Distribution of Juvenile Chinook, Coho and Sockeye Salmon in Shuswap Lake — 1978-1979; Biophysical Inventory of Littoral Areas of Shuswap Lake, 1978

L. R. Russell, C. C. Graham, A. G. Sewid and D. M. Archibald

Fisheries and Oceans 1090 West Pender Street Vancouver, B.C. V6E 2P1

January, 1980

Fisheries and Marine Service Manuscript Report No. 1479

nd Environment

Canada

e Service

iervice des pêch t de la mer

FISHERIES AND MARINE SERVICE

MANUSCRIPT REPORT NO.1479

JANUARY, 1981

DISTRIBUTION OF JUVENILE CHINOOK,

COHO AND SOCKEYE SALMON

IN SHUSWAP LAKE - 1978 - 19793

BIOPHYSICAL INVENTORY OF LITTORAL AREAS OF SHUSWAP LAKE, 1978.

ΒY

L.R. RUSSELL, C.C. GRAHAM

A.G. SEWID

AND

D.M. ARCHIBALD

HABITAT PROTECTION DIVISION DEPARTMENT OF FISHERIES AND OCEANS 1090 WEST PENDER STREET VANCOUVER, B.C. V6E 2P1

ABSTRACT

Littoral rearing distribution and migration patterns of juvenile chinook, coho and sockeye salmon in Shuswap Lake are examined. Two years of beach seining results indicate that juvenile salmon rear primarily in the vicinities of Mara Lake-Sicamous Narrows, southern portions of Salmon Arm (only until the late spring), Sicamous Narrows to Cinnemousun Narrows and the area near the outlet of Shuswap Lake (Adams River). It is also evident that in the cycle year large concentrations of sockeye juveniles may, in some areas, displace rearing coho and chinook.

Marking studies show that young chinook and coho rearing in the Sicamous Narrows area may migrate back into Mara Lake, or swim up the eastern shores of Shuswap Lake to rear in Anstey Arm before moving through Cinnemousun Narrows and along the southern shore of the main arm of Shuswap Lake toward the outlet and the Thompson River.

A biophysical lakeshore inventory to define important zones with respect to potential salmon habitat was carried out. This revealed that not all foreshore areas designated as excellent fish habitat are heavily utilized and that many zones classified as poor habitat are located along primary migration routes for juvenile salmon.

~ | -

RESUME

La distribution d'élevage littorale et les modèles de migration de jeunes saumons chinook, coho, et sockeye du lac Shuswap ont été examinés. Les résultats de prises à la seine de plage durant deux années indiquent que les jeunes saumons se cabrent principalment dans les environs de Mara Lake - Sicamous Narrows, les portions sud de Salmon Arm (seulement la fin du printemps), Sicamous Narrows à Cinnemousin Narrows, et l'étendue près de la débouchée du lac Shuswap (Riviere Adams). Il est aussi evident que dans l'année cycle les concentrations énormes de jeunes sockeyes peuvent, dans quelques étendues, déplacer les cohos et 'les chinooks séjournant.

Les études de marquage démontrent que les jeunes chinooks et cohos séjournant dans les entendues de Sicamous Narrows, peuvent émigrér dans le lac Mara, ou peuvent se deriger vers les rivages de l'est du lac Shuswap pour se cadrer dans Anstey Arm avant de se dériger vers Cinnemousin Narrows et le long de la rivage sud de l'étendue principale du lac Shuswap vers la débouchée et la rivière Thompson.

Une inventaire biophysique des rivages du lac a été étudiée pur définir les zones importantes d'habitat d'élevage pour les saumons. Cette étude a révelé que tous les étendues decrivant zones d'habitats d'élevage excellentes ne sont pas tous utilizés et que plusieurs étendues classifiés comme zones d'habitats d'élevage mediocres se situent le long des principales routes de migration des jeunes saumons.

ACKNOWLEDGEMENTS

The authors wish to thank the many individuals who participated in this study. The technical assistance of K. Conlin, W. Field, G. Kosakoski and B. Lawley and four university students, D. Archibald, D. Greiner, S. Hamilton and B. Kahnert is gratefully acknowledged.

I.K. Birtwell, F.C. Boyd, T.R. Cleugh, G. Kosakoski and W. Schouwenburg critically reviewed this manuscript.

W. Field prepared many of the figures and T. Collins and Jennifer Morley typed and proofread the report.

TABLE OF CONTENTS

Page

	ACKNO TABLE LIST LIST LIST	RACT .	i i i i i i i v vi vi i
1.	METH		I
	1.1 1.2 1.3	Lake Sampling	2 2 4 6 6 7 8
2.	RESU	LTS	
	2.1 2.2 2.3	Lake Sampling	8 11 11 20 27 27 34
3.	DISC 3.1 3.2 3.3	USSION Fish Distribution	34 37 37

TABLE OF CONTENTS (CONT'D)

																											Page
1978	BIOPI	HYSICAL	LAKI	ESH	10 F	RE	11	1 V E	ENT	٥١	RY	•	•	•	٠	•	•	•	•	•	•	•	٠	•	•	•	39
	1.	METHOD	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	39
	2.	RESULT	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	40
	3.	DISCUS	SION	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	÷	•	•	•	•	•	•	51
	LITEI	RATURE	CITEI).	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	53

LIST OF TABLES

TABLE		PAGE
J .	Beach Seine Sampling Dates - Shuswap Lake, 1978	2
la	Beach Seine Sampling Dates - Shuswap Lake, 1979	4
2	Surface Water Temperatures Recorded at Beach Seine Sites – Shuswap Lake, 1978	12
2a	Surface Water Temperatures Recorded at Beach Seine Sites – Shuswap Lake, 1979	13
3	Benthic Invertebrates - Number of Organisms/M ² - Shuswap Lake, 1978	16
3a	Benthic Invertebrates – Total Number of Organisms/M ² – With All Depths and Sites Combined, 1978	19.
4	Zooplankton - Number or Organisms/M ³ - Shuswap Lake, 1978	21
4a	Zooplankton - Total Number of Organisms/M ³ - With All Sites Combined , 1978	20
5	Stomach Contents of Juvenile Chinook Salmon – Shuswap Lake, 1978	28
6	Recovery of Marked Fish - Shuswap Lake, 1978	33
7	Shoreline Inventory Summary and Juvenile Salmon Habitat Suitability Rating - Shuswap Lake, 1978	42

- v -

LIST OF FIGURES

FI	GURE	· ·	Page
	1	Shuswap Lake Study Area - 1978	3
	la	Shuswap Lake Study Area - 1979	5
	2	Shuswap Lake 1978 Beach Seine Results	9
	3	Shuswap Lake 1979 Beach Seine Results	9a
	4	Temperature Profiles - Shuswap Lake, 1978	14
	5	South Thompson River Beach Seining Data - 1979	34a
	6	Shuswap Lake System Shoreline Inventory Zones - 1978	41
	7	Shuswap Lake System Shoreline Inventory Zones	F. 0
		and Juvenile Salmon Utilization	52

LIST OF APPENDICES

Í	Sample	Record	ing	Sheet	t – B	iophys	sical	Lak	eshore	Inven	tory	-	
		p Lake,											54
		,					•••				•••	•••	<i>.</i> ,
							•						
		•				·							
	•												
						•							
	-												
		-											
·													
								•					
	-												
												•.	
,													

INTRODUCTION

Shoreline development of Shuswap Lake for industrial, residential and recreational purposes is increasing rapidly. Expanding timber harvesting operations in the Shuswap Lake watershed have created a demand for suitable landing and log storage sites along lake foreshore areas. The desirability of the Shuswap area as a retirement or recreational residence has resulted in a population growth in the area (6%) which is more than twice as great as the Province of British Columbia as a whole (Harrison, 1977). The greatest demand for subdivision property has naturally occurred where lakeshore access is readily available. Marinas, resorts, and service industries in the Shuswap area are also expanding in response to increasing recreational demands, and many of these businesses are directly dependent on shoreline areas in Shuswap Lake.

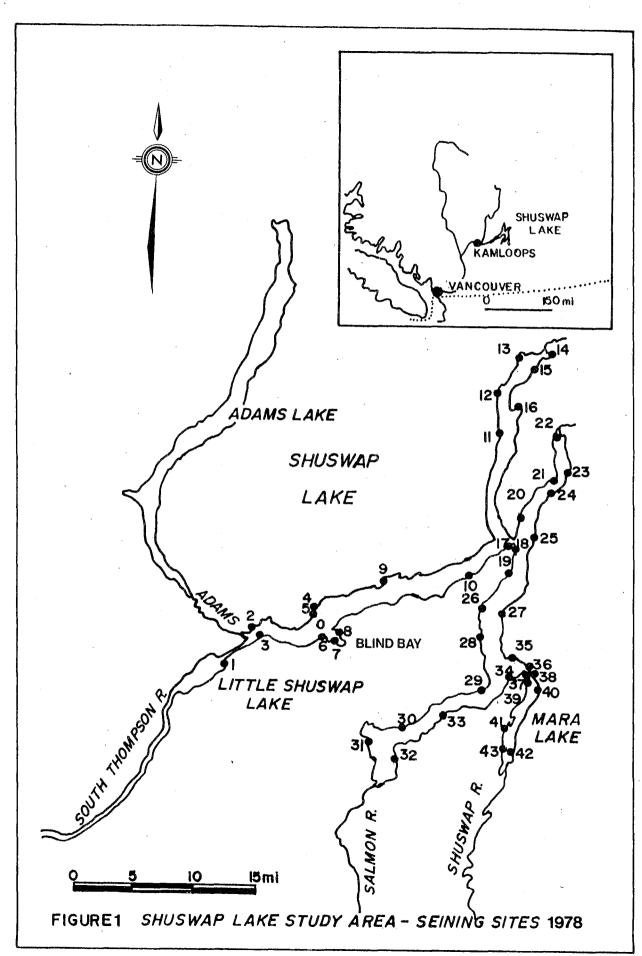
Several species of Pacific salmon utilize the Shuswap Lake watershed (ten year average salmon escapements are: chinook (Oncorhynchus tshawytscha) 13,446; coho (0. kisutch) 5,631; sockeye (0. nerka) 1,598,550 (cycle year); and pink (O. gorbuscha) (odd year) 810). (Brown et al., MS 1979). Juvenile chinook, coho and sockeye salmon utilize the foreshore areas extensively for rearing and migration purposes. Serious resource use conflicts may therefore develop unless shoreline areas essential to the production of juvenile salmon are identified and preserved. Accordingly, a study was initiated in 1978 which was designed to define the primary salmon rearing and migration areas in the lake and to assess the entire foreshore area of the lake with regard to the rearing habitat which it affords young salmon. The 1979 study program was designed as a continuation of the 1978 research as it was undertaken to determine any changes in rearing distribution of chinook and coho salmon resulting from competition with the large number of sockeye salmon fry produced by the 1978 dominant cycle year and to define the rearing areas and migration patterns of juvenile salmon in the vicinity of Salmon Arm. The latter work was undertaken at the request of the Environmental Protection Service which was concerned with an extension of the Salmon Arm sewage outfall and in response to proposed foreshore developments along the Salmon Arm waterfront.

This report presents the results of the two year lake sampling program as well as describing the biophysical inventory of Shuswap Lake completed in 1978. The inventory, an assessment of the relative value to rearing or migrating juvenile salmonids of foreshore habitat in the lake, is discussed in relation to use of the lakeshore areas by juvenile chinook, coho and sockeye salmon in 1978 and 1979.

1. METHODS

1.1 Lake Sampling

1.1.1 Fish Distribution


Time Period

In 1978 foreshore utilization of Shuswap Lake by juvenile chinook and coho salmon was estimated by beach seining at 43 sites around the lake. Seine sites (Figure 1) were chosen with the intention of sampling representative littoral areas throughout the whole Shuswap Lake system. Seining was repeated 9 times during the period from April to October (Table 1) using two 30 x 2.5m beach seines (constructed of $\frac{1}{2}$ cm and 1cm stretched nylon mesh). If no salmonids were captured in the first set, a second set was made in the vicinity to ensure that no salmon were rearing or migrating near the site.

Date

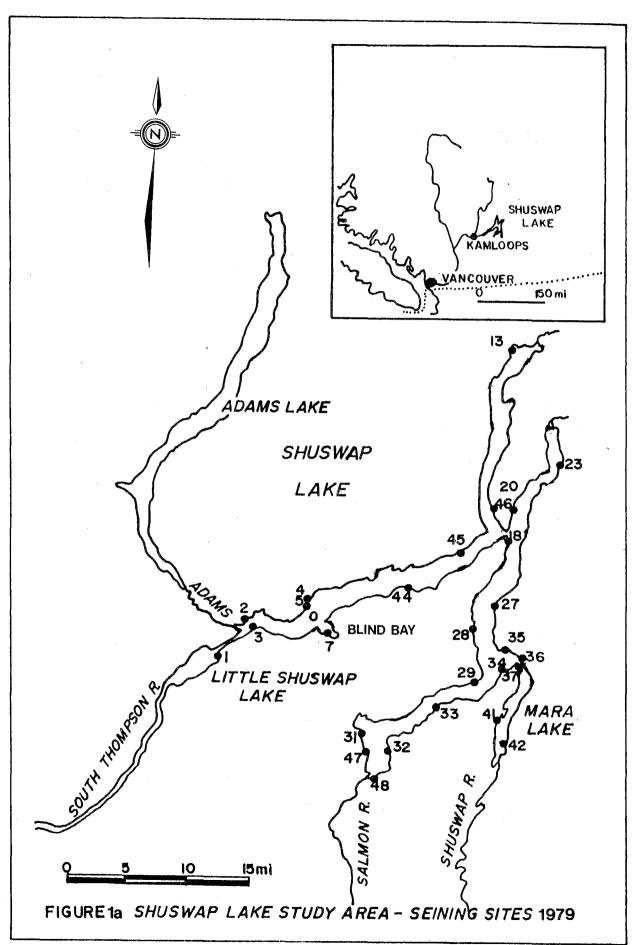
TABLE 1: BEACH SEINE SAMPLING DATES - SHUSWAP LAKE, 1978

1	Apr	4	·	5	
2	Apr	25	-	27	
3	May	16	-	18	
4	May	30	-	Jun	1
5	Jun	13	-	15	
6	Jul	5		6	
7	Jul	25	-	27	
8	Aug	28	-	31	
9	0ct	3		5	

- 3 -

This procedure was repeated in 1979 although beach seining took place at only 27 sites around Shuswap Lake (Figure 1a). Seine sites were chosen on the basis of 1978 study results and to provide a representative sample of the littoral area adjacent to Salmon Arm. Seining was repeated 6 times during the period of greatest salmon foreshore utilization (mid-April to mid-July; Table 1a).

