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ABSTRACT

This paper continues the development of physical and mathematical
modelé applicable to liquid drop absorption and evaporation from a substrate.
Three examples are considered: a constant radius of curvature model; a constant
base area model; and a constant angle of contact model. All allow the free
surface area of the drop to vary with time. Methods of solution are given for
both monodisperse and polydisperse drop distributions, and the results are com-
pared with experimental data. Both the constant radius of curvature and constant

angle of contact versions provide reasonable f£its to experiment.
RESUME

Ce document continue le developpement des modeles physiques et
mathematiques applicables a 1'absorption de chute liquide et a 1'evaporation
d'un substratum. Trois exemples sont considérés: un modele a rayon de courbure
constant; un modele a aire de base constante; et un modele a angle de contact
constant. Tous les trois permettent l'aire superficielle libre de la chute de
varier avec le temps . Des methodes de solution sont proposées pour toutes les
deux distributions a chute - monodisperse et Eolydisperse et les résultats sont
comgares aux données expérimentales. Les modeles a rayon de courbure constant
et a angle de contact constant fournissent des versions qui s'accordent
raisonnablement avec l'expérience.
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INTRODUCTION

The history of a dispersion of drops of a liquid which has fallen on
vegetation or soil was examined in previous reports(l’ ), Drop behaviour, applied
particularly to pick-up, was discussed in one of these reports(z) in light of a
simulation called the constant area disc model. This model was found useful in
laboratory conditions and in certain special field situations. Also, the equa-
tions developed from the model was analytically soluble and were helpful in exam—
ining gross characteristics of drop behaviour. However, the theoretical equations
for drop evaporation and pick-up gave a poor fit to the results from field experi-
ments on prairie grassland; consequently, alternative models were developed and
will be described below. Again the models will use as a starting point the
idealized case of discrete droplets on a smooth plane surface.

The common characteristic of the following models is the variation of the
surface area of a drop with time. This variation leads to differential equations
for evaporation, absorption, etc., which are in many cases only digitally soluble,
Consequently, after the system equations for each of the special cases considered
have been derived, any numerical methods of solution required in the digital com—
puter programs will also be outlined. The equations obtained to describe a single
drop will apply, with a constant factor, to a monodisperse drop distribution; poly-
disperse distributions have to be considered somewhat differently. An extension
of some of the numerical methods used for monodisperse distributions will be des-
cribed for the solution of the system equations for polydisperse drops.

The equations for monodisperse drops have also been solved directly by
analog computer; this method will not be described in detail, since it is relatively
straightforward. The analog computer is most useful as a check on the digital ap-
proach, since it is too slow for generation of large tables of results, or for in-
vestigating many parameter changes.
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Specific flow charts and programs for digital and analog solutions of
the system equations for one of the models are given as an example in Appendix
II. These computer programs are readily convertible to obtain solutions to the
equations of other models by simply substituting the appropriate differential
or analytic expressions in the FORTRAN program.

GENERAL EXPERIMENTAL FEATURES

Experimentally observed facets of drops and their distributions are
discussed more fully in previous reports (1’2), and will only be summarized
here. As before, the models assume liquid drops deposited without overlap on
a uniform smooth plane.

One parameter appearing in the following sections 1is the spread factor
A, defined as the ratio of A,, the base diameter of the drop on the substrate,
to D, the original diameter of the free liquid drop. The best fit of theory
to experiment results when A is in the range of 3 to 5 for drops on prairie
vegetation.

Several of the constants which appear in the following derivations may
in fact be functions of meteorological conditions, drop size, etc. Examples
are the liquid drop evaporative coefficient C. and absorptive coefficient C,.
In this report, the simplifying assumption is made that such coefficients are
constants during the course of an experiment.

Models of drop behaviour are considered for both monodisperse (drops
of one diameter) and polydisperse (drops of a range of diameters) distributions.
In particular, the polydisperse distribution function considered will be a
Pearson Incomplete I'-function distribution 3); this has been experimentally
found (4) to predict satisfactorily the distribution of drop sizes from devices
such as an agricultural boom sprayer. Experimental results of field trials to
measure absorption, evaporation and liquid pick-up from the substrate, both for
monodisperse and polydisperse drop distributions, are available and will be
compared with the model predictions.

THEORY OF A VARYING SURFACE ARFA MODEL

Consider a spherical drop of radius r_ falling on a surface, and spread
ing into the shape of a section of a sphere (Figure 1). If R is the radius of
curvature of the spherical surface, h the height at the centre of the drop, and
a the radius of the base, then the drop volume is

V=1/37mh? (3Rh) = = = = = = = = = = = = = = = == = = = - (1)
=1/6 Th (h® + 3a%) = = = = = = = = = - - 0 - 0 - - - - - - (2)

Also a2 = h (2R-h) = = = =~ = = = & ¢ & - . e m e e - - - - - - (3)
and the free surface area A = 2TRh - = = - = = = = = = - = - - - (4)

Now the initial volume Vo = g-wros, where T is the original free drop

radius.
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4 3 _ 2 2y _ _ _ .
Hence 3 T, 1/6 ﬁho (ho + 3ao ) = = - e et e - e e - .- m - - (5)

(where ho and a  are initial values of h and a)

3 2, _ 3 a0 e e ot e e e e e e Mmoo
or ho + 3ao ho 8ro 0 (5a)

Let a = Aro, where A = gpread factor.

Then h > + 3A%r ®h - 8 =0 =~ = = ¢ - 0 o 0 m o e e e m = = (6)
) o o o
Solving equation (6) for ho leads to
B = (L4 + ANV 4 [4- A6k - - - - - )
= Kro, where K = f(A)= = = = = = = 0 0 e - o - - - m === - (7a)

Substituting in equation (1) gives

4 + K
{ 3K 2 } --------------------- (8)

Now the liquid in the spread drop will disappear by absorption by the
substrate and by evaporation. Assume that evaporation is proportional to the
drop free surface area As, and absorption is proportional to the drop base area.

Then ¥ = ~C,(27Rh) = C,(Ta?) = = = = = = = = = = = = = = = = = (9)

where C, and C, are evaporative and absorptive coefficients.

Equations (1) or (2) and (9) lead to only two independent equations
involving h, R and a. In order to solve these equations, one of the three
variables, or a ratio of two of them, must be considered as a constant. As the
drop disappears, its height h will almost certainly decrease; hence either R or
a could be held constant. In addition, the angle of contact o (see Figure 1)
may remain constant as the drop disappears. These possibilities will be analyzed
in the following sections.

(1) Constant radius of curvature R -
Pifferentiating (1) gives

dv
St = ™ (2R-h) dt ----------------------- (10)

Substituting (10) and (3) in (9),

wh (2R~h) -—- = -C (ZTTRh) - Czﬂh(ZR-h)
2C,R

S r e (1)

Now assume that absorption can be considered as similar to diffusion into
a semi~-infinite medium following a step ingyt boundary condition(2)., Then the
absorptive rate will be proportional to t™%; that is, C, must be replaced by




Cz/ﬂ.
dh C R C

Then 5o = - 2 —— = =% = = - & = & & o o e e Mmoo oo oo (12)
de 2r-h Yt

where ho (Z h(o)) is given by equation (7), and R = R, by equation (8).

For solution, put x = /t and y = 2R-~h; then dt = 2xdx and dy = -dh.

Equation (12) becomes

%ﬁ = acln-§-+ 2C) = = = = = == e e m e e e o —— .- (13)
To solve, put % = V; then dx = ydV + Vdy.

Put 4C1R = A;2C2 =B

Then dy = (AV + B) (ydV + Vdy)

dy (1-BV-AV?) = y(AV+B)dv

_dy _AWB
y = aveesv-1 &V (14)

This equation may be solved for y and V. Then substitution for V, A and
B leads finally to

Ei (c§+4Rc1)li
yz-Zszy-4RC1x;] 2 C, 2 %
0
2 3
4RC x+y[C,+(C2+4RC,) 7]

4RC x+y[C,-(C2+4RC,) E]

Here y is not obtained as an explicit function of x (ie, t%ﬁ; for any
given time, determination of y is anything but straighforward. Some method of
numerically solving for y, such as the Newton-Raphson method, must be employed.
This would involve the derivative of equation (15) with respect to y. This was
done, and the solution obtained by digital computer. However, the entire proce-
dure is algebraically untidy; consequently it was also decided to attempt direct
integration of the differential equation (13) by numerical methods. Since the
starting value of y and the equation for its first derivative are known, a fourth
order Runge-Kutta integration procedure was used. These numerical techniques wil
be more fully described later.

