2017. Spectroplotter (a 
commercial programme) and Low-Frequency Detection and Classification System (LFDCS), 
which are the two systems that have been used to analyse acoustic data in Newfoundland and 
Labrador (NL) and Maritimes regions, perform well; although in one small study the LFDCS 
detected more actual NARW upcalls than Spectroplotter, but also generated more false 
positives. 
DCS performance is influenced by multiple factors, including the ambient noise levels relative to 
the characteristics of the NARW upcalls, the location of the hydrophone, the characteristics of 
the recorder instrumentation, software settings and thresholds, and other contextual features, 
such as the presence of other species. The next generation of DCSs will incorporate context 
into their logic (e.g., presence of other marine mammals or abiotic sound sources and 
signal-to-noise ratio [SNR]). 
Algorithm comparisons are less crucial in the historic NARW analyses as the metrics in which 
the present detection results are presented at a large enough scale (“has there been NARW 
detected at this recorder location today?”) that slight differences in algorithm performance would 
be subsumed in the amalgamation and summation process. 
At smaller spatial and temporal sampling scales, differences in algorithm performance become 
more apparent. Thorough testing of the different DCSs being used in Atlantic Canada would 
require a series of manually validated acoustic datasets from a representative set of locations, 
time frames, seasons, and recording hardware. Such a DCS comparison would be a useful 
activity but would require agreed upon performance metrices and thresholds for the DCS. 
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INTRODUCTION 
Passive acoustic monitoring (PAM) provides a powerful tool to detect and identify marine 
mammals underwater, and has been used in many studies (Baumgartner et al. 2018; Mellinger 
et al. 2007a; Van Parijs et al. 2009; Verfuß et al. 2007). Unlike visual survey methods, acoustic 
monitoring can collect data continuously, in remote locations, and in light and weather 
conditions that would limit visual detection. However, PAM can produce a great deal of data and 
these data are a complex mixture of the sounds of target species of interest, other species, 
anthropogenic activities, and environmental processes. Therefore, there is a need for a method 
to analyse these data quickly. 
Fortunately, many marine species produce sounds that are unique. For instance, North Atlantic 
right whales (Eubalaena glacialis)(NARW) generate a distinctive vocal repertoire, including a 
diagnostic 50-300 Hz upsweeping contact call known as the “upcall” (Figure 1a)(Mellinger et al. 
2007b). To process large amounts of acoustic recording data to detect species-specific sounds, 
an automated DCS requires significantly less time than manual searching by a trained expert, 
assuming the DCS is acceptably accurate. In particular, accurate automated detection and 
classification of the vocalizations of NARWs and other marine mammals is a highly desirable 
goal for researchers and managers seeking to monitor areas for whale presence as the basis to 
implement mitigation measures. 
A variety of DCS approaches have been developed for marine mammal sounds, including 
low-frequency detectors for the NARW (see Davis et al. 2017)(Table 1). Such detectors are 
particularly relevant for DFO’s monitoring and mitigation efforts for this species in Atlantic 
Canada as a variety of detection/classification algorithms are used currently; however, these 
detectors seem to differ in their efficacy and accuracy, so it is worth comparing them to ensure 
that DFO uses a system with the best accuracy and analytical speed. 
In addition to reviewing previous DCSs, I provide recommendations for the Department as to 
how we could further compare these detectors and how to better allocate resources for 
optimizing these systems. 

METHODS 

AUTOMATED ACOUSTIC NARW UPCALL DETECTORS 
In recent years, a variety of automated NARW detector-classifiers have been developed 
(Baumgartner and Mussoline 2011; Dugan et al. 2010a; Gillespie 2004; Mellinger 2004; Mouy et 
al. 2009; Simard and Roy 2008; Urazghildiiev and Clark 2006), including combinations of 
detectors (Dugan et al. 2010b). Many of these detectors have been targeted to tonal sounds, 
such as NARW upcalls, rather than broadband signals such as NARW “gunshot” sounds which 
they also produce. Some DCSs classify signals based on direct measures of features such as 
signal frequency and duration (e.g., JASCO’s algorithm [Spectroplotter] [Figure 1b]), whereas 
others classify signals based on measures derived from basic signal features (e.g., the LFDCS 
algorithm; Baumgartner and Mussoline 2011). 