Time	Period	Date
	1	Apr 25 - 26
	2	May 10 - 11
:	3	May 30 - 31
· · · ·	4	Jun 5 - 6
	5	Jun 26 - 27
	6	Jul 10 - 11


TABLE 1a: BEACH SEINE SAMPLING DATES - SHUSWAP LAKE, 1979

1.1.2 Temperature

In both 1978 and 1979 surface water temperatures were taken to the nearest 0.5°C at each seining site on each sampling date using a calibrated pocket thermometer. In 1978 temperature profiles were recorded at stations 4-7, 18-19, 35, 36, 39, and 40 (benthos and zooplankton sampling sites) during sampling periods 2, 5, and 7 using a YSI model 43 Tele-thermometer.

1.1.3 Zoobenthos Sampling

In 1978 dredge samples were collected at 2 and 5 m depths using a standard ponar dredge $(1^2$ ft. area) at sampling sites 4-7, 18, 19, 35, 36, and 39-41 during sampling periods 2, 5, and 7 (sites chosen were potential resource use conflict areas). Samples were preserved in 5% formalin and transferred to the Fisheries and Marine Service laboratory in Vancouver where they were sieved using 250 u mesh screens and identified to the genus level using a dissecting microscope.

no benthos sampling was conducted in 1979.

1.1.4 Zooplankton Sampling

Ten meter vertical hauls were made at station 4-7, 18, 19, 35, 36, and 39-41 during sampling periods 2, 5, and 7 in 1978 using a Wisconsin net with a mouth diameter of 0.5 m and a pore opening of 250 microns. Sites chosen were the same as those selected for benthos sampling. Samples were preserved in 5% formalin and transferred to the Fisheries and Marine Service laboratory in Vancouver where they were identified to the species level using a compound miscroscope.

No plankton sampling was conducted in 1979.

1.1.5 Stomach Sample Analysis

In 1978 ten chinook salmon were taken for stomach content analysis at sites 1, 2 and 41 on April 26 (second sampling date); site 4-7, 18, 19 and 34 during June 13 - 15 (fifth sampling period); and sites 35 - 37 on July 26 - 27 (seventh sampling date). The sample fish were preserved in 5% formalin and transferred to the Fisheries Management Service laboratory in Vancouver where they were measured and their stomach contents were removed for analysis under a dissecting microscope.

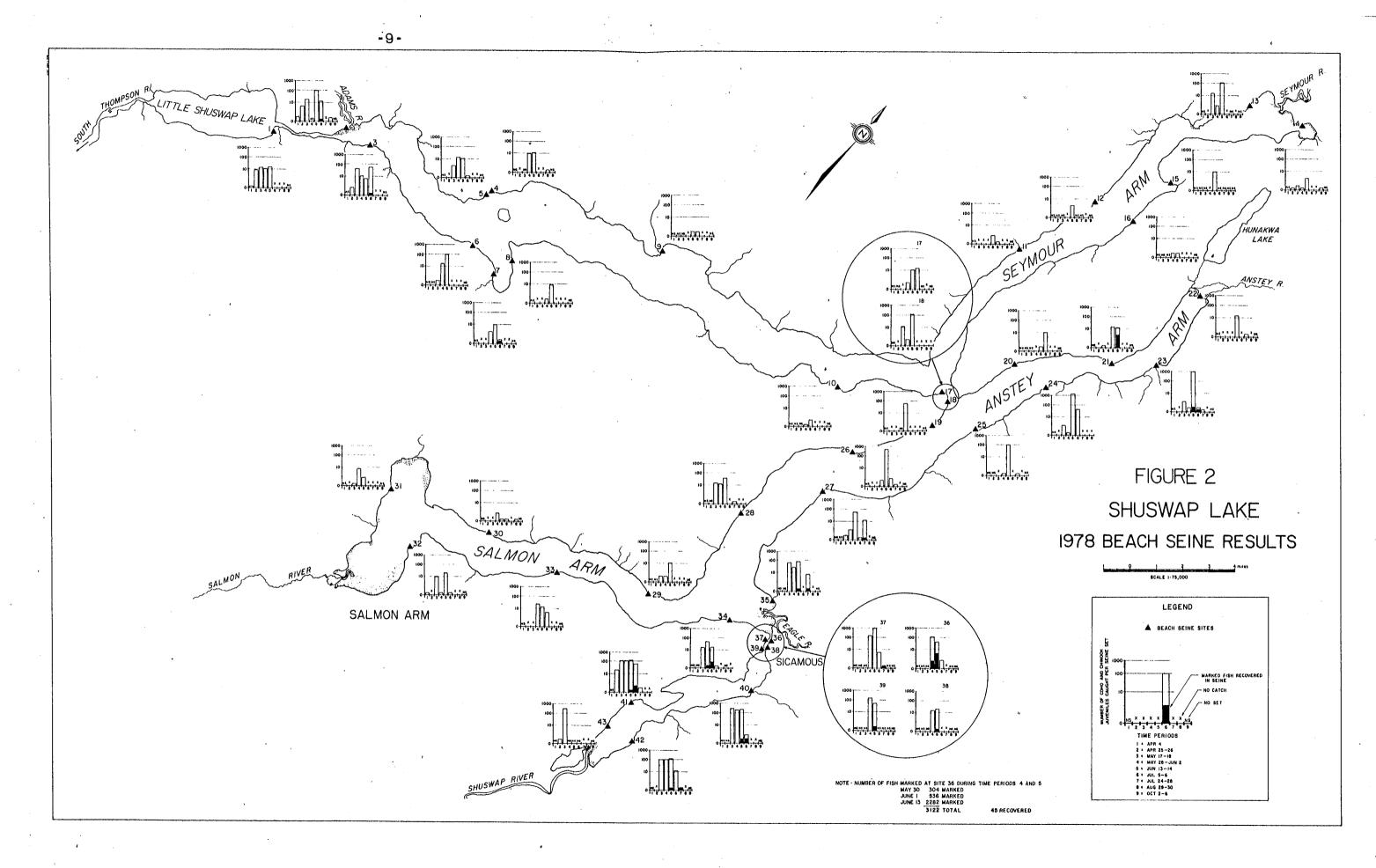
No stomach content analysis was done in 1979.

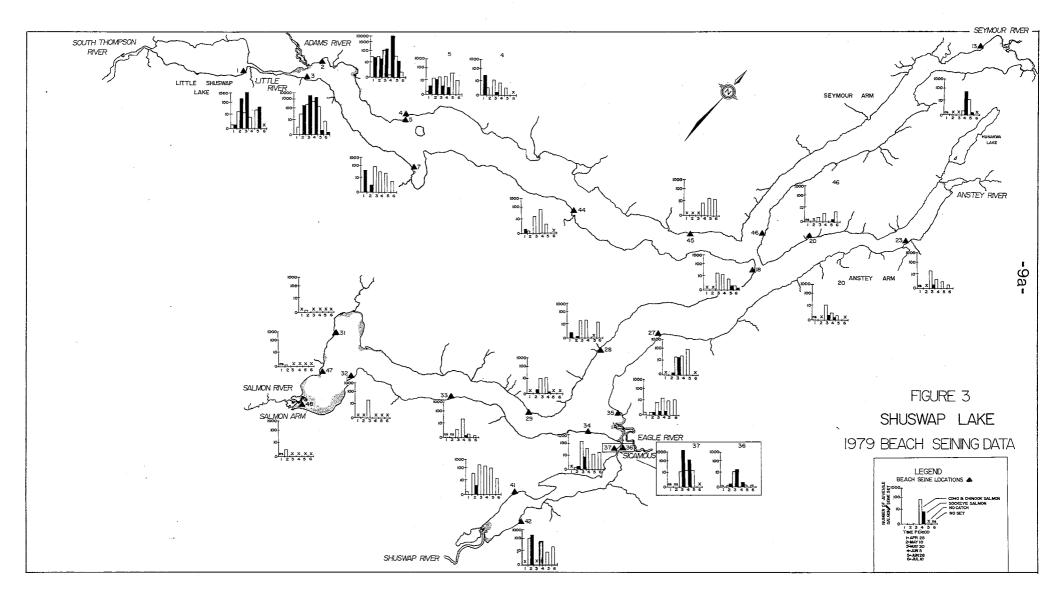
1.2 Sicamous Narrows Dye-Marking Program

In order to determine the period of residency and migration patterns of young salmon in Sicamous Narrows, 3, 122 chinook and coho juveniles were seined from sites 36-39 on May 30, June 1 and June 13, 1978, and held in a 1:30,000 solution of Bismarck Brown Y dye (B.D.C. Chemical Co.) for 3 - 4 hours. The fish were kept in a 50 gal. plastic wading pool (partially immersed in lake water to ensure temperature regulation) into which compressed air was continuously bubbled for the duration of the dye-marking. Following the dyeing the marked fish, which were readily identifiable by their bright orange fins, were released back into the Narrows at station 36. A sample of 100 dyed fish was held for 24 hrs. in a marquisette livebox in order to determine marking mortality.

Sampling sites within and just outside Sicamous Narrows (34 - 41) were seined once a day for a week following dye-marking using the equipment described in Section 1.1.1 above, in order to determine how long marked fish remained within the Narrows area. Numbers of marked fish caught during regular sampling periods at other sites in Shuswap Lake were also recorded. 1.3 River Sampling

In addition to lake sampling, the South Thompson River between Chase and Kamloops was also sampled for the presence of rearing or migrating juvenile salmon in 1979. Six sampling sites were seined on June 14 using a 30 x 2.5 m beach seine ($\frac{1}{2}$ and 1 cm stretched nylon mesh). Surface water temperatures were taken at each seine site.


2. RESULTS


2.1 Lake Sampling

2.1.1 Fish Distribution

Juvenile chinook and coho salmon distribution determined by the 1978 beach seining program is shown in Figure 2. Seining results indicate that very few young salmon utilized the Shuswap shoreline areas before April 25 or after the sixth of July. The largest numbers of juvenile chinook and coho were caught during sampling period four (May 30 - June 1) and five (June 13 - 15). The greatest concentrations of fish were seined at stations 35-43 in Sicamous Narrows and Mara Lake, stations 24-26 near Cinnemousun Narrows, and stations 2, 3, and 6 near the outlet of Shuswap Lake. At some sampling sites(1-3, 5, 27, 35, 40-42) substantial numbers of young salmon were caught throughout the entire spring to early summer period (sampling dates 2-7) while at other locations few salmon were seined on any sampling date (stations 9-11, 16, 18, and 30).

The 1979 beach seining program determined the distribution of juvenile chinook, coho and sockeye as shown in Figure 3. Seining results indicate that relatively low numbers of chinook and coho salmon juveniles utilize the Salmon Arm area of Shuswap Lake (sites 31, 32, 47 and 48). No sockeye fry were caught during any of the sampling periods. Seine catches at sites 32, 33, and 29 suggest that salmon juveniles which originate in the Salmon River migrate along the southern shoreline of Salmon Arm toward Sicamous during late May and early June and reside in other portions of the Shuswap system thereafter. Large numbers of rearing and migrating salmon were found

4

7

.

+

;

:

in Mara Lake (sites 41 and 42), the vicinity of Sicamous Narrows (sites 34, 35, and 37) and south central Shuswap Lake (sites 1-3, 5, and 7). Moderate salmon catches were made at sites 4, 44, 45, 18, 13, 23, and 36. Utilization of foreshore areas at sites 46 and 20 was low.

Comparison of seining results in 1979 with those of 1978 suggests the following: In the vicinity of the Adams River and Blind Bay, chinook and coho salmon catches were much greater than those obtained in 1978. Sockeye fry were present in larger numbers than coho and chinook salmon until early June but their numbers declined toward the end of the seining season. The predominant species in 1979, sockeye, were only occasionally taken in beach seining activities during the 1978 season. In the northern region of Seymour Arm (site 13) sockeye fry predominated in catches in early June but more chinook than sockeye juveniles were seined in late June sampling. These results, when compared with those of 1978, suggest that sockeye fry may displace chinook fry during the littoral phase of their life cycle.

Juvenile sockeye were found in small numbers in foreshore areas adjacent to seining sites 44-46, 18, 20, 23, 27-29 and 33-35 in 1979. No sockeye fry were found at these sites in 1978. Chinook and coho catches at these sites in 1979 were comparable with those of 1978 except at stations 34 and 35: seine catches were higher in 1979 than 1978 at site 34 while at site 35 the opposite was found.

In the Salmon Arm area, seine catches of chinook and coho fry were higher in 1978 than 1979. Small numbers of fish were recorded from late April until early July in 1978 but in 1979 fish were caught only during mid to late May. No sockeye juveniles were seined in Salmon Arm in either 1978 or 1979.

Salmon catches in the Sicamous Narrows - Mara Lake region were good in both 1978 and 1979. However, seine catches at sites 36 and 42 were lower in 1979. At sites 36 and 37 sockeye were the predominant fish taken in 1979: they apparently displaced chinook and coho juveniles found occupying these sites in large numbers in 1978.

- 10 -

2.1.2 Temperature

Surface water temperatures recorded at beach seine locations throughout the 1978 sampling program are given in Table 2. Temperatures at all sites gradually increased during the summer until sampling period 7, when maximum temperatures were recorded (mean temperature recorded for all seine sites during time period 7 was 24.6° C). Thereafter, surface water temperatures gradually decreased.