The quantities of interest in considering the behaviour of a drop on a
substrate are the amounts of liquid evaporated, absorbed by the substrate and re-
maining in the substrate. Let these quantities by QE’ QA and QAR respectively.
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Then the rate of evaporation will be

dQ
E
g5 =€, (@MRh) - = = - - - - - - e o - - - - - (16)
dq, ¢,
Similarly, T - — ™ (2R-h) = = = = = = = - = = o = = = - = - = - - (17)
t

Now assume that the liquid absorbed by the substrate becomes unavail-
able or decays (due to chemical decomposition, etc.) at some rate €.

dq,. ¢
Vo2 h (2Rh) ~€Qp ~-=-===========- (18)

dt W/E

Writing 2R-h = y andeE-= X,

Then

dqQ
o = UMC RX(2R-y) = = = = = = = ~ == = == =~ = === = = = (19)
dQ
T2 = 2MC,y(2Ry) = === == === -m - - - - (20)
dqQ
T2 = 2MC,y(2R-y) - 2exQp = = = = = === === == ==~ (21)

For each value of x, y is known from solving (14) or (15). Consequentl
(19) and (20) may be solved by Runge-Kutta formulae. Alternatively, since values
of Qg and Qa at each previous time are known, these equations are soluble by
Newton-Cotes numerical integration formulae of the closed type. Both methods wer
tried, and are discussed later. No significant difference was noted in either
computer time or accuracy.

Since the derivative of Q,p involves Qup itself (equation (21)), none o
the previous numerical methods are ﬁ?&ectly applicable. Here a predictor-correct
method was used, as discussed below.

When all of these quantities have been determined, the pick-up of liqui
from the substrate by a pad or roller can be determined. The amount of pick-up
will be a fraction of the remaining free liquid plus another fraction of the ab-
sorbed liquid, some of which will be expressed by the weight of the roller.

(ii) Constant base area - From a = Aro, a_ may be calculated (for
notational convenience, put aan)

Now from equation (3),

a? + hn?

R ==
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Substituting for R in equation (9) gives

C
5+ = - mC,h? - (c, + —-?-) (Ma2) ~ - = e = e e e e e e s - - (22)
t

And from equation (2),

AV 1 2, 2y dh

at -z (0 +a) I

il dh C,

Therefore, 5 (h%® + a?) =— = - nC.h? - (C, + —) ma?
2 dt 1 1 V._t_

2C h? C 2 2C 2
-g-% = _._._1—— - 2(C1 + —-2- .-——i—.— == - 2C1 — 2 a ———(23)
h? + a? t h? + a? vVt h? + 3?

As before, put-\/?= x; then dt = 2xdx

2
Therefore, % = - 4C;x - 4C, (—-z——a-—z—) ------------- (24)
h”® + a

No analytic solution was found for this equation; however, it can be
solved readily by the Runge-Kutta method.

As before,

dQ
—E _ 2 2} o e e e e e e e e e e e e e m e — - =
It 'rrCI(a + h°) (25)
dQ 2

A a
= =TC, —— = - - = - - - ., - s e .- - .- - -~ (26)
dat 2 _\/—

t

dQ 2

AR a
dt TI'CZ - eQAR ------------------- (27)

V t
Letting_Jt?= x leads to

dQE 2 2 .
= = 2mC (@ + h)x =+ = = = - - == - = = === - - -~ - (28)
dQ

A 2
dx - ZTrCZa ----------------------- (29)
dqQ )
I ~ 2"C,a” - 2€xQAR ------------------- (30)
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Now equation (28) is soluble again by Newton-Cotes or Runge-Kutta
formulae.
Solving equation (29) gives

- 2
ZNCZa X

- 2
= 2'rrC2a_Jt—

This is an analytic expression which gives QA explicitly., Similarly,
equation (30) gives

U

2 X
-£X
= 2'ﬂ'C2 aZe f
[o]

2
€£xX
Q e dX = = = = = & & - . . - - . e . - = - (32)

Unfortunately, this solution is given in terms of Dawson's Integral (6), and
must be numerically evaluated. Hence the analytic solution is of little advan-
tage, and equation (30) was again solved by a predictor-corrector technique.

(1i1) Constant angle of contact o
From Figure 1, the angle of contact o between the drop and the substrat:s

is also equal to half the angle subtended at its centre of curvature by the spheri
cal segment, If the angle o remains constant, then so does cos a3

ie, cos o = R-h 1 - b is constant.
R R
h
h _ o
Or, 1 - R = 1 R
o
b B
R R
°
Ro
and R = o h
o
R 3
Now from equations (7a) and 8, E2-= 4+ K
3
o 3K
3
Hence R = A+ K h
3k?
3
= Bh, where B = AXE o _____----- (33)
3?3

Let Qg = quantity of liquid evaporated, Q4 = quantity absorbed by sub-
strate, Quz = quantity remaining in substrate.

The equations previously derived for these quantities are:
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dQE 6
3T - ¢ (2MRh) = = = = = = = = = = = = = - - == == == = = ~ - (16)
dQ 2
A _ L
ey C, —— === -=-=-======-= (17)
vE
dqQ 2
AR _ T8 L 0 m et e e e e et m — _m _, ——,—,————— -
it - C, EQAR (18)
\’ t
Also as before, from Equation (9),
av ma®
T (2mRh) - C, === = - = = = - = == == == == ===~ (9a)
'\’ t
Substituting in (1), V = -;-'rr h3(3 B=1) = = = = = = = = = = = = = - (34)
LAV e ey 8h L ____._
. . dt ﬂh (3B 1) dt ---------- (35)
Equation (9a) becomes
H-camn?) - £ h2 (B-1) ------------- - (36)
Ve
Equating (35) and (36) gives
w(2B - 1)C
mh? (38 - 1) & = -2mBC B2 - ————2 h?
T
-2BC, (2B - 1)C,
i T = € e - (37)
PutVt—= X; then dt = 2xdx
4BC 2(2B-1)C
2l
Then 4 = =~ 31 * 3B = 1 (38)
Put H = %—
(o]
ZBC1
m IR ————
ho (3B-1)
C

_2(28-1) "2
38-1 h_




P16011.PDF [Page: 14 of 49]

-9 -
Then % 22X =~ N = = - - = - = = - = = - = - -, .- - - - (38a)
. .H=Const, ~mx? = NX = === == == === ¢ =« o~ (39)

h
At t=0(orx=0),H=F9--l

o
e H=1l-mx? ~nX -~ - - - - - e e e e e m— e - - - (39a)
or h = (1 - mt - nt;!)ho -------------------- (39b)
dQE 2
Now from (16), rraie ZTrBCIh
= 21BC,h2 (1 - mt - ntH? - = = = = == - - - (40)
2l 2.3 4 5/2 |1, 2 _ 2 _ 4 .3/2 _
or Qg = 2mBC h’ [-3- w’t’ + ¢ mnt + 7 (n 2m)t® - 3 ot + t] ——(40a)
Here the constant of integration = 0,
Normalizing with respect to V_ (Eqn. 34) gives
Qg 2mBC,h * 6BC,
- = £.(t) = 7=y £,(t) = 3mf (t) - ----- (41)
Yo 2m3@e-n 1 ho(3B-1) 1 1
)
where fl(t) is the expression in brackets in (40a).
dQ
From (17) and (3), a-t_A = 'ITC2 (2B-1) hzt:-;2
= 7C, (23—1)h02[m2t3/2 + 2mnt +
(n? - 2m) % - 20+ t_;‘] ———————— (42)
212 2,5/2 2 .2 4.2 _ 3/2
Then QA = mC, (2B-1) h_ [-5111 t + mt® + 3 (n 2m) t
- 2nt + Zt%] -------------- (42a)

(Again constant of integration = 0).

Q, C,(2B-1) h°2 3c, (2B-1)
Normalizing, v =71 fz(t) = -—h—-m fZ(t)
[

3
3 ho (3B-1)

=15nf,(t) - ==~ === - - - - - - - - - (43)
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where £, (t) is the bracketed expression in (42a).