TERMINOLOGY TO DESCRIBE AND COMPARE DETECTORS 
Terminology and metrics are useful when quantifying differences in NARW call detector 
performance and manual validation (the process whereby a highly-trained analyst reviews 
acoustic recordings aurally and visually to classify signals they contain): 



 

2 

True positives: calls classified as NARW calls that are actually NARW calls as determined by 
manual validation. 
False positives: calls classified as NARW calls that are not NARW calls as determined by 
manual validation. 
True negatives: calls classified as not NARW calls that are actually not NARW calls as 
determined by manual validation. 
False negatives: calls classified as not NARW calls that are actually NARW calls as 
determined by manual validation. 
Recall: (also known as sensitivity): ability of a classification algorithm (detector) to identify all 
actual NARW calls. 
Precision: ability of a classification algorithm to return only correct NARW call detections.  
While recall expresses the ability to detect all NARW calls in a dataset, precision expresses the 
proportion of the calls the detection algorithm correctly classifies as “right whale” that actually 
were NARW: 

 
F1 score: a single metric that combines recall and precision using the harmonic mean. The F1 
score is a better measure to obtain a balance between precision and recall, when there is an 
imbalanced class distribution. An imbalanced class distribution is a scenario where the number 
of incidents of one call type (such as NARW) is much lower than those belonging to other call 
types (such as humpback whales, Megaptera novaeangliae). 

 
Receiver operating characteristic (ROC) curve: plots the true positive rate versus the false 
positive rate as a function of the classification algorithm’s threshold for correctly classifying a 
NARW call; the ROC curve displays how the recall versus precision relationship changes as the 
threshold for identifying a true NARW call is changed. Altering the threshold can achieve an 
acceptable precision versus recall balance. 
Area under the curve (AUC): metric to calculate the overall performance of a classification 
algorithm based on the area under the ROC curve. 

RESULTS 

2010 COMPARISON OF EARLY MACHINE LEARNING NARW UPCALL 
DETECTORS 
Dugan et al. (2010b) compared three early computer-based approaches for recognizing NARW 
upcalls. The performance of two newer approaches (machine learning algorithms based either 
on artificial neural networks [NET] or classification and regression tree classifiers [CART]) were 
compared with an earlier system that employed a multi-stage feature vector testing (FVT) 
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approach. A large sample of underwater noise and NARW upcall events recorded from Cape 
Cod Bay and the Great South Channel was used. Of the three classifiers, CART had the highest 
precision of 86% with the same false positive rates as the NET algorithm. The FVT algorithm 
was not as good at classifying NARW upcalls as the newer methods (lower recall) but had very 
low false positive rates. 

2013 COMPARISON OF NARW UPCALL AUTOMATED DETECTORS 
Gillespie (2018 pers. comm.) provided unpublished summary information from the 6th 
International Workshop on Detection, Classification, Localization, and Density Estimation 
(DCLDE) of Marine Mammals using Passive Acoustics in St. Andrews, Scotland in 2013 
(“Comparison of Right Whale Detector Results - DCLDE6”). Meeting participants were provided 
with an acoustic dataset containing a number of NARW and other species’ calls which had been 
manually validated by an experienced analyst beforehand. Subsequently, this test dataset was 
found to be flawed as it was reviewed by only a single validator and contained undetected 
NARW calls (false negatives). 
The seven DCSs tested included multiple Cornell detectors, multiple detectors by Gillespie, the 
Mouy (i.e., early JASCO; Mouy et al. 2009) kernel-based detector, and the continuous region 
analysis (CRA) detector (a neural network algorithm). Baumgartner’s LFDCS detector was not 
tested at that meeting, nor was the latest Simard algorithm. 
Overall, NARW “gunshots” were a poor candidate for automatic detection by the systems tested; 
there had been no large improvement in performance of upcall detectors since previous testing, 
all detectors had similar false positive rates for a given efficiency (Figure 2); and detector 
performance was heavily dependent on the goal of its application. Some detectors had better 
recall at very low false positive rates, while others had better recall at higher false positive rates 
(Figure 2). Performance of these detectors was influenced by several factors: 