For the 1979 sampling program, surface water temperatures recorded at beach seine locations are given in Table 2a. Again, temperatures at all sites increased as the summer progressed, however, those recorded in the vicinity of Salmon Arm (sites 31, 32, 47, and 48) remained close to the tolerance level for salmon (23-24^oC; Brett, 1952) during the late June and mid-July sampling periods.

Temperature profiles recorded in 1978 at seine sites 4-7, 18, 19, 35, 36, 39, and 40 are presented in Figure 4. Profiles suggest that the development of a small thermocline occurs in Shuswap Lake as early as April 27, and that by July 26 a thermocline of 10-15°C is evident between 3 and 9 meters. Stations 36 and 39 did not exhibit any appreciable change in temperature from the surface to the lake bottom, due to the shallowness of Sicamous Narrows and the effect of a current passing through the Narrows from the surface outflow of Mara Lake. The shallowness of Captain's Village Marina (site 4) precluded any large change in water temperature.

2.1.3 Zoobenthos

Species diversity and abundance of benthic organisms determined by dredging at selected sites in 1978 in Shuswap Lake are presented in Table 3. Forty-nine taxa of benthic invertebrates were identified from samples taken in the lake during time periods 2, 5, and 7 (April 25-27, June 13-15, and July 25-27). Overall diversity was greatest during time period 5. The sampling sites with the greatest faunal diversity were stations 7, 18, 36, and 27 (21, 24, 21, and 20 taxa recorded respectively) in time period 2;

SEINE SITE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
TIME PERIOD- TEMPERATURE															
1 2 3 4 5 6 7 8 9	4 6 10 12.5 17 20 22.5	5.5 7.5 11 16 21 25 22.8	7 9 12 16 21 23.5	- 12.5 16.5 22 24.5 21.4	8.5 12 13 16 20.5 24.5	11 14 16 22 25 21.4	8.8 12.5 14 16.5 22 25 21 -	8 14 13.5 16 22.5 26 21 -	17 22 26 21.4	- - 22.5 25 21 -	8 13 14 14.5 21 25 20 -	14 16.5 22 19.5	8 13 13 17 23 25 19 -	9.5 15 13 17.5 23 26 19.5	
SEINE SITE	15	16	17	18	. 19	20	21	22	23	24	25	26	_27	28	
TIME PERIOD- TEMPERATURE														• •	
1 2 3 4 5 6 7 8 9	- 13 17 - - -	- 15 16.5 21.5 24.5 20.5	7 13 16 16 23 24 19	7 12.5 14 16 23 23.5 19	5.5 12 15 22.5 23.5 19.5	13 17 21.5 24 19	4.5 11.5 12 16 22 23.5 19	8 11.5 11.5 16 22 23 19.5	7 10 11.5 16 20 22.5 19	8 11.5 13 16.5 21 24 19 14	10 12.5 17 23 24 19.5	12 13.5 16 23 21 20.2	8.5 11.5 12 17 22 21.5 19.7	14 12 14 23.5 20.5 20.5 14	,
SEINE SITE	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43
TIME PERIOD- TEMPERATURE															
1 2 3 4 5 6 7 8 9	- 11 14.5 15.5 21 23 20.8	9.5 11 15 18 22 25.5 21 -	10.5 14 14.5 18 23 24.5 21.7	8 13 15 15 18.5 21.5 25 21.4	9 12.5 15.5 18 22.5 24.5 20.5	10 12 14.5 16.5 22 24 14	10 12 12 15 24 22 20.8	14 15.5 20 23	12.5 14 21.5 22	- - - 22 24 -	9.5 12 - -	14 14.5 16 20 26 21.7 14	10 14.5 16 23 25.5 21.4 14	10 11.5 14 15 19 25 21.7	10 12

t

TABLE 2 SURFACE WATER TEMPERATURES RECORDED AT BEACH SEINE SITES - SHUSWAP LAKE, 1978

<u>Seine Site</u>]	2	3	4	5	7	13	18	20	23	27	28	29	31	32
Date - Temp. ^C	°c														
Apr. 25	7	11	5	8	7	8	-	5	- .	-	7	8	4	10	18
May 10	9	11	10	-	11	10	9	6	6	4	4	6	6	10	13
May 30	10	11	11	12	13	14	13	13	15	14	15	15	13	17	16
Jun. 5	15	15	14	14	14	1.4	13	13	13	14	14	15	14	17	17
Jun. 26	12	18	17	18	18	18	22	20	20	22	22	22	22	22	23
Jul. 10	17	20	18	20	19	18	21	20	20	20	19	20	20	22	22
<u>Seine Site</u>	33	34	35	36	37	41	42	44	45	46	47	48			
Date - Temp. ^C	°c														
Apr. 25	-	4	9	10	-	11	11	4	4	çanı	-	-			
May 10	-	7	9	11		13	12	6	8	6	12	11			
May 30	16	16	16	15	14	14	-	12	13	13	15	16			
Jun. 5	18	14	.14	15	15	14	-	13	15	13	-	-			
Jun. 26	20	21	22	20	19	20	21	20	21	21	22	24			
Jul. 10	21	20	20	20	20	21	20	20	19	19	21	-			

TABLE 2a: SURFACE WATER TEMPERATURES RECORDED AT BEACH SEINE SITES-SHUSWAP LAKE, 1979

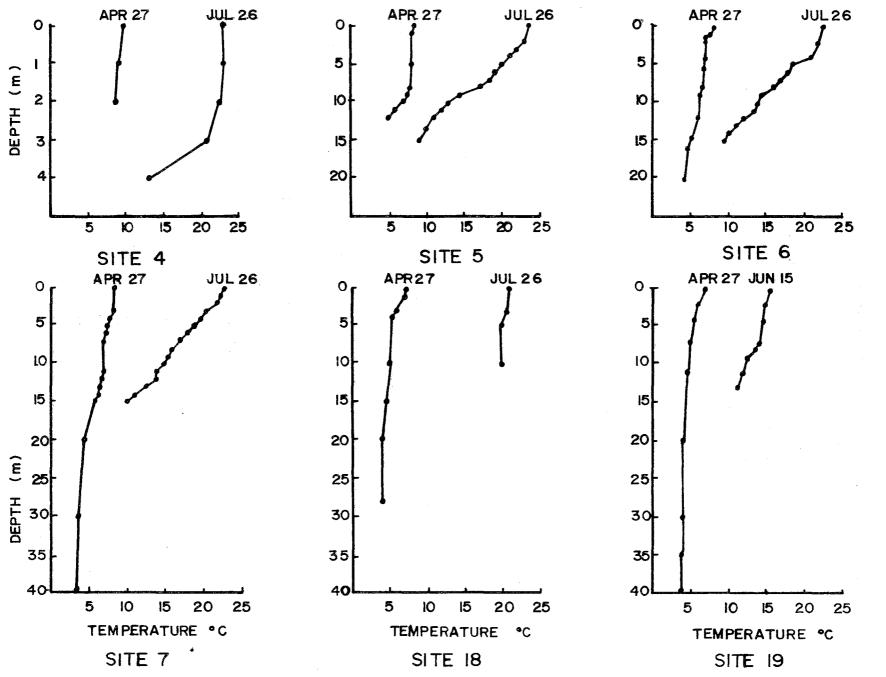


FIGURE 4 TEMPERATURE PROFILES - SHUSWAP LAKE 1978

-<u>1</u>4-

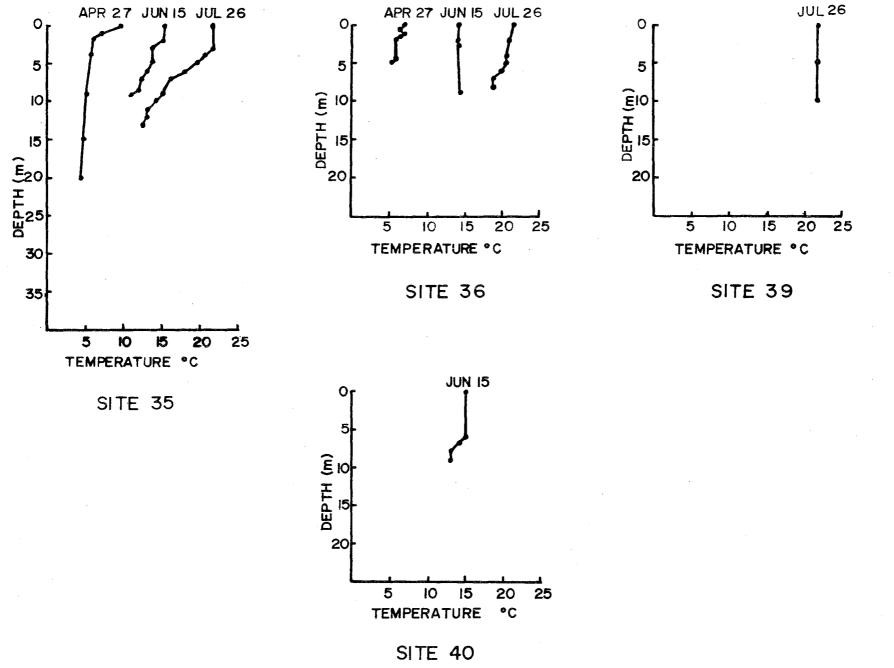


FIGURE 4 cont.

4. 46

י 5

TABLE 3 - BENTHIC INVERTEBRATES - NUMBER OF ORGANISMS/m² - SHUSWAP LAKE, 1978

ł

.

TIME PERIOD 2 SAMPLE SITE

ORGANISM	4		5	_	6		7	_	1	8	1	9	3	5	3	6	37		4	0	41	
	2m	3.50	2m	5m	2m	5m	2щ	5m	210	5m	2m	5m	2m	_ 5m	2m	<u>5</u> m	2m	3m	2m	5m	2m	5m
Phylum Coelenterata																						
Order Hydroida													14					114-				
Phylum Platyhelminthes											200	7 - / /			7/ 2/						1.0.7	
Phylum Nematoda Phylum Tardigrada		72	1659	29	114	114	2517	114	57	143	300 14	1544 172	1602	4004	7436 343	515	86	858			108-7 2088	744 572
Phylum Annelida			2000			·					-							050			2000	512
Class Oligochaeta		14	114	29		458	228	1730		72	29	114	1115	1301	114		43	2574				
Class Hirudinea Phylum Moll usca			57				14	615	29				72									
Class Gastropoda										14							14	14				
Class Pelecypoda																		229				
Phylum Arthropoda																						
Class Crustacea Subclass Brachiopoda																						
Sida crystallia																						
Daphnia sp.																		_				
Bosmina sp.				29										458		57		57				
<u>llyocryptus sordidus</u> Graptoleberis testudinaria				29										438		,,						
Eurycercus lamellatus																						
Camptocercus rectirostris																						
Acroperus harpae Alona sp.	29					114	114		86			57				57	14	57				114
Chydorus sphaericus	23		114	286		114	228		200	529	29	57				229	14	114			143	57
Pleuroxis sp.																						
Subclass Ostracoda	43	72	572	29		114	572	343	57				1830	1945	343	229		57			572	172
Subclass Copepoda Epischura nevadensis	14									29							14					
Diaptomus ashlandi				114						14	100	57						57				
Copepodites																						
<u>Cyclops capillatus</u> Macrocyclops albidus							114		29													
Eucyclops sp.	114						114		57												114	57
Paracyclops sp.	57		858	114		229	228			14			229	114		172					29	
Cyclops vernalis						.,		11/		()	57					57						- -
Cyclops bicuspidatus Order Harpacticoida	14	14 14	1544	57 601	114	14 1945	1258	114 1258	572	43 2531	86 1115	10182	1144	229	1030	686	100	13328			29 114	57 286
Subclass Malacostraca	14	1.	1911	001			1-50	12.7-	5			101						15520				200
<u>Hyalella azteca</u>				14		572		386	229	14			14	29		29	172	329				
Class Insecta Order Collembola	100	472	114	1/2			343		29	14	43	57		114		14					29	
Order Collempoia Order Coleoptera	100	472	114	143			343		29	14	40			114		2.4					29	
Order Diptera adult		14														57						
pupae	29	ė.	57	72	105/2	100/0	143	14	543	72	1/70	1122	43	200	12501	386	106 1344	787			0700	57
Chironomidae (larvae) Heleidae larva	29 14	86	9324 114	2860	19562 114	19248 129	13900 315	9996 744	4776 372	1516 29	1473 57	4633 343	32304 315	14271 758	12584 572	9896 601	1344	16302 86			8723 86	8580 172
Order Ephemeroptera	14		114		114	129	215	129	29	14	21	114	14	686	2.2	57	14	429			00	116
Order Lepidoptera																						
Order Hymenoptera Order Thysanoptera																						
Order Plecoptera																						
Order Trichoptera			57						57	43	14					29		43				57
Order Odonata				14			129	29	20													
Order Psocoptera Subphylum Chelicerata									29													
Order Acari	14	14	57		114	343	358	400	343	172	72		29	257	229	114	243	315			29	57
Order Araneida	14	29						29					14									114
Mise. Eggs		14				114	572	3432	315	72	72	629	2746	5749	2631	229		872			629	801
TOTAL # ORGANISMS	472	815	14643	3103	20020	23524	364	18747	7808	5334	3461	17961	41484	30115	25282	13413	2245	36622			13671	11898

4

TABLE 3 - (cont'd.)

