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H /ﬂ/ Abstract

{ A series of lectures are presented on the topic of the location and identification of
compact objects by low frequency electromagnetics. These lectures were presented
as a portion of two graduate level courses in electrical engineering at the University
of Toronto in 1985 and 1987. Magnetostatics, electrostatics and electromagnetic

induction techniques are discussed in detail.//




Forward

In the Fall of 1985, a pilot course was offered to graduate students in electrical engineering at the
University of Toronto. The course, entitled “Topics in Electromagnetic Theory : Latest Techniques
in Remote Sensing”, was taught by Professors J.L. Yen and K. lizuka of the Department of Electrical
Engineering and me. Professor Yen lectured on microwave radiometry, Professor Iizuka covered subsurface
rada and I dealt with low frequency electromagnetics.

The material met with considerable enthusiasm to the end that it was offered again in the Fall of 1987
under the new title “Electromagnetic Remote Sensing” with the same lecturers and general topics.

These notes are a compilation of the material that was presented for the low frequency electromagnetic
remote sensing portion of both courses. The general subject has been covered extensively in textbooks in
the context of geological exploration. Objects of interest are typically considered to be very large, often
infinite in extent in one or two dimensions. I have approached these lectures from the viewpoint of the
location and identification of relatively small compact objects by low frequency electromagnetics. This is
an area which has been surprisingly neglected in textbooks even though it is a very relevant topic which
is of practical interest to many researchers in areas as diverse as submarine detection, pipe location,
archaeology and mine and artillery shell detection. I hope these notes will fill that gap in the available
textbooks.

Finally, I must thank my colleague Dr. Yogadhish Das. Much of the work presented in these notes rep-
resents published (and some unpublished) collaborative research by the two of us. Our general discussions
have been invaluable and have had a distinct influence on these notes.




1 Low Frequency Electromagnetic
Remote Sensing

The present course is concerned with remote sensing, particularly as it relates to electromagnetics. Remote
sensing may be defined as the acquisition of information about an object without physical contact.
Although a host of sensors might qualify as remote sensors under this broad definition, remote sensing
usually refers to the collection and processing of information about the earth or objects on the earth
through the use of photographs and sensor data acquired from a satellite or aircraft. We will refer to this
as “classical remote sensing (CRS)”.

The problem of detecting objects concealed from view at distances of between, say, 1 and 100 times
a characteristic dimension of the object is an area of remote sensing which is of much interest. We shall
call this problem, for lack of a better term, “quasi- remote sensing (QRS)”. The boundary between QRS
and CRS is fuzzy. Computed axial tomography might be considered to QRS when used to image the
body or a buried object in soil, but tomography using radar signals to image an airplane lies more in
the realm of CRS. Detecting ore bodies using an airborne electromagnetic induction detector might be
considered CRS but locating the same bodies from the ground using the same type of detector might be
QRS. We shall not attempt to clearly delineate the boundary between CRS and QRS but rather shall
give representative examples of the latter. Some of these are:

1. Geophysical exploration of compact ore bodies from the ground (magnetics, electromagnetic induc-
tion, electrostatics)

L

Nondestructive testing (electromagnetic induction, neutron tomography, x-ray imaging)

ol

Detection of submarines from aircraft or ships (magnetics, electromagnetic induction)
Detection of land vehicles using buried sensors (magnetics, electromagnetic induction)
Detection of buried ordnance (artillery shells and mines) (low frequency electromagnetics)
Detection of trapped miners (low frequency electromagnetics)

Imaging of body parts (x-rays, electrostatics, acoustics)

Measurement of electric fields of body organs (electrocardiogram, electroencephalogram)
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Measurement of magnetic fields of body organs (magnetocardiogram, magnetoencephalogram)

10. Measurement of contaminants in the body such as dust in lungs or metal fragments (magnetics,
clectromagnetic induction)

In the previous list, some technologies applicable to each problem have been noted, although this is
by no means an exhaustive compilation. To illustrate the wide spectrum of methods available for QRS,
we shall focus for a moment on the problem of detecting unexploded ordnance. Table 1.1 shows the main
characteristics of the three major types of unexploded ordnance. Keeping these traits in mind, one can
think of a number of possible methods which could conceivably detect buried ordnance. These are shown
in Table 1.2, where they are categorized as “Q” or “R” for quasi-remote or remote sensing.

A discussion of the principles and techniques behind all the methods listed is beyond the scope of the
course, however, details may be found in [22].

In keeping with the theme of the course, we shall restrict ourselves to quasi-remote sensing methods
which are related to electromagnetism. Although one could argue eloquently that all the above methods
are indirectly related to electromagnetism, we shall be less philosophical and focus on those that directly
involve the generation and/or measurement of electromagnetic fields. These include magnetostatics,
electrostatics, electromagnetic induction, ground penetrating radar, magnetic resonance, and the sensing
of ultraviolet, visible and thermal infrared radiation. The last three are usually considered to be classical
remote sensing techniques and ground penetrating radar is covered elsewhere in the course. Although
magnetic resonance involves the generation and sensing of radio frequency radiation coupled with static




magnetic fields, it requires a quantum mechanical treatment and could easily fill one or more courses by
itself.

Thus, we will restrict this portion of the course to magnetostatics, electrostatics and electromagnetic
induction, particularly as they apply to detecting nearby concealed objects. In particular, we shall
concentrate on “compact” objects, that is, those which have a finite, closed bounding surface and hence
are finite in extent. All three methods are in the low frequency portion of the EM spectrum (DC to sub-
RF). This is necessary because the materials concealing the object of interest attenuate electromagnetic
radiation and the attenuation generally increases with frequency. For example, Table 1.3 shows the skin
depth at a few frequencies for two of the most common barriers encountered in practice, saline (the major
EM attenuating constituent of the body) and seil.

Since minimum torso thickness is approximately 0.16 m and minimum soil penetration depths are of
the order of 1 to 2 m, solely from the standpoint of signal attenuation it is desirable to use frequencies
less than 1 MHz. There is, however, a tradeoff. Because of the small distances and long wavelengths,
measurements are usually in the near field. Thus, the approximations of geometrical or physical optics
do not hold and imaging of a source is not a straightforward matter. In fact, as we shall see, the inverse
problem at these low frequencies is quite challenging.

2 Magnetostatic Methods

2.1 Introduction

The object of magnetostatic methods is to measure the static magnetic field associated with a ferrous
object and to use this information to locate and identify the object.! Ferrous objects, when placed
in a magnetic field, such as that of the earth, acquire magnetization of their own. This is normally
referred to as “induced magnetization”. The magnitude and direction of the induced magnetization is
a function of the ferromagnetic susceptibility of the body, its shape and its orientation with respect to
the ambient field. Ferrous objects may also have permanent or intrinsic magnetization, usually called
“remnant magnetization”. Remnant magnetization is a function solely of the thexmal, mechanical and
geomagnetic history of the object.

We will be dealing primarily with “compact” objects. The spatial extent of the measureable fields
associated with such objects is generally less than a few meters and the time taken to measure the fields
is less than a minute. It is important that the earth’s field not change significantly during that period.

2.2 Geomagnetic Field

When the geographical variations are averaged out, the earth’s magnetic field is very similar to that of
a magnetic dipole located ~ 400 km (~ 5 of the earth’s radius) due north of the geometrical center of
the earth (Fig. 2.1, Table 2.1). Its axis lies in the meridian plane defined by 69° W and is tilted 11°
from the geographical N-S axis. The south pole of the dipole points toward geographical north. The
magnitude of the dipole moment is approximately 8 x 1022 A-m? which produces an average polar field
of 65000 nanoTeslas (nT) and an average equatorial field of 35000 nT at the earth’s surface (Figs. 2.2,
2.3). This average geomagnetic field is mainly due to currents in the highly conductive core of the earth
(self-exciting dynamo action of thermal currents)

The geomagnetic field possesses a high degree of spatial uniformity.? For example, near latitude
45°N where F is approximately 45000 nT, the field gradient is approximately 20 nT/km in altitude and
5 nT/km in latitude.® If the sensor is less than 5 m above ground surface, inhomogeneity of magnetic
properties of soil and magnetotelluric currents may disturb the local spatial uniformity. Buried ferrous
objects, geological anomalies and pockets of residual magnetization (the latter sometimes the result

1Static magnetic ficlds are measured for other reasons too. For example one can study the field itself as in interplanctary
field measurements or determine current distributions within the human body from biomagnetic measurements.

1This is because large variations are unlikely over the large volumes of fluid in the earth’s core and the high core
temperature eradicates large contrasts after a short time.

3The horizontal gradient ~ 0 — 10nT /km from equator to pole; -0.03 nT/m at magnetic poles; -0.015 nT/m at magnetic
equator; or +£0.047F nT/m (+ mnorth of equator, - south, F in Oe).




of currents due to ancient lightning strikes) will also disturb the uniformity but may be detectable at
standoffs greater than 5 m.

Temporal fluctuations are 25% attributable to currents internal to the earth and 75% due to external
currents. The latter are mainly located in the ionosphere and variations are caused primarily by fluctu-
ations in the solar wind. The internal and external currents are coupled and lead to a complex temporal
variation which can be resolved into several components (Figs. 2.4-2.6):

1. Secular variations: Occur at a rate of typically 30 nT/year.

2. Diurnal variations: At mid-latitudes, F decreases rapidly soon after sunrise, reaches a minimum
at noon and increases during afternoon and night. The amplitude of oscillation is a maximum in

June (~ +25 nT) and is minimum in January (~ +2.5 nT). The direction of the field also changes
by a similar amount.4

3. Fast variations (micropulsations): There are several types including Eschenhagen fluctuations
(amplitude ~ 0.5 - 5.0 nT, period ~ 25 sec, total duration ~ few minutes); hydromagnetic pearls
(amplitude ~ 0.02 nT, period ~ 0.3 - 3. sec); oscillation of the earth/ionosphere cavity (amplitude
~ 0.002 nT, period ~ 0.025 - 0.2 sec).

4. Exceptional variations (magnetic storms): These happen several times per year and are
linked with solar activity. In fact, they occur ~30 hr after strong pulse-like eruptions on the solar
surface (solar flares). The typical variations are from 500 - 1500 nT with a wide range of frequency
components. In extreme cases, the fluctuations are so strong as to produce visible deflections in
compasses.® During magnetic storms, the only thing that can be measured are magnetic storms.
Such storms may last several hours.

2.3 Interplanetary Field

Remote sensing also includes measurements in outer space and magnetic measurements are a very im-
portant component. There are three main areas of interest:

1. 300km < r < 800km : Measurement of the geomagnetic field is of interest, particularly small Gaus-
sian deviations from the dipole model. Most of the geographical heterogeneity has been smoothed
out at this height.

2. 1000km < r < 20R.p : This includes the Van Allen radiation belts. The field is generally dipolar,
being approximately 300 nT at 5Rg and 10 nT at 20Rg (Rg is the radius of the earth, = 6400

km).6 Here, deviations due to intense ionic currents produced by the belts are of interest. (Fig.
2.7)

3. r > 20Ry : Field values are less well known in this region, but are typically 5 nT. Spatial and
temporal variations are of the order of 1 nT and are due to phenomena associated with the solar
wind.

2.4 Magnetic Units

The subject of electromagnetic units is & thorny one and no where is this more evident than for magnetic
units. Historical reasons brought about the plethora of units which has led to considerable confusion. The
reader can remove much of the mystery concerning magnetic units by referring to the excellent discussion
by Jackson [5]. Here we shall only list the units which are normally used (Table 2.2). Fortunately, SI
units are now considered to be the standard for all but certain theoretical physics applications and we
will use them in this course. SI units are in boldface in Table 2.2.

4 As a crude estimate of the maximum angular change, A8 ~ cos™? (:ggg:) ~ 1.7°,
5The magnetic storm of 1859 produced (AF/F) ~ 10%.
8 The field obeys an r—2 law.




2.5 Fields of Magnetic Anomalies

Deviations of the measured magnetic field due to sources other than those of geomagnetic origin previously
mentioned are usually called “anomaly fields” or “magnetic anomalies”. Geological anomalies, due to ore
bodies, are typically in the range of 100 - 1000 nT. Virtually all magnetic anomalies are due to magnetite
concentrations which are associated with the ore of interest (gold, asbestos, uranium-niobium).

Magnetite, being ferrimagnetic, has a magnetic susceptibility typically between 1.2 and 13. Ferro-
magnetic materials have susceptibilities almost always greater than 50 in the earth’s field. Man-made
ferromagnetic objects have much smaller dimensions than magnetite formations but sensors can usually
get much closer to them. Thus, on the whole, the fields associated with ferromagnetic objects of interest
tend to be of the same order of magnitude as geological anomalies.

Typical nongeological objects of interest may include armoured vehicles (peak field ~ 10000 nT),
submarines (~ 1 - 10 nT), buried mines and artillery shells (~ 10 - 1000 nT), archaeological artifacts,
parts of the human body (< 10~2 nT)(Fig. 2.8).

2.6 Methods of Detection

Sensors which measure magnetic fields are called magnetometers, although usually the term is reserved
for sensors measuring fields less than the typical geomagnetic field. Generally, there are two types
of magnetometer - vector sensors and total field sensors. The former, which include fluxgate sensors,
optical fiber interferometers, thin film sensors and Superconducting Quantum Interference Devices or
SQUIDs measure a single component of the field. The latter, which includes all magnetic resonance
magnetometers (proton precession, optically pumped alkali vapour), measure the magnitude of the field
but not its direction. Fig. 2.8 shows minimum sensitivities of typical magnetometers and clearly several
of these are sufficiently sensitive for our purposes.

Principles of operation of various magnetometers are beyond the scope of these lectures, but this
information may be found in the bibliographic references. As an example, the operation of a commonly
used vector magnetometer, the fluxgate, is illustrated in Fig. 2.9.

In general, if the anomaly field is denoted by b= (b1, b2, b3)and the earth’s field is bo = (bo1, boz, bos),
then a vector magnetometer would measure

byj = boj +b; j=1,20r3 (1)
whereas a total field magnetometer would measure

b = |8+ 5] = (3 +4? +2b;-i;)m (2)

Generally by > b and a Taylor expansion can be performed. We get

=

b‘zbo+-?-5+-2%;[b’— (—*,-b)'] _52“3['?";] [b’—(—?-g)z] 4o (3)

where .
¥ = b5 (4)

Thus to first order, a total field magnetometer measures the magnitude of the earth’s field plus the
projection of the magnitude of the anomaly field along the direction of the earth’s field vector.

The chief advantage of total field magnetometers is that they are insensitive to small changes in the
orientation of the sensor. Vector magnetometers will suffer large baseline fluctuations when rotated by
only a small angle, due to the large ambient field (Fig. 2.10).

One way of eliminating such baseline fluctuations is to use two sensors, precisely aligned and spaced
far enough apart that different anomaly field values exist at the different sensors. Such an instrument is
called a gradiometer (although a true gradient is measured only if the sensor spacing is much less than
the sensor-to-object distance). Alignment of sensors is very critical as Fig. 2.10 shows.

If 3 vector magnetometers are situated close together and oriented to measure 3 orthogonal components
of the field, they can be used as a total field magnetometer. One advantage of this method is that the




baseline field bo; may be subtracied from each jth component by extrapolating from an anomaly free

region and thus I I;| may be measured instead of

b:, + I;" Generally, the 3 sensors are made orthogonal

only to ~ 0.01° and software compensation is applied to effectively improve the alignment.

Baseline drift due to temporal fluctuations of the earth’s field may be eliminated by the use of a
“baseline” or reference magnetometer. Simultaneous field readings are obtained both for the reference
magnetometer and another which is used to measure the field near an anomaly. If the reference magne-
tometer is situated far from any anomalies, its field reading may be subtracted from the reading of the
second magnetometer. Spatial uniformity of the geomagnetic field (Section 2.2) ensures that geomag-
netic fluctuations will be eliminated from the second magnetometer signal by such a method. Baseline
elimination using total field magnetometers is slightly trickier if very high precision is required due to
the nonlinear nature of Equation 2.

High accuracy magnetic measurements must be performed in a low magnetic noise environment. There
are 4 ways of achieving such an environment.

1. Low metallic content laboratories: These are situated in remote locations (at least 40 km from
high-voltage power lines and a few km from other buildings). There is very little metal present and
none of it is ferrous. All power lines are shielded. In such locations, field gradients as low as 0.1
nT/m are obtainable. The schematic for a low metallic content laboratory is shown in Figures 2.11
and 2.12.

2. Magnetic shields: These usually consist of layers of high permeability material with insulating
gaps between them. Gap spacing and material thickness are chosen to optimize field attenuation.
A properly designed shield can reduce the interior field by as much as 109 over the external field.
Whole rooms as well as small cylindrical volumes can be shielded in this manner.

3. Active compensation: A field free region may be obtained by measuring three orthogonal com-
ponents of the external field using a magnetometer and applying an electrical current to a set of 3
Helmholtz coils with mutually orthogonal axes to produce a field opposite to the external field.

4. Gradiometer or double gradiometer measurement: If it is desired to measure the very weak
field of a source in close proximity to the sensor, one can measure the derivative or second derivative
of the field using 2 gradiometer or double gradiometer respectively. Biomagnetic measurements,
such as measuring the field of the heart or magnetite in lungs, are typical applications of this
technique. Roughly speaking, the field of a dipolar source falls off as »~3, r being the source-
to-sensor distance. The derivative and second derivative fall off as »~* and »~5° respectively and
thus unless a source is close to the detector, its measured gradient or double gradient will be quite
small. For example, if a source at 1 ¢cm from a sensor is moved to 10 m, its measured field is
reduced by 1079, its gradient by 10-!2 and its double gradient by 10~ 1%, Biomagnetic sources have
been measured using double gradiometers in unshielded, uncompensated rooms immediately above
subway stations.

2.7 Rotational Properties of Magnetostatic Measured Quantities
2.7.1 Rotationally Invariant Measurements

The most commonly measured quantities derived from the magnetostatic field vector, 5, are the three
components, B;, the magnitude of the field, B, the gradient tensor, G and the double gradient tensor,
L. The i, j component of the gradient tensor is

8B;
Gy = 32 ®)
YT 8X;
where a cartesian system with position given by
XT = (X1, X3, Xa) (6)




is assumed (superscript T denotes the transpose). Likewise the double gradient is defined by

J— 1
ijk BXk ( )

Because measure:nent platforms are seldom stable, it is very important to know how these quantities
behave under a rotation of the coordinate system.

If a rotation fror an unprimed to a primed coordinate system is defined by an (orthogonal) rotation
matrix, A, whose elements are the direction cosines for the transformation, then the vector B transforms

according to [9]
B'=AB (8)
G is a second rank tensor and transforms according to

G'= AGAT = AGA™! (9)

We wish to deterriine what quantities exist that are invariant under a rotation. Clearly the magnitude
B, being a scalar, is .nvariant. Invariant quantities associated with the gradient tensor become apparent
when we attempt to find its eigenvalues and eigenvectors. To do this one must set det (G — AI) = 0,
where A is an eigenvalue and Iis the 3 x 3 unit matrix. It is easy to show that det (G — AX) is an invariant
quantity for any A and thus
det (G’ — JI) = det (G — AL) (10)
Direct evaluation leads to
det (G — AI) = D+ AQ + A*T — A3 (11)
where

D = (G11G22G3s + G12G23Ga1 + G13G21G32)
— (G11G23Gaz + G12G31Ga3 + G13G31Ga3) (12)

Q=-3Tr (G7G) =
(G12G21 + G13G31 + G23Gaz) — (G11G22 + G11Gss + G22Gaa) (13)
T =G+ Gaz+Gss (14)

Inspection reveals that D is the determinant, Q is the negative sum of principal axis cofactors and T is
the trace of G.

By substituting Equation 11 in 10 we get
AN(D-DYV+A(Q-Q)V+ A (T-T)=0 (15)

and since ) is an arbitrary constant we have

D=D (16)
Q=Q
T=T
From Maxwell's equations we have .
V-B=10 1n
But Trace (G) = V - B and hence
T=0 (18)
Furthermore, if the region is source free, then Maxwell's equations also state
VxB=0 (19)
which implies that
Gij=Gji i#7] (20)




The field gradient tensor is thus symmetric and is specified by only 5 independent elements (any two of
the diagonal elements and either the upper or lower off-diagonal elements). The invariant forms D and
Q@ can be reduced to

D = (G221 + Ga3) (G353 — G22G33) + 2G12G13G23 — (G3,G33 + G13,G2) (21)

Q =Gl + Gly+ Gl + G3, + G35+ G22Gas (22)

In order to investigate the properties of D and @ we choose a rotation that diagonalizes G. This is
called a “principal axis transformation” and the coordinate system axes are called the “principal axes”.
We denote this coordinate system by a double prime ().