Eqn. (18) gives

dQ dQ
-?23 = 'a—t—A' = EQAR = f3(t) - EQAR ______________ (43)

where £,(t) is the right hand side of (42).

dQAR
In standard form, —EE—-+ €QAR = fa(t)

t 1
The solution is QAR = e et jﬁ fs(tl)eEt dt! + Const. * e et ~—(44)
o

3/2

Here f,(t) = mC, (2B-1) ho2 [m?t + 2mnt + (n%-2m) £ -2n + t-;i]

Put &, = 7C, (2B-1) h *; a = n’; a, = 2mn; a, = n’-2m; a, = -2n

3/2 L L

Then fa(t) = a (alt +at+ aat + a, + t %

. t
_ -t 1y3/2 1 1y% 1y %7
..QAR—aoe j; [al(t) +a2(t)+as(t) +au+(t) ]
et!, -€t
e dt® + Const. " e
Integrating by parts and collecting terms,
3a a
_ 1 3/2 1 L 2
QAR = a, {E [alt +a,t + (a, - Z-:—) t?+ (a, - E—]
a 3a t 1
+ (1=t —D) &7°F f (£1) 7% 5F dt‘}
€ 4 2
> o
+ Const. * € 6 M e e e e e e e e e m - - (45)

In the integral expression, let et! = u,

2udu

2
1 u )
Then t° = A and dt A

Put"\yet = z; then last term becomes

a, 3a1 2 ~z2 z u?
(1 - EE-+-ZETD_JE. e J: e du
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The last bracketed expression is Dawson's integral and is calculable
or tabulated in handbooks.

Hence
3a a
1 3/2 L 2
Qg = 3,45 [ait7 T+ 2t + (a8, -5 7+ (a, - ]
a 3a
+2 1 +2+— - pr \ + const. * et - = - = (46)
Ve 2e g2

(where DI = Dawson's integral
g

-z2 Z
= e f e du,z=.\/f-:'E)
o
a

Qg o mC,(2B-1)h 2
Normalizing, vo-v fk(t) == ; fu(t> = l.Snfu(t)
o o 3 ho (3B-1)

where fu(t) is given in the curly brackets of (46).

a, a,
At t =0, QAR = 0; hence Const. = - = (au - E_)
1 3/2 3a1 i 2, -€t
or QAR = 1.5n = [alt + a,t + (a; - 2—-)t + (au - =) (l-e )]
a 3a
+ 2@t =) DIy ~--mo oo (47)
€ 2
€ 4e

NUMERICAL SOLUTION TECHNIQUES

(i) Solution for h -

Equations (13) and (24), which are differential equations for h as a(5)
function of time, were solved by a standard fourth order Runge-Kutta procedure .
1f the first derivative at x,, y, is given by f(x,, y,) where x, is the independen
variable, then Vo1 2t (xn + Ax), where Ax = step size, is given by

yn+l(x+Ax) = yn(x) + %— (K1 + 2K, + 2K, + K,) + 0(Ax5);w

Here K, = ix f(xn’yn)
K = Ax £(x_+20x, y + =K. - - (48)
2 n T 20 Vg 2™
K, = Ax £(x +2'-Ax +}-K)
3 n 2 » 2 T2
K =

Ax f(xn + Ax, Y, + Ks)
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The dependent variable y was also computed at X + %-Ax, x + l-Ax and

2
x +-% Ax, for use in calculating QE and QA’ as outlined below.

(1i) Solutions for QA and QE -

Equations (19) and (28) for Qg and (20) for Q, were computed by the

Runge-Kutta routine, and by using a Newton~Cotes integration formula of the
closed type(S). This can be written in the following form, where again Ax is
the step size:

Yo+l (x + Ax) = yn(x) + %% [7y1(x + Ax) + 329! (x + 3/4 Ax)
+ 12y! (x + ¥0%) + 32y (x + 4%Ax) + 7yl(x)] + 0(Ax7) - - (49)

d
where yi(x) = i y(x)

Since each y1 is a function of time and the equivalent h, the values
of h at intermediate steps between x and x + Ax are obtained from the previous
step to compute the required derivative values.

(1ii) Solutions for Qup -

Equations (21) and (30) were solved by a predictor-corrector method.
Let QAR be the amount absorbed remaining, DQAR be its derivative with respect
to the independent variable; let QA and DQA be the amount absorbed and its
derivative respectively.

Now from equation (21),
DQAR(x) = 2mC,y(2R-y) - 2€xQAR(x)
But from (20),
27C,y(2R-y) = DQA(x)
Hence DQAR(x) = DQA(x) — 2exQAR(X) = = = = = = = = = = = = = = = (50)
and DQAR(x + Ax) = DQA(x + Ax) - 2e(x + Ax) QAR(x + Ax) - - - - (51)

(5)

Now the trapezoidal rule is

QAR(x + Ax) = QAR(x) + -g-’ﬁ [DQAR(x + Ax) + DQAR(x)] - -~ - - - (52)
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However, DQAR(x + Ax) from equation (36) also contains QAR(x + Ax).
Hence the procedure is to assume an initial value for QAR(x + Ax), substitute
this value in equation (36) to obtain an estimate of DQAR(x + Ax), and substi-
tute this again in equation (37) to give a revised estimate of QAR(x + Ax).
This new estimate then replaces the previous guess, and the entire procedure is
repeated until successive values of QAR(x + Ax) do not differ appreciably.

The initial estimate of QAR(x + Ax) was obtained as follows. Substitut
equation (36) in equation (37) for DQAR(x + Ax); solve the result for QAR(x + Ax)
This leads to a first estimate as

_ QAR(x) [1-exAx] + YAx [DQA(x + Ax) + DQA(x) ]
QAR(x + Ax) = X R e - - = (53)

The values of DQA(x) and DQA(Ax) had already been computed as a step in
the solution for QA, the amount absorbed, and were saved for use in this calcula-

tion.

The solution of equation (30) to obtain QAR for the constant base area
model was accomplished in identical fashion (with the appropriate equations).

(iv) Time for drop to disappear

This was computed for the constant radius of curvature and constant
angle of contact models.

For the first case, consider equation (15), the analytic solution for
drop height h (S2R-y) as a function of time. At the time t when the liquid drop
has just disappeared, h=0, or y=2R. Then the value of x(=_ [t) which satisfies
equation (15) for y=2R must be computed.

Substituting y=2R in equation (15) leads to

1 2 Y 2 g b
N (C, + 4C,R) CR (C; + 4C R)
Fo) = | 1-%(c +C -3

1
5 2C,x + C,+(C2+4C,R) 2
[(ci +4RZ-c ]-1 L | =0 - - - (54)
2C,x + C,-(Ci+4C R)

.C2
2C.R

Since the initial drop size is used to compute R, all quantities in
equation (39) except x are known. To solve for x, the Newton-Raphson formula
is used iteratively. Let a first approximation to the root of equation (39) be
Xy then an improved value of the root, X410 is given by
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where the function, F(x), and its derivative with respect to x, Fl(x), are
evaluated for x=x,. This method converges quadratically to the correct root
as repetitive iterations are performed.

If equation (39) is written symbolically, the evaluation of Fl(x)
(and the numerical computation of x_,,) are more easily performed. That is,

let n+l
FRT 2FRT
F(x) = (r8) €2 - (#B) C2 [Fc] -f:g] --------------- (56)

where FA, FRT, FB, FC, FD and FE are obvious when (41) and (39) are compared.
Then

FRT 2FRT

-1 2C . (FE-FD)
Fl(x) = - 5 (ra) 2 (C,+2¢,x) - (FB) C2  (FC) | ————| - - - (57)
2 (FE) 2

This is evaluated for each X=X and substituted in equation (40) until
the required accuracy is obtained.