• SNR, which is related to ambient noise levels relative to the characteristics of the target calls 

• SNR is also dependent on the location of the hydrophone, and the characteristics of 
recorder instrumentation 

• Other contextual features, such as the presence of other calling species (particularly 
humpback whales in the NW Atlantic study area) 

Meeting participants concluded that while the DCSs produced slightly differing detection and 
classification results, they all proved to achieve about 70% recall (Figure 2). 

BAUMGARTNER’S LFDCS DETECTOR 
The LFDCS is a sound pitch contour-based detector (Baumgartner and Mussoline 2011) that is 
used to search for the species-specific calls in PAM data from fixed acoustic recorders and in 
customized autodetection software/hardware packages used in mobile gliders (Baumgartner 
et al. 2013). The LFDCS characterizes temporal variation of dominant call frequencies via 
pitch-tracking, and classifies NARW calls based on attributes of the resulting pitch tracks using 
quadratic discriminant function analysis (Baumgartner and Mussoline 2011). The software is 
somewhat “generalized” in that the underlying species libraries and settings on which its 
performance is based can be adjusted by the user. DFO Maritimes has transitioned to using 
Baumgartner’s LFDCS algorithms to determine presence of NARW in their acoustic recorder 
data; for instance, the Maritimes’ 2006–14 datasets have been analysed using this algorithm 
and included in Davis et al. (2017), as were 18 other groups’ including NOAA’s. 
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Baumgartner and Mussoline (2011) examined the LFDCS detector accuracy by using it to 
analyse acoustic recordings collected in the Gulf of Maine during spring of 2006 and 2007. They 
found that the LFDCS algorithm was able to compensate for persistent narrowband and 
transient broadband noise in the recordings, and its accuracy was similar to that of a human 
analyst. That is, variability in differences between the DCS and an analyst was similar to that 
between independent analysts, and temporal variability in call rates was similar among the 
LFDCS and several analysts. 
Similarly, Davis et al. (2017) determined that the rate of missed upcall detections using LFDCS 
was low (25%), and while this rate depended on the characteristics of individual deployments, 
such as ambient and anthropogenic background noise at the site, the resulting detections still 
provided a satisfactory indication of the broad-scale distribution of NARW. 

JASCO’S SPECTROPLOTTER DETECTOR 
In the past, DFO Maritimes and DFO NL Regions used JASCO’s multispecies detector 
(Spectroplotter) to determine the presence of NARW upcalls in their acoustic datasets. This 
algorithm is a proprietary kernel-based detector developed by JASCO Applied Sciences detailed 
below. As described in a number of JASCO reports, Spectroplotter’s NARW multiple upcall 
exemplars were sampled from Cornell’s fixed platform dataset, which was deployed off the 
coast of Massachusetts in 2000, 2008, and 2009. For comparison, the NARW upcall described 
in the LFDCS call library is based on 254 upcall exemplars from the Southwestern and Central 
Gulf of Maine in 2005 and 2009 (Martin et al. 2014). Since these exemplars were obtained in 
similar locations and dates, JASCO concluded that any differences in detector performance 
should not be attributed to differences in the underlying call libraries. 
JASCO (Delarue et al. 2018; Martin et al. 2014) outlined work carried out on NARW call 
detection for some of the same datasets on which DFO has conducted their LFDCS analysis. 
JASCO ran Spectroplotter through a large dataset and determined it performed with low 
precision due to interference by humpback tonal moans; this implies that the precision of this 
system will vary seasonally with the local abundance of humpbacks. JASCO then had to rely on 
manual validation of some datasets; for NARW they manually reviewed one min of every 11-min 
sound file (corresponding to three mins per hr, or 5% of the recorded data)(see page 76 in 
Delarue et al. 2018). From the report: To ensure an accurate representation of right whale 
occurrence, we performed additional manual review of data recorded where and when right 
whale presence was expected, based on the current knowledge of the species’ seasonal 
distribution (Delarue et al. 2018). JASCO, recently re-tuned Spectroplotter to increase the 
probability of NARW upcall detection and reduce the number of false positives, but the degree 
of improvement is not yet published. 