" " % (17 - 1) 1 O 0
G"=GY, 0 ~Lm+1) o0 (23)
0 0 1

where the asymmetry factor n is given by

ey - eyt
T Tem 9

and GY,, GY,, GY, are the principal axis components of the gradient tensor. Without loss of generality
we choose

IG3al > 1G32] > |GY)| (25)
and thus
0<n<1 (26)
Substitution of Equations 23 and 24 into 21 and 22 yields

1
D=2 (1-n")Gs (27)

1
Q=@+ oH (26)

Equations 26,27,28 yields
1
0<D< ZGQ’% (29)
3

7033 <Q <Gy (30)

Although there would appear to be only 2 independent quantities needed to construct G in this
system, there are indeed 5, since 3 Euler angles are necessary to specify the rotation relative to a known
space-fixed system (usually the detector system). More specifically, the transformation matrix A" be-
tween the principal axis and space-fixed system is formed by

A." = (€1 e‘\z eAa) (31)

where €], €3, €3 are the normalized eigenvectors of G.

Both D and @ require all 5 independent components of G and both are rotationally invariant. Q,
having only quadratic as opposed to cubic terms, should lend itself to easier analysis when attempting to
determine the source characteristics from the field. @ can more closely approximate the largest principal
axis component of G because Q'/2 has a smaller range of values than D'/3, for a given value of G43.7 All
these points suggest that Q should be preferred to D when attempting to analyse gradient data. This
indeed turns out to be the case when the properties of D and Q are compared for the specific case of a
static magnetic dipole source.

TNote that 0 < D¥ < 0.63GY, and 0.866GY, < Q% < @Y.




2.7.2 Rotationally Invariant Measurements of a Dipole Source

Now lets examine the magnetic field of a static magnetic dipole. In practice, the magnetic fields associated
with ferrous bodies frequently behave as though they were due to a static magnetic dipole situated at
the geometric center of the body. Our aim is to try to relate the invariant measurable field quantities to
the source characteristics (position, dipole moment) so that the latter can be deduced from a series of
field or gradient measurements. We employ two coordinate systems; a space-fixed one denote by capital
letters and a system fixed to the dipole, denoted by small letters, which we call the “body-fixed” system.

- T
The dipole is located at position Xo = (Xo1,Xo2, Xo3) in the space-ﬁxed system and at (0,0,0) in the
body-fixed system. The well known expression for the dipole field b at posxtlon #T = (21, 22, 23) in the

body-fixed system due to a static dipole moment mT = (m,, m3, ma) is given by
7 __ Mo r-3 — 3 L
b= o7 (—m+ = [T | r) (32)
where gp = 47 x 10~7 H/m is the permeability of free space and
r? =77

In the body-fixed system, the jk element of the field gradient tensor is given by
ab;
gir = E

Substitution of Equation 32 in the above equation yields

3pe _ 52,2
gix = T,-rgr 5 (:e,-m;. + z2pm; + [6]'). i | k] [E ngg]) (33)

where 6;, is the Kronecker delta, or in tensor notation,

g = 208 (FT + " + [#7] [1- 5r2777)) (34)

Note that Equation 33 has built into it the fact that the gradient tensor is symmetric and traceless.
The space-fixed and body-fixed coordinate systems are connected by a rotation matrix, A, such that

=AM (35)

The same transformation applies to all other vectors as well. One can also define B and G in the
space-fixed system.

F=%r ( M+——[R 3| ) (36)
Gy = 2R (R My + RuM; + [6,-k _ 5% R" [i MD (37)

where RT = (X' - fo) and R? = RTR. 8
Now we wish to evaluate some rotationally invariant measurable quantities. The square of the field
can in principle be obtained from a 3-axis total field magnetometer.

b’:E’TE:(i‘—;) »=® (T + 3 [TF7) (38)

To evaluate D and Q it is easiest to choose a body-fixed frame in which m; = m; = 0 and ma = m.
D and @ are then evaluated using Equations 21, 22 and 33. The result is expressed in an explicitly

invariant form.
D= - (o) sore gar) (747 + (™) (7)) (39)

8Can you usc the cquations for b, 5, g and G to show that b= AF and g = AGAT?




@= (%) ro (3 wrst? 1 "] 14) (40

Now assume a coordinate system in which my; = 0 and in which the z3 axis is parallel with the X3
axis. Further assume that the ; axis makes an angle a with the X, axis (Fig. 2.13). Field measurements
are made in the £3 = z plane orthogonal to the z3 axis. This 1s a geon etry common to many magnetic
source detection problems such as the detection of buried artillery shells snd mines, submarines, etc. The
measurement plane in most cases would be horizontal and the 3 axis would be vertical. The rotation
matrix becomes

cosa sina 0

A= —sina cosa O (41)
0 0 1

As an example of the analysis of an invariant quantity we will examine . A number of properties
of @ in the measurement plane can be examined, such as zeros, full width at half maximum (FWHM),
maxima, minima, etc. We first study the position and value of the extrema. Extrema of Q in the
measurement plane occur for

Q

=0 for j=1,2 simultaneously (42)
831'

In the present coordinate system Q (Equation 40) can be rewrittien

(a.lzt:1 -+ a,gz, + a.;;:::3 + a4z123)

Q= (43)
(23 + 23+ 22)°
where
3
ap = (4’::) i a1 = 3m? 4+ ml
a; = m1+m3 ; as __m1+3m3 ; aq = 4ryymg (44)

Substitution of Equation 43 into 42 and extensive manipulation shows that extrema with respect to =;, z5
occur in the z3 = z plane for

_ z myms ) (mxms )1/3_ E m 45
Zimes = 51 [( fitfa fimfa) = Smams (45)
Zimas =0 (46)
where
fi = 2Tm} + 51mim3 + 23m} (47)
fa = [com}? + c1m}®m3 + camim} + camim§ + camim$ + csmimi® + cam;l,’]l/z (48)
and
1 1836 729 2754 | 6714
co==; c1=|\mrm—+—] ; c2=|—/—+ <
°T g ™ 1728 ' 64 ? 64 = 1728
oo = (3843 13481) (2346 15666
= \6a 1128 ) ' 7 62 T 1728
529 9996 2744
= — 4+ —— H E 49
es ( ot T 1728) PO 1728 (49)

Substitution of 21mae, Z2maee into the equation for Q (43) yields a maximum value of @ of

Qrmas = 250 (aa + 2o+ as]) (1 + [Z—jr)s (50)




where as is the quantity in [ ] brackets in Equation 45. The subscript “maz” has been used above to
denote extrema points since it can be straight{forwardly shown that Q@ > 0.

Inspection of Equation 45 reveals that there is only a single maximum and that its position is on
the axis defined by the projection of the horizontal component of the dipole moment, displaced from the
origin by an amount that is a fraction of z (Fig.2.14). The fraction is a function of m;/ma and varies
from 0 at m; = 0 to a maximum = 0.15z at m; & 2.5mg and back to 0 at maz = 0. Thus the maximum
is directly above the dipole to within < 15%. This is illustrated in Figs. 2.15-2.17 where maps of the
value of Q in a plane 1m above a dipole (2 = 1m plane) are shown. The Figures correspond to different
dipole orientations. Fig. 2.15 corresponds to a dipole with m; = 0, my = 1A-m?; Fig. 2.16 to a dipole
with m; = 1, mg = 0A-m? and Fig. 2.17 to a dipole with m; = 2, mg = 1A-m?. For comparison,
Figs.2.18-2.20 respectively show the maps of b for the same dipole orientations and geometry. Note
that the map for @ is appreciably more narrow than that for b3, i.e, the field strength is concentrated
nearer to the position directly over the dipole. Furthermore, note that there is a single maximum for Q@
which is almost directly over the dipole whereas there are maxima and minima for b3 which can be far
removed from the position in the plane immediately above the dipole. It appears that using Q to localize
the position of the dipole in the measurement plane would require much less signal processing than b,
provided moderate accuracy is required.

To determine other pertinent quantities such as the moment components and the depth is not so
simple. Since the extremum solution provides 3 independent pieces of information (why?), at least three
more are required to solve for the 3 position components and 3 moment components of the dipole.
Additional useful information could include the FWHM or FWQM (full width at quarter maximum).
The position for the half maximum points is found by substituting @ma.-/2 (Equation 50) in Equation 43
and solving. Unfortunately solutions must be obtained using a root extractor algorithm to obtain values
of 21, z3. The solution possesses radial symmetry about & = (0, 0, 0) only when m; = 0.® For other dipole
orientations the locus of the half maximum is not circular but something like a distorted ellipse which is
not centered about z; = 23 = 0 in the plane (Fig.2.21). The ratio of major and minor axes'®(a/b) of the
locus is a function of m, /ma (Fig.2.22) and can be used to determine the latter ratio. The length of the
axes are a function of z and can be used to estimate the depth by employing a calibration curve similar
to Fig.2.22. Knowing m;/m3 and z allows us to determine a more accurate estimate of the position of
z1 = 0 from Fig.2.14. Lastly, the magnitude of 7 can be obtained by substituting the measured value of
Qmas, the estimated values of m; /mg, 2, 21,4z, 8nd using 23,4, = 0 in Equation 43.

A similar analysis may also be applied to the determinant D of the gradient tensor.

An analysis has been applied to the 3-axis component of b and has led to a successful nonrecursive
algorithm for estimating the position and dipole moment of a static magnetic dipole to within a few
percent [31]. The method is much less complicated than the above method for analysing Q, since the
only measured quantities required are the field values and positions of the maximum and minimum in the
measurement plane. An added advantage is that b3 will be much larger than the field differences required
to measure the gradient and so a less sensitive sensor is required. It should be pointed out that although
b3 is not in itself a rotationally invariant quantity, in low to mid-latitudes it is reasonably approximated
by (b, — bo) and hence can be measured by a total field magnetometer whose readings are insensitive to
sensor orientation.

A comparison of some of the properties of @ and b3 in the measurement plane is provided in Table
2.3.

There are also nonrecursive tracking algorithms based on gradient measurements. These require an
eight element sensor array to measure the five independent components of the gradient plus at least one
field component [29].

2.8 The Magnetic Field of Permeable Objects

The problem in magnetostatic quasi-remote sensing is to determine the nature of a magnetically permeable
object from its anomaly field. In order to be able to do this, it is first necessary to understand how to

?For this special case, the locus of points whose values arc half the maximum is circular with a radius = 0.40094z.
10The locus is not an ellipse but we can still define the “major axis” to be the symmetry axis and the “minor axis" to
be the axis of largest length orthogonal to the major axis in the plane.
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calculate the field, given the magnetic characteristics of the source. A complete discussion is beyond the
scope of these lectures, although good accounts are found in (5], {8].

In magnetostatics, the basic assumption is that there is no time rate of change of charge density p
anywhere in space. Thus the equation of continuity giving the current density J becomes,

-

v.-J=0 (51)
In addition, . .
VxH=J (52)
We always have .
V-B=0 (53)

A solution of Equations 52 and 53 that satisifies the boundary conditions is guaranteed to be unique.
Suppose we have 2 regions; region 1 with I;l, H, and permeability x; and region 2 with B-;, ﬁz, p2. Let
# be the unit vector directed from region 1 to 2 on the surface connecting the two regions. If K is the
idealized surface current density, then the boundary condition equations are

B -#a=B;-# (54)

o

ax (H-H) =k (55)

There are several methods of solving boundary-value problems in magnetostatics. They are broadly
classed as follows:

1. Generally applicable method - vector potential: One can always express B in terms of a
vector potential.

B=VxA (56)
We need a constitutive relationship
B=5(#) (57)
but unless it is a very simple one, the problem is intractable. The most common choice is,
B=uH (58)

-

Substitution in Equation 52 and choosing the Coulomb gauge (V A= O) gives

ViA=pul (59)
This can then be solved subject to the boundary conditions.
2. Method for J = 0 - scalar potential: In this case
H=-Vén (60)

where ¢,, is the scalar potential. Again we need a constitutive relationship and the problem is
intractable unless Equation 57 is simple. If Equation 58 is valid then

V2pm =0 (61)
and we then apply boundary conditions.

3. Hard ferromagnets: In this case M is given and J = 0. It can be shown that
y Ve () y o M(d)
(@) = - [ N gy _)é g (62)
5t

47I' v |£——2_.l| 47|’ Ié’_z—;|
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where the field coordinates are unprimed and the source coordinates are primed. It is assumed that
M is finite within a volume V' bounded by surface S'. !

Alternatively, if we choose to use the vector potential A, we have!?

L V' xM (") M ( ")

A& (£) = ———-——dsz' + — x ds’ (63)
ir li__z,| 4 5 ‘5_ l

Note that for all three methods the problem becomes extremely complicated unless:

1. a simple B (E_i ) relationship exists or

2. a simple distribution of M exists and
3. the geometry is very simple.

Only a few special cases have analytic closed form solutions. Among these are the uniformly magnetized
sphere, the homogeneous ellipsoid (which includes the sphere as a special case) in a uniform external field
and the infinite length homogeneous cylinder in a uniform external field.

Before we study a specific boundary value problem, a few words should be said about demagnetization,
a phenomenon which is commmon to virtually all magnetostatic problems. Simply put, the induced
magnetization of a permeable body is not given by the product of the external magnetic field and the
volume susceptibility, but is reduced by a factor. It is simple to show how this arises.

Suppose a body with volume susceptibility x is placed in a magnetic field of intensity Ho. Inside the
body there will be a magnetic field H, 1 whlle outside there will be a field H = Ho + H where H is the
secondary field due to the magnetization M of the body. When one solves the boundary value problem,
one often finds a relationship of the form

where d is a scalar. However, . .
M =xH; (65)
so that - -
H, = Hof (1 +dx) (66)

Thus the apparent susceptibility, that is, the quantity which when multiplied by the external field gives
the magnetization is X

1+ dyx

The term dx represents the reduction of the field inside the body due to its magnetization.

The factor d is called the “demagnetization factor” and ranges from 0 for needle-like objects magne-
tized along their long axes to 1 for a flate plate magnetized transversely. As an example, a uniformly
magnetized sphere has d = 1/3. Thus demagnetization reduces the magnetic moment of a body by the
ratio 1/ (1 +dyx) (0 € d < 1) and is a function of the orientation of the body with respect to the ambient
magnetic field. Obviously, if x is small, demagnetization is negligable. This is typically so for diamagnetic
and paramagnetic materials. Demagnetization may be of considerable importance for ferromagnetic and
ferrimagnetic materials.

With these general considerations in mind, we turn our attention to the homogeneous spheroid in a
uniform external magnetic field. Although this has been solved exactly [8], we shall approach the problem
differently by performing a multipole expansion analysis. This will allow us to demonstrate the nature of
the various significant multipole components of the field. In addition, the method is applicable to objects
whose shapes are more complex and which do not have closed form solutions.!?

Xa = (67)

1Note that —V' - M = pp where ppm is the effective magnetic volume charge density and M - n! = ¢ where # is the
unit vector parallel to the surface element ds’ and oy is the effective magnetic surface charge density.

12157 x n' is the effective magnetic surface current.

13The field inside a susceptible volume is only uniform if the interior properties are homogencous and isotropic and the
boundary surface is second order, such as is the case for an ellipsoid. It is convenient when analysing commonly encountered
shapes such as sheets and prisms to assume a uniform internal field. The assumption will fail near the volume boundary
but is usually a reasonable approximation through the body as a whole.
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2.9 Example of Magnetic Modelling - Multipole Expansion Method

Assume a uniformly permeable spheroid in a uniform parallel magnetostatic field.!* Assume a cartesian
coordinate system defined by orthogonal unit vectors (”’v :r:’z, zg) with origin at the geometric center

of the spheroid. The symmetry axis is the z} axis (Fig.2.23). It can be shown (see [8],p.257) that the
induced field inside the spheroid is also uniform and parallel. Inside the spheroid we have

M! =u3'B, - H, (68)

where M’ is the magnetization, B is the magnetic flux density, H is the magnetic field and the subscript
“1” denotes interior quantities. If the spheroid is uniform and isotropic with relative permeability p,,
then

B-‘l = l"rl‘Oﬁl
M! = (p, — 1) H, (69)

Thus AZ{ is uniform and parallel too. In the following, we drop the subscript “1” from M.{ since we will
be referring to magnetization explicitly only inside the sphercid. Now the scalar potential of a source
with magnetization M’ is given by[6] !®

1 " 1
bn)= 4 [ 209 (;_) av' (70)
By expansion of the gradient we have,
1 1 T "~ 1 ’ T !
¢m(1')= E s'ﬁM -ds’ — V';;V - M'dv (71)
But V- M/ =0 so ) ’
¢m (T) = .4_1:: < :;M' - ds’ (72)

Now we carry out a standard multipole expansion about the origin.!®

_ L 1 T dut L 8 1 / IRy I ]
¢m (1) = 4x [r”],,,=' S.M ds' + 4x [Bz; L2 P Y oM - de'+

1 8 1 1 PR
= [Maz; (_)]= 7 [ ol dis

1 &° 1 l/ z 2z M'-ds' + - (73)
4w | 82/, 0z ;82! \ 1" 3t fs a®p®y g
"‘='
Recall that the scalar potential of a 2"-pole with 2*-pole moment mg;s)___ is given by [6]
(n)
§a") = Pap. O i) (74)
4rn! 8z, 8z5... \ "

Thus comparing Equations 73 and 74 the first four moments of the source distribution are, in component
notation,

m(®) = M' - ds
st

141t is assumed that the ellipsoid has no permanent magnetization.

15 Prime supercript denotes source coordinates, unprimed denotes field coordinates, doublc prime denote mixed. Source
volume is V’ and bounding surface is S’. It is implied that 7 is not inside the body. Why?

16 Symmation convention is used in Equations 73 and 74, i.e, when indices are repeated in the same term, summation
over these indlices is implied. For example, m,gg = E 3 Maps:
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mﬁ?,’ = /_;: z:la:;ng'ﬁ' - ds’ (75)

where m(? is the scalar monopole moment, mf,l) is the vector dipole moment, mgp) is the quadrupole

moment (a rank 2 tensor) and mffg,y is the octupole moment (a rank 3 tensor).
As an example of how the integrals are evaluated, we calculate m(°).

m(®) = M. ds' =
s'

. Miz)| -ds' + .. Mz - ds' + . Miz, -ds' =

M{/ z“'l-d’;'+M;/ £',-d2'+M;/ 2, - ds =
St St s

M / (v'-31) o' + M / (v'-33) do' + / (v'- ) av' =0 (76)
v v v

The second last line follows from the uniformity of M’ and the last line follows from the divergence

theorem.?
In a manner analogous to Equation 76, we can show that the a component of the magnetic dipole
moment m(1) is!8 19

m®) = MLV a=1,2,3 (77)

Similarly, the quadrupole moment tensor m(?) can be shown to be identically zero. This does require

the assumption of uniform parallel M’ as well as the assumptions of symmetry about the z§ axis and
mirror symmetry about the plane defined by 2z} = 0 (fore-aft symmetry). Thus

m) =0 (78)

The assumptions leading to the last equation also imply that all even order moments are identically zero,

i.e, for n an integer,
m(Z®) = ¢ (79)

The next higher order contribution to ¢,, is due to the octupole moment tensor m(3). The method to
calculate the moment components is tedious but similar to the method used to calculate the previous

three moments. Although there are 27 possible elements for mfg_', examination of Equation 75 reveals

that there are only 10 independent elements. The assumption of #3-axis symmetry further reduces the
number of independent nonzero elements to 6. These are;

m{}) = 3m3) = 3MiL,
m{3) = 3m{3) = 3M}L,
m{3h = 3M; I3

m{3h = m{y = MiI,

17We have proved this for the case of constant M/ but it is true for any M'. Can you prove it?
18 This equation is true even if M’ is not constant throughout the body.