For the constant angle of contact model, consider equation (39b). At
T, the instant of drop disappearance, h = 0;

35

then 1 = mT - nT“ =0

Hence 7 =[L— (- n +.‘/n2 + 4m )]2 ______________ (58)
2m -

POLYDISPERSE DROP DISTRIBUTION

It has been shown experimentally that the drop distribution from a
spray tank or agricultural spray boom is well approximated by a Pearson distribu-
tion involving the Incomplete T-function(4),

The distribution function is given by

_hn2
av = kpe P 4D - - o oo oo (59)

where dN = number of drops with diameters between D and D + dD,

K constant

D = drop diameter

b =-§; , where | = mass median diameter and ¢ = 2,.1757.
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Similarly, the mass of drops in this range is given by

= 2
aM = K% PP 4D - e e e e e D o e oo oo oo - (60)

Theoretically, eithexr of these distribution functions can be combined
with the previously derived differential equations of a single drop, to predict
analytically the behaviour of the entire drop population. It has not been found
possible to do this as yet for the constant radius of curvature model. In princi
ple, this method can be used for the constant angle of contact model, but turns
out to be impractical (See Appendix I). Instead, the distribution function has
been approximated by a histogram, giving a series of drop sizes and appropriate
weighting factors. The behaviour of a given size drop (as a function of time) wa:
determined then at each time step required. The quantities calculated for all th:
drops of the histogram were weighted and added together to obtain values approxi~
mating those of the continuous distribution.

The calculation of the histogram drop sizes and weighting factors is

straightforward. The mass distribution function is used. Let u = W/?;"; then
equation (44) becomes H

where J = constant.

In the interval from D, to D2, the mass will be

u 2
2 =
M=Jf u“eudu
u

1
The total mass in the distribution will be
2
MT=J fu“eudu
(s}

Hence the weighting factor for each histogram interval will be

34q/7 u
[l-jue_u2 (u? + 3/2) - Wl;- erf (u)]ui

3\/%’

8

H5F

ue : W?+3/2) ~exf || =------ (62)

or

B
<
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Now the centroid of each histogram interval will be given by
u

2
Jﬁ udM
u

-_ 1

u

fsz

Integration by parts leads finally to

2
[e™ (u*+2u?+2)] 2
1

u
u
3

el

il
N
= |2}

- ™ u2
[ue u (u?+3/2) - A erf (u)]u
1

A computer program called HISTO has been written to compute histogram
centroid values and weighting factors. The program calculates these values as a
series of equal diameter intervals from 0 to 3 times the mass median diameter.
This range will include more than 99% of the total mass in the continuous dis-
tribution. The computed values are punched out on data cards, and the cards
subsequently used as input to polydisperse distribution programs. At present,
75 intervals are used in the histogram.

RESULTS AND DISCUSSION

Using identical input parameters in each run, several comparison runs
between analogue and digital monodisperse programs were made. The results agreed
with each other at all times, usually to at least the third significant figure,
thus verifying the self-consistency of the programs and the accuracy of the numer
cal techniques of solution in the digital program.

Figure 2 shows a plot ?g g;c ~up versus time for monodisperse distribu-
tion, for both field experiments‘’® and the digital computer results for the
constant radius of curvature model. As previously discussed, the calculations
were based on the assumption that constant meteorological conditions prevailed;
ie, that C,, C,, etc. are constants. This is an oversimplification which could
easily be improved, for example, by replacing these constants with parameters
which are functions of temperature, wind speed, and so on. The calculations
would then be modified by the insertion as input to the program of actual meteor-
ological observations, thus permitting the dependent meteorological parameters

to be calculated for much shorter time intervals. However, the fit of theoretica
points to experimental values, and to the general shape of the pick-up curve, is
quite good without considering variations in meteorological effects.
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A similar curve for evaporation, for the same distribution and model, is
given in Figure 3. Again good agreement is obtained. However, as reported pre-
viously, the evaporative parameter required to produce approximately correct total
evaporative amounts on prairie terrain is ~ 5 times as great as that found in other
experiments on smooth surfaces(9), There is some evidence that this increased
value does indeed apply in this situation(10),

While experimental results for both pick—-up and evaporation in the same
experiment are scarce, Figure 4 shows a comparison between digital computer results
for polydisperse and monodisperse distributions, using the constant radius of
curvature model, and with the mass median diameter and all other parameters identi-
cal. The polydisperse curves show the expected rounding effects due to the range
of drop diameters.

Both the analogue and digital monodisperse programs were modified to
calculate the results for the constant base area model. A typical plot of results
is shown in Figure 5. The evaporation curve is almost identical with that pre-
dicted by the constant area disc mode1(1:2), This is to be expected from Equation

d
(25), where a%E.o((azﬂnz), since a, the base gadius of the liquid drop, is approxi-
mately 10 times as large as h; consequently %g ¥ 1%. Furthermore h is decreasing

with time, thus Qg =~ const. x time, as the graph indicates. Figure 3, on the other
hand, shows that the experimental evaporation curve is not of this form.

The constant angle of contact model produces curves which are similar to
those of the constant radius of curvature model, as shown in Figure 6. These curves
are perhaps somewhat more rounded than those of the latter model, but the differ-
ences are not great, and adjustment of the system parameter values can produce a
close match of the two model predictions.

CONCLUSIONS

Three models of drop behaviour have been developed and solved by computer
methods; the constant base area model, the constant radius of curvature model, and
the constant angle of contact model. The models are based on the idealized case
of discrete droplets on a smooth plane surface, but do provide a good fit to values
obtained for evaporation and absorption from drops on rough natural prairie terrain.
Extension of the models to incorporate variations due to changing meteorological
conditions is quite feasible, and is being pursued. All models provide for the
variation of the surface area of the drop with time, but the constant base area
model allows too little wvariation to provide a reasonable fit to evaporation data.
Consequently, the preferable approach appears to be that of the constant radius of
curvature or constant angle of contact models.

The first preferred approach leads to differential equations which are
generally analytically insoluble or mathematically intractable. However, numerical
solutions to the equations have been obtained and appear quite satisfactory. The
theoretical predictions agree quite well, both qualitatively and quantitatively,
with the somewhat scarce experimental data.

The constant angle of contact model leads to equations which are generally
analytically soluble. The fit to experimental data appears to be comparable to that
of the previous model if the parameters are suitably chosen. Insufficient experi-
mental evidence is available as yet to indicate which model is more suitable.
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All models are directly applicable to calculation of behaviour of mono-
disperse distributions, but recourse to some numerical method of treating polydis-
perse drop distributions may be necessary. One approach, involving a histogram
approximation to the continuous curve, is illustrated in this report for a Pearson
Incomplete I'-function distribution; this technique may be applied to any polydis-
rerse distribution if the functional expression for drop size or mass versus di-
ameter is known.

The decision in favour of either of the two best models,determinations
of variations in absorptive and evaporative parameters with wind speed, temperature
and terrain, etc., are handicapped by the relatively small amount of experimental
data. Experiments are underway to expand the amount of data available in an at-
tempt to answer some of these queries.
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LIST OF SYMBOLS

a - radius of base of drop on substrate

Ao - initial base diameter of drop on substrate

As - free surface area of drop on substrate

b - (zc/u?) parameter in distribution function

B - (R/h or (l-cosa) !) constant in constant angle
of contact model

c - constant in distribution function (=2.1757)

Ci1 -~ coefficient of evaporation

Csp - coefficient of absorption

DQA _ derivatives of QA and Qr with respect to the

DQE independent variable

FA,FB,FC,\ _ shorthand notation for terms in analytic solution

FD ,FE ,FRT] of tlme for drop to disappear

h - height at any time at centre of drop on
substrate

K - =ho

';— constant dependent on A
o

m - evaporative factor in constant angle of contact
model

M - mass of liquid drops

n - absorptive term in constant angle of contact
model

N - number of liquid drops

QA,QA - amount of liguid absorbed

QE - amount of liquid evaporated

QAR,QAR - amount of liquid absorbed and remaining in the
substrate

ry - original free drop radius

R - radius of curvature at any time of free surface

of drop on substrate
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SYMBOLS (Cont'd)

dimensionless distribution function parameter

E\[_'Q

u
volume of drop at any time
transformed independent variable (E\f?)
transformed dependent variable (=2R-h)
incremental change in x

angle of contact between liguid and substrate
decay rate constant of liquid in substrate
(EAO/D) spread factor

mass median dlameter of drop distribution




APPENDIX I

POLYDISPERSE DROP DISTRIBUTION -

Constant Angle of Contact Model

At any time T, minimum drop size remaining will be given by Dmin(T) =

= = — + 1’ = _1. = Sl 2
K h (E) K (mt nyT ) ’ where m 3B-1 and n 3B-1 .