2017 COMPARISON OF LFDCS AND JASCO NARW UPCALL DETECTORS 
Although not a comprehensive comparison of DCSs, Moore (2017) undertook a test of the 
LFDCS and Spectroplotter DCS with NARW upcall data from Roseway and Emerald Basin. 
Acoustic recordings collected by both Slocum gliders and fixed PAM systems in the summer 
and fall of 2015, and a subsample of 7% of all recordings were validated manually by two 
experienced acousticians. The manual analysis results were compared to the two automated 
detector results at three temporal scales. 
Spectroplotter uses a binary spectrogram of time frequency bins above an empirical threshold, 
rather than a smoothed spectrogram (subtraction of a long-duration mean) which is used in the 
LFDCS (Baumgartner and Mussoline 2011; Martin et al. 2014). While Spectroplotter processes 
the spectrogram for time-frequency objects (or events) by selecting for contiguous temporal bins 
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that are above a threshold amplitude level, the LFDCS identifies the beginning of a tonal sound 
above an empirical threshold (hereafter pitchtrack) and employs forward pitch-tracking and 
backward pitch-tracking to formalize a pitchtrack (Baumgartner and Mussoline 2011; Martin 
et al. 2014). Attributes selected for in Spectroplotter include time (date), duration (s), minimum 
and maximum frequency (Hz), sweep rate (slope), tonality, and bandwidth (Hz) (Figure 1b) 
(Martin et al. 2014). In comparison, the attributes selected for in the LFDCS include an average 
frequency (Hz), frequency variation, time variation, and slope (Baumgartner and Mussoline 
2011). The attributes selected for in both detectors appear similar; however, while the 
kernel-based detector extracts call attributes directly from the spectrogram, the contour-based 
detector first estimates a pitchtrack using the time variation of the fundamental frequency, from 
which attributes of the sound are extracted (Baumgartner and Mussoline 2011). 
For this small dataset, Moore found that the LFDCS detected more true NARW upcalls (i.e., true 
positives) at all time scales relative to the Spectroplotter detector, but also generated a higher 
number of false positives. There was no significant difference in percentage of true positive 
detections in Emerald Basin between the two DCSs on per recording file (termed snippet), 
hourly, and daily sampling scales (Table 2; Figure 3a) (Moore 2017). In Roseway Basin, the 
percentage of true positive NARW detections on hourly and daily scales between detectors was 
not different, whereas the LFDCS found more true positive detections on a per snippet basis 
(Table 3; Figure 3b). Moore concluded that the Spectroplotter and LFDCS results were 
comparable on hourly and daily scales. 
Both DCSs experienced reduced accuracy in Emerald relative to Roseway Basin 
(Tables 2 and 3), but there appeared to be a trade-off between maximizing detections and 
minimizing false negatives. While the LFDCS detected between 9 and 17% more days with true 
upcalls, Spectroplotter minimized false detections by approximately 10%. An analysis of a 
dataset which yields a high number of false negatives, such as the one produced by LFDCS, 
will require more intensive validation, whereas a dataset with less detections may underestimate 
NARW acoustic presence. If the objective is to detect presence or absence of NARW, using a 
detector that minimizes false detections (such as the Spectroplotter) would be the most efficient. 
If the objective is to observe seasonal habitat use, using a detector that maximizes true upcall 
classifications (such as the LFDCS) would be more efficient. 
Since this comparison employed data collected over a short time period, it did not address call 
detection issues over the broader scale of varying background noise levels and how those 
impact detections; one of the comparisons also didn’t compare individual detections but rather 
examined false negative/false positives rates on a per snippet basis. The latter metric is 
different than false alarm versus missed call rate when you use individual calls and detections, 
but nonetheless did provide some information on how the two detectors compare to each other 
on the same manually validated dataset on a per file basis. 