٤.

f

TIME PERIOD 5

SAMPLE SITE

ORGANISM	4		5		6		7	3	.8	1	.9	35	3	6	37	4			41
	2m	3.5m	2m	5m2	<u>2</u> m	5m	2m 5m	2m	5¤	2m	5m 2m	5m	2m	5m	2m 3m	2m	5m	2m	5m
Distant Costanteses																			
Phylum Coelenterata								11/2	(000					3203	3546		257		
Order Hydroida				• /				4462	4833					3205	J)+0		43		
Phylum Platyhelminthes			14	14					386								45		
Phylum Nematoda	11/												600	11006	21.2		7.6		
Phylum Tardigrada	114	14	14			1144	57						629	11326	343		14		
Phylum Annelida	14	215		201	1700	1010													
Class Oligochaeta	14	215	14	286	1702	4848	1459	13270	2031		2545	3618	315	19~5	4662	200	601		
Class Hirudinea									57				•						
Phylum Mollusca																			
Class Gastropoda									300					229		29	443		
Class Pelecypoda							57					57			114	•			
Phylum Arthropoda							57												
Class Crustacea																			
Subclass Brachiopoda				•													29		
Sida crystallia																	29		
Daphnia sp.											29			229		14			
Bosmina sp.		14		858	14	229		229	57		400	172			114	29	172		
Ilyocryptus sordidus				515					172				200	915	229	14	57		
Graptoleberis testudinaria					229				744							14	1802		
Eurycercus lamellatus				200	>		100		• • • •		129	1		2717		86	486		
Camptocercus rectirostris					14		100		286		257		29				86		
Acroperus harpæ			100		14				200		29					43	29		
Alona sp.		29	57	686	114		229	343	57		257		458	3546	3661	186	429		
Chydorus sphaericus		14	43	172	72	458	543	747	57		372		172	1030	229	601	400		
Pleuroxis sp.		14	2	172	12	450	J4 3		229		114		112	1030		001	-00		
Subclass Ostracoda	72		2		57	4347	80	114	57		315		1473	3918	801	629	29		
Subclass Copepoda	12				57	4 3 4 7	00	114	57		217	1407	1475	3910	001	029	29		
Epischura nevadensis																			
Diaptomus ashlandi	29	14	29	686	43		29	343	114		29			114		200	29		
Copepodites												114				844	458		
Cyclops capillatus																•••	143		
Macrocyclops albidus				57	14		29		400		915	114		114		358	915		
Eucyclops sp.		14	257	57	43	229					400		343		114	515	315		
Paracyclops sp.		~ ·	29	1087	•5	686			57		57		372	801	458	129	86		
Cyclops vernalis		43	29	1007	14	000			27		5,	027	512	001	458	29	143		
Cyclops bicuspidatus	14		29	229	14	229		686	229		86	57	29		229	14			
Order Harpacticoida	14	43	29	5034	.4	1602	1144	229	1144		57		400	7093	16931	186			
Subclass Malacostraca		45	25	2004		1002	1144	229	1144			1030	400	7095	10931	100	4040		
Hyalella azteca									243		143			114		143	400		
Class Insecta									245		145			114		143	400		
Order Collembola	72	20	1.4	7/	(00	220	100	220				6.06	050	6.06	701				
Order Coleoptera	12	29	14	14	400	229	100	229			114		958	686	701	57	257		
Order Diptera adult			14	57			43				14		14				14		
pupae		20			43	• /	57				14			- / -		•			
Chironomidae (larvae)		29	1016		186	14	43	<i></i>			486		129	143		29	57		
Heleidae larvae	300	1931	1216	1058	1130	20492	3675	6406	1959		4290		2331	6321	8151	1387	686		
Order Ephemeroptera					43	72	143	114	172		57		143	1716	114	14			
Order Lepidoptera				14	14		43				400					72	200		
Order Homoptera						14													
		14																	
Order Hymenoptera		14					- 14												
Order Thysanoptera																			
Order Plecoptera																			
Order Trichoptera			43			.14	29	14	29		29		57	143	143	57	14		
Order Odonata			-						-								14		
Order. Psocoptera																			
Subphylum Chelicerata																			
Order Acari		29	14	57	72	1144	400	229	229		458	286	43	114	458	400	143		
Order Araneida		14	57		14	29	400	229	223		430	200	43	14	458	400	145		
		43	186	343		11125	315	572	1559		486	1544		686	2360	. 29	143		
Misc. Eggs					1902	エエエムフ	515	212	1222		485	1244		000	2000	29	743		
Misc. Eggs		15																	
		15																	
Misc. Eggs TOTAL # ORGANISMS	615	2503		11426	6135	46933	8594	27242			12/8/	17160	7994	46547	43715	6206	11240		

:

;

-17-

÷....

ţ

TABLE 3 (cont'd.)

-

+ t

TIME PERIOD 7
SAMPLE SITE

ORGANISM	4	5		6	7		18	3	19	3	5	36	37	40	41
<u>Understand</u>	2m 3.5m	2m	5m	2m 5m	2m	5m	2m	5m	2m 5m	2m	5m	2m 5m	2m 3m	<u>2m 5m</u>	2m 5m
Phylum Colenterata Order Hydroida	57	57	2059			286	186			572	972	14			
Phylum Platyhelminthes		57	14			29	200				29				
phylum Nematoda															
Phylum Tardigrada	1602	57	229	458			29					486	7779		
Phylum Annelida															
Class Oligochaeta	1544	3990	13113	2974	1845	944	3732	3432		5534	14200	6020	4462		
Class Hirudinea						29	229				29				
Phylum Mollusca			186	458	229	200	114	229			529				
Class Gastopoda Class Pelecypoda			3103	229	223	200	72	458			227				
Phylum Arthropoda			1105	22.5			,-	. 450							
Class Crustacea															
Subclass Brachiopoda															
Sida crystallia						57							14		
Daphnia sp.															
Bosmina sp.	114		114		229	57	29			229	150				
Ilyocryptus sordidus	515		1916								458				
Graptoleberis testudinaria	57		143												
Eurycercus lamellatus Camptocercus rectirostris	11		140												
Acroperus harpae	57				458										
Alona sp.	57	286	1216			114	57	229		915		915	5734		
Chydorus sphaericus	114	286	472	229	3432	29	143	458		1830		286	1830		
Pleuroxis sp.		57													
Subclass Ostracoda	114	114	958	4605	1373	143	143	1373		2974	12813		10611		
Subclass Copepoda															
Epischura nevadensis Diaptomus ashlandi					458		29								
Copepodites					-100								229		
Cyclops capillatus			114												
Macrocyclops albidus		57					57								
Eucyclops sp.	686		229	229	229		329			801			915		
Paracyclops sp.	458	57	1258	686			172			1716		57	2517		
Cyclops vernalis	114		1007	150	458	57	57			114			458		
Cyclops bicuspidatus Order Harpacticoida		1201	1387 33290	458 42557	229 2746	57 114		29058		343	134992	644	20592		
Subclass Malacos traca		1201	33290	42007	2140	114	1250	25050		545	134772				
Hyalella azteca			243			29	57	1144		. 14			•		
Class Insecta															
Order Collembola	129		57	915		57		229							
Order Coleoptera			29					14							1 (F)
Order Diptera adult			114					229		2/2	20	29			
pupae		129		· 229 20549	686 28271	1173	29 4204	229 13728		343 27899	29 5277	772	18504		
Chironomidae (larvae) Heleidae larvae	5677	6764	10868 129	20549	28271	11/3	4 2 0 4 86	229		27033	5211	14	10504		
Order Ephemeroptera			129	29	229		200	72		343					
Order Lepidoptera			114	27											
Order Homoptera				229											
Order Hymenoptera															
Order Thysanoptera	57														
Order Plecoptera		72	57	243	257		200	14		129					
Order Trichoptera Order Odonata		12	57	243	257		200	14		129					
Order Odonata Order Psocoptera															
Subphylum Chelicerata															
Order Acari	57		114		1144	57	200	1144		458	14		11445		
Order Araneida	29		14	29		29					14				
Misc. Eggs	1773	458	1444	915	1373	887	458	915		686	12813	343	1602		
TOTAL # ORGANISMS	13213	13585	73145	76276	43644	4290	12098	53182		44902	182168	9581	76391		
IVIIL 7 ORGANISTIS	13213	1000	17147	,5270	42044	4220	12070	JJ 202							

7 1

-18 -

stations 6, 35, 36, and 40 (27, 29, 27, and 28 taxa recorded respectively) during time period 5; and stations 5, 7, and 18 (31, 25, and 27 taxa recorded respectively) during time period 7. Those sites with the most limited species diversity were stations 6 and 19 (14 and 16 taxa recorded respectively) during time period 2; stations 4, 7, and 37 (19, 21, and 21 taxa recorded respectively) in time period 5; and stations 36 and 37 (11 and 14 taxa recorded respectively) during time period 7.

The abundance of benthic animals was also examined. During the three sampling dates the total number of organisms dredged at 5 m was, in most cases, equal to, or greater than, the number dredged at 2 m. In addition, the number of benthic invertebrates collected during time period 7 was three times the number recorded at the same sampling locations in time periods 2 and 5.

The most abundant organisms taken in benthic samples (all depths and sites combined; individuals/ m^2) appear in Table 3a.

		Time Period	
Organism	2	5	7
· · ·			
Phylum Tardigrada	15,073		
Order Harpacticoida	38,065	37,267	266,795
Class Oligochaeta		37,725	61,790
Subclass Ostracoda			35,221
<u>Chironomidae</u> (<u>larvae</u>)	191,407	61,905	143,686
Misc. Eggs	18,877	21,293	

TABLE 3a: BENTHIC INVERTEBRATES - TOTAL NUMBER OF ORGANISMS/M² WITH ALL DEPTHS AND SITES COMBINED - SHUSWAP LAKE, 1978

The sampling stations showing the greatest abundance of benthic animals were sites 6, 7, 35, 36, and 37 (43; 544; 40,111; 71,599; 38,695; and 38,867 invertebrates per m² counted respectively) during time period 2; sites 6, 18, and 36 (53,068; 42,586; and 54,541 invertebrates counted respectively) in time period 5 and sites 5, 6, 35, and 37 (86,730; 76,276; 227,070; and 76,391 invertebrates counted respectively) during time period 7.

2.1.4 Zooplankton

A summary of the 1978 net plankton catch results is given in Table 4. Thirty species of organisms were found in plankton samples taken during time periods 2, 5, and 7. Overall diversity was greatest during time period 2. Sampling stations showing the greatest diversity of plankton were: stations 7 and 35 (16 and 18 species recorded respectively) in time period 2; stations 35 and 36 (13 and 10 species recorded respectively) during time period 5; and stations 35 and 37 (13 and 10 species recorded respectively) in time period 7.

Plankton collected during time period 5 was two to three times as abundant as plankton collected in time periods 2 and 7. Sampling stations exhibiting greatest zooplankton abundance were site 5 (3,709 plankters/m³ counted) during time period 2; site 18 (18,304 plankters/m³ counted) in time period 5 and sites 6 and 18 (4,752 and 8,800 plankters/m³ counted respectively) during time period 7.

The most abundant plankters (per m^3) appear in Table 4a:

TABLE 4a: ZOOPLANKTON - TOTAL NUMBER OF ORGANISMS/M³ WITH ALL SITES COMBINED - SHUSWAP LAKE, 1978

		Time Period	
Organism	2	5	7
Bosmina spp.	2,016	7,943	1,847
Cyclops bicuspidatus	4,371	11,500	
Daphnia spp.		11,877	8,591
Diaphanosoma leuchtenbergianum	· ·		3,364
Diaphtomus ashlandi	3,352	19,342	3,309
Epischura nevadensis			1,566

- 20 -

TABLE 4 ZOOPLANKTON (NUMBER OF ORGANISMS/m³) SHUSWAP LAKE, 1978

				SAMPLE SITE	2					
ORGANISM	4	5	6	7	18	19	35	36	37	40
Phylum C oel enterata										
Order Hydroida	•			6				3		
Phylum Annelida Class Oligochaeta				4			16			
Phylum Arthropoda				4			10			
Class Crustacea	•									
Subclass Brachiopoda										
<u>Leptodora kindtii</u>										
<u>Sida crystallia</u>		-		_						
<u>Diaphanosoma leuch</u> - tenbergianum				2	8				•	
Daphnia sp.		20	10	6	36		28	10	12	112
Scapholeberis kingii		20	10	0	30		28	10	12	112
Bosmina sp.		4	66	38	172		700	44	156	836
Eurycercus lamellatus							2		100	
Camptocercus rectirostris										
Acroperus harpae				6			4			
Alona sp.										
<u>Chydorus sphaericus</u> Subclass Ostracoda			10	38			18			
Subclass Ostracoda Subclass Copepoda				14			30			
Epischura nevadensis										
Diaptomus ashlandi		620	319	246	556		136	963	372	140
			- 47							

4

4

-21-

¢

.

TIME PERIOD 2

.

SAMPLE SITE

					•					
ORGANISM	4	5	6	7	18	19	35	36	37	40
Macrocyclops albidus				4						
Euclops sp.		4		2			2			
Cyclops bicuspidatus		3,052	1,494	1,314	656		130	197	54	224
Cyclops capillatus							6			
Order Harpacticoida							6		4	
Order Amphipoda							7.4			
<u>Hyalella azteca</u> Class Insecta				4			14		4	
Order Collembola										
Order Coleoptera		4								
Order Diplura		-								
Order Diptera										
Chironomid larvae				2			40		4	
Family Heleidae (larvae)							2			
Order Ephemeroptera					1		10			
Order Trichoptera										
Order Odonata (nymph)				2			2			
Class Arachneida Order Acari			г	18			8		4	
order Acarr			T	19			8		4	
Motol # Organiana		3,709	1 000	3 704	1 420		7 45 4	1 217	(10	1 710
Total # Organisms		5,709	1,900	1,704	1,429		1,454	1,217	610	1,312
		4								

ŧ.

.

TABLE 4 (cont'd.)

ORGANISM 5 7 18 19 35 36 37 40 6 Phylum Coelenterata `2_. Order Hydroida Phylum Annelida Class Oligochaeta Phylum Arthropoda Class Crustacea Subclass Brachiopoda . Leptodora kindtii 8 2 14 Sida crystallia 8 8 8 16 Diaphanosoma leuch -2 tenbergianum Daphnia sp. 692 128 288 472 8,096 40 288 705 1,168 Scapholeberis kingii Bosmina sp. 1,505 544 1,472 2,016 1,024 736 280 30 176 160 Eurycercus lamellatus Camptocercus rectirostris 16 8 Acroperus harpae 8 Alona sp. Chydorus sphaericus 2 8 24 8 8 48 16 Subclass Ostracoda Subclass Copepoda Epischura <u>nevadensis</u> Diaptomus <u>ashlandi</u> 41 16 14 1,492 2,672 1,112 2,008 5,952 2,228 840 238 644 2,096

TIME PERIOD 5 SAMPLE SITE ć,

-23-

TABLE 4	(cont'	'd.)	
---------	--------	------	--

ŧ

.