“rns,l) is independent of the choice of origin in the expansion of Equation 72 but this is not true for higher order moments.
See [5] p.139.
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mi3) = M{Is
misy = MjIsa (80)
where 1
Im=z [ (@ -22)dv (81)
2 Vl
I33 = / Zlazdvl (82)
m{)y = ml), =mi), (83)
and .
m =0 if atfty (84)

So far the analysis has applied to any axially symmetric body with fore-aft symmetry. Now assume
that the body is a spheroid and that the diameter of the spheroid along the symmetry axis is 2ae and
the diameter of the largest axis orthogonal to the symmetry axis is 2a. It is simple to show that

4
VI - 2 3
31rea.
4x
I11 = Eeas
I3z = %esas (85)

We still need to know the value of M{, M}, M{. Assume that the external magnetic field (usually the
earth’s) in the absence of the spheroid is b = (bo1, b0z, bos)- A solution of the boundary value problem
([8],p.207), assuming the permeability of the spheroid is g,1p0 and that of the surrounding medium is
Er2Mg, yields

M} =pug Fibo; j=1,2,3 (86)
Fj = (o1 — 1)/ (1 + Aj (11 — pr2] / [21202])) (87)
where o
Aj ::a,se/ (a-}-a.;)_l (a-}-a’)_1 (s+a2e2)—1/2ds j=1,2,3 (88)
0
with a; = a3 = a and a3 = ae. Integration of the previous equation and simplification yields
Ay =As=e(e+E)(—1)" (89)
Az=-2e(e !+ E) (et -1)" (90)
where .
E=In (e—- [ez—lli) (ez-——l)—'% (91)

for e > 1 (prolate spheroid),

E= (a.rctan [e {1- e’}-%] - 1r/2) (1- e’)—% (92)
for e < 1 (oblate spheroid), or
A1=A3=A3:§ (93)

for e = 1 (sphere).
Note that each function Fj is just the demagnetization factor for the boundary value problem correspond-
ing to an ambient magnetic field boj:;;.. The functions Fj are graphed in Figs.2.24-2.26.
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We now wish to calculate the magnetostatic field at point # from the origin, due to the field induced
in the spheroid. We assume that the measurement point is in free space. If we keep terms up to and
including the octupole term Equations 73 and 74 imply

pm = ¢2) + %) (94)
or in terms of the magnetic field,
b = —Vm ~ —Vg() — Vg(®)

~ gt (83 + 1) (95)

Following extensive manipulation of Equations 73,94,95, we have in component notation using summation
convention,

(2) . Bo -3 (1) -2 (1)
b\ s ( my ! + 3r [zpmﬂ ] za) (96)
wnd o 3) @
- - 3 - 3
b8 = o 5 (31:1,0"3/3 —~ 15772 [zaz‘gmp,ﬂ + zpz.,mgp),'] + 357 4zazpz7zgm,(s1)5) (97)

All field quantities have been derived in a body-fixed coordinate system which the observer does not a
priori know. We now introduce a space-fixed coordinate system with arbitrary origin, whose vectors are
indicated by upper case letters. This is the system to which measurements are referenced. It is assumed
that the spheroid center is located at Ii’or = {Xo1, Xo2, Xo03)-

The body-fixed and space-fixed coordinate systems are connected by a set of Euler angles (¢, 6, %).
The angle 8 is the angle between the spheroid symmetry axis and the vertical and ¢ is the angle between
the projection of the symmetry axis on the horizontal plane and the space-fixed 1-axis. Because of the
axial symmetry of the spheroid, we can choose 9 = 0. The Euler rotation tensor [9] is then given by2®

cos8cos¢ cosfsing —sinf
A=| -—sing cos ¢ 0. (98)
sinfcos¢ sinfsing cos@

The body-fixed and space-fixed vectors are related by
b; = Aﬁo

m-(’l) = AM_(.l)

g: AE
52 = AB®)
b(®) = A B(®) (99)

where T
By = (Bo1, Boz, Bos) =

(Bo sin fg cos g, Bo sin 8 sin ¢, B cos fy) (100)

where g is the polar angle and ¢q is the azimuthal angle of Bj in the space-fixed cartesian system.
Examination of Equations 77 through 98 will reveal that given the size and shape of the spheroid (a, €),

the magnetic material properties of the spheroid and the surrounding medium (g1, t,2), the location of

the geometric center of the spheroid (Xo1, Xo2, Xoa) and the orientation of the spheroid’s symmetry axis

with respect to the space fixed system (8, ¢), we can calculate the magnetic field (ﬁ) due to the presence
of the spheroid that a sensor would measure at a point in space.

An example of the success of such a model is illustrated in Figs. 2.27 and 2.28. The first Figure shows
the measured signature (solid line) and theoretical prediction (dotted) for a 0.08m radius mild steel sphere

20Note that ATA =1 where I is the 3 x 3 identity tensor.
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whose center lies directly under the sensor path at closest approach.?! The depth?? was measured to be
0.73m. Deviation of the model from theory has been shown to be due to remnant magnetization.?® The
second Figure shows the measured signature of a 105mm howitzer shell (solid line) and the theoretical
signature of a spheroid of similar size and shape (dotted line) to illustrate that the model is applicable
to realistic situations involving axially symmetric objects too. Depth was measured as 0.96m, the shell
symmetry axis was tilted 47° from vertical and its projection in the horizontal plane was 43° from
magnetic north. Spheroid parameters of a = 0.06m and e = 3.5 gave the best fit to the data. Measured
values for the shell were estimated to be a ~ 0.05m, e ~ 3.5.2* Remarkably, even though the model
is only an approximation, the good agreement was maintained as the shell was rotated and placed at
different depths without having to change the model parameters. The slight difference between the two
curves of Fig.2.28 is likely due deviations of the shell shape from that of the model as well as remnant
magnetization.

This brings up a very important point about magnetostatic modelling. Remnant magnetization can
be very difficult to model since its strength and direction are often unknown for an individual object.
Generally it is ignored and this turns out to be satisfactory for many applications in which the object
has not had a “colourful” magnetic history. This assumption is not generally true for geomagnetic
applications. In some cases, such as the measurement of magnetite in miner’s lungs, the material can be
subjected to a known large magnetic field prior to measurement, thus assuring that remnant magnetization
dominates induced magnetization. The orientation of a particle with respect to the premagnetizing field
must be known if the anomaly field of the particle is to be modelled successfully.2®

Although analytical models such as the multipole expansion method provide insight into how the
fields behave, they are of limited use in many practical situations involving permeable objects. This is
particularly so when one has to account for hysteresis curves of B versus H in a material, the effects of
remnant magnetization or object boundaries that cannot be expressed simply. In such cases numerical
solutions of the field equations are necessary. One may solve either differential or integral equations,
depending on the problem at hand, by numerical techniques such as finite difference and finite element
and a number of standard methods are in widespread use. Discussion of such numerical techniques are
beyond the scope of these lectures, but [19] is a good reference article.

2.10 Inverse Magnetostatic Problems
2.10.1 Introduction

The actual problem with which we are faced in magnetostatic remote sensing is the inverse of that in
the last section. The problem may be posed as follows: “Given a set of magnetic field or field gradient
measurements referenced to a space-fixed system, determine the position, size, shape and material prop-
erties of the object.” Problems in which field measurements are used to infer properties of the source of
the field are called “inverse problems”.

To study the properties of an inverse problem, we shall use the the uniform spheroid as an example.
We assume that the accuracy of measurements is such that moments of higher order than octupole may
be neglected. Note that the problem is greatly simplified compared to the case of a body of arbitrary
shape. For the spheroid there are 9 unknown parameters; 2 size/shape parameters (a,e), 2 magnetic
material properties (.1, #,2), 2 angles which determine the orientation of the symmetry axis (6, ¢}, and
the 3 position coordinates of the spheroid center (Xox, Xo2, Xo3). For a body of arbitrary shape, there are

22 independent parameters; 3 components of m(‘) 6 independent components of m(z) 10 independent
components of m(®) and the 3 position components of the center of the object.2® Nevertheless, even the

21Sensor travelled S to N in straight line in the horizontal plane. Experimental set up is shown in Fig.2.11.

22Distance between center of the sensor’s active volume and the geometric center of the object at the point of closest
approach of the sensor.

23 How would you go about showing this?

24We also have ppy = 100, ez = 1, 8p = 17°, ¢g = 180°. The steel portion of the artillery shell is by no means a
spheroid. It is axially symmetric but it is hollow and has an angular shape, somewhat like a cross between a truncated
spheroid and a cylinder. The estimates of ¢ and ¢ for the shell arc thus only approximate quantitics based on mcasuring
the overall length and width of the shell.

25 Typically the particles are modelled as spheres or randomly oriented spheroids.

26 Where is the information concerning the size,shape, magnetic properties and orientation of the body contained?
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uniform spheroid inverse problem turns out to be quite difficult to solve.

In practical situations, the spheroid problem can be further simplified. For ambient field values
typical of those on the earth’s surface, we usually have 300 < u,; < 1000. Typical rocks have values
of yy2 between 1.0 and 1.1.27 For this range of p,; and p,2, Figs.2.24-2.26 reveal that the F; functions
which determine the components of the magnetization of the spheroid are insensitive to u,; and g,3.
Thus p,.; may be fixed at say, 500 and g,» = 1 without much error. There are now only 7 unknown
parameters;a, e, 8, ¢, Xo1, Xo2, Xoa.

It is immediately obvious that information is necessary from multip_?les of order higher than dipole if
the problem is to be solved uniquely. The space- fixed components of B(2) are a function of 8 parameters;
the three components of X, and the three components of M(1). Thus there is a built in degeneracy that

keeps us from uniquely determining the 7 spheroid parameters from B(2).2%8 Note that for the special
case of a sphere, there are only four parameters and dipole field information is sufficient to solve the
problem. Indeed it can be shown that the homogeneous sphere in a uniform external magnetic field has
a pure dipole anomaly field. This means that if only dipole field measurements are available, we cannot
distinguish between a compact orientable body of arbitrary shape and a sphere. We will later see that
in spite of this apparent deficiency, dipole measurements can still be used to identify spheroids.

There are two general technigues that may be used to estimate the spheroid parameters from mea-
surements of B. The two are “model fitting” and “pattern recognition”. Although our problem is quite
specialized, these methods are generally applicable to all magnetostatic inverse problems.2?

2.10.2 Solution by Model Fitting

Model fitting involves devising a mathematical model to describe the secondary magnetic field as a
function of source parameters and then performing maximum likelihood estimation (MLE) to determine
the parameter values that best fit the measurements. Most geometries do not have simple analytical
models and are thus not ideally suited to this method. It is possible to use a numerical model in the
MLE procedure in place of an analytic field equation, but this makes the method very computationally
intensive.

For the spheroid, we do have an analytical equation. Unfortunately, in this case as in most, the
field equation is nonlinear in the source parameters which means that a nonlinear estimation technique
must be used. Such techniques are recursive and usually require substantial computer time if there are
many data points and/or parameters. Also, the initial values of the parameters must be guessed and
a technique which is insensitive to the initial guesses is necessary. If the uncertainties in the data are
Gaussianly distributed, least squares fitting is an MLE method and a particularly good algorithm to
use is Marquardt’s method {30]. The technique is reasonably fast and produces accurate estimates of
parameters if the model is correct®® Its main strengths are that its performance (i.e, speed, accuracy
of estimates, etc.) is very insensitive to the initial parameter guesses and it is reasonably robust. All
fitting methods tend to be more prone to oscillations, instabilities, and nonconvergence as the number
of parameters increases. This may be partly corrected by increasing the number of data points but this
only helps if the points are “well distributed” and then only up to a certain number (typically ~ a few
hundred). Also, the more data points that are employed, the longer the time required for convergence
of the algorithm. In spite of all these pitfalls, spheroid parameters have been successfully estimated
using the “dipole+octupole” model. For typical laboratory measurements (position errors ~ 0.01m, field
errors ~ 1.0nT), parameters have been estimated to an accuracy of a few percent [30]. Unfortunately,
convergence problems and the formation of false solution sets due to local minima in x? space also occur
occasionally and must be circumvented by heuristic checks in the computer code.

27Magnetite is an exception with 2 < pr < 14 approximately.

"Brﬁ) can be measured by measuring B at distances far enough from the object so that B{8) ~ 0 but near enough so
that B can still be measured with sufficient accuracy.

29S8 pecific examples may be found in (4].

30There are other algorithms that are faster and more accuraie but not both together. These attributes tend to oppose
one another so that Marguardt's algorithm is a good compromise.
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2.10.3 Solution by Pattern Recognition

Pattern recognition involves comparing characteristics of a set of magnetic data from an unknown object
with that from a known object to determine if the two objects are the same. A full discussion of
pattern recognition is beyond the scope of these lectures, but a number of good introductory texts are
available. An excerpt from one of them (Tou and Gonzalez {13]) is included with the notes to provide
some introductory terminology. Geophysics routinely makes use of “characteristic curves” to determine
whether the source of a magnetic anomaly is a dyke, plate, dipole doublet or some other simple body.
The chief problem is that generally magnetic profiles3! for a single object change with the choice of
sensor path and object depth and orientation. Thus huge amounts of data must must be stored even
if the number of possible objects is small. Clearly some form of data reduction or compression (called
“feature extraction”) is essential to make pattern recognition feasible for magnetic identification. One
plan is to oversample each profile, then perform a Fast Fourier Transform and discard higher frequency
information to form the feature vector for the profile 22, For certain geometries, heuristic extrapolation or
interpolation techniques®® can be employed to minimize the number of different depths at which profiles
must be obtained. In spite of these and other methods of data compression, profile matching methods
usually involve huge libraries of characteristic curves or feature vectors.

2.10.4 Pattern Recognition for Compact Axially Symmetric Objects

In a number of realistic situations the sensor-to-object distance is sufficiently large that multipole fields
of order higher than a dipole may be neglected. As previously mentioned, this means that an orientable
compact object of arbitrary shape cannot be uniquely identified by measurements of the field. In practice,
however, the number of possible object shapes and sizes for a particular problem is usually finite and
small. Uniqueness will then be ensured if the fields associated with only those objects are uniquely
different. Under these conditions, location and identity of a compact object can be reliably determined
using an algorithm that is fast and requires only a small amount of storage for the feature vectors of
an object. We will present the method for an axially symmetric object using a spheroid as an example.
The method can be generalized to an arbitrary compact body but it is a tedious and not particularly
illuminating exercise.

The first step is to determine the location and dipole moment components of the object relative to a
space-fixed coordinate system. This may be done by any one of a number of published algorithms using
field [30], [31] or gradient [29] information or by a method such as that outlined for Q in Section 2.7.2.
In performing the measurements, care must be taken to ensure that the sensor is far enough from the
object that higher order multipole fields are negligable.

The space-fixed components of the dipole moment induced in a homogeneous permeable axially sym-
metric compact object by a uniform magnetostatic external field will vary with the orientation of the
object. Since two angles define the orientation, the locus of all possible dipole moments for such an
object is actually a two dimensional surface in a three dimensional space. This can readily be seen for
the spheroid problem of Section 2.9. Using Equations 77 and 86, the magnetic moment induced in the
spheroid due the ambient magnetic field can be rewritten

= pug ' VFb, (101)
where
F, o 0
F = 0o FK 90 (102)
0 0 F;

and V = V'. By substituting Equations 98 and 99 in 101 and following extensive simplification, we
find that the space-fixed magnetic dipole moment vector can be expressed explicitly in terms of only
space-fixed quantities:

31 A profile is a sct of field measurements taken along a one dimensional curve, usually a siraight line, in a plane above
the object.

32 This relies on the fact that for most magnetostatic problems, the profiles are slowly varying spatial functions.

3 ysually based on scaling the spatial extent of the profile as a function of depth
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MEM(I): Mz =

{F\ + [F3 — Fy]sin® @ cos?® ¢} Bo1 + {[F3 — F1]cos §sin @ cos ¢} Bos
wg'V | {[Fs— Fi]sin?@cos ¢sing}Bo; + {[F3 — Fi]cosfsinfsing}Boa | . (103)
{[Fs — Fi]cos@sinfcos ¢} Bor + {F1 + [F3 — Fi] cos? 8} Bos

Examination of Equation 103 reveals that for a given ambient magnetic field and surrounding medium,
M is a function of the spheroid shape, size and material (a,e, y,1) and two continuous orientation pa-
rameters (6, ¢). Also, because of symmetry, unique values of M occur only for 6 = ¢ = 0,0 < 6 < x/2
when 0 € ¢ < 2x and § = 7/2 when 0 < ¢ < v. Two magnetic dipole moment surfaces corresponding to
two spheroids of different shape and size are shown in Fig.2.29.

Our plan is to use the dipole moment vector as the feature vector to classify the object. Because the
feature vectors form a surface or manifold in the feature space (M space) we must find a classifier that
can determine to what surface a test vector belongs. The plan is to find a 2-D analogue to the Nearest
Mean Vector classifier, which determines the distance from a test vector to a point.

A number of restrictions and assumptions will be imposed, but these are all applicable to the problem
at hand. We will consider a prototype which is a manifold of M dimensions and a function of M
independent parameters. The feature space is of dimension N > M. It is assumed that the manifold is
well-behaved, ie., has no singularities or discontinuities on the portions under consideration. The manifold
is assumed to be finite in extent, but may be open or closed. It is assumed that a given set of values
of the M independent parameters maps into no more than one point on the manifold. However, one
point may correspond to several values of a particular independent parameter. {The manifold is said to
be “degenerate” in that parameter at that point). It is convenient to use Dirac bra-ket notation applied
to real vectors. Thus, the row vector (2,,23...,%,) is written as (z|. The column vector with the same
elements is denoted by |z} and the scalar product of (2| and |y) is written (2| y).

We will specifically be considering a pattern class whose prototype consists of an M = 2 dimen-
sional manifold in an N = 3 dimensional feature space. The prototype is a function of two continuous
parameters, 6 and ¢. This is illustrated in Figure 2.30.

The prototype for class i and given 6, ¢ is a point defined by the head of a vector denoted |m; (9, ¢)).
The prototype is approximated by a finite number of “unit cells”. For an M = 2 dimensional manifold,
the unit cells are truncated hyperplanes, or hypertriangles (triangles for N = 3 as in Figure 2.30),
which connect sampled points |m; ;1) on the hyperplane. The subscripts j, k indicate that the prototype
feature vector is evaluated at discrete values of the parameters § = 6; and ¢ = ¢. Where on the
manifold to choose the |m; ;) in order to optimally approximate the manifold is dependent on its
structure and will not be addressed further. Consider the region of the manifold for which 8; < 8 < 6;,1
and ¢5 < ¢ < ¢r41. This region of the manifold may be approximated by two hypertriangles. One
hypertriangle passes through |m k), Ims,j4+1,%) » |M4,j,+1) and is bounded by

[0} = |50 41) — lmaj0)
fvigk) = Imajein) — [min) (104)
and |ugjn) — [i,5,)-
The other hypertriangle passes through |m; ;11.8), 74,5 41,041) » {Mi jk4+1) and is bounded by
i 50) = lmaeni) = lmigenien)

|[vig) = IMahen) ~ [majensn) (105)

and

’ N )
”-'.j.k) iw,,-,;.)-
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By allowing j, k to span the values corresponding to the upper and lower limits of §; and ¢, respectively,
the entire prototype manifold for class i may be approximated. In what follows the subscripts i, j, k will
be dropped where it is unambiguous to do so.

To find the distance to the hypertriangle bounded by the vectors |u) , |v),
|u) — |v) we first form an orthonormal basis. The orthonormal basis |a),|8) is constructed using the
Gram-Schmidt method [15]. It is assumed that |u} and |v) are not colinear. The basis vectors are

la) = [u) / (u] w)? (106)

NNV T
)= (10 (u|u>")/(< ) (uM) . (107)

Let [2) be a test vector and define

%,5,6) = [2) — [miju) . (108)

If we further define y'(;), ,.> to be the projection of |y jx) onto the subspace spanned by the basis and
|di j,x) to be the vector which is normal to the subspace and which passes through |z), then

|d) = ly) - ]y(‘)> (109)

and

1) = (ol @) o) + (31 B) 1) =

(yl u) u) + ((y| v) - (yl u) (ul v) / (ul "’)) l") _ (1/.] v) I") ! (110)
ful w) wuwwmvww)( (ul v) )
After substantial simplification, we find
YY) =plu) +qlo) (111)
where
_ {yl v} (ul v) — (yl u) (u] v)
= o) (al 9 -l 0 -
and
_ {ylv)—q(u|v)
p= ) . (113)

Note that the denominator in Equation 112 is gero iff. [u} and [v} are colinear.
If |2) is a sample from the class i corresponding to the region of the prototype manifold bounded

by [u),|v), [u) — |v), then estimates, § and @, of the continuous parameters associated with |2) may be
obtained from

8=06; +qijn(6ir1~6;) (114)

b =+ Pijn (Prs1 — o). (115)

The minimum distance, d; j &, from the test vector to the hypertriangle is approximated by

dijn = (dijal dija)? . (116)
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The previous equations calculate the minimum distance to the infinite hyperplane passing through the
hypertriangle. The region of the manifold under consideration has been assumed to be approximated by
the hyperplane only within the boundaries of the unit cell (hypertriangle). Thus, the previous distance
equations are only valid if |y{*)) lies within the boundaries of the hypertriangle. It can be easily shown
that this is true provided p > 0, ¢ > 0 and 0 < p+ g < 1. If any of these conditions are not satisfied,
then d; jx is replaced by the minimum distance from the test point to the vectors which bound the
hypertriangle, using the method described above for approximating the minimum distance to a one
dimensional manifold. For speed of implementation, g is calculated first and based on its value, the
appropriate calculation of d; ;; is carried out.

By changing all quantities to primed quantities, Equations 106 to 116 may also be used to find the min-
imum distance to the hypertriangle bounded by the vectors |u'), [v}, |[v') — |u’) provided Equations 108,
114 and 115 are changed to

fye,in) = 12) — Imaj41,041) (117)
6="0;41+a ;18 —6i41) (118)
¢ = drt1 + Pijn (Pn — drs1) - (119)

The minimum distance, d;, from the test vector to the manifold is then approximated by
d,- = rgllkll {d"lj,],, dz,j,h} . (120)

The test vector is assigned to the class i for which d; is a minimum.