DISCUSSION 

DCS PERFORM “ACCEPTABLY” WITH NARW UPCALL DATA 
Based on several studies, most of the DCSs described in this paper perform acceptably in that 
they process acoustic datasets much more quickly than a manual validator, and their true 
NARW classifications and error rates are acceptable – particularly if the questions they address 
are broad (“have NARW been detected near the recorder today?”). Earlier work by Mellinger 
and Clark (2000) showed that the performance of spectrogram correlation (such as is used by 
LFDCS and Spectroplotter) compared favourably to three other methods that had been used for 
automatic call recognition (matched filters, neural networks, and hidden Markov models). With 
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further development, (Mellinger 2004), again compared upcall detection by spectrogram 
correlation and a neural network, and this time the neural network performed better (Figure 5). 
As expected, performance of all methods generally improved with increasing SNR. 
Subsequent testing of a variety of newer DCSs in 2013 and 2017 further determined that these 
DCSs can perform with a degree of precision and recall that is sufficient to answer questions 
based on presence and absence of calling NARW (e.g., Figure 2). Moore (2017) concluded that 
the LFDCS detected more true NARW upcalls at all time scales relative to Spectroplotter, but 
also generated a higher number of false positives; the only DCS difference in this study was 
Spectroplotter’s higher F1 score in the per snippet scale of Roseway Basin data 
(Tables 2 and 3, Figure 3). 
Depending on the thresholds set (such as for the level of acceptable false negative or positive 
detections of NARW upcalls), and the amount of manual validation needed following the DCS 
processing, the LFDCS and Spectroplotter DCS can be used to automate the analyses of 
copious acoustic recordings, and thereby answer questions related to NARW presence. 

UPCALL CONTEXT IS AN IMPORTANT FACTOR IN DCS PERFORMANCE 
There are a variety of contextual factors which have important impacts on DCS upcall 
classification performance. The most important factors are the relative strength and clarity of an 
upcall record (SNR, Mellinger 2004), and whether there are similar-sounding species (e.g., 
humpback whales) calling nearby. Another factor may be calling rate. Moore (2017) found that 
both the LFDCS and Spectroplotter detectors detected 23–31% fewer true upcalls in Emerald 
than Roseway Basin (Tables 2 and 3). In this case, Moore thought that NARW in Roseway 
Basin might have called at a higher rate and thereby offered an increased opportunity to detect 
at least one call within a snippet, hour, or day sample period. 
Marine animal behaviour, including their acoustic behaviour, varies between seasons and 
geographical areas, driven by varying life history parameters and experiences (Van Parijs et al. 
2009). For example, analyses of NARW call types across the three habitat areas display 
differences in the calling behaviour of these whales in the spring versus the summer habitat 
areas (Figure 4) (Van Parijs et al. 2009). It also suggests that other call types, such as 
gunshots, may be more effective to detect NARW presence in some areas. 
When using acoustic-based approaches to implement management and mitigation approaches 
for NARW it is therefore important that we account for how their call repertoire varies seasonally 
or geographically, and how this and other factors outside the mechanics of the DCS will 
influence the ability of the DCS to detect and classify NARW sounds. 