2 2
Put KE = M; EE-= N; then
D in(T) =M+NYT = === = = -0 =0 s - o= - - - (64)

First consider evaporation. The total amount evaporated up to any
time t will consist of two components; the amount contributed by all drops still
existing at time t - ie, those with diameters D > Dy, n’ and the amount contribu-
ted by drops which have already completely disappeared - ie, those with D < Dpin-
The amount contributed by the latter group will be a function of the time it
took each drop size to disappear, as well as the total time involved. Hence the
evaporation may be written in two parts:

t 2 dQE Din(1) dQE
QE(t)=f f I de'r+f f dMdT - - - (65)
°  Puincy)

dQE
where Ic = rate of evaporation of a drop of size D

dM = number of drops with masses between D and D+dD
Also Dmin(t) = minimum drop size remaining at time t
and Dmin(T) = minimum drop size remaining at time T,
where T <t

dQE
Since T is given by (40), and dM by (60), in terms of diameter D and

time t, in principle both integrals can be evaluated analytically. However, the
effort involved in working out an analytic expression for Qg as a function of
time will be considerable, if possible at all. It was not considered worthwhile,
since though an expression for QA(t) might be arrived at after an equally great
amount of labour, the analytic expression for Qagr will be even more difficult to
resolve, and may be completely unobtainable at all.

Consequently, though analytic expressions for pick-up, evaporation and
absorption as functions of time are theoretically obtainable, the laborious and
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complex algebra involved makes the effort not worthwhile, both from the point
of view of correctly obtaining the analytical formulae, and of the computer
time required to evaluate the lengthy resultant expressions. It was therefore
decided to apply the same methods as used previously, that is, to approximate
the polydisperse distribution by a histogram and then to evaluate each drop
size interval independently, followed by a final summation of all intervals.




APPENDIX IIX

COMPUTER PROGRAMS FOR THE CONSTANT RADIUS OF CURVATURE MODEL

Both analogue and digital programs were written to provide solutions to
drop behaviour. An analogue program is useful for several reasons: it can be
quickly prepared, is very easily debugged, and provides a simple method of test-
ing the basic model and obtaining reasonable trial values of parameters. However,
it is very time consuming on the computer and is not suitable for multiple runs or
extensive tabular output generation. It is, however, also helpful as a check on
the accuracy of the digital computations, particularly when, as in this problem,
the digital solutions are obtained by a series of numerical approximations.

The analogue program is written for the Continuous System Modeling Pro-
gram (CSMP), a digital analogue simulation language for the IBM 1130 computer. The
program for the solution of drop height, evaporation and absorptive quantities,
and pick-up, is shown as a block diagram in Figure 7. Configuration data and in-
itial conditions and parameter data are shown in Figures 8 and 9.

Two digital programs were written to compute pick-up, evaporation and
absorption versus time. The first program was used for monodisperse and the sec-
ond for polydisperse drop distributions. The polydisperse case was treated by
dividing the distribution function into a histogram of 75 intervals, and consider-
ing each interval as a collection of drops of the same size. Consequently the sec-
ond program differs from the first only in arranging the appropriate sequence and
weighting factors for considering 75 different drop sizes, and summing the results
at each time.

The digital programs are written in FORTRAN II for the IBM 1130 computer.
The flow charts for the monodisperse and polydisperse cases are shown in Figures
10 and 11 respectively. They use input data formats as shown in Table I. The two
FORTRAN programs are given in Figures 12 and 13.




TABLE I

I INPUT DATA FOR MONODISPERSE DISTRIBUTION

PROGRAM PKUP3

First Card EFl, EF2 - Efficiency factors for <l)pickup of
free liquid, and 2)expresszl.on and
pickup of liquid in substrate.

Format 2F10.0

Second Card Cl - Evaporative coefficient
C2 - Absorptive coefficient
LAMDA - Spread factor
DIAO - Mass median diameter (microns)
EPS - Mean decay rate of liquid in substrate
(min~")

DELT - Time increments (min)

N ~ Number of time increments

Format 6F¥10.0, 13

Third, Fourth, For subsequent runs, same as second
etc. Cards card.

II INPUT DATA FOR POLYDISPERSE DISTRIBUTION

PROGRAM POLY MODEL MARK 3

First 22 Cards - (DIA(I), WF(I), I=1,75)
Format 7E11.5

These are interval diameter values and weighting factors obtained
when the Pearson distribution function is approximated by a histogram; the
cards are obtained as output from Program HISTO.

Efficiency factors for (1)pickup of free
liquid, and 2)expression and pickup of
liquid in substrate. Format 2F10.0.

Twenty-third Card EFl, EF2

Twenty-fourth Card Cl - Evaporative coefficient
C2 - Absorptive coefficient
LAMDA - Spread factor
DIAM - Mass median diameter (microns) of distribu
tion
EPS -~ Mean decay rate of liquid in substrate
(min“l)
DELT - Time increments (min)
N = Number of time increments

Format 6F10.0, I3
Twenty-fifth,
Twenty-sixth, For subsequent runs, same as 24th card.

etc, Carxds
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FIGURE 2 EXPERIMENTAL DATA FROM FE 573 (SUFFIELD TECHNICAL
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L wh(2R-h) T

(wa®)

2wRn S EVAPORATION
¥,

— FREE LIQuUID (V)
——

zn@-—J

NORM PICK-UP
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FIGURE 7 CSMP ANALOGUE DIAGRAM FOR CONSTANT RADIUS OF

CURVATURE MODEL
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CONFIGURATION SPECIFICATION

RUN OF CSMP PROGRAM

OUTPUT NAME BLOCK TYPE INPUT 1 INPUT 2 INPUT 3
ABSORB. CONST, 1 K 0 0 0
2 G 18 0 0
3 G 31 0 0
~ABSORB. RATE b X 15 13 0
v(0) 5 K 0 0 0
2R 6 K 0 0 0
~EVAP. RATE 7 G 20 0 0
3R 8 G 6 0 0
9 G 24 0 0
LIQ. PICKUP 10 G 23 0 0
SUB. PICKUP 11 G 16 0 0
PICKUP(O0) 12 G 5 0 0
13 - 30 0 0
H 14 | 30 2 0
BASE AREA 15 X 3 19 0
TOTAL ABSORB. 16 ! 27 b 0
18 / 6 19 0
19 + ~14 6 0
SURF. AREA 20 X 3 6 0
TOTAL EVAP, 21 [ 7 0 0
22 X 31 31 0
v 23 X 22 9 0
24 + ~31 8 0
PICKUP 25 + 10 11 a
NORM. PICKUP 26 / 25 12 0
SUB. DECAY CONST 27 G 16 0 0
T + DELTA 28 0 76 0 0
29 H 28 0 0
30 / 1 29 0
31 R 14 14 0
32 / 21 5 0
FIGURE 8 CONFIGURATION SPECIFICATIONS FOR CSMP PROGRAM
INITIAL CONDITIONS AND PARAMETERS
1C/PAR NAME BLOCK 1C/ PAR1 PAR2 PAR3
-K2 1 -1.000000 0.000000 0.000000
—K1 2 -0.010000 0.000000 0.000000
Pl 3 3.141592 0.000000 0.000000
v(0) 565449848,109375 0.000000 0.000000
2R 6 7694.300792 0.000000 0.000000
K1 7 0.010000 0.000000 0.000000
8 1.500000 0.000000 0.000000
Pi1/3 9 1.047197 0.000000 0.000000
F 10 0.002000 0.000000 0.000000
FeFl 11 0.000100 0.000000 0.000000
F 12 0.002000 0.000000 0.000000
H(0) 14 75.825012 1.000000 0.000000
16 0.000000 1.,000000 0.000000
-K3 27 -0.000714 0.000000 0.000000
DELTA 28 0.010000 0.000000 0.000000
FIGURE 9 INITIAL CONDITIONS AND PARAMETERS FOR TYPICAL
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// JOB T

7/ FOR

#ONE WORD INTEGERS
# EXTENDED PRECISION

SUBROUTINE AK2 (FUNsHsXTeYIeKeNsVEC) K2 1
=KUT ETH
f DIMENSION VEC (1 RK2 2
H2=H/2, RK2 3
vsvl RK2 .
xsx] RK2 5
DO 2 IxleN RK2 6
DO_1 WJolsk RK2 7
T1eHeFUN (K, Y) RK2 ]
T2*HeFUN (XEH2,Y6T1/24) RK2 9
T3 HOFUN (XEH24Y6T2/24) RK2 10
TasHHFUN KEHsYETS) RK2 11
Y Y6 (T16249T2624%T36T4) 784 RKZ 12
2 XM RK2 13
2 vEc () =¥ RK2 14
RETURN RK2 15
END RK2 16
/7 buP
»#STORE WS UA RK2
- 1/ _FOR