TIME PERIOD 5

SAMPLE SITE

ORGANISM	4	5	6	7	18	19	35	36	37	40
Macrocylops albidus Euclops sp. Cyclops bicuspidatus Cyclops capillatus Order Harpacticoida Order Amphipoda	14 786	848	2,784	8 896	3,232	8 8 1,728	8 16 240	182	244	560
Hyalella azteca Class Insecta Order Collembola Order Coleoptera Order Diplura Order Diptera Chironomid larvae Family Heleidae (larvae) Order Ephemeroptera	14	16					8			
Order Trichoptera Order Odonata (nymph) Class Arachneida Order Acari									8	
Total # Organisms	4,544	4,224	5,656	5,400	18,304	4,832	1,504	768	1,807	4,016

ŧ

- 24 -

J

TABLE 4 (cont'd.)

TIME PERIOD 7 SAMPLE SITE ORGANISM Phylum Coelenterata Order Hydroida Phylum Annelida Class Oligochaeta Phylum Arthropoda Class Crustacea Subclass Brachiopoda Leptodera kindtii Sida crystallia Diaphanosoma leuch -2,400 tenbergianum Daphnia sp. 2,512 4,160 1,063 Scapholeberis kingii Bosmina <u>sp.</u> Eurycercus lamellatus Camptocercus rectirostris Acroperus harpae Alona sp. Chydorus sphaericus Subclass Ostracoda Subclass Copepoda Epischura <u>nevadensis</u> Diaptomus <u>ashlandi</u>

-25

			-							
ORGANISM	4	5	6	7	18	19	35	36	37	40
<u>Macrocylops albidus</u> <u>Euclops sp.</u> <u>Cyclops bicuspidatus</u> <u>Cyclops capillacus</u> Order Harpacticoida Order Amphipoda	14 37	. 22	16	4	96		152	21	56	
<u>Hyalella azteca</u> Class Insecta Order Collembola Order Coleoptera Order Diplura Order Diptera				4						
Chironomid larvae Family Heleidae (larvae) Order Ephemeroptera Order Trichoptera Order Odonata (nymph) Class Arachneida Order Acari							4			•
Total # Organisms	909	600	4,752	952	32 8,800		1,552	1,870	3 343	

۲

.

TABLE 4 (cont'd.)

TIME PERIOD 7

SAMPLE SITE

-26-

1

.

2.1.5 Fish Stomach Contents

Food organisms food in the stomach contents of juvenile chinook salmon in Shuswap Lake in 1978 are listed in Table 5. Thirty of thirty-one species found in fish stomachs were also present in benthos or zooplankton samples collected at sampling site 4-7, 18, 19, 35-37, 40 or 41. An adult Hemipteran insect found in the stomach of a fish seined at site 35 on July 27 was the only organism not represented in invertebrates found in the lake sampling.

Of the organisms identified, Dipteran pupae and adults, <u>Daphnia spp</u>. Chironomid Larvae, Homopteran adults, and Ephemeropteran nymphs occurred most often in fish stomachs that were analysed. Percentage organism occurrence in fish stomach contents was not related to prevalence of organisms found in zooplankton or zoobenthos samples. Numerically, <u>Daphnia spp</u>. were the most abundant invertebrates found in any of the stomachs in which they were present. Dipteran pupae and larvae, Chironomid larvae, <u>Cyclops bicuspidatus</u>, and <u>Epischura nevadensis</u> were also represented in large number in fish stomachs in which they were found.

2.2 Sicamous Narrows Dye-Marking Program

One hundred fifty-nine dye-marked fish were recaptured in Shuswap Lake following marking experiments conducted May 30, June 1, and June 13, 1978. Of these, 114 were seined between time periods 5 and 6, and 6 and 7, at sites in or adjacent to Sicamous Narrows and 45 were caught during time periods 4 to 7 at sampling sites 2, 3, 7, 21, 23, 27, and 34-42 (Table 6 and Figure 1).

Mortality of dye-marked fish after 24 hours was 19%. High death rates were apparently due to the warm temperature at which fish were marked $(14-15^{\circ} \text{ C}$ as compared to $8.1-9.5^{\circ}\text{C}$ recommended by Ward and Verhoeven, 1963) and the use of pure oxygen (which may have caused respiratory stress) rather than air for dyeing-tank aeration.

Dye-marked salmon were still easily distinguished from unmarked fish 6 weeks after marking (July 25-27) however, since no marked fish were taken during the August 28-31 period, it is probable that most of the colour associated with the dye had worn off by that date.

TABLE 5 STOMACH CONTENTS OF JUVENILE CHINOOK SALMON SHUSWAP LAKE, 1978

<u>site</u>	DATE	NO. FISH SAMPLED	X FISH LT. (mm)	NO. EMPTY STOMACHS	ORGANISM	Z ORGANISM OCCURRENCE IN STOMACHS CONTAINING FOOD	X NO. ORGANISMS/ STOMACH IN WHICH THEY OCCURRED
1	Apr 26	10	34.2	3	Diptera pupae Diptera adult <u>Eurvcercus lamellatus</u> <u>Eucvclops sp</u> Harpacticoida <u>Daphnia sp</u> <u>Cvclops bicuspidatus</u> Thysanoptera adult Homoptera adult <u>Diaptom.us ashlandi</u>	43 57 14 14 29 43 29 14 14 14	2.3 1.8 1 3 4.5 26.3 34 1 1 1
2	Apr 26	10	35.4	4	Collembola Diptera adult Diptera pupae Coleoptera adult Ephemeroptera nymph <u>Macrocyclops albidus</u> Cyclops bicuspidatus Chironomidae larvae Daphnia sp	33 66 33 17 33 17 17 17 17 17	2.5 4.5 1 2 1 1 14 1 1

r

				-				
							•	
ABLE 5	(cont'd.)							
TE	DATE	NO. FISH SAMPLED	X FISH LT. (mm)	NO. EMPTY STOMACHS	ORGANISM	Z ORGANISM OCCURRENCE IN STOMACHS CONTAINING FOOD	X NO. ORGANISMS/ STOMACH IN WHICH THEY OCCURRED	
4	Jun 13	10	48.4	0	Araneida		1 2	
÷	Jun 15	TO	48.4	U	Araneida Homoptera adult	60 40	1.3 1.3	
					Diptera adult	90	3.2	
					Chironomidae larvae	100	23.9	
					Collembola	20	1.5	1
					Psocoptera adult	50	1.4	29
					Thysanoptera adult	10	2	Q
					Ephemeroptera nymph	10,	1	1
					Tricoptera adult	10	1	
					Plecoptera nymph	10	1	
	•				Epischura <u>nevadensis</u>	20	1	
					Coleoptera adult	20	1	
					Hymenoptera adult	10	1	
					Bosmina sp	10	2	
					Acari	10	l	
					Diptera pupae	60	7.8	
5	Jun 13	10	53.9	0	Ephemeroptera nymph	40	1.5	
					Diptera pupae	70	2.7	
					Chironomid larvae	80	10.9	
					Trichoptera adult	10	1	
					Plecoptera nymph	30	1	
					Homoptera adult	30	1.3	
					Diptera adult	50	6	
					Alona sp	10	1	
					Psocoptera adult	10	1	
					Chydorus sphaericus Acari	10	1	
						10	1	
					Coleoptera adult	10	1	
					Araneida	10	.1	
					Hymenoptera adult	10	1	

TABLE 5 <u>SITE</u>	(cont'd.) <u>DATE</u>	NO. FISH SAMPLED	T FISH LT.	NO. EMPTY STOMACHS	ORGANISM	Z ORGANISM OCCURRENCE IN STOMACHS CONTAINING FOOD	X NO. ORGANISMS/ STOMACH IN WHICH THEY OCCURRED
6	Jun 16	6	59.7	0	Acari Diptera adult Diptera pupae Cyclops bicuspidatus Chironomid larvae Araneida Hymenoptera adult Homoptera adult Lepidoptera adult Bosmina sp Daphnia sp	100 100 100 83 17 33 33 17 17 17 33	2.2 110.5 23.3 35.3 2.3 1 1.5 1 1.5 1 5 160.5
7	Jun 13	9	59 . 6	0	Plecoptera nymph Diptera pupae Trichoptera adult Ephemeroptera nymph Araneida Diptera adult Cyclops bicuspidatus Chironomid Iarvae Acari Bosmina Heleidae larvae <u>Diaptomus ashlandi</u> Daphnia sp Homoptera Coleoptera adult	78 100 56 22 11 56 11 33 22 44 11 11 22 33 11	5.3 83.5 1.8 1 1.6 1 2 1 6.5 1 84.5 1.7 1
18	Jun 14	10	55	0	Diptera adult <u>Daphnia sp</u> Diptera pupae Chironomid larvae Homoptera adult Ephemeroptera nymph Cyclops bicuspidatus	30 100 30 10 10 10 10	1 635.5 2.7 1 2 1 10

.3

TABLE 5	5 (cont'd.)						
SITE	DATE	NO. FISH SAMPLED	X FISH LT. (mm)	NO. EMPTY STOMACHS	ORGANISM	X ORGANISM OCCURRENCE IN STOMACHS CONTAINING FOOD	X NO. ORGANISMS/ STOMACH IN WHICH THEY OCCURRED
19	Jun 14	10	51.7	0	Daphnia sp Homoptera adult Sida crystallina Epischura nevadensis Diptera pupae Cyclops bicuspidatus Bosmina sp Harpacticoida Diptera adult Acari	100 10 10 30 50 50 10 10 10 10 10	619.5 1 5 2.7 5.4 3.4 1 1 4 2
19	Jun 15	9	45.2	0	Ephemeroptera nymph Diptera pupae Diptera adult Homoptera adult Hymenoptera adult	78 22 22 44 22	2.1 2 2.5 1.3 1
34	Jun 13	10	52.2	0	Epischura nevadensis Diptera adult Daphnia sp Epischura nevadensis Leptodora kindtii Sida crystallina Cyclops bicuspidatus Diptera pupae Bosmina sp	11 40 100 60 50 10 40 40 10	5 1.3 239.4 84.7 6 5 6 2.8 1

: .

¢ 1

-31-

. £

;

TABLE 5 (cont'd.)

t,

<u>SITE</u>	DATE	NO. FISH SAMPLED	X FISH LT. (mm)	NO. EMPTY STOMACHS	ORGANISM	Z ORGANISM OCCURRENCE IN STOMACHS CONTAINING FOOD	X NO. ORGANISMS/ STOMACH IN WHICH THEY OCCURRED
35	Jul 27	10	66.3	0	Diptera pupae Diptera adult Eurycercus lamellatus Ephemeroptera adult Homoptera adult Araneida Lepidoptera adult Hymenoptera adult Trichoptera larvae Hemiptera adult Chydorus sphaericus Alona sp Ephemeroptera nymph Trichoptera adult	90 80 10 20 30 10 10 10 20 10 10 10 10 10	59.7 11.5 1 1.5 8.3 1 1 1.3 1 1.5 1 1 1 1 1 1 1 1 1 1 1 1 1
37	Jul 26	1	50	1			
41	Apr 26	10	39.7	0	Lepidoptera larvae Diptera pupae Diptera adult <u>Eurycercus lamellatus</u> Thysanoptera adult Chironomid larvae Homoptera adult Araneida Ephemeroptera nymph Scapholeberis kingi	90 80 80 10 20 50 10 10 20 10	20.9 6.4 11.3 1 1 8.4 1 2 1,5 1
36	Jun 13	12	53.3	8	Diptera pupae Diptera adult <u>Bosmina sp</u> . Daphnia sp.	25 25 50 100	2 1 1.5 34.8
37	Jun 13	11	54	10	Daphnia sp. Diptera adult	100 100	6 2

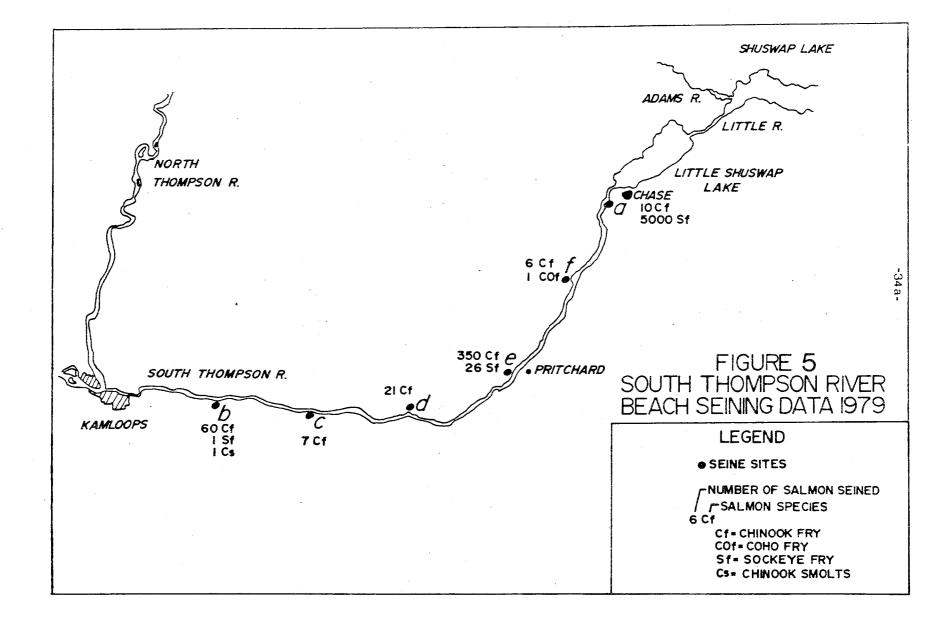
-32-

Seine Site	_2	3	7	21	23	27	34	35	36	37	38	39	40	41	42
Date	Numb	ber M	<u>larke</u>	ed Fi	sh C	aught									
															-
May 30 - Jun	1						1		4					·	
Jun 13 - 15	1				2		3	1	8		1	2	2	1	1
Jun 14									96						
Jun 15									6						
Jun 17 Jun 19							2 2								
Jul 5 - 6	1	1	1	6	1		Z						. 2	3	
Jul 11								2	•	3	1		2	-	
Jul 25 - 27						1		1		1					1

TABLE 6: RECOVERY OF MARKED FISH - SHUSWAP LAKE, 1978

2.3 River Sampling

Distribution of juvenile chinook, coho and coho salmon in the South Thompson River determined by beach seining in 1979 has been presented in Figure 5. The greatest concentration of rearing/migrating fish occurred just south of Chase (site a) where more than 5,000 fish were caught (predominantly sockeye fry). Smaller numbers of salmon fry and smolts were found throughout the rest of the lower river with the largest numbers of fish being seen in backeddies and slackwater areas in the vicinity of tributary streams or overhanging vegetation.