GOOD UPCALL SAMPLES AND MANUALLY-VALIDATED DATASETS ARE 
CRITICAL TO TEST DCS 
PAM is most useful within the context of the acoustic behavioural ecology of NARW and applied 
in a regionally and seasonally appropriate context. In order to improve PAM, more information is 
needed on NARW individual, group, and population sound usage and sources of variability in 
vocalization. 
The LFDCS and Spectroplotter DCS rely on underlying libraries of upcall exemplars to seek 
matches in the analysed datasets. Ideally these sample calls will have been collected with good 
signal-to-noise conditions, and for areas and seasons that match as closely as possible the area 
of the analysed datasets. 
Differences in these particular DCSs will not impact the ability to make general conclusions 
about NARW presence in Atlantic Canada, although we did not evaluate the Simard DCS. 
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Based on differences in the approaches employed in the acoustic studies presented herein, we 
cannot straightforwardly compare recording sites, but trends in minimum presence observed 
from each study will provide useful information. A plan for a more comprehensive detector 
comparison, including the algorithm used in the Gulf of St. Lawrence, would be relevant for the 
topic of limitations and strengths of different DCS technology and could be highlighted as a step 
that should be taken. 

FUTURE RESEARCH 
Recognising that detection and classification of marine mammals using PAM has become a 
critical tool for DFO, there is a need for a zonal/national consultation on the way forward for 
dealing with a number of issues with PAM data in terms of processing speed and classification 
accuracy: 

• Develop similar-performing detection/classification tools for multispecies considerations in 
different environments (optimization) 

• Recommendations for how to advance the detector development process into a national 
approach for DFO 

• Sanction guidelines for best practice for acoustic analysis and reporting 

• Address optimal data format and large-scale acoustic data storage issues 

DCS COMPARISON/OPTIMIZATION – MANUAL VALIDATION 
A robust detector comparison/optimization would require a significant amount of work, including 
challenging the DCS with multiple datasets collected using different recording systems, with 
varying background noise levels, and from different geographic areas, to validate calls. These 
datasets would be manually validated by at least two experienced acousticians1. For this DCS 
comparison we recommend using at least five 10-hour recorded underwater samples: 
1. digital recording with many NARW calls, 
2. digital recording with few NARW calls, 
3. digital recording with many NARW calls and a high level of ambient noise, 
4. digital recording with few NARW calls and a high level of ambient noise, and 
5. digital recording with a similar ratio of NARW and humpback whale calls. 
Prior to the start of the manual validation process, an analysis process would be established 
which would include rules for annotating targets as definite NARW upcalls; while many cases 
are clear, there are instances where it is unsure if the call is actually a NARW or something else 
and analysts can differ in how they categorize this. There should be scientific consensus on the 
steps in the validation process. 

DCS COMPARISON/OPTIMIZATION – DETECTOR PROCESSING 
As for the manual validation process, clear steps must be undertaken for DCS processing of the 
trial sound samples. For instance, the point selected for the setting of each algorithm on the 

 
 
1 These recommendations could be used to write a Statement of Work for manual validation of these datasets. To 
examine acoustic analyst bias there should be at least two trained analysts to process a subset of the recordings and 
compare their results. 
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recall versus precision curve must be documented; each DCS algorithm will have to meet a 
precise point on that curve (target), depending on the objective of either not missing any target 
species call (at the cost of accepting higher rates of false positives), or limiting the false positive 
rate. All algorithms would need to meet a given level of accuracy, and in this case, we should 
consider this to be less than a 10% false positive rate. 
Further, an optimal DCS test or comparison will be based on files with manually-validated 
time-tagged NARW contact call detections, and summaries of hours with NARW contact calls 
present (i.e., after elimination of confounding identical humpback contact call-like sounds); 
comparing these will provide evidence of detector efficacy. 
With advances in machine learning capabilities and processing power of individual computers, it 
is worth reconsidering neural network DCSs that previously performed as well or better than 
spectrogram-matching systems in some trials (Figure 5; Mellinger 2004). 

DCS COMPARISON/OPTIMIZATION – INTERNATIONAL WORKSHOP 
A workshop, perhaps through collaboration with Meridian, to review output from this DCS 
comparison and optimization process would improve our knowledge on this topic. Relevant work 
proposed by Meridian over a longer period could contribute to a more complete detector 
comparison study (such as including other types of NARW sounds, and broadening the DCS to 
additional species as Baumgartner (Baumgartner and Mussoline 2011) has done with the 
LFDCS. In addition, a workshop could be a forum for further improvements in the DCS 
approach for DFO by strengthening working relationships with collaborators. 