The prototype manifold for certain values of one of the continuous parameters, say 6;, may be indepen-
dent of the other continuous parameter. In this case, the manifold between 8y, 8;1,, ¢x and ¢x, 1 may be
approximated by a single primed hypertriangle instead of both a primed and an unprimed hypertriangle.

As an example of the abilities of the classification method, noise-free magnetic moments of six different
spheroids (Table 2.4) were generated at 15 increments of the orientation angles 6, ¢ to produce a design
set. Test sets, consisting of magnetic moment feature vectors generated at 5° increments were generated
with different % noise levels added to them. Table 2.5 shows the probability of misclassification for the
classifier just described (Continuous Parameter Classifier). The continuous parameter classifier theory
and comparison with other classifiers is discussed more fully in [32].

3 Electrostatic Methods

3.1 Introduction

Of all the electromagnetic properties, the conductivity (¢) has the widest range of variation. Whereas
under normal conditions the magnetic permeability (u) varies from ~ po to 1000u0 and the permittivity
(€) varies from ~ €g to BOeg, o can span 20 or so decades (see Fig.3.1, Table 3.1).

Two effects complicate the electrostatic process in addition to simple ohmic conduction. First, po-
tentials can develop in the medium. These are caused by

1. a difference in chemical potentials of minerals at the interface between two minerals or
2. gradients in solute concentrations in interstitial water or
3. fluid motion in porous materials.

These are steady state effects which are generally referred to as “spontaneous polarization”. Second,
charge may accumulate at the interface between certain minerals due to the flow of current from an
external source. This is called “induced polarization”. The difference between the two is that the former
may involve current flow in the absence of external voltage.
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The “d.c. resistivity” or “electrical impedance” method is the simplest electromagnetic measurement
method there is, at least in principle. Electrodes are inserted in the body to be measured. A potential
across them establishes a current field in the body and the finite conductivity of the body produces an
electric potential which is measured at the body surface by two electrodes.

In geophysics, the body is the earth and the field is perturbed by the presence of subsurface zones of
conductivity which differ from the otherwise presumed homogeneous conductivity of the volume. There
are two types of exploration. Vertical exploration involves detecting layered structures and is generally
done by making measurements as the electrode array gradually increases in horizontal spacing about a
fixed point. Horizontal exploration is used to look for horizontal anomalies such as ore bodies and involves
moving an array of electrodes of fixed spacing horizontally along the ground.

Electrical impedance methods are used in medicine to measure certain global or bulk cardiac parame-
ters and intrathoracic fluid volumes and some attempts have been made at imaging soft tissue and bones.
Such measurements are possible because of the large conductivity contrasts in the body.3¢

There are many types of exploration array systems and we shall only mention a few. For vertical
exploration, the most popular is the Wenner array (Fig.3.2). The voltage for a given input current is
measured and the array is expanded about the center so that deeper layers have more effect on the
potentials. We shall return to this. For horizontal exploration, the current electrodes are often fixed at
large distances and the potential contours are mapped, i.e.,(Fig.3.3)

There are some problems associated with taking resistivity measurements. One is contact potential,
the potential between electrodes in the absence of source current. It is due to electrochemical emfs on
electrode surfaces or material interfaces in the host body. One solution is to measure potentials with
the current in first one direction and then another. This may be done using low frequency AC current
and measuring only the AC component of the voltage, but the frequency must be low encugh so that
potentials induced by the magnetic field are negligable. Usually frequencies less than 1KHz are alright
but they should be < 1Hz to ensure no induced polarization effects. Alternatively, one can use exotic
electrodes such as Ag-AgCl to suppress contact potential.

Another problem, surprisingly, is the high sensitivity of the methods. Conduciivities span a wide range
and these directly affect the measured potentials. Thus a perfect conductor and one an order of magnitude
greater than the “background” conductivity are virtually indistinguishable. This makes it very difficult to
accurately measure conductivity values when high conductivity contrasts exist. Electromagnetic induction
gets around this since the effect of including the magnetic interaction is to make the response nonlinear
in 0.

3.2 A Note On Ohm’s Law

Fundamental to d.c. resistivity methods is Ohm’s Law:

—

J=cE (121)

where J'is the current density, o is the scalar conductivity and E is the electric field.
Note that Ohm'’s law is linear. This is fortunate since otherwise most problems would be intractable.
It is an empirical relationship, however, and a number of materials do not obey the law for high current
densities. For most experiments this is not a problem, since |J| < 1A/m? except near the electrodes.
Still, one should be aware of the limitations of the approximation and approach each problem cautiously.
Equation 121 is actually the scalar form of Ohm’s Law and is true only for an isotropic medium. In
general, 7 is a rank-2 tensor and
J=%E (122)
To show that anisotropy can be significant, consider three simple dual conductivity models with
conductivities o4 3» o3 (Fig.3.4):
Model (a) is a set of orthogonal rods of conductivity, o, imbedded in medium of conductivity, o3.
In (b) the rods are replaced by parallel sheets and in (c) by random spheres. For all models the volume

34 The contrasts are primarily due to differences in salinity between fluids internal to and surrounding organs.
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fraction, p, of material 1 is much less than 2. These models simulate minerals of low conductivity with
interstitial water or semi-metallic inclusions. The effective conductivities are found to be:

(8) oe=0oy=0,= p—% + (1 —p)oa (123)

(b) 0, = 0y = poy + (1 —p)d’z
Oy = 0’10’2/ [Pcfz + (1 - p) 01] (124)

203 + o1 + 2pfo —az]) o
203+ 01— ploy — 03]

(¢) oo=0y =0, ~ ( (125)
To illustrate the variation, we compare the results of the three models in Table 3.2. It is assumed
that the volume fraction p = 0.2 and oy = 1003 or 1000,.
We note from this that even in isotropic media, measured conductivity is strongly dependent on
geometry. Also, “platy” structures are highly aeolotropic (anisotropic). Aeolotropy is very difficult to
analyse and generally we must make the isotropic assumption if a mathematical model is desired.

3.3 Rock Conductivity

Assuming that electrostatic measurements can be made and the inverse problem solved to determine the
conductivities of the body being measured, one must attempt to determine the material’s identity from
its conductivity. When imaging the human body, for example, this may not be too difficult since bone
has quite a different conductivity than muscle or fat. Much of remote sensing is related to geoexploration
and the picture for rock/mineral conductivity is considerably more confusing.

All minerals, except the semi-metallics, are insulators with 10~17 < o < 10~1? S/m. Impurities, such
as electron donors/acceptors and other crystal defects, increase this by a few orders of magnitude. In
the field, however, rock conductivities are ~ 1078 to 10~! S/m (Table 3.1). This glaring discrepancy
is accounted for by the fact that rock conductivities have little to do with mineral composition but
rather are related to permeability /porosity of rock to fluids and the conductivity of the interstitial fluid.
Much work has been done and many models have been developed to determine such properties from
measured conductivities but it is beyond the scope of this course. There are, however, general trends of
conductivities with rock type and these are presented graphically in Fig.3.5. Not shown in Fig.3.5 are the
metallic minerals. These include free metals (o ~ 1018 —10%7S/m) and sulfide ores (¢ ~ 10+2~10+4S/m).
Structural conductors, i.e., those with faults or fracture zones that capture large quantities of water are
also excluded.

3.4 Theory
3.4.1 General

The basic idea of resistive measurements is to employ an array of electrodes connected to the body of
interest in a (hopefully) appropriate geometry (Fig.3.6). The quantity of interest is Z = V/I which is
called the “transfer impedance”. For d.c. or near d.c. frequencies, the quantity becomes Z = R, the
“transfer resistance”. We will see that for most geometries that can be simply analysed,

R="Fp, (126)

where p, is the “apparent resistivity” of the body and F is a geometry-dependant quantity which has
units of inverse length. We wish to interpret the apparent resistivity in terms of the structure of the body
being measured. This is seldom straightforward.

We will assume in the following discussions that the medium is isotropic and thus conductivity is a
scalar quantity. Then Ohm's law is given by Equation 121. Furthermore, we assume that the electric
field is conservative, which is equivalent to assuming that we are in the very low frequency regime. Thus

—

VxE=0 (127)

BE=-vy (128)
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where ¥ is the scalar electric potential Except at current injection sites, the time rate of change of charge
is zero and hence the equation of continuity becomes

v-J=0 (129)
Substituting Equation 128 in 129 yields
V-(eVy$) =0 (130)
which may be written
1
Vi + 2 (VH) (Vo) =0 (131)

The basic Equation 130 or 131 together with the appropriate boundary conditions uniquely specify
the problem and guarantee a unique solution. Assume two regions, 1 and 2, and an interface surface
between them whose unit normal at a point is #. If the displacement variable along the normal direction
is denoted n, then the boundary conditions are

Y1 = v¥2 Dirichlet b.c. (132)

o1Vy¥1 = 03VyY2 Neumann b.c. (133)

Note however, [5] (pp.40-45), that a solution to the Poisson Equation 130 with ¥ and 8v/8n specified
arbitrarily on a closed boundary (the so-called Cauchy boundary conditions) does not exist! This is
because only a single boundary condition (Neumann or Dirichlet) is necessary at each point of the
bounding surface to define a unique solution to the Poisson equation. We shall use this as a method of
solving the inverse problem later.

As with magnetostatics, a wide variety of models have been developed, although almost paradoxically
there are only a handful of general geometries which yield closed form solutions. We shall solve a simple
model as an example of the methods to use. Although the example is not a compact object geometry, it
does illustrate typical solution methods. The object of the problem, once again, is to deduce underlying
anomaly properties by resistance measurements on the surface of the body. The first step is to have the
mathematical model and the second is to solve the inverse problem.

A case of importance in geophysics is one in which o is a function only of z. Cylindrical coordinates
(r, ¢, 2) are then a good choice due to azimuthal symmetry and 131 becomes

Oy 10y 8%  18y80 _

I S P R (134)
This equation is solved by the standard method of separation of variables.
Y (r,2) = R(r)Z(2) (135)
where R
‘f;TIf + 1‘;1{ +A%R (136)
and d*Z 1dodZ
7% Ml -2z (137)

with A being, so far, an arbitrary separation constant. A general solution of Equation 134 can then be
written

¥(r,z)= /0 " FMR(, ) Z(, 2)dA (138)

where A is obviously positive definite and F () is chosen to fit the boundary conditions.
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3.4.2 Example of Electrostatic Modelling

Consider now a two layer earth model in which the current is injected into the top layer at the origin
of the coordinate system. The conductivity is constant in each layer (Fig.3.7). First let’s examine the
field in the vicinity of the current electrode. Assume the electrode to be a small hemisphere of radius b
(Fig.3.8).3% The radial current density is given by3®

I

J, = ——— 139
2z R? (139)
where a total current I is injected at the electrode and
R =242 (140)
The corresponding radial electric field is
E, =pJ, (141)
where
o =0yt (142)
near the electrode. Thus the primary potential (due to the current electrode) is
I
P [}
= 143
Vo= og (143)
From Bessel function theory (i.e. [10]),
1 Qo
= / Jo(Ar)e~**dX for z>0 (144)
(i

Jo is the Bessel function of the first type of order 0. Now, solutions of Equation 136 are either Jo (A7) or
Yo (Ar), the latter being the Bessel function of the second type. But ¥p (A7) is singular at » = 0 and must
be excluded. Solutions of Equation 137 for constant o are of the form exp {+Az). Thus, the resultant
potential in the upper layer is

¥ =9" + 97
=¢F + /o ” [A(A)e—’“ + B(,\)e“'] Jo(Ar)dA (145)
for 0 < z < h. Equations 144 and 145 can be combined to yield
¥y = I”‘ / {[1 4+ A(N)] e~** + B(A)et** } Jo(Ar)dA (146)
In the lower layer, since z — oo, the potential has the form
¥y = I”‘ / C(A)e™*Jo(Ar)d (147)

To find the dimensionless constants A, B, C, we must apply boundary conditions. These are

8y7 _ _
Pz 0 at 2=0
Y1 =192 at z="h
84, _ Oy _
T15—~ = T1p at z=h (148)

351t is assumed implicitly that the second electrode is at infinity.
3¢Boundary conditions are imposed implicitly in this equation since the 2x factor ensures that all current must flow into
the z > 0 region.
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Applying these to Equations 146 and 147, we obtain
A-B=20

(1 + A)e™* 4 Bet? = Ce~2h

o1 [(1+ A)e™** — Be™**] = g,Ce™ A (149)
These yield
A=B ="K/ (1 Ke ) (150)
where
K =(p2—m)/(p2+p1) (151)

Thus, the solution for the potential in the upper layer is Equation 146, with A, B given by Equations 150,
151. Most often, measurements of potential are made on the earth’s surface (z = 0). Then

_ Ip
Y(r,0) = 27r1'G (r, K) (152)
where
o0 e—-ZAh
G(T,K) =14 2K1"/0 r__—-m‘mjo (AT) dX (153)

The limiting cases are:
G(r,K)—>1 as h/r— oo

G(rK)—=2 as hfr—0 (154)
/M
As an interesting (?) aside, by expanding the denominator of Equation 153 in a power series in
K exp (—2Ah), it is easy to show that

G(r,K)=1+2KrY_ K"I, (155)

n=0

where
1

(r,+{[n+ 1] 2h}’) 1/2

The secondary potential is thus seen as being due to an infinite series of image sources at positions
(0,0, [n + 1]2h) and strength 21 K™+!,

I, = / e Mnt1) g0 (Ar)dA = (156)
[1]

3.4.3 Four Electrode Array

The one electrode configuration is not very practical and so we consider a more general geometry (Fig.3.9).
Two current electrodes, a source of +I amperes and a sink of —I amperes are located on the z = 0 plane.
The voltage difference between points Py and Py, also on the z = 0 plane, is measured. Without loss of
generality, we can place the source electrode at the origin and the sink on the @ axis. By superposition,
the potential ¥, at P, is

Ip |G (r11, K G (ra, K
Y(Enm) = 2% [ ("u, ; B (1'21, )] (157T)
where
h =21+
3, = (21— 20)* + o (158)
The potential at P; is similarly
Ip1 G(flz,K) G("'ZZ:-K)
= 2 — 159
¢ (221 yZ) or [ iz T2z ( )

27




where
rh=el+3
732 = (22— 20)" + 43 (160)
The voltage between the electrodes, V = ¥y — %3, is

v=1n [G(ru,K) _GlawK) G(naK) G(rK)
2w 11 21 T12 T2z

(161)

Now for homogeneous ground (pz = p1 or b — o), G =1 at all positions. We define the “apparent
resistivity”, p,, as that resistivity which, for a homogeneous earth, would yield the same voltage difference
as for the inhomogeneous model. Clearly,

G!ru,K[ _ G[r;,,K[ _ G(fj:,K) + G(‘F):,K)
P_¢ — 711 721 T12 732 (162)

o1 1 _ 1 _ 1 1

For the Wenner array (Fig. 3.2), 711 = r22 = @, and 73 = r3; = 2a, and

Pa — 2G(a, K) - G (24, K) (163)
P

This function is shown in Fig.3.10. We see that p, > py for pa > p, and p, < p; for p; < p;. Also, as
the upper layer thickness becomes much greater than the electrode spacing, p, — p1, as is expected.

3.5 The Inverse Problem

Curves of the type just shown are routinely used to provide a rough interpretation of resistivity data
in electrical depth sounding applications, provided that the underlying structures are simple. Vertical
models are available for the 3-layer case, 2-layers with horizontal/vertical anisotropy and p x exp (—az).
Horizontal models are available for the vertical dyke and vertical wedge. Other models are available for
the homogeneous spherical inclusion, several cylindrical geometry models, and spheroidal inclusions.

In geophysics, the inverse problem is usually solved merely by choosing the most appropriate geometric
model and attempting to interpret the effective resistivity based on curves such as Fig.3.10. If the model
is wrong, this fails badly and often there is no indication that it failed. Often, there is no appropriate
model, although one may require insight from other remote sensing measurements to ascertain that the
model is unsuitable.

Because of the limited choice of models, considerable work has gone into solving the inverse problem
by numerical methods which can handle general geometries. Many of these are “impedance tomography”
techniques, which assume that the current in the body of interest follows ray-like paths. This allows
powerful, well-established techniques, such as back-projection, Radon transform, etc., which are used in
conventional X-ray, gamma, PET or NMR tomography to be applied to the problem.3”7 There are a
number of problems with methods requiring the assumption of ray-like current paths. First, the meth-
ods require the measurement of voltages at active current electrodes. This necessarily introduces the
effects of contact and spreading resistance which degrades the measurements. This is & major concern,
since measurements have to be accurate to produce fine detail in the tomographic image. Second, the
experimental techniques necessary to constrain the problem to the ray-like path assumption are compli-
cated, usually involving complex guarded electrodes. Third, current paths are highly dependent on the
object of interest, in particular its conductivity distribution, even when guard electrodes are used, and
often the ray assumption is not justified. Since it is the conductivity distribution we seek, one cannot
know a priori whether the ray assumption is appropriate. A more in-depth discussion of the problems
associated with conventional tomographic techniques is found in [52]. In spite of all this, a number of
researchers have had some success obtaining impedance tomography images. Henderson and Webster [47]
have obtained isoadmittance contours of the chest using an array of guarded electrodes.?® Other medical

3TOne does not necessarily have to assume straight-line paths for some of the more sophisticated tomography algorithms.
For example, some rescarchers have assumed curved current flux tubes.
32 The guarding was intended to force a long narrow measurement volume centered on each electrode.
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applications and methods are discussed in [51], geophysical applications may be found in [48] and ground
water pollution monitoring is discussed in [56].

An alternative approach is to inject current at one or more sites, measure the surface potential distri-
bution and numerically solve the field equations. The inverse problem associated with a single excitation3®
does not generally have a unique solution. By this, we mean that different internal conductivity distribu-
tions can give rise to the same surface potential.*® If a number of excitations are used and the potential
distribution measured for each excitation, the indeterminancy can be reduced. Each excitation is akin to
a different view in conventional tomography and hence it might seem intuitive that if a sufficient number
of independent excitations are used, the conductivity distribution might be estimated with reasonable
certainty. Since knowledge of the conductivity distribution is effectively an image of the conductivity, we
will call the method “conductivity imaging”.** The development closely follows that given by Wexler et
al. ([54], [55]).

The geometry is shown in Fig.3.11. An array of electrodes is placed on the surface of the body to
be measured. Current J;, is injected at one electrode and extracted at another. Potential measurements
{¢é1,02,...¢n} are made ai the other electrodes. These are referenced to the potential, drgr, at an
arbitrary but fixed electrode. The latter process constitutes one excitation. Note that potential measure-
ments are not made at current sites. The electrode array shown is merely illustrative. The actual one used
may not be square and may consist of more or less electrodes, depending upon the actual experiment.

The resulting surface voltage distribution is measured for several sets of excitations and stored for later
processing. The measurements may be taken using an automated digitally controlled data acquisition
system. The general method we will employ is to guess at the conductivity distribution and use it to
calculate a potential distribution throughout the volume and in particular at the surface.?2 The guess is
unlikely to agree with the true subsurface conductivity distribution and so the calculated and measured
surface voltages will disagree. An algorithm which will iteratively refine the conductivity is needed.
This will then be repeatedly applied until the measured and calculated surface voltages are in what is
considered to be acceptable agreement.

The equations governing the problem may be easily derived. If we assume that the local conductivity
is denoted « and the frequency is low enough so that the electric field E may be expressed in terms of a
scalar electric potential ¢,

E=-Vy (164)
Then by the equation of continuity
- 8p
V===
J=-37=-f (165)

where J is the current density and f is the impressed current source distribution within the volume of
interest. These two equations with Ohm’s Law yields the Poisson equation for continuous inhomogeneous
media*®

V-kVy=-—f (166)

For ease of computation, the region of interest (Fig.3.11) is assumed to be bounded by the measurement
surface and five orthogonal plane faces. If the measurement surface were a horizontal plane, these six faces
would form a cube. The volume of interest is divided into a finite element grid. In the simplest scheme,
potentials are computed for each excitation at the node points (mesh intersections) and the conductivity
is then estimated within the intervening regions. The conductivity distribution in the region of interest
is initially assumed to be uniform and the iterative procedure to improve the conductivity estimates is
then applied. The procedure is outlined below:

39 The injection of & fixed current at a specific site and withdrawal from another specific site constitutes an excitation.

40This was seen in the 2-layer ecarth model (see Fig.3.10). Also, consider the simple example of an array of electrodes
on the carth s surface, all at the same potential. This implies that a conductor is immediately beneath the measurement
surface but does not say whether the conductor is a thin sheet or extends to large depihs.

41 This can lead to some confusion since the method is also referred to in the literature as impedance tomography. In this
section “impedance tomography” will be reserved for those techniques assuming ray-like currents.