Chinook fry were present in all seine catches; sockeye fry were caught at sites a and e; coho fry were seen only at site f, and one coho smolt was seined at site b.

3. DISCUSSION

3.1 Fish Distribution

Shuswap Lake studies in 1978 confirm the presence of large numbers of juvenile chinook and coho salmon in the shoreline zones of many areas in the lake from late April until mid-July. In particular, large numbers of juvenile fish appear to rear and migrate in littoral areas in the vicinity of Mara Lake-Sicamous Narrows (seine sites 34-42), southern portions of Salmon Arm (sites 17, 18, 26-28), the southerly regions of Anstey Arm (sites 21, 23-25), the northern tip of Seymour Arm (site 13) and the outlet of Shuswap Lake (seine sites 1-6). Seining efforts revealed an apparent scarcity of young salmon in northern portions of Salmon Arm, northern reaches of Anstey Arm, most of Seymour Arm, or the main arm of Shuswap Lake from Cinnemousun Narrows to the vicinity of Blind Bay.

Beach seining activities in 1979 revealed the presence of large numbers of chinook, coho and sockeye salmon from the southern region of Mara Lake to Quartzite Point (sample site 27) and from Eagle Bay (sample site 44) to Little Shuswap Lake, suggesting that distribution of juvenile fish in 1979 was similar to that observed in 1978. Few salmon were observed in foreshore areas in Salmon, Seymour or Anstey Arms.

The presence of juvenile fish in different areas of Shuswap Lake is probably related to the proximity of suitable rearing habitat (environments which provide adequate food and shelter), the presence of adjacent spawning streams, and/or the fact that the area lies on a salmon migration route within the lake. Thus, shoreline zones in the vicinity of chinook, coho and sockeye spawning areas (Shuswap, Eagle, Salmon, Anstey, Seymour and Adams Rivers) and along smolt out-migration routes (eastern and western shores of Mara Lake -Sicamous Narrows, southern shore of Salmon Arm, eastern and western shores of the lake from Sicamous to Cinnemousun Narrows, eastern and middle western shores of Anstey Arm, northern and southern shores of main Shuswap Lake west of Blind Bay) support the majority of the juvenile salmon in the lake. Despite fairly good escapements observed in the Salmon River in the fall of 1978 (350 chinook; 1,500 coho; and 434 sockeye counted, Brown et al., MS 1979), the extensive shallows characterized by high temperatures and turbidity in the vicinity of Salmon Arm probably limit the use of the area by rearing fish. Data collected in 1978 and 1979 support this conclusion and suggest that juvenile salmon which utilize Salmon Arm foreshore areas do so only briefly in April and early May before migrating to other basins in the Shuswap Lake system.

In Seymour and Anstey Arms adult escapements of chinook and coho salmon were low (none of either species observed in the Seymour River; 75 coho counted in the Anstey River) while sockeye escapements were moderate to high (62,150 and 1,327 fish observed in each river respectively) in 1978 (Brown <u>et al.</u>, MS 1979). This information suggests that considerable numbers of young sockeye should have reared in littoral areas adjacent to the mouths of the above-mentioned rivers. However, since only small numbers of these fish were caught during beach seining operations, it is possible that the majority of juvenile fish originating in the Seymour and Anstey Rivers migrate toward the outlet of Shuswap Lake (and more favorable feeding areas) shortly after emergence from their natal stream.

In some areas of the Shuswap system, the large concentrations of sockeye fry in 1979 in foreshore areas may have displaced rearing coho and chinook. This effect was apparent at sample sites 2, 36, and 37 (Figure 3) despite sizeable escapements of chinook and coho salmon to the Adams (2,200 chinook, 150 coho), Eagle (400 chinook; 2,000 coho) and Shuswap (10,750

chinook and 3,350 coho) Rivers in 1978 (Brown et al., MS 1979). In some instances, such large schools of sockeye fry were encountered that numbers of fish were visually estimated and some chinook or coho fry may not have been counted. The utilization of foreshore areas by juvenile salmon may also be related to water temperatures within the littoral zone. Temperatures recorded at most seining locations approached critical levels (20-24°C: Brett. 1952) during the mid-summer sampling periods and probably accounted for the lower number of juvenile salmon being observed in foreshore areas during those times. Graham and Russell (1979) suggest that young chinook salmon rear in shoreline areas until temperatures exceed 16.1°C. Results of this investigation suggest that juvenile salmon continue to utilize many foreshore areas at temperatures as high as 22[°]C, but that these fish move into deeper, colder water and do not return to littoral areas when water temperatures reach 23[°]C or more (evidence Table 2 and field notes for sample site 35, time period 7: no fish were seined on July 25 when the water was 28° C, but following a strong windstorm, the water temperature had decreased on July 26 to 22°C and 9 juvenile coho were caught at the site). Rising water temperatures in the spring may also stimulate out-migration of chinook and coho smolts from the lake into the Thompson River system.

Zooplankton and zoobenthos sampling indicate that substantial populations of fish food organisms occupy foreshore pelagic and substrate habitats at sampling sites where juvenile fish were most frequently found. Planktonic and benthic animals were most abundant following feshet conditions in the lake and would be available to juvenile salmon as soon as they arrived at lakeshore rearing areas following emergence and migration from stream incubation sites in April and May. Stomach content analyses of young salmon seined in foreshore areas corroborate the relationship between availability of food organisms and the presence of juvenile chinook and coho in the littoral zone (sampling stations with the greatest species diversity and abundance of benthic and planktonic animals were also the sites most frequented by young fish). In addition, substantial numbers of young chinook and coho salmon may overwinter in offshore pelagic zones adjacent to productive littoral areas in which they spend the spring and early summer, in order that they may utilize both open water planktonic and littoral benthic food resources when food becomes less available during the winter.

3.2 Sicamous Narrows Dye-Marking Program

The 1978 marking studies showed that juvenile salmon rearing in or migrating through Sicamous Narrows may stay in the Narrows for extended periods of time, migrate back into Mara Lake to rear in shoreline areas, or swim up the eastern shoreline of the lake to rear in Anstey Arm before moving through Cinnemousun Narrows and along the southern shore of the main arm of Shuswap Lake toward the outlet and the Thompson River.

An indication of migration timing may also be inferred from the dye-marking program. Salmon marked on May 30, June 1 and June 13 at Sicamous Narrows were seined at sample sites in Anstey Arm and in the vicinity of the Adams River during seining periods 5 and 6 (June 13-14 and July 5-6). This suggests that salmon fry originating in the Shuswap and Eagle River systems require from two to six weeks to migrate through Shuswap Lake during the initial phase of their downstream migration.

The length of residence of juvenile fish in each area of the lake and the total population of fish produced from each major river system cannot be estimated without a more extensive marking program involving fish populations from the Shuswap, Salmon, Eagle, Anstey, Seymour and Adams Rivers.

3.3 River Sampling

Seining results in 1979 indicate that distribution of salmon juveniles in the South Thompson River is related to the availability of suitable rearing habitat and the proximity of beach seining sites to Shuswap Lake. The large number of sockeye fry found at a site near Chase probably came from spawning grounds in the river just below the outlet of Little Shuswap Lake (escapement to the South Thompson River in 1978 was 9,800 sockeye, Brown <u>et al.</u>, MS 1979) or from populations of fry hatched in the Little or Adams Rivers which migrated out of Shuswap Lake at the beginning of freshet (Goodlad, Gjernes, and Brannon, 1974). Chinook fry may have originated both in the Shuswap system (90 day old migrant fry) and in the South Thompson River where 3,500 adults spawned in 1978 (Brown et al., MS 1979). The small number of coho (1 fry and 1 smolt) seined in the South Thompson together with the lack of any recorded adult coho escapement to the river in 1978 suggest that these fish originated in Shuswap Lake and that the majority of the sockeye and chinook juveniles are therefore South Thompson River fish. It is possible that had a second seining series been conducted at a later date (mid-July or early August) a greater proportion of fish caught in the river may have been Shuswap Lake fish (as indicated by a greater proportion of smolts, some of which may have been marked by Fisheries and Oceans' staff studying chinook populations in the Shuswap River).

- 38 -

1978 BIOPHYSICAL LAKESHORE INVENTORY

1. METHODS

A biophysical inventory of the littoral zone of Shuswap, LIttle Shuswap and Mara Lake was undertaken during the 1978 summer high water period to assess the relative value to rearing or migrating juvenile 'salmonids of foreshore habitat in the Shuswap system. The inventory was conducted by visually estimating differences in littoral width, slope and substrate composition and by noting the presence of aquatic vegetation, fallen trees, inflowing streams and cultural development of each of the 370 shoreline zones observed. The extent of the littoral area was defined as the maximum depth at which the lake bottom remained visible (approximately 8 m) and a new shoreline zone was assigned with each major change in substrate composition. Inventory characteristics were determined from a boat following the shoreline at a speed of approximately 4 m.p.h. and simultaneously transferred to recording sheets (Appendix 1).

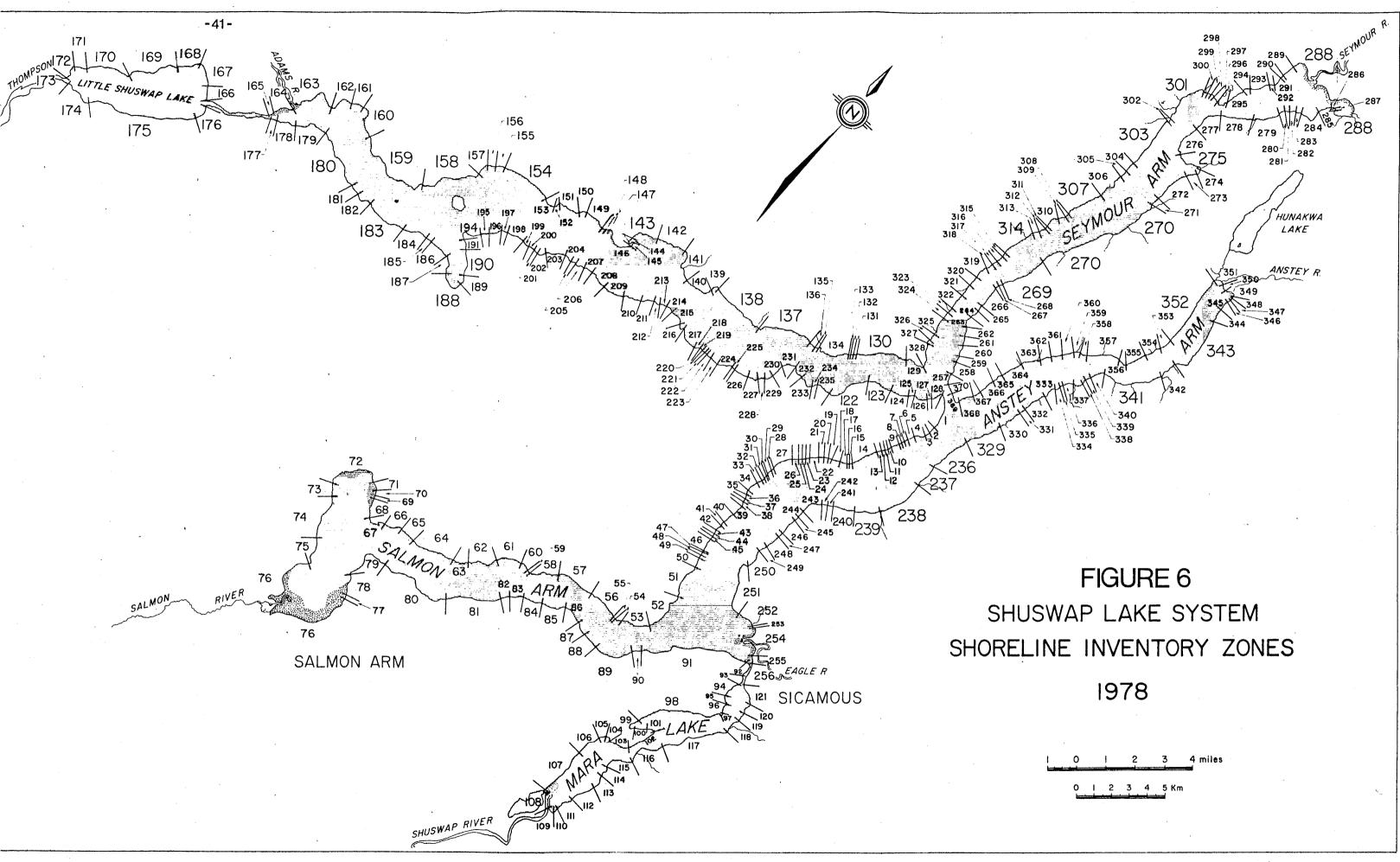
Each of four major characteristics which determine the suitability of the littoral zone as a rearing or migrating habitat for salmon juveniles (littoral width, littoral slope, substrate composition, presence of additional habitat characteristics) was assigned a rating based on its relative contribution to the total foreshore habitat. This rating system is defined below:

Littoral width (Al)	∥ Habitat Pts.	Littoral Slope (A2)	# Habitat Pts.
0 – 2 m	1	>45 ⁰	2
2.1 - 6 m	3	15 - 45 ⁰	6
6.1 - 10 m	5	< 45 ⁰	9
10.1 - 20 m	7		
≻20 m	9		

- 39 -

Substrate Composition (A3)	# Habitat Pts.	Additional Habitat (A4) #	Habitat Pts.
sand	0.2/ea. 10% of substrate	weeds sparse	2
bedrock	0.3/ea. 10% of substrate	weeds abu <mark>ndant</mark>	4
gravel/cobble	0.7/ea. l0% of substrate	inflowing streams	2
mud/silt	0.9/ea. 10% of substrate	inflowing rivers	4
		fallen trees overhanging vegetat	l ion l

Maximum number of habitat points per rating category: Al=9, A2=9, A3=9, A4=10.