CONCLUSIONS 
• Automated detection and classification of the vocalizations of NARW and other marine 

mammals is a highly desirable goal for researchers and managers seeking to monitor areas 
for whale presence as the basis for implementing management measures. 

• Such automated acoustic processing is particularly important for real-time monitoring 
approaches where there are large-scale acoustic data inputs. 

• A DCS assessment meeting in 2013 demonstrated similar performances of seven detectors 
(~70% correct), and this was influenced by several factors: 
o SNR, which is related to ambient noise levels relative to the characteristics of the target 

calls. 
o SNR is also dependent on the location of the hydrophone, and the characteristics of the 

recorder instrumentation. 
o Other contextual features, such as the presence of other species (particularly humpback 

whales in the NW Atlantic study area). 

• Spectroplotter and LFDCS (the algorithms that have been used to analyze acoustic 
recordings in Maritime and NL Regions) perform well, although in one study the LFDCS 
detected more true NARW upcalls relative to Spectroplotter, but also generated more false 
positives. 

• All of the detectors used are expected to perform similarly well, given the metric (e.g., hours 
with calls/day) used to present the NARW occurrence time-series; several DCSs 
demonstrated similar performance by the DCLDE 2013 meeting and several 2017 studies. If 
false positive rates and missed call rates are presented in PAM Research Documents, then 
these accuracy measures will give an idea of how the detectors compare without doing a 
direct comparison. 
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• Thorough testing of different DCSs would require a series of manually validated acoustic 
datasets from a representative set of locations, time frames, seasons, and recording 
hardware. Such a DCS comparison, in particular comparing performance of the LFDCS, 
JASCO (Spectroplotter), and Simard detectors, plus potentially others, would be a useful 
activity but require agreed performance metrics and thresholds for the DCS. 

• Algorithm comparisons are less crucial in historic NARW analyses because the metrics in 
which the current detection results are presented are at a large enough temporal scale (“has 
there been a NARW detected at this recorder location today”?) that slight differences in 
algorithm performance would be subsumed in the detection data amalgamation and 
summation process. With the same data collected in similar locations and contexts, there 
should be less concern about the influence of these underlying factors. At smaller spatial 
and temporal sampling scales, differences in algorithm performance become more 
significant. 

• The next generation of some U.S. DCSs will incorporate context into their logic (e.g., 
presence of other marine mammals or abiotic sound sources and SNR). For instance, 
currently the performance of some DCSs varies by location and season, and adjusting 
precision or including context-specific detection thresholds may correct for this. 
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TABLES AND FIGURES 

Table 1. Operating features of detection and classification algorithms considered in this document. 

Detector Target Species Function Notes 

Gillespie DCS NARW Spectrogram feature comparison First, the spectrogram is smoothed by convolving it with a Gaussian 
kernel and the 'outlines' of sounds are extracted using an edge 
detection algorithm. Second, parameters are used in a classification 
function in order to determine which sounds are from NARW 

Cornell DCS NARW A variety, but one based on a 
generalized likelihood ratio 

Detector of polynomial-phase signals with unknown amplitude and 
polynomial coefficients observed in the presence of locally 
stationary Gaussian noise. The closed form representation for a 
minimal sufficient statistic is derived and a realizable detection 
scheme is developed. 