42 A numerical method such as the finite element method is employed.

#3Equation 166 is strictly true only for sero freguency. For slightly higher frequencies, it is valid if the conductivity is
treated as a complex quantity (see next section). For still higher frequencies, the Helmholts equation must be used.
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1. Calculation of potential and current density with Neumann
boundary conditions - Given the generally inhomogeneous conductivity distribution from the
previous iteration, the potential distribution ¢ is computed by solving the Poisson Equation 166.
The potential distribution is in turn used to calculate the current density distribution J (A/m?).
This latter quantity is what we actually seek.

In solving for the potential, the inhomogeneous Neumann boundary conditions are used, namely
9

8 —

(e) (2

where s denotes a point on the surface bounding the volume of interest, subscript “1” denotes a
quantity derived from the first step of the iteration, n is the displacement in the direction normal to
the surface and h(s) (A/m?) is the current density entering or leaving the medium over the element
of bounding surface at that point. The quantities h(s) are derived from the measured currents
at the electrodes.** Where no current is impressed, h(s) = 0. This is true for all points on the
bounding surface other than the current input and output electrodes. The justification for this on
the measurement surface is that the conductivity of air is approximately 0. For the other faces, it
is implicitly assumed that the bounded volume is sufficiently large that negligable current crosses
those faces.

= h(s) (167)

The boundary conditions, assumed conductivity distribution and Poisson equation are then used
to calculate the potential distribution throughout the volume, using one point on the measurement
surface as a reference. This is normally done by a finite element method which computes the field
by dividing the region into numerically manageable intervals called “finite elements”. The method
calculates the potential at the node points, using one of a number of field calculation methods
(i.e., [63]). In simple versions, the nodes are vertices of the cube elements, but more sophisticated
versions allow for nodes to be at other points. After the potentials are found at the node points,
located at mesh intersections, the potentials at other points may be obtained by interpolation.

Next we find the electric field throughout the volume from Equation 164 and then the current
density distribution from

Jl = ICEl (168)
Step 1 is repeated for all other excitations and the resulting fields are stored. 5

2. Calculation of potential with Dirichlet boundary conditions - Next the interior potentials
are calculated again by an independent method, namely by the use of the Dirichlet boundary
conditions,

Ya(e) = g(s) (169)
on the measurement surface. (Here the subscript “2” denotes quantities derived from the second
step of the iteration, and g(s) are the potentials measured at the bounding surface, namely the
measured ¢; at the potential electrodes.) In addition, the boundary conditions must include the
Neumann condition at the current electrodes since measured potentials are not available at these
sites.4® Boundary condition at the reference electrode is, of course, g(s) = 0 and the Neumann
condition h(s) = 0 is necessary on the other five faces. The quantity we wish to derive from this
step is ;.

3. Calculation of conductivity - As wasstated in Section 3.4.1, the Poisson equation yields a unique
solution ¢ for specified x, when a single boundary condition (Neumann or Dirichlet) is specified at
each boundary point. In fact, the solution 4 can be used to derive the other boundary condition at

#4The integral of h(s) over the clectrode surface yields the total current I. Electrodes can be modelled as hemispheres or
points, the latter often being convenient.

48 The current distribution will initially be approximate because the conductivity and hence the potentials arc. However,
reasonable current flow-line patterns are obtained even for very approximate x. This is because the current is constrained
to enter the measurement surface through one electrode, then spreads widely through the volume and must converge toward
the other current electrode.

48 Voltages mensured at the current injection electrodes are prone to error due to contact-potential problems (see Section
3.1).
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each point. What this means then, is that if the actual conductivity distribution « is known, Ohm’s
Law states that j; = &kV1;. But the boundary conditions are based on measurements, subject to
error, and « is an estimate and thus the two different sets of boundary conditions will not yield the
same internal fields.

We can, however, adjust & to ensure that the two sets of boundary conditions are as compatible
as possible in some sense, by minimizing a quantity related to some average over all points and

excitations of |J‘; + K.V1/13‘. If we seek to optimize the solution in a least squares sense, we should

minimise R= }: / //;} (f1 + K-V1/)z) . (j; + NV'ﬁz) dv (170)

where R is the squared residual sum, V is the region of interest and X denotes the excitations used.
Because we have employed a finite element scheme, the integral over V is really a sum of integrals
over the element volumes Vj, i.e.,

R= XB:XJ:///V, (j; +E,~Vl/)z) : (J—;-i-n,-bez) dv
=¥;///V (7 Fi+ 20500 Voo + 63V Vs ) do (171)

where k; is the conductivity distribution within element j.

The size of the elements may be chosen so that «; is constant within each element and then we
minimize the residual by demanding

g_:;zz:///“ (271 Vb + 2993 - Vo3 ) du = 0 (172)

where J; and 13 are fixed at the previously estimated values. We can rearrange the last equation
to give an estimate of the optimum conductivity distribution for the iteration,

S Ly i Vedy
Se T T 1, V1 Vesdo

This last equation is then applied over all elements in the volume to obtain the revised estimate of
the conductivity distribution.4?

Ki{ =

(173)

4. Recursive improvement - Steps 1, 2 and 3 constitute an iteration. The next iteration begins
again by solving the Neumann boundary value problem for all excitations using the new conduc-
tivity distribution estimate. The computed potentials at the boundary are compared with the
measured ones. If the differences exceed some a priori thresholds or if insufficient iterations have
been performed*®, the iteration continues with the solution of the Dirichlet boundary value prob-
lem. Otherwise the resulting image (2D or 3D depending on the problem) of the conductivity
distribution is processed by one of a number of standard techniques and is output.

As a simple but somewhat contrived, example of the three dimensional case, a cube with four layers
of finite elements is shown in Fig.3.12 ([54]). Layers two and three contain a square object whose
conductivity is five times the host medium. Simulated “measurements” have been made at the
top surface only. Clearly the estimation improves with iteration count. Imitially a conductivity
artifact appears at the surface but it later disappears. Note that a large number of iterations are
needed and even then the image is quite crude. Objects of a more general shape also tend to be
crudely imaged. Furthermore, computer time is excessive, being of the order of an hour on a large
mainframe computer. Work is underway to solve both the accuracy and speed problems.

47Note that no matrix operations are ne:essary.
48 The minimum necessary number of iterations is a heuristic parameter which is derived after considerable user experience
on a particular problem.
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3.6 Induced Polarization (IP)

Assume now that rather than d.c., we are operating at a very low frequency, w. Again, as for electrostatics,
we assume that magnetic effects can be neglected. Frequently we find that o is a function of w and is a
complex quantity, i.e. the current is out of phase with the voltage. Thus,*®

o' (iw) = o (iw) + iwe (iw) (174)

with o, € real and . .
J (iw) = o' (iw) E (iw) (175)

Components of J and E are phasors and thus, for example, the real physical quantity e, (t) (subscript z
denotes the z component) is related to the complex phasor by

ea(t) = R {E. (iw)e'“t} = |E,|cos (wt + ¢5,) (176)
and
IJzI = |°'| IEsl
b1, = ¢o + $E, (177)

where ¢7_ is the phase of J:, ¢ is the phase of & and ¢g_ is the phase of E,.

Problems in IP are usnally solved by assuming a model for p = (0")_1 and then solving a particular
boundary value problem as for d.c. conductivity methods.5°

A simple model for p is the N-pole model

N
p(8) = E A C!u1+ . (178)

with an, A, real and s being the Laplace variable. Another model commonly found in the literature is

N
1
LOEDY et P (179)

n=0

with G,, C, pxo 8ll real. This allows |p| to be nonzero as 8 — co. The Cole-Cole model is also very
popular:

pla) = po {1~ mo (1= [1+ (wr)*] ) } (180)

where pg, my, T are real constants and K is an empirically adjusted noninteger.

All these are phenomenological models which in some manner describe the electrical properties of the
material being probed. The cause of IP is not known in detail.

Intuitively, however, if the impedance is complex and decreases with frequency, it must be related
to capacitive effects in the medium (recall that displacement current, although small, has not been
neglected). These capacitive effects are due to electrochemical and other electromagnetic properties of
the medium. To illustrate this we use a simple model:

Assume a single sphere, resistivity p;, radius @, in a uniform medium of resistivity p and assume there
exists a (complex) interface impedance 7, (ochm-m?). Primary field Ey is uniform and along the polar
axis of a spherical coordinate system (r, 8, ¢) centered on the sphere (Fig.3.13). It is assumed that w is
small and Laplace’s equation holds. The analysis is routine. Suitable potentials are:

Y1 = Aorcos® for 0<r<e {181)

Y = —~Egrcos + Ar~?cos§ for r>a (182)

49 This is really the same as lumping the small effect of displacement current into an “cffective conductivity”.
50 This is possible since the frequency is assumed sufficiently low so that the Poisson/Laplace equations apply.
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where Ag, A are constants. Boundary conditions at r = a are:

18y 1 8y,
pBr = i Br (183)
=9~ '—'[—)’5‘-%‘{’— (184)

Equation 183 derives from J, being continuous while 184 is due to the voltage drop across » = a being
NmJ>. Solving Equations 181 to 184 yields

¥ = —Eorcos8 + adxEor~2cosd (185)
where
_1-$ 186
X= 17755 (186)
and
§=FL 4 T (187)
P pa

Now assume N such particles (polar axes aligned) in a spherical region of radius ro (Fig.3.14) and if
interactions between particles are ignored then at point P we have

N Eya?y
Y = —FEgrcosf + ; 7 cos b;
Typically, 7o € r, 7; = r and 6; = 6. Then
¥~ —Eorcos@ + Na®xEor—2cosd (188)

But if we assume the spherical region is a continuum with effective resistivity p,, then

¥~ —Eorcosf + ﬁg—p°—17,‘ cosé (189)
¢ 2 p+2p, ¢
Equating 188 and 189 yields the important result:3!
P 1-vx
L 9
Pe 1+ 2vx (190)

where v = Na3/rd is the volume fraction of particles.
If we assume p;/p € 1 and v < 1 (i.e., many small highly conducting particles in an electrolyte) and
if
1

2 (iwT)" (o)
then we obtain the Cole-Cole equation 180.

Equation 191 implies that the interface impedance is capacitive in nature. The Cole-Cole model has
been widely used since it fits a large body of accumulated data quite well.

Finally, it should be noted that IP measurements are commonly made in the time domain. In such
cases it is assumed that the time dependent impressed current, j.(t), is known (we restrict ourselves to
the z direction) and we wish to predict e.(t) given a resistivity model. As an example, if we assume a
model for p(s) as in Equation 17852 and if we assume a step function impressed current,

je(t) = Jou(t) (192)

then
Ja(8) = Jo/s (193)

51 This is analogous to the Clausius-Mosotti equation in dielectric theory.
52We use capital letters to denote Laplace variables.
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N
calt) = L L) = Jo 30 L™ |t (194)

n=0
which becomes

N
— A" —ant
ex(t) = Jonz:%an [1—e 2] u(t) (195)
Letting €gs = €5(00), we can plot Az (t) = ea(t)/eve (normalized step frequency response) versus ¢. This
is shown in Fig.3.15.

In practice, it is often convenient to use a continuous on-off current waveform such as Fig.3.16. The
analysis is similar to above. The waveform is a sum of shified step functions and one usually analyzes
the “steady-state transient response”. The output then looks like that of Fig.3.17.

Time domain induced polarization has an advantage over the frequency domain in that many fre-
quencies are excited by one measurement, in principle providing more information. Unfortunately, the
analysis is much more complicated for the time domain.

4 Electromagnetic Induction

4.1 Introduction

The method of electromagnetic induction is widely used for detecting conductive objects in geophysics,
nondestructive testing, detection of mines and artillery shells, archeological exploration and treasure
hunting. A conductive object is exposed to a time-varying magnetic field (usually in the Hz to KHz
range) produced by a current-carrying primary coil. The resulting eddy currents induced in the object
produce a secondary time-varying magnetic field which is detected by another (or occasionally the same)
coil.

The receive coil can, of course, detect variations in the geomagnetic field and it is important that
the signal due to the geomagnetic field be substantially less than that due to the object of interest. The
geomagnetic spectrum is shown in Fig.4.1. Calculation of the geomagnetic “noise” is dependent upon the
receiver design, but we can obtain a rough estimate. If we assume a receive coil of radius r, a geomagnetic
flux density at w Hz of B, then the induced emf |[V*| at frequency w is given by

V2| = [t B (196)
where the bar denotes an average value and
S. = BL/B} (197)
Assuming r = 0.2m, B} = 1 x 107°T,53 w = 27 x 10®Hz, S? = 1/30 (from Fig.4.1), we obtain
|Vi%oo] = 2.6 x 1078 Volts at 1 KHz

Sensitive instrumentation can and routinely does measure such small voltages in the course of fundamental
studies of the geomagnetic field. Note that noise voltage is proportional to the receiver coil cross sectional
area. Geometries associated with mines and artillery shells typically use coils with radii of less than 1
meter and detected signals are of the order of 1 x 10~3Volts or greater so geomagnetic noise does not
pose a problem. In nondestructive testing the signal of interest is generally much larger still, owing to
the small coils (radii are in the mm to cm range) and close-coupled geometry of coils and object, and
geomagnetic noise is even less of & problem. In geoexploration, on the other hand, received signals are
usually very weak which necessitates large receive coils. Geomagnetic noise must then be contended with
and occasionally can even prohibit exploration. In any case, coherent averaging can increase the S/N by
substantial amounts since the geomagnetic signal is essentially stochastic.

The origin of the geomagnetic spectrum is beyond the scope of this course and the student is referred
to [60] for further details. We only note that the effect of geomagnetic noise generally tends to decrease
with increasing frequency. This is because |V?| is proportional to w and the spectral density decreases
faster than w~—! with the exception of the gyromagnetic resonance region.

B3To be strictly correct, the measurement band must be specified in order to determine the noise at a particular frequency.
However, this value is roughly correct for typical magnetometer bandwidths.
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4.2 Principles of Detection
4.2.1 General Principles

There are basically only two types of electromagnetic induction detectors - continuous wave (CW) and
transient detectors.

Continuous wave detectors generally employ a single frequency sinusoidal transmitter waveform. They
may then be further subdivided into frequency shift detectors and mutual inductance detectors. Frequency
shift detectors usually employ a resonant oscillator circuit with a coil acting as the inductive element.
In isolation, the oscillator operates at a fixed frequency determined in part by the inductor. If the coil
is now brought near a conducting or magnetic body, the effective inductance changes and hence the
frequency changes. A variety of techniques are employed to detect the frequency shift. One of the most
straightforward is to mix a local oscillator signal at the fundamental frequency with the shified frequency
and then measure the beat frequency with a counter.

Mutual inductance detectors rely instead on two or more coils in close proximity. The coils are oriented
such that ideally the mutual inductance between them is zero. One coil (the transmitter or primary) is
excited by a single frequency sinusoidal signal. In the absence of an object, the signal coupled into the
other coil(s) (receiver or secondary) is zero.With a conductive or magnetic obje:t present, the mutual
coupling between the coils changes and a signal is induced in the receiver coil(s).’*

Transient detectors also use a transmitter coil and one or more receive coils. Cuirent in the transmitter
coil is switched off and on rapidly. Transient currents are induced in the receive coi (s) even in the absence
of a target object. To eliminate this mutual coupling signal, some systems use two coaxial receive coils
which are equidistant from the transmitter coil. The coils are wound in opposition and fed to a difference
amplifier which accordingly produces a null output. A target placed near one re:eive coil will induce a
bigger signal in that coil than the other and hence a signal will appear at the amplifier output. The
problem with this method is that the signal induced by the primary coil in the secondary coils is up to
10° times that induced by the object. Thus extremely accurate coil matching and alignment (balancing)
is necessary if the object is to be detected.

An alternative transient approach is to use a pulsed transmit current and to only measure the volt-
age in the receive coil during the quiescent period between pulses. Provided the transients due to pri-
mary/secondary mutual coupling decay faster than those due to the target, the method will work without
the need for critical coil balancing. This method is often referred to as “pulse induction”. The chief draw-
back of pulse induction over the balanced 3 coil arrangement is that pulse induction must have a duty
cycle less than 100 % whereas this is not a constraint for the latter method. The lack of a need for critical
coil balancing for pulse induction more than makes up for this disadvantage.

As one might expect, the continuous wave and transient methods are connected via the Laplace
Transform. We shall discuss this point later. Continuous wave detectors generally require less power for
a given sensitivity than do transient detectors. On the other hand, CW detectors yield less information
about the object since they operate at a single frequency, rather than exciting with a broad spectrum as
do transient detectors. Furthermore, mutual inductance-type detectors require very critical coil alignment
too, which may detract from the robustness.

Many detectors, as mentioned previously, use a transmit coil and one or more receive coils. The choice
of geometries is almost limitless, although they fall into a few general categories. The basic idea is to
have a mutual inductance that is zero in the absence of a target and that is measurable with the object
present. This is not always very simple to do. To understand better how to achieve this goal, we must
first digress to discuss the field of a coil and mutual inductance in more detail.

4.2.2 Field of a Coil

Assume a loop carrying current I situated in the 2 — y plane (Fig.4.3). We wish to calculate the vector
potential at a point P, which because of axial symmetry may be chosen without loss of generality at

®4Other variants use a circuit which very near oscillation. The small change in mutual inductance induces oscillation.
This has the advantage of low power consumption.
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¢ = 0.5% The vector potential is given by:5¢

A = — 198
@=L o] (198)
The current density has only a ¢ component and is given by
T =—Jgsing's + Jycosd'§ = Jpd (199)
57with 5o
Jy = I'sin®6 (cos §') -f—;'-"—‘-‘l (200)

Since we are observing at ¢ = 0, the =z component of the current density will yield no contribution on
integration. Also, since J has only a ¢ component, so does A ie, A= A¢¢ Thus

TRy ’ ' ’_
Ay (r,0) = ul /r”dr'dﬂ'sme cos ¢ 6(cosj) )6 (' — a) (201)
4ma |£ - z:l
Now 1/ ‘:’n’— z'| can be expanded as a sum of spherical harmonics, ¥, (6, ¢).
1 = 1
—_ / 4
‘j“_—_.'—‘iﬂ'z Z 21_*_11_ Ylm(a ¢') Yim (0, ¢) (202)
r—z =0 m=-1

where 7. (75 ) is the smaller (larger) of a and r. Substitution of Equation 202 into 201 and application
of the properties of spherical harmonics yields

N (=1)" (2n - 1)1t ¥
Ay (r,8) = Iaz (T §n+2Pz]‘n+1(COSO) (203)

58where P/™ (cos §) is the associated Legendre function and
(2n—1)=(2n—1)-(2n~3)---5-3-1

Using B = V x A (see Section 4.3) we find that

B, #I"Z( 1)" (2n + 1)1t 2

2l 2n+2 Py, 11 (cos ) (204)
: >

n=0

where P, (cosf) is a Legendre Polynomial and

I —“1)"@n+ 1)1 (2n+2) 1 (r\2"
s Z( zl(flff)!) (Znil)_(;) Pt (c0s9) (z0e)
= S L () Ao on

where the first equation for By is for » < a and the second is for r > a. There are two important cases.
For » > a only the n = 0 term is significant.

pla? cosd

2 3
88 Again, primed coordinates are source coordinates, unprimed are field coordinates.
86 This will be derived in Section 4.3.

57Why have we bothered to resolve J into z and y components?
58 Can you derive the steps from Equation 202 to 2037

B, =
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pla? sind
4 o3
These are just the field components of a dipole. Thus, sufficiently far from a loop of wire, the field is
dipolar in nature.
For r € a,

By = (207)

B= :iz (208)

In other words, close to the coil we have a uniform field in the direction of the coil axis.

4.2.3 Mutual Inductance of Two Coils

We are now in a position to discuss the mutual inductance of two coils. We assume the transmitter and
receiver are two simple loops of negligable cross-section and are situated in free space. If a sinusoidal
current flowing through loop 1 {the transmitter) is denoted I, then the induced emf in loop 2, V3, is

Va = —iwMy2 Iy (209)

where w is the angular frequency of excitation and M3 is the “coefficient of mutu.ul induction” or simply
the “mutual inductance”. By the reciprocity theorem, we can interchange transmitter and receiver and
hence

M12 = Mz]_ (210)
Referring to Fig. 4.4, the magnetic potential at point 23 of the receiver loop is given by Equation 198
in the form
A(#) “°I f (211)
|22 — =1|

where subscript “1” refers to quantities measured at the transmitter and subscript “2” refers to quantities
measured at the receiver. The magnetic flux intercepted by the receiver is

Qz = /E(i’z) d;z
2

= f [v x A(&)] - dsy (212)
2
But
Vz = —iw®, (213)
which implies that
Ml! = @3/11 (214)

Ho - dl
Mig="= [ ds3-{V — 215
12 41‘/; 83 ( zxﬁli‘z—ﬁl) ( )

This general equation can be very difficult to solve for arbitrary geometries. For the special case when
the interloop distance greatly exceeds the coil diameters, the field of the transmitter at the receiver is
that of a dipole. The general expression for the vector potential of a dipole is®®

Thus we have,

1
&—2

For a transmitter loop of radius a;, with unit vector 7i; normal to the plane of the loop and current I
flowing, we get

1
|22 — 1]

A(#) = ;‘—: [fiwalniy) x ¥, (217)

59 Dipole moment is i, source coordinates are primed, field coordinates are unprimed.
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Using Equations 212 and 214 and realizing that 4 (#3) is approximately constant over the area of the
receiver loop, we find®®

HOT 5 o . " 1
My = — - Vi x Vyeor—— 218
12 ) ayaxn2 2 (nl X 1 Iz_.z — z_ll) ( )

Three special cases arise. For all three, the distance between loop centers is ! and 1 3> a4, a3.
1. Coaxial loops (Fig.4.5a): We have 1) 712 = 1 and

ala?
Mu = Moﬂ'-%:—’-z- (219)

2. Coplanar loops (Fig.4.5b): We have 7; - 73 = 1 and

2 2
_ aia;
Mz = —HoT 5 (220)
3. Axes of two loops intersect at right angles (Fig.4.5¢): We have 7, - i3 = 0 and
Mi;=0 (221)

Even when the loop separation is not many times the coil diameters, these general trends hold. The
mutnal inductance of the coaxial geometry is greater in magnitude and opposite in sign to that of the
coplanar geometry and the mutual inductance of the orthogonal axes geometry is substantially smaller
in magnitude than the other two. For this reason, cases 1 and 2 are often called “maximum coupled”
while case 3 is called “minimum coupled”.