#ONE WORD INTEGERS

# EXTENDED PRECISION
SUBROUTINE GRID

< PLOTTER FRAME AND SCALES
CALL SCALE(+018666675100900904)
CALL EGRID(0+0as0ars604410}

CALL EGRID(1+600. 241010}

CALL EGRID(2+600e92+9600910)

CALL EGRID(3¢0aslesslrl0)

A s Qe

DO 51 1 = 1,11

CALL ECHAR(=2044A3=s0bsal13003004}

AP » A/60,
WRITE (7450) AP
80 FORMAT (F4,l)
81 A = A + &0,00001
A ® O
DO 52 1 = 1,11

CALL ECHAR({~3849tA=s015)s01003004)
WRITE (74530 A
53 FORMAT(F&4e2)
82 A = A + ,100001
RETURM
END

1/ DUP

#STORE WS UA GRID
7/ FOR

#ONE WORD INTEGERS

# EXTENDED PRECISION

> __SUBROUTINE VPLOT (M}

< DRAWS PLOTS

COMMON C1+C23ReDQADIDQAL XTI oHeEPSVOA{L1001 sVQE(I100) »RPKPLL100) s

IVTIMEL(100)

Ms N+

CALL EPLOT(=2,3VTIME(L)sVQA(L))
00 11 = 2,M

1 CALL EPLOT(OsVTIME(I)sVQA(I))
CALL EPLOT(«lsVTIME{1)sVQE(L))
CALL EPLOT(=2,VTIME(1)sVOE(L))
00 2 1 = 24M

2 CALL EPLOT(O»VTIME(I)VOE(I))
CALL EPLOYT(+1sYTIME(1)sRPKPL{1))

CALL EPLOT(=2,VTIMELL)sRPKPLI1}}
00 3 1 » 2,M

CALL EPLOT(O»VTIME{I)sRPKPLII)
CALL EPLOT(415720490s)

RETURN

END

w

7/ bup

#STORE WS UA veLot

/7 FOR

#ONE WORD INTEGERS

# EXTENDED PRECISION
FUNCTION FUNY(XsY)

< USED BY RUNGE~-KUTTA SUBROUTINE
COMMON C1+C2+RsDCA0CDOAASXT sHIEPS
FUNY = 4 %ROCL8X/Y + 24%C2
RETURN
END

{4 OUP

#STORE WS UA FUNY

// FOR

#ONE WORD [NTEGERS

# EXTENDED PRECISION
SUBROUTINE ZEROS (HO)

| COMPUTES TIME FOR DROP TO DISAPPEAR

COMMON C1,C24R
<

X = 106

RYF = SQRT(C2%#82 + &4e®R®C1)

FB & {1e=sSHHO/R)N®(24#RTF/C2}
FC = 1,y=a BRC2#(RTF=C2)/(R¥CY)

1 FA ® l.=X#{C2+C1aX)}/R

FIGURE 12 FORTRAN II PROGRAM FOR CONSTANT RADIUS OF CURVATURE MODEL
AND FOR MONODISPERSE DISTRIBUTIONS. FOR COMPUTING DROP SIZE
VS TIME, EITHER OF THE SUBROUTINES RK2 OR FNEWT MAY BE USED

IF THE FORMER, THEN IN THE MAIN PROGRAM,
9 BECOMES: 9 CALL RK2 (FUNY, H, TIME 1, YI4, 3,

STATEMENT NUMBER
4, VEC)
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p -
FO & RTF + C2 + 2,4C1#x

FE = 24#RTF = FD

FX = FARG(RTF/C2) = FBEFCAFD/FE

OFX = {(C242+8CLoX)RRTF/(RACZIIN(FARS(RTF/C2=1,4) ) +FBaFCRa, 2C1H
IRTF/(FENn2)

UNCLASSIFIED

Y

X1 = X + FX/DFX

1F tABSIX1/X = 1a) = «001112,12,3
3 X = X1

GO TO 1
12 TSO » X182

_WRITE (3,4) TSQ
& FORMAT(6X ¢ 'DROP DISAPPEARS AT'sF0,3+1Xs*MINUTESy//)

RETURN
END
/7 DUP

. eSTORE WS UA ZEROS
// FOR
#ONF WORD INTEGERS
¢ FXTENDED PRECISION
SUBROUTINE FNEWTIYI4sTIMELsHO.VEC)
COMPUTES DROP HEIGHTS BY NEWTONeRAPHSON METHOD
e _DIMENSION VEC(4) -

COMMON C1:C24RsDGA0IDOAGSXT sH
¢

YO ® 2,%R ~ HO
Y = YA
X s TIMEL
_RAIF = SQRYICIWN2 & GoWR®CYL)

FC = o S#C2R{RTF = C21/(R#C1) = 1,

00 2 1 = 144
X & X 4 3444

e

FA aiY882 o 2.9C20X8Y = & #RACIHXHE2)/(YQ#E2)

FAP = FASS®(RTF/C2)

FD = 4,#R#CI#X + Y®#{L2 + RYFI

FE u &4,#R#C1%X + Y®{C2 = RTF}

FY e FAP = FC#(FD/FE)

OFY = 24%RTF&(YaC2#X)#FAP/(C2#FARYORE2 | =F (R, #*RUCLAXMRTFE/(FE#RD)
YNEW = Y = FY/DFY

1F (ABSIYNEW/Y = 1) = 4000001} 24243

Y = YNEW
GO TO 1

2 VEC(1) = YNEW

RETURN
END
// DUP
#STORE WS UA FNEWT

>4¥444411,£Q!“V_A_ -
#ONE WORD [NTEGERS
» EXTENDED PRECISION
FUNCTION FQAR(GAR1)
C PREDICYOR=CORRECTOR TO AOVANCE QAR BY W
COMMON C1+C2sRsDQAO+DGAGXT sHIEPS
QAR = (OARL#(1,=12¢WHeEPS#XI) + (6o%M)%(DOA4+DOAO))/(1e+12e%

IH#EPSR(XT + 12.%H))
DAARL » DOAQ =Zo#XI#EPS*#QAR]
3 DRAR3 » DOAM = 2,%EPSH(X] + 12.%H)*QARD
FOAR = QARL + 6.#H*(DOARI + DQAR1}
IF {ABSIFQAR/QARS = ls} = 40001} 19142

2 QARY = FOAR
GO 10 3
1 RETURN
END
71 DUP
#STORE WS UA FQAR
— ... /! FOR

#ONE WORD INTFGERS
#10CS{CARD)
*J1OCS{1132 PRINTER}
# 1OCS(PLOTTER)

# EXTENDED PRECISION
< PROGRAM PXyP3

REAL LAMDA,K1.K2

EXTERNAL FUNY

DIMENSION VEC(&)

COMMON C13C2+RsDQADsDOALXT ¢HsEPSVRALL00) +VAE{ 100} sRPKPL(100)
1VTIME( 100)

| ¢.__DEFINE DERIVATIVES OF MASS ABSe AND_EVAP, TERMS

FNALY) = 2,#P1#C28Y#(2,%R=Y)/V0
FNE(XaY) @ & #PIaCI#REXS(Z,#R~Y)/VD
Pl = 3,141992454
€ READ INPUT PARAMETERS
22 READ 12+33) EF1,EF2
e 33 FORMAT (2F10,0)

1F (EF1) 23423,24
24 READ (242) C1+C2+LAMOASDIACIERSDELTIN
2 FORMAT (&F10,0013)
C DEFINE INITIAL CONDITIONS
TIME = O«

__ VIIME(L) = Qe

J =1

FIGURE 12 FORTRAN II PROGRAM FOR CONSTANT RADIUS OF CURVATURE MODEL
(Cont'd) AND FOR MONODISPERSE DISTRIBUTIONS. FOR COMPUTING DROP SIZE

VS. TIME, EITHER OF THE SUBROUTINES RK2 OR FNEWT MAY BE USED.