Mouy (JASCO) DCS NARW + others Spectrogram feature comparison Multispecies DCS is based on underlying mammal sounds library 

CRA detector NARW Neural network detector Despite a relatively low level of false positive NARW upcall 
detections, CRA demonstrated the lowest precision of all detectors 

LFDCS NARW, Fin, Sei Sound pitch contour-based 
detector with an underlying call 
library 

Low frequency detection and classification system with adjustable 
settings and editable underlying call libraries 

LSTM NARW - DFO-BIO OPP colleague working with Wright on a new NARW call 
detection algorithm 

Dugan et al. DCS NARW Classification and regression 
tree classifiers (CART) 

The CART had higher true positive rate, and matched the NET 
algorithm for false positive rate 

Dugan et al. DCS NARW Artificial neural networks (NET) - 
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Table 2. Number of false negative, false positive, true positive, and true negative upcall detections identified per snippet, per hour, and per day for 
the LFDCS and Spectroplotter detectors in acoustic recordings from Emerald Basin. Percentage of true detections (number of true detections of all 
manually validated true calls), percentage of false detections (number of false detections out of all manually validated units without calls), recall, 
precision, and F1 score are also displayed (adapted from Moore 2017). 

- False 
Negative 

False 
Positive 

True 
Positive 

True 
Negative % True % False Recall Precision 

F1 
Score 

Per Snippet 
LFDCS 19 410 49 5,522 72% 7% 0.72 0.11 0.19 

Spectroplotter 29 278 39 5,654 57 % 5% 0.57 0.12 0.20 
Per Hour 

LFDCS 30 67 30 2,873 50% 2% 0.50 0.31 0.38 
Spectroplotter 38 36 22 2,904 37% 1% 0.37 0.38 0.37 
Per Day 

LFDCS 10 27 20 10 67% 28% 0.67 0.43 0.52 
Spectroplotter 15 17 15 15 50% 18% 0.50 0.47 0.48 

Table 3. Number of false negative, false positive, true positive, and true negative upcall detections identified per snippet, per hour, and per day for 
the LFDCS and Spectroplotter detectors in acoustic recordings from Roseway Basin. Percentage of true detections (number of true detections of 
all manually validated true calls), percentage of false detections (number of false detections out of all manually validated units without calls), recall, 
precision, and F1 score are also displayed (adapted from Moore 2017). 

- False 
Negative 

False 
Positive 

True 
Positive 

True 
Negative % True % False Recall Precision 

F1 
Score 

Per Snippet 
LFDCS 74 1,690 415 3,821 85% 31% 0.85 0.20 0.32 

Spectroplotter 255 94 234 5,417 48% 2% 0.48 0.71 0.57 
Per Hour 

LFDCS 167 157 218 2,459 57% 6% 0.57 0.58 0.57 
Spectroplotter 193 75 192 2,541 50% 3% 0.50 0.72 0.59 
Per Day 

LFDCS 7 23 65 30 90% 43% 0.90 0.74 0.81 
Spectroplotter 14 18 58 35 81% 34% 0.81 0.76 0.78 
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a 

 
b 

 
Figure 1(a). Spectrograms for upcall vocalization of NARW (adapted from Gillespie 2004), and 1(b). 
sample parameters measured by several NARW DCS discussed in this paper. 
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Figure 2. Relative performance of automated detectors in four different noise regimes. Detectors by 
Cornell, Gillespie, Mouy (JASCO), and CRA. Images courtesy of D. Gillespie. 
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Figure 3. Plots of daily call persistence in (a) Emerald Basin and (b) Roseway Basin. LFDCS unvalidated 
auto-detections in blue, Spectroplotter unvalidated auto-detections in orange, and manually validated 
results in yellow (from Moore 2017). 
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Figure 4. Archival PAM recorders deployed in three NARW habitats {Cape Cod Bay (CCB), Great South 
Channel (GSC), and Bay of Fundy (BOF)} demonstrated differences in the median (±SE) daily NARW call 
counts for three call types (Figure 2 from Van Parijs et al. 2009). 
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Figure 5. Performance curves of the three DCS methods (spectrogram correlation and neural network) 
compared in Mellinger (2004); the lower area under the curve, the better-performing the detector. The 
labels on the curves in (a) to (c) are the signal-to-noise ratio of the upcalls used for that curve. In (d) the 
DCS are compared with data from all signal-to-noise ratio upcalls combined (Figure 4 from Mellinger 
2004). 
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