According to Equation 209, any change in the voltage induced in the receiver coil due to the presence
of an anomaly, could be interpreted as a change in the mutual inductance of the transmitter/receiver
system, l.e.,

AVa  AM,

V2 M,

This ratio is called the “electromagnetic anomaly” (measured in ppm) and it should be remarked that
the quantity A M, is generally complex since V; in the presence of the anomaly is generally out of phase
with V5 in the absence of any anomaly.

Such small changes in mutual inductance would stand out best for a system with a small mutual
inductance to begin with. This suggests a minimum coupled system. This is, of course, only true in air.
If one wishes to detect an anomaly (object) buried in a conducting medium, it is necessary to determine
the mutual inductance due to the presence of the medium. This involves detailed electromagnetic analysis,
as we shall see in the next section, and is very dependent on geometry. As an example, if the medium
is assumed to be an infinite flat sheet, the mutnal inductance can be determined for a variety of coil
configurations. These are shown in Figs.4.6a to 4.6e.

Clearly for a viable system, we want a geometry that maximizes the change in inductance for the
object of interest while minimizing that due to the host medium. Thus for example, the configuration
of Fig.4.6a might be preferred to detect a small object buried just under the surface, whereas that of
Fig.4.6e would be preferred to detect the conductive sheet itself. The choice of optimum geometry is
often very difficult to make and in many cases, it is unclear which of several geometries is optimum, if
indeed any are.

(222)

4.2.4 Detection Techniques

We have been considering up to now only inductively coupled systems. However, limited applicability has
been found for conductive input-inductive output and inductive input-conductive output systems which
are essentially a hybrid of electromagnetic induction and resistivity methods. These methods are rather
obscure and we will say no more about them.

804{2, az are the unit normal and radius of the receiver loop.
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Techniques of interest in most applications involve measuring both the amplitude and phase of the
receiver signal relative to the transmitter (for single frequencies). As we shall see, the receiver signal
generally is not in phase with the transmitter signal and thus the maximum amount of information
is derived from such a measurement. Transient measurements also derive maximum information since
effectively they measure phase and amplitude over a wide range of frequencies.

In geophysical applications, there are two additional, lesser-used techniques. Dip-angle or tilt-angle
techniques measure the orientation of the total (primary plus secondary) field by finding the orientation of
the receiver coil at which the receive signal is a minimum.%! Alsc, one can make intensity measurements
without phase measurements. This is sometimes done by using a very large loop of wire or a very long
straight wire ohmically coupled to the ground at both ends (length ~ kilometers) as a transmitter. A
receiver coil can then survey a large area, travelling up to 1/4 to 1/2 the length of the wire from the source
without need of an attached transmitter. Analysis for this method is difficult compared to a dipole source
due to the presence of conduction currents in the ground. For further descriptions of such techniques,
the reader is referred to [4].

Finally, we must say a word about magnetotelluric methods. In the previously described techniques,
the source fields have been provided by artificial means. It is possible to use the geoelectromagnetic
spectrum as a source, however, since we have seen that it is measurable at low frequencies. The method
involves measuring the geoelectric field in one horizontal direction, (), and the geomagnetic field in a

horizontal direction perpendicular to the first (y) at the air-ground interface. For a uniform earth and
plane wave incidence it can be shown that2

Ba(w)]® _ e (223)

7w=ze) =%

provided
w sin? @
ue? (g2 4 e2“,2)1/2‘

where @ is the angle of incidence of the geoelectromagnetic plane wave and u, o, € are the electromagnetic
parameters of the earth. Under these assumptions the surface impedance Z(w) is independent of §, which
is highly desirable from the point of view of measurements. Recalling our electrostatics discussions, we
recognize that Equation 223 can be arranged to yield a formula for resistivity, p = 1/0,

o=t [E)

(224)

(225)

and we see that if the earth is horizontally stratified, we can deduce information about it by measuring
the effective resistivity given by Equation 225. As for conductivity measurements, analysis can be
very difficult and results difficult to interpret depending on the complexity of the underlying strata.
Models have been developed for different plane wave polarizations, various types of stratification and for
a current sheet source at ionospheric altitudes. The main use of magnetotelluric measurements is for
depth-sounding, since most models assume that horizontal field variations are small.

4.3 Quasi-static Electromagnetic Theory

We start off as usual with the basic Maxwell’s equations,

. 8B
V-D=p (227)

61 The minimum is a null for free space. In the presence of a conductor, the primary and secondary fields are out of phase
and hence we get an elliptically polarized total field which cannot be represented by a simple vector. We get a minimum
when the major axis of the polarization ellipse is contained within the plane of the receiver loop.

621t is assumed that an incident plane wave has a magnetic component in the y direction and travels in the = — z plane.
The earth/sir interface is in the z — y plane at z = 0. See [2] Chapter VI for details.
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. . 8D
= hutiondl 228
VxH=J+" (228)
V-BE=0 (229)
and we assume linear isotropic media such that
B=yuH (230)
D=¢E (231)
J=0oF (232)
Furthermore, we assume that charge does not accumulate®® and hence p = 0. Maxwell’s equations become
- 8H
VxE=—p— 233
V.-E=0 (234)
" L E "
v x H:o-E+e%t—+ [Jo] (235)
V-H=0 (236)

The current density, Jo, in square brackets in Equation 235 is added when there is an impressed current,
that is, a current source independent of the electromagnetic field. Equations 233 and 235 can be combined
to yield

4 8E  8’E
V2E —ou— — ep—n =0
E—ou 51~ “aa (237)
= 8H 8 H
2 — — — ——
ViH - ou 5 P aa 0 (238)

Clearly, Eand H propagate as dispersive waves. If we assume time harmonic solutions for E and H, (i.e.
H(F ) =R {If (F,w) exp(iwt)}) then Equations 237 and 238 become
V2E —iopwE + epw?E = 0 (239)

V2H — ol + e H = 0 (240)

It is cumbersome to deal with two quantities which satisfy Equations 237 and 238 and which must
also satisfy 234 and 236. It would be convenient if E and H could be replaced by a single potentisl. There
are numerous potentials from which to choose, and generally we choose the one which most simplifies a
particular problem. For the present, we whall choose the vector potential, E, given by

B=VxA4d (241)
which satisfies Equation 229. Also by substituting 241 into 226 we get

. 8A
E=-—r -V (242)

where ¢ is the scalar potential associated with A. Since we will be restricting ourselves to source-free
problems, it is wise to choose the Coulomb gauge.

V-A=0 (243)

83 For u finite conductivity, charge density reaches its steady-state value in n time ¢ = ¢/0.

40




Substituting Equation 234 into 242 and using 243 yields ¢ = 0 and

94

EF=— 5 (244)

If we substitute Equations 244 and 243 into 235, we find (neglecting J_;))

- 8..4’ 831{
v3 -
or in time harmonic form, . . .
V34 —icpwA + eqw? A= 0 (246)

Now we must look at the relative contributions of the terms in Equation 246. In free space pg =
4x x 107 H/m, €¢ =~ 8.89 x 1072 farads/m and & ~ 0. Typical induction frequencies are from 1-100
KHz. Thus Equation 246 becomes

VIA=0 (247)

The ratio of magnitudes of the third to the second term of Equation 246 is equal to (¢/o)w where
€ = €69 and ¢, is the relative permittivity (dielectric constant) of the material. A look at Table 3.1
shows that ¢, is typically between 1 and 10 with the exception of water which is 81 (rocks typically have
€ ~ 9, ice has €, = 4 and ¢, for soils varies from 4-30 depending on water content).e"‘ Thus even for an
extreme case when o ~ 10-2 S/m and ¢, = 9, the ratio of the third to second term is ~ 5.6 x 10~% at
1 KHz frequency. Even at 100 KHz, the ratio is only 0.056. For highly conductive rocks with o ~ 104
S/m, the ratio drops to 5 x 10”11, Note that in water (¢, = 81,0 maz ~ 3 X 1072 S/m) or some very wet
s0ils (€,maz ~ 30,0mas ~ 10~2 S/m) the real term may be non-negligable compared to the imaginary
term at the high end of the induction frequency range (~ 100 KHz). For the most part, however, we can
neglect the third term in Equation 246 and write

V24 - icpwd =0 (248)
or in the time domain,
27 8A

The latter equation is recognized as the vector diffusion equation and thus A does not propagate as
a steady wave. The neglection of the third term in equation Equation 246 is equivalent to neglect-
ing displacement current.®® This in turn is equivalent to saying that electric and magnetic fields are
instantaneously propagated. Equation 249 can also be written as

Vid=—pi (250)
whose solution in unbounded space is given in rectangular coodinates by®®
; o f 7@ -
Q@=L [ Sred (251)
4ir v li‘_ zll

with J = 0 outside the volume V.

%4 Dielectric constants vary stowly in the KHz to MHs region since any resonant structure occurs at much higher frequencies.

85 This approximation is generally referred to as the “quasi-static approximation”. There is some confusion in the use of
this name. Sometimes the name refers to the situation when frequency is so low that V2.4 = 0. Also, let d be a typical
source dimension, r the source to detector distance and A the wavelength. Jackson [6] defines the “near (static) zone” as
being d € » € ) and the “quasi-static zone” as being r € A. However, Wait [2] says that the “quasi-static limit" occurs
in what Jackson calls the near sone.

88 Equation 251 is not generally valid for curvilinear coordinates in the same manmer that the components of V2.4 have
no simple meaning for other than cartesian coordinates.
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Likewise, the same approximations make Equations 237 to 240 become

8E

Vif = —gu— =0
a7
- 8H
V2H = —op—— =10 2
oH i (252)
ViE = —ia'yw.l'-f =0
V3H = —iowwH =0 (253)

To illustrate the general nature of solutions of Equations 252 and 253, we choose a situation in which
the fields vary only with 2 and in which H is plane polarized in the y direction. Then

Hy(z,t) = Hoexp [iwt * (iopw)'/? z] (254)

T (2,t) = 0B, (,1) = (iopw)'/* Hy (2, 1) (255)
This may be written

H, = Hoexp [— (i'2ﬂ)1/2 z] exp [i (wt - {5‘2‘—“1}1/2 z)] (256)

J, = (iopw)'/? Ho exp [— (‘-’%“’—)llzz] exp [i (wt - {f-’z‘ﬁ}m z)] (257)

These equations represent a highly damped dispersive wave. For ouw » 12 (I is the thickness of
the conductor in the # direction), the field barely penctrates the conductor and the induced current
responsible for the decay of the field also is concentrated near the surface. As ocuw — oo the induced
current becomes a surface current. For small oy the magnetic field penetrates the conductor with little
attenuation as does the induced current. The magnitude of the latter, however, is vanishingly small.
For intermediate values of ouw, a moderately strong cuzrent field is induced in the conductor which
appreciably alters the magnetic field. The currents are generally not in phase with the magnetic field
and are concentrated near the surface of the conductor. These general trends are also found to hold true
for three-dimensional fields.

The fields, besides satisfying Equations 248, 249, 252, 253, must also satisfy the appropriate boundary
conditions at the interface between different media. These may be found in any standard text (i.e. [5],
p.17) and are

ax (Bi-B) =0 (258)
A (alﬁl - a,ﬁ,) =0 (259)
A x (1{!'1 - }I‘,) =K (260)
A- (pu‘fl - p,]f,) =0 (261)

# is the normal to the interface between medium 1 and 2. K is a surface current which can flow if either
o1 or o3 is infinite. Note that K must be parallel to the interface surface at all points.

4.4 Electromagnetic Induction Modelling

As with magnetostatics and electrostatics, it is desirable to be able to calculate the response of an
electomagnetic induction system to conducting bodies of arbitrary shapes. Unfortunately, the number of
models which yield tractable solutions are small. For instance, for a dipole source such solutions can be
found only for the sphere, the thin horizontal sheet, infinitely conductive half-plane, and the horizontally
layered half-space. We will first choose one of these, the sphere, to illustrate the methodology. Afterwards,
we will discuss methods which can solve arbitrary geometries with the use of a computer.
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4.4.1 Simple Circuit Model

Before we begin, however, it is instructive to investigate an overly simplistic model. This model, although
not very useful for analysing realistic situations, demonstrates most of the aspects of electromagnetic
induction without obscuring results in the mathematics of electromagnetic theory. The geometry is
shown in Fig. 4.7. The method follows Grant and West [4].

The electtomagnetic induction system is assumed to consist of fixed separation transmit and receive
circuits. The transmitter current is time-harmonic and both in-phase and quadrature receiver components
are measured. The target is an isolated conductive circuit with lumped resistance, R, and inductance,
L. If we label the transmitter circuit, “0”, the target circunit,“1”, and the receiver circuit, “2”, then the
mutual inductance between any two circuits 4, j is denoted M;; for 3,7 = 0,1, 2. It should be noted that
the difficult aspect from a field theory point of view is to calculate the M;;.

Assume that the current in the transmit loop is Jge?*. Then the emf induced in the receiver by the
primary field is

Vi) = —iw Moy Ipe™t (262)
and the emf induced in the target circuit is
V1 = —iUMolloeiw‘ (263)

The inductance of the loop generates a back emf and this plus V; plus the resistive drop must equal zero.
Thus

Vi + VW =Vi — RL1e¥* —iwLLe =0 (264)

Some rearrangment yields the current in the target

Il eiwt —

Mg [iwL (R - iwL)

T | mroin | (265)

The emf induced in the receiver loop due to the secondary magnetic field generated by the current in
the target loop is

Vi = —iw My I (266)

We define the “response” as the ratio of secondary to primary voltages in the receiver loop. Using
Equations 262, 265 and 266 and simplifying we get

Vi (w) [a’ + ia]
Guw)= Z—~- =g ———— 267
@)=y =* | Tre (267)
where
a=wL/R (268)
and
8= _ Mo M5, (269)
~ MgL

Studying Equation 267 further, we see that the coeTicient 3 depends only on the relative size and
positions of the circuits while the term in square brackets is a complex quantity which is a function of
frequency and the electromagnetic properties of the target.

We call 3 the coupling coefficient. It can alternatively be expressed as

8= ____"‘:i” (270)
where
My = kij (LiL;)Y? 5=0,1,2 (271)

and |kij| < 1. We sce that each k;; is the coupling coeflicient for the corresponding circuit ¢j. Thus the
coupling coefficient 8 measures the ratio of flux coupled into the receiver via the target to that which
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directly couples to the receiver. Its value changes only with the position of the system. The complex
function 2
o’ + ia
Fla)= ——
(a) l + a)
is called the “respomnse function” and o is the “response parameter”. Since inductance is related to
loop diameter, the only loop parameters which affect the response function are resistance and size. The
response function is shown in Fig. 4.8.
Note the limits of F(a). As a — 00, X(a) — 1 and Y (a) — 0. This is referred to as the “inductive
limit” and the response is given by

= X(a) + 1Y (a) (272)

GL=4 (273)

As a — 0, F(a) — ia. This is the “resistive limit” and the response is
Gr = ifa (274)

Thus for low response parameter values, the response is small in amplitude and is in quadrature with
the primary field. The amplitude increases, initially linearly, until the inductive limit is reached. The
phase goes from 90° at the resistive limit to 0° at the inductive limit. The reasons for these qualitative
trends are fairly simple to explain. When « is small, little current is induced in the target loop and
the secondary field is much smaller everywhere than the primary. Since these two fields do not strongly
interact, we can treat each induction process independently.®” The secondary emf is shifted 180° due to
two induction processes whereas the primary emf is only shifted 90° due to one. Thus the response for
small wL/R is small and in quadrature with the primary emf. As a increases, the secondary field induces
an emf in the target loop which becomes comparable to that induced by the primary magnetic field. As
Fig. 4.9 shows, the phase of the current in the target loop and thus the phase of the secondary field must
shift so that the net induced emf balances the resistive loss. At the inductive limit, the emfs induced in
the target loop by the primary and secondary fields become equal (see Equation 264). Thus the primary
and secondary fields must be in phase but opposite in sign.

The inductive limit corresponds to R — 0 or infinite conductivity. For a perfectly conductive object,
the magnetic field cannot penetrate the surface of the medium. This happens because a secondary
magnetic field is generated, equal and opposite to the primary field such that the total field is zero inside
the object. In this simple circuit model, this occurs when the primary magnetic flux equals the secondary
flux,®® making the total flux through the circuit zero even though the total field at any point is not
necessarily zero.

Next we investigate the coupling coefficient 8 further. The typical magnitude of the response of a
horizontal loop system passing over a buried conductor is shown in Fig. 4.10. To illustrate that our simple
model predicts such a response, we calculate 3 using flux diagrams, Fig 4.11 and 4.12, in which the loop
directions are chosen such that kg; is positive. It is assumed that the transmitter/receiver separation
is fixed so that koz is constant. From Fig. 4.11 we see that when the loops straddle the target, 8 (see
Equation 270) is negative and from Fig. 4.12, when the loops are to one side of the target, 3 is positive.
When one loop is directly over the target, 8 = 0. Thus the response should look like Fig. 4.10 with each
zero crossing corresponding to a position where one loop is directly over the target. The magnitude of 5
is larger for the negative portion of the response since the coupling is stronger when the loops straddle
the target as opposed to being on one side of it. Also, the response is symmetrical about the target
position, due to the fact that the coupling coefficient is independent of which loop carries current.

Finally, if we express the response, G(w) (given by Equation 267), in the Laplace domain and obtain
the inverse Laplace transform of G(s)/s, we obtain

g'(t) = L {G(s)/s} = ge“/" (> 0) (275)

where r = L/R. This is the response due to a unit step current and it is a single damped real exponential
with time constant equal to that of the target loop.

87Put another way, the back emf in the target loop can be ignored.
88 At the inductive limit V1' = —iwLIje'vt, Substitution of this and Equation 263 in 264 yiclda LI + Moy Iy = 0.
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The response characteristics of the simple circuit model are similar to the response characteristics of
a number of more realistic models. The general shape of the response function is similar to Fig. 4.8,
although the equations governing F(a) are more complicated than Equation 272. Generally there are
an infinite number of poles in the response function rather than one and this manifests itself in a time
response which is an infinite sum of damped exponentials rather than a single exponential. The coupling
coefficient is, as mentioned, geometry dependent and must be examined separately for each particular
model. However, for the horizontal geometry mentioned previously and a vertical conductor, the profile
(response as a function of position) behaves in a manner similar to Fig. 4.10.

4.4.2 Response of a Sphere in the Field of a Coil

When we are dealing with a finite body, the complete electromagnetic theory is necessary. We will treat
the case of a homogeneous sphere in the field of a loop as an example of such an analysis. The analysis
has the advantage of being a realistic geometry for detection of nearby small objects while reducing in
the limit to the commonly used uniform primary field or dipole source approximations.

We assume a spherical polar coordinate system (r,8,4) with origin at the sphere centre and will
consider geometries with axial symmetry. The vector potential A is a solution of Equation 249 (Section
4.3) and with the assumption of axial symmetry must be of the form

A= A(r,0)¢ (276)

where A is a scalar and ¢ is the unit vector in the ¢ direction. We recall that the Laplacian operator
acting on a vector can only be evaluated component by component in a cartesian coordinate system.
Thus we write

A= —Asin¢d + Acos i (277)

where 2, are the appropriate unit vectors. Operating on each cartesian component with V? and com-
bining them yields, after some manipulation,

— A N
Vid=(VIA- —7 278

( r?sin? @ ¢ ( )
Equation 249 thus becomes a scalar linear 2nd order partial differential equation.