IF THE FORMER, THEN IN THE MAIN PROGRAM, STATEMENT NUMBER
9 BECOMES 9 CALL RKZ{FUNY, H, TIME 1, YI4, 3, 4, VEC)
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OAL = 0,
VOA(1) = 0,
QE1 = 0.
VQE{1} « O,
OAR1 = 0.
_DQEQ = 0,

-~

TIMEY = 0.
RPKUP = 1,
RPKPLIL) = 1,
COMPUTE HOsR AND VO
RO = DIAD/2.
X1 = SQRT(16,+LAMDA®SS)

K2 & (#4,4K2)88(1,/3,) = (Kl=be)#8(1,/3,)
HO = K2#RO

R o= ({&yaK20%3)/(3,8K20842)) %R0

VO & (4,0P10ROB&3} /3,

HITE = HO

Yi4 = 2,88 = WO

DAAD = FNA(Y14)
C WRITE INPUT CONDITIONS
WRITE (3.13)
19 FORMAT (1H1,1%Xe *MONOD]SPERSED MODEL MARK 3 o+ 27 JAN 70¢/)
WRITE (5451 LAMDADIACICLeC2sEPSIRIHD
8 _FORMAT(/ 95X o 'LAMBDA = 14F8,2,3Xy 'MMD w ' yFT92,1Xy"MICRONSy/s5Xs

1°C1 = 4FT7,943XKs
1'C2 ® 14F8.2+3Xs'EPSILON & 'sF1068¢//08Xs'R & '3F8.2,1X¢'MICRONS '
29Xa1HO = 4 F9,341Xs 'MICRONS 's///)
CALL ZEROS (MO}
WRITE (343)
3 FORMAT(SXy 'TIME' 45X 9 *OROP* p&Xy 'AMTo ABSo*p3X9 " AMT, EVAP ') bXy

1'AMTs ABSatobXe "REL s/ ¢4Xo' (MINS) ' o3Xo "HTIMU) * s 4Xo 'PERCENT ' 23X
2'PERCENT* 46X *REMAINING? 43X+ 'PICKUPY4/)
C WRITE STARTING CONDITIONS
PQAL = 100.#0A)
PQE] = 100,%0F)
PQAR]L = 1004%QAR]

WRITE (3,4) TIME.HITE,PQAL)PQELsPQAR]L JRPKUP
& FORMAT(4XoF8a192XoFTa302XeF100202(3X+F1002143XsFb.4)

no

0 1 1 = 14N
OETERMINE STEP STZE

| N

TIME = TIME + DELT
VIIME(1+1) = TIME

TIME2 = SQRT(TIME)

X1 = TIME2

H = (TIME2 = TIME®)/12.
GO TO (9+10)4J

" CAUCULATE OROP HEIGHT AT NEXT TIME INTERVAL

L] LL FNEWT({YI4sTIMELoHO¢VEC)
1 = VEC(1)
2 = VEC(2)

Y13 = VEC(®)

CA
Y1
Yl

Y

CALCULATE AMOUNT ABSORBED
DOA&s = FNA(Y[4)
DOA3 = FNA(YIS)
DOA2 = FNA(Y[2)
DQALl = FNA{(YI1)
QALluQAL+ (6o #H/ 492 )#{To#DQAM+3I2+#D0A+12,#DOA2432,#0QAL+ T+ #0QA0)

CALCULATE REMAINING AMOUNT ABSORBED

CALCULATE AMOUNT EVAPORATED
DOESs = FENE(TIME2,Y[4)
DOE3 » FNE(TIMEL + 9.%HsYId)
D0E2 = FNE(TIMEL + &a¥HaY12}
DQEL = FNE(TIMEL + S,#HsYIl}
- + * W7o 53 * + #| +. » +T7a%DOEQ)

10 QAR1 = FQGAR(QARL)
GO YO (11:6)sJ
€ TEST FOR FRFE L1QUID
11 VR = 1, ~ QA1 = QE1
1F _(HITE) 25:2%:7

CALCULATE PICKUP
2% YiA = 2,#R
HITE = 0.
J =2
& PKUP = EF2 » GAR1
OQA4 = Q4

0QA3 = 0,
GO T0 8
T PKUP = EF1 # VR + EF2 « QAR1
DOEOC = DQEs
8 DOAO = DOAG
= 2

VRA(I+1] = QAL

VOE(1+1) = OFE)

RPKUP = PKUP/EF1

RPKPLT+1) » 221T167%ALOGIAPKUR) + 1.
PQALl = 100,%QA1

PQE] = 100.#Q€]1

PCARL = 100.%QAR1

WRITE (3:4) TIME,HITE+PQALsPQEL+POARL RPKUP
CALL GRID

CALL VPLOT(N)

GO TO 22

23 CALL EXIT

o

END

1/ XEQ

FIGURE 12 FORTRAN II PROGRAM FOR CONSTANT RADIUS OF CURVATURE MODEL
(Cont'd) AND FOR MONODISPERSE DISTRIBUTIONS. FOR COMPUTING DROP SIZE

—— VS TIME, EITHER OF THE SUBROUTINES RKZ OR FNEWT MAY BE USED.

IF THE FORMER, THEN IN THE MAIN PROGRAM, STATEMENT NUMBER
9 BECOMES 9 CALL RK2(FUNY, H, TIME 1, YI4, 3, 4, VEC)
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( 77 308 1
/7 FOR
#ONE WORD INTEGERS
# EXTENOED PRECISION
SUBROUTINE RK2 (FUNsHsX1sYTsKsNsVEC) RK2 1
< RUNGE=KUTTA METHOD

[ DIMENSION VEC (1)
H2°H/2,
Yovy
X xt
0O 2 IvleN
DO 1 Jrlek

T1vH#FUN (X2 Y]

T2 H#FUN (XEH2+Y6T 1/2 )
T3+ H#FUN (XEH2,Y6T2/24)
TarHRFUN (XEH2YETS)
¥ r Y8 (T162.9T262.4T34T4) /6,
1 X*XEM
2 vec()» v
RETURN
END "2 16
/7 DUP
#STORE WS UA RK2
1/ _FOR

#ONE WORD INTEGERS

# FEXTENOED PRECISION
SUBROUTINE GRID

[ PLOTTER FRAME AND SCALES
CALL SCALE(+016666567110e9040000)
CALL EGRID(0¢09es049600¢10)

CALL EGRID(1+600640arelsl0)

CALL EGRID(2+600s+143600910)

CALL EGRID(3+0eslerelslo)

A= O

0O 81 1 = 31,11

CALL ECHAR(=200+A3=e0byel13003+00)

AP = A/60e
WRITE (7450} AP
50 FORMAT (Fa.l)
51 A = A + 6£0,00001
A s Os
00 82 1 = 1,11

CALL ECHAR(=3644{A=s015)3e102300.)
WRITE (7453) A

53 FORMAT (F442)

52 A = A+ ,100001
RETURN

#STORE WS UA GR1ID

// FOR

#ONE WORD INTEGERS

# EXTENOED PRECISION
SUBROUTINE VPLOT

Y

[4 DRAWS PLOTS
REAL LAMDA
COMMON C1+C2+LAMDASDIAOIEPSsNIRIDOADSDQAASI XTI sHeVOALEL ) s VOE(GL) s
1RPKUP(61) s VOAR 6L )y VTIMELSL) sPQAT{6L)ePQETI61) sRPKPLIS])
M s N+ 1
CALL EPLOT(=2,YTIME(]1]+POAT(]1})

D0 11 = 2,M

1 CALL EPLOT(OIWTIME(])sPQATI(]))
CALL EPLOT(+1sVTIME(L)oPQET(1)}
CALL EPLOT(=2)VTIME(1)4PQET(1})
D0 2 1 = 24M

2 CALL EPLOT(D.VYIME(I)L PQET(]))

CALL EPLOT(+1+VTIME(L1)4RPKPLIL})
CALL EPLOT(=2 WTIME(1)sRPKPL(1))}
DO 31 = 2,M

3 CALL EPLOT{OsVTIMEC(L)oRPKPLIT)}
CALL EPLOT(+1+720490s4}
RETURN

END
/7 DuUp
*STORE WS UA VPLOT
// FOR
#ONE WORD INTEGERS
»

FUNCTION FUNY(X4sY)
< USED BY RUNGE=KUTTA SUBROUTINE
REAL LAMDA
COMMON C1»C2+LAMDASDIAOIEPSINIR+DQAOsDQALI XTI K
FUNY = 4, #R%CLEX/Y + 2,#C2
RETURN