Since littoral width varies according to littoral slope, rating categories Al and A2 were combined so that the maximum possible habitat rating for each inventory zone was:

 $\frac{A1 + A2}{2} + A3 + A4 = 28$

2. RESULTS

The 370 zones designated in the shoreline inventory are depicted in Figure 6. The number of habitat points assigned to each zone on the basis of littoral slope, width, substrate composition, and additional habitat characteristics (Table 7) was used to rate it as excellent, good, average, fair or poor according to the quality of salmon habitat it provided. The following table summarizes this information.

Classification	No. Habitat Pts.	No. Zones	Shoreline Length (m)	% of Total Shoreline Length
excellent	19.7 - 28	16	37,500	9.22
good	15.5 - 19.6	107	158,890	39.08
average	12.7 - 15.4	149	140,835	34.64
fair	9.9 - 12.6	63	52,675	12.96
poor	0 - 9.8	35	16,625	4.09

Zone	No. Al		at Pts./F ategory A3	Rating 		l No. Habitat s. (max. 28)	Rating
$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ 7\\ 8\\ 9\\ 10\\ 11\\ 12\\ 13\\ 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ \end{array} $	7555733735555533513355377355553553313	A2 6626662262666222622669929929966629966629966626	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	$\begin{array}{c} 2 \\ 2 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \\ 1$		$ \begin{array}{r} 13.5 \\ 12 \\ 7.4 \\ 13 \\ 11 \\ 13 \\ 6.9 \\ 6 \\ 13 \\ 6.5 \\ 11 \\ 5.5 \\ 13 \\ 11.5 \\ 9.5 \\ 6.9 \\ 6.5 \\ 13.5 \\ 5.5 \\ 6.5 \\ 15.1 \\ 10 \\ 12.5 \\ 13.1 \\ \end{array} $	Average Fair Poor A F A P P A F P A F P P A F P P A F F F A P C G G G F A P C G G G F A F P A F F P A F F P A F F P A F P A F P A F P A A F A F

TABLE 7:SHORELINE INVENTORY SUMMARY AND JUVENILE SALMON
HABITAT SUITABILITY RATING - SHUSWAP LAKE, 1978

		at Pts./Rating ategory	Total No. Habitat Pts. (max. 28)	
Zone	A1 A2	A3 A4		Rating
41 42 43 44 45 46 47 48 49 50 51 52 53 55 56 57 58 59 61 62 63 64 56 67 68 90 71 72 73 74 75 76 77 80 80	A1 6629966666666666666666666666669699999999	A3 A4 3.8 2 7 4 6 0 3.8 3 7 1 3.8 3 7 1 3.8 3 7 1 3.8 3 7 1 6.6 1 7 3 7 1 6.6 3 7	$ \begin{array}{c} 11.3\\ 16.5\\ 9.5\\ 10\\ 15.5\\ 12.3\\ 13.5\\ 13.5\\ 13.5\\ 9.5\\ 16.5\\ 14.1\\ 8.5\\ 13.5\\ 9.5\\ 14.7\\ 18.5\\ 13.5\\ 15.5\\ 13.5\\ 15.5\\ 13.5\\ 15.5\\ 13.5\\ 15.5\\ 13.5\\ 12.5\\ 17.4\\ 16.5\\ 17\\ 19.6\\ 13\\ 17.3\\ 14.5\\ 14.6\\ 13.5\\ 22\\ 22.7\\ 16.5\\ 12.5$	F G F G F G A A A A A A C G A C G A G G A G G A G G A G G A G G A G G A G G A G G A C G G G G
00	76	4 2	14.5	F

Zone		bitat Pts./R Category A2 A3	ating A4	tal No. Habitat Pts. (max. 28)	Rating
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120	7 5 5 7 5 7 5 7 5 7 5 7 5 7 7 7 7 7 7 7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	230221533355556464433213333034535555553553355533	15.5 16.5 12.5 14.5 15.5 12.7 19.5 15.1 14.5 16.5 17.1 19.5 20.6 18.2 22.3 18.5 19.8 18.8 15.5 14.7 6.5 14.7 6.5 14.7 6.5 14.7 6.5 14.7 6.5 15.5 16.5 13.5 16 16.5 13.5 16 16.5 13.5 16 16.5 13.5 16 16.5 13.5 16 16.5 13.5 16 16.5 14.5 18.5 20 16.5 18	G G F A G A G A G G A G G A G G A G G A G G A G G A G G A G G A G G A G G G E G E

- 44 -

	No. I		t Pts./Ra	ting	Total No. Habitat Pts (may 28)	
Zone	Al	A2	A3	A4		Rating
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149	A1 7777775577777777777777777777777777777	Cat A2 9 6 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 6 9 6 9 6	tegory A3 5.5 7 6.1 4.2 6.6 5.5 7 5.5 7 5.5 7 5.5 7 5.5 7 5.5 7 6.7 7 7 6.5 7 7 7 6.5 7 7 7 7 7 7 7 7 7 6.5 7 7 5.5 7 6.5 7 3.4 6.5	A4 3 1 1 1 3 1 1 3 1 0 2 1 2 0 2 0 2 1 1 6 3 3 0 0 0 2 1 1 6 3 0 0 0 0 0 0 0 0 0 0 0 0 0	Pts. (max. 28) 16.5 16.5 15.1 11.7 14.1 14.5 12.2 14.1 10.3 15.5 15 14 11.5 15.5 15 17 15 16.5 15 14.5 13.5 21.5 16.5 16.5 16.5 14 8.9 14.5	G G A F A A F G A F G A F G A G A G A G
150 151 152 153 154 155 156 157 158 159 160	,7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	99699666699	5 6.5 3.5 6 5.5 7 3.5 6.6 6 4.8	2 2 0 3 0 0 3 3 8	15 16.5 10 14 17 12 12.5 10 14.1 17 20.8	A G F A G F F A G E

TABLE 7: (Cont'd.)

	No. Hab	itat Pts./Ra	ting	Total No. Habitat	
Zone	<u>A1 A</u>	Category 2 <u>A3</u>	A4 .	Pts. (max. 28)	Rating
$ \begin{array}{c} 161\\ 162\\ 163\\ 164\\ 165\\ 166\\ 167\\ 168\\ 169\\ 170\\ 171\\ 172\\ 173\\ 174\\ 175\\ 176\\ 177\\ 178\\ 179\\ 180\\ 181\\ 182\\ 183\\ 184\\ 185\\ 186\\ 187\\ 188\\ 189\\ 190\\ 191\\ 192\\ 193\\ 194\\ 195\\ 196\\ 197\\ 198\\ 199\\ 200 \end{array} $	777777797777777777777777777777777777777	5.5 6 9 4.52 4.5 7.5 7.6 7.5 7.7 7.5	3 5 9 7 1 1 2 1 1 2 5 3 2 5 3 2 3 3 3 3 3 3 1 1 0 2 5 3 2 2 1 1 2 0 0 0 0 0 1	17.5 17 21.5 22.5 11.5 14 11 14.5 16 16.6 17 16 16.5 13.5 16.5 15.5 16.5 14.5 14.5 14.5 12.5 12.5 12.5 15. 18.5 15.5 16.5 14.3 9.5 13.7 17 15 14 15 15 16	G G E E F A F A G A G G G G G G G G G G G A G G A A A F F A G G G A P A G A A A A A G

- 46 -

	No.		it Pts./R	ating	Total No. Habitat Pts. (max 28)	
Zone	A1	A2	A3	A4		Rating
Zone 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238	A1 7777775777757777777777777777777777777	Ca	tegory		Pts. (max. 28) 16 15 15 17 11.5 15 10.5 15 10.5 15 14.5 16 8.5 15 15 15 15 15 15 15 15 15 1	G A A G F A A F A A A A A A A A A A A A
239 240	7 7 7	6 6	7 6.6	1	14.5 14.1	A A

TABLE 7: (Cont'd.)
-------------------	---

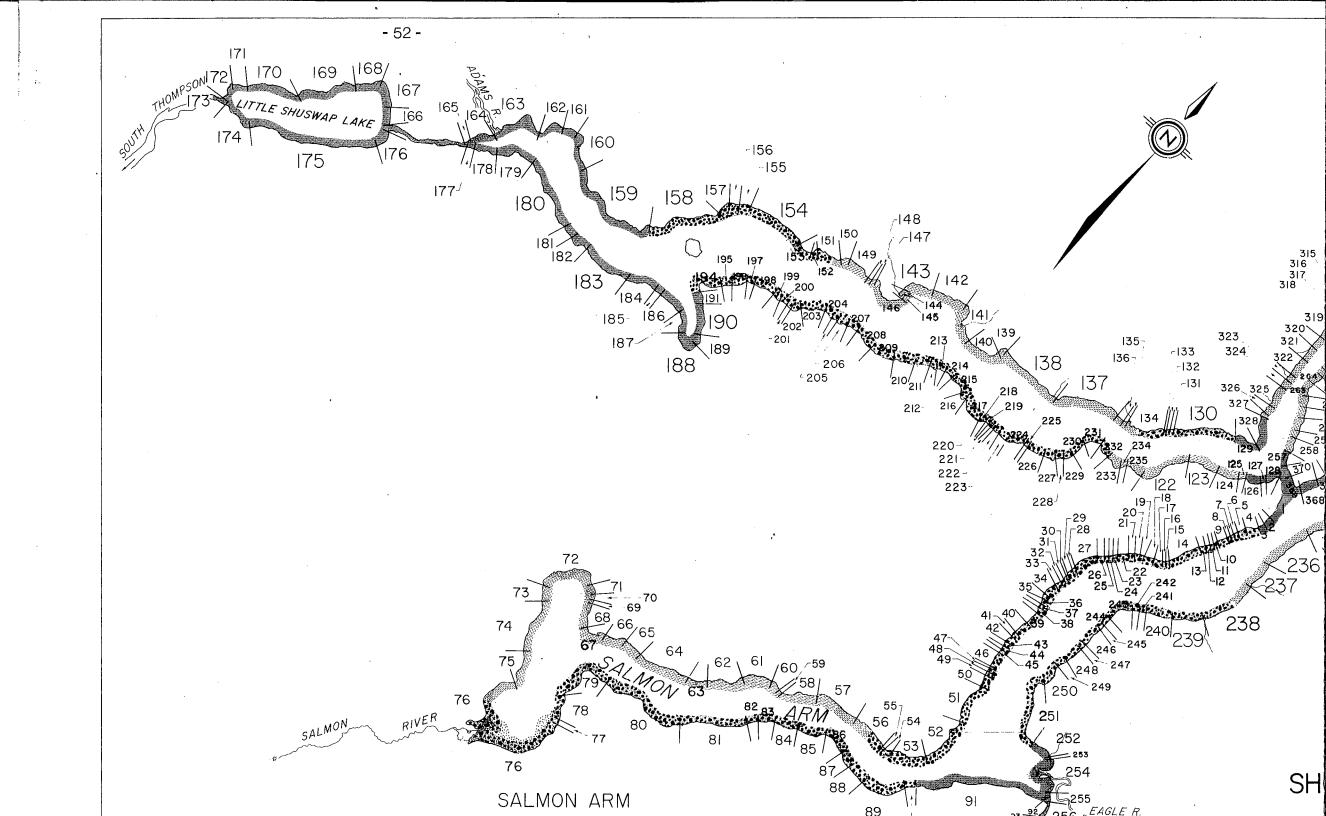
Category Pts.	(max. 28)
Zone A1 A2 A3 A4	Rating
241 7 6 7 1	14.5 A
242 7 6 7 1	14.5 A
243 7 6 7 3	16.5 G
244 7 9 7 4	17.5 G
	12.5 F
246 1 2 3.4 1	5.9 P
247 7 6 7 1	14.5 A
248 5 6 6.6 2 249 7 9 7 0	14.1 A
249 7 9 7 0	15 A
250 7 9 7 0	15 A
251 3 6 6.2 2	12.7 A
252 7 6 7 0	13.5 A
253 7 9 7 0	15 A 🖉
254 7 9 9 6	23 Е
255 7 9 2 2	12 F
256 7 9 4.1 4	16.1 G
257 7 6 6.6 0	13,1 A
258 7 9 7 1	16 G
259 7 9 7 0	15 A
260 7 9 6.5 0	14,5 A
261 7 6 6.2 1	13.7 A
262 7 6 6.5 0	13 A
263 3 2 3.7 1	7,2 P
264 5 6 1 265 5 2 3.4 0 266 7 6 6.5 1	12.5 F
265 5 2 3.4 0	6.9 P
	14 A
267 3 2 6.2 1	9.7 Р
268 7 6 7 2	15.5 G
	14 A
270 5 6 6.6 3 271 3 2 3.4 1 272 5 6 7 0	15.1 A
271 3 2 3.4 1	6.9 P
	12.5 F
273 7 6 6.5 0	13 A
2/4 / 9 3.2 4	15.2 A
	17.5 G
276 3 6 7 1 277 7 6 6.5 0 278 7 6 6.5 1	12.5 F
277 7 6 6.5 0	13 A
	14 A
279 7 9 6.5 1	15.5 G
280 9 9 6 2	17 G