A A
s i aua =0 (279)

V34—
As usual we solve this equation by separation of variables and assume time harmonic solutions. Thus
A(r,6,t) = R(r)O(8)ew* (280)

Substitution in Equation 279 leads to

a0 de 1
d?*R 2dR 2 n(n+1)
atrs Mt pR=0 (282)

where uw = cos 6, k? = icuw and n is a separation constant.

Equation 281 is an associated Legendre equation with real solutions Pl(u), Q1 (u). Equation 282 is
a modified Bessel equation with two solutions r‘I/’I,H_%(kr) and r"/’I_,,__%(kr) (k #0). fk =0
{nonconductive region) Equation 282 reduces to

d ( ,dR
— — ] - = 283
7 (r dr) n(n+1)R=0 (283)
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and has the general solution C#" + D~ (»+1) with C and D being constants. The general solutions of
Equation 279 are then

A(r,0,t) = r~Y/2 [CI,,+.}(k7') + DI_,‘_g(kr)] [EP.} (cos8) + FQL (cos 6)] (284)

for & # 0 and
A(r,0,t) = [Cr“ + Dr’(““)] [EP} (cos6) + FQJ, (cos6)] (285)

for k = 0. We can now turn to the problem of the sphere in the field of a loop. The geometry is shown
in Fig. 4.13.

The sphere of radius a, permeability u, conductivity o is placed in a nonconducting nonmagnetic
medium at the centre of the splerical coordinate system (»,8,¢). A circular loop of wire, radius Ry, is
situated at (ro,8p) and carries current Ie®*. It is coaxial with a sensing loop of radius Rg, situated at
(rs,8s). Both axes pass through the sphere centre.

The vector potential of the loop is calculated in the same manner as was done in Section 4.2.2. In the
present case, however, the current density is given by

§(v' — 7o)

Jo = Isin@' 6 (cos§’ — cos fy) (286)

To
Using the same analysis as before we find that the vector potential, A, due to the primary loop current
15:99
= ol |~ sin8 »\"
Lir) — Koo % (X 1 1 3 7
A 5 [’Z:l ) (1'0) P, (cos8) P, (cos 90)] ¢ (r<ro) (287)
Inside the sphere the vector potential is from Equation 284 7
o
AW) = p=1/2 Z An P} (cos8) I,.+%(kr)] é (r<a) (288)
n=1

The secondary or anomalous potential due to the presence of the sphere is from Equation 2857

A = [i En P! (cosb) r-("“)] ¢ (r>a) (289)

n=1

The constants A, E, are determined from the boundary conditions (Equations 258 - 261) of which
Equations 258 and 260 may for the present problem be rewritten,

AG) — 4(@) 4 All) (290)
(% (p) (e)
laA — _1_ 8A + 8A (201)
p Or Ho r Or
Substitution and simplification yield the anomalous or secondary potential due to the sphere
Q) Isinbo S aln? ka) P (cos 8) P! (cos6o)| ¢ ¢ 202
AY) = § polsin 02;1 [2n(n+ Tyraemt Xn(ka)P, (cos ) P, (cos o)} ¢ (292)
e [(3+ 1y + 7Ly ke) = Rl (k)
n+ r + 7 a) —kal, _i(ka
xn(ka) = - nth 4 (293)
n (4, — 1) I,y (ka) + kal,_ 1 (ka)
and as usual
B~ = prpo
po=4rx10"7 H/m (294)

Special Cases of Equation 292 :

%92 Time dependence is implicitly sssumed to be €'“? and has been dropped in the following analysis.
" Note that QLand I__ _, have been omitted since the former is singular for cos § = 1 and the latter is singular for r = 0.

"1 Note that the ™ form of the solution has been dropped since it is singular at r = oo

46




1. Dipole source - If d > Ry the field of the loop should become dipolar. By expanding P (cos ;)
as a power series in (1 — cos @), it is easy to show that,

oo 2n+1
Al) - [HoTr e a(ka)PL (cos6)| ¢ 295
dipole 4x ~ (‘l'o‘l')n+zx ( ) n ( ) ¢ ( )

where
mr = *R3I (296)

is the dipole moment of the transmit loop.

2. Homogeneous Primary Field - If only the n = 1 term dominates,” Equation 292) becomes

AW M0 0 2ma® Hyx

homog — 4xr?

[0 (1 + k2a?) + 24] sinh(ka) — (24 + po) ka cosh(ka) | . 097
(o (1 + k2a?) — p]sinh(ka) + (o — po) ka cosh(ka) ¢ (297)
where IR
Note that the potential is that due to a dipole
m = —2wxa3Ho (X +1iY) 2 (299)

where X + iY is the quantity in {} in Equation 297.

It is instructive to examine the resistive and inductive limits for the case of the homogeneous primary
field. By using series expansions for cosh, sinh, it can be shown that as |ka| — 0,

— : 2
mg = [41ra’ ( B o ) - 2xa® (“’“ ord ) ( 3 )] Ho (300)
B+ 2p0 15 £+ 20

which when g = ug reduces to

: 2
mplu, =1 = —27a® (3:"‘_105“2_) Hy (301)
The first term of Equation 300 is due to the induced magnetization of the sphere and the second term is
due to the induced eddy currents.
If |kaj — co then we get
mg = —2ra3H, (302)

Both Equations 300 and 302 can be obtained by means which do not involve boundary value methods.
This provides some insight into the physical processes involved and is also very useful since often there
is no closed form solution for many problems.

To obtain Equation 300 we assume initially 4, = 1. In the resistive limit, only the primary field
contributes to the induction process. We divide the sphere into annular rings of radius »sin § and cross-
sectional area rdfdr. The emfinduced in each ring is

V = —iwperr?sin? 6H, (303)

We equate this to the resistive drop in the ring and get

a1 = —-;—ia'powr’ sin 6drd6 Ho (304)

72 This implics that a < (RZ,. +d’)ll’ ora < (R?7 +d’)”’.
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The contzibution to the dipole moment is
d*mp = n (rsin6)?d?I (305)

Integrating Equation 305 we get 301, which is, of course, 300 with u, = 1. To get 300 for u, # 1 we
replace poHo with the actual flux density inside the sphere and then add a term to account for induced
magnetization. Recall (Section 2.8) that if M is the magnetization of a sphere, Hp the external field and
H; the internal field, then

H;=Ho—1/3M (308)
But
M=E"Fpg, (307)
Ho
and so 3
B = pH; = | ——— | uH, 308
= (u+ 2#0) kHo (308)

The dipole moment due to magnetization is

m = %raaﬁ (309)

If we add Equation 309 to 301 and replace o Ho by B; of Equation 308, we get the general resistive limit
Equation 300 for any p.

The inductive limit is obtained by finding the effective magnetization that makes the flux density
vanish everywhere inside the sphere. We have

" L . . 2 .
0=B,~:[Lo(H.'+ML) = Uog (H0+§ML) (310)
or 3
M = ——-2—ffo (311)

Substituting My for M in Equation 309 yields 302.
Now let us examine the secondary potential of the sphere in the field of a loop (Equation 292) in more

detail. First we note that it is the voltage induced in the receive loop that we measure rather than the
vector potential. This is given by

s=Rg (312)

V) = iwsl®) = iw f A9 - di = 2riwRs (43
0=.s

where the circular integral is performed around the receiver loop. In terms of distances rather than angles
this becomes,
RsRr

@+ ')E
©  gmtr PL(dr/[d3+B3]F) PY (ds/ [a3 + B2)P) |
g Zn{n+1) (d2 + R3)¥ (d2 + R3)™F (Xa +i¥a) (313)

where dy is d for the transmit loop (see Fig. 4.13), ds is d for the receive loop,

V) = 2mipeIw

xn(ka) = Xn(ka) + i¥n(ka)

and X,,Y, are real functions.

As in the simple loop target example, the expression Xn(w) + iYn(w) contains all the frequency
dependence while the remainder of Equation 313 contains the geometry factors. The present response is
far more complicated than that for the simple case because we now have a complicated sum of products
of geometry and frequency dependent terms. The response parameter is now ouwa? rather than wL/R.
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Examining Equation 313 we see that the higher order terms decrease more rapidly with d than the
lower order terms?3. Thus if the sphere is far from the loop compared to its size (or much smaller than
the loop diameter), the secondary voltage is that due to a sphere in a uniform field. In this case we recall
that the secondary field is that of a simple magnetic dipole. As the loop approaches the sphere, higher
order terms become significant and the secondary field of the sphere receives contributions from higher
order maultipoles.

The four lowest order multipole response functions are shown in Fig. 4.14. Note that the higher
multipoles reach the inductive limit at higher values of cuwa?. This implies that the higher multipoles
are more difficult to excite.

The time domain response may obtained in the same manner as for the loop target {Section 4.4.1).
For a unit step primary current we find for t > 0,74

[ -} o0 2
V() = E’E:_IE_Sl Zl Wa (a,dr, ds, Rz, Rs) Y Anm (sr) exp [- (:;:2) t] (314)

m=1

where 8, are positive, real solutions of

n(pe ~ 1) jn (6'"") + 8amin-1(6nm) =0 (315)

Jn are the spherical Bessel functions,

(2n + 1)a?»~1 P} (d/I'/ [d} + R%-] %) B} (ds/ [d§ + R%] %) (516)
T n(n+1) (&2 + BL)F (@2 + B2)F
and 2
A, = bim (317)

ny, (np, +1) + 82 — n(n + 1)

A number of features are worth comparing with the simple loop target problem. First, Equation 314
is a sum of damped real exponentials as opposed to a single damped exponential as in Equation 275. For
the simple loop target, the geometry or coupling was contained in the coeflicient 3, whereas for this case
the geometry determines the coefficients Ry, Rs, W,. For the simple loop target, information about the
object size and shape was contained in the coefficient of time in the exponential. This is also true for the
sphere in the field of a loop except that there are now an infinite number of coefficients, any,,

2

A = “;:1 (318)

In spite of the differences, however, we shall see that the sphere and simple loop target have time responses
which appear quite similar, just as the frequency responses are similar.

It can be shown that for constant, n, the 8, increase as m increases (Table 4.1). Thus higher order
terms for each multipole decay faster than the lower order. For n = 1, u, = 1, we have the special case
of a nonpermeable sphere in a homogeneous field, In this case

(v 0)|,,= = 321 (2) ReRs
= “’ (dp+ Rp)? (¢} + BY)

,.,2::1 P [— (Z::’) t] (t>0) (319)

and the initial amplitudes of all exponentials are the same (Fig. 4.15). This allows the time constants to
be extracted, in principle.

For n = 1, u, # 1, the initial amplitudes of the exponentials are initially small for m = 1 and
increase slowly with m, asymptotically approaching the value of the nonpermeable amplitudes for large
m (Fig.4.16). This makes extraction of the time constants by simple means impossible. We will return
to the problem of extracting time constants later.

T3 This is casiest to see if we let d = dg = dp i.e. the coplanar case
T4 A detailed derivation is found in[66].
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4.4.3 Solution Using Impedance Boundary Conditions

One drawback to boundary value problems, such as the previous example, is that there are only a limited
nurmber of solvable geometries. Numerical methods would have a much broader range of applicability
since many different geometries could be used as an input. If the object to be detected has sufficiently
high conductivity so that impedance boundary conditions can be applied, then the response will depend
only on surface properties of the object. It is well known that in the numerical solution of scattering
problems, the surface integral equations are much simpler to handle than the volume integral equations.
It can be shown ([5] p.338) that at the surface of a good but not perfect conductor, the magnetic field,
H, and electric field, E, are related by the impedance boundary conditions

E-(a B)a=1zs (ix H) (320)
where 7 is the unit normal to the surface and Zg is the surface impedance of the conductor with electro-

magnetic parameters o, p, €.
, 1/2
bl od
Ze = 7. = 321
s ¢ (0' + iwe) (321)

where Z, is the intrinsic impedance. This is strictly valid only if spatial variations of the fields orthogonal
to the surface normal are small inside the conductor. For closed bodies this condition is true if

P 1/2
('—‘;2‘“0) kp>1 (322)

where all quantities are calculated inside the conductor, p is the smallest radius of curvature at the point
on the surface and

2

k= (323)

is the propagation constant in free space. Equation 320 may be written as
M=2Zs (.f x 7) (324)
where M, J are the magnetic and electric surface currents which are generated.
M=-axE (325)
T=axH (326)

The general scattering geometry is shown in Fig.4.17. The incident (primary) eleciromagnetic fields

E_'.", H* induce currents on the surface, S, of an imperfectly conducting body such that the impedance
boundary conditions on .S are satisfied. The scattered fields at # due to the surface currents are given by
(13] pp.21-24)

B~ UxVxA-VxF (327)
WEQ

Hi= 1 UxVxF+Vxa (328)
W ito

where 4 and F are the magnetic and electric vector potentials or Schelkunoff potentials given by
A= / J(#)G(r,*")ds (329)
s
F= / M (+') G (r, ) ds (330)
s
where G is the free space Green’s function,

1 R
G = o P (—-—tk (331)

r*—;v|)/]r*-;'
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Substitution of Equations 325,326,329, 330 into 327,328 and recognizing that E, H in Equations 325 ,326
are the total fields given by Ei + E' Hi + H* respectively, we get two integral equations [67] :

T(7) = 2a(7) x B¢ (7) + 20 (7) x /sf(ﬁ) x V'Gds'

_ 23 (F) x [ / iweod (7) G - Ve M 7 (7) V’Gds’] (332)
and
E () = i‘”;‘° /s T (7) Gas' - iwlfo /s vy 7 (7) viGas
- /; M (7) x V'Gda' (333)

where V! is the tangential gradient with respect to #. The coupling between the Magnetic Field Inte-
gral Equation (332) and the Electric Field Integral Equation (333) is resolved by using the generalized

impedance boundary condition,
1 (7) = 25 (7) [7(7) x 4 (7)] (334)

where now Zg is a dyadic matrix (2 x 2) and J is the surface current ( & 2-vector with components
usually chosen along the directions of principle curvature). If we write,

s (- ) 20) (335)
) = - 35

S Zs (1" ) 0

then there are a number of approximations for the surface impedance. Two commonly used ones are:

1. Zg constant everywhere on S (Leontowich approximation).
Zy=-Zy= 2, (336)

This approximation is useful when Equation 322 is fully satisfied.

Z=[1-q (7)] z.

5=[ive(f)]

2. Zg is curvature-dependent.

Q () = (1 -6 (Ku ~ K.) (337)

where K., K, are the principle curvatures at +' and 4, § are two orthonormal tangential vectors at
7! for which 4 x © = # is true. This is useful when the radius of curvature on some portions of the
body approaches the electromagnetic wavelength.

Equations 332 - 334 using the appropriate ¢ pproximation for Zg may be solved by one of a number of
numerical methods. One popular one is th Moment Method in which the integral equation is solved
numerically by expanding the incident fields on the surface in a series of suitable basis functions, applying
a set of testing functions and inverting the matrix of coefficients of the resulting set of simultaneous linear
equations. There are a host of other numerical methods that may be used, but a full discussion is beyond
the scope of this course. Further details ma s be found in [69].
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4.5 Inverse Electromagnetic Induction Problems

The object of inverse electromagnetic induction problems is similar to that of Section 2.10 for the magne-
tostatic case, namely find the position (including depth), shape and size parameters of a hidden compact
object of finite size.”® As for the magnetostatic problem, we are faced with the problem of uniqueness.
Although generally speaking, many sources may yield the same set of field values, often in practice the
geometry is sufficiently well-known a priori or the sufficient information is available about the source (i.e,
there are only a finite number of sizes and shapes) that the inverse problem is uniquely solvable. In any
event, the success or failure of the inverse method, be it model fitting or pattern recognition, is essentially
a test of uniquess.

There is, however, a notable difference between the magnetostatic and electromagnetic induction
inverse problems. In the magnetostatic case, we saw that the permeability had little effect on the
measured responses. For e. m. induction, the permeability can dramatically affect the response as
can the conductivity.

We will restrict our discussion to the time domain, although most of the arguments related to local-
ization apply to the frequency domain as well. Furthermore, we shall consider the detection of a buried
sphere using a set of horizontal coils as in Fig.4.13. The time domain response is given by Equation 314,
which is a sum of damped real exponentials. Compact bodies generally give such a response and so the
following arguments will also be generally applicable to compact objects other than spheres.

Localization of the sphere in a horizontal plane is not as difficult as for localization of a magnetostatic
dipole in a plane. The RMS secondary voltage induced in the receive coil as it moves over the object in a
horizontal plane can be thought of as a spatial signature of the object. This signature is generally much
narrower than the magnetostatic signature for the same geometry. This is because e.m. induction is an
active detection method whose signal decreases very roughly as ~ r~%, whereas magnetostatic detection
is a passive method with a signal fall-off ~ r=3. Furthermore, in e.m. induction, the primary field is
vertical and hence the magnetic moment induced in the sphere is vertical. The effect of this is that the
secondary voltage is a maximum when the sphere center is situated on the coil axis; i.e. when the sphere
is directly under the coils. For non-spherical objects, the maximum secondary voltage still tends to occur
when the object is under the coils, although the geometric center will not generally lie exactly on the
coil axis. Typically, it is possible to localize an object in the horizontal plane to within one radius of the
receive coil.

Depth determination is slightly more complicated. If we consider the geometry of Fig.4.13 and assume
that the object is small enough w.r.t. the coils or far enough from them such that only the n = 1 term of
Equation 314 contributes,”® then we find that the ratio of voltages induced in 2 coplanar, coaxial receive
coils of radius R; and Ry at ¢t = t; is

ajz2
Vi(t) _ B3 (4 +R3)Y
V2(t:)  R2(d? + R2)*?

r, =

(338)

which assumes the same number of turns for each coil. We see that in this simple case, the voltage ratio
is a function only of the depth, d, of the object and not of the object parameters (i, o, a). Inversion of
Equation 338 by some method allows us a means of determining depth. It turns out that the assumption
of a spherical object and uniform field are not that restrictive. Good results are obtained from the method
even when the sphere depth is only 0.5 times the radius of the larger coil.7” Situations, in which the
object has dimensions similar to the coil diameter and its distance from the coil plane is less than a coil
diameter, are typical of ordnance and archaeological artifact detection. The response for such geometries
would be expected to have a relatively high contribution of higher order multipole fields. However, the
good depth estimates that are obtained show that the contribution is small. In addition, good results are
obtained for metallic spheroids with sizes similar to the spheres, independent of object orientation. Nor
must the object’s geometrical center lie on the coil axis. Good results are usually obtained for spheres if
the object center is displaced horizontally from the coil axis by up to a fraction (typically ~ 1/2) of a coil

"5Since we are dealing with compact objects, we exclude from this discussion geophysical problems related to detection of
semi-infinite media such as layered half-spaces or vertical dykes. These are most often analysed by a modelling approach.
76i.c. the primary field is uniform

77 This assumes R; = 2R3, 0.3R, <a< 0.8R;.
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radius. If the center is off-axis, the depth, d, determined from Equation 338 approximates (dg + :1:2)1/2
where dg is the true vertical depth and z is the horizontal displacement of the object center from the
axis. A more detailed discussion of this method is found in [74]. Experiments must still be done to verify
if the method is applicable to objects other than spheroids, for similar geometries.

Assuming we now know the location of the object, we are left with the problem of identification,
namely determining size, shape and material properties (g, #). As for magnetostatic detection, there are
two general methods: model fitting and pattern classification.

Model fitting includes least squares fitting and Prony’s method [78]. Of course, model fitting relies
strongly on there being an applicable model and this is what often limits its use. For a sphere, the
secondary voltage can be fitted to the function

V@) = ,,2?1 Wa(a) :Z; Apmexp {— (I::';') t} (339)

by a nonlinear method with a, o being the free parameters. Of course Apm, Knm are functions of g but
for nonpermeable objects they are one set of constants and for u, ~ 100 or greater, they are another
set of constants.”® For nonpermeable objects only a few terms are usunally needed in the summation but
for permeable objects, hundreds of terms are needed to approximate V{#) accurately. There are also the
standard problems of nonconvergence and need for initial parameter estimates which all nonlinear fitting
methods have in common. Most importantly, of course, the model applies only to a sphere.

However, it is found that compact conductive objects generally produce a secondary voltage of the
form

V() = i Ape~ant (340)

and thus a nonlinear fit of the secondary voltage using a truncated series like that of Equation 340
(n=1,2,...N) would yield coefficients An, dn which would presumably be functions of the size, shape,
o, p (and unfortunately the orientation, as well) of the object. The problem in such an approach turns
out to be the fact that real damped exponentials are highly correlated functions. Thus the estimates A,,
an are strongly dependant on the number of terms (N') used in the model.

Another technique that has been used with some degree of success in underwater acoustics and
electromagnetics is Prony’s method. In those applications, the waveforms involved are a sum of damped
complex exponentials. Prony’s method is basically a nonlinear fitting procedure where the nonlinearity of
the system is concentrated in a single polynomial and thus most of the above comments about nonlinear
fitting apply. One advantage, however, is that an initial guess of the parameters is not required. As
with regular nonlinear fitting, the number of exponentials in the model has a very strong effect on the
parameter extimates obtained. A further disadvantage is that the estimation procedure is sensitive to
the sampling interval chosen and very sensitive to the §/N ratio.