END
/7 DUP
#STORE WS UA  FUNY
// FOR
#ONE WORD INTEGERS
# EXTENDED PRECISION

FUNCTION FOAR(QAR1)}
€ PREDICTOR-CORRECTOR TO ADVANCE QAR BY H
REAL LAMDA
COMMON C19¢C2+LAMDAIDIAQIEPSINIRIDQAOSDQAS s X1 oM
QAR = (QARL#(3a=124%H#EPSH#X]) + (6.#HI#(DOAL+DQAC) )/ (204124
\ IH®EPS# (X1 » 12.%H1})

DOAR! = DOAQ =~2,4XI®EPS#QAR]

FIGURE 13 PORTRAN II PROGRAM FOR CONSTANT RADIUS OF CURVATURE
MODEL AND FOR POLYDISPERSE DISTRIBUTION
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#STORE WS UA DOROP
// FOR

#ONE WORD INTEGERS
#]OCS(CARD)

#10CS(1132 PRINTER)

#* TOCStPLOTTER)
# EXTENDED PRECISION
C POLY MODEL MARK 3 s 20 FEB 1970
REAL LAMDA
DIMENSION DIA(75)eWF(T75) sPQART(61) +sRPKPT(61)
COMMON C19C29LAMDAIDIAOIEPSsNsR9DOAQIDOAG XTI sHIVOA(6L) s VAE(6L)

1RPKUP(61) s VQAR(61) s VTIME(E1)sPQAT(61)9PQET(61) sRPKPLI61)
READ (2+11) (DIA(I)oWF{LI)sl=173)
11 FORMAT (7E11.5)
WRITE (3,1}
1 FORMAT(1H1+15X+'POLYDISPERSED MODEL MARK 3 20 FEB 1970'4s/)
2DIAMIEPSsDELT N

2 FORMAT(6F1040+13)
IF (DIAM) 23,23,24

24 WRITE (3+3) LAMDADIAMCl,C2,4EPS

3 FORMAT(/¢8Xo 'LAMBDA » '9F8,3293X0o'MMD u!'yFT4291Xs "MICRONS' s/ 98X»
1°Cl = 1 4,F7,353Xy

19C2 = 1,F8,2+3Xs 'EPSILON = '4F10aB9//) _ — o _
WRITE (344)

& FORMAT(5Xy "TIME! 94Xy "AMTos ABS4'93X9'AMT, EVAP ' 44Xy
1*AMTs ABSe'94Xe'REL ' s/9aXs! IMINS) Yy 4X 9 'PERCENT! »5X»

2'PERCENT ' 98X 'REMAINING ' 93X 'PICKUP Y, /)
C SET STARTING CONDITIONS
Nl « N + 1

DO 6 I = 14N}
RPKPTII) = O
PQAT(1) = 0.
PQET(I) = 0,
PQART(1) = 0,
6 VIIME(]) = DELT # FLOAT(1=1})

DO S5 J = 1,78

DIAO = DIA(J) # DIAM

CALL OROP

DO 5 1 = 1eN1

RPKPT(I) = RPKPT(1) + RPKUP(I)#WF(J}
. PQATI(I) = PQATI(1) + VQA(])*WF(J)*100,

POET(1) a PQET(1) + VQE(I)*WF(J)#100.
8 PQART(1) = PQART(1) + VQAR(I)I®WF(J)»100.
WRITE(3s7)IVTIME(I)sPQAT(L)sPQET(I)+PQART(I)sRPKPT(1)sI=19N1)
T FORMAT (4X9F64191XoF1002902X9F100292X9F104296X9Fbe4)
DO 15 1 = 1,N1
PQAT(I) = POAT(11/100.

PQET(I) = PQET(1)/100.

19 RPKPLII) = 4217147#ALOG(RPKPT(I)) + 1.
CALL GRID
CALL VPLOT
GO TO 10

23 CALL EXIT

END
7/ XEQ
/7 PAUS

FIGURE 13 (Cont'd) FORTRAN II PROGRAM FOR CONSTANT RADIUS OF CURVATURE
MODEL AND FOR POLYDISPERSE DISTRIBUTION
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UNCLASSIFIED

3 DGAR3 = DQAS = 2,#EPSH{X] + 12.%H)¥QAR3
FQAR = QAR1 + 6,#H®{DQARI + DOAR])H
1F (ABSIFQAR/QARS = 1,4} = 400017 141,2
2 QAR) = FOAR
60 10 3

1 RETURN
END
// DUP
#STORE WS UA FQAR
/7 FOR

#ONE _WORD INTEGERS

# EXTENDED PRECISION
SUBROUTINE DROP
< DETERMINES BEMAVIOUR OF DROP OF GIVEN S§12€
REAL LAMDA,K1sK2
EXTERNAL FUNY
__DIMENSION VECtA)

COMMON C1+C2sLAMDASDIAOIEPSINIRIDQAOIDQALI XTI sHsVRA(61) 4VOE(61) s
1RPKUPL AL} JVOARIEL )y VTIMEISL] oPQAT () )4PQET(4L) +RPKPLISY)
€ DEFINE DERIVATIVES OF MASS ARSe AND EVAP. TERMS
FNA{Y) = 2,#P18C28YH(2,%R=Y)/VD
FNE(XaY) ® 4 oPIaCLRREX#(2,¥R~Y) /VO

Pl = 3,141%926%4
C SET STARYING CONDITIONS

J =1

QAl = 0.
VQA(1l) = O,
QF1 = 0,
VOEL1) = O,

QAR1 = 0,
VOAR(1) = O,
DGED = Q.
TIMEYl = O,
RPRUP(]) = 1,

COMPUTE HOsR AND VO
RO = D1AQ/2,
Kl = SORT(16.+LAMDA®®G)
K2 = [4atK1182#(14/30) = (K1=&oa)®u(1,/%)
HO = K2#RO
R o= ((4e+K2#03)/(3,#K2082)] %R0
VO w (4,%PI1SROR®I) /3,

T c per

HITE = HO
Y14 = 2,#R = HO
DQAQ = FNA(YI4)
<
<
DO 1 1 e 1aN

ERMINE STEP SIZE

S

TIME2 = SORTIVTIME(I+1))
X1 = TIME2
H = (TIME2 = TIME11/12e
GO TO (9+10)ed

Al AT ROP MT AT NEXY TIME INTERVAL

9 CALL RK2(FUNYoHoTIMELsY143394sVECQ)
Y1l = VEC(l)
¥iz2 = VECID)
Y13 = VECIY)
Yi4 o VEC(4)
HITE = 2,%R = Y[4

CALCULATE AMOUNT ABSORBED
00AA = FNA(Y14)
OQAS = FNA(Y(3)
DOA2 = FNA(YI2)
DQAL = FNA(YIL)
QAL wQA Ly (6o #H/48,)8(74#DQAL+32,%DOAYS 124 #DQA2+32,#DQAL+T74#DQAQ)

CALCULATE AMOUNT EVAPORATED
OQE4 = FNE(TIME2,Y14)
DOE3 = FNE(TIMEL + 9.94sY13)
DQE2 = FNE(YIMEL + b64%MHoY12)
DQE1 = FNE(TIMEL + B.#HsYI1)
* - - L] + # +T @ Q)

L i L
CALCULATE REMAINING AMOUNT ABSORBED
10 QARY = FOAR(QARL)
GO TO (1116144
¢ TESY FOR FREE LIQUID
11 VR « 1, = QA] = Qf1
1F_{HITE) 254287

CALCULATE PICKUP
25 Y14 = 2,%R
HITE = Q.
J =2
6 PKUP = ,00014QAR]1
DOAL = Qo

DOAY = O,

GO YO 8

PKUP = ,Q024VR + ,0001%GAR]
DQE0 = DOES

00AQ = DRAS

TIMEL = TIME2

@ -~

VGAR(I+1} = QAR]
VGA(TI+1) = QA1
VOE(I+1) = QE1
RPKUP{I+1) = PKUP/.002
RETURN

END

-

7/ DUP

FIGURE 13 {Cont'd) FORTRAN I PROGRAM FOR CONSTANT RADIUS OF CURVATURE
MODEL AND FOR POLYDISPERSE DISTRIBUTION
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