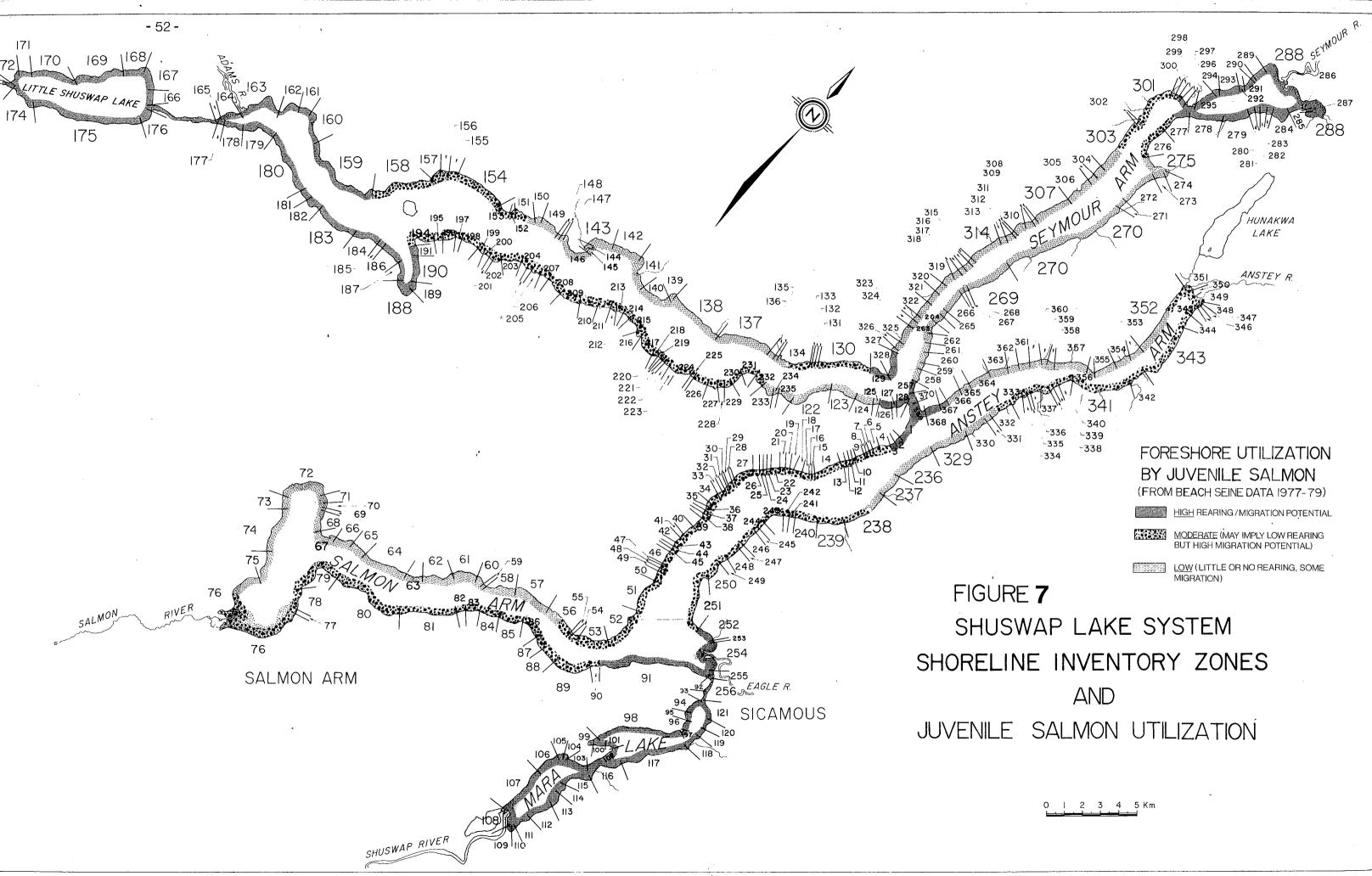
ß

		at Pts./Ra ategory	ting	Total No. Habitat Pts. (max. 28)	
Zone	A1 A2	<u> </u>	A4		Rating
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320	696969696996666699996966266666666666666	4.5 3.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	$ \begin{array}{c} 1\\ 2\\ 4\\ 3\\ 4\\ 2\\ 9\\ 1\\ 0\\ 2\\ 2\\ 2\\ 1\\ 1\\ 3\\ 2\\ 0\\ 2\\ 5\\ 2\\ 3\\ 1\\ 1\\ 5\\ 3\\ 0\\ 1\\ 1\\ 0\\ 1\\ 3\\ 4\\ 4\\ 0\\ 0\\ 3\\ 1\\ \end{array} $	$ \begin{array}{r} 12 \\ 12.5 \\ 14.5 \\ 15.7 \\ 16 \\ 13.7 \\ 14 \\ 19.7 \\ 10.5 \\ 13.5 \\ 13.9 \\ 14 \\ 14 \\ 13.5 \\ 12.5 \\ 14 \\ 16 \\ 14 \\ 13 \\ 13 \\ 13 \\ 17 \\ 12 \\ 10.9 \\ 13.5 \\ 12.7 \\ 17 \\ 15 \\ 9 \\ 10 \\ 13 \\ 10.5 \\ 6.1 \\ 11.5 \\ 14 \\ 14 \\ 15.5 \\ 11.5 \\ 10.5 \\ 16 \\ 9.3 \\ \end{array} $	F F A G G A A E F A A A A A F A G A A A G F F A A G A P F A F P F A A G F F G P

TABLE 7: (Cont'd.)

		at Pts./Ra ategory	ting	Total No. Habitat Pts. (max. 28)	
Zone	<u>A1 A2</u>	A3	А4	Pts. (IIIdx. 20)	Rating
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 337 338 339 341 342 3441 3442 3443 345 3441 3443 345 346 347 348 349 3551 3552 3551 3552 3551 3552 3553 3557 3558 3559 360 361 362 363 365 365 366 367 368 369 370	557331753777753577775177555577775353555577777777	6.351385 7 55 55 7 65 7 55 14 2 5 55 7 55 55 7 6.5 14 2 5 5.5 7 55 55 7 6.5 7 5.5 1.4 2 5 5.5	$ \begin{array}{c} 3 \\ 1 \\ 6 \\ 1 \\ 3 \\ 1 \\ 3 \\ 1 \\ 3 \\ 2 \\ 0 \\ 4 \\ 2 \\ 0 \\ 4 \\ 2 \\ 0 \\ 4 \\ 2 \\ 0 \\ 4 \\ 2 \\ 2 \\ 0 \\ 6 \\ 0 \\ 0 \\ 0 \\ 3 \\ 1 \\ 0 \\ 1 \\ 3 \\ 3 \\ 1 \\ 0 \\ 0 \\ 3 \\ 1 \\ 0 \\ 1 \\ 3 \\ 3 \\ 9 \\ 4 \\ 8 \\ 5 \\ 0 \\ 3 \\ 1 \\ 0 \\ 1 \\ 3 \\ 3 \\ 9 \\ 4 \\ 8 \\ 5 \\ 0 \\ 3 \\ 1 \\ 0 \\ 3 \\ 1 \\ 0 \\ 3 \\ 0 \\ 3 \\ 1 \\ 0 \\ $	$ \begin{array}{r} 14.5 \\ 12.8 \\ 17 \\ 11.6 \\ 10.8 \\ 6.3 \\ 14 \\ 13.5 \\ 9.5 \\ 15.5 \\ 12.7 \\ 14 \\ 18 \\ 11 \\ 13 \\ 11.5 \\ 16.5 \\ 13 \\ 13 \\ 11.5 \\ 16.5 \\ 13 \\ 12.5 \\ 14.5 \\ 14.5 \\ 14.5 \\ 14.5 \\ 14.5 \\ 14.5 \\ 14.5 \\ 14.5 \\ 12.6 \\ 7.9 \\ 14.5 \\ 12.6 \\ 7.9 \\ 14.5 \\ 12.6 \\ 7.9 \\ 14.5 \\ 12.5 \\ 11.7 \\ 13.5 \\ 14 \\ 12.5 \\ 11.5 \\ 12.5 \\ 13 \\ 12.5 \\ 13 \\ 12.5 \\ 13 \\ 12.5 \\ 13 \\ 12.5 \\ 13 \\ 12.5 \\ 13 \\ 12 \\ 11.5 \\ 12.15 \\ 13 \\ 12 \\ 11.5 \\ 12.15 \\ 13 \\ 12 \\ 11.5 \\ 12.15 \\ 13 \\ 12 \\ 11.5 \\ 12.5 \\ 13 \\ 12 \\ 11.5 \\ 12.5 \\ 13 \\ 12 \\ 11.5 \\ 12.5 \\ 13 \\ 12 \\ 11.5 \\ 12.5 \\ 13 \\ 12 \\ 11.5 \\ 12.5 \\ 13 \\ 12 \\ 11.5 \\ 12.5 \\ 13 \\ 12 \\ 11.5 \\ 12.5 \\ 13 \\ 12 \\ 11.5 \\ 12 \\ 11.5 \\ 12 \\ 11.5 \\ 14 \\ 12.5 \\ 13 \\ 12 \\ 11.5 \\ 14 \\ 12.5 \\ 13 \\ 12 \\ 11.5 \\ 12 \\ 11.5 \\ 12 \\ 11.5 \\ 12 \\ 11.5 \\ 12 \\ 11.5 \\ 12 \\ 11.5 \\ 12 \\ 11.5 \\ 12 \\ 12 \\ 11.5 \\ 12 \\ 12 \\ 11.5 \\ 12 \\ 11.5 \\ 12 \\ 12 \\ 11.5 \\ 12 \\ 12 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 12 \\ 11 \\ 12 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 12 \\ 11 \\ 11$	AAGFFPAAPGAAGFAFGAAFFGGAAFAAEGGGFAFAFAFAFFFAFAFAFFF


Results of the inventory suggest that 48.3% of the Shuswap Lake foreshore provides good or excellent juvenile salmon habitat and that 82.9% of the shoreline is potentially suitable for rearing salmonid fish. The best rearing areas are provided in zones 76-78, 93, 95, 97, 108, 118, 144, 160, 163-164, 237, 254, 288 and 349 (Figure 6).


3. DISCUSSION

Inventory of the littoral region in Shuswap Lake provides valuable information regarding potential salmon habitat. However, actual foreshore use by juvenile salmon must also be considered in a total watershed management plan. Accordingly, a composite figure relating beach seining data from the 1978 and 1979 Shuswap sampling programs to biophysical inventory zones was prepared (Figure 7). This figure suggests that not all foreshore areas designated as excellent fish habitat are heavily utilized and that many zones classified as poor habitat are located along primary migration routes for juvenile salmon leaving the lake. Responsible foreshore management should, therefore, consider both potential and actual lakeshore use by young salmon before decisions regarding development are made.

Sicamous Narrows, for example, is designated as providing good to excellent habitat (zones 92, 93, and 256) and was used extensively by rearing and migrating salmon in 1978 and 1979. Any alteration or disturbance of littoral areas in the Narrows must, therefore, be prevented. Habitat zones 236 and 237 near Anstey Arm also contain good to excellent fish habitat but, since they are used only occasionally by juvenile salmon, development of their foreshore zones is probably less critical. Some zones in the main arm of the lake are rated as only fair habitat (165, 167, 185, and 186), but since all salmon in Shuswap system migrate through these zones on their way to the Thompson River, development of their littoral areas must be restricted.

Use of the biophysical inventory, which defines important habitat zones, and beach seining data, which describes use by juvenile salmon of lakeshore areas (Figure 7), together with field inspection of all major development proposals, should allow efficient and responsible management of foreshore regions in the Shuswap watershed. Only responsible management will protect the integrity of the valuable salmon resource for which Shuswap Lake is famous.

LITERATURE CITED

Brett, J.R. 1952. Temperature tolerance in young Pacific salmon, genus Oncorhynchus. J. Fish. Res. Bd. Canada, 9(6): 265-323.

Brown, R.F., M.M. Musgrave and D.E. Marshall. 1979. Catalogue of Salmon Streams and Spawning Escapements for Kamloops Sub-District. Fisheries and Marine Service Data Report. No. 151.

Goodlad, J.C., T.W. Gjernes and E.L. Brannon. 1974. Factors affecting sockeye salmon (<u>Oncorhynchus nerka</u>) in four lakes of the Fraser River system. J.F.R.B.C., 31(5): 871-892.

Graham, C.C., and L.R. Russell. 1979. An assessment of the delta-lakefront area of the Adams River, Shuswap Lake. Fisheries and Marine Services Manuscript Report No. 1508.

Harrison, M.C. 1977. Developmental problems in Shuswap Lake area. Fisheries and Marine Service Memorandum. Sept. 8, 1977,

Ward, F.J., and L.A. Verhoeven. 1963. Two biological stains as markers for sockeye salmon fry. Trans. Amer. Fish. Soc. 92(4): 379-383.

BIOPHYSICAL LAKE INVENTORY - SHUSWAP LAKE 1978

DATE	1 LITTORAL SUBSTRATE	2 LAKESHORE
ARM/BASIN	SUBSTRATE COMPOSITION %	SHORELINE VEGETATION %
	BEDROCK	CONIFEROUS
MAP/PHOTO. REF. NO.	COBBLE	DECIDUOUS
SHORELINE ZONE NO.	GRAVEL	SHRUBS
SHORELINE LENGTH (km)	SAND	GRASSES
	SILT/MUD	MARSH
LITTORAL WIDTH (m)		BARREN
BEACH WIDTH (m)	SUBSTRATE VEGETATION	
COMMENTS:	WEEDS	SHORELINE CHARACTERS
	PERIPHYTON	DEGRADING
	BARREN	AGRADING
		SLUMPAGE
	ADDITIONAL CHARACTERS	AGRADING App SLUMPAGE CALLER STABLE X
· · · · · · · · · · · · · · · · · · ·	FALLEN TREES	VEGETATION H
	REFUSE	UVERIANG
		CULTURAL USE
	LITTORAL SLOPE	NONE / NATURAL
	GRADUAL (<15 ⁰)	PROV.PARK/PUBLIC BEACH
	INTERMEDIATE (15-45°)	PRIVATE HOMES
	STEEP (>45 [°])	MARINAS
	RIVER /CREEK	LOGGING ACTIVITIES
	INFLOW	BEACH SUBSTRATE % COMPOSITION
	OUTFLOW	BEDROCK
	WIDTHAT MOUTH (m)_	COBBLE
	NAME	
		SAND
		SILT/MUD
		BEACH SLOPE GRADUAL (<150)
		INTERMEDIATE (15-45°)
		STEEP (>45°)

a e

-

.

,