One might be tempted to try a simpler approach which is often used in nuclear physics. The tail of
the waveform is fitted to a single exponential, with the assumption being made that the faster decaying
terms are negligable at sufficiently great times. The smallest time constant, oy, is obtained and the
estimated term A;e~%t is subiracted from the waveform to obtain a reduced waveform. The tail of the
reduced waveform is fitted to a single exponential and the process is repeated. This method might, in
fact, work reasonably well for nonpermeable spheres in which only a single exponential is significant for
large times (Fig. 4.15). For permeable spheres, several exponentials contribute at any time (Fig. 4.16)
and the method will fail.”?® In general, objects of arbitrary shape do not have waveforms like Fig. 4.15.

Even if fitting the waveforms to a sum of damped real exponentials did yield accurate coeflicients,
relating those coefficients to the properties of the target object would be a formidable task without a
priori knowledge of the object’s shape classification (i.e. spheroid, cylinder, hollow, solid, etc.). Indeed,
even this knowledge would allow an analytical solution for the object’s parameters in only the few cases
such as the sphere or spheroid for which analytical models exist.

T8In all the previous modelling, it has been assumed that u, is constant, although x4 is obviously governed by some
hysteresis curve. However, in the earth's field p, is typically between 100 and 1000 for ferrous objects and hence the effect
is as though u, were constant (sce Table 4.1).

¥ Because of the correlated nature of real exponentials, one can always fit the tail to a single exponential. However, the
estimated coefficient could not be simply related to i, &, a
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If the number of objects under consideration is finite, we may consider pattern recognition. A method
which has been successfully used to classify metallic spheroids [79] will be described as an example. As
previously stated, once we have localized the object, the coil axes are epproximately over its geometric
center. Referring to Fig. 4.13, where now the spherical object is replaced by an arbitrary object with axial
symmetry, it is obvious that the response will be independent of the azimuthal angle of the symmetry
axis of the object.

Feature vectors are obtained from the electromagnetic induction response by one of a variety of
schemes. This usually consists of first normalizing the time response relative to a fixed time after the
falling edge of the transmitter pulse; segmenting the normalized response and fitting each of the finite
number of segments to a simple function such as a straight line, single exponential or a constant. The
segments do not have to be equal time intervals but may be adjusted for constant energy (area). There
are advantages and disadvantages for each feature type which are beyond the scope of this course (see
[79] for a discussion). A simple, but quite successful choice [79] has been the mean response for each
segment with equal time intervals. A feature vector for a response then consists of the sequence of fit
parameters for all segments.

We can use a continuous parameter classifier very similar to that of Section 2.10, except that now the
manifold is a function of only one continuous parameter 8, the polar angle of the object’s symmetry axis.
Hence, the class prototype for an object is a one dimensional manifold (i.e., a curve) in an N dimensional
feature space.3° An example is shown in Fig.4.18 for an N = 2 dimensional feature space.

The approach is to approximate the curve by a sequence of line segments which connect points on the
curve. This reduces the problem to finding the minimum distance from the test vector to a sequence of
line segments.

The prototype for class i and given 6 is a point defined by the head of a vector denoted |m; (6)). The
prototype is approximated by a finite number of line segments joining points |m; ;) where the subscript
J indicates that the prototype feature vector is evaluated at the discrete value of the parameter 6 = 6;.
We define a unit vector |a; ;) along the line segment joining |m; ;) and |my j41),

1
levi,3) = |wa3) / (wi 5 i 5) (341)
where
wi,s) = Ims,41) = |maz) - (342)
Let |2) be a test vector and define
vi,3) = l2) — mai ). (343)

If we define y('-) to be the projection of |y ;) onto the line segment, and |d; ;) to be the vector which
1,5 W2 g W7

is normal to the line segment and which passes through |z), then

ds5) = lyi,s) — y§,‘,~’> (344)
ij,.’> = (th,4] @i,5) loi5) = g5 1i,5) (345)
where
(%i,5] wi,5) s
i T 46
8= Qg w,5) (346)

If |2) is a sample from the class i corresponding to the region of the prototype curve for which §; <8 <
8; 41, then an estimate, 8, of the continuous parameter associated with |2) may be obtained from

6 =6; + ¢ij (641 — 6;) (347)

80 \V 2 12 is typical.
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The minimum distance, d; ;, from the test vector to the region of the curve between |m; ;) and |mq j41)
is approximated by

1
dij = (dij] di,)? (348)
Since the line segment only approximates the manifold between the two endpoints of the line segment, the
previous distance equations are really only true provided !yl("j) lies between these points. Examination

of Equations 345 and 346 reveals that this occurs for 0 < ¢; ; < 1. If this condition is not satisfied then
d; ; is replaced by the distance from the test vector to the nearest endpoint of the segment. For speed
of implementation, g; ;j is calculated first and based on its value, the appropriate calculation of d;; is
carried out.

Finally, the minimum distance, d;, from the test vector to the curve is approximated by

di = min {d; ;} . (349)

The test vector is assigned to the class ¢ for which d4; is a minimum.

Probability of correct classification for a restricted case (responses of a set of four steel spheroids
obtained in a nonmetallic laboratory) are between 90% and 97%. One problem is that the responses vary
slowly with depth and hence to improve classification success, the design set must include various depths
or else a correction for depth must be applied to each response. The former would then require the use of
a two dimensional continuous parameter classifier such as was used in Section 2.10. The student should
consult [79] for more details.

5 Conclusion

The detection of compact objects by low frequency electromagnetics has been discussed. In particu-
lar, magnetostatic, electrostatic and electromagnetic induction techniques have been described with an
emphasis on locating and identifying objects rather than merely detecting them.

Although the techniques for compact object detection are broadly related to their counterpart geo-
exploration methods, it must be remembered that the two problems are quite different and methods
cannot be directly carried from one problem to the other. Sources and geometries are usually radically
different for both problems and consequently detectors and signal processing techniques are also different.
Geoexploration techniques are covered in a number of standard textbooks.

Finally, it is sometimes stated that low frequency electromagnetic detection of compact objects is
a “mature science”. I hope that by the time this part of the text is reached, it will be clear to the
reader that there is still much fundamental research to be done before objects can be reliably located and
identified.
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Table 1.2
METHODS FOR DETECTING EXPLOSIVE MUNITIONS

REMOTE/
QUASI-REMOTE

METHOD

Magnetostatics
Electromagnetic Induction
Conductivity Imaging
Ground Penetrating Radar
Acoustics
RF Resonance Absorption
Nuclear

Trace Gas Analysis

ol el oRVoRN ool ol ol e

Biochemical Detection

Optical — Ultraviolet

)
-l
-

Optical — Visible

~

Optical — Infrared — Near
Optical — Infrared — Thermal Q,R
Microwaves — Passive Q,R
Microwaves — Active Q, R

Human Perception Channels ?

UNCLASSIFIED




ELECTRICAL PROPERTIES OF TWO COMMON
MATERIALS IN REMOTE SENSING

UNCLASSIFIED

Table 1.3

SSP 124

MATERIAL CONDUCTIVITY FREQUENCY SKIN DEPTH
S/m Hz m
SALINE 10! 1000 0.16
100 0.50
10 0.16
SOIL 107! 1000 1.6
(MAXIMUM 100 5.0
CONDUCTIVITY) 10 16.
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Table 2.1

STANDARD NOMENCLATURE OF
GEOMAGNETIC FIELD COMPONENTS

Component Standard Average value near
letter latitude 45°N
symbol (nT)

Total field F 45000

Horizontal component H 15000-25000

Vertical component VA 40000

Declination (angle between H and the

geographical north direction) D Depends on location
Inclination or dip (angle between F

and the horizontal plane) I 60-70° (F pointing down)
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Table 2.2
MAGNETIC UNITS

Quantity Typical Units
Symbol

Magnetic Induction or b, B 1 nanoTesla (nT)
Magnetic Flux Density = 107° Tesla (Weber/m?)

= 10"% Gauss

= 1 gamma (v)
Magnetic Field or h, H 1 nT/ue
Magnctic Ficld Intensity = 1075 Oersteds (Gilberts/cm)

=7.96 x 1074 A/m
=7.96 x 10-7 emu

Magnetization M same as H
Magnetic Dipole m, M, M1 1 Am?
Moment = 10%emu
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Table 2.4

DIMENSIONS OF SPHEROIDAL OBJECTS FOR
CLASSIFICATION EXPERIMENTS

OBJECT | LENGTH OF SYMMETRY | RATIO OF AXES LENGTHS
NUMBER AXIS (a) INM (e)

1 0.010 3.75

2 0.020 3.40

3 0.030 2.50

4 0.045 2.50

5 0.060 3.50

6 0.090 3.50
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Table 25

SSP 124

PROBABILITY OF MISCLASSIFICATION FOR

SPHEROIDS OF TABLE 24

PERCENT PROBABILITY OF PERCENT PROBABILITY OF
NOISE MISCLASSIFICATION (%) NOISE MISCLASSIFICATION (%)
0 1.1 10 7.1
1 1.1 25 16.4
2 1.4 50 30.3
5 75 39.0

2.9
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Table 3.1
ELECTROMAGNETIC PROPERTIES OF
RELEVANT MATERIALS
Material Dielectric Conductivity Relative
Constant (S/m) Permeability
A.Soils
dry sand 46 1077 — 1073 1
water saturated sand 30 1074 — 102 1
water saturated silt 10 10~3 — 1072 1
water saturated clay 8 — 12 107t 1 1
dry,sandy,flat coastal land 10 2 x 1073 1
marshy,forested,flat land 12 8 x 1073 1
rich agricultural land, low hills 15 10-2 1
pastoral land, medium 13 5x 1073 1
hills and forestation
granite, dry 5 10-8 1
limestone, dry 7 10™% 1
B.Metals
silver 1 6.3 x 10%7 1
copper 1 6.0 x 10%7 1
gold 1 4.3 x 10+7 1
aluminum 1 3.8 x 107 1
iron 1 1.0 x 10%7 50 — 1000
bismuth 1 9.4 x 10*5 1
C.Miscellaneous
air 1 0
fresh water 81 1004 - 3x10°%2 1
sea water 81 4
fresh water ice 4 104 — 1072 1
permafrost 48 1075 — 1072 1
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Table 3.2

CONDUCTIVITIES FOR THREE SIMPLE
ANISOTROPY MODELS

Model o1 = 100, o1 = 1000,
a 0; =0y =0, =1470; | 0z =0y =0, = 7470,
b o, = 0y = 2.80; o, = o, = 20.80,
o, = 1.220, o, = 1.250,
c 0, =0y =0, =1530; | 0, =0y = 0, = 1.720,

UNCLASSIFIED
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MAGNETIC
NORTH
GEOGRAPHIC
NORTH
-
/ ~” 110
— LINES OF F
s - = ] oac:s
P

EARTH RADII

- |F| ISOSURFACES

Figure 2.1

THE EARTH AS A MAGNETIC DIPOLE
( Grivet and Malnar)
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MID-NORTHERN AND MID-SOUTHERN LATITUDES

HOURS: 0 1200 2400 1200 2400 1200 2400
DAYS: DAY 1 DAY 2 DAY 3
50 GAMMAS

EQUATORIAL LATITUDE
TYPICAL DIURNAL VARIATIONS IN TOTAL FIELD INTENSITY
Figure 2.4

[<— 10 MINUTES —>
i o

10 GAMMAS

TYPICAL MICROPULSATIONS
Figure 2.5

T 60 GAMMAS

je———— 1 DAY ———— ]

TYPICAL MAGNETIC STORM
Figure 2.6
TEMPORAL VARIATIONS IN THE GEOMAGNETIC FIELD (Breiner)
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400

3004

200-

|Fl(Gammas) ___g,.

100 -

e

EARTH RADII (Rg)

Figure 2.7

PIONEER V “NEAR ZONE"” FIELD MEASUREMENTS
( Grivet and Malnar)
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Figure 2.9
FLUXGATE MAGNETOMETER PRINCIPLE OF OPERATION

UNCLASSIFIED




UNCLASSIFIED SSP 124

SENSORS ALIGNED

FIELD FROM :

60000 60000 EARTH 59088 59088

200 100 + OBJECT 197 98

60200 60100 TOTAL 59285 59186

MEASURED
a A 4 FIELD b

] @
3 P
y >
= =
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2 2
o ]
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zEL
E o
f55
g SENSORS MISALIGNED 1°
=
60000 59991 59088 58897
200 100 197 98
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@ 0
P 3
s 10 7| 5
E £
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2 &
wl w
wn [7¢]
1 2

_Bz + B1 = 109 nT

~B, + By =290 nT
Figure 2.10

HOW MISALIGNMENT IN A VECTOR GRADIOMETER AFFECTS
ERROR IN GRADIENT MEASUREMENT
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Figure 2.13
GEOMETRY FOR DIPOLE LOCATION
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3m,

Qmax = 270,000 ("?T;z

Figure 2.15

MAP OF Q@ IN PLANE 1 m ABOVE A DIPOLE
Dipole Moment (m4, m,, m3) =(0, 0, 1) A-m?
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Qmax = 90,000(%;2

/ ///

Figure 2.16

MAP OF Q@ IN PLANE 1 m ABOVE A DIPOLE
Dipole Moment (m4, m,, m3) =(1, 0, 0} A-m?
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Qmax = 683,816 (Lr'-:--)2

Figure 2.17

MAP OF @ IN PLANE 1 m ABOVE A DIPOLE
Dipole Moment (m4, My, M3)=1(2, 0, 1) A-m?
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Bmax = 200 nT

Figure 2.18

MAP OF b; IN PLANE 1m ABOVE A DIPOLE
Dipole Moment (m4, my, m3) =(0, 0, 1) A-m?
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nf Bmax = 85.6 nT

Bmin = —-85.6 nT

Figure 2.19

MAP OF b3 IN PLANE 1 m ABOVE A DIPOLE

Dipole Moment (mj, m,, m3)=(1, 0, 0) A-m?
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12 -

10+

Hr2

Figure 2.26

RATIO OF F3 TO F; VERSUS RELATIVE PERMEABILITY OF SURROUNDING MEDIUM FOR
VARIOUS SPHEROID SHAPE PARAMETERS e
Relative permeability of spheroid is 50. Most rocks have p,, = 1 while the
maximum for most ferrous rocks is p = 3.
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Figure 2.27

MEASURED TOTAL MAGNETIC FIELD OF A .08 m RADIUS MILD STEEL SPHERE
AT A DEPTH OF 0.73m (SOLID LINE)
Geometry is that of Figure 2.11. Sphere center is directly under position
value 0. Dotted line is theoretical prediction {McFee et a/., 1985).
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Figure 2.28

MEASURED TOTAL MAGNETIC FIELD OF A 105 mm HOWITZER SHELL AT A
DEPTH OF 0.96 m (SOLID LINE).
Geometry is that of Figure 2.11. Symmetry axis is tilted 47° from vertical and its
projection is 43° from magnetic north. Shell center is directly under position value 0.
Dotted line is theoretical prediction {McFee et a/, 1985).

UNCLASSIFIED




UNCLASSIFIED SSP 124

M
M, °
=
M) «—— c)(/ 2
\\ —
©
S

o FINCREASING ¢

| |

G 6

INCREASI

=0
Figure 2.29

THE DESIGN PROTOTYPE MANIFOLDS FOR TWO DIFFERENT FERROUS SPHEROIDS.
Each manifold is a surface consisting of a continuum of points. Each point is the
head of a magnetic dipole moment vector corresponding to a polar angle, 8, and
azimuthal angle, ¢, of the symmetry axis of the spheroid with respect to a

space-fixed coordinate system.
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FEATURE SPACE COORDINATE 1

Figure 2.30

PORTION OF A TWO DIMENSIONAL PROTOTYPE MANIFOLD IN A
THREE DIMENSIONAL FEATURE SPACE AND ITS APPROXIMATION
BY A SET OF UNIT CELLS.

Each unit cell is a triangle formed by three adjacent points sampled
on the manifold.
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CONDUCTIVITY SPECTRUM (Ward and Fraser)
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Figure 3.3

TWO SCHEMES FOR HORIZONTAL EXPLORATION
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Figure 3.4
THREE MODELS OF CONDUCTIVITY ANISOTROPY
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Figure 3.5

CONDUCTIVITIES OF TYPICAL ROCK TYPES
(Slichter and Telkes)
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Figure 3.7

TWO LAYER EARTH GEOMETRY
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Figure 3.8
BLOWUP OF THE ELECTRODE PORTION (0,0,0) OF FIGURE 3.7
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Figure 3.9

FOUR ELECTRODE GEOMETRY
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Figure 3.10

RATIO OF APPARENT RESISTIVITY TO TOP LAYER RESISTIVITY FOR 2 LAYER
EARTH MODEL AND WENNER ARRAY OF SPACING a (Wait, 1982)
Top layer thickness is A. K is defined in text.
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Ny

Figure 3.13

MICROSCOPIC MODEL FOR INDUCED POLARIZATION IMPEDANCE
Spherical particle has a complex surface impedance n and volume resistivity o
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Figure 3.14

MACROSCOPIC SHPERICAL VOLUME CONTAINING A NUMBER OF IDENTICAL
MICROSCOPIC SPHERES AS IN FIGURE 3.13
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Figure 3.15

NORMALIZED STEP FREQUENCY RESPONSE USING THE N-POLE
MODEL FOR RESISTIVITY

Figure 3.16

TYPICAL IMPRESSED CURRENT WAVEFORM USED IN INDUCED
POLARIZATION EXPERIMENTS

Jx(t) —_ :

4%
-1
o

ex{t —W —

Figure 3.17

UNNORMALIZED RESPONSE TO WAVEFORM OF FIGURE 3.16 USING
THE N-POLE MODEL FOR RESISTIVITY
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Figure 4.3

GEOMETRY OF A CURRENT CARRYING LOOP
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fiy

LOOP 1

Figure 4.4

GEOMETRY FOR MUTUAL INDUCTANCE CALCULATIONS FOR
TWO CURRENT CARRYING LOOPS
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Figure 4.5b. COPLANAR GEOMETRY

Figure 4.5¢c. ORTHOGONAL GEOMETRY

Figure 4.5

SPECIAL CASES FOR MUTUAL INDUCTANCE CALCULATIONS
For all cases { >aq. a,
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Figure 4.6a
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Figure 4.6d
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Figure 4.6e

Figure 4.6

VARIOUS COIL COUPLING GEOMETRIES FOR USE
OVER AN INFINITE FLAT SHEET
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Figure 4.7

SIMPLE CIRCUIT MODEL OF ELECTROMAGNETIC INDUCTION
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Figure 4.9

PHASOR DIAGRAMS SHOWING EVOLUTION OF INDUCED CURRENT /; IN
TARGET CIRCUIT AS FREQUENCY w OF INDUCING FIELD INCREASES
V; is due to primary magnetic field (current /g). V, is due to secondary
field (current /4) (Grant and West).
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ThANSMITTER — GiRGUT CIRCUIT — RECEIVER COUPLING
TRANSMITTER — CIRCUIT } COUPLING

Figure 4.11

FLUX DIAGRAM TO QUALITATIVELY EXPLAIN RESPONSE OF FIGURE 4.10
In this case transmitter/receiver straddle target.
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TRANSMITTER — RECEIVER
TRANSMITTER — CIRCUIT } COUPLING CIRCUIT — RECEIVER COUPLING
Figure 4.12

FLUX DIAGRAM TO QUALITATIVELY EXPLAIN RESPONSE OF FIGURE 4.10
In this case transmitter/receiver are to one side of target.
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Figure 4.13

GEOMETRY FOR CALCULATION OF THE RESPONSE OF A
SPHERE IN THE FIELD OF A COIL
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Figure 4.14

R
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RESPONSE FUNCTIONS OF INDUCED MULTIPOLE MOMENTS FOR A
SPHERICAL CONDUCTOR IN THE FIELD OF A COIL
The 4 lowest orders are shown (Wait, 1953).
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TIME (ms)
Figure 4.15

FIRST 10 TERMS OF THE TIME RESPONSE OF A MAGNETICALLY
NONPERMEABLE SPHERE IN A UNIFORM MAGNETIC FIELD
(Das and McFee, 1981).
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Figure 4.16

FIRST 10 TERMS OF THE TIME RESPONSE OF A MAGNETICALLY
PERMEABLE SPHERE IN A UNIFORM MAGNETIC FIELD
(Das and McFee, 1981).
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MANIFOLD
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APPROXIMATION
TO MANIFOLD

|mi;_ 1>

FEATURE SPACE COORDINATE 1
Figure 4.18

PORTION OF A ONE DIMENSIONAL PROTOTYPE MANIFOLD (A CURVE)

IN AN N DIMENSIONAL FEATURE SPACE

{To allow it to be illustrated, the manifold has been projected onto the 2-space
formed by two of its feature coordinates). Its approximation by a set of

line segment unit cells is shown.
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